
SIAM J. SCI. COMPUT. © 2024 Society for Industrial and Applied Mathematics

Vol. 46, No. 4, pp. C448–C478

LEAST-SQUARES NEURAL NETWORK (LSNN) METHOD FOR
LINEAR ADVECTION-REACTION EQUATION:

DISCONTINUITY INTERFACE∗

ZHIQIANG CAI†, JUNPYO CHOI†, AND MIN LIU‡

Abstract. We studied the least-squares ReLU neural network (LSNN) method for solving a
linear advection-reaction equation with discontinuous solution in [Z. Cai et al., J. Comput. Phys.,

443 (2021), 110514]. The method is based on a least-squares formulation and uses a new class of
approximating functions: ReLU neural network (NN) functions. A critical and additional component
of the LSNN method, differing from other NN-based methods, is the introduction of a properly
designed and physics preserved discrete differential operator. In this paper, we study the LSNN
method for problems with discontinuity interfaces. First, we show that ReLU NN functions with
depth dlog2(d+1)e+1 can approximate any d-dimensional step function on a discontinuity interface
generated by a vector field as streamlines with any prescribed accuracy. By decomposing the solution
into continuous and discontinuous parts, we prove theoretically that the discretization error of the
LSNN method using ReLU NN functions with depth dlog2(d+ 1)e+ 1 is mainly determined by the
continuous part of the solution provided that the solution jump is constant. Numerical results for
both two- and three-dimensional test problems with various discontinuity interfaces show that the
LSNN method with enough layers is accurate and does not exhibit the common Gibbs phenomena
along discontinuity interfaces.

Key words. least-squares method, ReLU neural network, linear advection-reaction equation,
discontinuous solution

MSC codes. 65N15, 65N99

DOI. 10.1137/23M1568107

1. Introduction. Let Ω be a bounded domain in Rd (d ≥ 2) with Lipschitz
boundary ∂Ω. Consider the linear advection-reaction equation

{

uβ + γ u= f in Ω,
u = g on Γ−,

(1.1)

where β(x) = (β1, . . . , βd)
T ∈ C0(Ω̄)d is a given advective velocity field, uβ = β · ∇u

denotes the directional derivative of u along β, and Γ− is the inflow part of the
boundary Γ= ∂Ω given by

Γ− = {x∈ Γ : β(x) ·n(x)< 0}(1.2)

with n(x) being the unit outward normal vector to Γ at x ∈ Γ. We assume that the
reaction coefficient γ ∈C0(Ω̄), the source term f ∈L2(Ω), and g ∈L2(Γ−).

When the inflow boundary data g is discontinuous, so is the solution of (1.1)
as the solution is entirely determined by the characteristic curves (see Lemma 4.1),

∗Submitted to the journal’s Machine Learning Methods for Scientific Computing section April 24,
2023; accepted for publication (in revised form) June 5, 2024; published electronically August 12,
2024.

https://doi.org/10.1137/23M1568107
Funding: This work was supported in part by the National Science Foundation under grant

DMS-2110571.
†Department of Mathematics, Purdue University, West Lafayette, IN 47907-2067 USA (caiz@

purdue.edu, choi508@purdue.edu).
‡School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907-2088 USA

(liu66@purdue.edu).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C448

D
o
w

n
lo

ad
ed

 0
8
/1

3
/2

4
 t

o
 9

8
.2

2
3
.9

7
.2

1
3
 b

y
 Z

h
iq

ia
n
g
 C

ai
 (

ca
iz

@
p
u
rd

u
e.

ed
u
).

 R
ed

is
tr

ib
u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

LEAST-SQUARES NEURAL NETWORK METHOD C449

along which the discontinuities are propagated across the domain. The discontinuity
interface may be determined by the characteristic curves emanating from where g is
discontinuous. By using the location of the interface, one may design an accurate
mesh-based numerical method. However, this type of method is usually limited to
linear problems and is difficult to extend to nonlinear hyperbolic conservation laws
(HCLs).

In [6], we studied the least-squares rectified linear unit (ReLU) neural network
(LSNN) for solving (1.1) with a discontinuous solution. The method is based on the
L2(Ω) norm least-squares formulation analyzed in [13, 4] and employs a new class of
approximating functions: multilayer perceptrons with the ReLU activation function,
i.e., ReLU neural network (NN) functions. A critical and additional component of
the LSNN method, differing from other NN-based methods, is the introduction of a
properly designed discrete differential operator.

One of the appealing features of the LSNN method is its ability of automatically
approximating the discontinuous solution without using a priori knowledge of the lo-
cation of the interface. Hence, the method is applicable to nonlinear problems (see
[8, 5]). Compared to mesh-based numerical methods including various adaptive mesh
refinement algorithms that locate the discontinuity interface through local mesh re-
finement (see, e.g., [12, 19, 28]), the LSNN method, a meshfree and pointfree method,
is much more effective in terms of the number of degrees of freedom. Theoretically,
it was shown in [6] that a two- or three-layer ReLU NN function in two dimensions is
sufficient to well approximate the discontinuous solution of (1.1) without oscillation,
provided that the interface consists of a straight line or two-line segments and that
the solution jump along the interface is constant.

The assumption on at most two line segments in [6] is very restrictive even in
two dimensions. In general, the discontinuous solution of (1.1) has interfaces that are
hypersurfaces in d dimensions. The purpose of this paper is twofold. First, we show
that any step function with interface that is generated by a vector field as streamlines
may be approximated by ReLU NNs with at most dlog2(d+1)e+1 layers for achieving
a given approximation accuracy ε (see Lemma 4.3), which extends the approximation
result in [6]. This is done by constructing a continuous piecewise linear (CPWL)
function with a sharp transition layer of ε width and combining the main results
in [1, 39, 40] (see Proposition 2.1). A question on approximating piecewise smooth
functions by ReLU NNs also arises in data science applications such as classification,
etc. Some convergence rates were obtained in [33, 10, 21, 20, 22]. Particularly, for a
given Cβ (β > 0) interface, [33] established approximation rates of ReLU NNs with
no more than L(β,d) = (3 + dlog2 βe)(11 + 2β/d) layers. This upper bound is not
applicable to a C0 interface and becomes large for a very smooth interface.

Second, we establish a new kind of a priori error estimates (see Theorem 4.5) for
the LSNN method in d dimensions for a discontinuity interface. To do so, we decom-
pose the solution as the sum of the discontinuous and continuous parts (see (4.4)). The
continuous part of the solution may be approximated well by (even shallow) ReLU NN
functions with a standard approximation property (see, e.g., [15, 34, 35, 37, 14]). The
discontinuous part of the solution can be approximated accurately by the class of all
ReLU NN functions from Rd to R with at most dlog2(d+1)e+1 depth, provided that
the solution jump is constant. Hence, the accuracy of the LSNN method is mainly
determined by the continuous part of the solution.

The explicit construction in this paper indicates that a ReLU NN function with
at most dlog2(d+ 1)e+ 1 depth is sufficient to accurately approximate discontinuous
solutions without oscillation. The necessary depth dlog2(d+ 1)e+ 1 of a ReLU NN

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 0
8
/1

3
/2

4
 t

o
 9

8
.2

2
3
.9

7
.2

1
3
 b

y
 Z

h
iq

ia
n
g
 C

ai
 (

ca
iz

@
p
u
rd

u
e.

ed
u
).

 R
ed

is
tr

ib
u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

C450 ZHIQIANG CAI, JUNPYO CHOI, AND MIN LIU

function is shown numerically through several test problems in both two and three
dimensions (two hidden layers for d = 2,3). At the current stage, it is still very
expensive to numerically solve the discrete least-squares minimization problem, which
is high dimensional and nonconvex, when using stochastic gradient descent, Adam
[23], etc., even though the degrees of freedom of the LSNN method are much less
than those of mesh-based numerical methods.

Followed by recent success of deep neural networks (DNNs) in machine learning
and artificial intelligence tasks such as computer vision and pattern recognition, there
has been active interest in using DNNs for solving partial differential equations (PDEs)
(see, e.g., [2, 3, 9, 17, 36, 38]). Due to the fact that the collection of DNN functions
is not a linear space, NN-based methods for solving PDEs may be categorized as the
Ritz and least-squares methods. The former (see, e.g., [17]) requires the underlying
problem having a natural minimization principle and hence is not applicable to (1.1).

For a given PDE, there are many least-squares methods and their efficacy depends
on norms used for the PDE and for its boundary and/or initial conditions. When using
NNs as approximating functions, least-squares methods may be traced back at least
to the 1990s (see, e.g., [16, 24]), where the discrete L2 norm on a uniform integration
mesh was employed for both PDEs of the strong form and their boundary/initial con-
ditions. Along this line, it is the popular physics-informed neural networks (PINNs)
by Raissi, Perdikaris, and Karniadakis [36] in 2019 which uses autodifferentiation for
computing the underlying differential operator at each integration point. Since the
solution of (1.1) is discontinuous, those NN-based least-squares methods are also not
applicable.

The rest of the paper is organized as follows. In section 2, we describe ReLU NN
functions and CPWL functions and introduce a known result about their relationship.
Then we further investigate the structure of ReLU NN functions. Section 3 reviews
the LSNN method in [6] and formulates the method based on the framework in section
2. Then we prove that the method is capable of locating any discontinuity interfaces
of the problem in section 4. Finally, section 5 presents numerical results for both two-
and three-dimensional test problems with various discontinuity interfaces.

2. ReLU NN functions. First we begin with the definition of the ReLU acti-
vation function. The ReLU activation function σ is defined by

σ(t) =max{0, t}=
{

0 if t≤ 0,
t otherwise.

We say that a function N : Rd → Rc with c, d ∈ N is a ReLU NN function if the
function N has a representation,

N =N (L) ◦ · · · ◦N (2) ◦N (1) with L> 1,(2.1)

where the symbol ◦ denotes the composition of functions, and for each l = 1, . . . ,L,
N (l) :Rnl−1 →Rnl with nl, nl−1 ∈N (n0 = d, nL = c) given by

1. for l = L, N (L)(x) = ω(L)x − b(L) for all x ∈ RnL−1 for ω(L) ∈ RnL×nL−1 ,
b(L) ∈RnL ;

2. for each l = 1, . . . ,L − 1, N (l)(x) = σ(ω(l)x − b(l)) for all x ∈ Rnl−1 for
ω(l) ∈Rnl×nl−1 , b(l) ∈Rnl , where σ is applied to each component.

We now establish some terminology as follows. Let a ReLU NN function N have a
representation N (L)◦· · ·◦N (2)◦N (1) with L> 1 (not unique) as in (2.1). Then we say

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 0
8
/1

3
/2

4
 t

o
 9

8
.2

2
3
.9

7
.2

1
3
 b

y
 Z

h
iq

ia
n
g
 C

ai
 (

ca
iz

@
p
u
rd

u
e.

ed
u
).

 R
ed

is
tr

ib
u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

LEAST-SQUARES NEURAL NETWORK METHOD C451

Fig. 1. The NN function structure.

1. N (l) is the lth layer (or also the lth hidden layer when l < L) of the repre-
sentation, and the representation has L layers or depth L, and L− 1 hidden
layers;

2. the entries of ω(l) and b(l) are the weights and biases, respectively, of the lth
layer (or also the lth hidden layer when l < L);

3. the natural number nl is the width or the number of neurons of the lth layer
(or also the lth hidden layer when l < L).

A motivation for this terminology is illustrated in Figure 1.
For a given positive integer n, denote the set of all ReLU NN functions from Rd

to R that have representations with depth L and the total number of neurons of the
hidden layers n by

M(L,n) =

{

N :Rd →R :N =N (L) ◦ · · · ◦N (2) ◦N (1) defined in (2.1) : n=
L−1
∑

l=1

nl

}

.

Denote the set of all ReLU NN functions from Rd to R with L-layer representations
by M(L). Then

M(L) =
⋃

n∈N

M(L,n).(2.2)

We now introduce another function class, which is the set of CPWL functions,
and explore a theorem about the relationship between the two function classes. We
say that a function f : Rd → R with d ∈ N is CPWL if there exists a finite set of
polyhedra with nonempty interior such that

1. the interiors of any two polyhedra in the set are disjoint,
2. the union of the set is Rd,
3. f is affine linear on each polyhedron in the set, i.e., on each polyhedron in

the set, f(x) = aTx+ b for all x∈Rd for a∈Rd, b∈R.
Here by a polyhedron, we mean a subset of Rd surrounded by a finite number of
hyperplanes, i.e., the solution set of a system of linear inequalities

{x∈Rd :Ax≤ b} for A∈Rm×d,b∈Rm with m∈N,(2.3)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 0
8
/1

3
/2

4
 t

o
 9

8
.2

2
3
.9

7
.2

1
3
 b

y
 Z

h
iq

ia
n
g
 C

ai
 (

ca
iz

@
p
u
rd

u
e.

ed
u
).

 R
ed

is
tr

ib
u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

C452 ZHIQIANG CAI, JUNPYO CHOI, AND MIN LIU

where the inequality is applied to each component. Thus the interior of the polyhedron
in (2.3) is

{x∈Rd :Ax< b}.

Proposition 2.1. The set of all CPWL functions f : Rd → R is equal to

M(dlog2(d + 1)e + 1), i.e., the set of all ReLU NN functions from Rd to R that

have representations with depth dlog2(d+ 1)e+ 1.

Proof. M(dlog2(d + 1)e + 1) is clearly a subset of the set of CPWL functions.
Conversely, it is proved in [1] that every CPWL function is a ReLU NN function from
Rd to R that has a representation with depth at most dlog2(d + 1)e + 1. Now, the
result follows from the fact that M(L)⊂M(dlog2(d+1)e+1) for any L≤ dlog2(d+1)e
+ 1.

Proposition 2.1 enables us to employ ReLU NN functions with a few layer rep-
resentations to problems where CPWL functions are used, and to only control the
number of neurons. Except the case d = 1 (see, e.g., [1]), there are currently no
known results to give tight bounds on the number of neurons of the hidden layers.
Therefore we suggest the following approach. The following proposition is a trivial
fact.

Proposition 2.2. M(L,n)⊆M(L,n+ 1).

Now Propositions 2.1 and 2.2 and (2.2) suggest how we control the number of
neurons of the hidden layers, i.e., when approximating a function Rd →R by a CPWL
function, we start with the class M(dlog2(d+1)e+1, n) with a small n and the same
width of each hidden layer, and then increase n to have a better approximation.

Finally, in Figures 3 to 7 and 9 to 11, by the lth (hidden) layer breaking hyper-
planes of a given representation as in (2.1) (with the output dimension being 1), we
shall mean the set

• {x∈Ω :ω(1)x− b(1) has a zero component} when l= 1,
• {x∈Ω :ω(l)(N (l−1) ◦ · · · ◦N (2) ◦N (1)(x))−b(l) has a zero component} when

2≤ l < L.
Breaking hyperplanes give a partition of Rd, and on each element in the partition, the
ReLU NN function is affine linear. (Breaking hyperplanes correspond to boundaries
of linear regions of NNs as introduced in [31, 32].) They will be presented to help our
understanding of the graphs of ReLU NN function approximations, especially along
discontinuity interfaces.

3. The LSNN method. We define the least-squares functional as

L(v; f) = ‖vβ + γ v− f‖20,Ω + ‖v− g‖2−β,(3.1)

where f= (f, g), and ‖ · ‖0,Ω and ‖ · ‖−β denote, respectively, the L2(Ω) norm and the
weighted L2(Γ−) norm over the inflow boundary given by

‖v‖−β = 〈v, v〉1/2−β =

(

∫

Γ−

|β ·n|v2 ds
)1/2

.

Let Vβ = {v ∈L2(Ω) : vβ ∈L2(Ω)} that is equipped with the norm as

|||v|||β =
(

‖v‖20,Ω + ‖vβ‖20,Ω
)1/2

.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 0
8
/1

3
/2

4
 t

o
 9

8
.2

2
3
.9

7
.2

1
3
 b

y
 Z

h
iq

ia
n
g
 C

ai
 (

ca
iz

@
p
u
rd

u
e.

ed
u
).

 R
ed

is
tr

ib
u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

LEAST-SQUARES NEURAL NETWORK METHOD C453

The least-squares formulation of problem (1.1) is to seek u∈ Vβ such that

L(u; f) = min
v∈Vβ

L(v; f).(3.2)

Proposition 3.1 (see [4, 13]). Assume that either γ = 0 or there exists a positive

constant γ0 such that

γ(x)− 1

2
∇ ·β(x)≥ γ0 > 0 for almost all x∈Ω.(3.3)

Then the homogeneous least-squares functional L(v;0) is equivalent to the norm |||v|||2β,
i.e., there exist positive constants α and M such that

α |||v|||2β ≤L(v;0)≤M |||v|||2β for all v ∈ Vβ.(3.4)

The norm equivalence (3.4) implies that problem (3.2) is well posed.

Proposition 3.2 (see [4, 13]). Problem (3.2) has a unique solution u ∈ Vβ

satisfying the following a priori estimate:

|||u|||β ≤C (‖f‖0,Ω + ‖g‖−β) .(3.5)

We note that M(L,n) is a subset of Vβ. The least-squares approximation is then
to find u

N
∈M(L,n) such that

L
(

u
N
; f
)

= min
v∈M(L,n)

L
(

v; f
)

.(3.6)

Lemma 3.3 (see [6]). Let u and u
N

be the solutions of problems (3.2) and (3.6),
respectively. Then we have

|||u− u
N
|||β ≤

(

M

α

)1/2

inf
v∈M(L,n)

|||u− v|||β,(3.7)

where α and M are constants in (3.4).

Optimization methods for solving the LSNN discretization problem in (3.6) re-
peatedly compute the integration

∫

Ω

(vβ + γ v− f)
2
(x)d x(3.8)

for function v in M(L,n). In practice, the integration in (3.8) is approximated by
a numerical integration. Unlike conventional numerical methods using fixed meshes,
designing an efficient and accurate numerical integration for (3.8) is a nontrivial task.
Apparently, the commonly used numerical integration of Monte Carlo type in scientific
machine learning is inaccurate for problems with local features. It is also obvious that
an accurate numerical integration should be based on the integral of the exact solution
u, i.e.,

∫

Ω

(uβ + γ u− f)
2
(x)d x.(3.9)

However, the exact solution u and hence the integrand in (3.9) are unknown.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 0
8
/1

3
/2

4
 t

o
 9

8
.2

2
3
.9

7
.2

1
3
 b

y
 Z

h
iq

ia
n
g
 C

ai
 (

ca
iz

@
p
u
rd

u
e.

ed
u
).

 R
ed

is
tr

ib
u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

C454 ZHIQIANG CAI, JUNPYO CHOI, AND MIN LIU

To circumvent this difficulty, adaptive numerical integration was proposed and
studied in the context of the deep Ritz method for the linear elasticity equation in
[27]. Adaptive numerical integration is based on a composite numerical integration

∑

K∈T

QK(w)≈
∫

Ω

w(x)dx=
∑

K∈T

∫

K

w(x)dx,

where T = {K : K is an open subdomain of Ω} is a partition of Ω and QK(w) ≈
∫

K
w(x)dx denotes a quadrature rule over K. First, QK may vary on K ∈ T . Second,

its choice is one of the standard quadrature rules like the Gaussian quadrature or
Newton–Cotes formulas such as the midpoint, trapezoidal, or Simpson rule (see [5]).
In the case of the midpoint rule for all K ∈ T , QK(w) =w(xK)|K|, where xK is the
centroid of K and |K| is the d-dimensional measure of K.

Remark 3.4. The LSNN approximation uN ∈M(L,n) defined in (3.6) is CPWL
with respect to a partition of the domain Ω, referred to as the physical partition in
[26, 25, 7]. The partition T is a “mesh” for numerical integration and is completely
different from the physical partition of uN . Therefore, the partition T differs from
meshes of traditional numerical methods. Nevertheless, the partition T and the cor-
responding quadrature QK are important for accuracy of the approximation uN by
providing accurate information of the exact solution.

The integrand in (3.9) has a derivative term uβ(x). Where u is differentiable, we
have

uβ(x) =

d
∑

i=1

βi(x)
∂u(x)

∂xi
.(3.10)

Obviously, (3.10) is invalid where the solution u is discontinuous, and hence any
NN method such as the PINNs in [36] using discrete or autodifferentiation based
on (3.10) would lead to an unreasonable approximation to a discontinuous solution.
This phenomenon was already reported by several researchers, e.g., [11] for (1.1)
with β = (1,1) and [18] for scalar nonlinear HCLs. This essential difficulty was
overcome by introduction of a physics preserved discrete differential operator: the
discrete directional differentiation operator for (1.1) in [6] and the discrete divergence
operator for nonlinear HCLs in [5]. For any x ∈ Ω, the discrete differential operator
Dβ is defined by

Dβv(x) :=
v(x)− v

(

x− ρβ̄(x)
)

ρ/|β(x)| ≈ vβ(x),(3.11)

where |β(x)| is the magnitude of β(x), β̄(x) = β(x)
|β(x)| is the unit vector along β(x), and

0 < ρ � 1. That is, the directional derivative vβ in the β direction is approximated
by the backward finite difference quotient with the “mesh” size ρ/|β(x)|. Fundamen-
tally, the discrete differentiation operator Dβ ensures that the derivative is computed
without crossing the discontinuous interface.

For each E ∈ E− = {E = ∂K ∩ Γ− :K ∈ T }, let QE(w) denote a quadrature rule
for integrand w defined on E. The discrete least-squares functional is defined by

L
T

(

v; f
)

=
∑

K∈T

QK

(

(Dβv+ γv− f)2
)

+
∑

E∈E−

QE

(

|β ·n|(v− g)2
)

.(3.12)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 0
8
/1

3
/2

4
 t

o
 9

8
.2

2
3
.9

7
.2

1
3
 b

y
 Z

h
iq

ia
n
g
 C

ai
 (

ca
iz

@
p
u
rd

u
e.

ed
u
).

 R
ed

is
tr

ib
u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

LEAST-SQUARES NEURAL NETWORK METHOD C455

Then the discrete least-squares NN approximation of problem (1.1) is to find uN
T
∈

M(L,n) such that

L
T

(

uN

T
; f
)

= min
v∈M(L,n)

L
T

(

v; f
)

.(3.13)

Remark 3.5. The discrete least-squares NN approximation defined in (3.13) en-
forces the inflow boundary condition through penalization. Instead, we may impose
the inflow boundary condition through the discrete differentiation operator Dβ de-
fined in (3.11) by choosing proper ρ for integration point x, that is, close to the inflow
boundary, so that x − ρβ̄(x) belongs to E−. In this way, the boundary term of
L

T

(

v; f
)

in (3.12) may be dropped.

4. Error estimates. In this section, we provide error estimates for approxima-
tion by ReLU NN functions of the solution of the linear advection-reaction equation
with a discontinuity interface. To this end, we note first that the solution of the
problem is discontinuous if the inflow boundary data g is discontinuous.

Lemma 4.1. For d= 2, we assume that the inflow boundary data g is discontin-

uous at x0 ∈ Γ− with values g+(x0) and g−(x0) from different sides. Let I be the

streamline of the vector field β emanating from x0 and let x(s) be a parameterization

of I, i.e.,

dx(s)

ds
=β(x(s)), x(0) = x0.(4.1)

Then the solution u of (1.1) is discontinuous on I with jump described as

|u+(x(s))− u−(x(s))|(4.2)

= exp

(

−
∫ s

0

γ(x(t))dt

)

×
∣

∣

∣

∣

∫ s

0

exp

(
∫ t

0

γ(x(r))dr

)

(f+(x(t))− f−(x(t)))dt+ g+(x0)− g−(x0)

∣

∣

∣

∣

,

where u+(x(s)) and u−(x(s)) are the solutions, and f+(x(t)) and f−(x(t)) are the

values of f of (1.1) along I from different sides, respectively.

Proof. Along the interface I, by the definition of the directional derivative, we
have

uβ(x(s)) =
d

ds
u(x(s)).

Thus the solutions u±(x(s)) along the interface I satisfy the linear ordinary differential
equations







d

ds
u±(x(s)) + γ(x(s))u±(x(s)) = f±(x(s)) for s > 0,

u±(x(0)) = u±(x0) = g±(x0)
(4.3)

whose solutions are given by

u±(x(s)) = exp

(

−
∫ s

0

γ(x(t))dt

)[
∫ s

0

exp

(
∫ t

0

γ(x(r))dr

)

f±(x(t))dt+ g±(x0)

]

.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 0
8
/1

3
/2

4
 t

o
 9

8
.2

2
3
.9

7
.2

1
3
 b

y
 Z

h
iq

ia
n
g
 C

ai
 (

ca
iz

@
p
u
rd

u
e.

ed
u
).

 R
ed

is
tr

ib
u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

C456 ZHIQIANG CAI, JUNPYO CHOI, AND MIN LIU

Hence, u is discontinuous on I with the jump (4.2). This completes the proof of the
lemma.

Remark 4.2. For d= 3, we assume that the inflow boundary data g is discontinu-
ous along a curve C(t)⊂ Γ−. In this case, the collection of the streamlines x(s) of the
vector field β starting at all x0 =C(t) forms a surface I(s, t). Then the solution u of
(1.1) is discontinuous on the surface I(s, t) with jump as in (4.2) for every x0 =C(t).

Let the discontinuity interface I (in Rd) as the union of streamlines of the vector
field β as in Remark 4.2 divide the domain Ω into two nonempty subdomains Ω1 and
Ω2 (see Figure 2(b) for d= 2),

Fig. 2. An illustration of Lemma 4.3.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 0
8
/1

3
/2

4
 t

o
 9

8
.2

2
3
.9

7
.2

1
3
 b

y
 Z

h
iq

ia
n
g
 C

ai
 (

ca
iz

@
p
u
rd

u
e.

ed
u
).

 R
ed

is
tr

ib
u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

LEAST-SQUARES NEURAL NETWORK METHOD C457

Ω=Ω1 ∪Ω2 and I =Ω1 ∩Ω2,

so that the solution u is piecewise smooth with respect to the partition {Ω1,Ω2}. We
assume that every streamline has a finite length.

Furthermore, We assume that the jump of the solution is constant. Hence u can
be decomposed into

u(x) = û(x) + χ(x),(4.4)

where û is continuous and piecewise smooth on Ω, and χ(x) is the piecewise constant
function defined by

χ(x) =

{

α1, x∈Ω1,
α2, x∈Ω2,

with α1 = g−(x0) and α2 = g+(x0).
For a given ε > 0, we assume that the interface I can be approximated by a

connected series of hyperplanes ξi · x − bi = 0 in Ω1 for i = 1,2, . . . , k such that ξi
points toward Ω2 and that the subdomain generated by translating ξi · x − bi = 0
in the direction of ξi by ε contains I (see Figure 2(a)). By normalizing ξi, we may
assume |ξi|= 1. Obviously, the number of hyperplanes k depends on the interface I
and the ε. Hence, for complicated interfaces and small ε, the k could be large.

We now divide Ω by hyperplanes passing through the intersections of ξi · x= bi.
Let Υi denote the subdomains determined by this process (see Figure 2(c), where two
dotted lines divide the domain into three subdomains Υi for i = 1,2,3). For each i,
let |Pi| denote the d−1 dimensional measure of the hyperplane ξi ·x= bi in Υi. With
the approximation assumption on the I, clearly, there exists a positive constant C
such that

k
∑

i=1

|Pi| ≤C |I|,(4.5)

where |I| is the d− 1 dimensional measure of the interface I.

Lemma 4.3. Let p(x) be the CPWL function (see Figure 2(d)) defined by

p(x) := pi(x) := α1 +
α2 − α1

ε

(

σ(ξi · x− bi)− σ(ξi · x− bi − ε)
)

, x∈Υi.

For any sufficiently small ε > 0, there exists a positive constant C such that

|||χ− p|||β ≤C
∣

∣α1 − α2

∣

∣ |I|1/2√ε.(4.6)

Proof. It is easy to check that

‖χ− pi‖20,Υi
≤ (α1 − α2)

2|Pi|ε,

which, together with (4.5), implies

‖χ− p‖20,Ω =

k
∑

i=1

‖χ− pi‖20,Υi
≤

k
∑

i=1

|Pi|(α1 − α2)
2ε≤C |I|(α1 − α2)

2ε.(4.7)

We now prove

‖χβ − pβ‖20,Ω ≤C |I|(α1 − α2)
2ε.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 0
8
/1

3
/2

4
 t

o
 9

8
.2

2
3
.9

7
.2

1
3
 b

y
 Z

h
iq

ia
n
g
 C

ai
 (

ca
iz

@
p
u
rd

u
e.

ed
u
).

 R
ed

is
tr

ib
u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

C458 ZHIQIANG CAI, JUNPYO CHOI, AND MIN LIU

To this end, for each i, let

Υ1
i = {x∈Υi : 0< ξi · x− bi < ε} and Υ2

i =Υi \Υ1
i .

Clearly, χβ ≡ 0 on Ω, and pi is piecewise constant on Υ2
i . For each i, we construct a

vector field βi(x) on Υi such that for each x∈Υ1
i , βi(x) is parallel to the hyperplane

ξi · x= bi and that β(x)−βi(x) is parallel to ξi. Then (pi)βi
≡ 0 in Υi and

‖(pi)β‖20,Υi
= ‖(pi)β − (pi)βi

‖20,Υi
= ‖(pi)β−βi

‖20,Υi
= ‖(pi)β−βi

‖20,Υ1

i

≤
∫

Υ1

i

(

α2 − α1

ε
ξi · εξi

)2

dx≤ (α1 − α2)
2|Pi|ε,

where for the first inequality, we used the fact that on Υ1
i , the gradient of pi is

α2−α1

ε ξi,
and that the magnitude of β(x)− βi(x) is less than or equal to εξi. (Since β(x) is
a tangent vector of a streamline, when ε > 0 is sufficiently small, the secant vector
βi(x) approaches β(x), i.e., |β(x)−βi(x)| ≤ |εξi|.) Thus

‖χβ − pβ‖20,Ω =

k
∑

i=1

‖(pi)β‖20,Υi
≤

k
∑

i=1

|Pi|(α1 − α2)
2ε≤C |I|(α1 − α2)

2ε.(4.8)

Now (4.6) follows from (4.7) and (4.8).

Remark 4.4. In Lemma 4.3, when there is a subdomain Υi either in Ω1 or Ω2 that
does not contain any hyperplane χi ·x− bi = 0, we may define p(x) = α1 or α2 on Υi.
Then |||χ− p|||β = 0 on Υi. Hence, without loss of generality, we assumed that each
Υi contains a hyperplane χi · x− bi = 0 as in Figure 2(c).

Theorem 4.5. Let u and u
N

be the solutions of problems (3.2) and (3.6), respec-
tively. Then we have

|||u− u
N
|||β ≤C

(

∣

∣α1 − α2

∣

∣

√
ε+ inf

v∈M(L,n)
|||û+ p− v|||β

)

,(4.9)

where û ∈ C(Ω) and p are given in (4.4) and Lemma 4.3, respectively. Moreover,

if the depth of ReLU NN functions in (3.6) is at least dlog2(d + 1)e + 1, then for a

sufficiently large integer n, there exists an integer n̂≤ n such that

|||u− u
N
|||β ≤C

(

∣

∣α1 − α2

∣

∣

√
ε+ inf

v∈M(log,n−n̂)
|||û− v|||β

)

,(4.10)

where M(log, n− n̂) =M(dlog2(d+ 1)e+ 1, n− n̂).

Proof. For any v ∈ M(L,n), it follows from (4.4), the triangle inequality, and
Lemma 4.3 that

|||u− v|||β = |||χ− p+ û+ p− v|||β ≤ |||χ− p|||β + |||û+ p− v|||β
≤C

√

|I| |α1 − α2|
√
ε+ |||û+ p− v|||β.

Taking the infimum over all v ∈M(L,n), (4.9) is then a direct consequence of Lemma
3.3.

To show the last statement, first, we note that for a sufficiently large integer n,
by Proposition 2.1, there exists an integer n̂≤ n such that

p∈M(log, n̂) =M(dlog2(d+ 1)e+ 1, n̂).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 0
8
/1

3
/2

4
 t

o
 9

8
.2

2
3
.9

7
.2

1
3
 b

y
 Z

h
iq

ia
n
g
 C

ai
 (

ca
iz

@
p
u
rd

u
e.

ed
u
).

 R
ed

is
tr

ib
u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

LEAST-SQUARES NEURAL NETWORK METHOD C459

Obviously we have v+ p∈M(log, n) for any v ∈M(log, n− n̂). Now, it follows from
the coercivity and continuity of the homogeneous functional L

(

v;0
)

in (3.4), problems
(1.1), (3.6), (4.4), and the triangle inequality that

α |||u− u
N
|||2β ≤L

(

u− u
N
;0
)

=L
(

u
N
; f
)

≤L
(

v+ p; f
)

=L
(

u− v− p;0
)

=L
(

(û− v) + (χ− p);0
)

≤M |||(û− v) + (χ− p)|||2β
≤ 2M

(

|||(û− v)|||2β + |||(χ− p)|||2β
)

,

which, together with Lemma 4.3, implies the validity of (4.10). This completes the
proof of the theorem.

Remark 4.6. Theorem 4.5 mainly focused on the depth of NNs. A ReLU NN
architecture with less than dlog2(d+1)e+1 layers, prescribed widths, exact weights and
biases to approximate piecewise constant functions will be addressed in a forthcoming
paper.

Remark 4.7. When the continuous part of the solution û is smooth, it is known
that û can be approximated well by a shallow NN, i.e., with depth L = 2. For error
estimates in the L2 norm, see, e.g., [15, 30, 35]. Error estimates in a stronger norm
like the |||·|||β or H1 norm is possibly an open problem.

Remark 4.8. The estimate in (4.9) holds even for the shallow NN (L= 2). How-
ever, the second term of the upper bound, infv∈M(2,n) |||û+ p− v|||β, depends on the
inverse of ε (as well as the norm of the directional derivative of û + p − v) because
the p has a sharp transition layer of width ε. For any fixed n, infv∈M(2,n) ‖p− v‖∞
could be large depending on the size of ε, even though the universal approximation
theorem implies

lim
n→∞

inf
v∈M(2,n)

‖p− v‖∞ = 0.

Moreover, as ε approaches 0, p approaches χ, which is discontinuous; hence, in prac-
tice, the universal approximation theorem does not guarantee the convergence of the
problem. On the other hand, by Proposition 2.1, deeper networks (with depth at least
dlog2(d+ 1)e+ 1) are capable of approximating such functions. As an illustration of
this, we define a CPWL function p(x, y) with a sharp transition layer of width 4ε/

√
5

on [0,1]2 as follows (see Figure 3(b)):

p(x, y) =







































−1 +
1

ε

(

y+
1

2
x− 4

5
+ ε

)

if y≥ x, y >−1

2
x+

4

5
− ε, y≤−1

2
x+

4

5
+ ε,

−1 +
1

ε

(

1

2
y+ x− 4

5
+ ε

)

if y < x, y >−2(x+ ε)+
8

5
, y≤−2(x− ε)+

8

5
,

−1 if y≤−1

2
x+

4

5
− ε, y≤−2(x+ ε) +

8

5
,

1 otherwise.

In [6], we proved CPWL functions of the form p(x, y) are 2–4–4–1 ReLU NN functions.
Here and in what follows, by a d–n1– · · · –nL−1–c ReLU NN function, we mean a
ReLU NN function from Rd to Rc with an L-layer representation with width nl of the
lth hidden layer of the representation for l= 1, . . . ,L−1. Therefore, we can expect 2–
n1–n2–1 (depth 3 = dlog2(d+1)e+1 for d= 2) ReLU NN functions outperform 2–n3–1
ReLU NN functions, and Figure 3 and Table 1 demonstrate this for approximating
p(x, y) with ε = 0.1,0.01,0.001 by ReLU NN functions with depth 2, 3 and various

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 0
8
/1

3
/2

4
 t

o
 9

8
.2

2
3
.9

7
.2

1
3
 b

y
 Z

h
iq

ia
n
g
 C

ai
 (

ca
iz

@
p
u
rd

u
e.

ed
u
).

 R
ed

is
tr

ib
u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

C460 ZHIQIANG CAI, JUNPYO CHOI, AND MIN LIU

Fig. 3. L2 norm approximation results of p(x, y) with ε= 0.001.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 0
8
/1

3
/2

4
 t

o
 9

8
.2

2
3
.9

7
.2

1
3
 b

y
 Z

h
iq

ia
n
g
 C

ai
 (

ca
iz

@
p
u
rd

u
e.

ed
u
).

 R
ed

is
tr

ib
u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

LEAST-SQUARES NEURAL NETWORK METHOD C461

Table 1

Relative errors in the L2 norm for approximating p(x, y) with ε= 0.1,0.01,0.001 by ReLU NN
functions with depth 2, 3 and various numbers of neurons.

2–8–1 2–58–1 2–108–1 2–158–1 2–4–4–1

ε= 0.1 0.292446 0.028176 0.021200 0.010259 1.906427× 10−7

ε= 0.01 0.254603 0.078549 0.065465 0.030623 7.536140× 10−6

ε= 0.001 0.404299 0.102757 0.100136 0.088885 9.473783× 10−7

numbers of neurons where we minimized the squared L2 norm loss function (the mid-
point rule on a uniform mesh with mesh size h= 10−2) using the Adam optimization
algorithm for 100000 iterations with the learning rate 0.004. Even though the rel-
ative errors for the one-hidden-layer ReLU NN function approximations decrease as
the number of neurons increases (Table 1), the graphs (Figures 3(c) and 3(e)) exhibit
oscillations near the location where the transition layer is formed (Figure 3(a)). In
contrast, the two-hidden-layer ReLU NN functions approximate the target function
well (Figures 3(b), 3(d), and 3(f)). The breaking hyperplanes (Figures 3(g) and 3(h))
show where the transition layers are formed for both approximations. In particular,
if we zoom in on Figure 3(h), breaking hyperplanes are right around the location of
the transition layer (two green dotted lines with width 4ε/

√
5), which implies the two

almost vertical planes in Figure 3(d).

Finally, we also note that M(2)(M(dlog2(d+ 1)e+ 1) when d≥ 2 (see [14]).

Lemma 4.9. Let u, u
N
, and uN

T
be the solutions of problems (3.2), (3.6), and

(3.13), respectively. Then there exist positive constants C1 and C2 such that

∣

∣

∣

∣

∣

∣u− uN

T

∣

∣

∣

∣

∣

∣

β
≤ C1

(
∣

∣(L−L
T
)(u

N
− uN

T
,0)
∣

∣+
∣

∣(L−L
T
)(u− u

N
,0)
∣

∣

)1/2

+C2

(

∣

∣α1 − α2

∣

∣

√
ε+ inf

v∈M(L,n)
|||û+ p− v|||β

)

.
(4.11)

Proof. By the triangle inequality
∣

∣

∣

∣

∣

∣u− uN

T

∣

∣

∣

∣

∣

∣

β
≤ |||u− u

N
|||β +

∣

∣

∣

∣

∣

∣u
N
− uN

T

∣

∣

∣

∣

∣

∣

β
,

and the fact that
∣

∣

∣

∣

∣

∣u
N
− uN

T

∣

∣

∣

∣

∣

∣

β

≤C1

(

(∣

∣(L−L
T
)(u

N
− uN

T
,0)
∣

∣+
∣

∣(L−L
T
)(u− u

N
,0)
∣

∣

)1/2
+ |||u− u

N
|||β
)

from the proof of Lemma 3.4 in [6], (4.11) is a direct consequence of Theorem 4.5.

5. Numerical experiments. In this section, we report numerical results for
both two- and three-dimensional test problems with piecewise constant, or variable
advection velocity fields. All numerical experiments have rectangular domains, and we
used numerical integration (the midpoint rule) to implement the scheme in (3.6) (see
[6]). Numerical integration used a uniform mesh with mesh size h= 10−2. In (3.11),
we set ρ = h/4 (except for the last test problem, which used ρ = h/12). We used
the Adam optimization algorithm [23] to iteratively solve the discrete minimization
problem (3.13). For each numerical experiment, the learning rate started with 0.004
and was reduced by half for every 50000 iterations. Due to the possibility of the NN
getting trapped in a local minimum, we first trained the network with 5000 iterations
10 times, chose the weights and biases with the minimum loss function value, and
trained further to get the results.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 0
8
/1

3
/2

4
 t

o
 9

8
.2

2
3
.9

7
.2

1
3
 b

y
 Z

h
iq

ia
n
g
 C

ai
 (

ca
iz

@
p
u
rd

u
e.

ed
u
).

 R
ed

is
tr

ib
u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

C462 ZHIQIANG CAI, JUNPYO CHOI, AND MIN LIU

In Tables 2 to 9, parameters indicate the total number of weights and biases, and
1/2 in L1/2 for the relative error in the least-squares functional indicates the square
root. We employed ReLU NN functions with width n and depth 3 = dlog2(d+1)e+1
for d = 2, 3. The basic principle for choosing the number of neurons is to start with
a small number and increase the number to obtain a better approximation. For an
automatic approach to design the architecture of DNNs for a given problem with a
prescribed accuracy, see the recent work on the adaptive NN method in [26, 7].

5.1. Two-dimensional problems. We present numerical results for five two-
dimensional test problems with piecewise constant or variable advection velocity fields.
The fifth test problem compares the LSNN method to other relevant methods. All
five test problems are defined on the domain Ω = (0,1)2 with γ = 1 (except for the
fifth test problem with γ = 0.1), and the exact solutions are the same as the right-
hand-side functions, u(x, y) = f(x, y), which are step functions (except for the fourth
and fifth test problems) along a 3-line segment, a 4-line segment, or curved interfaces.
By Theorem 4.5, the LSNN method with 3-layer ReLU NN functions leads to

|||u− u
N
|||β ≤C

∣

∣α1 − α2

∣

∣

√
ε,

because the continuous part of the solution û in (4.4) is zero (again, except for the
fourth and fifth test problems).

5.1.1. A problem with a 3-line segment interface. This example is a mod-
ification of one from [6]. Let Ω̄ = Ῡ1 ∪ Ῡ2 ∪ Ῡ3 and

Υ1 = {(x, y)∈Ω : y≥ x}, Υ2 =
{

(x, y)∈Ω : x− a

2
≤ y < x

}

, and

Υ3 =
{

(x, y)∈Ω : y < x− a

2

}

with a= 43/64. The advective velocity field is a piecewise constant field given by

β(x, y) =







(−1,
√
2− 1)T , (x, y)∈Υ1,

(1−
√
2,1)T , (x, y)∈Υ2,

(−1,
√
2− 1)T , (x, y)∈Υ3.

(5.1)

The inflow boundary and the inflow boundary condition are given by

Γ− = {(1, y) : y ∈ (0,1)} ∪ {(x,0) : x∈ (0,1)}

and g(x, y) =







1, (x, y)∈ Γ1
− ≡

{

(1, y) : y ∈
[

1−
√
2 +

√
2

2
a,1

)}

,

−1, (x, y)∈ Γ2
− =Γ− \ Γ1

−,

respectively. Let

Υ̂1 =
{

(x, y)∈Υ1 : y < (1−
√
2)x+ a

}

,

Υ̂2 =

{

(x, y)∈Υ2 : y <
1

1−
√
2

(

x− a√
2

)

+
a√
2

}

,

and Υ̂3 =

{

(x, y)∈Υ3 : y <
(

1−
√
2
)

x+

√
2

2
a

}

.

The following right-hand-side function is (see Figure 4(b))

f(x, y) =

{

−1, (x, y)∈Ω1 ≡ Υ̂1 ∪ Υ̂2 ∪ Υ̂3,

1, (x, y)∈Ω2 =Ω \Ω1.
(5.2)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 0
8
/1

3
/2

4
 t

o
 9

8
.2

2
3
.9

7
.2

1
3
 b

y
 Z

h
iq

ia
n
g
 C

ai
 (

ca
iz

@
p
u
rd

u
e.

ed
u
).

 R
ed

is
tr

ib
u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

LEAST-SQUARES NEURAL NETWORK METHOD C463

Fig. 4. Approximation results of the problem in subsection 5.1.1.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 0
8
/1

3
/2

4
 t

o
 9

8
.2

2
3
.9

7
.2

1
3
 b

y
 Z

h
iq

ia
n
g
 C

ai
 (

ca
iz

@
p
u
rd

u
e.

ed
u
).

 R
ed

is
tr

ib
u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

C464 ZHIQIANG CAI, JUNPYO CHOI, AND MIN LIU

Table 2

Relative errors of the problem in subsection 5.1.1.

Network structure
‖u−u

N
T

‖0
‖u‖0

|||u−u
N
T
|||

β

|||u|||β

L1/2(uN
T

,f)

L1/2(uN
T

,0)
Parameters

2–300–1 0.279867 0.404376 0.300774 1201

2–5–5–1 0.074153 0.079193 0.044987 51

200000 iterations were implemented with 2–300–1 and 2–5–5–1 ReLU NN func-
tions. The numerical results are presented in Figure 4 and Table 2. The numerical
errors (Table 2), trace (Figure 4(e)), and approximation graph (Figure 4(c)) of the
2-layer ReLU NN function approximation imply that the 2-layer network structure
failed to approximate the solution (Figure 4(b)) especially around the discontinuity
interface (Figure 4(a)), although the breaking hyperplanes (Figure 4(g)) indicate that
the approximation roughly formed the transition layer around the interface. This
and the remaining examples suggest the 2-layer network structure may not be able
to approximate discontinuous solutions well as we expected in Remark 4.8. On the
other hand, the 3-layer ReLU NN function approximation with the 2-5-5-1 structure
with 4% of the number of parameters of the 2-layer one approximates the solution
accurately. Again, this and the remaining examples suggest that 3-layer ReLU NN
functions may be more efficient than 2-layer ones of even bigger sizes. In this example,
because of the shape of the interface and û = 0, the CPWL function p with small ε
which we constructed in Lemma 4.3 is expected to be a good approximation of the
solution, and Figure 4(d) indicates that the approximation in M(3,10) is indeed such
a function. The second-layer breaking hyperplanes (Figure 4(h)) also help us to verify
that a sharp transition layer was generated along the discontinuity interface, which is
again consistent with our convergence analysis. The trace (Figure 4(f)) of the 3-layer
ReLU NN function approximation exhibits no oscillation.

5.1.2. A problem with a 4-line segment interface. Let Ω̄ = Ῡ1∪Ῡ2∪Ῡ3∪Ῡ4

and

Υ1 = {(x, y)∈Ω : y≥ x+ 1}, Υ2 = {(x, y)∈Ω, x≤ y < x+ 1},
Υ3 = {(x, y)∈Ω, x− 1≤ y < x}, and Υ4 = {(x, y)∈Ω, y < x− 1}.

The advective velocity field is a piecewise constant field given by

β(x, y) =















(−1,
√
2− 1)T , (x, y)∈Υ1,

(1−
√
2,1)T , (x, y)∈Υ2,

(−1,
√
2− 1)T , (x, y)∈Υ3,

(1−
√
2,1)T , (x, y)∈Υ4.

(5.3)

The inflow boundary and the inflow boundary condition are given by

Γ− = {(2, y) : y ∈ (0,2)} ∪ {(x,0) : x∈ (0,2)}

and g(x, y) =

{

1, (x, y)∈ Γ1
− ≡ {(2, y) : y ∈ (0,2)},

−1, (x, y)∈ Γ2
− =Γ− \ Γ1

−,

respectively. Let

Υ̂1 = {(x, y)∈Υ1 : y < (1−
√
2)x+2}, Υ̂2=

{

(x, y)∈Υ2 : y <
1

1−
√
2
(x− 1)+1

}

,

Υ̂3 = {(x, y)∈Υ3 : y < (1−
√
2)(x− 1) + 1},

and Υ̂4 =

{

(x, y)∈Υ3 : y <
1

1−
√
2
x+

2√
2− 1

}

.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 0
8
/1

3
/2

4
 t

o
 9

8
.2

2
3
.9

7
.2

1
3
 b

y
 Z

h
iq

ia
n
g
 C

ai
 (

ca
iz

@
p
u
rd

u
e.

ed
u
).

 R
ed

is
tr

ib
u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

LEAST-SQUARES NEURAL NETWORK METHOD C465

The following right-hand-side function is (see Figure 5(b))

f(x, y) =

{

−1, (x, y)∈Ω1 ≡ Υ̂1 ∪ Υ̂2 ∪ Υ̂3 ∪ Υ̂4,

1, (x, y)∈Ω2 =Ω \Ω1.
(5.4)

200000 iterations were implemented with 2–300–1 and 2–6–6–1 ReLU NN func-
tions. The numerical results are presented in Figure 5 and Table 3. Since the interface
has one more line segment than that of Example 5.1.1, we increased the number of
hidden neurons to have higher expresiveness. The 2-6-6-1 structure with 6% of the
number of parameters of the 2-300-1 structure approximated the solution (Figure
5(b)) accurately and Figure 5(d) indicates that the approximation in M(3,12) is the
CPWL function p with small ε in Lemma 4.3. The trace (Figure 5(f)) shows no oscil-
lation and the second-layer breaking hyperplanes (Figure 5(h)) along the discontinuity
interface (Figure 5(a)) show where a sharp transition layer was generated. On the
other hand, the 2-300-1 ReLU NN function approximation roughly found the location
of the interface (Figure 5(g)) but did not approximate the solution well (Figures 5(c)
and 5(e) and Table 3).

5.1.3. A problem with a curved interface. The advective velocity field is
the variable field given by

β(x, y) = (1,2x), (x, y)∈Ω.(5.5)

The inflow boundary and the inflow boundary condition are given by

Γ− = {(0, y) : y ∈ (0,1)} ∪ {(x,0) : x∈ (0,1)}

and g(x, y) =







1, (x, y)∈ Γ1
− ≡

{

(0, y) : y ∈
[

1

8
,1

)}

,

0, (x, y)∈ Γ2
− =Γ− \ Γ1

−,

respectively. The following right-hand-side function is (see Figure 6(b))

f(x, y) =







0, (x, y)∈Ω1 ≡
{

(x, y)∈Ω : y < x2 +
1

8

}

,

1, (x, y)∈Ω2 =Ω \Ω1.

(5.6)

300000 iterations were implemented with 2–3000–1 and 2–60–60–1 ReLU NN func-
tions. The numerical results are presented in Figure 6 and Table 4. We again increased
the number of hidden neurons for the 3-layer network structure, assuming CPWL
functions approximating a curved discontinuity interface (Figure 6(a)) well would be
a ReLU NN function with more hidden neurons. Figures 6(c), 6(e), and 6(g) suggest
that the 2-layer network structure failed to approximate the solution (Figure 6(b))
around the discontinuity interface with more than three times the number of pa-
rameters of the 3-layer network structure. In contrast, the 3-layer network structure
shows better numerical errors (Table 4) and pointwise approximations (Figures 6(d)
and 6(f)), locating the discontinuity interface (Figure 6(h)).

5.1.4. A problem with a curved interface and û 6= 0 in (4.4). The advec-
tive velocity field is a variable field given by

β(x, y) = (−y,x), (x, y)∈Ω.(5.7)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 0
8
/1

3
/2

4
 t

o
 9

8
.2

2
3
.9

7
.2

1
3
 b

y
 Z

h
iq

ia
n
g
 C

ai
 (

ca
iz

@
p
u
rd

u
e.

ed
u
).

 R
ed

is
tr

ib
u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

C466 ZHIQIANG CAI, JUNPYO CHOI, AND MIN LIU

Fig. 5. Approximation results of the problem in subsection 5.1.2.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 0
8
/1

3
/2

4
 t

o
 9

8
.2

2
3
.9

7
.2

1
3
 b

y
 Z

h
iq

ia
n
g
 C

ai
 (

ca
iz

@
p
u
rd

u
e.

ed
u
).

 R
ed

is
tr

ib
u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

LEAST-SQUARES NEURAL NETWORK METHOD C467

Table 3

Relative errors of the problem in subsection 5.1.2.

Network structure
‖u−u

N
T

‖0
‖u‖0

|||u−u
N
T
|||

β

|||u|||β

L1/2(uN
T

,f)

L1/2(uN
T

,0)
Parameters

2–300–1 0.288282 0.358756 0.306695 1201
2–6–6–1 0.085817 0.091800 0.069808 67

The inflow boundary and the inflow boundary condition are given by

Γ− = {(1, y) : y ∈ (0,1)} ∪ {(x,0) : x∈ (0,1)}

and g(x, y) =











−1 + x2 + y2, (x, y)∈ Γ1
− ≡

{

(x,0) : x∈
(

0,
2

3

)}

,

1 + x2 + y2, (x, y)∈ Γ2
− =Γ− \ Γ1

−,

respectively. The following right-hand-side function is (see Figure 7(b))

f(x, y) =











−1 + x2 + y2, (x, y)∈Ω1 ≡
{

(x, y)∈Ω : y <

√

4

9
− x2

}

,

1 + x2 + y2, (x, y)∈Ω2 =Ω \Ω1.

(5.8)

200000 iterations were implemented with 2–4000–1 and 2–65–65–1 ReLU NN func-
tions. The numerical results are presented in Figure 7 and Table 5. Table 5 indicates
that the 2-layer network structure is capable of approximating the solution (Figure
7(b)) on average, but Figures 7(c), 7(e), and 7(g) show difficulty around the dis-
continuity interface (Figure 7(a)). Again, the 3-layer network structure with 28%
of the number of parameters of the 2-layer network structure presented better error
results (Table 5) and approximated the solution accurately pointwisely (Figures 7(d)
and 7(f)). Unlike other examples, some of the second-layer breaking hyperplanes
(Figure 7(h)) of the approximation spread out on the whole domain in addition to
those around the interface, which implies that they are necessary for approximating
the solution with û 6= 0 (û= x2 + y2 in this example).

5.1.5. A problem with a sharp transition layer. The advective velocity
field is a variable field given by

β(x, y) = (y+ 1,−x)/
√

x2 + (y+ 1)2, (x, y)∈Ω,(5.9)

the inflow boundary is given by

Γ− = {(0, y) : y ∈ (0,1)} ∪ {(x,1) : x∈ (0,1)},

and f = 0. We choose an inflow boundary condition g such that the exact solution is
(see Figure 8(b))

u(x, y) =
1

4
exp

(

γr arcsin

(

y+ 1

r

))

arctan

(

r− 1.5

ε

)

with r=
√

x2 + (y+ 1)2.

(5.10)

300000 iterations were implemented with 2–70–70–1 ReLU NN functions to ap-
proximate u with ε= 10−10 in (5.10). The numerical results are presented in Figure 8
and Table 6. The approximation results are similar to those of the previous examples.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 0
8
/1

3
/2

4
 t

o
 9

8
.2

2
3
.9

7
.2

1
3
 b

y
 Z

h
iq

ia
n
g
 C

ai
 (

ca
iz

@
p
u
rd

u
e.

ed
u
).

 R
ed

is
tr

ib
u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

C468 ZHIQIANG CAI, JUNPYO CHOI, AND MIN LIU

Fig. 6. Approximation results of the problem in subsection 5.1.3.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 0
8
/1

3
/2

4
 t

o
 9

8
.2

2
3
.9

7
.2

1
3
 b

y
 Z

h
iq

ia
n
g
 C

ai
 (

ca
iz

@
p
u
rd

u
e.

ed
u
).

 R
ed

is
tr

ib
u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

LEAST-SQUARES NEURAL NETWORK METHOD C469

Table 4

Relative errors of the problem in subsection 5.1.3.

Network structure
‖u−u

N
T

‖0
‖u‖0

|||u−u
N
T
|||

β

|||u|||β

L1/2(uN
T

,f)

L1/2(uN
T

,0)
Parameters

2–3000–1 0.134514 0.181499 0.078832 12001

2–60–60–1 0.066055 0.106095 0.030990 3901

The same PDE was solved in [28, 29, 41], and in the experiments, the layer cannot
be fully resolved and should be viewed as discontinuous (see Figure 8(b)). The L2

errors of the least-squares finite element methods in [28, 29] are approximately be-
tween 4×10−2 and 6×10−2 with 104 to 106 degrees of freedom, whereas the error by
the LSNN method is approximately 3× 10−2 with 5251 parameters (Table 6). The
discontinuous Galerkin finite element methods (DGFEMs) in [41] give similar results
with a P0-DGFEM solution having no overshoot and a P1-DGFEM solution having
a nontrivial overshoot. There is no overshoot from the LSNN method (Figures 8(a)
and 8(c)).

5.2. Three-dimensional problems. We present numerical results for three
three-dimensional test problems with piecewise constant or variable advection velocity
fields whose solutions are piecewise constant along a connected series of planes or a
surface. All three test problems are defined on the domain Ω= (0,1)3, approximation
results are depicted on z = 0.505 (except for the last test problem on z = 0.205), and
again, as in the experiments for d= 2, we have

|||u− u
N
|||β ≤C

∣

∣α1 − α2

∣

∣

√
ε.

5.2.1. A problem with a 2-plane segment interface. Let γ = f = 0, Ω̄ =
Ῡ1 ∪ Ῡ2, and

Υ1 = {(x, y, z)∈Ω : y < x} and Υ2 = {(x, y, z)∈Ω : y≥ x}.

The advective velocity field is a piecewise constant field given by

β(x, y, z) =

{

(1−
√
2,1,0)T , (x, y, z)∈Υ1,

(−1,
√
2− 1,0)T , (x, y, z)∈Υ2.

(5.11)

The inflow boundary and the inflow boundary condition are given by

Γ− = {(x,0, z) : x, z ∈ (0,1)} ∪ {(1, y, z) : y, z ∈ (0,1)}

and g(x, y, z) =

{

0, (x, y, z)∈ Γ1
− ≡ {(x,0, z) : x∈ (0,0.7), z ∈ (0,1)},

1, (x, y, z)∈ Γ2
− =Γ− \ Γ1

−,

respectively. Let

Ω1 =

{

(x, y, z)∈Ω : y < (1−
√
2)x+ 0.7, y <

1

1−
√
2
(x− 0.7)

}

.

The exact solution is a unit step function in three dimensions (see Figure 9(b)),

u(x, y, z) =

{

0, (x, y, z)∈Ω1,
1, (x, y, z)∈Ω2 =Ω \Ω1.

(5.12)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 0
8
/1

3
/2

4
 t

o
 9

8
.2

2
3
.9

7
.2

1
3
 b

y
 Z

h
iq

ia
n
g
 C

ai
 (

ca
iz

@
p
u
rd

u
e.

ed
u
).

 R
ed

is
tr

ib
u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

C470 ZHIQIANG CAI, JUNPYO CHOI, AND MIN LIU

Fig. 7. Approximation results of the problem in subsection 5.1.4.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 0
8
/1

3
/2

4
 t

o
 9

8
.2

2
3
.9

7
.2

1
3
 b

y
 Z

h
iq

ia
n
g
 C

ai
 (

ca
iz

@
p
u
rd

u
e.

ed
u
).

 R
ed

is
tr

ib
u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

LEAST-SQUARES NEURAL NETWORK METHOD C471

Fig. 8. Approximation results of the problem in subsection 5.1.5.

Table 5

Relative errors of the problem in subsection 5.1.4.

Network structure
‖u−u

N
T

‖0
‖u‖0

|||u−u
N
T
|||

β

|||u|||β

L1/2(uN
T

,f)

L1/2(uN
T

,0)
Parameters

2–4000–1 0.088349 0.108430 0.058213 16001
2–65–65–1 0.048278 0.073095 0.015012 4551

Table 6

Relative errors of the problem in subsection 5.1.5.

Network structure ‖u− u
N
T
‖0

‖u−u
N
T

‖0
‖u‖0

|||u−u
N
T
|||

β

|||u|||β

L1/2(uN
T

,f)

L1/2(uN
T

,0)
Parameters

2–70–70–1 0.032229 0.066337 0.069926 0.023664 5251

100000 iterations were implemented with 3–300–1 and 3–5–5–1 ReLU NN functions
(depth dlog2(d+1)e+1= 3 for d= 3). The numerical results are presented in Figure
9 and Table 7. For three dimensions again, the 2-layer network structure with a large
number of parameters generated a transition layer along the discontinuity interface
(Figures 9(a) and 9(g)) but had trouble approximating the solution (Figure 9(b))
accurately pointwise (Figures 9(c) and 9(e)). The 3-layer network structure with
4% of the number of parameters of the 2-layer network approximated the solution
accurately (Table 7). As explained in Example 5.1.1, Figures 9(d), 9(f), and 9(h) also

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 0
8
/1

3
/2

4
 t

o
 9

8
.2

2
3
.9

7
.2

1
3
 b

y
 Z

h
iq

ia
n
g
 C

ai
 (

ca
iz

@
p
u
rd

u
e.

ed
u
).

 R
ed

is
tr

ib
u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

C472 ZHIQIANG CAI, JUNPYO CHOI, AND MIN LIU

Table 7

Relative errors of the problem in subsection 5.2.1.

Network structure
‖u−u

N
T

‖0
‖u‖0

|||u−u
N
T
|||

β

|||u|||β

L1/2(uN
T

,f)

L1/2(uN
T

,0)
Parameters

3–300–1 0.185006 0.214390 0.189820 1501

3–5–5–1 0.055365 0.055370 0.045902 56

indicate that the function p in Lemma 4.3 appears to be the approximation and in
this example to be contained in M(3,10).

5.2.2. A problem with a cylindrical interface. Let γ = 1. The advective
velocity field is a variable field given by

β(x, y, z) = (−y,x,0)T , (x, y, z)∈Ω.(5.13)

The inflow boundary and the inflow boundary condition are given by

Γ− = {(x,0, z) : x, z ∈ (0,1)} ∪ {(1, y, z) : y, z ∈ (0,1)}

and g(x, y, z) =

{

0, (x, y, z)∈ Γ1
− ≡ {(x,0, z) : x∈ (0,0.7), z ∈ (0,1)},

1, (x, y, z)∈ Γ2
− =Γ− \ Γ1

−,

respectively. Let

Ω1 = {(x, y, z)∈Ω : y <
√

0.72 − x2}.

The following right-hand-side function is

f(x, y, z) =

{

0, (x, y, z)∈Ω1,
1, (x, y, z)∈Ω2 =Ω \Ω1.

(5.14)

The exact solution is (see Figure 10(b))

u(x, y, z) = f(x, y, z), (x, y, z)∈Ω.

150000 iterations were implemented with 3–1500–1 and 3–50–50–1 ReLU NN func-
tions. The numerical results are presented in Figure 10 and Table 8. Again to min-
imize the loss function over a larger subset of CPWL functions, we increased the
number of hidden neurons. Even though the 2-layer ReLU NN function approxima-
tion provides an approximate location of the discontinuity interface (Figures 10(a)
and 10(g)), the structure failed to approximate the solution (Figure 10(b)) around
the interface accurately (Figures 10(c) and 10(e)). The 3-layer network structure
with less than 40% of the number of parameters of the 2-layer network approximated
the solution well, locating the discontinuity interface (Figures 10(d), 10(f), and 10(h)
and Table 8).

5.2.3. A problem with a spherical interface. Let γ = 1. The advective
velocity field is a variable field given by

β(x, y, z) = (−y− z,x,x)T , (x, y, z)∈Ω.(5.15)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 0
8
/1

3
/2

4
 t

o
 9

8
.2

2
3
.9

7
.2

1
3
 b

y
 Z

h
iq

ia
n
g
 C

ai
 (

ca
iz

@
p
u
rd

u
e.

ed
u
).

 R
ed

is
tr

ib
u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

LEAST-SQUARES NEURAL NETWORK METHOD C473

Fig. 9. Approximation results of the problem in subsection 5.2.1.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 0
8
/1

3
/2

4
 t

o
 9

8
.2

2
3
.9

7
.2

1
3
 b

y
 Z

h
iq

ia
n
g
 C

ai
 (

ca
iz

@
p
u
rd

u
e.

ed
u
).

 R
ed

is
tr

ib
u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

C474 ZHIQIANG CAI, JUNPYO CHOI, AND MIN LIU

Fig. 10. Approximation results of the problem in subsection 5.2.2.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 0
8
/1

3
/2

4
 t

o
 9

8
.2

2
3
.9

7
.2

1
3
 b

y
 Z

h
iq

ia
n
g
 C

ai
 (

ca
iz

@
p
u
rd

u
e.

ed
u
).

 R
ed

is
tr

ib
u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

LEAST-SQUARES NEURAL NETWORK METHOD C475

Table 8

Relative errors of the problem in subsection 5.2.2.

Network structure
‖u−u

N
T

‖0
‖u‖0

|||u−u
N
T
|||

β

|||u|||β

L1/2(uN
T

,f)

L1/2(uN
T

,0)
Parameters

3–1500–1 0.125142 0.158393 0.117929 7501

3–50–50–1 0.050217 0.073780 0.018976 2801

Table 9

Relative errors of the problem in subsection 5.2.3.

Network structure
‖u−u

N
T

‖0
‖u‖0

|||u−u
N
T
|||

β

|||u|||β

L1/2(uN
T

,f)

L1/2(uN
T

,0)
Parameters

3–1376–1 0.113045 0.144105 0.106094 6881
3–80–80–1 0.042233 0.064332 0.041935 6881

The inflow boundary and the inflow boundary condition are given by

Γ− = {(x,0, z) : x, z ∈ (0,1)} ∪ {(1, y, z) : y, z ∈ (0,1)}
∪ {(x, y,0) : x, y ∈ (0,1)}

and g(x, y, z) =



















0, (x, y, z)∈ Γ1
− ≡

{

(x,0, z) : 0< z <
√

0.72 − x2, x∈ (0,0.7)
}

,

0, (x, y, z)∈ Γ2
− ≡

{

(x, y,0) : 0< y <
√

0.72 − x2, x∈ (0,0.7)
}

,

1, (x, y, z)∈ Γ3
− =Γ− \ (Γ1

− ∪ Γ2
−),

respectively. Let

Ω1 = {(x, y, z)∈Ω : z <
√

0.72 − x2 − y2}.

The following right-hand-side function is

f(x, y, z) =

{

0, (x, y, z)∈Ω1,
1, (x, y, z)∈Ω2 =Ω \Ω1.

(5.16)

The exact solution is (see Figure 11(b))

u(x, y, z) = f(x, y, z), (x, y, z)∈Ω.

200000 iterations were implemented with 3–1376–1 and 3–80–80–1 ReLU NN
functions. The numerical results are presented in Figure 11 and Table 9. We increased
the number of hidden neurons and ρ was set to h/12 in the finite difference quotient in
(3.11) because of the jump along the more curved interface (Figure 11(a)). Unlike the
other two three-dimensional test problems, in this test problem, the third dimension
actually plays a role as we can see from the advective velocity field (5.15). The
approximation results are similar to those of the previous examples. Moreover, we
note that the two-hidden-layer NN outperforms the one-hidden-layer NN with the
same number of parameters, which together with the previous examples suggests that
the one-hidden-layer NN needs more neurons.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 0
8
/1

3
/2

4
 t

o
 9

8
.2

2
3
.9

7
.2

1
3
 b

y
 Z

h
iq

ia
n
g
 C

ai
 (

ca
iz

@
p
u
rd

u
e.

ed
u
).

 R
ed

is
tr

ib
u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

C476 ZHIQIANG CAI, JUNPYO CHOI, AND MIN LIU

Fig. 11. Approximation results of the problem in subsection 5.2.3.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 0
8
/1

3
/2

4
 t

o
 9

8
.2

2
3
.9

7
.2

1
3
 b

y
 Z

h
iq

ia
n
g
 C

ai
 (

ca
iz

@
p
u
rd

u
e.

ed
u
).

 R
ed

is
tr

ib
u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

LEAST-SQUARES NEURAL NETWORK METHOD C477

REFERENCES

[1] R. Arora, A. Basu, P. Mianjy, and A. Mukherjee, Understanding deep neural networks
with rectified linear units, in International Conference on Learning Representations, 2018.

[2] Y. Bar-Sinai, S. Hoyer, J. Hickey, and M. P. Brenner, Learning data-driven discretizations
for partial differential equations, Proc. Natl. Acad. Sci. USA, 116 (2019), pp. 15344–15349,
https://doi.org/10.1073/pnas.1814058116.

[3] J. Berg and K. Nyström, A unified deep artificial neural network approach to partial differen-
tial equations in complex geometries, Neurocomputing, 317 (2018), pp. 28–41, https://doi.
org/10.1016/j.neucom.2018.06.056.

[4] P. Bochev and M. Gunzburger, Least-squares methods for hyperbolic problems, in Handb.
Numer. Anal. 17, Elsevier, Amsterdam, 2016, pp. 289–317, https://doi.org/10.1016/
bs.hna.2016.07.002.

[5] Z. Cai, J. Chen, and M. Liu, Least-squares neural network (LSNN) method for scalar nonlin-
ear hyperbolic conservation laws: Discrete divergence operator , J. Comput. Appl. Math.,
433 (2023), 115298.

[6] Z. Cai, J. Chen, and M. Liu, Least-squares ReLU neural network (LSNN) method for lin-
ear advection-reaction equation, J. Comput. Phys., 443 (2021), 110514, https://doi.org/
10.1016/j.jcp.2021.110514.

[7] Z. Cai, J. Chen, and M. Liu, Self-adaptive deep neural network: Numerical approxima-
tion to functions and PDEs, J. Comput. Phys., 455 (2022), 111021, https://doi.org/
10.1016/j.jcp.2022.111021.

[8] Z. Cai, J. Chen, and M. Liu, Least-squares ReLU neural network (LSNN) method for scalar
nonlinear hyperbolic conservation law , Appl. Numer. Math., 174 (2022), pp. 163–176,
https://doi.org/10.1016/j.apnum.2022.01.002.

[9] Z. Cai, J. Chen, M. Liu, and X. Liu, Deep least-squares methods: An unsupervised learning-
based numerical method for solving elliptic PDEs, J. Comput. Phys., 420 (2020), 109707,
https://doi.org/10.1016/j.jcp.2020.109707.

[10] A. Caragea, P. Petersen, and F. Voigtlaender, Neural network approximation and esti-
mation of classifiers with classification boundary in a Barron class, Ann. Appl. Probab., 33
(2023), pp. 3039–3079, https://doi.org/10.1214/22-AAP1884.

[11] J. Chen, Least-Squares ReLU Neural Network Method for Scalar Hyperbolic Conservation Law ,
Ph.D. thesis, Purdue University, 2021.

[12] W. Dahmen, C. Huang, C. Schwab, and G. Welper, Adaptive Petrov–Galerkin methods
for first order transport equations, SIAM J. Numer. Anal., 50 (2012), pp. 2420–2445,
https://doi.org/10.1137/110823158.

[13] H. De Sterck, T. A. Manteuffel, S. F. McCormick, and L. Olson, Least-squares finite
element methods and algebraic multigrid solvers for linear hyperbolic PDEs, SIAM J. Sci.
Comput., 26 (2004), pp. 31–54, https://doi.org/10.1137/S106482750240858X.

[14] R. DeVore, B. Hanin, and G. Petrova, Neural network approximation, Acta Numer., 30
(2021), pp. 327–444, https://doi.org/10.1017/S0962492921000052.

[15] R. A. DeVore, K. I. Oskolkov, and P. P. Petrushev, Approximation by feed-forward neural
networks, Ann. Numer. Math., 4 (1996), pp. 261–288.

[16] M. W. M. G. Dissanayake and N. Phan-Thien, Neural network based approximations
for solving partial differential equations, Commun. Numer. Methods Eng., 10 (1994),
pp. 195–201, https://doi.org/10.1002/cnm.1640100303.

[17] W. E and B. Yu, The deep Ritz method: A deep learning-based numerical algorithm for
solving variational problems, Commun. Math. Stat., 6 (2018), pp. 1–12, https://doi.org/
10.1007/s40304-018-0127-z.

[18] O. Fuks and H. A. Tchelepi, Limitations of physics informed machine learning for nonlinear
two-phase transport in porous media, J. Mach. Learn. Model. Comput., 1 (2020), pp. 19–37,
https://doi.org/10.1615/JMachLearnModelComput.2020033905.

[19] P. Houston, R. Rannacher, and E. Süli, A posteriori error analysis for stabilised finite
element approximations of transport problems, Comput. Methods Appl. Mech. Engrg., 190
(2000), pp. 1483–1508, https://doi.org/10.1016/S0045-7825(00)00174-2.

[20] M. Imaizumi and K. Fukumizu, Deep neural networks learn non-smooth functions effectively,
in Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics,
PMLR, 2019, pp. 869–878.

[21] M. Imaizumi and K. Fukumizu, Advantage of deep neural networks for estimating functions
with singularity on hypersurfaces, J. Mach. Learn. Res., 23 (2022), pp. 1–53.

[22] Y. Kim, I. Ohn, and D. Kim, Fast convergence rates of deep neural networks for classification,
Neural Networks, 138 (2021), pp. 179–197, https://doi.org/10.1016/j.neunet.2021.02.012.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 0
8
/1

3
/2

4
 t

o
 9

8
.2

2
3
.9

7
.2

1
3
 b

y
 Z

h
iq

ia
n
g
 C

ai
 (

ca
iz

@
p
u
rd

u
e.

ed
u
).

 R
ed

is
tr

ib
u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

C478 ZHIQIANG CAI, JUNPYO CHOI, AND MIN LIU

[23] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, in International
Conference on Learning Representations, 2015.

[24] I. E. Lagaris, A. Likas, and D. I. Fotiadis, Artificial neural networks for solving ordi-
nary and partial differential equations, IEEE Trans. 941 Neural Networks, 9 (1998), pp.
987–1000, https://doi.org/10.1109/72.712178.

[25] M. Liu and Z. Cai, Adaptive two-layer ReLU neural network: II. Ritz approximation to el-
liptic PDEs, Comput. Math. Appl., 113 (2022), pp. 103–116, https://doi.org/10.1016/
j.camwa.2022.03.010.

[26] M. Liu, Z. Cai, and J. Chen, Adaptive two-layer ReLU neural network: I. best least-squares
approximation, Comput. Math. Appl., 113 (2022), pp. 34–44, https://doi.org/10.1016/
j.camwa.2022.03.005.

[27] M. Liu, Z. Cai, and K. Ramani, Deep Ritz method with adaptive quadrature for linear
elasticity, Comput. Methods Appl. Mech. Engrg., 415 (2023), 116229, https://doi.org/
10.1016/j.cma.2023.116229.

[28] Q. Liu and S. Zhang, Adaptive least-squares finite element methods for linear transport equa-
tions based on an H(div) flux reformulation, Comput. Methods Appl. Mech. Engrg., 366
(2020), 113041, https://doi.org/10.1016/j.cma.2020.113041.

[29] Q. Liu and S. Zhang, Adaptive flux-only least-squares finite element methods for linear
transport equations, J. Sci. Comput., 84 (2020), 26, https://doi.org/10.1007/s10915-020-
01269-y.

[30] T. Mao and D.-X. Zhou, Rates of approximation by relu shallow neural networks, J. Com-
plexity, 79 (2023), 101784, https://doi.org/10.1016/j.jco.2023.101784.

[31] G. F. Montufar, R. Pascanu, K. Cho, and Y. Bengio, On the number of linear regions of
deep neural networks, Adv. Neural Inf. Process. Syst., 27 (2014).

[32] R. Pascanu, G. Montufar, and Y. Bengio, On the number of response regions of deep
feed forward networks with piece-wise linear activations, in International Conference on
Learning Representations, 2014.

[33] P. Petersen and F. Voigtlaender, Optimal approximation of piecewise smooth func-
tions using deep relu neural networks, Neural Networks, 108 (2018), pp. 296–330,
https://doi.org/10.1016/j.neunet.2018.08.019.

[34] P. P. Petrushev, Approximation by ridge functions and neural networks, SIAM J. Math.
Anal., 30 (1998), pp. 155–189, https://doi.org/10.1137/S0036141097322959.

[35] A. Pinkus, Approximation theory of the MLP model in neural networks, Acta Numer., 8 (1999),
pp. 143–195, https://doi.org/10.1017/S0962492900002919.

[36] M. Raissi, P. Perdikaris, and G. Karniadakis, Physics-informed neural networks: A deep
learning framework for solving forward and inverse problems involving nonlinear par-
tial differential equations, J. Comput. Phys., 378 (2019), pp. 686–707, https://doi.org/
10.1016/j.jcp.2018.10.045.

[37] Z. Shen, H. Yang, and S. Zhang, Deep network approximation characterized by number of
neurons, Commun. Comput. Phys., 28 (2020), pp. 1768–1811, https://doi.org/10.4208/
cicp.OA-2020-0149.

[38] J. Sirignano and K. Spiliopoulos, DGM: A deep learning algorithm for solving par-
tial differential equations, J. Comput. Phys., 375 (2018), pp. 1139–1364, https://doi.
org/10.1016/j.jcp.2018.08.029.

[39] J. Tarela and M. Martinez, Region configurations for realizability of lattice piecewise-linear
models, Math. Comput. Model., 30 (1999), pp. 17–27, https://doi.org/10.1016/S0895-
7177(99)00195-8.

[40] S. Wang and X. Sun, Generalization of hinging hyperplanes, IEEE Trans. Inform. Theory, 51
(2005), pp. 4425–4431, https://doi.org/10.1109/TIT.2005.859246.

[41] S. Zhang, Battling Gibbs phenomenon: On finite element approximations of discontinu-
ous solutions of PDEs, Comput. Math. Appl., 122 (2022), pp. 35–47, https://doi.org/
10.1016/j.camwa.2022.07.014.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 0
8
/1

3
/2

4
 t

o
 9

8
.2

2
3
.9

7
.2

1
3
 b

y
 Z

h
iq

ia
n
g
 C

ai
 (

ca
iz

@
p
u
rd

u
e.

ed
u
).

 R
ed

is
tr

ib
u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

	Introduction
	ReLU NN functions
	The LSNN method
	Error estimates
	Numerical experiments
	Two-dimensional problems
	A problem with a 3-line segment interface
	A problem with a 4-line segment interface
	A problem with a curved interface
	A problem with a curved interface and <0:inline-formula ><0:tex-math 0:notation="LaTeX" 0:version="MathJax" ><?LDGXML	u 0?></0:tex-math></0:inline-formula> in (<0:xref 0:ref-type="disp-formula" 0:rid="disp22" >4.4</0:xref>)
	A problem with a sharp transition layer

	Three-dimensional problems
	A problem with a 2-plane segment interface
	A problem with a cylindrical interface
	A problem with a spherical interface

	References

