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Abstract
This is the second and last paper of a series aimed at solving the local Cauchy prob-
lem for polarizedU(1) symmetric solutions to the Einstein vacuum equations featuring
the nonlinear interaction of three small amplitude impulsive gravitational waves. Such
solutions are characterized by their three singular “wave-fronts” across which the cur-
vature tensor is allowed to admit a delta singularity. Under polarized U(1) symmetry,
the Einstein vacuum equations reduce to the Einstein–scalar field system in (2 + 1)
dimensions. In this paper, we focus on the wave estimates for the scalar field in the
reduced system. The scalar field terms are the most singular ones in the problem,
with the scalar field only being Lipschitz initially. We use geometric commutators to
prove energy estimates which reflect that the singularities are localized, and that the
scalar field obeys additional fractional-derivative regularity, as well as regularity along
appropriately defined “good directions”. The main challenge is to carry out all these
estimates using only the low-regularity properties of the metric. Finally, we prove an
anisotropic Sobolev embedding lemma, which when combined with our energy esti-
mates shows that the scalar field is everywhere Lipschitz, and that it obeys additional
C1,θ estimates away from the most singular region.
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1 Introduction

The impulsive gravitational waves. In this paper and [25], our main goal is to construct
and give a precise description of a large class of local solutions to the Einstein vacuum
equations

Ric((4)g) = 0 (1.1)

which feature the nonlinear, transversal interaction of three impulsive gravitational
waves. An impulsive gravitational wave is a (weak) solution to the Einstein vacuum
equations for which the Riemann curvature tensor has a delta singularity supported on
a null hypersurface. Interaction of impulsive gravitational waves is then represented by
solutions to (1.1) featuring the transversal intersection of such singular hypersurfaces.

In our work, we impose a polarized U(1) symmetry assumption. In other words,
we consider a (3 + 1)-dimensional Lorentzian manifold (I × R

2 × S
1,(4) g), where

I ⊆ R is an interval, and assume that the metric takes the following form

(4)g = e−2φg + e2φ(dx3)2, (1.2)

where φ : I × R
2 → R is a scalar function and g is a Lorentzian metric on I × R

2,
i.e. they are independent of the S

1 = R/(2πZ)-direction, which we parameterize
by the coordinate x3. The Einstein vacuum equations then reduce to the (2 + 1)-
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dimensional Einstein–scalar field system

{

Ric(g) = 2dφ ⊗ dφ,

�gφ = 0.
(1.3)

The following is an informal version of our main theorem (see [25, Theorem 5.2]
for a precise statement):

Theorem 1.1 (Informal main theorem for impulsive gravitational waves) Given a
polarized U(1)-symmetric initial data set corresponding to three (non-degenerate)
small-amplitude impulsive gravitational waves propagating towards each other, there
exists a weak solution to the Einstein vacuum equations corresponding to the given
data up to and beyond the transversal interaction of these waves. In particular, in the
solution, themetric is everywhere Lipschitz and is H2

loc∩C1,θ
loc for some θ ∈ (0, 14 ) away

from the three null hypersurfaces corresponding to impulsive gravitational waves.

The δ-impulsive gravitational waves. We began the proof of Theorem 1.1 in part I of
our series [25].We introduced the notion of δ-impulsive gravitational waves, which are
smooth approximations of the impulsive gravitational waves at a length scale δ > 0.
In our setup, these waves are of small, O(ε), amplitude, but being δ-impulsive means
that their second derivatives could be of pointwise size O(εδ−1) in δ-neighborhoods
around the null hypersurfaces onwhich the singularity propagates. They can be viewed
as more realistic solutions to (1.1) which are “quantitatively impulsive” but without
an actual singularity. For this reason, the study of δ-impulsive waves is a problem of
independent interest that we will also address: we give below an informal version of
our result on δ-impulsive waves (see [25, Theorem 5.6] for a precise statement).

Theorem 1.2 (Informal main theorem for δ-impulsive gravitational waves) Given a
polarized U(1)-symmetric initial data set corresponding to three small-amplitude δ-
impulsive gravitational waves propagating towards each other, there exists a smooth
solution to the Einstein vacuum equations corresponding to the given data up to and
beyond the transversal interaction of these waves.

Moreover, for all sufficiently small δ > 0, the following holds:

• [Local existence]. The solution exists up to time 1, independently of δ.
• [Uniform estimates]. The solution satisfies δ-dependent estimates consistent with
δ-approximations of actual impulsive waves.

• In particular, the metric is uniformly Lipschitz in δ everywhere, and obeys uniform-
in-δ H2 ∩C1,θ (for θ ∈ (0, 14 )) estimates away from the δ-impulsive gravitational
waves.

As it turns out, the proof of our main Theorem 1.1 regarding actual impulsive waves
reduces to the proof of Theorem 1.2 on δ-impulsive waves. We indeed proved on the
one hand in [25] that given any non-degenerate.1 initial data representing three small

1 We recall that the non-degeneracy assumption in [25] is only used to solve the constraint equations.

Moreover, given O(ε) data, the non-degeneracy assumption can be guaranteed by adding an O(ε
6
5 ) smooth

perturbation; see [25, Remark 4.7].
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amplitude impulsive gravitational waves propagating towards each other, the initial
data can be approximated by those for δ-impulsive gravitational waves for all small
enough δ > 0. On the other hand, we proved in [25] via a limiting argument that
to any such one-parameter (indexed by δ) family of δ-impulsive gravitational waves
solutions corresponds an actual impulsive gravitational waves solution, provided that
the δ-impulsive waves satisfy specific quantitative estimates for all small δ > 0.

Because of the above reduction, the remaining goal is to prove the quantitative
wave estimates for the δ-impulsive waves as stated in Theorem 1.2. By the above, this
step completes our resolution of the local Cauchy problem for three actual impulsive
gravitational waves, i.e. it completes the proof of Theorem 1.1.

Wave estimates for the δ-impulsive waves. In view of the form of the metric (1.2)
in polarizedU(1) symmetry, the estimates for the original (3+ 1)-dimensional metric
(4)g naturally separate into those for the reduced metric g and for the scalar field φ.
From now on, we will work in the reduced picture: we will refer to g as the “metric”
part, and φ as the “wave” part.

In the context of Theorems 1.1 and 1.2, thewave part ismore singular. Indeed, for an
impulsive gravitational wave, ∂φ has a jump discontinuity across a null hypersurface,
while g is more regular. Correspondingly, for a δ-impulsive gravitational wave, |∂φ| is
of size O(1), and |∂2φ| is of size O(δ−1) in a δ-neighborhood of a null hypersurface.
Thus, in Theorem 1.2, when we prove that the (3 + 1)-dimensional metric (4)g is
uniformly Lipschitz in δ everywhere and obeys uniform-in-δ H2 ∩C1,θ estimates (for
θ ∈ (0, 14 )) away from the δ-impulsive gravitational waves, the main challenge is to
prove these bounds for φ.

In part I of our series [25], we proved estimates for the metric g, as well as for some
associated null hypersurfaces, assuming estimates for φ which are consistent with the
spacetime having three interacting δ-impulsive waves.

In this paper, we carry out the remaining task, which is to obtain the estimates for
φ assumed in [25], thus closing a bootstrap argument.

In fact, given the estimates in [25], and recalling from (1.3) that φ satisfies a linear
wave equation, we can think of this as a statement concerning the linear wave equation
with δ-impulsive wave data on a background with rough metric. (See Sect. 1.2.2 for
further discussions.) The following is an informal version of the main result in this
paper:

Theorem 1.3 (Informal version of the main result in this paper) Suppose that

• the initial data forφ correspond to three small-amplitude δ-impulsive gravitational
wave propagating towards each other, and

• there is a smooth Lorentzian metric g in [0, TB) × R
2 such that the geometric

estimates for the reduced (2 + 1)-dimensional metric and null hypersurfaces in
[25] hold.

Suppose φ is the solution to the linear wave equation �gφ = 0 with the prescribed
data. Then, for all sufficiently small δ > 0, the following holds in [0, TB)× R

2:

• The solution φ satisfies δ-dependent estimates consistent with δ-approximations
of actual impulsive waves.
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10 Page 6 of 137 J. Luk, M. Van de Moortel

• φ is Lipschitz uniformly-in-δ everywhere, and obeys uniform-in-δ H2 ∩C1,θ esti-
mates (for θ ∈ (0, 14 )) away from the δ-impulsive gravitational waves.

The precise version of Theorem 1.3 can be found in2 Theorem 4.2 and Theorem 4.3.
In particular, we refer the reader

• to Sect. 4.1 for the precise assumptions on the initial data of the δ-impulsive grav-
itational waves,

• to Sect. 5 for the geometric estimates that we need, and
• to Sect. 4.3 for the precise wave estimates that we prove.

According to the results in [25], the estimates in Theorem 1.3 complete the proof
of Theorem 1.2.

Comments on thewave estimates.Themain issue at stake is thatwewant to propagate
a bound for ‖∂φ‖L∞(R2) everywhere and a bound for ‖∂φ‖Cθ (R2) (for θ ∈ (0, 14 )) away
from the most singular region, while the initial data of φ are very rough from the point
of view of isotropic L2-based Sobolev spaces. Indeed, recall that for an impulsive
gravitational wave, ∂φ initially has a jump discontinuity across a curve. Thus, for the
δ-impulsive wave, in terms of isotropic L2-based Sobolev spaces Hs , the data for φ
only obey the following3 δ-independent bound:

‖∂φ‖
H

1
2−
(R2)

≤ ε. (1.4)

This is far too weak to control the Lipschitz and Hölder norms (and is even below the
threshold to close the estimates for local existence of the quasilinear problem).

It turns out that in order to close a bootstrap argument, to propagate uniform-in-δ
Lipschitz bounds for φ, and to obtain improved Hölder regularity away from the wave
fronts, we need to design energies that exploit the specific nature of the δ-impulsive
waves. More precisely, we will use the following more subtle “improved regularity”
in the problem:

1. [Anisotropy]. We prove that each of the three impulsive waves propagates along
specific directions: this property can be proven by differentiating φ by vector fields
tangential to the wave front.

2. [Hierarchy of δ-dependent estimates: “short pulse bounds”]. Related to the local-
ization, the solution satisfies a hierarchy of δ-dependent bounds involving large
and small quantities, in a manner that is similar to Christodoulou’s short pulse
estimates in [11].

3. [Localization]. The singular parts are initially localized, and we prove that they
remain localized in δ-neighborhoods of 3 null hypersurfaces throughout the evo-
lution.

2 Notice that Theorems 4.2 and 4.3 do not explicitly refer to the geometric estimates in [25]. Nonetheless,
in the proof we will indeed first use the bootstrap assumptions and results in [25] to obtain the geometric
estimates; see Sect. 5.
3 Indeed, it is easy to check that a function with a jump discontinuity along a smooth curve in R2 is locally

in H
1
2−
(R2) ∩ L∞(R2).
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In the energy estimates, it is important that we employ a combination of geometric
and fractional derivatives so as to capture the above features. The main challenge for
closing these energy estimates is that due to the quasilinear coupling, the metric is of
very limited regularity, and we need to propagated the energy bounds for such rough
metrics.

We will further discuss these estimates and sketch the main ideas of the proof in
Section 1.1. After the discussion of the proof, we will discuss some related works in
Section 1.2. Finally, we will outline the remainder of the paper in Section 1.3.

1.1 Ideas of the proof

This section will be organized as follows.
We begin with the geometric setup in Section 1.1.1. Then in Section 1.1.2, we

briefly recall the estimates for the geometric quantities derived in [25].
Turning to the scalar wave, we first introduce in Section 1.1.3 the regular-singular

composition of the scalar wave, which plays an important role in the analysis. Roughly
speaking, this decomposes the scalar wave into a regular part and singular parts, where
the latter are localized and propagating in specific directions.

We then address the proof of the wave estimates, which is the focus of this paper.
Our main wave estimates are L2-based. However, importantly, our L2-based energies
are designed so as to obtain the global Lipschitz estimates as well as the improved
Hölder bounds away from the singular region (cf. Theorem 1.1).

• In Section 1.1.4, we discuss the L2-based estimates up to the second deriva-
tive. These estimates already capture particular features of the δ-impulsive waves,
including its anisotropy and localization.

• In Section 1.1.5, we motivate the various higher order L2 norms that we use by
two anisotropic Sobolev-type embedding results. This is related to the Lipschitz
and improved Hölder estimates.

• Finally, in Section 1.1.6, we explain the ideas in the proof of the higher order
L2-based estimates. In particular, we will discuss how the proof of these estimates
are intertwined with the control for the geometry that we discussed in Sect. 1.1.2.

1.1.1 The basic geometric setup

Elliptic gauge. We recall the basic geometric setup in [25]. First, we construct a
solution in an elliptic gauge, i.e. the ((2+1)-dimensional reduced)Lorentzianmanifold
(I × R

2), g) takes the form I × R
2 = ∪

t∈I�t and

g = −N 2dt2 + e2γ δi j (dx
i + β i dt)(dx j + β j dt), (1.5)

where δi j is the Kronecker symbol, the constant-t hypersurfaces �t are maximal, and
(as a consequence) the metric components g ∈ {N , γ, β i } satisfy semilinear elliptic
equations which are schematically of the form

�g = (∂φ)2 + (∂xg)2. (1.6)
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10 Page 8 of 137 J. Luk, M. Van de Moortel

Fig. 1 The vector fields
{Lk , Ek , Xk }: Lk is null, Ek , Xk
are space-like and tangent to �t

Eikonal functions and geometric vector fields. In addition to the metric itself, we
constructed — dynamically defined — eikonal functions {uk}k=1,2,3, satisfying
g−1(duk, duk) = 0, which capture the direction of propagation of the δ-impulsive
gravitational waves. Associated with each eikonal function uk , we constructed a frame
of vector fields {Lk, Ek, Xk}, where Lk and Ek are tangential to the constant-uk (null)
hypersurfaces Ck

uk and Xk is tangent to �t and orthogonal to Ek as depicted in Fig. 1.
These eikonal functions and geometric vector fields are important for capturing the
propagation and interaction of the δ-impulsive waves, as we will further explain in
Sects. 1.1.3 and 1.1.4 below.

1.1.2 Summary of the geometric estimates from part I

Continuing our discussion on geometry, we recall some of the estimates for the geo-
metric quantities that we obtained in [25]. As we will see, one of the challenges in
proving the wave estimates is to contend with the low regularity of the metric.

Different components of the metric components in the elliptic gauge (1.5) and
different derivatives of the Ricci coefficients with respect to the {Lk, Ek, Xk} frame
obey different bounds. Especially for the highest order wave estimates, we will use
the precise bounds for these geometric objects.

1. For the metric components in the elliptic gauge, denoted with the schematic nota-
tion g ∈ {N , γ, βi }, we have the following regularity estimates for all R > 0:

‖∂ig‖W 1,∞∩W 1+s′,2(�t )
� ε2, ‖∂tg‖

W
1, 2

s′−s′′ (�t∩B(0,R))
�R ε

2, (1.7)

where 0 < s′′ < s′ < 1
2 are fixed but arbitrary parameters, to be explained later.

Note that no estimates were obtained for ∂2t g.
2. The Ricci coefficients χk := g(∇Ek Lk, Ek) and ηk := g(∇Xk Lk, Ek) associated

to the null frame {Lk, Ek, Xk} are considerably less regular. Denote κk ∈ {χk, ηk},
and introduce coordinates (tk, uk, θk)with uk the eikonal function fromSect. 1.1.1,
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tk = t and θk such that Lkθk = 0. Then [25] gives

∑

κk∈{χk ,ηk }

(

‖κk‖L∞(�t ) + ‖Lkκk‖L∞(�t )

)

� ε2. (1.8)

Observe that Lkκk is estimated at the same regularity as κk : this is because κk
satisfies a transport equation in the Lk direction due to the Einstein equations (see
[25, Lemma 2.22]).
The other Ek and Xk derivatives are less regular and only obey mixed L2/L∞ or
L2 bounds:

‖Ekκk‖L∞
tk
L∞
uk

L2
θk

+ ‖Xkχk‖L∞
tk
L∞
uk

L2
θk

� ε2, ‖Xkηk‖L2(�t∩B(0,R)) �R ε
2.

(1.9)

Note that Xkχk obeys a similar bound as Ekκk , but to bound Xkηk , we need L2 in
both uk and θk .
To obtain higher order estimates, we are only allowed to commute with an extra
Lk derivative:

‖Lk Xkχk‖L2(�t∩B(0,R)),
∑

κk∈{χk ,ηk }
‖L2

kκk‖L2(�t∩B(0,R)),

∑

κk∈{χk ,ηk }
‖Lk Ekκk‖L2(�t∩B(0,R)) �R ε

2. (1.10)

Notice that as in (1.9) ηk obeys slightly weaker bounds than χk andmoreover there
is no estimate to control Lk Xkηk .

In general, the derivatives of g obey better bounds than χk , ηk (due to ellipticity
of (1.6)). However, spatial ellipticity does not merge well with ∂t derivatives: ∂tg
only obeys weaker bounds, and ∂2t g is not controlled in our argument at all. On the
other hand, while χk , ηk obeys weaker bounds, they behave better with respect to
Lk derivatives (which contains a ∂t component); see (1.8), (1.10). (Additionally, one
needs to control various non-trivial commutators when going back and forth between
(1) the eikonal quantities constructed with Lk and Ek and (2) the metric coefficients
in the elliptic gauge (1.5). We will not get into details here, except for remarking that
they can be controlled using the geometric estimates in [25].)

1.1.3 Regular-singular decomposition and the singular zones

We will impose that the δ-impulsive waves are of small amplitude ε > 0. The length
scale δ at which each δ-impulsive wave is localized is required to satisfy 0 < δ � ε.

We begin by decomposing φ into a regular and three singular parts. This is achieved
by solving an auxiliary characteristic-Cauchy problem so that

φ = φreg +
3

∑

k=1

˜φk, where �gφreg = 0 and �g˜φk = 0 for k = 1, 2, 3,
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where each ˜φk corresponds to a δ-impulsive wave propagating along the constant-uk
null hypersurfaces Ck

uk and φreg is an error term which is more regular. The part φreg
is regular everywhere in the sense that

‖φreg‖H2+s′ (R2)
� ε,

for some s′ ∈ (0, 12 ); see Sect. 13. The remainder of Sect. 1.1 will thus be devoted to
the discussion of the singular parts ˜φk .

Each ˜φk is initially regular away from the region {−δ ≤ uk ≤ 0} and is in fact
constructed to vanish for uk ≤ −δ. In the region {−δ ≤ uk ≤ 0}, the first and second
derivatives of ˜φk only obey initially the following schematic bounds

|∂˜φk | � ε, |∂2˜φk | � εδ−1. (1.11)

(Notice that these are exactly the size estimates one obtains by smoothing out at a scale
uk ≈ δ an initial functionφrough of amplitude ε whose generic first derivatives ∂φrough
have a jump continuity across the curve given by {uk = 0} and whose generic second
(distributional) derivatives ∂2φrough have a delta singularity supported on {uk = 0}.)
Because of (1.11), ˜φk is initially no better than ‖˜φk‖H2(�0)

� εδ− 1
2 and, in terms of

L2-based Sobolev spaces, it is only the ‖∂˜φk‖Hs (�0) norms, for s < 1
2 , that obey the

uniform-in-δ bounds ‖∂˜φk‖Hs (�0) �s ε.
An important use of the dynamically constructed eikonal functions that we men-

tioned earlier is they can track the location of singularities. For each k = 1, 2, 3, define
the corresponding singular zone by

Skδ := {−δ ≤ uk ≤ δ} (1.12)

(slightly larger than the initial singular zone {−δ ≤ uk ≤ 0}), measured with respect
to the eikonal functions. We will show that throughout the evolution, the most singular
part of ˜φk is localized in Skδ . As a first guide to the estimates, the reader can keep in
mind that we will prove the following bounds inside and outside Skδ :

• [Interior of the singular zone Skδ ].Within this singular region Skδ (see (1.12)), our
bounds can be no better than the initial estimates (1.11). We will in fact prove
estimates consistent with the δ-weights in (1.11). Namely, we prove the L2-based
bound

‖˜φk‖H2(Skδ )
� ε · δ− 1

2 , (1.13)

as well as the Lipschitz bound for ˜φk

‖∂˜φk‖L∞(Skδ )
� ε. (1.14)

• [Exterior of the singular zone Skδ ].We prove that the following estimate holds

‖˜φk‖H2(R2\Skδ ) � ε. (1.15)
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Note that this is better than the bounds (1.11) in the singular zone for the initial
data.
Moreover, in terms of L∞ based norms, wewill show an improvedHölder estimate
(compare with the Lipschitz estimate (1.14) above) for ˜φk outside of the singular
zone Skδ , i.e. for some θ ∈ (0, 14 )

‖˜φk‖C1,θ (R2\Skδ ) � ε. (1.16)

We will further explain the proof of the estimates (1.13)–(1.16). In order to derive
these bounds,wewill need to prove that improved regularity is exhibited for derivatives
with respect to {Lk, Ek}, the vector fields tangential to constant-uk hypersurfaces, as
well as to derive higher order estimates.

1.1.4 The H2 energy estimates: anisotropic estimates, short-pulse bounds and
slice-picking

We first discuss our L2 based energy estimates for˜φk up to the second derivative. (The
L∞-based estimates will be discussed in Sect. 1.1.5 and the higher order L2-based
estimates will be explained in Sect. 1.1.6.) One of the main challenges of this problem

is that the H2 norm of φ is no better than δ− 1
2 (recall (1.13)). Already at the H2 level,

we capture the following features of the solutions in our energy estimates (these will
again play a role in the Lipschitz (as in (1.14)) and improved Hölder bounds (as in
(1.16)); see Sect. 1.1.5):

1. [Anisotropy]. Derivatives in the geometric directions Lk and Ek are “good” deriva-
tives for ˜φk that are better behaved than others. This phenomenon will allow us
to prove anisotropic H2-estimates where one general derivative is replaced by a
“good derivative”.

2. [Short pulse bounds]. As we mentioned above, the singularity leading to a large
H2 norm is only localized in a “small” region of length ∼ δ. At the same time, in
the singular region, some (integrated) bounds can be proven to be δ-small using
the small δ length as a source of smallness.

3. [Localization]. We prove that the singularity for ˜φk is localized in a small region
Skδ around a null hypersurface. Indeed, we show that ˜φk obeys uniform-in-δ H2

bounds away from Skδ as in (1.15). To show such bounds, we rely on a novel slice-
picking argument exploiting the anisotropic bounds and the short pulse bounds. A
δ-independent H2 bound can then be propagated towards the future of this good
hypersurface.

In the steps below, we explain in more detail these features of our (up to H2 level)
energy estimates.

Step 1: Anisotropic energy estimates captured by the good geometric deriva-
tives. At the lowest order, our regularity assumption allows us to easily prove a
δ-independent bound

‖∂˜φk‖L2(�t )
� ε. (1.17)
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In fact, we can put in an extra fractional s′ ∈ (0, 12 ) derivative (cf. (1.4)) and prove

‖∂〈Dx 〉s′˜φk‖L2(�t )
� ε. (1.18)

However, as mentioned in (1.13), at the second derivative level, we prove an estimate
no better than the following:

‖∂2˜φk‖L2(�t∩Skδ )
∼ ‖∂2˜φk‖L2(�t )

� ε · δ− 1
2 . (1.19)

As we indicated above, despite (1.19), not all derivatives are equally bad. Since ˜φk is
essentially propagating along constant-uk hypersurfacesCuk , we have better regularity
properties for derivatives in the directions tangential to Cuk i.e. directions spanned by
{Lk, Ek} (see Sect. 1.1.1 and Fig. 1). Indeed, we prove that ∂Lk˜φk and ∂Ek˜φk are more
regular and on constant-t hypersurfaces �t :

∑

Yk∈{Lk ,Ek }
‖∂Yk˜φk‖L2(�t )

� ε. (1.20)

Step 2: The short pulse bounds in the singular region. The next feature of ˜φk
to be emphasized is that the large H2 norm (recall (1.19)) is only localized in a small
region Skδ (recall (1.12)) of length scale ∼ δ. The first observation towards proving
the localization is the following: while Skδ is a singular region for ˜φk in the sense that
(1.19) cannot be improved, some small-in-δ bounds hold for the lower derivatives in
Skδ .

To see this, first observe that since the initial data for ˜φk is chosen so that ˜φk = 0
for uk ≤ −δ, finite speed of propagation implies that ˜φk = 0 on the null hypersurface
{uk = −δ} and in fact on thewhole half-space {uk ≤ −δ}. Using this vanishing and the
smallness of the δ length scale, we can propagate a hierarchy of δ-dependent estimates
for ˜φk and its derivatives in the singular region Skδ . (This is reminiscent of the short
pulse estimates of Christodoulou, originally introduced to tackle the problem of the
formation of trapped surfaces for the Einstein vacuum equations [11].) In particular,
we prove the smallness estimate for the H1 norm of ˜φk :

‖∂˜φk‖L2(�t∩Skδ )
� ε · δ 1

2 . (1.21)

This is consistent with the initial data bound (1.11) (and the Lipschitz estimate (1.14)
that we hope to prove): ∂˜φk is bounded by ε pointwise, and the smallness arises from
the smallness of the δ-length scale. Moreover, in this region, ∂Lk˜φk and ∂Ek˜φk also
obey similar smallness bounds, which are better than (1.20):

∑

Yk∈{Lk ,Ek }
‖∂Yk˜φk‖L2(�t∩Skδ )

� ε · δ 1
2 . (1.22)
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Fig. 2 The regions for the
slice-picking argument

Step 3: Localization using a slice-picking argument. The short pulse bounds
(1.21)–(1.22) allow us to use a slice-picking argument to prove that ˜φk obeys H2

bounds with no δ-weights when uk ≥ δ, i.e. beyond the singular region Skδ .
Consider Fig. 2. For uk ≤ −δ, we have φk ≡ 0. The initial ‖∂2˜φk‖L2({−δ≤uk≤0})

norm is large — of size O(εδ− 1
2 )— when −δ ≤ uk ≤ 0 (the darker shaded region),

while the initial ‖∂2˜φk‖L2({uk≥0}) norm is of size O(ε) away from the darker shaded
region (including in the lightly shaded region, which is also of length scale δ). In both
the darker shaded region and and lightly shaded region, we can prove the estimates
(1.19), (1.21) and (1.22).

Squaring, integrating (1.22) over t and using Fubini’s theorem to switch the t and
uk integrals, we have

∑

Yk∈{Lk ,Ek }

∫ δ

0
‖∂Yk˜φk‖2L2(Ck

uk
)
duk

�
∑

Yk∈{Lk ,Ek }

∫ T

0
‖∂Yk˜φk‖2L2(�t∩Skδ )

dt � (εδ 1
2 )2 � ε2δ,

where Ck
uk is a constant uk-null hypersurface. The mean value theorem implies that

there exists u∗
k ∈ [0, δ] (the dotted line in the lightly shaded region after the short

pulse) such that the integral over the uk = u∗
k null hypersurface C

k
u∗
k
satisfies

∑

Yk∈{Lk ,Ek }
‖∂Yk˜φk‖2L2(Ck

u∗
k
)
� ε2. (1.23)

Using standard energy estimates (assuming sufficient bounds for the metric), in
order to estimate ‖∂2˜φk‖L2({uk≥u∗

k }) after C
k
u∗
k
, it suffices to bound (a) the data on �0
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in the region {uk ≥ u∗
k} and (b) the flux

∑

Yk∈{Lk ,Ek }
(‖Yk˜φk‖2L2(Ck

u∗
k
)
+ ‖∂Yk˜φk‖2L2(Ck

u∗
k
)
),

i.e. on Ck
u∗
k
we only need bounds where at least one derivative is tangential to Ck

u∗
k
.

Since (a) we have improved data bound on �0 ∩ {uk ≥ 0} and (b) u∗
k is picked so

that we have a δ-independent bound (1.23) of this flux, we obtain H2 estimates in the
region {uk ≥ δ} ⊆ {uk ≥ u∗

k} with no δ weights, i.e.

‖∂2˜φk‖L2(�t\Skδ ) � ε. (1.24)

In other words, the worst bound (1.19) is indeed only saturated in Skδ .

1.1.5 Anisotropic embedding results and the Lipschitz and Hölder estimates

Recall that we aim at proving the Lipschitz bound (1.14) and the Hölder bound (1.16).
This necessitates L2 estimates beyond those discussed in Sect. 1.1.4. Below, we will
explain the embedding results adapted to our setting, and the precise higher order L2

estimates that we will need.
Our embedding results will be used to control ∂˜φk , where ∂ denotes a derivative in

the (original) coordinates of the elliptic gauge. In order to take advantage of the good
derivatives, we will also introduce another coordinate system on each �t as follows.
Given k ∈ {1, 2, 3}, pick k′ ∈ {1, 2, 3}with k �= k′. Then (uk, uk′) forms a coordinate
system on R

2 for any fixed t . Denote by (/∂uk , /∂uk′ ) the corresponding coordinate
derivatives.

The reader should already think that /∂uk′ is the “good” derivative for
˜φk , i.e. it is

parallel to Ek , while /∂uk is a “bad” derivative, and that /∂ denotes a general derivative
in the (uk, uk′) coordinates.
Almost Lipschitz bounds. By comparing with the initial data estimates, one sees that
the bounds (1.19), (1.22) and (1.24) in Sect. 1.1.4 are already the best H2 estimates that
can be proven. Heuristically, the bounds of Sect. 1.1.4 are almost sufficient to obtain
the desired Lipschitz estimate (1.14) for φ except that when trying to use Sobolev
embedding, one encounters a logarithmic divergence in the summation over frequency
scales in a Littlewood–Paley decomposition. However, for any fixed p ∈ [1,∞), the
H2 bounds (1.19), (1.22) and (1.24) are still sufficient to give an L p bound:

• [L p bounds away from the singular zone]. Away from the singular zone Skδ , the
standard Sobolev embedding H1(B(0, R))→ L p(B(0, R)) give

‖∂˜φk‖L p(�t\Skδ ) � ‖∂˜φk‖L2(�t\Skδ ) + ‖/∂∂˜φk‖L2(�t\Skδ ). (1.25)

By (1.17) and (1.24) (after justifying that /∂∂˜φk and ∂2˜φk are comparable), the
right-hand side of (1.25) is bounded by ε, independently of δ.

123



Nonlinear Interaction of Three Impulsive... Page 15 of 137 10

• [L p bounds inside the singular zone]. To treat the singular region, note that one
can prove a refined version of Sobolev embedding that takes into account the
directions of the derivatives and makes use of the localization of the singular
region. Introducing a cutoff function ρk localizing ∂˜φk near Skδ , we have

‖ρk∂˜φk‖L p(�t ) � ‖/∂(ρk∂˜φk)‖
1
2
L2(�t )

‖/∂uk′ (ρk∂˜φk)‖
1
2
L2(�t )

+ ‖ρk∂˜φk‖L2(�t )

� δ
1
2 ‖/∂(ρk∂˜φk)‖L2(�t )

+ δ− 1
2 ‖/∂uk′ (ρk∂˜φk)‖L2(�t )

+ ‖ρk∂˜φk‖L2(�t )
,

(1.26)

where the second line follows from the first using the Cauchy–Schwarz inequal-

ity. Now even though in our setting ‖˜φk‖H2(�t∩Skδ )
∼ εδ− 1

2 , we have smallness
in the good derivatives estimate (1.22). Thus, modulo controlling the coordi-
nate change and the vector field Ek , (1.19) and (1.22) respectively imply that

δ
1
2 ‖/∂(ρk∂˜φk)‖L2(�t )

� ε and δ− 1
2 ‖/∂uk′ (ρk∂˜φk)‖L2(�t )

� ε. Using also (1.17) to
control ‖ρk∂˜φk‖L2(�t )

, this shows that ‖ρk∂˜φk‖L p(�t ) � ε.
Anisotropic Sobolev embedding adapted to the problem. In order to improve (1.25),
(1.26), we prove two anisotropic embedding results, designed particularly for our
setting for which we can exploit the anisotropy and localization of our L2 estimates.
In the following, we will only give the embedding estimates when applied to ∂˜φk (or a
cutoff version of ∂˜φk). These estimates are key ingredients in our proof of (1.14) and
(1.16), since they provide the summability over all frequencies that we were lacking
in the above paragraph.

• Our first embedding result (cf. Theorem 15.5) is a Hölder estimate on a half space4.
For s′′ ∈ (0, 12 ),

‖∂˜φk‖C0, s2 (�t\Skδ )
�s ‖∂˜φk‖L2(�t\Skδ ) + ‖/∂∂˜φk‖L2(�t\Skδ )

+‖/∂uk′ 〈Duk ,uk′ 〉s
′′
∂˜φk‖L2(�t )

, (1.27)

where 〈Duk ,uk′ 〉s
′′
is the fractional derivative operator in the (uk, uk′) coordinates.

The estimate (1.27) could be compared with (1.25), where the extra term
‖/∂uk′ 〈Duk ,uk′ 〉s

′′
∂˜φk‖L2(�t )

on the right-hand side not only allows us to sum over
all frequencies in a Littlewood–Paley decomposition, but also lets us obtain extra
Hölder regularity (as long as we are away from Skδ ).• Our second embedding result (cf. Theorem 15.3) is an L∞ estimate, involving δ
weights on the right-hand side:

‖ρk∂˜φk‖L∞(�t ) � δ− 1
2 ‖ρk∂˜φk‖L2(�t )

+ δ 1
2 ‖/∂uk′ /∂(ρk∂˜φk)‖L2(�t )

+ δ 1
2 ‖/∂(ρk∂˜φk)‖L2(�t )

+ δ− 1
2 ‖/∂uk′ (ρk∂˜φk)‖L2(�t )

,
(1.28)

4 We overlook here the ambiguity in whether the L2, Cθ , norms are taken with respect to the (x1, x2)
coordinates or the (uk , uk′ ) coordinates, since we showed in [25] that (x1, x2) �→ (uk , uk′ ) is a C1

diffeomorphism. A similar comment applies to (1.28) below.
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where ρk is a cutoff as in (1.26).
Notice that (1.27) and (1.28) in particular gives the global Lipschitz estimate
(cf. (1.14)):

‖∂˜φk‖L∞(�t ) � RHSs of (1.27) and (1.28). (1.29)

The readermaywant to compare (1.28) with (1.26). The two new δ-weighted terms

δ− 1
2 ‖ρk∂˜φk‖L2(�t )

and δ
1
2 ‖/∂uk′ /∂(ρk∂˜φk)‖L2(�t )

allow us to sum over all frequen-
cies. In fact, this even allows us to control a Besov norm ‖ρk∂˜φk‖B0∞,1(R2), which

is crucial for closing an endpoint elliptic estimate in part I; see [25, Section 1.1.4].

Notice also that δ− 1
2 ‖ρk∂˜φk‖L2(�t )

� ε by (1.21).

By (1.27) and (1.29), proving that φ is Lipschitz uniformly-in-δ with addi-
tional Hölder regularity away from the δ-impulsive waves reduces to showing
RHSs of (1.27) and (1.28) � ε, and will thus require the following main higher order
estimates

‖/∂uk′ 〈Duk ,uk′ 〉s
′′
∂˜φk‖L2(�t )

� ε, δ
1
2 ‖/∂uk′ /∂(ρk∂˜φk)‖L2(�t )

� ε. (1.30)

Recalling that /∂uk′ can be thought of as a good derivative, we see that the first bound
is an estimate combining fractional and good geometric derivatives while the second
bound is a higher order δ-weighted estimates involving a good geometric derivative.

Themost difficult part of the paper is then to obtain the bounds in (1.30) under
the very limited regularity of the metric. We will explain these L2 estimates in the
next subsection.

1.1.6 The higher order energy estimates

The main higher order energy estimates. We now explain the higher order energy estimates we
prove to obtain (1.30). Corresponding to the first term in (1.30), we prove

‖∂Ek〈Dx 〉s′′˜φk‖L2(�t )
� ε, ‖∂Lk〈Dx 〉s′′˜φk‖L2(�t )

� ε. (1.31)

Corresponding to the second term in (1.30), we prove

‖∂Ek∂i˜φk‖L2(�t )
� εδ− 1

2 , ‖∂Lk Lk˜φk‖L2(�t )
� εδ− 1

2 . (1.32)

One can think that the Ek’s in the first terms in (1.27), (1.28) above are the good
derivatives /∂uk′ , since /∂uk′ is parallel to Ek . Once (1.31) and (1.32) are obtained, the
bounds from [25] allow us to control all necessary commutator terms (even though
some of them are top order), convert (1.31)–(1.32) into estimates in the (uk, uk′)
coordinate system, and to apply them for (1.30); see Sect. 15.
(1.31) and (1.32) are satisfied initially. Notice that (1.31) and (1.32) are consistent with
the initial regularity of the wave. In particular, (1.31) is a statement that the fractional
regularity energy estimate (1.18) still holds after a suitable commutation with the good
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derivatives Ek and Lk . The main challenge, however, is to propagate such regularity
with only very limited regularity of the metric.
The estimates involving Lk in (1.31) and (1.32). Furthermore, notice that only the
respective first bounds in (1.31) and (1.32) are used for the anisotropic Sobolev embed-
ding. However, in order to handle some commutators that arise, it is important to
simultaneously prove the second bounds in (1.31) and (1.32).
Ideas of proof of (1.31). We now explain the proof of (1.31).

• To prove (1.31), we bound the commutator terms [�g, Ek〈Dx 〉s′′ ]˜φk and
[�g, Lk〈Dx 〉s′′ ]˜φk . It is important to both (1) use fractional derivativeswith respect
to the elliptic gauge (as opposed to geometric) coordinates and (2) commute with
〈Dx 〉s′′ first before commuting with the geometric vector fields. This way we
exploit the better regularity of themetric components in the elliptic gauge. (Indeed,
we will not be able to control either [�g, Ek〈Duk ,uk′ 〉s

′′ ]˜φk or [�g, 〈Dx 〉s′′Ek]˜φk .)
• The commutator term [�g, Ek〈Dx 〉s′′ ]˜φk schematically gives rise to error terms
of the form

(〈Dx 〉s′′∂∂ig)(∂˜φk), (∂∂ig)(∂〈Dx 〉s′′˜φk), (∂g)(∂2〈Dx 〉s′′˜φk). (1.33)

The terms (〈Dx 〉s′′∂∂ig)(∂˜φk) can be controlled using the metric bound (1.7)
together with (1.14). To control the terms (∂∂ig)(∂〈Dx 〉s′′˜φk), we use (1.18) and
combine it with (1.7) (recall that 0 < s′′ < s′ < 1

2 ). There is a slight subtlety here:
the reason that we need to introduce two different exponents 0 < s′′ < s′ < 1

2
and estimate ∂〈Dx 〉s′˜φk , ∂Ek〈Dx 〉s′′˜φk , ∂Lk〈Dx 〉s′′˜φk with the slightly different
order of derivatives is because for the term (∂t∂ig)(∂〈Dx 〉s′′˜φk), we do not have
L∞ bounds for ∂t∂ig (see (1.7)).

• The third type of error terms in (1.33), i.e. the terms (∂g)(∂2〈Dx 〉s′′˜φk), are more
subtle because we do not control general derivatives ∂2〈Dx 〉s′′˜φk . To close our
argument, we need show that the only such term arising in the commutator is
schematically of the form ∂Ek〈Dx 〉s′′˜φk . To achieve this, we need to give a sharp
expression for the commutator with fractional derivatives to isolate the main
∂Ek〈Dx 〉s′′˜φk term. This in turn requires a refinement of the usual Kato–Ponce
type commutator estimates; see already Proposition 12.9.

• When showing that the top-order derivative ∂2〈Dx 〉s′′˜φk from the above bullet
point is morally ∂Ek〈Dx 〉s′′˜φk , the term we obtain is Ek〈Dx 〉s′′−2∂3iνβ

˜φk . Since

〈Dx 〉−2∂2i j is a bounded operator on L2-based Sobolev spaces, the term can be

thought of as like ∂Ek〈Dx 〉s′′˜φk if at least one of ν, β is a spatial index. However,
the term becomes much more challenging when (ν, β) = (t, t) so that we need
to use the wave equation to convert the times indices into spatial ones, and in the
process we are required to handle a large number of commutator terms.

• Since we consider the nonlocal operator 〈Dx 〉, the terms involved are no longer
compacted supported. An additional challenge is that the metric components
diverge logarithmically near spatial infinity (a difficulty well-known in the (2+1)-
dimensional case); and moreover the components Li

k , E
i
k of the commutators

Lk = Li
k∂i and Ek = Ei

k∂i also grow near spatial infinity. We therefore use
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weighted estimates5, including when understanding terms like Ek〈Dx 〉s′′−2∂3iνβ
˜φk

described in the above point.
• Finally, the considerations above by themselves cannot control [�g, Lk〈Dx 〉s′′ ]˜φk .
This is because Lk (in the ∂t , ∂1, ∂2 basis from the elliptic gauge (1.5)) has a ∂t
component and thus the result is a term schematically like

(〈Dx 〉s′′∂2t g)(∂˜φk),

in addition to terms similar to those we encountered in [�g, Ek〈Dx 〉s′′ ]˜φk .
Recall that (see Sect. 1.1.2) we do not have any bounds for ∂2t g. To resolve this
issue, we note that such a term can be traced back to a total ∂t -derivative, i.e. we
can write

�gLk〈Dx 〉s′′˜φk = F + ∂tC . (1.34)

While ∂tC cannot be controlled, F , C and ∂iC can be controlled in L2(�t ) using
the same methods as for [�g, Ek〈Dx 〉s′′ ]˜φk . Now the key observation is that in the
energy estimate, we schematically have a bulk integral of the form

∫

(∂t Lk〈Dx 〉s′′˜φk)(∂tC). (1.35)

To address (1.35), we integrate by parts in t . For the ∂2t Lk〈Dx 〉˜φk term, we can
use the wave equation (1.34) so that up to lower order terms, we obtain three terms
to be controlled

∫

(∂2νi Lk〈Dx 〉s′′˜φk)C +
∫

FC +
∫

C2. (1.36)

For the first term, we integrate by parts again in the spatial ∂i derivative. We can
thus bound these terms using the estimates we have for F , C and ∂iC .

Ideas of proof of (1.32). Finally, we explain the proof of (1.32).

• Similar to the proof of (1.31), the exact choice of commutators matters. We will
use Ek∂i and L2

k as commutators, so that we need to bound [�g, Ek∂i ]˜φk and
[�g, L2

k]˜φk . By contrast, we could for instance neither control [�g, Ek Ek]˜φk ,
[�g, ∂i Ek]˜φk (since we lack general second derivative control of χk and ηk) nor
[�g, Lk∂i ]˜φk (since we lack L∞ estimates for ∂t∂ig).

• Terms that arise in [�g, Ek∂i ]˜φk are schematically

∂gEi∂
2
˜φk, ∂gL

2
k∂

˜φk, ∂
2g∂2˜φk, ∂

3g∂˜φk .

5 We would like to thank an anonymous referee for suggesting us to handle this instead with a commutator

of the form� 〈Dx 〉s′′ , where� is compactly supported.While we have not implemented this, we do believe
that this would lead to some simplifications of our arguments.
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As in many of the previous estimates, it is important that these terms have some
structure. First, in ∂2g and ∂3g there are at most one ∂t derivative (recall that we
do not control ∂2t g). Second, because we do not control ∂i∂tg in L∞ (see (1.7)),
we would not be able to bound ∂i∂tg ∂2˜φk in general. Fortunately, the commutator
has a useful structure in that only ∂i∂tg ∂Lk˜φk or ∂i∂tg ∂Ek˜φk arise.

• There are some further subtleties in the bounds for [�g, L2
k]˜φk .

– [�g, L2
k]˜φk contains terms with second derivatives of χk and ηk (which we do

not in general control). Importantly, exactly because we are commuting with
Lk twice, one of the two derivatives on χk and ηk must be Lk so that we can
use (1.10).

– Another dangerous term that arises is (Lk Lk Xk log N )(Lk˜φk), since schemat-
ically it is of the form ∂2t ∂ig (recall we do not have any control over two time
derivatives of g!). This can be treated with an integration by parts argument
similar to (1.34)–(1.36) in the proof of (1.31).

1.2 Comments and related works

Werefer the reader to the introduction of [25] for discussions on impulsive gravitational
waves and other related works in general relativity. Instead, we restrict ourselves to
discussing previousworks onwave estimates (for linear and nonlinear wave equations)
related to those in this paper and how our work connects to this existing literature.

1.2.1 Geometric and harmonic analysis techniques for quasilinear wave equations

As we saw from Sect. 1.1, our result in this paper is based on a combination of tech-
niques from geometric analysis and harmonic analysis. Related techniques are used
in many low-regularity problems for quasilinear wave equations. We refer the readers
to [2, 12, 15–17, 30, 31, 37] for a sample of results.

In the specific context of low-regularity solutions to quasilinear hyperbolic equa-
tions featuring one or more singularities propagating along null hypersurfaces,
geometricmethods usingwell-chosen coordinate systems and commuting vector fields
are often employed; see [3, 14, 21–24]. In the present paper, we extend the methods
in these works but further combine them with techniques from harmonic analysis to
handle the interaction of three (δ-)impulsive waves.

1.2.2 Linear wave equations with rough coefficients

While our main goal in this paper is to prove wave estimates so as to complete the pro-
gram in [25], when taken on its own, the present paper concerns proving estimates for
a linear scalar wave equation with rough coefficients. Indeed, as seen in Theorem 1.3,
the main result in this paper takes the following form: assuming certain bounds on
the metric and suitable commuting vector fields, then one can propagate δ-impulsive
waves type estimates under the flow of the linear wave equation. Such a formulation
does not explicitly refer to general relativity. In this context, let us also remark that the
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techniques we introduce can also be easily adapted to deal with linear wave equations
of the form

gνβ∂2νβφ + Bν∂νφ + Vφ = 0 (1.37)

with suitable regularity assumptions on gνβ , Bν and V .
Though not directly related to this paper, we mention a small sample of works

concerning estimates for linear wave equations with rough coefficients; see [13, 34,
35].

1.2.3 Interactions of singularities for semilinear wave equations

Our main result Theorem 1.1 can be viewed as a result on the interaction of singular-
ities. In the setup of (1.3), the nonlinear interaction is hidden in the coupling between
the scalar wave and the metric. In the literature, interaction of singularity results are
often studied for the following type of simpler semilinear models:

�φ = F(φ), (1.38)

where � is the standard wave operator on R2+1 and F : R → R is a smooth function.
See for instance [4–9, 18, 19, 26–28, 36, 38].

We remark that even though our methods are specifically designed to handle the
rough metric, they can be easily applied to the model problem (1.38). Indeed, given
initial data which represent three small-amplitude impulsive waves, we can smooth
them out to δ-impulsive waves and introduce the decomposition φ = φreg +∑3

k=1
˜φk ,

where

�˜φk = 0, �φreg = F(φ).

(Notice that this is slightly different from Sect. 1.1.3.) It is then not difficult to see that
one can propagate all the L2 estimates that we prove in this paper. (In fact, the proof
would be by far easier than that in this paper.) In particular, after taking the δ → 0
limit, this shows that the solution remains Lipschitz everywhere and has additional
H2 and Hölder regularity away from propagating singularities.

Let us note that it is also interesting to study interactions of singularities for semi-
linear wave equations where the nonlinearity depends also on the derivative of the
solution [10, 29] (e.g., nonlinearities satisfying the classical null condition). However,
the techniques introduced in this paper do not immediately apply to these models.

1.3 Outline of the paper

The remainder of the paper is structured as follows.

• In Section 2, we introduce the geometric setup, the equations in various coordinate
systems and the main notations that will be used throughout the paper.
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• In Section 3, we introduce the function spaces and norms that we will use in the
paper.

• In Section 4, we give a precise version of our main results, whose rough versions
were already presented as Theorem 1.1 and Theorem 1.2.

• In Section 5, we recall the main results of Part I [25], including the estimates for
the metric components and for the null hypersurfaces.

• Most of the remainder of the paper is devoted to the proof of the energy estimates.
We begin with some preliminaries towards the energy estimates.

– In Section 6, we prove a technical integration by parts lemma that will be
important in the proof of the energy estimates.

– In Section 7, we give the proof of basic energy estimates with an arbitrary
source term.

– In Section 8, we compute and estimate the commutators between various
vector fields and the wave operator in preparation for the proof of higher order
energy estimates.

• Using the above preliminaries, we first prove energy estimates for˜φk up to second
derivatives (see Sect. 1.1.4):

– In Section 9, we prove our basic energy estimates up to second derivatives.
– In Section 10, we obtain improved energy estimates up to second derivatives
(see (1.21), (1.22), (1.24)).

• We then prove higher order energy estimates for ˜φk (see (1.31) and (1.32)):

– In Section 11, we prove energy estimates involving up to three derivatives of
˜φk (and φreg).

– In Section 12, we prove fractional energy estimates for˜φk and its good deriva-
tives.

• In Section 13, we prove energy estimates for φreg , the regular part of the solution.
• In Section 14, we combine the results of all previous sections to conclude the
proof of our energy estimates.

• InSection 15,weprove an anisotropic Sobolev embedding result.Using our energy
estimates from Sect. 14, we apply the embedding result to obtain Lipschitz and
improved Hölder bounds.

2 Summary of the geometric setup

In this section, we recall the geometric setup introduced in [25], as well as some useful
computations.

In Sect. 2.1, we introduce the symmetry assumption and the elliptic gauge in the
symmetry-reduced spacetime.

In Sect. 2.2, we introduce the eikonal functions uk and the geometric vector field
(Lk, Ek, Xk) for k = 1, 2, 3 (see Sect. 1.1.1). In Sect. 2.3, we compute the covariant
derivatives and commutators with respect to these geometric vector fields.
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In connectionwith eikonal functions, we introduce in Sect. 2.4 various different sys-
tems of coordinates. Some computations regarding the change of coordinates between
these coordinate systems are given in Sect. 2.5.

2.1 Elliptic gauge and conformally flat spatial coordinates

Definition 2.1 (U(1) symmetry)We say that a (3+1) Lorentzian manifold (M = R
2×

S
1 × I ,(4) g), where I ⊆ R is an open interval, has polarized U(1) symmetry if the

metric (4)g can be expressed as:

(4)g = e−2φg + e2φ(dx3)2, (2.1)

where φ is a scalar function on I ×R
2 and g is a (2+1) Lorentzian metric6 on I ×R

2.

Definition 2.2 (The foliation �t ) Given a space-time as in Definition 2.1, we foliate
the 2+ 1 space-time (I ×R

2, g) with slices {�t }t∈I where �t are spacelike. We will
later make a particular choice of t ; see Definition 2.4. The metric can then be written
as

g = −N 2dt2 + ḡi j (dx
i + β i dt)(dx j + β j dt). (2.2)

In the above, and the remainder of the paper, we use the convention that lower
case Latin indices refer the the spatial coordinates (x1, x2), and lower case Greek
indices to refer to spacetime coordinates (x0, x1, x2) := (t, x1, x2). Repeated
indices are always summed over: repeated lower case Latin indices are summed over
i, j, · · · = 1, 2 and repeated lower case Greek indices are summed over μ, ν, · · · =
0, 1, 2.

Definition 2.3 Given (I × R
2, g) and {�t }t∈I as in Definition 2.2.

1. (Space-time connection) Denote by ∇ the Levi–Civita connection for g.
2. (Induced metric) Denote by ḡ the induced metric on the two-dimensional slice�t .
3. (Spatial connection) Denote by ∇̄ the orthogonal projection of ∇ onto T�t and

T ∗�t (and their tensor products).7

4. (Normal to �t ) Denote by �n the future-directed unit normal to �t ; �n admits the
following expression

�n = ∂t − β i∂i
N

. (2.3)

and satisfies g(�n, �n) = −1. Note that we have the following commutation formula

[�n, ∂q
] = ∂q log(N ) · �n + ∂qβ

i

N
· ∂i . (2.4)

6 Note that since φ and g are defined on R2 × R, they do not depend on x3, the coordinate on S1.
7 We remark that for Y , Z ∈ �(T�t ), ∇̄Y Z coincides with the derivative with respect to the Levi–Civita
connection for ḡ.
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Define also e0 to be the vector field

e0 = ∂t − β i∂i = N · �n. (2.5)

5. (Second fundamental form) Define K to be the second fundamental form on �t :

K (Y , Z) = g(∇Y �n, Z), (2.6)

for every Y , Z ∈ T�t .

Definition 2.4 (Gauge conditions)We define our gauge conditions (assuming already
(2.1)) by the following:

1. For every t ∈ I , �t is required to be maximal, i.e.

(ḡ−1)i j Ki j = 0. (2.7)

Note that (2.7) defines the coordinate t .
2. We choose the coordinate system on �t so that ḡi j is conformally flat: this gauge

condition is written as

ḡi j = e2γ δi j , (2.8)

where from now on δ denotes the Kronecker delta.

We collect some simple computations:

Lemma 2.5 The following holds given g of the form (2.2) satisfying Definition 2.4:

1. The inverse metric g−1 is given by

g−1 = 1

N 2

⎛

⎝

−1 β1 β2

β1 N 2e−2γ − β1β1 −β1β2
β2 −β1β2 N 2e−2γ − β2β2

⎞

⎠ . (2.9)

2. The space-time volume form associated to g is given by

dvol = Ne2γ dx1dx2dt . (2.10)

The volume form on the spacelike hypersurface �t induced by g is given by

dvol�t = e2γ dx1dx2. (2.11)

3. The wave operator (i.e. the Laplace–Beltrami operator associated to g) is given
by

�g f = −e20 f

N 2 + e−2γ δi j∂2i j f + e0N

N 3 e0 f + e−2γ

N
δi j∂i N∂ j f
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= −�n2 f + e−2γ δi j∂2i j f + e−2γ

N
δi j∂i N∂ j f , (2.12)

where e0 and �n are as in Definition 2.3.
4. The condition (2.7) can be rephrased as

∂qβ
q = 2e0(γ ), (2.13)

5. The second fundamental form is given by8

Ki j = e2γ

2N
· (∂qβq · δi j − ∂iβq · δq j − ∂ jβq · δiq

) := −e2γ

2N
(Lβ)i j , (2.14)

where L is the conformal Killing operator (Lβ)i j := −∂qβq · δi j + ∂iβq · δq j +
∂ jβ

q · δiq .
Finally, we compute the connection coefficients with respect to {e0, ∂1, ∂2}:

Lemma 2.6 Given g of the form (2.2) satisfying Definition 2.4,

g(∇e0e0, e0) = −N · e0N , (2.15)

g(∇e0e0, ∂i ) = −g(∇∂i e0, e0) = g(∇e0∂i , e0) = N · ∂i N , (2.16)

g(∇∂ j e0, ∂i ) = g(∇e0∂ j , ∂i )− e2γ · ∂ jβlδil = −g(∇∂ j ∂i , e0)

= e2γ

2
· (2e0γ · δi j − ∂iβq · δ jq − ∂ jβq · δiq

)

= e2γ

2
· (∂qβq · δi j − ∂iβq · δ jq − ∂ jβq · δiq

)

.

(2.17)

Moreover,

∇∂i ∂ j = e2γ

2N
· (∂qβq · δi j − ∂iβq · δ jq − ∂ jβq · δiq

) �n
+

(

δ
q
i ∂ jγ + δqj ∂iγ − δi jδql∂lγ

)

∂q , (2.18)

∇e0e0 = e0N

N
· e0 + e−2γ δi j N∂i N∂ j , (2.19)

∇e0∂i = ∇∂i e0 + ∂iβ j∂ j = ∂i N

N
· e0

+ 1

2
·
(

∂qβ
q · δ ji + ∂iβ j − δiqδ jl∂lβq

)

∂ j , (2.20)

8 This follows from

Ki j = 2e0(e2γ )

N
δi j − 2e2γ

N
(δ jl∂iβ

l + δil∂ jβl )

together with (2.13).
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2.2 Eikonal functions and null frames

Wewill define three eikonal functions togetherwith null hypersurfaces and null frames.
Each of these will later be chosen to be adapted to one propagating wave.

Definition 2.7 (Eikonal functions) Given a space-time (I × R
2, g) of the form (2.2)

satisfying Definition 2.4, define three eikonal functions uk , k = 1, 2, 3 corresponding
to the three impulsive waves, as the unique solutions to

(g−1)νβ∂νuk∂βuk = 0, (2.21)

(uk)|�0 = ak + ck j x
j , (2.22)

which satisfies e0uk > 0. Here, ak , ck j ∈ R are constants obeying the following three
conditions

√

c2k1 + c2k2 = 1, (2.23)

|ck1 · ck′1 + ck2 · ck′2| ≥ κ0,

| − ck2 · ck′1 + ck1 · ck′2| = 1 − |ck1 · ck′1 + ck2 · ck′2| ≥ κ0,
(2.24)

for some fixed constant κ0 ∈ (0, π2 ) and for every k �= k′ ∈ {1, 2, 3}.
Definition 2.8 (Sets associated with the eikonal functions) Let uk (k = 1, 2, 3) satis-
fying (2.21) and (2.22) in (I × R

2, g) be given.

1. For all w ∈ R, define

Ck
w = {(t, x) : uk(t, x) = w}, Ck≤w :=

⋃

uk≤w
Ck
uk , Ck≥w :=

⋃

uk≥w
Ck
uk .

(2.25)

2. For all w1, w2 ∈ R, w2 ∈ R, define

Sk(w1, w2) :=
⋃

w1≤uk≤w2

Ck
uk . (2.26)

3. Define (whatwewill later understand as) “the singular zone” for˜φk : for any δ0 > 0

Skδ0 := Sk(−δ0, δ0) =
⋃

−δ0≤uk≤δ0
Ck
uk . (2.27)

Definition 2.9 (Definition of the null frame)

1. Define the null vector Lgeo
k associated to the eikonal function uk by

Lgeo
k = −(g−1)νβ∂βuk · ∂ν. (2.28)
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2. Define Lk to be the vector field parallel to Lgeo
k which satisfies Lkt = N−1, i.e.

Lk = μk · Lgeo
k , μk = (N · Lgeo

k t)−1. (2.29)

3. Define the vector field Xk to be the unique vector tangential to�t which is every-
where orthogonal (with respect to ḡ) to Ck

uk ∩�t and such that g(Xk, Lk) = −1.
4. Define Ek to be the unique vector field which is tangent to Ck

uk ∩ �t , satisfies
g(Ek, Ek) = 1 and such that (Xk, Ek) has the same orientation as (∂1, ∂2).

Lemma 2.10 [25, Lemma 2.11]

1. Lgeo
k is null and geodesic, i.e.

g(Lgeo
k , Lgeo

k ) = 0, ∇Lgeo
k

Lgeo
k = 0. (2.30)

2. The following holds:

Lkuk = Ekuk = 0, Ekt = Xkt = 0, Lkt = N−1, Xkuk = μ−1
k . (2.31)

3. The normal �n can be expressed in terms of Xk and Lk as:

�n = Lk + Xk . (2.32)

4. The triplet (Xk, Ek, Lk) forms a null frame, i.e. it satisfies

g(Lk, Xk) = −1, g(Ek, Lk) = g(Ek, Xk) = g(Lk, Lk) = 0,

g(Ek, Ek) = g(Xk, Xk) = 1. (2.33)

5. g−1 can be given in terms of the (Xk, Ek, Lk) frame by

g−1 = −Lk ⊗ Lk − Lk ⊗ Xk − Xk ⊗ Lk + Ek ⊗ Ek . (2.34)

2.3 Ricci coefficients with respect to the {Xk, Ek, Lk} frame

We now define some Ricci coefficients in terms of the frame {Xk, Ek, Lk}:

χk = g(∇Ek Lk, Ek) = −g(∇Ek Ek, Lk), (2.35)

ηk = g(∇Xk Lk, Ek) = −g(∇Xk Ek, Lk). (2.36)

All the other Ricci coefficients can, in fact, be determined from χk , ηk and contractions
of K .

Lemma 2.11 [25, Lemma 2.19] The following identities hold:

∇Ek Lk = χk · Ek − K (Ek, Xk)Lk, (2.37)

∇Lk Ek = (Ek log(N )− K (Ek, Xk)) · Lk, (2.38)
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[Ek, Lk] = χk · Ek − Ek log(N ) · Lk . (2.39)

∇Ek Xk = K (Ek, Xk)Xk

+ (K (Ek, Ek)− χk) · Ek + K (Ek, Xk)Lk, (2.40)

∇Xk Ek = ηk Xk + K (Ek, Xk)Lk, (2.41)

[Ek, Xk] = (K (Ek, Xk)− ηk) · Xk

+ (K (Ek, Ek)− χk) · Ek, (2.42)

∇Lk Xk = (−K (Ek, Xk)+ Ek log N ) · Ek

−(K (Xk, Xk) − Xk log(N )) · Xk − (K (Xk, Xk)− Xk log(N )) · Lk, (2.43)

∇Xk Lk = ηk · Ek − K (Xk, Xk) · Lk, (2.44)

[Lk, Xk] = −(K (Ek, Xk) − Ek log N + ηk) · Ek

− (K (Xk, Xk)− Xk log(N )) · Xk + Xk log(N ) · Lk, (2.45)

∇Ek Ek = χk · Xk + K (Ek, Ek) · Lk, (2.46)

∇Xk Xk = K (Xk, Xk) · Xk + (K (Ek, Xk)− ηk) · Ek

+ K (Xk, Xk) · Lk, (2.47)

∇Lk Lk = (K (Xk, Xk)− Xk log(N )) · Lk . (2.48)

2.4 Geometric coordinate systems (uk,�k, tk) and (uk, uk′)

2.4.1 Spacetime coordinate system (uk,�k, tk)

Wenow introduce the coordinate θk such that (uk, θk, tk) is a regular coordinate system
on I × R

2.

Definition 2.12 1. Given uk satisfying (2.21)–(2.22), and fixing some constants bk ,
define θk by

Lkθk = 0, (2.49)

(θk)|�0 = bk + c⊥
k j x

j , (2.50)

where c⊥
k1 = −ck2 and c⊥

k2 = ck1, and cki are the constants in (2.22).
2. Let tk = t .
3. Denote by (∂uk , ∂θk , ∂tk ) the coordinate vector fields in the (uk, θk, tk) coordinate

system. (Note that we continue to use ∂t to denote the coordinate derivative in the
(x1, x2, t) coordinate system of Sect. 2.1.)

Lemma 2.13 [25, Lemma 2.13] Defining Θk = (Ekθk)
−1 and �k = Xkθk , we have

Lk = 1

N
· ∂tk , Ek = Θ−1

k · ∂θk , Xk = μ−1
k · ∂uk +�k · ∂θk . (2.51)
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Lemma 2.14 [25, (2.46)] The metric g in the (tk, uk, θk) coordinate system is given
by

g = Θ2
k dθ

2
k − 2μk N dtk duk − 2μkΞkΘ

2
k duk dθk + μ2

k(1 +Ξ2
kΘ

2
k ) du

2
k .

(2.52)

2.4.2 Spatial coordinate system (uk, uk′) on 6t

Fix k, k′ ∈ {1, 2, 3} with k �= k′. Introduce the spatial coordinate system (uk, uk′). So
as to distinguish it from other coordinate derivatives, we define the coordinate vector
fields on �t in the (uk, uk′) coordinate system by (/∂uk , /∂uk′ ).

We now express (/∂uk , /∂uk′ ) in terms of (Xk, Ek) in the following lemma:

Lemma 2.15 [25, Lemma 2.18] The vector fields Xk and Ek can be expressed in the
(uk, uk′) coordinate system as follows:

Xk = μ−1
k · /∂uk + μ−1

k′ · g(Xk, Xk′) · /∂uk′ , (2.53)

Ek = μ−1
k′ · g(Ek, Xk′) · /∂uk′ . (2.54)

The above transformation can be inverted to give

/∂uk′ = μk′ · g(Ek, Xk′)−1Ek, (2.55)

/∂uk = μk Xk − μk · g(Xk, Xk′)

g(Ek, Xk′)
· Ek . (2.56)

2.5 Transformations between different vector field bases and different coordinate
systems

2.5.1 Relations on 6t between (Xk, Ek) and the elliptic coordinate vector fields
(@1,@2)

Recall that we fixed the orientation of (Xk, Ek) to be the same as (∂1, ∂2).

Lemma 2.16 [25, Lemma 2.16] We have the following identity between Ei
k and Xi

k:

E1
k = −X2

k , E2
k = X1

k . (2.57)

Moreover, the coordinate vector fields (∂1, ∂2) can be expressed in terms of (Ek, Xk)

as:

∂1 = e2γ ·
(

−X2
k · Ek + E2

k · Xk

)

, (2.58)

∂2 = e2γ ·
(

X1
k · Ek − E1

k · Xk

)

. (2.59)
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2.5.2 Elliptic coordinate derivatives of (uk,�k, tk)

Recall that tk = t so by definition of the elliptic gauge, ∂i tk = 0 and ∂t tk = 1. Nowwe
are going to compute the non-trivial coefficients of the Jacobian between the elliptic
coordinate system (x1, x2, t) and the geometric coordinate system (uk, θk, tk).

Lemma 2.17 [25, Lemma 2.17] We have the following identities:

∂i uk = e2γ · μ−1
k · δi j X j

k , (2.60)

∂t uk = βq∂quk + N · μ−1
k . (2.61)

∂iθk = e2γ δi j ·
(

Θ−1
k · E j

k +�k · X j
k

)

, (2.62)

∂tθk = β i∂iθk + N ·�k = e2γ · β j ·
(

Θ−1
k · E j

k +�k · X j
k

)

+ N ·�k . (2.63)

Moreover, for all vector field Y in the tangent space of �t we have

Yuk = μ−1
k · g(Y , Xk). (2.64)

3 Function spaces and norms

This section is devoted to the definition of all the function spaces and norms that are
used throughout the remainder of the paper.

3.1 Pointwise norms

Definition 3.1 Define the following pointwise norms in the coordinate system
(t, x1, x2) associated to the elliptic gauge (see Sect. 2.1):

1. Given a scalar function f , define

|∂x f |2 :=
2

∑

i=1

(∂i f )
2, |∂ f |2 :=

2
∑

β=0

(∂β f )
2.

2. Given a higher order tensor field, define its norm and the norms of its derivatives
componentwise, e.g.

|β|2 :=
2

∑

i=1

|β i |2, |∂xβ|2 :=
2

∑

i, j=1

|∂iβ j |2, |K |2 :=
2

∑

i, j=1

|Ki j |2,

|∂K |2 :=
2

∑

β=0

2
∑

i, j=1

|∂βKi j |2 etc.
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3. Higher derivatives are defined analogously, e.g.

|∂2 f |2 :=
2

∑

β,σ=0

(∂2βσ f )
2, |∂∂x K |2 :=

∑

β=0,1,2
i, j,l=1,2

|∂β∂i K jl |2, etc.

3.2 Lebesgue and Sobolev spaces on 6t

Unless otherwise stated, all Lebesgue spaces are defined with respect to the measure
dx1 dx2 (which is in general different from the volume form induced by ḡ).

Before we define the norms, we define the following weight function.

Definition 3.2 (Japanese brackets) Define 〈x〉 := √

1 + |x |2 for x ∈ R
2 and 〈s〉 :=√

1 + s2 for s ∈ R.

Definition 3.3 (Ck and Hölder norms) For k ∈ N∪ {0} and s ∈ (0, 1), define Ck(�t )

to be the space of continuously spatially k-differentiable functions with respect to
elliptic gauge coordinate vector fields ∂x with norm

‖ f ‖Ck (�t )
:=

∑

|β|≤k

sup
�t

|∂βx f |,

and define Ck,s(�t ) ⊆ Ck(�t ) with spatial Hölder norm defined with respect to the
elliptic gauge coordinates as

‖ f ‖Ck,s (�t )
:= ‖ f ‖Ck (�t )

+ sup
x,y∈�t
x �=y

∑

|β|=k

|∂βx f (x)− ∂βx f (y)|
|x − y|s .

In the later parts of the paper, we will need to consider Hölder spaces in both the
(x1, x2) coordinates and the (uk, uk′) coordinates. When we need to emphasize the
distinction, we will use the notation C0,σ

x1,x2
(�t ) = C0,σ (�t ) and C

0,σ
uk ,uk′ (�t ).

Definition 3.4 (Standard Lebesgue and Sobolev norms)

1. For k ∈ N ∪ {0} and p ∈ [1,+∞), define the (unweighted) Sobolev norms

‖ f ‖Wk,p(�t )
:=

∑

|β|≤k

(∫

�t

|∂βx f |p(t, x1, x2) dx1dx2
) 1

p

.

For k ∈ N ∪ {0}, define

‖ f ‖Wk,∞(�t )
:=

∑

|β|≤k

ess sup
(x1,x2)∈�t

|∂βx f |(t, x1, x2).

2. Define L p(�t ) := W 0,p(�t ) and Hk(�t ) := Wk,2(�t ).
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Definition 3.5 (Fractional Sobolev norms) For s ∈ R \ (N ∪ {0}), define Hs(�t ) by

‖ f ‖Hs (�t ) := ‖〈Dx 〉s f ‖L2(�t )
.

where 〈Dx 〉s is defined via the (spatial) Fourier transform F (in the x coordinates) by
F(〈Dx 〉s f ) := 〈ξ 〉sF .

Definition 3.6 (Weighted norms)

1. For k ∈ N∪ {0}, p ∈ [1,+∞) and r ∈ R, define the weighted Sobolev norms by

‖ f ‖
Wk,p

r (�t )
=

∑

|β|≤k

(∫

�t

〈x〉p·(r+|β|)|∂βx f |p(t, x1, x2) dx1 dx2
) 1

p

,

with obvious modifications for p = ∞.
2. Define also L p

r (�t ) := W 0,p
r (�t ) and Hk

r (�t ) := Wk,2
r (�t ). Moreover, define

Ck
r (�t ) as the closure of Schwartz functions under the L∞

r (�t ) norm.

Definition 3.7 (Mixed norms) We will use mixed Sobolev norms, mostly in the
(uk, θk, tk) coordinates in spacetime or the (uk , uk′) coordinates on�t . Our convention
is that the norm on the right is taken first. For instance,

‖ f ‖L2
uk′ L

∞
uk
(�t )

=
(

∫

uk′ ∈R
( sup
uk∈R

f (t, uk, uk′))2duk′

) 1
2

,

and analogously for other combinations.

Definition 3.8 (Norms for derivatives) We combine the notations in Definition 3.1
with those in Definitions 3.4–3.7. For instance, given a scalar function f ,

‖∂ f ‖L2(�t )
:=

⎛

⎝

∫

�t

2
∑

β=0

|∂β f |2 dx1 dx2
⎞

⎠

1
2

,

and similarly for ‖∂x f ‖L2(�t )
, ‖∂∂x f ‖L2(�t )

, etc.

3.3 The Littlewood–Paley projection and Besov spaces in (uk, uk′) coordinates

Assume for this subsection that k �= k′, so that (uk, uk′) forms a coordinate system on
�t .

Definition 3.9 (Littlewood–Paley projection) Define the Fourier transform in the
(uk, uk′) coordinates by

(Fuk ,uk′ f )(ξk, ξk′) =
∫∫

R2
f (uk, uk′)e−2π i(ukξk+uk′ ξk′ ) duk duk′ .
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Let ϕ : R2 → [0, 1] be radial, smooth such that ϕ(ξ) =
{

1 for |ξ | ≤ 1

0 for |ξ | ≥ 2
, where

|ξ | = √|ξk |2 + |ξk′ |2.
Define P

uk ,uk′
0 by

P
uk ,uk′
0 f := (Fuk ,uk′ )−1(ϕ(ξ)Fuk ,uk′ f ),

and for q ≥ 1, define P
uk ,uk′
q f by

P
uk ,uk′
q f := (Fuk ,uk′ )−1((ϕ(2−qξ)− (ϕ(2−q+1ξ))Fuk ,uk′ f (ξ)).

Definition 3.10 (The Besov space B
uk ,uk′∞,1 ) Define the Besov norm B

uk ,uk′∞,1 (�t ) by

‖ f ‖
B
uk ,uk′∞,1 (�t )

:=
∑

q≥0

‖Puk ,uk′
q f ‖L∞(�t ).

3.4 Lebesgue norms on Ckuk and 6t ∩ Ckuk

Recall the definition of Ck
uk from Definition 2.8. The L2 norm on Ck

uk is defined with
respect to the measure dθk dtk .

Definition 3.11 (L2 norm onCk
uk ) For every fixed uk , define the L

2(Ck
uk ([0, T ))) norm

by

‖ f ‖L2(Ck
uk
([0,T ))) :=

(∫ T

0

∫

R

| f |2(uk, θk, tk) dθk dtk
)

1
2

.

The L2 norm �t ∩ Ck
uk is defined with respect to the measure dθk .

Definition 3.12 (L2 norm on �t ∩ Ck
uk ) For every fixed t and uk (and recall t = tk),

define the L2
θk
(�t ∩ Ck

uk ) norm by

‖ f ‖L2
θk
(�t∩Ck

uk
) :=

(∫

R

| f |2(uk, θk, tk) dθk
) 1

2

.

4 Main results

4.1 Data assumptions for ı-impulsive waves

Recall that in our companion paper [25], we defined what it means for (φ, φ′, γ, K ) to
be an admissible initial data set featuring three δ-impulsivewaveswithparameters
(ε, s′, s′′, R,κ0, δ) ( [25], Definition 4.8) for parameters in the ranges δ > 0, ε > 0,
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0 < s′′ < s′ < 1
2 , 0 < s′ − s′′ < 1

3 , R > 10 and κ0 > 0. Here, φ, γ and K are the
initial data for these quantities, while φ′ will be the initial data of �nφ (where �n is as in
(2.3)).

In particular, we recall that this definition requires that there exists φreg , φ′
reg ,˜φk ,˜φ

′
k

(k = 1, 2, 3) such that supp(φreg), supp(φ′
reg), supp(˜φk), supp(˜φ

′
k) ⊆ B(0, R2 ) :=

{(x1, x2) ∈ �0,
√

(x1)2 + (x2)2 < R
2 } and supp(˜φk)∪supp(˜φ′

k) ⊆ {uk ≥ −δ} (where
uk solves the equation (2.21), (2.22) with parameters obeying the conditions (2.23),
(2.24) for k = 1, 2, 3) and moreover that the following (in)equations be satisfied on
�0:

φ = φreg +
3

∑

k=1

˜φk, φ′ = φ′
reg +

3
∑

k=1

˜φ′
k, (4.1)

‖φreg‖H2+s′ (�0)
+ ‖φ′

reg‖H1+s′ (�0)
≤ ε, (4.2)

‖˜φk‖W 1,∞(�0)
+ ‖˜φk‖H1+s′ (�0)

+ ‖˜φ′
k‖L∞(�0) + ‖˜φ′

k‖Hs′ (�0)
≤ ε, (4.3a)

‖Ek˜φk‖H1+s′′ (�0)
+ ‖Ek˜φ

′
k‖Hs′′ (�0)

+ ‖˜φ′
k − Xk˜φk‖H1+s′′ (�0)

≤ ε, (4.3b)

‖˜φk‖H2(�0)
+ ‖˜φ′

k‖H1(�0)

+ ‖Ek˜φk‖H2(�0)
+ ‖Ek˜φ

′
k‖H1(�0)

+ ‖˜φ′
k − Xk˜φk‖H2(�0)

≤ ε · δ− 1
2 , (4.4)

‖˜φk‖H2(�0\Sk (−δ,0)) + ‖˜φ′
k‖H1(�0\Sk (−δ,0)) ≤ ε. (4.5)

In the sequel, we shall always consider solutions of the system of equations con-
stituted of (4.1), and

Ricμν(g) = 2∂μφ∂νφ, (4.6)

�gφ̃1 = �gφ̃2 = �gφ̃3 = �gφreg = 0, (4.7)

with data on �0 given by an admissible initial data set featuring three δ-impulsive
waves (φ, φ′, γ, K ) with parameters (ε, s′, s′′, R,κ0, δ) in the above ranges and
assuming 0 < ε < ε0, 0 < δ < δ0 with 0 < δ0 < ε0 sufficiently small.
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4.2 Bootstrap assumptions

We will only state the bootstrap assumptions for wave part of the solution. In Part
I of our series, we also had bootstrap assumptions for geometric quantities (metric
components, Ricci coefficients, etc.), but we then improved all of those assumptions
in [25]. In other words, the results in [25] can be rephrased as saying that the bounds for
the geometric quantities can be proven under the bootstrap assumptions (4.8)–(4.12c)
for the wave part. (The more precise statements from [25] will be recalled below in
Propositions 5.2, 5.3 and 5.5 and Lemmas 5.4, 5.6, 5.7.)

In our main estimates (see theorems in Sect. 4.3 below, we will work under the
following bootstrap assumptions, where the solution is assumed to remain regular in
[0, TB) for some TB ∈ (0, 1).
Energy estimates forφreg.

sup
0≤t<TB

(‖φreg‖Hs′ (�t )
+ ‖∂φreg‖Hs′ (�t )

+ ‖∂2φreg‖Hs′ (�t )
) ≤ ε

3
4 . (4.8)

Energy estimates for ˜φk .

sup
0≤t<TB

(‖∂˜φk‖L2(�t )
+

∑

Zk∈{Lk , Ek }
‖Zk∂˜φk‖L2(�t )

) ≤ ε
3
4 , (4.9a)

sup
0≤t<TB

‖∂2˜φk‖L2(�t )
≤ ε

3
4 · δ− 1

2 , (4.9b)

sup
0≤t<TB

‖∂〈Dx 〉s′˜φk‖L2(�t )
≤ ε

3
4 , (4.9c)

sup
0≤t<TB

‖∂Ek∂x˜φk‖L2(�t )
≤ ε

3
4 · δ− 1

2 . (4.9d)

Improved energy estimates for ˜φk .

sup
0≤t<TB

(‖∂˜φk‖L2(�t∩Sk2δ)
+

∑

Zk∈{Lk , Ek }
‖Zk∂˜φk‖L2(�t∩Sk2δ)

) ≤ ε
3
4 · δ 1

2 , (4.10a)

sup
0≤t<TB

‖∂2˜φk‖L2(�t\Skδ ) ≤ ε
3
4 . (4.10b)

Flux estimates for the wave variables.

max
k

sup
uk∈R

∑

Zk∈{Lk ,Ek }
(‖Zk∂xφreg‖L2(Ck

uk
([0,TB ))) + ‖Zkφreg‖L2(Ck

uk
([0,TB )))) ≤ ε

3
4 ,

(4.11a)

max
k,k′ sup

uk′ ∈R

∑

Zk′ ∈{Lk′ , Ek′ }
(‖Zk′∂x˜φk‖L2(Ck′

uk′ ([0,TB ))\S
k
δ )

+ ‖Zk′˜φk‖L2(Ck′
uk′ ([0,TB )))

) ≤ ε
3
4 ,

(4.11b)
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max
k

sup
uk∈R

(‖Lk∂x˜φk‖L2(Ck
uk
([0,TB ))) + ‖E2

k
˜φk‖L2(Ck

uk
([0,TB )))) ≤ ε

3
4 , (4.11c)

max
k,k′ sup

uk′ ∈R

∑

Zk′ ∈{Lk′ , Ek′ }
‖Zk′∂x˜φk‖L2(Ck′

uk′ ([0,TB )))
≤ ε

3
4 · δ− 1

2 . (4.11d)

Besov and L∞ estimates for the wave variables.

sup
0≤t<TB

max
(k,k′):k �=k′ ‖∂φreg‖Buk ,uk′∞,1 (�t )

≤ ε
3
4 , (4.12a)

sup
0≤t<TB

max
k′:k′ �=k

‖∂˜φk‖Buk ,uk′∞,1 (�t )
≤ ε

3
4 , (4.12b)

sup
0≤t<TB

(‖∂φreg‖L∞(�t ) + max
k

‖∂˜φk‖L∞(�t )) ≤ ε
3
4 . (4.12c)

4.3 Main wave estimates

The following are the main results for this paper. They are stated and assumed in Part I
in order to prove the main existence result for δ-impulsive waves and impulsive waves.

4.3.1 The main Lipschitz and improved Hölder bounds

Definition 4.1 Define E(t) to be the following norm,

E(t) := ‖∂〈Dx 〉s′˜φk‖L2(�t )
+ ‖Ek∂˜φk‖L2(�t )

+ ‖∂Ek〈Dx 〉s′′˜φk‖L2(�t )

+ δ 1
2 (‖∂2˜φk‖L2(�t )

+ ‖∂Ek∂˜φk‖L2(�t )
)

+ δ− 1
2 ‖∂˜φk‖L2(�t∩Sk2δ)

+ δ− 1
2 ‖Ek∂˜φk‖L2(�t∩Sk2δ)

+ ‖∂2˜φk‖L2(�t\Skδ ) + ‖∂2〈Dx 〉s′φreg‖L2(�t )
.

The following is the main result for obtaining Lipschitz and improved Hölder
bounds. It is stated in our previous paper [25] as [25, Theorem 7.3], and will be proven
in this paper.

Theorem 4.2 Let (φ, φ′, γ, K ) be an admissible initial data set featuring three δ-
impulsive waves with parameters (ε, s′, s′′, R,κ0) (as defined in [25, Definition 4.3])
for some 0 < δ < δ0, 0 < ε < ε0, 0 < s′′ < s′ < 1

2 , 0 < s′ − s′′ < 1
3 , R > 10 and

κ0 > 0, where 0 < δ0 < ε0 are additionally assumed to be sufficiently small.
Assume the bootstrap assumptions of Sect.4.2 i.e. (4.8)–(4.12c) hold for some TB ∈

(0, 1). Then

LHSs of (4.12a)–(4.12c) + sup
0≤t<TB

(‖∂φreg‖
C0, s

′′
2 (�t )

+ ‖∂˜φk‖
C0, s

′′
2 (�t∩Ck≥δ)

) � E,

where the implicit constant in � depend only on s′, s′′, R,κ0.
The proof of Theorem 4.2 will be carried out in Sect. 15.
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4.3.2 Energy estimates

The following is the main wave energy estimates stated as [25, Theorem 7.4], which
we will prove in this paper.

Theorem 4.3 Let (φ, φ′, γ, K ) be an admissible initial data set featuring three δ-
impulsive waves with parameters (ε, s′, s′′, R,κ0) (as defined in [25, Definition 4.3])
for some 0 < δ < δ0, 0 < ε < ε0, 0 < s′′ < s′ < 1

2 , 0 < s′ − s′′ < 1
3 , R > 10 and

κ0 > 0, where 0 < δ0 < ε0 are additionally assumed to be sufficiently small.
Assume the bootstrap assumptions of Sect.4.2 i.e. (4.8)– (4.12c) hold for some

TB ∈ (0, 1). Then

1. there exists C = C(s′, s′′, R,κ0) > 0 such that (4.8)– (4.11d) hold with Cε in
place of ε

3
4 ,

2. the following estimate involving the norm E is satisfied:

E � ε,

where the implicit constant in � depend only on s′, s′′, R,κ0.
3. The following wave energy estimates are satisfied:

‖φreg‖H2+s′ (�t )
+ ‖∂tφreg‖H1+s′ (�t )

� ε, (4.13a)

‖˜φk‖H1+s′ (�t )
+ ‖∂t˜φk‖Hs′ (�t )

� ε, (4.13b)

‖Lk˜φk‖H1+s′ (�t )
+ ‖Ek˜φk‖H1+s′ (�t )

+ ‖∂t Lk˜φk‖Hs′ (�t )
+ ‖∂t Ek˜φk‖Hs′ (�t )

� ε.

(4.13c)

‖∂2˜φk‖L2(�t )
+

∑

Y (1)k ,Y (2)k ,Y (3)k ∈{Xk ,Ek ,Lk }
∃i,Y (i)k �=Xk

‖Y (1)k Y (2)k Y (3)k
˜φk‖L2(�t )

� ε · δ− 1
2 , (4.14)

‖φ‖H3(�t )
+ ‖�nφ‖H2(�t )

� ε · δ− 1
2 + ‖φ‖H3(�0)

+ ‖�nφ‖H2(�0)
, (4.15)

‖∂2˜φk‖L2(�t\Skδ ) � ε, (4.16)

where, as before, the implicit constant in � depend only on s′, s′′, R,κ0.

The proof of Theorem 4.3 will occupy most of this paper. The conclusion of the
proof can be found in Sect. 14.

In view of the parameters that the implicit constants are allowed to depend on in
Theorem 4.2 and Theorem 4.3, from now on, constants C > 0 or implicit constants
in � are allowed to depend only on s′, s′′, R,κ0.We will also often take ε0 and δ0
to be sufficiently small without further comments.
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5 Estimates from part I

In this section, we will assume that (φ, φ′, γ, K ) constitute an admissible initial data
set featuring three impulsive waves with parameters (ε, s′, s′′, R,κ0, δ) (recall
Sect. 4.1) for parameters in the ranges 0 < δ < δ0, 0 < ε < ε0, 0 < s′′ < s′ < 1

2 ,
0 < s′ − s′′ < 1

3 , R > 10 and κ0 > 0, with 0 < δ0 < ε0 sufficiently small. Moreover,
we will assume that the bootstrap assumptions of Sect. 4.2 i.e. (4.8)–(4.12c) hold for
some TB ∈ (0, 1).

We recall the following results follow from [25, Theorem 7.1] and its proof.

Lemma 5.1 [25, Lemma 8.1] The following holds on �t for all t ∈ [0, TB) and for
k = 1, 2, 3:

1. supp(φreg), supp(˜φk) ⊆ B(0, R),
2. supp(˜φk) ⊆ {(t, x) : uk(t, x) ≥ −δ}.

Next, we collect some estimates for the metric components in the elliptic gauge
proven in [25]. The first three statements are directly9 from [25], while the fourth
statement can be easily derived from the first three.

Proposition 5.2 1. Defining α = 0.01, the metric component quantities

g ∈ {e2γ − 1, e−2γ − 1, β j , N − 1, N−1 − 1, gνβ − mνβ, (g
−1)νβ − mνβ}

(where m is the Minkowski metric) satisfy the following estimates:

sup
0≤t<TB

(‖g‖W 2,∞
−α (�t )

+ ‖∂tg‖L∞−α(�t ) + ‖∂tg‖
W

1, 2
s′−s′′

−s′+s′′−α(�t )

) � ε 3
2 . (5.1)

2. [25, Proposition 9.21] Taking g as in the previous part,

sup
0≤t<TB

‖∂∂2x g‖L2(�t )
� ε 3

2 δ−
1
2 . (5.2)

3. [25, Propositions 9.8, 9.20] Let � be a cutoff such that � ≡ 1 on B(0, 2R) and
� ≡ 0 on R2 \ B(0, 3R). Then for g as above,

sup
0≤t<TB

‖〈Dx 〉s′∂2x g‖L2(�t )
+ ‖〈Dx 〉s′(�(∂x∂tg))‖L2(�t )

� ε 3
2 . (5.3)

9 Strictly speaking, to obtain the inequality ‖〈Dx 〉s′ (�(∂x ∂tg))‖L2(�t )
� ε

3
2 requires usingTheorem12.5

in addition to [25, Propositions 9.20]; we omit the straightforward details.
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4. Define �λ = (g−1)νβ�λνβ , where �
λ
νβ are the Christoffel symbols. Then the follow-

ing estimates hold:

sup
0≤t<TB

(‖�λ‖L∞−3α(�t )
+ ‖�λ‖

W
1, 2

s′−s′′
−s′+s′′−3α

(�t )

) � ε
3
2 ,

sup
0≤t<TB

‖∂2x�λ‖L2(�t∩B(0,3R)) � ε
3
2 δ− 1

2 ,

sup
0≤t<TB

‖〈Dx 〉s′ (�∂x�λ)‖L2(�t )
� ε

3
2 .

(5.4)

Proposition 5.3 [25, Lemma 8.2, Lemma 8.4, Proposition 10.5] The following esti-
mates hold for Lβk , E

i
k and Xi

k:

sup
0≤t<TB

(‖Lβk ‖L∞−ε (�t ) + ‖Ei
k‖L∞−ε (�t ) + ‖Xi

k‖L∞−ε (�t )) � 1, (5.5)

sup
0≤t<TB

(‖∂t Lt
k‖L∞−4α(�t ) + ‖∂t Li

k‖L∞
1−4α(�t ) + ‖∂x Lβk ‖L∞

1−4α(�t )

+‖∂Xi
k‖L∞

1−4α(�t ) + ‖∂Ei
k‖L∞

1−4α(�t )) � ε 5
4 , (5.6)

sup
0≤t<TB

(‖∂2Ei
k‖L2(�t∩B(0,3R)) + ‖∂2Xi

k‖L2(�t∩B(0,3R))

+‖∂∂x Lνk‖L2(�t∩B(0,3R))) � ε 5
4 . (5.7)

Lemma 5.4 [25, Lemma 8.3, Lemma 10.4] For any sufficiently regular function f ,
and for all (x, t) ∈ R

2 × [0, TB):

|∂i f |(x, t) � 〈x〉ε (|Ek f |(x, t)+ |Xk f |(x, t)) , (5.8)

|∂t f |(x, t) � 〈x〉ε(|Lk f |(x, t)+ |∂x f |(x, t)), (5.9)

|∂t f |(x, t) � 〈x〉ε (|Lk f |(x, t)+ |Xk f |(x, t))+ 〈x〉−1+ε |Ek f |(x, t), (5.10)

and for second derivatives, the following estimates hold

‖∂∂x f ‖L2(�t∩B(0,3R))

�
∑

Yk∈{Lk ,Xk ,Ek }

∑

Zk∈{Xk ,Ek }
‖Yk Zk f ‖L2(�t∩B(0,3R)) + ‖∂x f ‖L2(�t∩B(0,3R)), (5.11)

‖∂2 f ‖L2(�t∩B(0,3R))

�
∑

Yk ,Zk∈{Lk ,Xk ,Ek }
‖Yk Zk f ‖L2(�t∩B(0,3R)) + ‖∂ f ‖L2(�t∩B(0,3R)). (5.12)

Proposition 5.5 [25, Propositions 9.22, 10.1, 10.2, 10.3] The following estimates hold:

sup
0≤t<TB

(‖K‖L∞
2−α(�t ) + ‖∂x K‖L∞

2−α(�t ) + ‖∂t K‖
L

2
s′−s′′
2−s′+s′′+α(�t )

) � ε
3
2 , (5.13)
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sup
0≤t<TB

(‖χk‖L∞
1−α(�t ) + ‖ηk‖L∞

1−α(�t ) + ‖Lkχk‖L∞
1−α(�t ) + ‖Lkηk‖L∞

1−α(�t )) � ε
3
2 ,

(5.14)

sup
0≤t<TB ,uk∈R

(‖∂xχk‖L2
θk
(�t∩Ck

uk
) + ‖Ekηk‖L2

θk
(�t∩Ck

uk
)) � ε

3
2 , (5.15)

sup
0≤t<TB

(‖Lk∂xχk‖L2(�t∩B(0,R))

+ ‖Lk Ekηk‖L2(�t∩B(0,R)) +
∑

κk∈{χk ,ηk }
‖L2

kκk‖L2(�t∩B(0,R))) � ε
3
2 , (5.16)

sup
0≤t<TB

(‖ logμk − γasympω(|x |) log |x |‖L∞
1−α(�t ) + ‖∂xμk‖L∞

1−α(�t )) � ε
3
2 , (5.17)

sup
0≤t<TB

(‖ log(Θk)

− γasympω(|x |) log |x |‖L∞
1−2α(�t ) + ‖〈x〉−α∂x logΘk‖L2

θk
(�t∩Ck

uk
)) � ε

3
2 , (5.18)

where γasymp ∈ [0,Cε) is a constant defined by lim|x |→∞
γ|�0
log |x | ; see [25, Definition

4.2].

The following lemma gives estimates on various changes of variables:

Lemma 5.6 1. [25, Corollary 8.6] For any k �= k′, the map (x1, x2) �→ (uk, uk′) is a
C1-diffeomorphism on �t with entry-wise pointwise estimates independent of δ:

|∂i uk |, |∂i uk′ | � 1, (5.19)

1 � | det
[

∂uk
∂x1

∂u j

∂x1
∂uk
∂x2

∂u j

∂x2

]

| � 1. (5.20)

2. [25, Proposition 8.7] For any k = 1, 2, 3,

|∂2i j uk | � ε 5
4 . (5.21)

3. [25, (2.11), (2.47), (7.2a), (7.2b), (7.3d), (7.3e)] The Jacobian determinant Jk
corresponding to the transformation (x1, x2)→ (uk, θk), defined by duk ∧dθk =
Jk dx1 ∧ dx2, obeys the following estimate

sup
0≤t<TB

(‖Jk‖L∞(�t ) + ‖J−1
k ‖L∞(�t )) � 1. (5.22)

Lastly, as a consequence of (2.24) we have the following estimate:

Lemma 5.7 [25, (8.13)] For all k �= k′ we have

κ0

2
≤ |g(Ek, Xk′)| ≤ 2. (5.23)
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6 An integration by parts lemma

In this section, we prove an integration by parts lemma (Proposition 6.2) which will
later be useful to control the energy (see Corollary 7.5).

The main purpose of the estimate in Proposition 6.2 will be to handle inhomoge-
neous terms in wave equations which can be written as an e0 derivative. In other words
suppose �gv = f1 + h · e0 f2, we want to get rid of the time derivative e0 f2 and to
replace it by ∂x f2 using the wave equation (2.12) (see the first term in the right-hand
side of (6.3)).

As a first step towards Proposition 6.2, we first prove a simple lemma:

Lemma 6.1 For any two smooth functions h1, h2 which are Schwartz class for every
t ∈ [0, TB), the following holds for all T ∈ (0, TB):

∣

∣

∣

∣

∫ T

0

∫

�t

h2 · e0h1 dxdt +
∫ T

0

∫

�t

h1 · e0h2 dxdt
∣

∣

∣

∣

� sup
t∈[0,T )

‖h1‖L2(�t )
‖h2‖L2(�t )

. (6.1)

Proof Since e0 = ∂t − β i∂i , an explicit computation gives

∫ T

0

∫

�t

e0h1 · h2 dxdt =
∫ T

0

∫

�t

(∂iβ
i · h1 · h2 − h1 · e0h2) dxdt

+
∫

�T

h1 · h2 dxdt −
∫

�0

h1 · h2 dxdt .

Using the L∞ bound for ∂iβ i in Proposition 5.2, and applying Hölder’s inequality, we
obtain the desired estimate. ��

The following is the main result of the section.

Proposition 6.2 Let v be a smooth function which is Schwartz on�t . Suppose �gv =
f1 + h · e0 f2.
Assume that h satisfies the bounds

‖〈x〉−αh‖L∞(�t ) + ‖〈x〉−α∂h‖L∞(�t ) � 1. (6.2)
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Then, the following estimate holds for all r ≥ 1 and all T ∈ [0, TB):

|
∫ T

0

∫

�t

〈x〉−2r (�gv)(e0v)e
2γ dxdt |

� sup
t∈[0,T )

‖〈x〉−(r+2α)∂v‖L2(�t )
‖〈x〉− r

2 f2‖L2(�t )

+
∫ T

0
(‖〈x〉− r

2 f1‖2L2(�t )
+ ‖〈x〉− r

2 f2‖2L2(�t )
) dt

+
∫ T

0
‖〈x〉−(r+2α)∂v‖L2(�t )

·
(

‖〈x〉− r
2 f1‖L2(�t )

+ ‖〈x〉− r
2 f2‖L2(�t )

+ ‖〈x〉− r
2 ∂x f2‖L2(�t )

)

dt .

(6.3)

Proof We first write

∫ T

0

∫

�t

〈x〉−2r (�gv)(e0v)e
2γ dxdt

=
∫ T

0

∫

�t

〈x〉−2r f1(e0v)e
2γ dxdt +

∫ T

0

∫

�t

〈x〉−2r h(e0 f2)(e0v)e
2γ dxdt

=
∫ T

0

∫

�t

〈x〉−2r f1(e0v)e
2γ dxdt −

∫ T

0

∫

�t

〈x〉− 3r
2 h(e0〈x〉− r

2 ) f2(e0v)e
2γ dxdt

+
∫ T

0

∫

�t

〈x〉− 3r
2 h[e0(〈x〉− r

2 f2)](e0v)e2γ dxdt .

(6.4)

Thefirst term in (6.4) can be easily controlled as follows, using theCauchy–Schwarz
inequality and the fact that T ≤ TB ≤ 1:

∣

∣

∣

∫ T
0

∫

�t
〈x〉−2r f1 · (e0v)e2γ dxdt

∣

∣

∣ � sup0≤t≤T ‖〈x〉− r
2 f1‖L2(�t )

· ‖〈x〉−(r+2α)∂v‖L2(�t )
,

(6.5)

where we have bounded ‖〈x〉− r
2+2αe2γ ‖L∞(�t ) � 1 and ‖〈x〉− r

2+2αβ j e2γ ‖L∞(�t ) �
1 using (5.1).

For the second term in (6.4), notice that e0〈x〉− r
2 = r

2βi x
i 〈x〉− r

2−2. Hence, by
Hölder’s inequality, Proposition 5.2 and (6.2), we get

∣

∣

∣

∫ T

0

∫

�t

〈x〉− 3r
2 h(e0〈x〉− r

2 ) f2(e0v)e
2γ dx dt

∣

∣

∣

�
∫ T

0
‖〈x〉−αh‖L∞(�t ) · ‖〈x〉− r

2 f2‖L2(�t )
· ‖〈x〉−(r+2α)∂v‖L2(�t )

dt

�
∫ T

0
‖〈x〉− r

2 f2‖L2(�t )
· ‖〈x〉−(r+2α)∂v‖L2(�t )

dt .

(6.6)
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For the third term in (6.4), we integrate by parts. Using Lemma 6.1 with h1 =
〈x〉− 3r

2 h(e0v)e2γ , h2 = 〈x〉− r
2 f2, and then using Hölder’s inequality, Proposition 5.2

and (6.2), we obtain

∣

∣

∣

∫ T

0

∫

�t
〈x〉− 3r

2 · h · [e0(〈x〉−
r
2 f2)](e0v)e2γ dx dt

∣

∣

∣

�
∫ T

0
[‖〈x〉−αh‖L∞(�t ) + ‖〈x〉−2α(e0h)‖L∞(�t )] · ‖〈x〉− r

2 f2‖L2(�t )
· ‖〈x〉−(r+2α)e0v‖L2(�t )

dt

+
∣

∣

∣

∫ T

0

∫

�t
〈x〉−2r h · f2(e

2
0v)e

2γ dx dt
∣

∣

∣ + sup
t∈[0,T )

‖〈x〉− 3r
2 h(e0v)e

2γ ‖L2(�t )
‖〈x〉− r

2 f2‖L2(�t )

�
∫ T

0
‖〈x〉− r

2 f2‖L2(�t )
· ‖〈x〉−(r+2α)∂v‖L2(�t )

dt +
∣

∣

∣

∫ T

0

∫

�t
〈x〉−2r · h · f2(e

2
0v)e

2γ dx dt
∣

∣

∣

+ sup
t∈[0,T )

‖〈x〉−(r+2α)∂v‖L2(�t )
‖〈x〉− r

2 f2‖L2(�t )
.

(6.7)

Now, we use (2.12) to write e20v = −N 2�gv+ e−2γ N 2δi j∂2i jv+ e0 log(N ) · e0v+
e−2γ Nδi j∂i N∂ jv so that

∫ T

0

∫

�t

〈x〉−2r · e2γ · h · f2 · (e20v)dxdt

= −

I
︷ ︸︸ ︷

∫ T

0

∫

�t

〈x〉−2r · e2γ · h · f2 · N 2 · (�gv)dxdt +

I I
︷ ︸︸ ︷

∫ T

0

∫

�t

〈x〉−2r · h · f2 · N 2 · (δi j ∂2i jv)dxdt

+
∫ T

0

∫

�t

〈x〉−2r · e2γ · h · f2 · e0 log(N ) · (e0v)dxdt
︸ ︷︷ ︸

I I I

+
∫ T

0

∫

�t

〈x〉−2r · h · f2 · N · (δi j ∂i N∂ jv)dxdt
︸ ︷︷ ︸

I V

.

(6.8)

We start with the easiest terms I I I and I V : an immediate application of the
Cauchy–Schwarz inequality, Proposition 5.2 and (6.2) yields:

|I I I | + |I V | � ε 3
2

∫ T

0
‖〈x〉− r

2 f2‖L2(�t )
· ‖〈x〉−(r+2α)∂v‖L2(�t )

dt . (6.9)

For I I in (6.8), we integrate by parts in ∂i , and then use Hölder’s inequality, (6.2)
and (5.1) to obtain

|I I | �
∫ T

0
‖〈x〉r+2α∂x (〈x〉−2r h f2N

2)‖L2(�t )
‖〈x〉−(r+2α)∂xv‖L2(�t )

dt

�
∫ T

0
(‖〈x〉− r

2 f2‖L2(�t )
+ ‖〈x〉− r

2 ∂x f2‖L2(�t )
)‖〈x〉−(r+2α)∂xv‖L2(�t )

dt .

(6.10)

We now turn to the main term I in (6.8). We write again �gv = f1 + h · e0 f2. The
term involving f1 can be estimated directly using Hölder’s inequality, (6.2) and Propo-
sition 5.2. For the term involving e0( f 22 ), we integrate by parts again with Lemma 6.1,
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and then bound the resulting terms using Hölder’s inequality, (6.2) and (5.1). (The
weights functions involved in the integration by parts argument can be treated as in
(6.6)). We thus obtain

|I | �
∫ T

0
‖〈x〉− r

2 f1‖L2(�t )

· ‖〈x〉− r
2 f2‖L2(�t )

dt +
∣

∣

∣

∫ T

0

∫

�t

〈x〉−2r e2γ · h2 · e0( f 22 ) · N 2dxdt
∣

∣

∣

�
∫ T

0
(‖〈x〉− r

2 f1‖2L2(�t )
+ ‖〈x〉− r

2 f2‖2L2(�t )
) dt .

(6.11)

Plugging (6.9)–(6.11) into (6.7) and (6.8) gives the desired bounds for the third term
in (6.4). Combining this with (6.5) and (6.6) yields the conclusion of the proposition.

��

7 Basic energy estimates and commutator estimates

In this section, we prove some basic energy estimates which will be repeatedly used
in the later part of the paper.

7.1 Stress-energy-momentum tensor and deformation tensor

Lemma 7.1 1. Defining Tμν[v] = ∂μv∂νv − 1
2gμν(g

−1)σβ∂σ v∂βv, and suppose �n
and (Xk, Ek, Lk) are as in (2.3) and Definition 2.9. Then for k = 1, 2, 3,

T[v](�n, �n) = 1

2
·
(

(�nv)2 + (Xkv)
2 + (Ekv)2

)

= 1

2

(

(�nv)2 + e−2γ (∂xv)
2
)

, (7.1)

T[v](�n, ∂i ) = (�nv)(∂iv), T(v)(∂i , ∂ j ) = (∂iv)(∂ jv)− 1

2
δi j (−e2γ (�nv)2 + (∂xv)2),

(7.2)

T[v](Lk , �n) = 1

2
·
(

(Lkv)
2 + (Ekv)2

)

. (7.3)

2. Tμν[v] satisfies

(g−1)σν∇σTμν[v] = �gv · ∂μv.

3. Defining in addition (�n)π(Z1, Z2) = 1
2

(

g(∇Z1 �n, Z2)+ g(∇Z2 �n, Z1)
)

, we have

T[v]μν(�n)πμν = −e−2γ δil(�nv)(∂iv)(∂l log N )
+ e−4γ δilδ jq Klq [(∂iv)(∂ jv)− 1

2
δi j (−e2γ (�nv)2 + (∂xv)2)].

(7.4)

Proof Parts 1 and 2 are explicit computations.
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We turn to 3. By Lemma 2.6, ∇�n �n = e−2γ δi j (∂i log N )∂ j . Hence, using also (2.6),
we have

(�n)π(�n, �n) = 0, (�n)π(�n, ∂i ) = 1

2
· ∂i log N , (�n)π(∂i , ∂ j ) = Ki j . (7.5)

We compute using (2.9) that

T[v]μν(�n)πμν
= T[v](�n, �n)(�n)π(�n, �n)

− 2e−2γ δilT[v](�n, ∂i )(�n)π(�n, ∂l)+ e−4γ δilδ jqT[v](∂i , ∂ j )(�n)π(∂l , ∂q),
(7.6)

which implies the desired conclusion after plugging in (7.1), (7.2) and (7.5). ��

7.2 Volume forms

Lemma 7.2 [25, Lemma 2.14] The spacetime volume form induced by g is given by

dvol = N · e2γ dx1 ∧ dx2∧ dt = μk · N ·Θk dtk ∧ duk ∧ dθk .

The volume form on �t induced by ḡ is given by

dvol�t = e2γ dx1 ∧ dx2 = μ2
kΘ

2
k duk ∧ dθk . (7.7)

Let dvolCk
uk

be the volume form on Ck
uk such that duk ∧ dvolCuk

= dvol. Then

dvolCk
uk

= −μk · N ·Θk dtk ∧ dθk = μk · N ·Θkdθk ∧ dtk . (7.8)

7.3 Themain energy estimate

In this subsection, we prove two basic energy estimates.
The first estimate (Proposition 7.3) applies only to compactly supported functions

(so that weights can be ignored), and allows for localization in the uk variable. The
second estimate (Proposition 7.4) is a weighted estimate for general (not necessarily
compactly supported) functions which does not allows for uk-localization.10

The following is the first general energy estimate.

Proposition 7.3 Given k ∈ {1, 2, 3}, any T ∈ [0, TB) and any −∞ ≤ U0 < U1 ≤
+∞, define

D(k),TU0,U1
:= {(t, x) ∈ R × R

2 : t ∈ [0, T ], uk(t, x) ∈ [U0,U1]}. (7.9)

10 One could combine the two energy estimates to obtain a more general proposition, incorporating both
weights and uk -localization. We will not need such a general statement, and therefore only prove the easier
estimates.
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For any11 k′ ∈ {1, 2, 3}, the following holds for all solutions v to �gv = f , with
supp(v), supp( f ) ⊆ {(t, x) : |x | ≤ R}, with a constant depending only on R:

sup
t∈[0,T )

‖∂v‖
L2(�t∩D(k),TU0,U1

)
+ sup

uk′ ∈R
∑

Zk′ ∈{Lk′ , Ek′ }
‖Zk′v‖

L2(Ck′
uk′ ∩D

(k),T
U0,U1

)

� ‖∂v‖
L2(�0∩D(k),TU0,U1

)
+

∑

Zk∈{Lk , Ek }
‖Zkv‖L2(Ck

U0
∩D(k),TU0,U1

)
+

∫ T

0
‖ f ‖

L2(�t∩D(k),TU0,U1
)
dt .
(7.10)

Proof Step 1: The case k′ = k By Lemma 7.1 (Point 2) and �gv = f , we have
∇νTμν(v) = f ∂μv. Hence,

∇ν (Tμν[v]�nμ
) = T[v]μν(�n)πμν + f · �nv. (7.11)

Fix T ∈ [0, TB) and U0, U1 as in the statement of the proposition. For every τ ∈
[0, T ] and U ∈ [U0,U1], define D(k),τU0,U

:= {(t, x) ∈ R × R
2 : t ∈ [0, τ ), uk(t, x) ∈

[U0,U )}. Note that clearly D(k),τU0,U
⊆ D(k),TU0,U1

.
Integrating ∇ν (Tμν[v]�nμ

)

on the spacetime region DτU0,U
and using Stokes’ the-

orem, we obtain (for Tμν = Tμν[v])
∫

�τ∩D(k),τU0,U

T(�n, �n) dvol�t

−
∫

�0∩D(k),τU0,U

T(�n, �n) dvol�0 +
∫

Ck
U∩D(k),τU0,U

T(�n, (−duk)
�) dvolCk

U

=
∫

D(k),τU0,U

∇ν (Tμν �nμ
)

dvol.

(7.12)

Using (−duk)� = μ−1
k Lk (by (2.28) and (2.29)), the computations for T in (7.1),

(7.3), the computations for the volume forms in Lemma 7.2, and the computations for
∇ν (Tμν[v]�nμ

)

in (7.11) and (7.4), we obtain using (7.12) that

1

2

∫

�τ∩D(k),τ
U0 ,U

[e2γ (�nv)2 + (∂xv)2] dx1 dx2
︸ ︷︷ ︸

=:I

+
∫

Ck
U∩D(k),τ

U0 ,U

Θk N

2
· [(Lkv)

2 + (Ekv)
2] dtk dθk

︸ ︷︷ ︸

=:I I

−
∫

D(k),τ
U0 ,U

[

−e−2γ δil (�nv)(∂iv)(∂l log N )
]

· Ne2γ dx1 dx2 dt

︸ ︷︷ ︸

=:I I I

11 In particular, k′ could be the same as k, and could also be different from k. The same comment applies
to Propositions 8.9, 8.11 and 8.13.
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−
∫

D(k),τ
U0 ,U

[

e−4γ δilδ jq Klq [(∂iv)(∂ jv)− 1

2
δi j (−e2γ (�nv)2 + (∂xv)2)] + f · �nv

]

· Ne2γ dx1 dx2 dt

︸ ︷︷ ︸

=:I V

= 1

2

∫

�0∩D(k),τ
U0 ,U

[e2γ (�nv)2 + (∂xv)2] dx1 dx2
︸ ︷︷ ︸

=:V

+
∫

Ck
U0

∩D(k),τ
U0 ,U

Θk N

2
· [(Lkv)

2 + (Ekv)
2] dtk dθk

︸ ︷︷ ︸

=:V I

.

(7.13)

By Proposition 5.2, Proposition 5.5 and support properties of v,

I + I I � ‖∂v‖2
L2(�τ∩D(k),τU0,U

)
+

∑

Zk∈{Lk , Ek }
‖Zk′v‖2

L2(Ck
U∩D(k),τU0,U

)
. (7.14)

Using Proposition 5.2, Proposition 5.5, the Cauchy–Schwarz inequality and Young’s
inequality, we get that

|I I I | + |I V | ≤ Cε
3
2

∫ τ

0
‖∂v‖2

L2(�t∩D(k),τU0,U
)
dt + C

∫ τ

0
‖∂v‖

L2(�t∩D(k),τU0,U
)
‖ f ‖

L2(�t∩D(k),τU0,U
)
dt

≤
(

1

2
+ Cε

3
2

)

sup
t∈[0,T ]

‖∂v‖2
L2(�t∩D(k),τU0,U

)
+ C ·

(

∫ T

0
‖ f ‖

L2(�t∩D(k),τU0,U
)
dt

)2

.

(7.15)

Finally, the data terms can be controlled using Proposition 5.2 and Proposition 5.5
applied at t = 0:

|V | + |V I | � ‖∂v‖2
L2(�0∩D(k),TU0,U

)
+

∑

Zk∈{Lk , Ek }
‖Zkv‖2L2(Ck

U0
∩D(k),TU0,U

)
. (7.16)

Plugging the estimates (7.14)–(7.16) into (7.13), and taking supremum over all
τ ∈ [0, T ] and U ∈ [U0,U1], we obtain

sup
t∈[0,T ]

‖∂v‖2
L2(�t∩D(k),TU0,U

)
+ sup

uk∈R

∑

Zk∈{Lk , Ek }
‖Zkv‖2L2(Ck

uk
∩D(k),TU0,U

)

≤
(

1

2
+ Cε

3
2

)

sup
t∈[0,T ]

‖∂v‖2
L2(�t∩D(k),TU0,U

)
+ C‖∂v‖2

L2(�0∩D(k),TU0,U
)

+ C
∑

Zk∈{Lk , Ek }
‖Zkv‖2L2(Ck

U0
∩D(k),TU0,U

)

+ C

(∫ T

0
‖ f ‖

L2(�t∩D(k),TU0,U
)
dt

)2

.

(7.17)

Note that while the supremum at first only gives supuk∈[U0,U1] for the second term
on the left-hand side of (7.17), we can change this to supuk∈R after noticing that
Ck
uk ∩ D = ∅ if uk ∈ R \ [U0,U1].
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The first terms on the right-hand side of (7.17) can be absorbed to the left-hand side
for ε0 sufficiently small, giving

sup
t∈[0,T ]

‖∂v‖2
L2(�t∩D(k),T

U0 ,U1
)
+ sup

uk∈R

∑

Zk∈{Lk , Ek }
‖Zkv‖2L2(Ck

uk
∩D(k),T

U0 ,U1
)

� ‖∂v‖2
L2(�0∩D(k),T

U0,U
)
+

∑

Zk∈{Lk , Ek }
‖Zkv‖2L2(Ck

U0
∩D(k),T

U0 ,U
)
+

(∫ T

0
‖ f ‖

L2(�t∩D(k),T
U0,U

)
dt

)2

.

(7.18)

The bound (7.18) gives the control of the first term in (7.10), and of the second term
in (7.10) when k′ = k.
Step 2: The general case To complete the proof of (7.10), we need to bound the
second term on the left-hand side of (7.10), corresponding to the flux on Ck′

uk′ in the

case k′ �= k. Fix k′ �= k and U ′ ∈ R, integrate the same quantity ∇ν (Tμν[v]�nμ
)

but

now onD′ := D(k),TU0,U
∩D(k′),T

−∞,U ′ = D(k),TU0,U
∩ {(t, x) : uk′(t, x) ≤ U ′}, and use Stokes’

theorem. We then obtain an analogue of (7.13), except with D(k),TU0,U
replaced by D′,

and with an additional flux term
∫

Ck′
U ′∩D′

Θk′ N
2 · [(Lk′v)2 + (Ek′v)2] dtk′ dθk′ on the

left-hand side.
We now control the bulk terms (i.e. terms corresponding to I I I and I V in (7.13))

in the same manner as in Step 1. Since D′ ⊆ D(k),TU0,U
, we obtain an analogue of (7.18),

but with the control of an addition flux term on the left-hand side:

sup
t∈[0,T ]

‖∂v‖2
L2(�t∩D′) + sup

uk∈R
∑

Zk∈{Lk , Ek }
‖Zkv‖2L2(Ck

uk ∩D′) +
∑

Zk′ ∈{Lk′ , Ek′ }
‖Zk′v‖2

L2(Ck′
U ′ ∩D′)

� ‖∂v‖2
L2(�0∩D(k),TU0,U

)
+

∑

Zk∈{Lk , Ek }
‖Zkv‖2

L2(Ck
U0

∩D(k),TU0,U
)
+

(

∫ T

0
‖ f ‖

L2(�t∩D(k),TU0,U
)
dt

)2

.

(7.19)

We now take supremum over all U ′ ∈ R. Noting that Ck′
U ′ ∩ D′ = Ck′

U ′ ∩ D(k),TU0,U
, we

deduce from (7.19) that

sup
uk′ ∈R

∑

Zk′ ∈{Lk′ , Ek′ }
‖Zk′v‖2

L2(Ck′
uk′ ∩D

(k),T
U0 ,U

)

� ‖∂v‖2
L2(�0∩D(k),T

U0,U
)
+

∑

Zk∈{Lk , Ek }
‖Zkv‖2L2(Ck

U0
∩D(k),T

U0 ,U
)
+

(∫ T

0
‖ f ‖

L2(�t∩D(k),T
U0,U

)
dt

)2

.

(7.20)

(7.20) thus bounds the second term in (7.10) when k′ �= k. Combining this with (7.18)
concludes the proof. ��
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Finally, we prove a version of Proposition 7.3 with weights. (Note that the weights
can clearly be improved, but will not be relevant for later applications.)

Proposition 7.4 Let v be a smooth function which is Schwartz for on �t for all 0 ≤
t < TB.

Then for all r ≥ 1, the following holds for any T ∈ [0, TB), with a constant
depending only on r:

sup
t∈[0,T )

‖〈x〉−(r+2α)∂v‖2L2(�t )
� ‖〈x〉− r

2 ∂v‖2L2(�0)

+ sup
t∈[0,T )

∣

∣

∣

∫ t

0

∫

�τ

〈x〉−2r (e0v)(�gv) e
2γ dx dτ

∣

∣

∣.

(7.21)

Proof Using the multiplier 〈x〉−2r �n, we have, by (7.4),

∇ν
(

Tμν[v]〈x〉−2r �nμ
)

= − 〈x〉−2r e−2γ δil(�nv)(∂iv)(∂l log N )
+ 〈x〉−2r e−4γ δilδ jq Klq [(∂iv)(∂ jv)
− 1

2
δi j (−e2γ (�nv)2 + (∂xv)2)]

+ 〈x〉−2r (�gv) · �nv + (g−1)νσTμν[v](∂σ 〈x〉−2r )�nμ.

(7.22)

Using (2.9), it can be computed that

(g−1)νσ (∂σ 〈x〉−2r )∂ν = −2r〈x〉−2r−2

N 2

(

β i xi∂t + (N 2e−2γ δi j − β iβ j )x j∂i
)

,

which in particular implies, by the metric estimates of Proposition 5.2 and the bound
in Lemma 5.4, that

|(g−1)νσTμν[v](∂σ 〈x〉−2r )�nμ| � 〈x〉−2r−1+10α[(�nv)2 + (Xkv)
2 + (Ekv)

2],

where the implicit constant is allowed to depend on r .
Then we use Proposition 5.2 (specifically e−2γ � 〈x〉α , |∂x log N | � ε〈x〉−1+α ,

|K | � ε〈x〉−1 and |Tμν[v]| � 〈x〉2α ·|∂v|2, where the indicesμ and ν are in the coordi-
nate system (t, x1, x2)) and Lemma 5.4, and repeating the argument of Proposition 7.3
we get, integrating (7.22) on {0 ≤ t ′ ≤ t}:

∫

�t

e2γ 〈x〉−2r [(�nv)2 + (Xkv)
2 + (Ekv)

2] dx1dx2

�
∫

�0

e2γ 〈x〉−2r [(�nv)2 + (Xkv)
2 + (Ekv)

2] dx1dx2
︸ ︷︷ ︸

=:I
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+
∫ t

0

∫

�t ′
〈x〉−2r−1+10α[(�nv)2 + (Xkv)

2 + (Ekv)
2] dx1dx2dt ′

︸ ︷︷ ︸

=:I I

+
∣

∣

∣

∣

∣

∫ t

0

∫

�t ′
〈x〉−2r (�gv) · �nv · Ne2γ dx1dx2dt ′

∣

∣

∣

∣

∣

︸ ︷︷ ︸

=:I I I

. (7.23)

We now bound each term on the right-hand side of (7.23).

1. For term I , we note that by Proposition 5.2 and Proposition 5.3, e2γ 〈x〉−2r [(�nv)2+
(Xkv)

2 + (Ekv)
2] �

∣

∣

∣〈x〉− r
2 ∂v

∣

∣

∣

2
, and thus I � ‖〈x〉− r

2 ∂v‖2
L2(�0)

.

2. For term I I , since 10α = 0.1 < 1 − α, it can be absorbed to the left-hand side
using Grönwall’s inequality.

3. Finally, we just keep the term I I I as it is (which is allowed on the right-hand side
of (7.21)), since N �n = e0.

Combining the above bounds, it follows that

∫

�t

e2γ 〈x〉−2r [(�nv)2 + (Xkv)
2 + (Ekv)

2] dx1dx2 � RHS of (7.21).

Finally, notice that by (5.8), (5.10) and Proposition 5.2,

‖〈x〉−(r+2α)∂v‖2L2(�t )
�

∫

�t

e2γ 〈x〉−2r [(�nv)2 + (Xkv)
2 + (Ekv)

2] dx1dx2

which therefore gives the desired result. ��
Corollary 7.5 Let v be a smooth function which is Schwartz on�t for all 0 ≤ t < TB.
Suppose �gv = f1 + h · e0 f2, where f1, f2 and h are all smooth and Schwartz on�t

for all 0 ≤ t < TB, and h satisfies (6.2).
Then for all r ≥ 1, the following holds for any T ∈ [0, TB), with a constant

depending only on r:

sup
t∈[0,T )

‖〈x〉−(r+2α)∂v‖2L2(�t )

� ‖〈x〉− r
2 ∂v‖2L2(�0)

+ sup
t∈[0,T )

‖〈x〉− r
2 f2‖2L2(�t )

+
∫ T

0

(

‖〈x〉− r
2 f1‖2L2(�t )

+ ‖〈x〉− r
2 f2‖2L2(�t )

+ ‖〈x〉− r
2 ∂x f2‖2L2(�t )

)

dt .

Proof We first apply Proposition 7.4 so that

sup
t∈[0,T )

‖〈x〉−(r+2α)∂v‖2L2(�t )
� ‖〈x〉− r

2 ∂v‖2L2(�0)

+ sup
t∈[0,T )

∣

∣

∣

∫ t

0

∫

�τ

〈x〉−2r (e0v) · (�gv) e
2γ dx dτ

∣

∣

∣.
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Controlling the last term by Proposition 6.2, we obtain

sup
t∈[0,T )

‖〈x〉−(r+2α)∂v‖2L2(�t )

� ‖〈x〉− r
2 ∂v‖2L2(�0)

+
∫ T

0
(‖〈x〉− r

2 f1‖2L2(�t )
+ ‖〈x〉− r

2 f2‖2L2(�t )
) dt

+ sup
t∈[0,T )

‖〈x〉−(r+2α)∂v‖L2(�t )
‖〈x〉− r

2 f2‖L2(�t )

+
∫ T

0
‖〈x〉−(r+2α)∂v‖L2(�t )

·
(

‖〈x〉− r
2 f1‖L2(�t )

+ ‖〈x〉− r
2 f2‖L2(�t )

+ ‖〈x〉− r
2 ∂x f2‖L2(�t )

)

dt .

For the terms on the last two lines, we use Young’s inequality and absorb
supt∈[0,T ) ‖〈x〉−(r+2α)∂v‖L2(�t )

to the left-hand side. For the terms on the last line,
we additionally use the Cauchy–Schwarz inequality in t , giving the desired inequality.

��

8 Basic estimates for the commutations with the wave operator

8.1 Two auxiliary estimates

To streamline the later exposition in this section, before we even consider the commu-
tations with the wave operator, we first prove in this subsection two auxiliary estimates
in Propositions 8.2 and 8.3. They concern second derivatives of the metric (in the geo-
metric coordinates or in the elliptic gauge coordinates) which are not bounded in
L∞.

The estimates in this subsection apply either to �t or to a half space in the uk
variable. In the remainder of this subsection, for a fixed k, we will use D to denote
one of the following sets:

D = {(t, x) ∈ [0, TB)× R
2 : uk(t, x) ≥ U0},

D = {(t, x) ∈ [0, TB)× R
2 : uk(t, x) ≤ U1}, (8.1)

where U0 ∈ [−∞,∞), U1 ∈ (−∞,∞]. Notice that either �t ∩ D = �t (when
U0 = −∞ or U1 = ∞) or �t ∩ D is a half-space in uk (when U0 or U1 is finite).

Before we proceed to the first auxiliary estimate in Proposition 8.2, we first need
the following simple lemma.

Lemma 8.1 Let k �= k′, and let D be one of the sets in (8.1). For all f which is
sufficiently regular,

‖ f ‖L2
uk

L∞
uk′ (�t∩D) � ‖ f ‖L2(�t∩D) + ‖Ek f ‖L2

1
16
(�t∩D). (8.2)

123



Nonlinear Interaction of Three Impulsive... Page 51 of 137 10

Proof First, by the standard 1-dimensional Sobolev embedding,

‖ f ‖L2
uk

L∞
uk′ (�t∩D) � ‖ f ‖L2

uk ,uk′ (�t∩D) + ‖/∂uk′ f ‖L2
uk ,uk′ (�t∩D). (8.3)

Finally, by (2.55), (5.17), (5.23) and Lemma 5.6, we obtain (8.2). (Note that we need

a small positive weight, e.g., 〈x〉 1
16 , here because there is a μk′ factor in (2.55), which

grows slowly at infinity according to (5.17).) ��
Proposition 8.2 Fix k and letD be one of the sets in (8.1). The following holds for any
sufficiently regular f :

‖∂xχk · f ‖L2− 1
4
(�t∩D) + ‖Ekηk · f ‖L2− 1

4
(�t∩D) � ε

3
2 · (‖ f ‖L2− 1

8
(�t∩D) + ‖Ek f ‖L2− 1

8
(�t∩D)).

(8.4)

Proof By (5.22), we can bound the L2(�t ) norm in either the (x1, x2) or the (uk, θk)
coordinates. Denoting h ∈ {∂1χk, ∂2χk, Ekηk}, we first use Hölder’s inequality in the
(uk, θk) coordinate system to obtain

‖〈x〉− 1
4 h · f ‖L2(�t∩D) � ( sup

uk∈R
‖h‖L2

θk
((�t∩D)∩Cuk )

) · ‖〈x〉− 1
4 f ‖L2

uk
L∞
θk
(�t∩D)

� ε 3
2 · ‖〈x〉− 1

4 f ‖L2
uk

L∞
θk
(�t∩D).

(8.5)

Notice now that for a fixed k′ �= k, the L2
uk L

∞
θk

norm is equal to the L2
uk L

∞
uk′ norm.

Hence, by (8.2),

‖〈x〉− 1
4 f ‖L2

uk
L∞
θk
(�t∩D) � ‖〈x〉− 1

4 f ‖L2(�t∩D) + ‖〈x〉− 1
8 Ek f ‖L2(�t∩D)

+ ‖〈x〉 1
16 (Ek〈x〉− 1

4 ) f ‖L2(�t∩D)
� ‖〈x〉− 1

8 f ‖L2(�t∩D) + ‖〈x〉− 1
8 Ek f ‖L2(�t∩D),

(8.6)

where we have used |Ek〈x〉− 1
4 | � 〈x〉− 5

4+ε (by Proposition 5.3).
Combining (8.5) and (8.6) then yields (8.4). ��
We now turn to our second auxiliary estimate.

Proposition 8.3 LetD be one of the sets in (8.1) for some k. For all smooth function f
which is Schwartz class on �t for all t ∈ [0, TB), the following estimate holds for all
t ∈ [0, TB), where g ∈ {e2γ − 1, e−2γ − 1, β j , N − 1, N−1 − 1, gνβ, (g−1)νβ}:

‖∂∂xg · f ‖L2(�t∩D) � ε 3
2 ‖ f ‖H1(�t∩D). (8.7)
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Proof We use Hölder’s inequality to obtain

‖∂∂xg · f ‖L2(�t∩D) � ‖∂∂xg‖L4(�t∩D) · ‖ f ‖L4(�t∩D).

Since s′ − s′′ < 1
2 , Proposition 5.2 implies an L4 estimate for ∂∂xg. On the other

hand, f can be controlled using the Sobolev embedding H1(R2) ↪→ L4(R2) or
H1(R2+) ↪→ L4(R2+). (In the case where �t ∩ D is a half-space in uk , we perform
Sobolev embedding for the half-space in the (uk, uk′) coordinates (for k′ �= k), and
note that the H1

x1,x2
(�t ), H1

uk ,uk′ (�t ) norms, or the L4
x1,x2

(�t ), L4
uk ,uk′ (�t ) norms,

are equivalent by (5.19)–(5.20)). Hence,

‖∂∂xg · f ‖L2(�t∩D) � ε 3
2 · ‖ f ‖L4(�t∩D) � ε 3

2 ‖ f ‖H1(�t∩D).

��

8.2 Computations of the commutators

8.2.1 The wave operator

Lemma 8.4 For any C2 function v:

�gv = − L2
kv − 2XkLkv + E2

kv + 2ηk Ekv − (Xk log(N ))Lkv − χk Xkv

= − L2
kv − 2Lk Xkv + E2

kv + 2(Ek log(N )− K (Ek, Ek))Ekv

+ (Xk log(N ))Lkv + (−χk − 2K (Xk, Xk)+ 2Xk log(N ))Xkv.

(8.8)

Proof By (2.34), we have

�gv = −L2
kv + (∇Lk Lk)v − 2Xk(Lkv)+ 2(∇Xk Lk)v + E2

kv − (∇Ek Ek)v.

Hence, by (2.48), (2.44) and (2.46), we get

�gv = −L2
kv − 2XkLkv + E2

k v + 2ηk Ekv

− (K (Xk, Xk)+ K (Ek, Ek)+ Xk log(N ))Lkv − χk Xkv.

Now, by (2.7) and the fact that (Xk, Ek) is a g-orthonormal frame, we have
K (Xk, Xk)+ K (Ek, Ek) = 0, proving the first equality of (8.8). The second equality
follows from the first combined with (2.45). ��

In the three subsubsections below, we compute the commutator of �g with ∂l , Ek

and Lk respectively. We introduce the following conventions: for each commutator
we divide into three types of terms; see the statements of Lemmas 8.5, 8.6 and 8.7. I
has second derivatives of metric and first derivatives of v; I I has first derivatives of
metric and second derivatives of v; I I I contains at most one derivative of the metric
or v.
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8.2.2 Commuting the wave operator with @l

Lemma 8.5 For any C3 function v and l = 1, 2,

[

∂l ,�g
]

v = I (∂l)(v)+ I I (∂l)(v)+ I I I (∂l)(v),

where

I (∂l )(v) = + e0(∂lβ j )

N 2 ∂ jv + ∂l e0 log(N )

N 2 e0v + e−2γ δi j∂2il log(N )∂ jv, (8.9)

I I (∂l )(v) = − 2∂l log N · �gv + 2∂lβ j

N 2 e0∂ jv + 2∂l log Ne−2γ δi j∂2i jv − 2∂lγ · e−2γ δi j∂2i jv,

(8.10)

I I I (∂l )(v) = 2∂l log N · ∂i log(N )e−2γ δi j∂ jv − ∂lβ
j∂ jβ

q

N 2 ∂qv

− e0N

N 3 ∂lβ
j∂ jv − 2∂lγ · e−2γ δi j∂i log(N )∂ jv. (8.11)

Proof First, from the definition of e0 = ∂t − β j∂ j , we get the commutator identity

[∂l , e0] = −∂lβ j∂ j .

We now compute the commutator. By (2.12) there are four terms to control.
The first term is

[

∂l ,
−e20
N 2

]

v = 2∂l log N

N 2 e20v − 1

N 2

[

∂l , e
2
0

]

v

= 2∂l log N

N 2 e20v − 1

N 2 [∂l , e0] e0v − 1

N 2 e0([∂l , e0] v)

= 2∂l log N

N 2 e20v + ∂lβ
j

N 2 ∂ j e0v + e0(∂lβ j )

N 2 ∂ jv + ∂lβ
j

N 2 e0∂ jv

= 2∂l log N

N 2 e20v + 2∂lβ j

N 2 e0∂ jv + ∂lβ
j

N 2

[

∂ j , e0
]

v + e0(∂lβ j )

N 2 ∂ jv

= 2∂l log N

(

−�gv + e−2γ δi j∂2i jv + e0N

N 3 e0v + e−2γ

N
δi j∂i N∂ jv

)

+ 2∂lβ j

N 2 e0∂ jv − ∂lβ
j∂ jβ

q

N 2 ∂qv + e0(∂lβ j )

N 2 ∂ jv,

where in the last line we expressed e20v in terms of the other derivatives and�gv using
(2.12).

The second term is
[

∂l , e
−2γ δi j∂2i j

]

v = −2∂lγ · e−2γ δi j∂2i jv.
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The third term is
[

∂l ,
e0N

N 3 e0

]

v = ∂l(e0N
N 3 )e0v − e0N

N 3 ∂lβ
j∂ jv

= ∂l e0 log(N )

N 2 e0v − 2∂l log(N )e0 log(N )

N 2 e0v − e0N

N 3 ∂lβ
j∂ jv,

and the fourth term is

[

∂l ,
e−2γ

N
δi j∂i N∂ j

]

v = ∂l(e
−2γ

N
∂i N )δ

i j∂ jv

= −2∂lγ · e−2γ δi j∂i log(N )∂ jv + e−2γ δi j∂2il log(N )∂ jv.

Finally, we regroup according to our convention described above, noticing that the
2∂l log(N )e0 log(N )

N2 e0v terms cancel in I I I (∂l). ��

8.2.3 Commuting the wave operator with Ek

Lemma 8.6 For any C3 function v,

[

Ek,�g
]

v = I (Ek)(v)+ I I (Ek)(v)+ I I I (Ek)(v),

where

I (Ek)(v) = (−2Xkχk + 2Ekηk − Lkχk) · Ekv − Ekχk · Xkv

+ (Lk Ek + 2Xk Ek − Ek Xk) log(N ) · Lkv,
(8.12)

I I (Ek)(v) = 2Ek log(N ) · L2
kv + 2(Ek log(N )+ ηk − K (Ek, Xk)) · XkLkv

− 2χk · Xk Ekv − 2K (Ek, Ek) · EkLkv,
(8.13)

I I I (Ek)(v) = χk · (ηk − K (Ek, Xk)) · Xkv

+ χk · (2χk − Xk log N − K (Ek, Ek)) · Ekv

+ Ek log(N ) · (Xk log(N )− χk) · Lkv.

(8.14)

Proof Step 1: The main computation. From (8.8), we see that

[

Ek,�g
]

v

= Lk([Lk, Ek]v)+ [Lk, Ek]Lkv + 2Xk([Lk, Ek]v)+ 2[Xk, Ek]Lkv

+ 2Ekηk · Ekv − Ekχk · Xkv − χk · [Ek, Xk]v
− (Xk log(N )) · [Ek, Lk]v − Ek Xk log(N ) · Lkv.

(8.15)

We deal with all the terms one by one. For the first commutator, notice using (2.39)
that

Lk([Lk, Ek]v) = Ek log(N ) · L2
kv − χk · Lk Ekv
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− Lkχk · Ekv + Lk Ek log(N ) · Lkv, (8.16)

Similarly,

[Lk, Ek]Lkv = Ek log(N ) · L2
kv − χk · EkLkv. (8.17)

Now using (2.39) and (2.42), we obtain

Xk([Lk, Ek]v) = Ek log(N ) · XkLkv − χk · Xk Ekv

− Xkχk · Ekv + Xk Ek log(N ) · Lkv, (8.18)

[Xk, Ek]Lkv = (ηk − K (Ek, Xk)) · XkLkv

+ (χk − K (Ek, Ek)) · EkLkv. (8.19)

Step 2: Rewriting some terms We rearrange the term −χk Lk Ekv from (8.16), which
we write by (2.39) as

−χk Lk Ekv = −χk Ek Lkv − χk[Lk, Ek]v
= −χk(EkLkv − χk · Ekv + Ek log N · Lkv). (8.20)

Notice that all instances of χk · EkLkv in (8.16)+ (8.17)+ 2 × (8.18)+ 2 × (8.19)
then cancel.

Finally, we conclude the proof by plugging (8.16)–(8.19) into (8.15), expanding the
remaining terms using Lemma 2.11, and finally substituting in (8.20). Note that we
split into the terms I , I I and I I I according to our convention described in Sect. 8.2.1
above. ��

8.2.4 Commuting the wave operator with Lk

Lemma 8.7 For any C3 function v,

[

Lk,�g
]

v = I (Lk)(v)+ I I (Lk)(v)+ I I I (Lk)(v),

where

I (Lk)(v) = − Lkχk · Xkv + (2Lkηk − Ekχk) · Ekv

+
(

E2
k log(N )− Lk Xk log(N )

)

· Lkv,
(8.21)

I I (Lk)(v) = 2 (K (Ek, Xk)+ ηk) · EkLkv + 2 (K (Xk, Xk)− Xk log(N )) · XkLkv

− 2Xk log(N ) · L2
kv − 2χk · E2

k v,

(8.22)

I I I (Lk)(v) = χk · (K (Xk, Xk)− Xk log(N )) · Xkv

+ χk · (K (Ek, Xk)− 2Ek log(N )− ηk) · Ekv

+ (2ηk · Ek log(N )+ (Ek log(N ))
2 − χk · Xk log(N )) · Lkv.

(8.23)
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Proof By (8.8), we have

[

Lk,�g
]

v

=
A(Lk )

︷ ︸︸ ︷

−2[Lk, Xk]Lkv+
B(Lk )

︷ ︸︸ ︷

[Lk, Ek]Ekv + Ek([Lk, Ek]v)+
C(Lk )

︷ ︸︸ ︷

2Lkηk · Ekv − Lkχk · Xkv

−Lk Xk log(N )Lkv
︸ ︷︷ ︸

D1(Lk )

+ 2ηk[Lk, Ek]v − χk[Lk, Xk]v
︸ ︷︷ ︸

D2(Lk )

.

We treat each term separately. We start with A(Lk) and using (2.45) we obtain

A(Lk) = 2(K (Ek, Xk)− Ek log N + ηk) · EkLkv + 2(K (Xk, Xk)

− Xk log(N )) · XkLkv − 2Xk log(N ) · L2
kv.

Now we handle B(Lk) using (2.39):

B(Lk)

= − 2χk · E2
k v − Ekχk · Ekv + Ek log(N ) · Lk Ekv + Ek log(N ) · EkLkv

+ E2
k log(N ) · Lkv

= − 2χk · E2
k v − Ekχk · Ekv + 2Ek log(N ) · EkLkv + E2

k log(N ) · Lkv

− Ek log N (χk · Ekv − Ek log N · Lkv).

For C(Lk) and D1(Lk), there is nothing to do.
Finally, for D2(Lk) we use (2.39) and (2.45) to get

D2(Lk) = χk · (−ηk + K (Ek, Xk)− Ek log(N )) · Ekv

+ χk · (K (Xk, Xk)− Xk log(N )) · Xkv

+ (2ηk Ek log(N )− χk · Xk log(N )) · Lkv.

Rearranging the terms according to conventions in Sect. 8.2.1 for I , I I and I I I
yields the conclusion. ��

8.3 Estimating the commutator [�g,@i]

In the remainder of this section, we bound the commutators of �g with different
vector fields. Once we bound the commutators, we also obtain an energy estimate for
the commuted quantity using Proposition 7.3.

In this subsection, we begin with the commutator [�g, ∂i ]. We recall that this
commutator is computed in Lemma 8.5.

Proposition 8.8 For any k ∈ {1, 2, 3}, define D as one of the sets in (8.1). Then the
following holds for all solutions v to �gv = f , with supp(v), supp( f ) ⊆ {(t, x) :
|x | ≤ R}:
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‖[�g, ∂i ]v‖L1
t ([0,TB ),L2(�t∩D)) � ε 3

2 · (‖∂x∂v‖L1
t ([0,TB ),L2(�t∩D)) + ‖ f ‖L1

t ([0,TB ),L2(�t∩D))).

Proof We control each term in Lemma 8.5. Controlling the metric terms using (5.1),
we immediately obtain

‖I I (∂l)(v)‖L2(�t∩D) � ε 3
2 · (‖∂x∂v‖L2(�t∩D) + ‖�gv‖L2(�t∩D)),

‖I I I (∂l)(v)‖L2(�t∩D) � ε3 · ‖∂v‖L2(�t∩D) � ε3 · ‖∂x∂v‖L2(�t∩D),

where in the last inequality, we used supp(v) ⊆ B(0, R) and Poincaré’s inequality.
For I (∂l)(v), notice that after using (5.1) and the support properties, each term is

bounded above by |∂∂xg·∂v|, where ∂∂xg is as in Proposition 8.3. Thus, Proposition 8.3
implies

‖I (∂l)(v)‖L2(�t∩D) � ε 3
2 · ‖∂v‖H1(�t∩D) � ε 3

2 · ‖∂x∂v‖L2(�t∩D),

where we again used Poincaré’s inequality in the last inequality.
Taking the L1

t norm of these three inequalities, and using �gv = f , yields the
claimed estimate. ��

Now, we use the commutator estimate in Proposition 8.8 to control the energy for
the commuted function:

Proposition 8.9 Suppose �gv = f with v and f both smooth and compactly sup-
ported in B(0, R) for every t ∈ [0, TB). Let −∞ ≤ U0 ≤ U1 ≤ +∞, with either
U0 = −∞ or U1 = ∞ (or both). Let D = D(k),TBU0,U1

, where D(k),TBU0,U1
is given by (7.9).

Then, for any k′,

sup
0≤t<TB

‖∂∂xv‖L2(�t∩D) + sup
uk′ ∈[U0,U1)

∑

Zk′ ∈{Lk′ , Ek′ }
‖Zk′∂xv‖L2(Ck′

uk′ ∩D)

� ‖∂∂xv‖L2(�0∩D) +
∑

Zk∈{Lk , Ek }
‖Zk∂xv‖L2(Ck

U0
) + ‖∂x f ‖L1

t ([0,TB ),L2(�t∩D)).

Proof We apply the energy estimate in Proposition 7.3, but to ∂iv instead of v. Notice
that �g(∂iv) = [�g, ∂i ]v + ∂i f . Hence, combining the energy estimate in Proposi-
tion 7.3 with the bound for the commutator [�g, ∂i ] in Proposition 8.8, we obtain

sup
0≤t<TB

‖∂∂xv‖L2(�t∩D) + sup
uk′ ∈[U0,U1)

∑

Zk′ ∈{Lk′ , Ek′ }
‖Zk′∂xv‖L2(Ck′

uk′ ∩D)

� ‖∂∂xv‖L2(�0∩D) +
∑

Zk∈{Lk , Ek }
‖Zk∂xv‖L2(Ck

U0
) + ε

3
2 · ‖∂x∂v‖L1

t ([0,TB ),L2(�t∩D))

+ ‖ f ‖L1
t ([0,TB ),L2(�t∩D)) + ‖∂x f ‖L1

t ([0,TB ),L2(�t∩D)).

Now notice that by TB ≤ 1, ε
3
2 ‖∂x∂v‖L1

t ([0,TB ),L2(�t∩D))
� ε 3

2 sup0≤t<TB ‖∂∂xv‖L2(�t∩D), and hence this term can be absorbed by the left-hand
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side. Moreover, using that supp( f ) ⊆ B(0, R), we have ‖ f ‖L1
t ([0,TB ),L2(�t∩D)) �

‖∂x f ‖L1
t ([0,TB ),L2(�t∩D)) by Poincaré’s inequality. Combining all these observations

yields the desired estimate. ��

8.4 Estimating the commutator [�g, Ek]

Next, we turn to the commutator [�g, Ek]. Unlike the estimates in Sect. 8.3, when
we bound [�g, Ek]v, we will not assume v to be compactly supported. (We remark
that such bounds for non-compactly supported v are needed for the applications in
Sect. 12.)

Proposition 8.10 Fix k and defineD as one of the sets in (8.1). Let v be smooth function
which is in Schwartz class for every t ∈ [0, TB). Then, for all r ≥ 1, the following
holds for all t ∈ [0, TB):

‖〈x〉− r
2 [�g, Ek]v‖L2(�t∩D) � ε 3

2 · (‖∂v‖L2(�t∩D) +
∑

Zk∈{Ek ,Lk }
‖∂Zkv‖L2(�t∩D)),

where the implicit constant is allowed to depend on r.

Proof Recall the computation of [�g, Ek] in Lemma 8.6. We now bound the terms
I (Ek), I I (Ek), I I I (Ek) from Lemma 8.6.

We first recall the definition of I (Ek)(v) in (8.12). By the L∞ bound for Lkχk in
(5.14), the L∞ estimates for the geometric vector fields in Proposition 5.3, and the L∞
estimates for the metric coefficients and their derivatives in (5.1), we get (recalling
α = 0.01)

|I (Ek)|(v) � ε 3
2 |∂v|

︸ ︷︷ ︸

=:A
+〈x〉α (|∂xχk | + |Ekηk |) |Ekv|

︸ ︷︷ ︸

=:B
+〈x〉ν |∂x∂N | · |Lkv|

︸ ︷︷ ︸

=:D
.

(8.24)

We control the L2
− r

2
(�t ) norm of each term. The term A obviously satisfies

‖A‖L2
− r
2
(�t∩D) � ε 3

2 ‖∂v‖L2(�t∩D). (8.25)

For B, we use Proposition 8.2, r ≥ 1 and Proposition 5.3 to obtain

‖B‖L2
− r
2
(�t∩D) � ‖(|∂xχk | + |Ekηk |) · Ekv‖L2

− 1
4
(�t∩D)

� ε 3
2 ‖Ekv‖L2

− 1
8
(�t∩D) + ε

3
2 ‖E2

k v‖L2
− 1
8
(�t∩D)

� ε 3
2 ‖∂v‖L2

− 1
16
(�t∩D) + ε

3
2 ‖∂Ekv‖L2

− 1
16
(�t∩D)

� ε 3
2 ‖∂v‖L2(�t )

+ ε 3
2 ‖∂Ekv‖L2(�t∩D).

(8.26)
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The term D can be handled by Proposition 8.3, giving

‖〈x〉− r
2+α|∂∂x N | · |Lkv|‖L2(�t∩D)

� ε 3
2 (‖∂v‖L2(�t∩D) + ‖∂Lkv‖L2(�t∩D)).

(8.27)

Combining (8.24)–(8.27), we obtain

‖〈x〉− r
2 I (Ek)(v)‖L2(�t∩D)

� ε
3
2 · (‖∂v‖L2(�t∩D) +

∑

Zk∈{Ek ,Lk }
‖∂Zkv‖L2(�t∩D)

)

.
(8.28)

By (8.13) and the estimates in Propositions 5.2, 5.3 and 5.5, we have the pointwise
estimate12

|I I (Ek)(v)| � ε 3
2 (|∂Lkv| + |∂Ekv|) . (8.29)

In a similar manner, but starting with (8.14), we also obtain the pointwise estimate

|I I I (Ek)(v)| � ε3|∂v|. (8.30)

By (8.29) and (8.30), it follows immediately that

‖〈x〉− r
2 I I (Ek)(v)‖L2(�t∩D) + ‖〈x〉− r

2 I I I (Ek)(v)‖L2(�t∩D)
� ε 3

2 · (‖∂v‖L2(�t∩D) +
∑

Zk∈{Ek ,Lk }
‖∂Zkv‖L2(�t∩D)).

(8.31)

Combining Lemma 8.6, (8.28) and (8.31) yields the conclusion. ��

In the next proposition, we are going to use Proposition 8.10 to estimate the energy
commuted with the vector field Ek , this time for compactly supported functions (so
that the spatial weights become irrelevant).

Proposition 8.11 Suppose �gv = f with v and f both smooth and compactly sup-
ported in B(0, R) for every t ∈ [0, TB). Let −∞ ≤ U0 ≤ U1 ≤ +∞, with either
U0 = −∞ or U1 = ∞ (or both). Let D = D(k),TBU0,U1

, where D(k),TBU0,U1
is given by (7.9).

Then, for any k′,

12 Notice that one could even put in additional decaying weights of 〈x〉 in this estimate, but this will not
be necessary.
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sup
0≤t<TB

‖∂Ekv‖L2(�t∩D) + sup
uk′ ∈R

∑

Zk′ ∈{Lk′ , Ek′ }
‖Zk′Ekv‖L2(Ck′

uk′ ∩D)

� ‖∂Ekv‖L2(�0∩D) +
∑

Zk∈{Lk , Ek }
‖Zk Ekv‖L2(Ck

U0
)

+ ε 3
2 (‖∂v‖L1

t ([0,TB ),L2(�t∩D)) +
∑

Zk∈{Ek ,Lk }
‖∂Zkv‖L1

t ([0,TB ),L2(�t∩D)))

+ ‖Ek f ‖L1
t ([0,TB ),L2(�t∩D)).

Proof This is an immediate consequence of the combination of Proposition 7.3 and
Proposition 8.10, since

�g(Ekv) = [�g, Ek]v + Ek f .

��

8.5 Estimating the commutator [�g, Lk]

The final commutator to estimate is [�g, Lk]. We will prove analogues of Proposi-
tions 8.10 and 8.11 with Ek replaced by Lk .

Proposition 8.12 Fix k and defineD as one of the sets in (8.1). Let v be smooth function
which is in Schwartz class for every t ∈ [0, TB). Then, for all r ≥ 1, the following
holds for all t ∈ [0, TB):

‖〈x〉− r
2 [�g, Lk]v‖L2(�t∩D) � ε 3

2 · (‖∂v‖L2(�t∩D) +
∑

Zk∈{Ek ,Lk }
‖∂Zkv‖L2(�t∩D)),

where the implicit constant is allowed to depend on r.

Proof We bound the terms I (Lk), I I (Lk), I I I (Lk) from Lemma 8.7, following the
same lines of reasoning as for Proposition 8.10. We get (recall α = 0.01):

|I (Lk)(v)| � ε 3
2 |∂v| + 〈x〉2α(|∂xχk | + |∂∂x N |) · |∂v|,

|I I (Lk)(v)| � ε 3
2 |∂Lkv|,

|I I I (Lk)(v)| � ε3|∂v|.

These terms are exactly those in Proposition 8.10, and therefore can be treated in
exactly the same manner. ��

The next proposition is analogous to Proposition 8.11:

Proposition 8.13 Suppose �gv = f with v and f both smooth and compactly sup-
ported in B(0, R) for every t ∈ [0, TB). Let −∞ ≤ U0 ≤ U1 ≤ +∞, with either
U0 = −∞ or U1 = ∞ (or both). Let D = D(k),TBU0,U1

, where D(k),TBU0,U1
is given by (7.9).
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Then, for any k′

sup
0≤t<TB

‖∂Lkv‖L2(�t∩D) + sup
uk′ ∈R

∑

Zk′ ∈{Lk′ , Ek′ }
‖Zk′Lkv‖L2(Ck′

uk′ ∩D)

� ‖∂Lkv‖L2(�0)
+ ε 3

2 · (‖∂v‖L1
t ([0,TB ),L2(�t∩D)) +

∑

Zk∈{Ek ,Lk }
‖∂Zkv‖L1

t ([0,TB ),L2(�t∩D)))

+ ‖Lk f ‖L1
t ([0,TB ),L2(�t∩D)).

Proof Noting �g(Lkv) = [�g, Lk]v + Lk f , this is an immediate consequence of
Propositions 7.3 and 8.12. ��

9 Energy estimates for ˜�k up to two derivatives I: the basic estimates

The goal of this section is to obtain energy estimates, for the scalar field commuted
with zero or one derivative on the whole of �t . When there is no commutations or
one commutation with a good derivative, we bound the energy uniformly in δ, while
if there is one commutation with a general spatial derivative, we allow the energy to
grow in δ−1.

We note already that some of these estimates will be later improved in Sect. 10, by
localizing on different regions of the spacetime.

The main result of this section is the next proposition:

Proposition 9.1 The following energy estimate holds for the lowest order energy:

sup
0≤t<TB

‖∂˜φk‖L2(�t )
+ sup

uk′ ∈R

∑

Zk′ ∈{Lk′ , Ek′ }
‖Zk′˜φk‖L2(Ck′

uk′ ([0,TB )))
� ε. (9.1)

The following energy estimate holds after commutation with one good vector field:

∑

Zk∈{Lk , Ek }
( sup
0≤t<TB

‖∂Zk˜φk‖L2(�t )
+ sup

uk∈R

∑

Yk′ ∈{Lk′ , Ek′ }
‖Yk′ Zk˜φk‖L2(Ck′

uk′ ([0,TB )))
) � ε.

(9.2)

Finally, the following energy estimate holds for more general second derivatives of
˜φk:

sup
0≤t<TB

‖∂2˜φk‖L2(�t )
+ sup

uk′ ∈R

∑

Zk′ ∈{Lk′ , Ek′ }
‖Zk′∂x˜φk‖L2(Ck′

uk′ ([0,TB )))
� ε · δ− 1

2 .

(9.3)

Proof Step 1: Proof of (9.1) This is an immediate consequence of the energy estimate
in Proposition 7.3 (with v = ˜φk , f = 0, U0 = −∞, and U1 = ∞), and the initial
data bound in (4.3a).
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Step 2: Proof of (9.2) Summing the estimates in Propositions 8.11 and 8.13 with
v = ˜φk (so that f = �gv = �g˜φk = 0), we have

∑

Zk∈{Lk , Ek }
( sup
0≤t<TB

‖∂Zk˜φk‖L2(�t )
+ sup

uk∈R

∑

Yk′ ∈{Lk′ , Ek′ }
‖Yk′ Zk˜φk‖L2(Ck′

uk′ ([0,TB )))
)

�
∑

Zk∈{Lk ,Ek }
‖∂Zk˜φk‖L2(�0)

︸ ︷︷ ︸

=:I

+ ε 3
2 ‖∂˜φk‖L1

t ([0,TB ),L2(�t ))
︸ ︷︷ ︸

=:I I

+ ε 3
2

∑

Zk∈{Ek ,Lk }
‖∂Zk˜φk‖L1

t ([0,TB ),L2(�t ))
)

︸ ︷︷ ︸

=:I I I

.

(9.4)

The data term can be controlled using (4.3a) and (4.3b) by I � ε. The term I I �
ε

3
2 · ε � ε

5
2 by (9.1). For the term I I I , we can absorb it by the first term on the

left-hand side, after choosing ε0 smaller if necessary. Putting all these together gives
(9.2).
Step 3: Proof of (9.3) Using Proposition 8.9 with v = ˜φk , U0 = −∞ and U1 = ∞,
we obtain

sup
t∈[0,TB )

‖∂∂x˜φk‖L2(�t )
+ sup

uk′ ∈R

∑

Zk′ ∈{Lk′ , Ek′ }
‖Zk′∂x˜φk‖L2(Ck′

uk′ ([0,TB )))

� ‖∂∂x˜φk‖L2(�0)
� εδ− 1

2 ,

(9.5)

where we used (4.9b) in the final inequality. In particular, this controls every term in
(9.3), with the only exception being the term sup

t∈[0,TB )
‖∂2t t˜φk‖L2(�t )

.

In order to bound sup
t∈[0,TB )

‖∂2t t˜φk‖L2(�t )
, we write ∂2t t = ∂t (β i∂i + N · Lk + N · Xk).

Then, using the bounds for themetric in Proposition 5.2, together with Proposition 5.3,
we have

sup
t∈[0,TB )

‖∂2t t˜φk‖L2(�t )
� ‖∂˜φk‖L2(�t )

+ ‖∂∂x˜φk‖L2(�t )
+

∑

Zk∈{Ek ,Lk }
‖∂Zk˜φk‖L2(�t )

� εδ− 1
2 ,

where at the end we used (9.1), (9.2) and (9.5). Putting everything together gives (9.3).
��

10 Energy estimates for ˜�k up to two derivatives II: the improved
estimates

In this section, we derive improved estimates for the first and second derivatives of
˜φk . We will obtain two improvements:

• In the (slightly enlarged) singular region Sk2δ , ∂˜φk and ∂Zk˜φk satisfy smallness
(in terms of δ) bounds in energy. (See (1.21) and (1.22) in the introduction, and
Proposition 10.2 below.)
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• Away from the singular region, i.e. in �t \ Sk2δ , the L2 norm of ∂2˜φk is bounded
independently of δ−1, in contrast to the global bound in (9.3). (See (1.24) in the
introduction, and Proposition 10.3 below.)

These two improved bounds are highly related: indeed, in order to obtain the latter
estimate, we use the former estimate together with a slice-picking argument.

We begin with the localized estimate restricted to the initial data.

Proposition 10.1 The following estimates hold on the initial hypersurface �0:

‖∂˜φk‖L2(�0∩Sk2δ)
� ε · δ 1

2 , (10.1)
∑

Zk∈{Lk , Ek }
‖∂Zk˜φk‖L2(�0∩Sk2δ)

� ε · δ 1
2 . (10.2)

Proof Recall that on the initial hypersurface �0, (uk, θk) are affine functions of
(x1, x2); see (2.22) and (2.50). Therefore, in all the following estimates, we can easily
bound |∂uk f | � |∂x f |, as well as pass between L2

x1,x2
(�0) and L2

uk ,θk
(�0).

Given any f : �0 → R such that supp( f ) ⊆ B(0, R)∩{uk ≥ −δ}, the fundamental
theorem of calculus, the Minkowski inequality and the Cauchy–Schwarz inequality
imply that for every uk ≥ −δ,

‖ f ‖L2
θk
(�0∩Ck

uk
)�

∫ uk

−δ
‖∂uk f ‖L2

θk
(�0∩Ck

ũk
) dũk � |uk + δ| 12 ‖∂x f ‖L2(�0)

. (10.3)

We now apply (10.3) to f = ∂˜φk and f = ∂Zk˜φk (for Zk ∈ {Ek, Lk}). First, by (4.4),
we have

‖∂x∂˜φk‖L2(�0)
+ ‖∂x Zk∂˜φk‖L2(�0)

� ε · δ− 1
2 .

Hence, using (10.3), we have

sup
uk∈[−2δ,2δ]

(‖∂˜φk‖L2
θk
(�0∩Ck

uk
) +

∑

Zk∈{Lk , Ek }
‖∂Zk˜φk‖L2

θ (�0∩Ck
uk
)) � ε. (10.4)

Finally, Hölder’s inequality implies that

‖∂˜φk‖L2(�0∩Sk2δ)
+

∑

Zk∈{Lk , Ek }
‖∂Zk˜φk‖L2(�0∩Sk2δ)

� δ 1
2 sup
uk∈[−2δ,2δ]

(‖∂˜φk‖L2
θk
(�0∩Ck

uk
) +

∑

Zk∈{Lk , Ek }
‖∂Zk˜φk‖L2

θk
(�0∩Ck

uk
)) � ε · δ 1

2 .

(10.5)

��
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It is now straightforward to use the energy estimates in Propositions 7.3, 8.11
and 8.13 to propagate the initial data bounds (10.1) and (10.2) to all future times. This
gives our first improved energy estimate.

Proposition 10.2

sup
0≤t<TB

‖∂˜φk‖L2(�t∩Sk2δ)
� ε · δ 1

2 , (10.6)

sup
0≤t<TB

∑

Zk∈{Lk , Ek }
‖∂Zk˜φk‖L2(�t∩Sk2δ)

� ε · δ 1
2 . (10.7)

Proof Applying Proposition 7.3 with v = ˜φk , f = 0, U0 = −2δ, U1 = 2δ, and
bounding the initial data terms by Proposition 10.1 and Lemma 5.1, we obtain (10.6).

Next, we apply Propositions 8.11 and 8.13 with v = ˜φk , f = 0, U0 = −∞,
U1 = 2δ. (Note that even though we apply the propositions with U0 = −∞, since ˜φk
is supported only in {uk ≥ −δ} (by Lemma 5.1), we indeed obtain an estimate which
is integrated over �t ∩ Sk2δ .) We thus obtain

sup
0≤t<TB

∑

Zk∈{Lk ,Ek }
‖∂Zkv‖L2(�t∩Sk2δ)

�
∑

Zk∈{Lk ,Ek }
‖∂Zkv‖L2(�0∩Sk2δ)

+ ε 3
2 (‖∂v‖L1

t ([0,TB ),L2(�t∩D)) +
∑

Zk∈{Ek ,Lk }
‖∂Zkv‖L1

t ([0,TB ),L2(�t∩Sk2δ))
).

(10.8)

The first term in (10.8) is bounded � εδ
1
2 by Proposition 10.1. The second term is

� ε 5
2 δ

1
2 by the estimate (10.6) that we just proved. Finally, the last term obeys

ε
3
2

∑

Zk∈{Ek ,Lk }
‖∂Zkv‖L1

t ([0,TB ),L2(�t∩Sk2δ))
� ε 3

2 sup
0≤t<TB

∑

Zk∈{Lk ,Ek }
‖∂Zkv‖L2(�t∩Sk2δ)

.

This can thus be absorbed by the left-hand side. This concludes the proof of (10.7). ��
Wenow turn to the second improved energy estimate,which is an improved estimate

after the singular zone.

Proposition 10.3 The following away-from-the-singular-zone estimate holds:

sup
t∈[0,TB )

‖∂2˜φk‖L2(�t∩Ck≥δ)

+ sup
uk∈[δ,+∞)

∑

Zk′ ∈{Lk′ , Ek′ }
‖Zk′∂x˜φk‖L2(Ck′

uk′ ([0,TB ))\S
k
δ )

� ε. (10.9)
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Proof Step 1: Finding a good slice We square (10.7) and we integrate on [0, TB) to
obtain on D := {0 ≤ t < TB, 0 ≤ uk ≤ δ}:

∑

Zk∈{Lk , Ek }

∫

D
|∂Zk˜φk |2dx1dx2dt � ε2 · δ.

Controlling the commutator [∂, Zk]˜φk using Proposition 5.3 and (10.6), we obtain

∑

Zk∈{Lk , Ek }

∫

D
|Zk∂˜φk |2dx1dx2dt � ε2 · δ.

Since the volumemeasures dx1 dx2 dt and duk dθk dtk are comparable (by (5.22)),
it follows that

∑

Zk∈{Lk , Ek }

∫ δ

0

∫ TB

0

∫ ∞

−∞
|Zk∂˜φk |2(uk, θk, tk) dθk dtk duk � ε2 · δ.

By the mean value theorem, there exists u∗
k ∈ [0, δ] such that

∑

Zk∈{Lk , Ek }
‖Zk∂˜φk‖2L2(Ck

u∗
k
([0,TB )))

�
∑

Zk∈{Lk , Ek }

∫ TB

0

∫ ∞

−∞
|Zk∂˜φk |2(u∗

k , θk, tk) dθk dtk � ε2. (10.10)

Notice that for this special value u∗
k , the estimate (10.10) is better than the bound

provided by Proposition 9.1, which would have ε2δ−1 on the right-hand side instead
of ε2.
Step 2: Applying an energy estimate in the regular region The key point now is that
we can apply an energy estimate again, but only in the region where uk ≥ uk∗. The
initial data for this new problem has two parts: the energy on the hypersurface Ck

u∗
k
is

good (i.e. δ-independent) thanks to (10.10), while the energy on the restriction of the
initial hypersurface �0 ∩ {uk ≥ u∗} is good by assumption on the data since u∗

k ≥ 0.
More precisely, we apply Proposition 8.9 with v = ˜φk , f = 0, U0 = u∗

k and
U1 = +∞. Note in particular that D corresponds to Ck

≥u∗
k
.

sup
t∈[0,TB )

‖∂∂x˜φk‖L2(�t∩Ck
≥u∗

k
) + sup

uk′ ∈R

∑

Zk′ ∈{Lk′ , Ek′ }
‖Zk∂x˜φk‖L2(Ck′

uk′ ([0,TB ))∩C
k
≥u∗

k
)

� ‖∂2˜φk‖L2(�0∩Ck
≥u∗

k
) +

∑

Zk∈{Lk , Ek }
‖Zk∂˜φk‖L2(Ck

u∗
k
([0,TB ))) � ε,

(10.11)

where in the last inequality we used (4.5) and (10.10).
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Notice that (10.11) bounds every term in (10.9) except for ‖∂2t t˜φk‖L2(�t∩Ck
≥u∗

k
). In

order to bound this term, we write ∂2t t = ∂t (β
i∂i + N · Lk + N · Xk) and use the

estimates (5.1), (9.1), (9.2) together with the bound (10.11) that we just established. ��

11 Energy estimates for the third derivatives

In this section, we prove energy estimates for the third derivatives of ˜φk and φreg .
There are two different estimates that we prove. The first type are estimates that

concern ˜φk . These are third derivative estimates where among the three derivatives
on ˜φk , there is at least one good derivative Lk or Ek ; see Proposition 11.7 for a
precise statement. Aswe discussed in Sect. 1.1.6, these derivativeswill be proven using
specially chosen commutators Ek∂q and Lk Lk . It will be shown that the estimates for
‖∂Ek∂q˜φk‖L2(�t )

and ‖∂L2
k
˜φk‖L2(�t )

will indeed be sufficient to deduce the remaining
desired bounds for third derivatives for˜φk . This will occupy Sects. 11.1–11.4. (Notice
that this type of anisotropic third derivative estimates can also be derived for φreg , but
it is unnecessary and will not be derived. The fact that this is unnecessary is because
φreg ∈ H2+s′ uniformly in δ; see Sect. 13.)

The second type of estimates we derive in this section concerns third derivatives
for φ, where none of the derivatives are required to be good. This includes bounding
both ˜φk and φreg . These estimates will be proven in Sect. 11.5; see Proposition 11.8.
These estimates are easier to obtain because we allow the bound to be very large in
terms of δ−1.

11.1 Commutations of the three derivatives

We first show that it suffices to control specific combination of order of commutators,
namely that we only have to bound ‖∂Ek∂x˜φk‖L2(�t )

and ‖∂L2
k
˜φk‖L2(�t )

; see Corol-
lary 11.3. This is particularly important because Ek∂q and L2

k have better properties
when commuted with �g , thus allowing us to obtain the desired estimate.

We first prove the following commutation estimate.

Lemma 11.1 Letσ ∈ S3 beapermutation, and let Y (1), Y (2) andY (3) be three (possibly
non-distinct) vector fields from the set {Lk, Ek, Xk, �n, ∂1, ∂2}. Then

‖Y (1)Y (2)Y (3)˜φk‖L2(�t )
� ε · δ− 1

2 + ‖Y (σ (1))Y (σ (2))Y (σ (3))˜φk‖L2(�t )
.

Proof Clearly, it suffices to control
‖[Y (i),Y ( j)]Y (l)˜φk‖L2(�t )

and ‖Y (i)[Y ( j),Y (l)]˜φk‖L2(�t )
. Observe that since �n =

Lk + Xk (by (2.32)), we can assume that Y (1), Y (2), Y (3) ∈ {Lk, Ek, Xk, ∂1, ∂2}.
We begin with ‖[Y (i),Y ( j)]Y (l)˜φk‖L2(�t )

. Using Proposition 5.3, we see that Lμk ,
Ei
k and Xi

k obey C1 bounds on B(0, R). Hence, using Hölder’s inequality and (9.1),
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(9.3), we obtain

‖[Y (i),Y ( j)]Y (l)˜φk‖L2(�t )

� (
∑

Yk∈{Lk ,Ek ,Xk }
‖∂Yμk ‖L∞(�t∩B(0,R)))

[

‖∂2˜φk‖L2(�t )

+ (
∑

Yk∈{Lk ,Ek ,Xk }
‖∂Yμk ‖L∞(�t∩B(0,R)))‖∂˜φk‖L2(�t )

]

� ε 5
4 (‖∂2˜φk‖L2(�t )

+ ‖∂˜φk‖L2(�t )
) � ε 5

4 · (εδ− 1
2 ) � εδ− 1

2 .

(11.1)

To bound ‖Y (i)[Y ( j),Y (l)]˜φk‖L2(�t )
, we first observe that Proposition 5.3 does not

give L2(�t ) control of all second (spacetime) derivatives of Lμk , E
i
k and X

i
k on B(0, R).

Nonetheless, the only second derivative that is not controlled is the term ∂2t t L
t
k .

Next, observe that in the set {Lk, Ek, Xk, ∂1, ∂2}, the only vector field with a ∂t
component in the {∂t , ∂1, ∂2} basis is Lk . Since [Lk, Lk] = 0, [Y ( j),Y (l)] cannot
generate a ∂t Lt term. As a result, using Hölder’s inequality, Proposition 5.3, and (9.1),
(9.3) together with the bootstrap assumption (4.12c), we obtain

‖Y (i)[Y ( j), Y (l)]˜φk‖L2(�t )

� (
∑

Yk∈{Ek ,Xk }
‖∂2Y i

k‖L2(�t∩B(0,R)) + ‖∂∂x Lμk ‖L2(�t∩B(0,R)))‖∂˜φk‖L∞(�t )

+
∑

Yk∈{Ek ,Xk ,Lk }
‖∂Yμk ‖L∞(�t∩B(0,R))‖∂2˜φk‖L2(�t )

� ε 5
4 (‖∂˜φk‖L∞(�t ) + ‖∂2˜φk‖L2(�t )

) � ε 5
4 · (εδ− 1

2 ) � εδ− 1
2 .

(11.2)

Combining (11.1) and (11.2) yields the conclusion. ��
Proposition 11.2 The following holds for all t ∈ [0, TB):

∑

Y (1)k ,Y (2)k ,Y (3)k ∈{Xk ,Ek ,Lk }
∃i,Y (i)k �=Xk

‖Y (1)k Y (2)k Y (3)k
˜φk‖L2(�t )

� ε · δ− 1
2 + ‖∂Ek∂x˜φk‖L2(�t )

+ ‖∂L2
k
˜φk‖L2(�t )

.

Proof ByLemma11.1, it suffices to controlY (1)k Y (2)k Y (3)k
˜φk with any order ofY

(1)
k ,Y (2)k

and Y (3)k . We consider all possible cases below. (We will silently use that supp(˜φk) ⊆
B(0, R) so that we do not need to be concerned about the weights at infinity.)
Case 1: At least one of Y (i)k = Ek There are two subcases: 1(a) there is at least

one other spatial vector field Ek or Xk , and 1(b) Y (1)k Y (2)k Y (3)k is some commutation

of EkLk Lk . In case 1(a), we assume Y (2)k = Ek and Y (3)k ∈ {Ek, Xk}. Expanding
Y (3)k in terms of ∂i , and using the bounds in Proposition 5.3, we can control the

term by ε · δ− 1
2 + ‖∂Ek∂x˜φk‖L2(�t )

. In case 1(b), the term is trivially controlled by

ε · δ− 1
2 + ‖∂L2

k
˜φk‖L2(�t )

.
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Case 2: At least one of Y (i)k = Lk , and none of them is Ek The three vector fields
must therefore be (commutations of) 2(a) Lk Lk Lk , 2(b) XkLk Lk , or 2(c) XkLk Xk . In
cases 2(a) and 2(b), clearly we have (using Proposition 5.3)

‖L3
k
˜φk‖L2(�t )

+ ‖XkL
2
k
˜φk‖L2(�t )

� ‖∂L2
k
˜φk‖L2(�t )

,

which is acceptable. In case 2(c), we use the wave equation �g˜φk = 0 and the
expression (8.8), as well as the bounds in Propositions 5.2–5.5 to obtain

‖XkLk Xk˜φk‖L2(�t )

� ‖XkL
2
k
˜φk‖L2(�t )

+ ‖Xk E
2
k
˜φk‖L2(�t )

+ ε 3
2 (‖∂2˜φk‖L2(�t )

+ ‖∂˜φk‖L∞(�t )).

The first two terms are other combinations ofY (1)k Y (2)k Y (3)k
˜φk whichwe have controlled

above, while the last two terms are bounded above by ε · δ− 1
2 using (9.3) and the

bootstrap assumption (4.12c). ��
In fact, we can slightly strengthen Proposition 11.2 to include �n and ∂q derivatives.

Corollary 11.3 The following estimates hold for all t ∈ [0, TB):
∑

Y (1)k ,Y (2)k ,Y (3)k ∈{Xk ,Ek ,Lk ,∂q ,�n}
∃i,Y (i)k =Ek or Y

(i)
k =Lk

‖Y (1)k Y (2)k Y (3)k
˜φk‖L2(�t )

� ε · δ− 1
2 + ‖∂Ek∂x˜φk‖L2(�t )

+ ‖∂L2
k
˜φk‖L2(�t )

, (11.3)

and

∑

Y (1)k ,Y (2)k ∈{Xk ,Ek ,Lk ,∂q ,�n}
∃i,Y (i)k =Ek or Y

(i)
k =Lk

‖∂Y (1)k Y (2)k
˜φk‖L2(�t )

� ε · δ− 1
2 + ‖∂Ek∂x˜φk‖L2(�t )

+ ‖∂L2
k
˜φk‖L2(�t )

, (11.4)

Proof Clearly it suffices to prove (11.3), since (11.4) follows fromusing (11.3) together
with (5.8) (5.10).

Comparing to Proposition 11.2, the only new vector fields in (11.3) are �n and ∂q .

• Since �n = Lk + Xk (by (2.32)), if we have the vector field �n (but not ∂i ), we can
reduce directly to Proposition 11.2.

• Suppose now among Y (1)k ,Y (2)k ,Y (3)k , there is at least one ∂q and one Zk ∈
{Lk, Ek}. Then using Lemma 11.1 to commute the vector fields, it suffices to
bound

∑

Zk∈{Lk ,Ek }
‖∂∂x Zk˜φk‖L2(�t )

.

123



Nonlinear Interaction of Three Impulsive... Page 69 of 137 10

After using (5.11), this can in turn be reduced to a term as in Proposition 11.2 and
plus another term

∑

Zk∈{Lk ,Ek } ‖∂x Zk˜φk‖L2(�t )
. The latter term can be controlled

using Proposition 9.1.

��
Remark 11.4 Note that despite Corollary 11.3, we do not control a term such as
‖∂t Lk∂t˜φk‖L2(�t )

. This is due to a lack of control of ∂2t L
ν
k from Proposition 5.3.

11.2 Controlling ‖@Ek@x ˜�k‖L2(6t)

Proposition 11.5

sup
t∈[0,TB )

‖∂Ek∂x˜φk‖L2(�t )
� ε · δ− 1

2 + ε 3
2 sup
t∈[0,TB )

‖∂L2
k
˜φk‖L2(�t )

. (11.5)

Proof We apply energy estimates for Ek∂q˜φk . First, we write

�g(Ek∂q˜φk) = [�g, Ek]∂q˜φk + Ek([�g, ∂q ]˜φk).

Step 1: Controlling [�g, Ek]∂q˜φk By Proposition 8.10 and the support properties of
˜φk , we obtain

‖[�g, Ek]∂q˜φk‖L2(�t )
� ε 3

2 · (‖∂2˜φk‖L2(�t )
+

∑

Zk∈{Ek ,Lk }
‖∂Zk∂q˜φk‖L2(�t )

)

� ε · δ− 1
2 +ε 3

2 ‖∂Ek∂x˜φk‖L2(�t )
+ε 3

2 ‖∂L2
k
˜φk‖L2(�t )

� ε · δ− 1
2 +ε 3

2 ‖∂L2
k
˜φk‖L2(�t )

,

where in the last line we additionally used (9.3), Corollary 11.3 and bootstrap assump-
tion (4.9d).
Step 2: Controlling ‖Ek([�g, ∂q ]˜φk)‖L2(�t )

By Lemma 8.5, [�g, ∂q ]˜φk can be written
as a sum of terms of the schematic form

�(g) · ∂∂x g · ∂˜φk, �(g) · ∂xg · ∂x∂x˜φk, �(g) · ∂xg · �n∂x˜φk, �(g) · (∂g)2 · ∂˜φk,

with g ∈ {N , β, γ } and �(g) a smooth function of the metric coefficients. (The
important feature to notice here,13 other than the number of derivatives, is that there
are no termswith ∂2t gor ∂t∂xg. It is also useful to note that there are no�(g)·∂tg·∂x∂x˜φk
or �(g) · ∂tg · �n∂x˜φk terms.)

Therefore, using

• that Ek is a spatial derivatives, satisfying (5.5),

• that |�(g)| � 1, |∂g| � ε 3
2 , |∂2x g| � ε 3

2 on the support of ˜φk (by (5.1)), and

• that |∂˜φk | � ε
3
4� by (4.12c) and Lemma 5.1, where � ∈ C∞

c is a cutoff such
that � ≡ 1 on B(0, 2R) and supp(�) ⊆ B(0, 3R),

13 One may observe that there are also no terms with �n2˜φk , but this is irrelevant for the argument below.
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we obtain

|Ek([�g, ∂q ]˜φk)|
� ε

3
4�(|∂∂2x g| + |∂∂xg|)

︸ ︷︷ ︸

A

+ ε 3
4 |∂2˜φk |

︸ ︷︷ ︸

B

+ |∂∂xg|(|Ek∂x˜φk | + |Ek �n˜φk |)
︸ ︷︷ ︸

D

+ ε 3
2 (|Ek∂

2
x
˜φk | + |Ek �n∂x˜φk |)

︸ ︷︷ ︸

F

.

(11.6)

We now control each term in (11.6). The term A can be bounded using (5.1) and
(5.2):

‖A‖L2(�t )
� ε 3

4 · ε 3
2 · δ− 1

2 � ε 9
4 δ−

1
2 .

The term B can be bounded using (9.3):

‖B‖L2(�t )
� ε 3

4 · ε · δ− 1
2 � ε 7

4 δ−
1
2 .

The term D can be bounded by first using Proposition 8.3 and then using (9.2) and
Corollary 11.3:

‖D‖L2(�t )
� ε 3

2

(

‖Ek∂x˜φk‖L2(�t )
+ ‖Ek �n˜φk‖L2(�t )

+ ‖∂x Ek∂x˜φk‖L2(�t )
+ ‖∂x Ek �n˜φk‖L2(�t )

)

� ε 5
2 + ε 5

2 · δ− 1
2 + ε 3

2 ‖∂Ek∂x˜φk‖L2(�t )
+ ε 3

2 ‖∂L2
k
˜φk‖L2(�t )

.

Finally, for the term F , we use Corollary 11.3 to obtain

‖F‖L2(�t )
� ε 5

2 · δ− 1
2 + ε 3

2 ‖∂Ek∂x˜φk‖L2(�t )
+ ε 3

2 ‖∂L2
k
˜φk‖L2(�t )

.

Putting all these together, we obtain

‖Ek([�g, ∂q ]˜φk)‖L1([0,TB );L2(�t ))
� ε · δ− 1

2 + ε 3
2 ‖∂Ek∂x˜φk‖L2(�t )

+ ε 3
2 ‖∂L2k˜φk‖L2(�t )

.

Step 3: Putting everything together Combining the estimates in Steps 1 and 2, we
obtain

‖�g(Ek∂q˜φk)‖L2(�t )
� ε · δ− 1

2 + ε 3
2 ‖∂Ek∂x˜φk‖L2(�t )

+ ε 3
2 ‖∂L2k˜φk‖L2(�t )

.

Therefore, applying Proposition 7.3 with v = Ek∂q˜φk , U0 = −∞ and U1 = +∞,
and bounding the initial data by (4.4), we obtain

sup
t∈[0,TB )

‖∂Ek∂x˜φk‖L2(�t )
� ε · δ− 1

2 + ε 3
2 sup
t∈[0,TB )

(‖∂Ek∂x˜φk‖L2(�t )
+ ‖∂L2k˜φk‖L2(�t )

).
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Choosing ε sufficiently small, we can absorb ε
3
2 supt∈[0,TB ) ‖∂Ek∂x˜φk‖L2(�t )

by the
term on the left-hand side, thus concluding the proof. ��

11.3 Controlling ‖@L2k
˜�k‖L2(6t)

Proposition 11.6

‖∂L2
k
˜φk‖L2(�t )

� ε · δ− 1
2 . (11.7)

Proof We apply energy estimates to L2
k
˜φk . First, we expand

�g(L
2
k
˜φk) = [�g, Lk]Lk˜φk + Lk([�g, Lk]˜φk). (11.8)

The first term will be controlled in Step 1 and the second term will be controlled in
Steps 2–3 below, after which we carry out the energy estimates in Step 4.
Step 1: Controlling [�g, Lk]Lk˜φk We use Proposition 8.12 and supp(˜φk) ⊆ B(0, R)
to obtain

‖[�g, Lk ]Lk˜φk‖L2(�t )
� ε 3

2 · (‖∂2˜φk‖L2(�t )
+

∑

Zk∈{Ek ,Lk }
‖∂Zk Lk˜φk‖L2(�t )

)

� ε 5
2 · δ− 1

2 + ε 3
2 ‖∂Ek∂x˜φk‖L2(�t )

+ ε 3
2 ‖∂L2

k
˜φk‖L2(�t )

� ε 9
4 · δ− 1

2 + ε 3
2 ‖∂L2

k
˜φk‖L2(�t )

,

(11.9)

where in the last line we additionally used (9.3), Corollary 11.3 and the bootstrap
assumption (4.9d).
Step 2: Controlling Lk[�g, Lk]˜φk except for one term Recalling the notations from
Lemma 8.7, we need to handle Lk[�g, Lk]˜φk = Lk(I (Lk)˜φk) + Lk(I I (Lk)˜φk) +
Lk(I I I (Lk)˜φk).

Using the L∞ bounds in (5.1), (5.5), (5.6), (5.14), and (4.12c), it is easy to deduce
from (8.21), that

|Lk(I (Lk˜φk)+ Lk Xk log(N ) · Lk˜φk)|
� ε 9

4� + ε 3
2 · |∂2˜φk | + ε 3

4 · (|∂2Ei
k | + |∂2Xi

k |) ·�
+ (ε 9

4 + |∂Lk˜φk |) · |∂∂xg|� + ε 3
4 |∂∂2x g|�

+ |∂xχk | · (ε 9
4� + |Lk Ek˜φk |)+ ε 3

4 · (|Lk∂xχk | + |L2
kχk | + |L2

kηk |)�,

(11.10)

where, as in Proposition 11.5, g ∈ {β i , N , γ } and � is a smooth cutoff with
supp(�) ⊆ B(0, 3R). We isolated the term Lk(Lk Xk log(N ) · Lk˜φk) on the left-
hand side of (11.10), which will be treated in later steps.
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Arguing similarly, but starting with (8.22), (8.23), we obtain

|Lk(I I (Lk)˜φk)| � ε 3
2 · (|∂L2

k
˜φk | + |Lk E

2
k
˜φk | + |∂2˜φk |)+ (ε3 + |∂∂xg| + |∂K |) · |∂Lk˜φk |,

(11.11)

|Lk(I I I (Lk)˜φk)| � ε3 · |∂2φ| + ε 9
4 · (|∂∂xg| + |∂K |) ·�, (11.12)

where g and � are as in (11.10). (Note that in (11.11) we have used Lk Xk Lk˜φk =
Xi
k∂i L

2
k
˜φk + (Xν∂σ Lσ − Lν∂σ Xσ )∂νLk˜φk combined with (5.5), (5.6); similarly for

Lk Ek Lk˜φk .)
We now control the terms (11.10), (11.11) and (11.12). We begin with the right-

hand side of (11.10). First, using the bootstrap assumption (4.9b) and (5.1), (5.2),
(5.7), (5.14), (5.15), (5.16), we handle all the linear terms to obtain

‖Lk(I (Lk˜φk + Lk Xk log(N )) · Lk˜φk)‖L2(�t )

� ε 9
4 · δ− 1

2 + ‖∂Lk˜φk · ∂∂xg‖L2(�t )
+ ‖∂xχk · Lk Ek˜φk‖L2(�t )

.
(11.13)

For the ∂Lk˜φk · ∂∂xg term in (11.13), we first use Lemma 5.4 (for |∂Lk˜φk |) and then
apply (8.7), Corollary 11.3, Proposition 5.3, (9.1), (9.3) and the bootstrap assumption
(4.9d) to obtain

‖∂Lk˜φk · ∂∂xg‖L2(�t )
�

∑

Yk∈{Xk ,Ek ,Lk }
‖Yk Lk˜φk · ∂∂x g‖L2(�t )

� ε 3
2

∑

Yk∈{Xk ,Ek ,Lk }
(‖Yk Lk˜φk‖L2(�t )

+ ‖∂Yk Lk˜φk‖L2(�t )
)

� ε 5
2 · δ− 1

2 + ε 3
2 (‖∂2˜φk‖L2(�t )

+ ‖∂Ek∂x˜φk‖L2(�t )
+ ‖∂L2

k
˜φk‖L2(�t )

)

� ε 9
4 · δ− 1

2 + ε 3
2 ‖∂L2

k
˜φk‖L2(�t )

.

(11.14)

For the ∂xχk · Lk Ek˜φk term in (11.13), we use (8.4) and then Proposition 5.3, Corol-
lary 11.3 together with (9.1), (9.3) and the bootstrap assumption (4.9d) to obtain

‖∂xχk · Lk Ek˜φk‖L2(�t )

� ‖Lk Ek˜φk‖L2(�t )
+ ‖EkLk Ek˜φk‖L2(�t )

� ε 5
2 · δ− 1

2 + ε 3
2 (‖∂2˜φk‖L2(�t )

+ ‖∂Ek∂x˜φk‖L2(�t )
+ ‖∂L2

k
˜φk‖L2(�t )

)

� ε 9
4 · δ− 1

2 + ε 3
2 ‖∂L2

k
˜φk‖L2(�t )

.

(11.15)

Plugging (11.14)–(11.15) into (11.13), we obtain

‖Lk(I (Lk˜φk + Lk Xk log(N )) · Lk˜φk)‖L2(�t )
� ε 9

4 · δ− 1
2 + ε 3

2 ‖∂L2
k
˜φk‖L2(�t )

.

(11.16)
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For the term in (11.11), we use the estimates (5.1), (5.13), (5.2), (9.1), (9.3) and
Corollary 11.3 together with (8.7) to get

‖Lk(I I (Lk)˜φk)‖L2(�t )
� ε 9

4 · δ− 1
2 + ‖∂∂xg · ∂Lk˜φk‖L2(�t )

+ ε 3
2 ‖∂Ek∂x˜φk‖L2(�t )

+ ε 3
2 ‖∂L2

k
˜φk‖L2(�t )

� ε 9
4 · δ− 1

2 + ε 3
2 ‖∂Lk˜φk‖H1(�t )

+ ε 3
2 ‖∂Ek∂x˜φk‖L2(�t )

+ ε 3
2 ‖∂L2

k
˜φk‖L2(�t )

� ε 9
4 · δ− 1

2 + ε 3
2 ‖∂L2

k
˜φk‖L2(�t )

.

(11.17)

where we have used (2.14) to rewrite ∂K in terms of ∂∂xg, and in the last inequality
we have used (11.14) and the bootstrap assumption (4.9d).

Finally, for the term in (11.12), we simply use (9.3) and the estimates (5.1) and
(5.13) to obtain

‖Lk(I I I (Lk)˜φk)‖L2(�t )
� ε4 · δ− 1

2 � ε · δ− 1
2 . (11.18)

Step 3: Controlling Lk Xk log(N ) · Lk˜φk and ∂x (Lk Xk log(N ) · Lk˜φk) Combining
(11.9) in Step 1 and (11.16)–(11.18) in Step 2 (together with Lemma 8.7), we have
proven

‖�g(L
2
k
˜φk)+ Lk(Lk Xk log(N ) · Lk˜φk)‖L2(�t )

� ε 9
4 · δ− 1

2 + ε 3
2 ‖∂L2

k
˜φk‖L2(�t )

.

(11.19)

We will not directly estimate the term Lk(Lk Xk log(N ) · Lk˜φk). Instead, we rely
an integration by parts argument using Corollary 7.5. In preparation of the integration
by parts argument, we estimate Lk Xk log(N ) · Lk˜φk and ∂x (Lk Xk log(N ) · Lk˜φk).

First, for Lk Xk log(N ) · Lk˜φk , we use the bootstrap assumption (4.12c) and the
estimates (5.1), (5.5), (5.6) to obtain

‖Lk Xk log(N ) · Lk˜φk‖L2(�t )
� ε 9

4 . (11.20)

As for the derivative ∂x (Lk Xk log(N ) ·Lk˜φk), the Leibniz rule generates two terms:
if ∂x falls on Lk˜φk we get

‖Lk Xk log(N ) · ∂x Lk˜φk‖L2(�t )
� ε 9

4 · δ− 1
2 + ε 3

2 ‖∂L2
k
˜φk‖L2(�t )

,

where we used (8.7) and Corollary 11.3 together with (5.5), (5.6), (5.1) and the boot-
strap assumption (4.9d).

If, instead, ∂x falls on Lk Xk log(N ), we get

‖∂x Lk Xk log(N ) · Lk˜φk‖L2(�t )
� ‖∂x Lk Xk log(N )‖L2(�t∩B(0,R))‖∂˜φk‖L∞(�t ) � ε 9

4 · δ− 1
2 ,
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where we used the bootstrap assumption (4.12c) together with (5.1), (5.2), (5.5), (5.6),
(5.7). Therefore, using (5.5) again, we prove that

‖Xk[Lk Xk log(N ) · Lk˜φk]‖L2(�t )
� ‖∂x (Lk Xk log(N ) · Lk˜φk)‖L2(�t )

� ε 9
4 · δ− 1

2 + ε 3
2 ‖∂L2

k
˜φk‖L2(�t )

. (11.21)

Step 4: An integration by parts argument and putting everything together Therefore,
writing the decomposition Lk = −Xk + N−1e0 (by (2.32), (2.5)) and combining the
estimates in (11.19) and (11.21), we get

‖�g(L
2
k
˜φk)− N−1e0(Lk Xk log(N ) · Lk˜φk)‖L2(�t )

� ε 9
4 · δ− 1

2 + ε 3
2 ‖∂L2

k
˜φk‖L2(�t )

.

Writing �g(L2
k
˜φk) = f1 + N−1e0 f2 with f2 = Lk Xk log(N ) · Lk˜φk , we have

therefore proved that

‖�g(L
2
k
˜φk)− N−1e0 f2‖L2(�t )

= ‖ f1‖L2(�t )
� ε 3

2 · (δ− 1
2 + ‖∂L2

k
˜φk‖L2(�t )

).

(11.22)

On the other hand, (11.20) and (11.21) give

‖ f2‖L2(�t )
+ ‖∂x f2‖L2(�t )

� ε 3
2 · δ− 1

2 + ε 3
2 ‖∂L2

k
˜φk‖L2(�t )

. (11.23)

By (11.22) and (11.23), applying Corollary 7.5 we get

‖∂L2
k
˜φk‖2L2(�t )

� ‖∂L2
k
˜φk‖2L2(�0)

+ ε 3
2 · δ−1 + ε 3

2

∫ t

0
‖∂L2

k
˜φk‖2L2(�τ )

dτ

+ sup
0≤τ≤t

‖〈x〉−r Lk Xk log(N ) · Lk˜φk‖L2(�τ )

� ε 3
2 · δ−1 + ε 3

2 sup
0≤τ≤t

‖∂L2
k
˜φk‖2L2(�τ )

,

where for the last inequality we have used

• the assumption on the data (4.4) (recall indeed that ˜φ′
k − Xk˜φk = Lk˜φk on �0)

together with (5.5), (5.6) to control the data term; and
• (5.1) and the bootstrap assumption (4.12c) with the Hölder’s inequality to bound
the last term.

Taking the supremum over t ∈ [0, TB), and absorbing sup0≤τ<TB ‖∂L2
k
˜φk‖2L2(�τ )

to
the left-hand side, we obtain (11.7). This concludes the proof of the proposition. ��
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11.4 Energy estimates for three derivatives of ˜�k with at least one good
derivative

We finally obtain our main result regarding the energy estimates for three derivatives
of ˜φk , where at least one of the three derivatives is Ek or Lk .

Proposition 11.7 The following estimate holds for all t ∈ [0, TB):
∑

Y (1)k ,Y (2)k ,Y (3)k ∈{Xk ,Ek ,Lk ,∂q ,�n}
∃i,Y (i)k =Ek or Y

(i)
k =Lk

‖Y (1)k Y (2)k Y (3)k
˜φk‖L2(�t )

� ε · δ− 1
2 . (11.24)

In particular, the bootstrap assumption (4.9d) holds with ε
3
4 replaced by Cε.

Proof This follows immediately from the combination of Corollary 11.3, Proposi-
tion 11.5 and Proposition 11.6. ��

11.5 General third derivatives of�

We end this section with an estimate for general third derivatives of φ. We will not
require any derivative to be good. In fact, the estimate we prove applies to the full φ,
and not just ˜φk . Notice that the proposition only bounds ‖∂φ‖H2(�t )

in terms of the
H3 norm of the initial data. In particular, while the right-hand side is finite for each
fixed δ > 0, it is allowed to blow up very rapidly as δ → 0.

Proposition 11.8 The following estimate holds for all t ∈ [0, TB):

‖∂φ‖H2(�t )
� ε · δ− 1

2 + ‖φ‖H3(�0)
+ ‖�nφ‖H2(�0)

. (11.25)

Proof Letting �λ := (g−1)νβ�λνβ , we write �g f = (g−1)νβ∂2νβ f + �λ∂λ f . Hence,
using the support properties of φ, the estimates for the derivatives for g−1 and � in
Proposition 5.2, and the bootstrap assumption (4.12c), we can bound the commutator
[�g, ∂

2
i j ] as follows:

|[�g, ∂
2
i j ]φ| = |(∂2i j (g−1)νβ)∂2νβφ + 2(∂(i (g

−1)νβ)∂3j)νβφ + (∂2i j�λ)∂λφ + 2(∂(i�
λ)∂2j)λφ|

� ε
3
2 |∂2φ|

︸ ︷︷ ︸

=:I
+ ε 3

2 |∂x∂2φ|
︸ ︷︷ ︸

=:I I
+ ε 3

4 |�∂2x�λ|
︸ ︷︷ ︸

=:I I I
+ |∂x�λ||∂∂xφ|

︸ ︷︷ ︸

=:I V
, (11.26)

where � ∈ C∞
c is a cutoff such that� = 1 on B(0, R) and supp(�) ⊆ B(0, 3R).

The terms I in (11.26) can be estimated directly using (4.8) and (9.3) so that

‖I‖L2(�t )
� ε 3

2 ‖∂2φ‖L2(�t )
� ε 9

4 · δ− 1
2 . (11.27)
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We turn to term I I in (11.26). This term is bounded by ε
3
2 |∂∂2xφ| unlesswe have two

∂t derivatives, in which case we need to control ∂x∂t∂tφ. Since (g−1)t t = − 1
N2 , we

have ∂2t tφ = N 2(2(g−1)t j∂2t jφ + (g−1)i j∂2i jφ +�λ∂λφ) (using �gφ = 0). Therefore,
using Proposition 5.2, (9.3) and the bootstrap assumptions (4.12c), (4.8), we have

‖∂x∂2φ‖L2(�t )
� ‖∂∂2xφ‖L2(�t )

+ ε 3
4 ‖∂x�λ‖L2(�t )

+ ε 3
2 ‖∂2φ‖L2(�t )

� ‖∂∂2xφ‖L2(�t )
+ ε 9

4 δ−
1
2 .

Putting all these together, we thus obtain

‖I I‖L2(�t )
� ε 15

4 · δ− 1
2 + ε 3

2 ‖∂∂2xφ‖L2(�t )
. (11.28)

We bound the remaining term in (11.26). By (5.4), I I I in (11.26) can be bounded
by

‖I I I‖L2(�t )
� ε 3

4 ‖∂2x�λ‖L2(�t∩B(0,3R)) � ε 9
4 · δ− 1

2 . (11.29)

To handle term I V in (11.26), first observe that we can use Proposition 5.2 to bound

|∂x�λ| � ε
3
2 + |∂x∂tg| on B(0, 3R), where g is as in Proposition 8.3. Hence, using

Proposition 8.3 together with (4.8) and (9.3), we obtain

‖I V ‖L2(�t )
� ε

3
2 ‖∂2φ‖L2(�t )

+ ‖|∂∂xg| · |∂∂xφ|‖L2(�t )
� ε

9
4 δ− 1

2 + ε 3
2 ‖∂∂xφ‖H1(�t )

� ε
9
4 δ− 1

2 + ε 3
2 ‖∂∂2xφ‖L2(�t )

, (11.30)

where in the last line we also used that supp(φ) ⊆ B(0, R) and applied Poincaré’s
inequality.

Combining (11.26)–(11.30), we obtain

‖[�g, ∂
2
i j ]φ‖L2(�t )

� ε 9
4 · δ− 1

2 + ε 3
2 ‖∂∂2xφ‖L2(�t )

. (11.31)

Since �g∂
2
i jφ = [�g, ∂

2
i j ]φ, applying the energy estimates in Proposition 7.3 (for

v = ∂2i jφ, U0 = −∞, U1 = ∞) with (11.31), we have

sup
t∈[0,TB )

‖∂∂2xφ‖L2(�t )
� ‖∂∂2xφ‖L2(�0)

+ ε 9
4 · δ− 1

2 + ε 3
2 sup
t∈[0,TB )

‖∂∂2xφ‖L2(�t )
.

To obtain the desired estimate, we absorb the last term to the left-hand side, and
bound the data term as follows: using (2.3) we get

‖∂∂2xφ‖L2(�0)
� ‖φ‖H3(�0)

+ ‖N (�nφ + β i∂iφ)‖H2(�0)

� εδ− 1
2 + ‖φ‖H3(�0)

+ ‖�nφ‖H2(�0)
,
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where in the last inequality we have used (9.1), (9.3), and the metric estimates of
Proposition 5.2. ��

12 Fractional energy estimates for ˜�k

In this section, we prove the energy estimates for˜φk that involve fractional derivatives.
These include

• bounds for ‖∂〈Dx 〉s′˜φk‖L2(�t )
to be proven in Sect. 12.5, and

• bounds for ‖∂Ek〈Dx 〉s′′˜φk‖L2(�t )
and ‖∂Lk〈Dx 〉s′′˜φk‖L2(�t )

to be proven respec-
tively in Sect. 12.6 and Sect. 12.7. (See also some auxiliary estimates in Sect. 12.8.)

These estimates are the most technical ones in this paper, as they involve simul-
taneously the geometric vector fields, the weights at spatial infinity and fractional
derivatives. Some of the main preliminaries regarding the fractional derivatives and
the weights can be found in Sect. 12.1 and Sect. 12.4, respectively. We also refer the
reader back to Sect. 1.1.6 for some comments on the analysis.

12.1 Fractional derivative commutator estimates

Definition 12.1 Define the Fourier transform in the x = (x1, x2) coordinates with the
following normalization: for all f ∈ L2(R2)

f̂ (ξ) = (F f )(ξ) :=
∫∫

R2
f (x)e−2π i x ·ξ dx1 dx2,

and denote by F−1 the corresponding inverse Fourier transform.

Let ϕ : R2 → [0, 1] be radial, smooth such that ϕ(ξ) =
{

1 for |ξ | ≤ 1

0 for |ξ | ≥ 2
, where

|ξ | = √|ξ1|2 + |ξ2|2.
Define P0 by

P0 f := (F)−1(ϕ(ξ)F f ),

and for q ≥ 1, define Pq f by

Pq f := (F)−1(ϕ̃q(ξ)F f (ξ)),

where we introduced ϕ̃q(ξ) := ϕ(2−qξ)− ϕ(2−q+1ξ).

Definition 12.2 With the notations of Definition 12.1, we further define

ϕhh(σ, ξ) :=
∑

j

∑

k:|k− j |≤1

ϕ̃k(σ )ϕ̃ j (ξ),
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ϕhl(σ, ξ) :=
∑

j

∑

k:k> j+1

ϕ̃k(σ )ϕ̃ j (ξ),

ϕlh(σ, ξ) :=
∑

j

∑

k:k< j−1

ϕ̃k(σ )ϕ̃ j (ξ).

Note that since
∑

k≥0 ϕ̃k = 1, we also have ϕhh + ϕhl + ϕlh = 1.

Definition 12.3 For any multiplier m(σ, ξ) real-valued function on R
2, we define the

para-product

Tm( f1, f2)(x) =
∫

ξ∈R2,σ∈R2
e2π i(ξ+σ)·xm(σ, ξ) f̂1(σ ) f̂2(ξ)dσdξ,

We also define the high-high m-para-product of f1 and f2

 hh(m)( f1, f2)(x) = Tϕhh ·m( f1, f2)(x)

=
∫

ξ∈R2,σ∈R2
e2π i(ξ+σ)·xϕhh(σ, ξ)m(σ, ξ) f̂1(σ ) f̂2(ξ)dσdξ,

the high-low m-para-product of f1 and f2

 hl(m)( f1, f2)(x) = Tϕhl ·m( f1, f2)(x)

=
∫

ξ∈R2,σ∈R2
e2π i(ξ+σ)·xϕhl(σ, ξ)m(σ, ξ) f̂1(σ ) f̂2(ξ)dσdξ,

and finally the low-high m-para-product of f1 and f2

 lh(m)( f1, f2)(x) = Tϕlh ·m( f1, f2)(x)

=
∫

ξ∈R2,σ∈R2
e2π i(ξ+σ)·xϕlh(σ, ξ)m(σ, ξ) f̂1(σ ) f̂2(ξ)dσdξ.

Since ϕhl , ϕhh , ϕlh form a partition of unity, note that

Tm( f1, f2) =  hh(m)( f1, f2)+ hl(m)( f1, f2)+ lh(m)( f1, f2).

We also denote  hh( f1, f2) :=  hh(1)( f1, f2),  hl( f1, f2) :=  hl(1)( f1, f2),
 lh( f1, f2) :=  lh(1)( f1, f2).

Next, we recall the Coifman–Meyer theorem. This can be found for instance in
[33]:

Theorem 12.4 (Coifman–Meyer) Let m(ξ, η) be a smooth function onR2 which obeys
the following bounds for any multi-indices ν, β:

|∂νξ ∂βσm(σ, ξ)| �ν,β (〈ξ 〉 + 〈σ 〉)−|ν|−|β|.
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We say that m is a Coifman–Meyer multiplier.
Then for any 1 ≤ p, q, r ≤ ∞ such that 1

r = 1
p + 1

q and (p, q) �=
(∞,∞), (∞, 1), (1,∞), we have,

‖Tm( f1, f2)‖Lr (R2) � ‖ f1‖L p(R2)‖ f2‖Lq (R2).

Moreover, if m is a high-high Coifman–Meyer multiplier in the sense that
suppm(σ, ξ) ⊆ {(σ, ξ) ∈ R

2 × R
2 : 10−1|σ | ≤ |ξ | ≤ 10|σ |}, then the following

end-point estimate holds:

‖Tm( f1, f2)‖L2(R2) � ‖ f1‖BMO(R2)‖ f2‖L2(R2).

We will need several different Kato–Ponce type commutator estimates to estimate
〈Dx 〉s( f h) − f 〈Dx 〉sh; see Theorem 12.5–Corollary 12.10. The difference among
these propositions is essentially the number of derivatives that is put on f .

Theorem 12.5 (Li [20, Theorem 1.1]) For all 0 < θ ≤ 1 and 1 < p < ∞ and
1 < p1, p2 ≤ ∞ with 1

p = 1
p1

+ 1
p2
, the following holds for all f , h ∈ S(R2) with a

constant depending only on p1, p2 and θ :

‖〈Dx 〉θ ( f h)− f (〈Dx 〉θh)‖L p(R2) � ‖〈Dx 〉θ f ‖L p1 (R2)‖h‖L p2 (R2).

An easy consequence of Theorem 12.5 is the following estimate14:

Lemma 12.6 For any 0 < θ ≤ 1 and 2 ≤ p1, p′
1, p2, p

′
2 ≤ +∞ such that 1

p1
+ 1

p2
=

1
2 = 1

p′
1

+ 1
p′
2
,

‖〈Dx 〉θ ( f h)‖L2(R2) � ‖〈Dx 〉θ f ‖L p1 (R2)‖h‖L p2 (R2) + ‖ f ‖
L p′1 (R2)

‖〈Dx 〉θh‖
L p′2 (R2)

.

Proposition 12.7 Let θ ≥ 0 and p ∈ [2,+∞]. Then the following holds for any
f , h ∈ S(R2) with an implicit constant depending only on θ and p:

‖〈Dx 〉θ ( f h)− f (〈Dx 〉θh)‖L2(R2) � ‖ f ‖W 1,p(R2)‖〈Dx 〉θ−1h‖
L

2p
p−2 (R2)

.

Proof First, by the Plancherel formula we have

‖〈Dx 〉θ ( f h)− f (〈Dx 〉θh)‖L2(R2)

=
∥

∥

∥

∫

ξ∈R2,σ∈R2
e2π i(ξ+σ)·x

(〈2π(ξ + σ)〉θ − 〈2πξ 〉θ ) f̂ (σ )ĥ(ξ)dσdξ
∥

∥

∥

L2(R2
x )
.

We will now write 1 = ϕlh(σ, ξ) + ϕhh(σ, ξ) + ϕhl(σ, ξ) and analyze each term
separately.

14 Remark that this estimate can also be derived directly, and is in fact much easier than Theorem 12.5.
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Step 1: The low-high term To handle this term, we need to exploit the commutator
structure to obtain the sought estimate.

ϕlh(σ, ξ)(〈2π(ξ + σ)〉θ − 〈2πξ 〉θ )

= (4π2θ)ϕlh(σ, ξ)

∫ 1

t=0
〈2π(ξ + tσ)〉θ−2(σ · (ξ + tσ)) dt .

(12.1)

Note that 〈ξ 〉−θ+1ϕlh(σ, ξ)
∫ 1
t=0〈2π(ξ + tσ)〉θ−2(ξ + tσ)i dt is a Coifman–Meyer

multiplier (for each i). Indeed, on the support of ϕlh , 〈ξ + tσ 〉 and 〈ξ 〉 are comparable
when t ∈ [0, 1]. Hence it is enough to show that for any ν, β:

∣

∣

∣∂
ν
ξ ∂
β
σ

(

〈ξ 〉−θ+1
∫ 1

t=0
〈ξ + tσ 〉θ−2(ξ + tσ)i dt

)∣

∣

∣ � 〈ξ 〉−|ν|+|β|,

which is an elementary computation. It follows from Theorem 12.4 that

‖〈Dx 〉θ ( lh( f , h))− lh( f , 〈Dx 〉θh)‖L2(R2)

� ‖ f ‖W 1,p(R2)‖〈Dx 〉θ−1h‖
L

2p
p−2 (R2)

.

Step 2: The high-high termsWe do not need the commutator structure. In other words,
we bound 〈Dx 〉θ ( hh( f , h)) and  hh( f , 〈Dx 〉θh) separately.

We begin with the term 〈Dx 〉θ ( hh( f , h)):

‖〈Dx 〉θ ( hh( f , h))‖2L2(R2)
�

∑

k

‖Pk〈Dx 〉θ ( hh( f , h))‖2L2(R2)

�
∑

k

∑

k′:k′≥k−3

∑

k′′:|k′′−k′|≤3

22θk‖Pk′ f ‖2L p(R2)
‖Pk′′h‖2

L
2p
p−2 (R2)

�
∑

k′

∑

k′′:|k′′−k′|≤3

(
∑

k:k≤k′+3

22θk)‖Pk′ f ‖2L p(R2)
‖Pk′′h‖2

L
2p
p−2 (R2)

�
∑

k′

∑

k′′:|k′′−k′|≤3

(22k
′ ‖Pk′ f ‖2L p(R2)

)(22(θ−1)k′′ ‖Pk′′h‖2
L

2p
p−2 (R2)

)

� (sup
k′

22k
′ ‖Pk′ f ‖2L p(R2)

)(
∑

k′′
22(θ−1)k′′ ‖Pk′′h‖2

L
2p
p−2 (R2)

)

�‖ f ‖2W 1,p(R2)
‖〈Dx 〉θ−1h‖2

L
2p
p−2 (R2)

.

Note that for any fixed k, we sum (k′, k′′) over {(k′, k′′), k′ ≥ k−3, |k′′ −k′| ≤ 3}
because the support of the ϕ̃i (only) overlaps with the supports of ϕ̃i−1 and ϕ̃i+1.

To handle the term hh( f , 〈Dx 〉θh), we rely on the Coifman–Meyer theorem. First,
it is easy to check that 〈ξ〉

〈σ 〉ϕhh(σ, ξ) is a Coifman–Meyer multiplier. Therefore, for
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p ∈ [2,+∞), the Coifman–Meyer theorem gives

‖ hh( f , 〈Dx 〉θh)‖L2(R2) � ‖〈Dx 〉 f ‖L p(R2)‖〈Dx 〉θ−1h‖
L

2p
p−2 (R2)

� ‖ f ‖W 1,p(R2)‖〈Dx 〉θ−1h‖
L

2p
p−2 (R2)

.

When p = +∞, we use moreover that we have a high-high multiplier so that
the BMO endpoint holds15. Combining this with the estimate ‖〈Dx 〉 f ‖BMO(R2) �
‖ f ‖W 1,∞(R2), we obtain

‖ hh( f , 〈Dx 〉θh)‖L2(R2) � ‖〈Dx 〉 f ‖BMO(R2)‖〈Dx 〉θ−1h‖L2(R2)

� ‖ f ‖W 1,∞(R2)‖〈Dx 〉θ−1h‖L2(R2).

Step 3: The high-low terms In a similar manner as in Step 2, we estimate
〈Dx 〉θ ( hl( f , h)) and  hl( f , 〈Dx 〉θh) separately.

The 〈Dx 〉θ ( hl( f , h)) term can be estimated as follows:

‖〈Dx 〉θ ( hl ( f , h))‖2L2(R2)
�

∑

k

‖Pk 〈Dx 〉θ ( hl ( f , h))‖2L2(R2)

�
∑

k

∑

k′:|k′−k|≤3

∑

k′′:k′′≤k+3

22θk‖Pk′ f ‖2
L p(R2)

‖Pk′′h‖2
L

2p
p−2 (R2)

�
∑

k′′

∑

k′:k′≥k′′−6

22θk
′ ‖Pk′ f ‖2

L p(R2)
‖Pk′′h‖2

L
2p
p−2 (R2)

�
∑

k′′
(

∑

k′:k′≥k′′−6

22(θ−1)k′
)(sup

k̃′
22k̃

′ ‖Pk̃′ f ‖2L p(R2)
)‖(Pk′′h)‖2

L
2p
p−2 (R2)

� (sup
k̃′

22k̃
′ ‖Pk̃′ f ‖2L p(R2)

)(
∑

k′′
22(θ−1)k′′ ‖Pk′′h‖2

L
2p
p−2 (R2)

) � ‖ f ‖2
W1,p(R2)

‖〈Dx 〉θ−1h‖2
L

2p
p−2 (R2)

.

(12.2)

For the  hl( f , 〈Dx 〉θh) term, we begin with the trivial estimate

‖ hl( f , 〈Dx 〉θh)‖2L2(R2)
�

∑

k

‖Pk hl( f , 〈Dx 〉θh)‖2L2(R2)

�
∑

k

∑

k′:|k′−k|≤3

∑

k′′:k′′≤k+3

22θk
′′ ‖Pk′ f ‖2L p(R2)

‖Pk′′h‖2
L

2p
p−2 (R2)

�
∑

k

∑

k′:|k′−k|≤3

∑

k′′:k′′≤k+3

22θk‖Pk′ f ‖2L p(R2)
‖Pk′′h‖2

L
2p
p−2 (R2)

.

This coincides with the second line of (12.2) and we can argue in exactly the same
way. ��

15 Note that we need to use the BMO estimate here because the Riesz transform 〈Dx 〉−1∂x is not bounded
on L∞. Instead, we rely on the fact that ‖〈Dx 〉 f ‖BMO(R2) � ‖∂x f ‖BMO(R2) � ‖ f ‖

W1,∞(R2) .
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Corollary 12.8 Let p ∈ (2,+∞] and 0 < θ2 < θ1 ≤ 1 such p ≥ 2
θ1−θ2 . Then the

following holds for any f , h ∈ S(R2) with an implicit constant depending only on p,
θ1 and θ2:

‖〈Dx 〉θ2( f h)− f (〈Dx 〉θ2h)‖L2(R2) � ‖ f ‖W 1,p(R2)‖〈Dx 〉θ1−1h‖L2(R2).

Proof This follows fromProposition 12.7 and the Sobolev embedding H θ1−θ2(R2) ↪→
L

2p
p−2 (R2). ��
Next, we need a more precise commutator estimate which essentially gives the

“main term” of the commutator up to some residual error satisfying better estimates.
To set up the notation, for any f , h ∈ S(R2), define

T θres( f , h) := 〈Dx 〉θ ( f h)− f (〈Dx 〉θh)− θδi j (∂i f )(∂ j 〈Dx 〉θ−2h), (12.3)

Define also lhT θres( f , h) by

 lhT
θ
res( f , h) := 〈Dx 〉θ lh( f , h)− lh( f , 〈Dx 〉θh)− θδi j lh(∂i f , ∂ j 〈Dx 〉θ−2h)

and similarly for hhT θres( f , h) and hlT θres( f , h). Then the following estimate holds.

Proposition 12.9 Let θ ≥ 0 and p ∈ (2,+∞]. Then the following holds for any
f , h ∈ S(R2) with an implicit constant depending only on θ and p:

‖T θres( f , h)‖L2(R2) � ‖ f ‖W 2,p(R2)‖〈Dx 〉θ−2h‖
L

2p
p−2 (R2)

. (12.4)

Proof Note that the only difficulty concerns the low-high term. For the high-
high and high-low interactions, it is easy to check as in the proof of Proposi-
tion 12.7 that each of the terms ‖〈Dx 〉θ hh( f , h)‖L2(R2), ‖ hh( f , 〈Dx 〉θh)‖L2(R2),
‖ hh(∂i f , ∂ j 〈Dx 〉θ−2h)‖L2(R2), ‖〈Dx 〉θ hl( f , h)‖L2(R2), ‖ hl( f , 〈Dx 〉θh)‖L2(R2)

and ‖ hl(∂i f , ∂ j 〈Dx 〉θ−2h)‖L2(R2) is bounded by the right-hand side of (12.4); we
omit the details.

For the low-high term, we continue the computation of (12.1). More precisely, we
use

r(1) = r(0)+ r ′(0)+
∫ 1

t=0
(1 − t)r ′′(t) dt

with r(t) = 〈2π(ξ + tσ)〉θ to obtain
(〈2π(ξ + σ)〉θ − 〈2πξ 〉θ )− 4π2θ〈2πξ 〉θ−2(ξ · σ)

= 4π2θ

∫ 1

t=0
(1 − t){4π2(θ − 2)〈2π(ξ + tσ)〉θ−4(σ · (ξ + tσ))2

+ 〈2π(ξ + tσ)〉θ−2|σ |2} dt
=: m(σ, ξ).

(12.5)
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Notice that

m(σ, ξ) = |σ |2mA(σ, ξ)+
∑

i, j

σiσ j (mB)i j (σ, ξ),

where mA and mB are defined by

mA(σ, ξ) := 4π2θ

∫ 1

t=0
(1 − t){4π2(θ − 2)〈2π(ξ + tσ)〉θ−4(t2|σ |2 + 2t(σ · ξ))

+〈2π(ξ + tσ)〉θ−2} dt,

and

(mB)i j (σ, ξ) := 16π4θ(θ − 2)ξiξ j

∫ 1

t=0
(1 − t)〈2π(ξ + tσ)〉θ−4 dt .

It is easy to check that 〈ξ 〉−θ+2ϕlh(σ, ξ)mA(σ, ξ) and 〈ξ 〉−θ+2ϕlh(σ, ξ)(mB)i j (σ, ξ)

are both Coifman–Meyer multipliers.
The computation (12.5) implies that

‖ lhT
θ
res( f , h)‖L2(R2)

= ‖〈Dx 〉θ lh( f , h)− lh( f , 〈Dx 〉θh)− θδi j lh(∂i f , ∂ j 〈Dx 〉θ−2h)‖L2(R2)

� ‖TϕlhmA(� f , h)‖L2(R2) +
∑

i, j

‖Tϕlh(mB )i j (∂
2
i j f , h)‖L2(R2)

� ‖ f ‖W 2,p(�t )
‖〈Dx 〉θ−2h‖

L
2p
p−2 (R2)

,

where in the last line we have used the Coifman–Meyer theorem (Theorem 12.4).
This gives the desired estimates for the low-high interaction. As described in the

beginning the high-high and high-low are easier, and we have therefore completed the
proof of the proposition. ��

We record another easy but useful way to estimate the term in Proposition 12.9:

Corollary 12.10 Let T θ2res be as in (12.3). Let p ∈ (2,+∞] and 0 < θ2 < θ1 such
p ≥ 2

θ1−θ2 . Then the following hold for any f , h ∈ S(R2) with implicit constant
depending only on p, θ1 and θ2:

‖T θ2res( f , h)‖L2(R2)

� min{‖ f ‖W 1,p(R2)‖〈Dx 〉θ1−1h‖L2(R2), ‖ f ‖W 2,p(R2)‖〈Dx 〉θ1−2h‖L2(R2)}.

Proof On the one hand, by the triangle inequality, Corollary 12.8 andHölder’s inequal-
ity,

‖T θ2res( f , h)‖L2(R2) � ‖ f ‖W 1,p(R2)‖〈Dx 〉θ1−1h‖L2(R2).
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On the other hand, by the triangle inequality, Proposition 12.9 and the Sobolev

embedding H θ1−θ2(R2) ↪→ L
2p
p−2 (R2),

‖T θ2res( f , h)‖L2(R2) � ‖ f ‖W 2,p(R2)‖〈Dx 〉θ1−2h‖L2(R2).

Combining yields the result. ��
Finally, we need an auxiliary commutation lemma concerning the commutation of

a vector field with the (inhomogeneous) Riesz transform.

Lemma 12.11 Let Y i∂i be a vector field on R
2 such that Y i ∈ W 1,∞(R2) and f ∈

L2(R2). Denoting R j = ∂ j 〈Dx 〉−1, we have

∥

∥

[

Y , R j
]

f
∥

∥

L2(R2)
� max

i=1,2
‖Y i‖W 1,∞(R2) · ‖ f ‖L2(R2).

Proof By the Calderón commutator estimate (see [32, Corollary on p.309]),

‖∂i R j (Y
i f )− Y i∂i R j f ‖L2(R2) � max

i=1,2
‖Y i‖W 1,∞(R2) · ‖ f ‖L2(R2).

Hence, by the triangle inequality and the L2-boundedness of R j ,

∥

∥

[

Y , R j
]

f
∥

∥

L2(R2)
� ‖∂i R j (Y

i f )− Y i∂i R j f ‖L2(R2) + ‖R j [(∂i Y i ) f ]‖L2(R2)

� max
i=1,2

‖Y i‖W 1,∞(R2) · ‖ f ‖L2(R2).

��

12.2 Notations for this section

We now define some notations that will be useful for the remainder of the section.
From now on, fix a cutoff function � ∈ C∞

c such that � ≡ 1 on B(0, 2R) and
supp(�) ⊆ B(0, 3R).

We also introduce the following notations for the wave equation.
Let �2 and �1 be operators defined by

�g f =
:=�2( f )

︷ ︸︸ ︷

(g−1)νβ∂2νβ f −
:=�1( f )
︷ ︸︸ ︷

�λ · ∂λ f , (12.6)

where (g−1)νβ are the components of the inverse matrix of gνβ , as expressed in (2.2)
and

�λ := (g−1)νβ�λνβ, �λνβ := 1

2
(g−1)λσ (∂νgσβ + ∂βgσν − ∂σ gνβ) (12.7)

(in the coordinate system (t, x1, x2) of (2.2)).
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Finally, define

ği j := (g−1)i j

(g−1)t t
, ği t := 2(g−1)i t

(g−1)t t
(12.8)

so that

∂2t t = 1

(g−1)t t
�g − ğiλ∂2iλ + �λ

(g−1)t t
∂λ. (12.9)

12.3 Preliminary estimates

The following basic estimate will be repeatedly used. (Recall the notation for �
defined in the beginning of Sect. 12.2.)

Lemma 12.12 Let v be a smooth, compactly supported function on B(0, R) and f be
a smooth function. Then

‖〈Dx 〉s′( f v)‖L2(�t )
� ‖� f ‖L∞∩W 1,2(�t )

‖〈Dx 〉s′v‖L2(�t )
.

Proof Note that f v = � f v. Hence, by Theorem 12.5 (with p = 2, p1 = 2
s′ ,

p2 = 2
1−s′ ) and Hölder’s inequality,

‖〈Dx 〉s′( f v)‖L2(�t )
� ‖� f ‖L∞(�t )‖v‖Hs′ (�t )

+ ‖〈Dx 〉s′(� f )‖
L

2
s′ (�t )

‖v‖
L

2
1−s′ (�t )

� ‖� f ‖L∞∩W 1,2(�t )
‖v‖Hs′ (�t )

,

where in the last inequality we have used Sobolev embeddings H1(�t ) ↪→ Ws′, 2
s′ (�t )

and Hs′(�t ) ↪→ L
2

1−s′ (�t ). ��
We apply Lemma 12.12 in the special case where v = ∂λ˜φk .

Lemma 12.13 Let f be a smooth function satisfying

‖� f ‖L∞∩W 1,2(�t )
� 1.

Then

‖〈Dx 〉s′( f ∂λ˜φk)‖L2(�t )
� ‖∂〈Dx 〉s′˜φk‖L2(�t )

.

Proof Using the support properties inLemma5.1, the result follows fromLemma12.12
with v = ∂λ˜φk . ��

We will derive a few of consequences of Lemma 12.13.
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Lemma 12.14 Let f be a smooth function satisfying

‖� f ‖L∞∩W 1,2(�t )
� 1.

Then (recall the notation in (12.8)):

‖〈Dx 〉s′( f ğ jλ∂λ˜φk)‖L2(�t )
� ‖∂〈Dx 〉s′˜φk‖L2(�t )

, (12.10)

‖〈Dx 〉s′ [ f (∂ j ğ jλ)(∂λ˜φk)]‖L2(�t )
� ‖∂〈Dx 〉s′˜φk‖L2(�t )

, (12.11)

‖〈Dx 〉s′ [ f �
λ∂λ˜φk

(g−1)t t
]‖L2(�t )

� ‖∂〈Dx 〉s′˜φk‖L2(�t )
. (12.12)

Proof The estimates follow immediately from Lemma 12.13 and the estimates (5.1).
��

Another consequence of Lemma 12.13 is that we can control negative fractional
derivatives of ∂2˜φk , i.e. terms of the form 〈Dx 〉s′−1∂2˜φk . We start with a more general
lemma, before turning to 〈Dx 〉s′−1∂2˜φk in Lemma 12.16.

Lemma 12.15 Let f be a smooth function satisfying16

‖� f ‖L∞∩W 1,2(�t )
+ ‖�∂i f ‖L4(�t )

� 1, (12.13)

and v be a smooth, compactly supported function on B(0, R). Then

‖〈Dx 〉s′−1( f ∂2iλv)‖L2(�t )
� ‖∂〈Dx 〉s′v‖L2(�t )

(12.14)

and

‖〈Dx 〉s′−1( f ∂2t tv)‖L2(�t )
� ‖∂〈Dx 〉s′v‖L2(�t )

+ ‖�gv‖L2(�t )
. (12.15)

Proof For (12.14), note that

‖〈Dx 〉s′−1( f ∂2iλv)‖L2(�t )

� ‖〈Dx 〉s′−1∂i ( f ∂λv)‖L2(�t )
+ ‖〈Dx 〉s′−1[(∂i f )(∂λv)]‖L2(�t )

� ‖〈Dx 〉s′( f ∂λv)‖L2(�t )
+ ‖�∂i f ‖L4(�t )

‖∂λv‖L2(�t )
� ‖∂〈Dx 〉s′v‖L2(�t )

,

where in the penultimate estimate we have used Sobolev embedding 〈Dx 〉s′−1 :
L

4
3 (�t ) → L2(�t ) (which is true since s′ < 1

2 ) and Hölder’s inequality, and in
the last estimate we have used Lemma 12.13.

16 It should be noted that the W 1,2 bound on � f in (12.13) is extraneous, as it is implied by the other
bounds. We state the assumption as in (12.13) so as to make the application of Lemma 12.14 more obvious.
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We now prove (12.15). We rewrite ∂2t tv in terms of �gv using (12.9) and apply the
triangle inequality to obtain

‖〈Dx 〉s′−1( f ∂2t tv)‖L2(�t )

� ‖〈Dx 〉s′−1[ f ( �gv

(g−1)t t
− ğiλ∂2iλv + �λ∂λv

(g−1)t t
)]‖L2(�t )

� ‖Ri 〈Dx 〉s′( f ğiλ∂λv)‖L2(�t )
+ ‖〈Dx 〉s′−1[(∂i ( f ğiλ))(∂λv)]‖L2(�t )

+ ‖〈Dx 〉s′−1(
f �λ∂λv

(g−1)t t
)‖L2(�t )

+ ‖〈Dx 〉s′−1( f
�gv

(g−1)t t
)‖L2(�t )

,

where Ri = ∂i 〈Dx 〉−1 as before.
For the first term, we use that Ri : L2(�t ) → L2(�t ) is bounded and then use

Lemma12.12, (12.13) and (5.1) to bound it by� ‖∂〈Dx 〉s′v‖L2(�t )
. For the second and

third terms, we use in addition the Sobolev embedding 〈Dx 〉s′−1 : L 4
3 (�t )→ L2(�t ).

For instance, for the second term we have (using v = �v and Hölder’s inequality)

‖〈Dx 〉s′−1[(∂i ( f ğiλ))(∂λv)]‖L2(�t )
� ‖[(∂i ( f ğiλ))(∂λv)]‖

L
4
3 (�t )

�
(‖�∂i f ‖L4(�t )

‖� ğλ‖L∞(�t ) + ‖� f ‖L∞(�t )‖�∂i ğλ‖L4(�t )

) ‖∂λv‖L2(�t )

� ‖∂v‖L2(�t )
,

where in the last estimate we used (12.13) together with (5.1). The third term is similar

and omitted. For the fourth term,weuse the Sobolev embedding 〈Dx 〉s′−1 : L 4
3 (�t )→

L2(�t ) and the estimates (12.13), (5.1) to get

‖〈Dx 〉s′−1( f (
�gv

(g−1)t t
))‖L2(�t )

� ‖�gv‖L2(�t )
.

We have thus obtained (12.15). ��

Lemma 12.16 Let f be a smooth function satisfying

‖� f ‖L∞∩W 1,2(�t )
+ ‖�∂i f ‖L4(�t )

� 1. (12.16)

Then

‖〈Dx 〉s′−1( f ∂2βλ˜φk)‖L2(�t )
� ‖∂〈Dx 〉s′˜φk‖L2(�t )

. (12.17)

Proof This follows immediately from an application of Lemma 12.15, with v = ˜φk
since ˜φk is smooth compactly supported in B(0, R) and �g˜φk = 0. ��
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12.4 Weighted estimates and cutoffs

12.4.1 Gaining weights in the estimate for @〈Dx〉s′ ˜�k

Lemma 12.17 Let � ∈ C∞
c be a cutoff function such that � ≡ 1 on B(0, 2R) and

supp(�) ⊂ B(0, 3R); and � ′ ∈ C∞
c such that � ′ ≡ 1 on B(0, R) and supp(� ′) ⊂

B(0, 2R). Let P be a fixed pseudo-differential operator (of arbitrary order). Then

[�, P]� ′ is a pseudo-differential operator of order − ∞.

In particular, for any σ ∈ R, the following estimate holds:

‖[P,� ] f ‖Hσ (R2) � ‖ f ‖H−2(R2), (12.18)

where the implicit constant depends only on P, R and σ .

Proof Since ∂x� and � ′ have disjoint support, the desired conclusion follows from
the usual symbolic calculus for pseudo-differential operators; see for instance [32,
Theorem 2 on p.237]. ��
Proposition 12.18 Let v be a smooth, compactly supported function on B(0, R). Then
v satisfies the following

‖∂〈Dx 〉s′v‖L2(�t )
� ‖〈x〉−r∂〈Dx 〉s′v‖L2(�t )

+ ‖∂v‖L2(�t )
. (12.19)

Proof Let � ∈ C∞
c (R

2;R) be as in Lemma 12.17.
Using the fact v = �v, we compute

∂〈Dx 〉s′v = �∂〈Dx 〉s′v − [�, 〈Dx 〉s′ ]∂v.

Since � is compactly supported, we can bound
‖�∂〈Dx 〉s′v‖L2(�t )

� ‖〈x〉−r∂〈Dx 〉s′v‖L2(�t )
. On the other hand, [�, 〈Dx 〉s′ ] :

L2 → L2 is bounded by Lemma 12.17. Hence (12.19) follows. ��
Proposition 12.19

‖∂〈Dx 〉s′˜φk‖L2(�t )
� ‖〈x〉−r∂〈Dx 〉s′˜φk‖L2(�t )

+ ‖∂˜φk‖L2(�t )
. (12.20)

Proof After we recall that ˜φk is supported in B(0, R) for every t , (12.20) is obtained
as an immediate application of Proposition 12.18 with v = ˜φk . ��

12.4.2 Gaining weights in the estimates for @Ek〈Dx〉s′′ ˜�k and @Lk〈Dx〉s′′ ˜�k

Our next goal will be to prove an analogue of Proposition 12.19, but with also commu-
tations with Ek and Lk ; see already Proposition 12.23. In order to achieve this, we need
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to understandweighted bounds and derivative bounds involving [�, 〈Dx 〉s′′ ]. This will
be achieved in the next three lemmas, before we finally turn to Proposition 12.23.

Note that we use 〈Dx 〉s′′ here instead of 〈Dx 〉s′ since we will only estimate
∂Ek〈Dx 〉s′′˜φk and ∂Lk〈Dx 〉s′′˜φk (in terms of ∂〈Dx 〉s′˜φk) where we recall that 0 <
s′′ < s′ < 1

2 . It is important to comment that we cannot estimate ∂Ek〈Dx 〉s′˜φk and

∂Lk〈Dx 〉s′˜φk due to the low regularity of the metric; see the second bullet point in the
explanation of (1.31) in Sect. 1.1.6.

Lemma 12.20 Let f be a smooth function which is supported in B(0, R) for each t.
Then

‖〈x〉[�, 〈Dx 〉s′′ ] f ‖L2(�t )
� ‖ f ‖L2(�t )

.

Proof Step 1: An easy reduction Obviously,

‖〈x〉[�, 〈Dx 〉s′′ ] f ‖2L2(�t )
= ‖[�, 〈Dx 〉s′′ ] f ‖2L2(�t )

+
2

∑

!=1

‖x![�, 〈Dx 〉s′′ ] f ‖2L2(�t )
.

Since ‖[�, 〈Dx 〉s′′ ] f ‖L2(�t )
� ‖〈Dx 〉s′′−2 f ‖L2(�t )

by Lemma 12.17, it suffices to
show that for ! = 1, 2,

‖x![�, 〈Dx 〉s′′ ] f ‖L2(�t )
� ‖〈Dx 〉s′′−1 f ‖L2(�t )

� ‖ f ‖L2(�t )
. (12.21)

Step 2: Proof of (12.21) We compute

x![�, 〈Dx 〉s′′ ] f = [�, 〈Dx 〉s′′ ](x! f )
︸ ︷︷ ︸

=:I
+� [x!, 〈Dx 〉s′′ ] f

︸ ︷︷ ︸

=:I I
−[x!, 〈Dx 〉s′′ ](� f )
︸ ︷︷ ︸

=:I I I
(12.22)

We have by Lemma 12.17 and the support property of f that

‖I‖L2(�t )
� ‖〈Dx 〉s′′−2(x! f )‖L2(�t )

� ‖x! f ‖L2(�t )
� ‖ f ‖L2(�t )

.

Before handling I I and I I I , first note that using the Fourier transform, it can easily
be checked that for any Schwartz function f ,

[x!, 〈Dx 〉s′′ ] f = s′′〈Dx 〉s′′−2∂! f . (12.23)

From (12.23), it immediately follows that

‖I I‖L2(�t )
+ ‖I I I‖L2(�t )

� ‖〈Dx 〉s′′−1 f ‖L2(�t )
� ‖ f ‖L2(�t )

.

Combining the estimates for I , I I and I I I , we have thus proven (12.21), which
by Step 1 implies the desired estimate. ��
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Lemma 12.21 Let f be a smooth function which is supported in B(0, R) for each t.
Then, for every index ν,

‖〈x〉∂ν[�, 〈Dx 〉s′′ ] f ‖L2(�t )
� ‖∂ f ‖L2(�t )

.

Moreover, if ν = i is a spatial index, we have the improved estimate17

‖〈x〉∂i [�, 〈Dx 〉s′′ ] f ‖L2(�t )
� ‖〈Dx 〉s′′ f ‖L2(�t )

. (12.24)

Proof Step 0: An easy reduction
By Lemma 12.17 and the Poincaré inequality (since f is compactly supported in

B(0, R)),

‖∂ν[�, 〈Dx 〉s′′ ] f ‖L2(�t )
� ‖ f ‖L2(�t )

+ ‖∂t f ‖L2(�t )
� ‖∂ f ‖L2(�t )

.

Hence, by a reduction similar to Step 1 of Lemma 12.20, it suffices to prove that
for ! = 1, 2,

‖x!∂t [�, 〈Dx 〉s′′ ] f ‖L2(�t )
� ‖∂ f ‖L2(�t )

,

‖x!∂i [�, 〈Dx 〉s′′ ] f ‖L2(�t )
� ‖〈Dx 〉s′′ f ‖L2(�t )

. (12.25)

Step 1: Estimates for general ν We compute

x!∂ν [�, 〈Dx 〉s′′ ] f = x!∂ν(� 〈Dx 〉s′′ f )− x!∂ν 〈Dx 〉s′′ (� f )

= ∂ν [�, 〈Dx 〉s′′ ](x! f )
︸ ︷︷ ︸

=:I
+ ∂ν(� [x!, 〈Dx 〉s′′ ] f )

︸ ︷︷ ︸

=:I I
−∂ν([x!, 〈Dx 〉s′′ ](� f ))
︸ ︷︷ ︸

=:I I I
−(∂ν x!)[�, 〈Dx 〉s′′ ] f
︸ ︷︷ ︸

=:I V
.

(12.26)

The term I needs to be treated differently for ν = i and ν = t ; see Steps 2 and 3
below.

For the terms I I and I I I ,
we use (12.23) and the L2-boundedness of the 〈Dx 〉−1∂k to obtain

‖I I‖L2(�t )
≤ ‖∂ν(� 〈Dx 〉s′′−2∂k f )‖L2(�t )

� ‖〈Dx 〉s′′−1 f ‖L2(�t )

+‖〈Dx 〉s′′−1∂ν f ‖L2(�t )
(12.27)

and

‖I I I‖L2(�t )
≤ ‖〈Dx 〉s′′−2∂2kν(� f )‖L2(�t )

� ‖〈Dx 〉s′′−1∂ν f ‖L2(�t )
. (12.28)

17 Note that this is indeed an improvement since f is compactly supported in B(0, R) and we can apply
the Poincaré inequality.
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The term I V is the simplest. Since ∂νx! is bounded (in L∞), we have by
Lemma 12.17

‖I V ‖L2(�t )
� ‖〈Dx 〉s′′−2 f ‖L2(�t )

� ‖ f ‖L2(�t )
. (12.29)

Step 2: Estimates when ν = t We handle term I in (12.26) when ν = t . Note that
[∂t , [�, 〈Dx 〉s′′ ]x!] = 0. Hence, using Lemma 12.17, we obtain

‖I‖L2(�t )
= ‖∂t [�, 〈Dx 〉s′′ ](x! f )‖L2(�t )

= ‖[�, 〈Dx 〉s′′ ](x!∂t f )‖L2(�t )

� ‖〈Dx 〉s′′−2(x!∂t f )‖L2(�t )

� ‖x!∂t f ‖L2(�t )
� ‖∂ f ‖L2(�t )

,

(12.30)

where we have used the support property of f .
On the other hand, by (12.27)–(12.29) (and the L2-boundedness of 〈Dx 〉s′′−1 as

well as the Poincaré inequality), we have

‖I I‖L2(�t )
+ ‖I I I‖L2(�t )

+ ‖I V ‖L2(�t )
� ‖∂ f ‖L2(�t )

. (12.31)

Combining (12.30) and (12.31), we have thus proven the first estimate in (12.25).
Step 3: Estimates when ν = i If ν = i , by Lemma 12.17, we have

‖I‖L2(�t )
= ‖∂i [�, 〈Dx 〉s′′ ](x! f )‖L2(�t )

� ‖〈Dx 〉s′′−1(x! f )‖L2(�t )
� ‖x! f ‖L2(�t )

� ‖ f ‖L2(�t )
� ‖〈Dx 〉s′′ f ‖L2(�t )

,

(12.32)

where we have used the support property of f .
On the other hand, by (12.27)–(12.29) (and the L2-boundedness of 〈Dx 〉−1∂i ), we

have

‖I I‖L2(�t )
+ ‖I I I‖L2(�t )

+ ‖I V ‖L2(�t )
� ‖〈Dx 〉s′′ f ‖L2(�t )

.

Together with Step 2, we have thus completed the proof of (12.25), which then
implies the lemma. ��
Lemma 12.22 For every index ν, β,

‖〈x〉∂2νβ [�, 〈Dx 〉s′′ ]˜φk‖L2(�t )
� ‖∂〈Dx 〉s′˜φk‖L2(�t )

.

Proof Step 0: Preliminary computations Using Lemma 12.17, if (ν, β) �= (t, t), we
have

‖∂2νβ [�, 〈Dx 〉s′′ ]˜φk‖L2(�t )
� ‖∂〈Dx 〉s′′˜φk‖L2(�t )

. (12.33)
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In the case (ν, β) = (t, t), we know that [∂2t t , [�, 〈Dx 〉s′′ ]] = 0 and hence by
Lemma 12.17 and Lemma 12.16, we have

‖∂2t t [�, 〈Dx 〉s′′ ]˜φk‖L2(�t )
� ‖〈Dx 〉s′′−2∂2t t

˜φk‖L2(�t )
� ‖∂〈Dx 〉s′˜φk‖L2(�t )

.

(12.34)

Using (12.33) and (12.34) and arguing as in Step 1 of Lemma 12.21, it suffices to
prove

‖x!∂2νβ [�, 〈Dx 〉s′′ ]˜φk‖L2(�t )
� ‖∂〈Dx 〉s′˜φk‖L2(�t )

. (12.35)

We then compute using (12.22) that

x!∂2νβ [�, 〈Dx 〉s′′ ]˜φk
= ∂2νβ(x![�, 〈Dx 〉s′′ ]˜φk)− (∂ν x!)(∂β([�, 〈Dx 〉s′′ ]˜φk))− (∂β x!)(∂ν([�, 〈Dx 〉s′′ ]˜φk))
= ∂2νβ([�, 〈Dx 〉s′′ ](x!˜φk))

︸ ︷︷ ︸

=:I
+∂2νβ(� [x!, 〈Dx 〉s′′ ]˜φk)
︸ ︷︷ ︸

=:I I
−∂2νβ([x!, 〈Dx 〉s′′ ]�˜φk)
︸ ︷︷ ︸

=:I I I
−(∂ν x!)(∂β([�, 〈Dx 〉s′′ ]˜φk))
︸ ︷︷ ︸

=:I V
−(∂β x!)(∂ν([�, 〈Dx 〉s′′ ]˜φk))
︸ ︷︷ ︸

=:V
.

(12.36)

We control each term in (12.36) in the steps below.
Step 1: Term I We separate into three cases. When (ν, β) = (i, j), by Lemma 12.17
and Poincaré’s inequality (since supp(˜φk) ⊂ B(0, R)),

‖∂2i j ([�, 〈Dx 〉s′′ ](x!˜φk))‖L2(�t )
� ‖〈Dx 〉s′′(x!˜φk))‖L2(�t )

� ‖∂˜φk‖L2(�t )
.

When (ν, β) = (i, t), since [∂t , [�, 〈Dx 〉s′′ ]x!] = 0, we use Lemma 12.17 and then
Lemma 12.13 to obtain

‖∂2i t ([�, 〈Dx 〉s′′ ](x!˜φk))‖L2(�t )
� ‖〈Dx 〉s′′−1(x!∂t˜φk)‖L2(�t )

� ‖∂〈Dx 〉s′˜φk‖L2(�t )
.

Finally, when (ν, β) = (t, t), since [∂2t t , [�, 〈Dx 〉s′′ ]x!] = 0, we use Lemma 12.17
and then Lemma 12.16 to get

‖∂2t t ([�, 〈Dx 〉s′′ ](x!˜φk))‖L2(�t )
� ‖〈Dx 〉s′′−2(x!∂2t t˜φk)‖L2(�t )

� ‖∂〈Dx 〉s′˜φk‖L2(�t )
.

Thus in all cases

‖I‖L2(�t )
� ‖∂〈Dx 〉s′˜φk‖L2(�t )

.

Step 2: Terms I I and I I I Terms I I and I I I are very similar — we will only treat
I I . We use the formula (12.23). When one of ν or β is a spatial derivative, it follows
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easily from (12.23) and the support properties of ˜φk that

‖∂2νβ(� [x!, 〈Dx 〉s′′ ]˜φk)‖L2(�t )
� ‖∂˜φk‖L2(�t )

.

If (ν, β) = (t, t), we use [∂2t t ,� [x!, 〈Dx 〉s′′ ]] = 0, the equation (12.23) and then
Lemma 12.16 to obtain

‖∂2t t (� [x!, 〈Dx 〉s′′ ]˜φk)‖L2(�t )

� ‖� 〈Dx 〉s′′−2∂!∂
2
t t
˜φk‖L2(�t )

� ‖〈Dx 〉s′′−1∂2t t
˜φk‖L2(�t )

� ‖∂〈Dx 〉s′˜φk‖L2(�t )
.

In either case

‖I I‖L2(�t )
� ‖∂〈Dx 〉s′˜φk‖L2(�t )

.

The same holds for I I I in a similar manner; we omit the details.
Step 3: Terms I V and V Since ∂νx! and ∂βx! are both bounded, we have, by
Lemma 12.17,

‖I V ‖L2(�t )
+ ‖V ‖L2(�t )

� ‖∂[�, 〈Dx 〉s′′ ]˜φk‖L2(�t )
� ‖∂〈Dx 〉s′˜φk‖L2(�t )

.

We have thus estimated every term on the right-hand side of (12.36) and proven
(12.35). As argued in Step 0, this gives the lemma. ��
Proposition 12.23 For any r ≥ 0, the following holds (with implicit constants depend-
ing on r)18:

‖∂Ek〈Dx 〉s′′˜φk‖L2(�t )
� ‖〈x〉−r∂Ek〈Dx 〉s′′˜φk‖L2(�t )

+ ‖∂〈Dx 〉s′˜φk‖L2(�t )
,

(12.37)

‖∂Lk〈Dx 〉s′′˜φk‖L2(�t )
� ‖〈x〉−r∂Lk〈Dx 〉s′′˜φk‖L2(�t )

+ ‖∂〈Dx 〉s′˜φk‖L2(�t )
.

(12.38)

Proof We will only prove (12.37) in detail; (12.38) is similar.
Since ∂Ek〈Dx 〉s′′˜φk = ∂Ek〈Dx 〉s′′(�˜φk), we compute

∂Ek〈Dx 〉s′′˜φk = �∂Ek〈Dx 〉s′′˜φk + ∂[(Ek�)〈Dx 〉s′′˜φk]
− ∂Ek[�, 〈Dx 〉s′′ ]˜φk + (∂�)Ek〈Dx 〉s′′˜φk .

In particular, by the bounds of Ek in (5.5), (5.6) and the support properties of � ,

‖∂Ek〈Dx 〉s′′˜φk‖L2(�t )
� ‖∂Ek〈Dx 〉s′′˜φk‖L2(�t∩B(0,3R))

︸ ︷︷ ︸

=:I
+‖∂〈Dx 〉s′′˜φk‖L2(�t∩B(0,3R))

︸ ︷︷ ︸

=:I I
+ ‖〈Dx 〉s′′˜φk‖L2(�t )

︸ ︷︷ ︸

=:I I I
+‖∂Ek [�, 〈Dx 〉s′′ ]˜φk‖L2(�t )

︸ ︷︷ ︸

=:I V
.

18 We remark that the estimates hold with ‖∂〈Dx 〉s′˜φk‖L2(�t )
replaced by ‖∂〈Dx 〉s′′˜φk‖L2(�t )

on the
right-hand side, but the exposition becomes slightly less convenient when citing earlier lemmas.
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The terms I and I I are obviously bounded by the right-hand side of (12.37).
For the term I I I , we use interpolation and then Poincaré’s inequality to obtain

‖〈Dx 〉s′′˜φk‖L2(�t )
� ‖˜φk‖L2(�t )

+ ‖∂˜φk‖L2(�t )
� ‖∂˜φk‖L2(�t )

� ‖∂〈Dx 〉s′˜φk‖L2(�t )
.

(12.39)

For the term I V , we use the bounds for Eμk in (5.5), (5.6), Hölder’s inequality and
Lemmas 12.21 and 12.22 to obtain

‖∂νEk[�, 〈Dx 〉s′′ ]˜φk‖L2(�t )

� ‖〈x〉−1∂νE
μ
k ‖L∞(�t )‖〈x〉∂μ[�, 〈Dx 〉s′′ ]˜φk‖L2(�t )

+ ‖〈x〉−1Eμk ‖L∞(�t )‖〈x〉∂2νμ[�, 〈Dx 〉s′′ ]˜φk‖L2(�t )

� ‖∂〈Dx 〉s′˜φk‖L2(�t )
+ ‖∂˜φk‖L2(�t )

� ‖∂〈Dx 〉s′˜φk‖L2(�t )
.

��

12.4.3 Auxiliary weighted estimates for commutator of a vector field and Riesz
transform

Lemma 12.24 Let f , h be smooth functions such that

‖〈x〉−1h‖L∞(�t ) + ‖�h‖W 1,∞∩W 2,4(�t )
� 1,

‖� f ‖L∞∩W 1,4(�t )
+ ‖�∂i f ‖L4(�t )

� 1.

Then, for R j = ∂ j 〈Dx 〉−1, we have

‖〈x〉−1[h∂i , Rl Rq ]〈Dx 〉s′′( f ∂λ˜φk)‖L2(�t )
� ‖∂〈Dx 〉s′˜φk‖L2(�t )

, (12.40)

and

‖〈x〉−1[h∂i , Rl Rq〈Dx 〉s′′ ]( f ∂λ˜φk)‖L2(�t )
� ‖∂〈Dx 〉s′˜φk‖L2(�t )

. (12.41)

Proof Step 1: Proof of (12.40) We first compute

[h∂i , Rl Rq ]〈Dx 〉s′′( f ∂λ˜φk)
= [(�h)∂i , Rl Rq ]〈Dx 〉s′′( f ∂λ˜φk)

︸ ︷︷ ︸

=:I
+ h[∂i Rl Rq〈Dx 〉s′′ ,� ]( f ∂λ˜φk)

︸ ︷︷ ︸

=:I I
−Rl Rq{h∂i [〈Dx 〉s′′ ,� ]( f ∂λ˜φk)}
︸ ︷︷ ︸

=:I I I
−Rl Rq{h(∂i�)〈Dx 〉s′′( f ∂λ˜φk)}
︸ ︷︷ ︸

=:I V
.
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Term I can be bounded using Lemmas 12.11 (with Y = h∂i ), Lemma 12.13 and
the identity [Y , Rl Rq ] = [Y , Rl ]Rq + Rl [Y , Rq ] so that

‖I‖L2(�t )
� ‖�h‖W 1,∞(�t )

‖〈Dx 〉s′′( f ∂λ˜φk)‖L2(�t )
� ‖∂〈Dx 〉s′˜φk‖L2(�t )

.

For term I I , we use Hölder’s inequality, Lemmas 12.17 and 12.13 to obtain

‖〈x〉−1 I I‖L2(�t )
� ‖〈x〉−1h‖L∞‖[∂i Rl Rq〈Dx 〉s′′ ,� ]( f ∂λ˜φk)‖L2(�t )

� ‖〈Dx 〉s′′−1( f ∂λ˜φk)‖L2(�t )
� ‖∂〈Dx 〉s′˜φk‖L2(�t )

.

For the term I I I , we use the boundedness of the Riesz transform, Hölder’s inequal-
ity, the improved estimate (12.24) in Lemma 12.21 and then Lemma 12.13 to obtain

‖I I I‖L2(�t )
� ‖h∂i [〈Dx 〉s′′ ,� ]( f ∂λ˜φk)‖L2(�t )

� ‖〈x〉−1h‖L∞(�t )‖〈x〉∂i [〈Dx 〉s′′ ,� ]( f ∂λ˜φk)‖L2(�t )

� ‖〈Dx 〉s′′( f ∂λ˜φk)‖L2(�t )
� ‖∂〈Dx 〉s′˜φk‖L2(�t )

.

Finally, for the term I V , we use the L2-boundedness of the Riesz transform,
Hölder’s inequality and Lemma 12.13 to obtain

‖I V ‖L2(�t )
� ‖h∂i�‖L∞(�t )‖〈Dx 〉s′′( f ∂λ˜φk)‖L2(�t )

� ‖∂〈Dx 〉s′˜φk‖L2(�t )
.

Step 2: Proof of (12.41) We first notice that

[h∂i , Rl Rq 〈Dx 〉s′′ ]( f ∂λ˜φk) = [h∂i , Rl Rq ]〈Dx 〉s′′ ( f ∂λ˜φk)+ Rl Rq [h∂i , 〈Dx 〉s′′ ]( f ∂λ˜φk).

In view of (12.40) (which controls the first term) and the boundedness of the Riesz
transform, it therefore suffices to prove

‖[h∂i , 〈Dx 〉s′′ ]( f ∂λ˜φk)‖L2(�t )
� ‖∂〈Dx 〉s′˜φk‖L2(�t )

.

On the other hand,

[h∂i , 〈Dx 〉s′′ ]( f ∂λ˜φk) = [h∂i , 〈Dx 〉s′′ ](� f ∂λ˜φk)

= h∂i [〈Dx 〉s′′ ,� ]( f ∂λ˜φk)
︸ ︷︷ ︸

=:I
+[(�h)∂i , 〈Dx 〉s′′ ]( f ∂λ˜φk)

︸ ︷︷ ︸

=:I I
− 〈Dx 〉s′′ [(∂i�)h f (∂λ˜φk)]

︸ ︷︷ ︸

=:I I I
+ h(∂i�)〈Dx 〉s′′( f ∂λ˜φk)

︸ ︷︷ ︸

=:I V
.

For term I , we use Hölder’s inequality, Lemmas 12.17 and 12.13 to obtain

‖〈x〉−1 I‖L2(�t )
� ‖〈x〉−1h‖L∞(�t )‖∂i [〈Dx 〉s′′ ,� ]( f ∂λ˜φk)‖L2(�t )

� ‖〈Dx 〉s′′−1( f ∂λ˜φk)‖L2(�t )
� ‖∂〈Dx 〉s′˜φk‖L2(�t )

.
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For term I I , we use Proposition 12.7 (with p = ∞), the L2-boundedness of
∂i 〈Dx 〉−1 and Lemma 12.13 to obtain

‖I I‖L2(�t )
� ‖�h‖W 1,∞‖〈Dx 〉s′′−1∂i ( f ∂λ˜φk)‖L2(�t )

� ‖〈Dx 〉s′′( f ∂λ˜φk)‖L2(�t )
� ‖∂〈Dx 〉s′˜φk‖L2(�t )

.

For term I I I , note that � ≡ 1 on supp(˜φk), hence (∂i�)∂λ˜φk ≡ 0 which implies
I I I = 0.

Finally, term I V can be treated exactly as term I V in the proof of (12.40) so that

‖I V ‖L2(�t )
� ‖∂〈Dx 〉s′˜φk‖L2(�t )

.

��

12.5 Estimates for@〈Dx〉s′ ˜�k

In this section, we bound ‖∂〈Dx 〉s′˜φk‖L2(�t )
. We will give the main result in Propo-

sition 12.25 and give a high level proof. The main estimates that are used in the proof
will be proven in Propositions 12.26 and 12.27 below.

Proposition 12.25

sup
t∈[0,TB )

‖∂〈Dx 〉s′˜φk‖L2(�t )
� ε. (12.42)

Proof By Corollary 7.5 (with v = 〈Dx 〉s′˜φk , f1 = �g〈Dx 〉s′˜φk , f2 = 0) and Propo-
sition 12.19, for every T ∈ [0, TB),

sup
t∈[0,T )

‖∂〈Dx 〉s′˜φk‖2L2(�t )

� ‖〈x〉− r
2 ∂〈Dx 〉s′˜φk‖2L2(�0)

+ sup
t∈[0,T )

‖∂˜φk‖2L2(�t )

+
∫ T

0
‖∂〈Dx 〉s′˜φk‖2L2(�τ )

dτ +
∫ T

0
‖〈x〉− r

2 �g〈Dx 〉s′˜φk‖2L2(�τ )
dτ

� ε2 +
∫ T

0
‖∂〈Dx 〉s′˜φk‖2L2(�τ )

dτ +
∫ T

0
‖〈x〉− r

2 �g〈Dx 〉s′˜φk‖2L2(�τ )
dτ,

where in the last line we have used the data bound (4.3a) and the estimate (9.1).
Clearly, �g〈Dx 〉s′˜φk = [�g, 〈Dx 〉s′ ]˜φk . Using (12.6), we in fact have

�g〈Dx 〉s′˜φk = [�2, 〈Dx 〉s′ ]˜φk − [�1, 〈Dx 〉s′ ]˜φk .

In Propositions 12.26 and 12.27 below, we will prove respectively that for r ≥ 1,

‖〈x〉− r
2 [�2, 〈Dx 〉s′ ]˜φk‖2L2(�t )

� ‖∂〈Dx 〉s′˜φk‖2L2(�t )
, (12.43)
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and

‖〈x〉− r
2 [�1, 〈Dx 〉s′ ]˜φk‖2L2(�t )

� ‖∂〈Dx 〉s′˜φk‖2L2(�t )
. (12.44)

Hence,

sup
t∈[0,T )

‖∂〈Dx 〉s′˜φk‖2L2(�t )
� ε2 +

∫ T

0
‖∂〈Dx 〉s′˜φk‖2L2(�t )

dt .

The desired estimate therefore follows from Grönwall’s inequality. ��
Given the proof of Proposition 12.25 above, we need to prove the commutator

estimates (12.43) and (12.44). For both of these bounds, we also prove corresponding
commutator estimates for more general functions. (These more general commutator
bounds will be useful later in Sect. 13.)

Proposition 12.26 Let v be a smooth, compactly supported function on B(0, R). Then
for r ≥ 1,

‖〈x〉− r
2 [�2, 〈Dx 〉s′ ]v‖L2(�t )

� ‖∂〈Dx 〉s′v‖L2(�t )
+ ‖�gv‖L2(�t )

. (12.45)

As a result, (12.43) holds.

Proof Recall from (12.6) that �2 = (g−1)νβ∂2νβ . By the support properties of v, we

have ∂2νβv = �∂2νβv. Hence,

‖〈x〉− r
2 [�2, 〈Dx 〉s′ ]v‖L2(�t )

= ‖〈x〉− r
2 [〈Dx 〉s′ ((g−1)νβ∂2νβv)− (g−1)νβ 〈Dx 〉s′∂2νβv]‖L2(�t )

� ‖〈Dx 〉s′ (�(g−1)νβ∂2νβv)−�(g−1)νβ 〈Dx 〉s′∂2νβv‖L2(�t )
︸ ︷︷ ︸

=:I
+ ‖〈x〉− r

2 (g−1)νβ [〈Dx 〉s′ ,� ]∂2νβv‖L2(�t )
︸ ︷︷ ︸

=:I I
.

(12.46)

By Proposition 12.7 with p = ∞, the estimates for the metric components in (5.1),
and Lemma 12.15, I in (12.46) is bounded by

‖�(g−1)νβ∂2νβ〈Dx 〉s′v − 〈Dx 〉s′(�(g−1)iλ∂2iλv)‖L2(�t )

� ‖�(g−1)νβ‖W 1,∞(�t )
‖〈Dx 〉s′−1∂2νβv‖L2(�t )

� ‖∂〈Dx 〉s′v‖L2(�t )
+ ‖�gv‖L2(�t )

.

By Hölder’s inequality, (5.1), Lemmas 12.17 and 12.15, I I in (12.46) can be con-
trolled by

I I � ‖〈x〉− r
2 (g−1)νβ‖L∞(�t )‖[〈Dx 〉s′ ,� ]∂2νβv‖L2(�t )

� ‖〈Dx 〉s′−2∂2νβv‖L2(�t )
� ‖∂〈Dx 〉s′v‖L2(�t )

+ ‖�gv‖L2(�t )
.
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Combining the above estimates gives (12.45).
Finally, since ˜φk is supported in B(0, R) for every t , and that �g˜φk = 0, (12.43)

follows from (12.45). ��
Proposition 12.27 Let v be a smooth, compactly supported function on B(0, R). Then
for r ≥ 1,

‖〈x〉− r
2 [�1, 〈Dx 〉s′ ]v‖L2(�t )

� ‖∂〈Dx 〉s′v‖L2(�t )
. (12.47)

As a result, (12.44) holds.

Proof Recall that �1 = �λ∂λ. We will in fact not need the commutator structure and
bound each term separately. By Hölder’s inequality and the estimates for �λ in (5.4),
we have

‖〈x〉− r
2 �1(〈Dx 〉s′v)‖L2(�t )

= ‖〈x〉− r
2�λ∂λ〈Dx 〉s′v‖L2(�t )

� ‖〈x〉− r
2�λ‖L∞(�t )‖∂〈Dx 〉s′v‖L2(�t )

.

On the other hand, by (5.4), we have ‖��λ‖L∞∩W 1,2(�t )
� ε

3
2 . Hence, by

Lemma 12.12, we obtain

‖〈x〉− r
2 〈Dx 〉s′(�1v)‖L2(�t )

= ‖〈Dx 〉s′(�λ∂λv)‖L2(�t )
� ‖∂〈Dx 〉s′v‖L2(�t )

.

Combining the above estimates gives (12.47). We then conclude (12.44) by using
(12.47), �g˜φk = 0 and the support property of ˜φk . ��

12.6 Estimates for@Ek〈Dx〉s′′ ˜�k

Similarly as in Sect. 12.5, let us first give a high level proof of our main estimate. The
main steps will be postponed to a number of propositions below.

Proposition 12.28 The following estimate holds for all t ∈ [0, TB):

‖∂Ek〈Dx 〉s′′˜φk‖L2(�t )
� ε + ε 3

2 ‖∂Lk〈Dx 〉s′′˜φk‖L2(�t )
. (12.48)

Proof Take r ≥ 2. By Corollary 7.5 (with v = Ek〈Dx 〉s′′˜φk , f1 = �g(Ek〈Dx 〉s′′˜φk)
and f2 = 0),

sup
t∈[0,T )

‖〈x〉−r−2ν∂Ek〈Dx 〉s′′˜φk‖2L2(�t )

� ‖〈x〉− r
2 ∂Ek〈Dx 〉s′′˜φk‖2L2(�0)

+
∫ T

0
‖〈x〉− r

2 �gEk〈Dx 〉s′′˜φk‖2L2(�τ )
dτ

� ε2 +
∫ T

0
‖〈x〉− r

2 �gEk〈Dx 〉s′′˜φk‖2L2(�τ )
dτ,

(12.49)
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where we have bound the initial data term as ‖〈x〉− r
2 ∂Ek〈Dx 〉s′′˜φk‖2L2(�0)

� ε2 using
the assumptions (4.3a) and (4.3b) on �0 (using additionally (2.3), (5.5), (5.6), (5.1)
and Proposition 12.7 to address commutator terms involving fractional derivatives).

Using (12.37) and (12.42), we can gain weights on the left-hand side of (12.49) as
follows

sup
t∈[0,T )

‖∂Ek〈Dx 〉s′′˜φk‖2L2(�t )

� ε2 + sup
t∈[0,T )

‖∂〈Dx 〉s′˜φk‖2L2(�t )
+

∫ T

0
‖〈x〉− r

2 �gEk〈Dx 〉s′′˜φk‖2L2(�τ )
dτ

� ε2 +
∫ T

0
‖〈x〉− r

2 �gEk〈Dx 〉s′′˜φk‖2L2(�τ )
dτ.

Thus, in order to prove the bound (12.48), it suffices to show

sup
t∈[0,TB )

‖〈x〉− r
2 �gEk〈Dx 〉s′′˜φk‖L2(�t )

� ε

+ε 3
2

∑

Zk∈{Ek ,Lk }
‖∂Zk〈Dx 〉s′′˜φk‖L2(�t )

, (12.50)

since we can then absorb the ε
3
2 ‖∂Ek〈Dx 〉s′′˜φk‖L2(�t )

terms into the left-hand side of
(12.50) using the smallness of ε.

To prove (12.50), we need to control (recall the notation in (12.6))

�gEk〈Dx 〉s′′˜φk = [�g, Ek〈Dx 〉s′′ ]˜φk
= [�g, Ek]〈Dx 〉s′′˜φk + Ek[�1, 〈Dx 〉s′′ ]˜φk + Ek[�2, 〈Dx 〉s′′ ]˜φk .

(12.51)

We further expand the last term in (12.51) using the product rule. First, we will intro-
duce the notation

(ḡ−1)νβ := (g−1)νβ − mνβ, (12.52)

where m is the Minkowski metric. Note moreover that

[�2, 〈Dx 〉s′′ ]˜φk = [(g−1)νβ∂2νβ, 〈Dx 〉s′′ ]˜φk
= [(ḡ−1)νβ∂2νβ, 〈Dx 〉s′′ ]˜φk, ∂λ[(ḡ−1)νβ ] = ∂λ[(g−1)νβ ].

(12.53)
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Now we compute the last term in (12.51) using the product rule and (12.53) (recall
here (12.3)):

Ek[�2, 〈Dx 〉s′′ ]˜φk = Ei
k∂i [�2, 〈Dx 〉s′′ ]˜φk

= Ei
k(∂i (g

−1)νβ)[〈Dx 〉s′′ ,� ]∂2νβ˜φk
+� Ei

k[(∂i (g−1)νβ)∂2νβ〈Dx 〉s′′˜φk]
− Ei

k〈Dx 〉s′′ [�(∂i (g−1)νβ)∂2νβ
˜φk]

+ Ei
k[(ḡ−1)νβ [〈Dx 〉s′′ ,� ]∂3iνβ˜φk]

+� Ei
k[(ḡ−1)νβ∂3iνβ〈Dx 〉s′′˜φk]

− Ei
k〈Dx 〉s′′ [�(ḡ−1)νβ∂3iνβ

˜φk]
= Ei

k[�(∂i (g−1)νβ)∂2νβ〈Dx 〉s′′˜φk]
− Ei

k〈Dx 〉s′′ [�(∂i (g−1)νβ)∂2νβ
˜φk]

+ Ei
k(∂i (g

−1)νβ)[〈Dx 〉s′′ ,� ]∂2νβ˜φk
+ Ei

k[(ḡ−1)νβ [〈Dx 〉s′′ ,� ]∂3iνβ˜φk]
− s′′δ jq [(∂ j (�(ḡ−1)νβ))Ek∂

3
qνβ〈Dx 〉s′′−2

˜φk]
− Ei

kT
s′′
res(�(ḡ

−1)νβ, ∂3iνβ〈Dx 〉s′′˜φk).

(12.54)

Therefore, by (12.51) and (12.54), in order to obtain (12.50), it suffices to prove

‖〈x〉− r
2 [�g, Ek]〈Dx 〉s′′˜φk‖L2(�t )

� ε + ε 3
2

∑

Zk∈{Ek ,Lk }
‖∂Zk〈Dx 〉s′′˜φk‖L2(�t )

, (12.55)

‖〈x〉− r
2 Ek[�1, 〈Dx 〉s′′ ]˜φk‖L2(�t )

� ε, (12.56)

‖〈x〉− r
2 Ei

k(∂i (g
−1)νβ)[〈Dx 〉s′′ ,� ]∂2νβ˜φk‖L2(�t )

+‖〈x〉− r
2 Ei

k(ḡ
−1)νβ [〈Dx 〉s′′ ,� ]∂3iνβ˜φk‖L2(�t )

� ε, (12.57)

‖〈x〉− r
2 {Ei

k[�(∂i (g−1)νβ)∂2νβ〈Dx 〉s′′˜φk]
−Ei

k〈Dx 〉s′′ [�(∂i (g−1)νβ)∂2νβ
˜φk]}‖L2(�t )

� ε, (12.58)

‖〈x〉− r
2 s′′δ jq [(∂ j (�(ḡ−1)νβ)Ek∂

3
qνβ〈Dx 〉s′′−2

˜φk]‖L2(�t )

� ε + ε 3
2 ‖∂Ek〈Dx 〉s′′˜φk‖L2(�t )

, (12.59)

‖Ei
kT

s′′
res(�(ḡ

−1)νβ, ∂3iνβ〈Dx 〉s′′˜φk)‖L2(�t )
� ε. (12.60)

The above six estimates will respectively be proven in Propositions
12.29, 12.30, 12.31, 12.32, 12.34 and 12.35 below, for r ≥ 2. ��
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Proposition 12.29 For r ≥ 2, the estimate (12.55) holds, i.e.

‖〈x〉− r
2
[

�g, Ek
] 〈Dx 〉s′′˜φk‖L2(�t )

� ε 5
2

+ε 3
2

∑

Zk∈{Ek ,Lk }
‖∂Zk〈Dx 〉s′′˜φk‖L2(�t )

.

Proof By Proposition 8.10, we obtain

‖〈x〉− r
2
[

�g, Ek
] 〈Dx 〉s′′˜φk‖L2(�t )

� ε 3
2 (‖∂〈Dx 〉s′′˜φk‖L2(�t )

+ε 3
2

∑

Zk∈{Ek ,Lk }
‖∂Zk〈Dx 〉s′′˜φk‖L2(�t )

).

To conclude, we control the first term by (12.42). ��
Proposition 12.30 Let �1 := �λ∂λ as in (12.6). Then, for r ≥ 2,

∥

∥

∥〈x〉− r
2 ∂i

[

�1, 〈Dx 〉s′′
]

˜φk

∥

∥

∥

L2(�t )
� ε 9

4 . (12.61)

In particular, (12.56) holds.

Proof That (12.56) holds is immediate from (12.61) and the estimate (5.5) for Ei
k .

From now on we focus on (12.61).
Using the product rule and the fact that �˜φk = ˜φk ,

∂i

[

〈Dx 〉s′′ ,�1
]

˜φk = 〈Dx 〉s′′ (��λ∂λ∂i˜φk)−��λ∂λ〈Dx 〉s′′∂i˜φk + �λ[�, 〈Dx 〉s′′ ]∂λ∂i˜φk
+ 〈Dx 〉s′′ (�(∂i�λ)∂λ˜φk)−�(∂i�λ)〈Dx 〉s′′∂λ˜φk + (∂i�λ)[�, 〈Dx 〉s′′ ]∂λ˜φk
= [〈Dx 〉s′′ ,��λ∂λ]∂i˜φk

︸ ︷︷ ︸

=:I
+�λ[�, 〈Dx 〉s′′ ]∂λ∂i˜φk

︸ ︷︷ ︸

=:I I
+ [〈Dx 〉s′′ ,�∂i�λ]∂λ˜φk

︸ ︷︷ ︸

=:I I I
+ (∂i�λ)[�, 〈Dx 〉s′′ ]∂λ˜φk

︸ ︷︷ ︸

=:I V
.

By Corollary 12.8 we have

‖I‖L2(�t )
� ‖��‖

W
1, 2

s′−s′′ (�t )
‖∂λ˜φk‖Hs′ (�t )

� ε 9
4 (12.62)

using (12.42) and the estimate (5.4).
For I I , we use Lemma 12.17, Hölder’s inequality and (5.4), (9.1) to obtain

‖〈x〉− r
2 I I‖L2(�t )

� ‖〈x〉− r
2�λ‖L∞(�t )‖[〈Dx 〉s′′ ,� ]∂2iλ˜φk‖L2(�t )

� ε 3
2 ‖〈Dx 〉s′′−2∂2iλ

˜φk‖L2(�t )
� ε 3

2 ‖∂λ˜φk‖L2(�t )
� ε 5

2 .
(12.63)
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For I I I , we apply the commutator estimate in Theorem 12.5 with p1 = ∞, p =
p2 = 2 to obtain

‖I I I‖L2(�t )
� ‖〈Dx 〉s′′(�∂i�)‖L2(�t )

· ‖∂˜φk‖L∞(�t ) � ε 9
4 , (12.64)

using (5.4) to control ‖〈Dx 〉s′′(�∂i�)‖L2(�t )
and the bootstrap assumption (4.12c).

For I V , we use Lemma 12.17, Sobolev embedding (H
3
2−s′′(R2) ↪→ L∞(R2)) and

Hölder’s inequality to obtain

‖〈x〉− r
2 I V ‖L2(�t )

� ‖〈x〉− r
2 ∂i�

λ‖L2(�t )
‖[〈Dx 〉s′′ ,� ]∂˜φk‖L∞(�t )

� ε
3
2 ‖[〈Dx 〉s′′ ,� ]∂φ‖

H
3
2−s′′

(�t )
� ε 3

2 ‖∂φ‖
H− 1

2 (�t )

� ε 3
2 ‖∂φ‖L2(�t )

� ε 5
2 , (12.65)

where in the second line we have used (5.4) and (9.1). Combining (12.62)–(12.65)
yields the proposition. ��
Proposition 12.31 For any indices (ν, β),

‖[〈Dx 〉s′′ ,� ]∂3iνβ˜φk‖L2(�t )
� ε (12.66)

and

‖[〈Dx 〉s′′ ,� ]∂2νβ˜φk‖L2(�t )
� ε. (12.67)

As a consequence, (12.57) holds.

Proof Assuming (12.66) and (12.67), it follows from Hölder’s inequality, and the
estimates (5.5), (5.1) that

‖〈x〉− r
2 Ei

k(∂i (g
−1)νβ)[〈Dx 〉s′′ ,� ]∂2νβ˜φk‖L2(�t )

+ ‖〈x〉− r
2 Ei

k[(ḡ−1)νβ [〈Dx 〉s′′ ,� ]∂3iνβ˜φk]‖L2(�t )

� ‖〈x〉− r
2 Ei

k(∂i (g
−1)νβ)‖L∞(�t )‖[〈Dx 〉s′′ ,� ]∂2νβ˜φk‖L2(�t )

+ ‖〈x〉− r
2 Ei

k(ḡ
−1)νβ‖L∞(�t )‖[〈Dx 〉s′′ ,� ]∂3iνβ˜φk‖L2(�t )

� ε,

i.e. (12.57) holds (recall the notation (ḡ−1)νβ from (12.52)).
To obtain (12.66), we note that by Lemma 12.17, the L2-boundedness of ∂i 〈Dx 〉−1,

Lemma 12.16, and Proposition 12.25,

‖[〈Dx 〉s′′ ,� ]∂3iνβ˜φk‖L2(�t )
� ‖〈Dx 〉s′−1∂2νβ

˜φk‖L2(�t )
� ‖∂〈Dx 〉s′˜φk‖L2(�t )

� ε.

The estimate (12.67) is even simpler and can be obtained similarly. ��
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Proposition 12.32 For any index (ν, β) and any f satisfying

‖ f ‖
W

1, 2
s′−s′′ (�t )

� 1, (12.68)

we have

‖ f 〈Dx 〉s′′∂2νβ˜φk − 〈Dx 〉s′′( f ∂2νβ˜φk)‖L2(�t )
� ε. (12.69)

As a consequence, for any index σ ,

‖�(∂σ (g−1)νβ)∂2νβ〈Dx 〉s′′˜φk − 〈Dx 〉s′′ [�(∂σ (g−1)νβ)∂2νβ
˜φk]‖L2(�t )

� ε.
(12.70)

In particular, (12.58) holds.

Proof Step 1: Proof of (12.69) By Corollary 12.8 and (12.68),

LHS of (12.69) � ‖ f ‖
W

1, 2
s′−s′′ (�t )

‖〈Dx 〉s′−1∂2νβ
˜φk‖L2(�t )

� ‖〈Dx 〉s′−1∂2νβ
˜φk‖L2(�t )

. (12.71)

The estimate (12.69) thus follows from Lemma 12.16 and Proposition 12.25.
Step 2: Proof of (12.70) and (12.58) By (12.69), to establish (12.70) requires only
that

‖�(∂σ (g−1)νβ)‖
W

1, 2
s′−s′′ (�t )

� 1,

which in turn follows from (5.1).
Using (12.70), Hölder’s inequality and (5.5), we obtain

‖〈x〉− r
2 {Ei

k[�(∂i (g−1)νβ)∂2νβ〈Dx 〉s′′˜φk] − Ei
k〈Dx 〉s′′ [�(∂i (g−1)νβ)∂2νβ

˜φk]}‖L2(�t )

� ‖〈x〉− r
2 Ei

k‖L∞(�t )‖[�(∂i (g−1)νβ)∂2νβ〈Dx 〉s′′˜φk]
− Ei

k〈Dx 〉s′′ [�(∂i (g−1)νβ)∂2νβ
˜φk]‖L2(�t )

� ε,

which establishes (12.58). ��
Next, we consider the term (12.59); the main estimate will be obtained in Propo-

sition 12.34 below. To ease the exposition, we prove an important but technically
involved commutator estimate in the following lemma:

Lemma 12.33 Let Y t be a smooth function satisfying

‖〈x〉−1Y t‖L∞(�t ) � 1, ‖�Y t‖W 1,∞(�t )∩W 2,4(�t )
� 1.
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Then

‖〈x〉−1{Y t Rq Ri 〈Dx 〉s′′(ğiλ∂2tλ˜φk)− Ri Rq〈Dx 〉s′′(ğiλY t∂2tλ
˜φk)}‖L2(�t )

� ε.
(12.72)

Proof We consider separately the cases when we sum λ over the spatial indices and
when λ = t .
Step 1: Summing λ over spatial indices We compute

Y t Rq Ri 〈Dx 〉s′′(ği j∂2j t˜φk)− Rq Ri 〈Dx 〉s′′(ği j Y t∂2t j
˜φk)

= [Y t∂ j , Rq Ri 〈Dx 〉s′′ ](ği j∂t˜φk)
︸ ︷︷ ︸

=:I
−Y t Rq Ri 〈Dx 〉s′′ [(∂ j ği j )(∂t˜φk)]
︸ ︷︷ ︸

=:I I
+ Rq Ri 〈Dx 〉s′′ [Y t (∂ j ğ

i j )(∂t˜φk)]
︸ ︷︷ ︸

=:I I I
.

(12.73)

The term 〈x〉−1 I is bounded in L2(�t ) by ε using (12.41) (with h = Y t , f = ği j ),
(5.1) and Proposition 12.25. 〈x〉−1 I I and 〈x〉−1 I I I are both bounded in L2(�t ) by ε
by the assumed estimates on Y t , the L2-boundedness of Ri , (5.1), Lemma 12.13 and
Proposition 12.25. Combining these observations give (12.72) when λ is only summed
over the spatial indices.
Step 2: The λ = t case It is notationally more convenient to prove more generally that
for f satisfying ‖� f ‖W 2,∞(�t )

� 1, we have

‖〈x〉−1{Y t Rq Ri 〈Dx 〉s′′( f ∂2t t˜φk)− Ri Rq〈Dx 〉s′′( f Y t∂2t t
˜φk)}‖L2(�t )

� ε. (12.74)

First we compute, using the wave equation for ˜φk (see (12.9)), that

− Y t Rq Ri 〈Dx 〉s′′( f ∂2t t˜φk)

= Y t∂q Ri 〈Dx 〉s′′−1( f ğ jλ∂2jλ
˜φk + f �λ∂λ˜φk

(g−1)t t
)

= [Y t∂q , Ri R j 〈Dx 〉s′′ ]( f ğ jλ∂λ˜φk)
︸ ︷︷ ︸

=:I
+ Ri R j 〈Dx 〉s′′ [Y t (∂q( f ğ

jλ))(∂λ˜φk)]
︸ ︷︷ ︸

=:I I
+ Ri R j 〈Dx 〉s′′(Y t f ğ jλ∂2qλ

˜φk)
︸ ︷︷ ︸

=:I I I

−Y t Rq Ri 〈Dx 〉s′′ [(∂ j ( f ğ jλ))(∂λ˜φk)]
︸ ︷︷ ︸

=:I V
+Y t Rq Ri 〈Dx 〉s′′( f �

λ∂λ˜φk

(g−1)t t
)

︸ ︷︷ ︸

=:V

,

(12.75)

where the term Y t∂q Ri 〈Dx 〉s′′−1( f ğ jλ∂2jλ
˜φk) is computed in a way similar to (12.73).

The main term in (12.75) is I I I . Indeed, term I can be controlled by (12.41) in
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Lemma 12.24 (combined with (5.1)), while terms I I , I V and V can be handled using
Lemma 12.13 (again combined with (5.1)) so that

‖I‖L2(�t )
+ ‖I I‖L2(�t )

+ ‖I V ‖L2(�t )
+ ‖V ‖L2(�t )

� ε 3
4 . (12.76)

Finally, for the term I I I in (12.75), we shuffle the ∂ j and ∂q derivatives and once
again use the wave equation for ˜φk (recall again (12.9)) to obtain

I I I = Ri R j 〈Dx 〉s′′(Y t f ğ jλ∂2qλ
˜φk)

= Ri Rq〈Dx 〉s′′( f ğ jλY t∂2jλ
˜φk)+ Ri Rq〈Dx 〉s′′ [(∂ j ( f Y t ğ jλ))(∂λ˜φk)]

− Ri R j 〈Dx 〉s′′ [(∂q( f Y t ğ jλ))(∂λ˜φk)]

= −Ri Rq〈Dx 〉s′′( f Y t∂2t t
˜φk)

︸ ︷︷ ︸

=:I I I1

−Ri Rq〈Dx 〉s′′( f Y
t�λ∂λ˜φk

(g−1)t t
)

︸ ︷︷ ︸

=:I I I2
+ Ri Rq〈Dx 〉s′′ [(∂ j ( f Y t ğ jλ))(∂λ˜φk)]

︸ ︷︷ ︸

=:I I I3

−Ri R j 〈Dx 〉s′′ [(∂q( f Y t ğ jλ))(∂λ˜φk)]
︸ ︷︷ ︸

=:I I I4

.

(12.77)

The main term here is I I I1 (i.e. it is included in the main term on the left-hand side
of (12.74)). Using again Lemma 12.13 (or obvious modifications), we have

‖I I I2‖L2(�t )
+ ‖I I I3‖L2(�t )

+ ‖I I I4‖L2(�t )
� ε 3

4 . (12.78)

Combining (12.75)–(12.78), we obtain the desired estimate. ��

Proposition 12.34 Let Y be a spacetime vector field satisfying

‖〈x〉−1Y ν‖L∞(�t ) + ‖∂xY ν‖L∞(�t ) + ‖〈x〉−1∂t Y
ν‖L∞(�t )

+‖�Y ν‖W 1,∞∩W 2,4(�t )
� 1. (12.79)

Then for any spacetime index (ν, β) �= (t, t) and r ≥ 2,

‖〈x〉− r
2 Y 〈Dx 〉s′′−2∂3qνβ

˜φk‖L2(�t )
� ‖∂Y 〈Dx 〉s′′˜φk‖L2(�t )

+ ε. (12.80)

Also,

‖〈x〉− r
2 {Y 〈Dx 〉s′′−2∂3qtt

˜φk + Y t∂t 〈Dx 〉s′′−2∂q(
�λ∂λ˜φk

(g−1)t t
)}‖L2(�t )

� ‖∂Y 〈Dx 〉s′′˜φk‖L2(�t )
+ ε.

(12.81)

In particular, (12.59) holds.
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Proof Once we obtain (12.80), (12.59) follows easily from the fact that Ek has only
spatial components, the estimates (5.1) and (5.5), (5.6). More precisely, taking advan-
tage of the compact support of � , we obtain

‖s′′δ jq [(∂ j (�(ḡ−1)νβ))Ek∂
3
qνβ 〈Dx 〉s′′−2

˜φk ]‖L2(�t )

� ‖〈x〉 r2 ∂ j (�(ḡ−1)νβ)‖L∞(�t )‖〈x〉−
r
2 Ek∂

3
qνβ 〈Dx 〉s′′−2

˜φk‖L2(�t )

� ‖∂ j (�(ḡ−1)νβ)‖L∞(�t )‖〈x〉−
r
2 Ek∂

3
qνβ 〈Dx 〉s′′−2

˜φk‖L2(�t )

� ε
3
2 (‖∂Ek〈Dx 〉s′′˜φk‖L2(�t )

+ε).

In the remainder of the proof we focus on proving (12.80) and (12.81): (12.80) will
be proven in Steps 1–2 and (12.81) will be established in Step 3. The proof of (12.80)
will be further split into two cases: the (ν, β) = (i, j) case will be treated in Step 1;
the (ν, β) = (i, t) case will be treated in Step 2.
Step 1: Proof of (12.80) when (ν, β) = (i, j) In this case,

Y 〈Dx 〉s′′−2∂3qi j
˜φk = Y σ ∂q Ri R j∂σ 〈Dx 〉s′′˜φk

= [Y σ ∂q , Ri R j ]∂σ 〈Dx 〉s′′˜φk − Ri R j [(∂qY σ )(∂σ 〈Dx 〉s′′˜φk)]
+ Ri R j (∂q(Y 〈Dx 〉s′′˜φk)).

Using Lemma 12.24 for the first term, and using the L2-boundedness of Ri (and
Hölder’s inequality) for the second and third terms, we thus obtain

‖〈x〉− r
2 Y 〈Dx 〉s′′−2∂3qi j

˜φk‖L2(�t )

� ‖∂〈Dx 〉s′′˜φk‖L2(�t )
+ ‖∂!Y σ‖L∞(�t )‖∂〈Dx 〉s′′˜φk‖L2(�t )

+ ‖∂Y 〈Dx 〉s′′˜φk‖L2(�t )

� ‖∂Y 〈Dx 〉s′′˜φk‖L2(�t )
+ ε,

where we have used (12.79) and Proposition 12.25.
Step 2: Proof of (12.80) when (ν, β) = (i, t) Decompose Y = Y !∂! + Y t∂t and
commute Y !∂! with Rq Ri 〈Dx 〉s′′ . We then obtain

Y 〈Dx 〉s′′−2∂3qit
˜φk = [Y !∂!, Rq Ri ]〈Dx 〉s′′∂t˜φk + Rq Ri (Y

!∂!〈Dx 〉s′′∂t˜φk)
+ Y t∂q Ri 〈Dx 〉s′′−1∂2t t

˜φk .
(12.82)

Rearranging, this implies

Y 〈Dx 〉s′′−2∂3qit
˜φk − Rq Ri (Y 〈Dx 〉s′′∂t˜φk)

= [Y !∂!, Rq Ri ]〈Dx 〉s′′∂t˜φk
︸ ︷︷ ︸

=:I
+ (Y t Rq Ri 〈Dx 〉s′′∂2t t˜φk − Rq Ri (Y

t 〈Dx 〉s′′∂2t t˜φk))
︸ ︷︷ ︸

=:I I
.

(12.83)
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We begin with the main term on the left-hand side of (12.83). We compute

Y 〈Dx 〉s′′∂t˜φk = ∂t (Y 〈Dx 〉s′′˜φk)−�(∂t Y ν)∂ν〈Dx 〉s′′˜φk
−(∂t Y ν)∂ν[〈Dx 〉s′′ ,� ]˜φk − (∂t Y ν)(∂ν�)(〈Dx 〉s′′˜φk).

Hence, by L2-boundedness of Rq Ri , Hölder’s inequality, (12.79), (9.1), Lemma 12.21,
(12.39) and Proposition 12.25,

‖Rq Ri (Y 〈Dx 〉s′′∂t˜φk)‖L2(�t )

� ‖∂t Y 〈Dx 〉s′′˜φk‖L2(�t )
+ ‖�∂t Y ν‖L∞(�t )‖∂ν〈Dx 〉s′′˜φk‖L2(�t )

+ ‖〈x〉−1∂t Y
ν‖L∞(�t )(‖〈x〉∂[〈Dx 〉s′′ ,� ]˜φk‖L2(�t )

+ ‖〈x〉∂ν�‖L∞(�t )‖〈Dx 〉s′′˜φk‖L2(�t )
)

� ‖∂t Y 〈Dx 〉s′′˜φk‖L2(�t )
+ ε.

(12.84)

By Lemma 12.24 and Proposition 12.25, the term I in (12.83) can be bounded as
follows,

‖〈x〉− r
2 I‖L2(�t )

� ‖〈Dx 〉s′′∂t˜φk‖L2(�t )
� ε. (12.85)

For the commutator term I I , since in general [Y t , Rq Ri ] is only bounded L2(�t )→
L2(�t ) (instead of gaining one derivative), we need to use the wave equation for ˜φk
and then exploit the gain given by Lemma 12.24. More precisely, we compute using
(12.9) and ∂λ˜φk = �∂λ˜φk that

Y t Rq Ri 〈Dx 〉s′′∂2t t˜φk
= −Y t Rq Ri 〈Dx 〉s′′ (ğ jλ∂2jλ

˜φk)− Y t Rq Ri 〈Dx 〉s′′ (�
λ∂λ˜φk

(g−1)t t
)

= −Rq RiY
t 〈Dx 〉s′′ (ğ jλ∂2jλ

˜φk)− [Y t∂ j , Rq Ri ]〈Dx 〉s′′(ğ jλ∂λ˜φk)

−Rq RiY
t 〈Dx 〉s′′ [(∂ j ğ jλ)(∂λ˜φk)]

+Y t Rq Ri 〈Dx 〉s′′ [(∂ j ğ jλ)(∂λ˜φk)]

−Y t Rq Ri 〈Dx 〉s′′ (�
λ∂λ˜φk

(g−1)t t
)

= Rq RiY
t 〈Dx 〉s′′∂2t t˜φk −[Y t∂ j , Rq Ri ]〈Dx 〉s′′(ğ jλ∂λ˜φk)

︸ ︷︷ ︸

=:I I1
−Rq Ri {�Y t 〈Dx 〉s′′ [(∂ j ğ jλ)(∂λ˜φk)]}
︸ ︷︷ ︸

=:I I2
− Rq Ri {Y t [〈Dx 〉s′′ ,� ]((∂ j ğ jλ)(∂λ˜φk))}

︸ ︷︷ ︸

=:I I3
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+ Y t Rq Ri 〈Dx 〉s′′ [(∂ j ğ jλ)(∂λ˜φk)]
︸ ︷︷ ︸

=:I I4
−Y t Rq Ri 〈Dx 〉s′′ (�

λ∂λ˜φk

(g−1)t t
)

︸ ︷︷ ︸

=:I I5

+ Rq Ri [�Y t 〈Dx 〉s′′ (�
λ∂λ˜φk

(g−1)t t
])

︸ ︷︷ ︸

=:I I6

+ Rq RiY
t [〈Dx 〉s′′ ,� ](�

λ∂λ˜φk

(g−1)t t
)

︸ ︷︷ ︸

=:I I7

. (12.86)

The first term on the right-hand side of (12.86) is the main term (recall again
term I I in (12.83)). We will bound all the other terms. First, I I1 can be bounded by
Lemmas 12.24, and the estimates (5.1) and Proposition 12.25,

‖I I1‖L2(�t )
� ‖∂〈Dx 〉s′˜φk‖L2(�t )

� ε. (12.87)

The terms I I2, I I4, I I5 and I I6 are easier:We use the L2-boundedness of Ri , Hölder’s
inequality, the assumption (12.79), Lemma 12.14 and Proposition 12.25 to obtain

‖I I2‖L2(�t )
+ ‖〈x〉− r

2 I I4‖L2(�t )
+ ‖〈x〉− r

2 I I5‖L2(�t )
+ ‖I I6‖L2(�t )

� ε.
(12.88)

For I I3 and I I7, we use the L2-boundedness of Ri , Hölder’s inequality, the assumption
(12.79), Lemma 12.20, (9.1), (5.1), (5.4) to obtain

‖I I3‖L2(�t )
+ ‖I I7‖L2(�t )

� ‖〈x〉−1Y t‖L∞(�t )(‖〈x〉[〈Dx 〉s′′ ,� ]((∂ j ğ jλ)(∂λ˜φk))‖L2(�t )

+ ‖〈x〉[〈Dx 〉s′′ ,� ](�
λ∂λ˜φk

(g−1)t t
)‖L2(�t )

)

� ‖(∂ j ğ jλ)(∂λ˜φk)‖L2(�t )
+ ‖�

λ∂λ˜φk

(g−1)t t
‖L2(�t )

� ε.

(12.89)

Plugging in the estimates (12.87)–(12.89) into (12.86), we obtain

‖I I‖L2(�t )
= ‖Y t Rq Ri 〈Dx 〉s′′∂2t t˜φk − Rq RiY

t 〈Dx 〉s′′∂2t t˜φk‖L2(�t )
� ε.

(12.90)

Combining (12.84), (12.85) and (12.90), and returning to (12.83), we thus obtain

‖Y 〈Dx 〉s′′−2∂3qit
˜φk‖L2(�t )

� ‖Rq Ri (Y 〈Dx 〉s′′∂t˜φk)‖L2(�t )
+ ‖I‖L2(�t )

+ ‖I I‖L2(�t )

� ‖∂Y 〈Dx 〉s′′˜φk‖L2(�t )
+ ε,

as desired.
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Step 3: Proof of (12.81) We begin with an application of the wave equation (recall
(12.9)):

Y 〈Dx 〉s′′−2∂3qtt
˜φk = −Y Rq Ri 〈Dx 〉s′′(ğiλ∂λ˜φk)

︸ ︷︷ ︸

=:I

+Y Rq〈Dx 〉s′′−1[(∂i ğiλ)(∂λ˜φk)]
︸ ︷︷ ︸

I I

−Y !R!Rq〈Dx 〉s′′(�
λ∂λ˜φk

(g−1)t t
)

︸ ︷︷ ︸

I I I

−Y t∂t Rq〈Dx 〉s′′−1(
�λ∂λ˜φk

(g−1)t t
). (12.91)

Note that the last term −Y t∂t Rq〈Dx 〉s′′−1(
�λ∂λ˜φk
(g−1)t t

) is present in the statement of
(12.81). It is therefore sufficient to control each of I , I I and I I I in (12.91). This will
be carried out in Steps 3(a)–3(c) below.
Step 3(a): Term I in (12.91) As in Step 2, we write Y = Y !∂! + Y t∂t . We compute

Y Rq Ri 〈Dx 〉s′′(ğiλ∂λ˜φk)
= [Y !∂!, Rq Ri 〈Dx 〉s′′ ](ğiλ∂λ˜φk)

︸ ︷︷ ︸

=:I1

+ Rq Ri 〈Dx 〉s′′ [Y !(∂!ğiλ)(∂λ˜φk)]
︸ ︷︷ ︸

=:I2
+ Rq Ri 〈Dx 〉s′′ [ğiλ(Y !∂!∂λ˜φk)]

︸ ︷︷ ︸

=:I3
+ Y t Rq Ri 〈Dx 〉s′′ [(∂t ğiλ)(∂λ˜φk)]

︸ ︷︷ ︸

=:I4

+Y t Rq Ri 〈Dx 〉s′′(ğiλ∂2λt˜φk)
︸ ︷︷ ︸

=:I5

.

(12.92)

I1, I2, I4 are easier error terms. Indeed, using Lemma 12.24, (12.79) and (5.1) for I1,
using Lemma 12.14 for I2 and I4, and then applying Proposition 12.25, we have the
estimates

‖I1‖L2(�t )
+ ‖I2‖L2(�t )

+ ‖I4‖L2(�t )
� ε, (12.93)

we skip the details.
We will combine I3 and I5 in (12.92). First, by Lemma 12.33,

‖〈x〉−1(I5 − Rq Ri 〈Dx 〉s′′(ğiλY t∂2tλ
˜φk))‖L2(�t )

� ε. (12.94)

Therefore, recalling the definition of I3 and I5 in (12.92) and then using (12.94), we
obtain

‖I3 + I5 − Rq Ri 〈Dx 〉s′′ [ğiλ(Y ∂λ˜φk)]‖L2(�t )
� ε. (12.95)

123



10 Page 110 of 137 J. Luk, M. Van de Moortel

We next estimate the term Rq Ri 〈Dx 〉s′′ [ğiλ(Y ∂λ˜φk)] (appearing in (12.95)). By the
L2-boundedness of Rq Ri and Y ∂λ˜φk = �Y ∂λ˜φk , Proposition 12.7 and (5.1)

‖Rq Ri 〈Dx 〉s′′ [ğiλ(Y ∂λ˜φk)]‖L2(�t )
� ‖〈Dx 〉s′′ [� ğiλ(Y ∂λ˜φk)]‖L2(�t )

� ‖� ğiλ‖L∞(�t )‖〈Dx 〉s′′Y ∂λ˜φk‖L2(�t )

+ ‖� ğiλ‖W 1,∞(�t )
‖〈Dx 〉s′′−1Y ∂λ˜φk‖L2(�t )

� ‖〈Dx 〉s′′Y ∂λ˜φk‖L2(�t )
+ ‖〈Dx 〉s′′−1Y ν∂2νλ˜φk‖L2(�t )

(12.96)

We then bound each term on the right-hand side of (12.96). For the first term, we use
∂2νλ

˜φk = �∂2νλ˜φk , Proposition 12.7, (12.79), Lemma 12.16 and Proposition 12.25 to
obtain

‖〈Dx 〉s′′(Y ν∂2νλ˜φk)‖L2(�t )
= ‖〈Dx 〉s′′(�Y ν∂2νλ˜φk)‖L2(�t )

� ‖�Y ν∂2νλ〈Dx 〉s′′˜φk‖L2(�t )

+ ‖�Y ν‖W 1,∞(�t )
‖〈Dx 〉s′′−1∂2νλ

˜φk‖L2(�t )

� ‖�∂λ(Y 〈Dx 〉s′′˜φk)‖L2(�t )
+ ‖∂λ(�Y ν)‖L∞(�t )‖∂ν〈Dx 〉s′′˜φk‖L2(�t )

+ ‖〈Dx 〉s′′−1∂2νλ
˜φk‖L2(�t )

� ‖∂Y 〈Dx 〉s′′˜φk‖L2(�t )
+ ε.

(12.97)

For the second term on the right-hand side of (12.96), we directly use Lemma 12.16
and Proposition 12.25 to obtain

‖〈Dx 〉s′′−1Y ν∂2νλ˜φk‖L2(�t )
� ‖∂〈Dx 〉s′˜φk‖L2(�t )

� ε. (12.98)

Plugging (12.97) and (12.98) into (12.96), we thus obtain

‖Rq Ri 〈Dx 〉s′′ [ğiλ(Y ∂λ˜φk)]‖L2(�t )
� ‖∂Y 〈Dx 〉s′′˜φk‖L2(�t )

+ ε. (12.99)

Finally, we combine (12.93), (12.95) and (12.99) to obtain

‖I‖L2(�t )
� ‖Rq Ri 〈Dx 〉s′′ [ğiλ(Y ∂λ˜φk)]‖L2(�t )

+ ε � ‖∂Y 〈Dx 〉s′′˜φk‖L2(�t )
+ ε.
(12.100)
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Step 3(b): Term I I in (12.91)We again write Y = Y !∂!+Y t∂t and expand as follows:

I I = Y Rq〈Dx 〉s′′−1[(∂i ğiλ)(∂λ˜φk)]
= Y !Rq R!〈Dx 〉s′′ [(∂i ğiλ)(∂λ˜φk)]

︸ ︷︷ ︸

=:I I1
+ Y t Rq〈Dx 〉s′′−1[(∂2i t ğiλ)(∂λ˜φk)]

︸ ︷︷ ︸

=:I I2
+ Y t Rq〈Dx 〉s′′−1[(∂i ğiλ)(∂2tλ˜φk)]

︸ ︷︷ ︸

=:I I3

.

(12.101)

The term I I1 can be directly handled by (12.79), Lemma 12.14 and Proposi-
tion 12.25 so that

‖〈x〉− r
2 I I1‖L2(�t )

� ε. (12.102)

I I2 is even easier: we use the L2-boundedness of Rq〈Dx 〉s′′−1, (12.79), (5.1) and
the bootstrap assumption (4.12c) to obtain

‖〈x〉− r
2 I I2‖L2(�t )

�‖〈x〉−1Y t‖L∞(�t )‖(∂2i t ğiλ)(∂λ˜φk)‖L2(�t )

�‖(∂2i t ğiλ)(∂λ˜φk)‖L2(�t )
� ‖∂2i t ğiλ‖L2(�t )

‖∂˜φk‖L∞(�t ) � ε 9
4 .

For the term I I3 in (12.101), we use (12.79), Lemma 12.16, (5.1) and Proposi-
tion 12.25 to obtain

‖〈x〉− r
2 I I3‖L2(�t )

� ε. (12.103)

Finally, combining (12.102) and (12.103) yields

‖〈x〉− r
2 I I‖L2(�t )

� ε. (12.104)

Step 3(c): Term I I I in (12.91) The very final term I I I in (12.91) is simple. Indeed,
by Hölder’s inequality, (12.79), Lemma 12.14 and Proposition 12.25,

‖〈x〉− r
2 I I I‖L2(�t )

� ‖〈x〉−1Y t‖L∞(�t )‖〈Dx 〉s′′(�
λ∂λ˜φk

(g−1)t t
)‖L2(�t )

� ε. (12.105)

Finally, we plug the estimates (12.100), (12.104) and (12.105) into (12.91) to obtain
(12.81). ��
Proposition 12.35 When (ν, β, σ ) �= (t, t, t),

‖T s′′
res(�(ḡ

−1)νβ, ∂3σνβ〈Dx 〉s′′˜φk)‖L2(�t )
� ε 5

2 , (12.106)
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where we recall the notation (ḡ−1)νβ from (12.52).
In particular, (12.60) holds.

Proof That (12.60) holds is immediate from (12.106) and the fact that Ek does not
have a t component. From now on we focus on the proof of (12.106).

By Corollary 12.10 and (5.1), the left-hand side of (12.106) is bounded by

LHS of (12.106) � ‖�(ḡ−1)νβ‖
W

2, 2
s′−s′′ (�t )

‖〈Dx 〉s′−2∂3σνβ
˜φk‖L2(�t )

� ε 3
2 ‖〈Dx 〉s′−2∂3σνβ

˜φk‖L2(�t )
.

Note that if two of σ , ν, β are spatial, we use Proposition 12.25 to get

‖〈Dx 〉s′−2∂3σνβ
˜φk‖L2(�t )

� ‖∂〈Dx 〉s′˜φk‖L2(�t )
� ε,

which gives the desired estimate.
The only remaining case to consider (after relabeling) is (ν, β, σ ) = (t, t, i). By

the L2-boundedness of 〈Dx 〉−1∂i , Lemma 12.16 and Proposition 12.25,

‖〈Dx 〉s′−2∂3i t t
˜φk‖L2(�t )

� ‖〈Dx 〉s′−1∂2t t
˜φk‖L2(�t )

� ε,

which again gives the desired estimate. ��

12.7 Estimates for@Lk〈Dx〉s′′ ˜�k

As in Sect. 12.6, we begin with a high level proof, leaving the main estimates in later
propositions.

Proposition 12.36

‖∂Lk〈Dx 〉s′′˜φk‖L2(�t )
� ε. (12.107)

Moreover, combining (12.48) with (12.107), we obtain

‖∂Ek〈Dx 〉s′′˜φk‖L2(�t )
� ε. (12.108)

Proof In order to prove ‖∂Lk〈Dx 〉s′′˜φk‖L2(�t )
� ε, we will derive and use the wave

equation for Lk〈Dx 〉s′′˜φk .
Our main strategy is to decompose

�gLk〈Dx 〉s′′˜φk = Lt
k∂tC + F (12.109)

for appropriate C and F (Step 1). The term F will be bounded in L2(�t ), while the
term Lt

k∂tC will be treated with an additional integration by parts in t . The relevant
estimates will be treated in Step 2 below.
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Step 1: Achieving the decomposition (12.109) We first write (recall the notation in
(12.6))

�gLk〈Dx 〉s′′˜φk = [�g, Lk〈Dx 〉s′′ ]˜φk = [�g, Lk]〈Dx 〉s′′˜φk
+ Lk[�1, 〈Dx 〉s′′ ]˜φk + Lk[�2, 〈Dx 〉s′′ ]˜φk . (12.110)

Now, recalling the notation in (12.3) and (12.52), the last term in (12.110) can be
further computed using the product rule as follows, by the same computation that led
to (12.54):

Lk[�2, 〈Dx 〉s′′ ]˜φk = Lμk ∂μ[�2, 〈Dx 〉s′′ ]˜φk
= Lμk [�(∂μ(g−1)νβ)∂2νβ〈Dx 〉s′′˜φk] − Lμk 〈Dx 〉s′′ [�(∂μ(g−1)νβ)∂2νβ

˜φk]
+ Lμk (∂μ(g

−1)νβ)[〈Dx 〉s′′ ,� ]∂2νβ˜φk + Lμk [(ḡ−1)νβ [〈Dx 〉s′′ ,� ]∂3μνβ˜φk]
− s′′δ jq(∂ j (�(ḡ−1)νβ))(Lk∂

3
qνβ〈Dx 〉s′′−2

˜φk)− Lμk T
s′′
res(�(ḡ

−1)νβ, ∂3μνβ
˜φk).

(12.111)

There are a few terms in (12.110) and (12.111) which cannot be estimated directly
and have to be separated out. First, there are the following terms:

Lt
k∂t [�1, 〈Dx 〉s′′ ]˜φk, Lt

k(ḡ
−1)t t [〈Dx 〉s′′ ,� ]∂3t t t˜φk,

− Lt
kT

s′′
res(�(ḡ

−1)t t , ∂3t t t
˜φk).

(12.112)

The term −s′′δ jq [(∂ j (�(ḡ−1)νβ))Lk∂
3
qνβ〈Dx 〉s′′−2

˜φk] also cannot be controlled
directly. It can be shown (see (12.123) below) that up to controllable error, this term
is essentially the following:

s′′δ jq(∂ j (�(ḡ−1)t t ))Lt
k∂t 〈Dx 〉s′′−2∂q(

�λ∂λ˜φk

(g−1)t t
). (12.113)

In order to handle the terms in (12.112) and (12.113), we define

C := [�1, 〈Dx 〉s′′ ]˜φk + s′′δ jq(∂ j (�(ḡ−1)t t ))〈Dx 〉s′′−2∂q(
�λ∂λ˜φk

(g−1)t t
)

+ (ḡ−1)t t [〈Dx 〉s′′ ,� ]∂2t t˜φk − T s′′
res(�(ḡ

−1)t t , ∂2t t
˜φk).

(12.114)

It is easy to check that

Lt
k∂tC = Lt

k∂t [�1, 〈Dx 〉s′′ ]˜φk + s′′δ jq(∂ j (�(ḡ−1)t t ))Lt
k∂t 〈Dx 〉s′′−2∂q(

�λ∂λ˜φk

(g−1)t t
)

+ Lt
k(g

−1)t t [〈Dx 〉s′′ ,� ]∂3t t t˜φk − Lt
kT

s′′
res(�(ḡ

−1)t t , ∂3t t t
˜φk)

+ s′′δ jq(∂2t j (�(ḡ−1)t t ))〈Dx 〉s′′−2∂q(
�λ∂λ˜φk

(g−1)t t
)

+ (∂t (g−1)t t )[〈Dx 〉s′′ ,� ]∂2t t˜φk − Lt
kT

s′′
res(∂t (�(ḡ

−1)t t ), ∂2t t
˜φk)

(12.115)
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so that the first four terms are exactly the uncontrollable terms in (12.112) and (12.113),
and the last three terms are error terms generated in this process.

Finally, we define F as follows so that (12.109) holds by (12.110), (12.111),
(12.114) and (12.115):

F := [�g, Lk]〈Dx 〉s′′˜φk
+Li

k∂i [�1, 〈Dx 〉s′′ ]˜φk + Lμk [(∂μ(g−1)νβ)[〈Dx 〉s′′ ,� ]∂2νβ˜φk]
+Lμk [(ḡ−1)νβ [〈Dx 〉s′′ ,� ]∂3μνβ˜φk] − Lt

k(ḡ
−1)t t [〈Dx 〉s′′ ,� ]∂3t t t˜φk

+Lμk [�(∂μ(g−1)νβ)∂2νβ〈Dx 〉s′′˜φk] − Lμk 〈Dx 〉s′′ [�(∂μ(g−1)νβ)∂2νβ
˜φk]

−s′′δ jq [(∂ j (�(ḡ−1)νβ))Lk∂
3
qνβ〈Dx 〉s′′−2

˜φk]

−s′′δ jq(∂ j (�(ḡ−1)νβ))Lt
k∂t 〈Dx 〉s′′−2∂q(

�λ∂λ˜φk

(g−1)t t
)

−Lμk T
s′′
res(�(ḡ

−1)νβ, ∂3μνβ
˜φk)+ Lt

kT
s′′
res(�(ḡ

−1)t t , ∂3t t t
˜φk)

−s′′δ jq(∂2t j (�(ḡ−1)t t ))〈Dx 〉s′′−2∂q(
�λ∂λ˜φk

(g−1)t t
)− (∂t (g−1)t t )[〈Dx 〉s′′ ,� ]∂2t t˜φk

+Lt
kT

s′′
res(∂t (�(ḡ

−1)t t ), ∂2t t
˜φk). (12.116)

Step 2: The estimates We will handle the F term and the Lt∂tC term separately.
For the F term, we will prove that for all r ≥ 2

‖〈x〉− r
2 F‖L2(�t )

� ε + ε 3
2

∑

Zk∈{Ek ,Lk }
‖∂Zk〈Dx 〉s′′˜φk‖L2(�t )

. (12.117)

In view of (12.116), the following estimates together imply (12.117) (note in particular
the similarity of (12.118)–(12.124) with (12.55)–(12.60)):

‖〈x〉− r
2 [�g, Lk]〈Dx 〉s′′˜φk‖L2(�t )

� ε + ε 3
2

∑

Zk∈{Ek ,Lk }
‖∂Zk〈Dx 〉s′′˜φk‖L2(�t )

,

(12.118)

‖〈x〉− r
2 Li

k∂i [�1, 〈Dx 〉s′′ ]˜φk‖L2(�t )
� ε, (12.119)

‖〈x〉− r
2 Lμk [(∂μ(g−1)νβ)[〈Dx 〉s′′ ,� ]∂2νβ˜φk]‖L2(�t )

� ε, (12.120)

‖〈x〉− r
2 {Lμk [(ḡ−1)νβ [〈Dx 〉s′′ ,� ]∂3μνβ˜φk]

−Lt
k(ḡ

−1)t t [〈Dx 〉s′′ ,� ]∂3t t t˜φk}‖L2(�t )
� ε, (12.121)

‖〈x〉− r
2 {Lμk [�(∂μ(g−1)νβ)∂2νβ〈Dx 〉s′′˜φk]

−Lμk 〈Dx 〉s′′ [�(∂μ(g−1)νβ)∂2νβ
˜φk]}‖L2(�t )

� ε, (12.122)

‖〈x〉− r
2 s′′δ jq{(∂ j (�(ḡ−1)νβ))Lk∂

3
qνβ〈Dx 〉s′′−2

˜φk

+Lt
k(∂ j (�(ḡ

−1)t t ))∂t 〈Dx 〉s′′−2∂q(
�λ∂λ˜φk

(g−1)t t
)}‖L2(�t )

� ε, (12.123)
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‖〈x〉− r
2 [Lμk T s′′

res(�(ḡ
−1)νβ, ∂3μνβ

˜φk)− Lt
kT

s′′
res(�(ḡ

−1)
t t
, ∂3t t t

˜φk)]‖L2(�t )
� ε,

(12.124)

‖〈x〉− r
2 s′′δ jq(∂2t j (�(ḡ−1)t t ))〈Dx 〉s′′−2∂q(

�λ∂λ˜φk

(g−1)t t
)‖L2(�t )

� ε, (12.125)

‖〈x〉− r
2 (∂t (g

−1)t t )[〈Dx 〉s′′ ,� ]∂2t t˜φk‖L2(�t )
� ε. (12.126)

‖〈x〉− r
2 Lt

kT
s′′
res(∂t (�(ḡ

−1)t t ), ∂2t t
˜φk)‖L2(�t )

� ε. (12.127)

The estimates (12.118)–(12.127) will be proven in Proposition 12.37.
On the other hand, we will prove in Proposition 12.38 below that the term C in

(12.114) can be bounded as follows for all r ′ ≥ 1:

‖〈x〉− r ′
2 C‖L2(�t )

+ ‖〈x〉− r ′
2 ∂iC‖L2(�t )

� ε. (12.128)

Step 3: Putting everything together We rewrite Lt∂tC = 1
N e0C + βi

N ∂iC using (2.5)

and (2.31). We now apply Corollary 7.5 with v = Lk〈Dx 〉s′′˜φk , f1 = F + βi

N ∂iC ,
f2 = C , h = 1

N and r ≥ 2. Note that the bound (6.2) holds for h = 1
N thanks to (5.1).

Thus

sup
t∈[0,T )

‖〈x〉−(r+2α)∂Lk〈Dx 〉s′′˜φk‖2L2(�t )

� ‖〈x〉− r
2 ∂Lk〈Dx 〉s′′˜φk‖2L2(�0)

+ sup
t∈[0,T )

‖〈x〉− r
2C‖2L2(�t )

+
∫ T

0
(‖〈x〉− r

2 f1‖2L2(�t )
+ ‖〈x〉− r

2C‖2L2(�t )
+ ‖〈x〉− r

2 ∂xC‖2L2(�t )
) dt

� ε2 +
∫ T

0
‖〈x〉− r

2 f1‖2L2(�t )
dt,

(12.129)

where in the last line, we have used the initial data bounds in (4.3a) and (4.3b), as well
as controlled C using (12.128).

Notice that by choosing r ′ = r−1, (12.128) and (5.1) imply that‖〈x〉− r
2
βi

N ∂iC‖L2(�t )

� ε. Combining this with (12.117), we thus obtain

‖〈x〉− r
2 f1‖L2(�t )

� ε + ε 3
2

∑

Zk∈{Ek ,Lk }
‖∂Zk〈Dx 〉s′′˜φk‖L2(�t )

.

Plugging this into (12.129), and then using (12.23) and Proposition 12.25, we thus
obtain

‖∂Lk〈Dx 〉s′′˜φk‖L2(�t )
� ε + ε 3

2
∑

Zk∈{Ek ,Lk }
‖∂Zk〈Dx 〉s′′˜φk‖L2(�t )

.
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Then we use (12.48) and the smallness of ε to absorb the
ε

3
2
∑

Zk∈{Ek ,Lk } ‖∂Zk〈Dx 〉s′′˜φk‖L2(�t )
terms into the left-hand side: both (12.107) and

(12.108) follow immediately. ��

Proposition 12.37 The estimates (12.118)–(12.127) hold for r ≥ 2.

Proof Step 1: Proof of (12.118) This follows from Proposition 8.12 applied with
v = 〈Dx 〉s′′˜φk and Proposition 12.25.
Step 2: Proof of (12.119) This follows from Proposition 12.30 and (5.5).
Step 3: Proof of (12.120) This follows from Proposition 12.31, Hölder’s inequality
and (5.5), (5.1).
Step 4: Proof of (12.121) By Hölder’s inequality, (5.5), (5.1), we get

‖〈x〉− r
2 {Lμk [(g−1)νβ [〈Dx 〉s′′ ,� ]∂3μνβ˜φk] − Lt

k(g
−1)t t [〈Dx 〉s′′ ,� ]∂3t t t˜φk}‖L2(�t )

�
∑

(ν,β,μ) �=(t,t,t)
‖〈x〉− r

2 Lμk (g
−1)νβ‖L∞(�t )‖[〈Dx 〉s′′ ,� ]∂3νβμ˜φk‖‖L2(�t )

� ε
3
2

∑

(ν,β,μ) �=(t,t,t)
‖[〈Dx 〉s′′ ,� ]∂3νβμ˜φk‖L2(�t )

� ε 5
2 .

(Note that −Lt
k(g

−1)t t [〈Dx 〉s′′ ,� ]∂3t t t˜φk exactly removes the (ν, β, μ) = (t, t, t)
contribution from the first term.) Note also that in the final inequality, we have used
(12.66) from Proposition 12.31 (since there is no (ν, β, μ) = (t, t, t) term).
Step 5: Proof of (12.122) This follows from (12.70) in Proposition 12.32 and (5.5).
Step 6: Proof of (12.123) First, using Hölder’s inequality and (5.1), we obtain

‖〈x〉− r
2 s′′δ jq {(∂ j (g−1)νβ)Lk∂

3
qνβ〈Dx 〉s′′−2

˜φk + Lt
k(∂ j (g

−1)t t )∂t 〈Dx 〉s′′−2∂q (
�λ∂λ˜φk

(g−1)t t
)}‖L2(�t )

�
∑

(ν,β) �=(t,t)
‖∂ j (g−1)νβ‖L∞(�t )‖〈x〉−

r
2 Lk∂

3
qνβ〈Dx 〉s′′−2

˜φk‖L2(�t )

+ ‖∂ j (g−1)t t‖L∞(�t )‖〈x〉−
r
2 {Lk∂

3
qtt 〈Dx 〉s′′−2

˜φk + Lt
k∂t 〈Dx 〉s′′−2∂q (

�λ∂λ˜φk

(g−1)t t
)}‖L2(�t )

� ε 3
2

∑

(ν,β) �=(t,t)
‖〈x〉− r

2 Lk∂
3
qνβ〈Dx 〉s′′−2

˜φk‖L2(�t )

+ ε 3
2 ‖〈x〉− r

2 {Lk∂
3
qtt 〈Dx 〉s′′−2

˜φk + Lt
k∂t 〈Dx 〉s′′−2∂q (

�λ∂λ˜φk

(g−1)t t
)}‖L2(�t )

.

To conclude, we apply Proposition 12.34 with Y = Lk (where the bounds (12.79) are
given by (5.5), (5.6)): more specifically we use (12.80) for the first term and (12.81)
for the second term.
Step 7: Proof of (12.124) This follows from Hölder’s inequality, (5.5) and Proposi-
tion 12.35. (Note that Lt

kT
s′′
res(�(ḡ

−1)
t t
, ∂3t t t

˜φk) exactly removes the contribution in

Lμk T
s′′
res(�(ḡ

−1)νβ, ∂3μνβ
˜φk) where (μ, ν, β) = (t, t, t).)
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Step 8: Proof of (12.125) By Sobolev embedding, 〈Dx 〉−2∂q : L4(�t ) → L2(�t ) is
bounded. Thus by Hölder’s inequality, Lemma 12.14 and Proposition 12.25,

‖s′′δ jq(∂2t j (�(ḡ−1)t t ))〈Dx 〉s′′−2∂q(
�λ∂λ˜φk

(g−1)t t
)‖L2(�t )

� ‖∂2t j (�(ḡ−1)t t )‖L4(�t )
‖〈Dx 〉s′′ �

λ∂λ˜φk

(g−1)t t
‖L2(�t )

� ε 3
2 ‖∂〈Dx 〉s′˜φk‖L2(�t )

� ε 5
2 ,

where we have used Hölder’s inequality and the condition 0 < s′ − s′′ < 1
3 to deduce

‖∂2t j (g−1)t t‖L4(�t )
� ε 3

2 from (5.1).
Step 9: Proof of (12.126) By Hölder’s inequality, (5.1), Lemma 12.17, Lemma 12.16
and Proposition 12.25,

‖〈x〉− r
2 (∂t (g

−1)t t )[〈Dx 〉s′′ ,� ]∂2t t˜φk‖L2(�t )

� ‖〈x〉− r
2 (∂t (g

−1)t t )‖L∞(�t )‖〈Dx 〉s′′−2∂2t t
˜φk‖L2(�t )

� ε 5
2 .

Step 10: Proof of (12.127) By Hölder’s inequality and Corollary 12.10 (with θ1 = s′,
θ2 = s′′, p = 2

s′−s′′ ), (5.1), (5.5), Lemma 12.16 and Proposition 12.25,

‖〈x〉− r
2 Lt

kT
s′′
res(∂t (�(ḡ

−1)t t ), ∂2t t
˜φk)‖L2(�t )

� ‖〈x〉− r
2 Lt

k‖L∞(�t )‖∂t (�(ḡ−1)t t )‖
W

1, 2
s′−s′′ (�t )

‖〈Dx 〉s′−1∂2t t
˜φk‖L2(�t )

� ε
3
2 ‖〈Dx 〉s′−1∂2t t

˜φk‖L2(�t )
� ε 3

2 ‖∂〈Dx 〉s′˜φk‖L2(�t )
� ε 5

2 .

��

Proposition 12.38 Let C be as in (12.114). Then for all r ≥ 1

‖〈x〉− r
2C‖L2(�t )

+ ‖〈x〉− r
2 ∂iC‖L2(�t )

� ε.

Proof We consider the four terms in (12.114) respectively in Steps 1–4 below.
Step 1: [�1, 〈Dx 〉s′′ ]˜φk
That ‖〈x〉− r

2 [�1, 〈Dx 〉s′′ ]˜φk‖L2(�t )
� ε follows from Proposition 12.27 and Propo-

sition 12.25; that ‖〈x〉− r
2 ∂i [�1, 〈Dx 〉s′′ ]˜φk‖L2(�t )

� ε is a consequence of Proposi-
tion 12.30.
Step 2: s′′δ jq(∂ j (�(ḡ−1)t t ))〈Dx 〉s′′−2∂q(

�λ∂λ˜φk
(g−1)t t

)

By (5.1), ‖〈x〉− r
2 ∂ j (�(ḡ−1)t t )‖L∞(�t ) � ε

3
2 . Hence, using Hölder’s inequality,

Lemma 12.14, the L2-boundedness of 〈Dx 〉−2∂q , and Proposition 12.25, we obtain

‖〈x〉− r
2 s′′δ jq (∂ j (�(ḡ−1)t t ))〈Dx 〉s′′−2∂q (

�λ∂λ˜φk

(g−1)t t
)‖L2(�t )

� ε
3
2 ‖〈Dx 〉s′′ (�

λ∂λ˜φk

(g−1)t t
)‖L2(�t )

� ε
5
2 .

123



10 Page 118 of 137 J. Luk, M. Van de Moortel

To estimate the derivative, we use also the product rule, Hölder’s inequality, (5.1),
Lemma 12.14 and Proposition 12.25 to obtain

∥

∥

∥

∥

〈x〉− r
2 ∂i

(

s′′δ jq(∂ j (�(ḡ−1)t t ))〈Dx 〉s′′−2∂q(
�λ∂λ˜φk

(g−1)t t
)

)∥

∥

∥

∥

L2(�t )

� ‖∂ j (�(ḡ−1)t t )‖L∞(�t )‖〈Dx 〉s′′(�
λ∂λ˜φk

(g−1)t t
)‖L2(�t )

+‖∂2i j (�(ḡ−1)t t )‖L∞(�t )‖〈Dx 〉s′′−1(
�λ∂λ˜φk

(g−1)t t
)‖L2(�t )

� ε
3
2 ‖〈Dx 〉s′′(�

λ∂λ˜φk

(g−1)t t
)‖L2(�t )

� ε 5
2 .

Step 3: (g−1)t t [〈Dx 〉s′′ ,� ]∂2t t˜φk To bound (g−1)t t [〈Dx 〉s′′ ,� ]∂2t t˜φk itself, we use
Hölder’s inequality, the estimate (5.1), Lemma 12.17, Lemma 12.16 and Proposi-
tion 12.25 to obtain

‖〈x〉− r
2 (g−1)t t [〈Dx 〉s′′ ,� ]∂2t t˜φk‖L2(�t )

� ‖〈x〉− r
2 (g−1)t t‖L∞(�t )‖〈Dx 〉s′′−2∂2t t˜φk‖L2(�t )

� ε.

For the derivative, we first use the product rule to distribute the ∂i derivative and
then argue in a similar way as above, i.e.

‖〈x〉− r
2 ∂i {(g−1)t t [〈Dx 〉s′′ ,� ]∂2t t˜φk}‖L2(�t )

� ‖〈x〉− r
2 ∂i (g

−1)t t‖L∞(�t )‖〈Dx 〉s′′−2∂2t t
˜φk‖L2(�t )

+ ‖〈x〉− r
2 (g−1)t t‖L∞(�t )‖〈Dx 〉s′′−1∂2t t

˜φk‖L2(�t )
� ε.

Step 4: T s′′
res(�(ḡ

−1)t t , ∂2t t
˜φk) For T s′′

res(�(ḡ
−1)t t , ∂2t t

˜φk) itself, we use Corol-
lary 12.10, the estimate (5.1), Lemma 12.16 and Proposition 12.25 to obtain

‖T s′′
res(�(ḡ

−1)t t , ∂2t t
˜φk)‖L2(�t )

� ‖�(ḡ−1)t t‖W 1,∞(�t )
‖〈Dx 〉s′′−1∂2t t

˜φk‖L2(�t )
� ε.

For the derivative, we first use product rule to obtain

‖∂i T s′′
res(�(ḡ

−1)t t , ∂2t t
˜φk)‖L2(�t )

� ‖T s′′
res(∂i (�(ḡ

−1)t t ), ∂2t t
˜φk)‖L2(�t )

+ ‖T s′′
res(�(ḡ

−1)t t , ∂3i t t
˜φk)‖L2(�t )

.

(12.130)

The first term in (12.130) can be estimated using Corollary 12.10, the estimate (5.1),
Lemma 12.16 and Proposition 12.25 to obtain
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‖T s′′
res(∂i (�(ḡ

−1)t t ), ∂2t t˜φk)‖L2(�t )

� ‖∂i (�(ḡ−1)t t )‖
W

1, 2
s′−s′′ (�t )

‖〈Dx 〉s′−1∂2t t˜φk‖L2(�t )
� ε.

The second term in (12.130) can also be estimated as follows using Corollary 12.10,
the estimate (5.1), Lemma 12.16 and Proposition 12.25

‖T s′′
res(�(ḡ

−1)t t , ∂3i t t
˜φk)‖L2(�t )

� ‖�(ḡ−1)t t‖
W

2, 2
s′−s′′ (�t )

‖〈Dx 〉s′−1∂2t t
˜φk‖L2(�t )

� ε.

��

12.8 Control of Ek ˜�k and Lk ˜�k in H1+s′

We turn to the estimates that are analogous to (12.107) and (12.108) but with vector
fields and fractional derivatives taken in a slightly different order.

Proposition 12.39 The following estimates are satisfied:

∑

Zk∈{Ek ,Lk }
‖Zk˜φk‖H1+s′ (�t )

� ε, (12.131)

∑

Zk∈{Ek ,Lk }
‖∂t Zk˜φk‖Hs′ (�t )

� ε. (12.132)

Proof Take Zk ∈ {Lk, Ek}: the goal is to show ‖〈Dx 〉s′′(∂ν Zk˜φk)‖L2(�t )
� ε. We

write the following identity

〈Dx 〉s′′ (∂ν Zk˜φk) = 〈Dx 〉s′′
(

(∂ν Z
i
k)∂i

˜φk

)

+ 〈Dx 〉s′′
(

Zi
k∂ν∂i

˜φk

)

= 〈Dx 〉s′′
(

(∂ν Z
i
k)∂i

˜φk

)

+� Zk∂ν〈Dx 〉s′′˜φk + [〈Dx 〉s′′ ,� Zi
k ]∂ν∂i˜φk

= 〈Dx 〉s′′
(

�(∂ν Z
i
k)∂i

˜φk

)

︸ ︷︷ ︸

I

+�∂ν Zk〈Dx 〉s′′˜φk
︸ ︷︷ ︸

I I

−�(∂ν Zi
k)∂i 〈Dx 〉s′′˜φk

︸ ︷︷ ︸

I I I

+ [〈Dx 〉s′′ ,� Zi
k ]∂ν∂i˜φk

︸ ︷︷ ︸

I V

.

We will treat each term separately.
For I , we use Lemma 12.6

‖I‖L2(�t )
� ‖�(∂Zi

k)‖L∞(�t )‖∂i˜φk‖Hs′ (�t )
+ ‖�(∂Zi

k)‖Hs′ (�t )
‖∂i˜φk‖L∞(�t )

� ε 5
2 + ‖�(∂Zi

k)‖H1(�t )
‖∂i˜φk‖L∞(�t ) � ε,
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where for the second inequality we used (5.6) and Proposition 12.25 and for the last
one we used (5.6), (5.7) and the bootstrap assumption (4.12c).

For I I , we use (12.107) and (12.108) and we get directly

‖I I‖L2(�t )
� ε.

For I I I , we use (5.6) and Proposition 12.25 to obtain

‖I V ‖L2(�t )
� ‖∂Zi

k‖L∞(�t∩B(0,3R))‖∂i 〈Dx 〉s′′˜φk‖L2(�t )
� ε.

For I V , we use Proposition 12.7 with f = Zi
k� , h = ∂ν∂i˜φk , θ = s′′ and p = ∞:

‖I V ‖L2(�t )
� ‖Zi

k‖W 1,∞(�t∩B(0,3R))‖〈Dx 〉−1∂i∂ν〈Dx 〉s′′˜φk‖L2(�t )

� ‖∂〈Dx 〉s′′˜φk‖L2(�t )
� ε,

where for the second inequality we have used (5.5), (5.6) and the L2-boundedness of
the operator 〈Dx 〉−1∂i , and for the last inequality we have used Proposition 12.25. ��

13 Energy estimates for �reg

In this section, we prove energy estimates for φreg . We will prove that φreg is bounded
in H2+s′(�), uniformly in δ. Since φreg is initially more regular, the proof of the
energy estimates for φreg is also considerably easier than the higher order energy
estimates for ˜φk .

We begin with the energy estimates for up to the second derivative of φreg . These
bounds follow easily from the general energy estimates derived in Sects. 7 and 8.3.

Proposition 13.1 The following estimates hold:

sup
t∈[0,TB )

(‖∂φreg‖L2(�t )
+ ‖∂2φreg‖L2(�t )

) � ε, (13.1)

max
k

sup
uk∈R

∑

Zk∈{Lk ,Ek }
(‖Zk∂xφreg‖L2(Ck

uk
([0,TB ))) + ‖Zkφreg‖L2(Ck

uk
([0,TB )))) � ε.

(13.2)

Proof We recall thatφreg is compactly supported on B(0, R) and satisfies�gφreg = 0.
Thuswe can apply Proposition 7.3 and Proposition 8.9 simultaneouslywithU0 = −∞
and U1 = +∞ to get

sup
t∈[0,TB )

(‖∂φreg‖L2(�t )
+ ‖∂∂xφreg‖L2(�t )

) � ε, (13.3)

max
k

sup
uk∈R

∑

Zk∈{Lk ,Ek }
(‖Zk∂xφreg‖L2(Ck

uk
([0,TB ))) + ‖Zkφreg‖L2(Ck

uk
([0,TB )))) � ε,

(13.4)
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after using (4.2) to bound the initial data term.
Compared with the desired estimates (13.1) and (13.2), the only thing missing is

a bound on ‖∂2t tφreg‖L2(�t )
. Using the wave equation �gφreg = 0, we can rewrite

∂2t tφreg by (12.9) as terms which can be bounded using (13.3) above together with
(5.1) and (5.4), yielding the desired estimate. ��

We then turn to the energy estimates for the 2 + s′ derivatives of φreg . For this we
will also use the commutator estimates with fractional derivatives proven in Sect. 12.

Proposition 13.2 The following estimate holds for all t ∈ [0, TB):

‖〈Dx 〉s′∂2φreg‖Hs′ (�t )
� ε. (13.5)

Proof Step 1: Using Corollary 7.5 We recall that φreg is compactly supported on
B(0, R) and satisfies �gφreg = 0. We apply the energy estimates in Corollary 7.5
with v = 〈Dx 〉s′∂iφreg , f2 = 0 and

f1 := �g〈Dx 〉s′∂iφreg = [�g, 〈Dx 〉s′ ]∂iφreg + 〈Dx 〉s′ [�g, ∂i ]φreg
to get that for every T ∈ (0, TB),

sup
t∈[0,T )

‖〈x〉−r+2α∂〈Dx 〉s′∂iφreg‖2L2(�t )

� ‖〈x〉− r
2 ∂〈Dx 〉s′∂iφreg‖2L2(�0)

+
∫ T

0
(‖〈x〉− r

2 ([�g, 〈Dx 〉s′ ]∂iφreg
+ 〈Dx 〉s′ [�g, ∂i ]φreg)‖2L2(�τ )

� ε2 +
∫ T

0
‖〈x〉− r

2 [�g, 〈Dx 〉s′ ]∂iφreg‖2L2(�τ )
dτ

+
∫ T

0
‖〈x〉− r

2 〈Dx 〉s′ [�g, ∂i ]φreg‖2L2(�τ )
dτ,

(13.6)

where in the last line we have controlled the data term using (4.2).
Step 2: Bounding [�g, 〈Dx 〉s′ ]∂iφreg Recall the decomposition�g = −�1+�2 from
(12.6). By (12.47) (applied to v = ∂iφreg), we obtain

‖〈x〉− r
2 [�1, 〈Dx 〉s′ ]∂iφreg‖L2(�t )

� ‖∂〈Dx 〉s′∂iφreg‖L2(�t )
.

By (12.45) (applied to v = ∂iφreg), we get

‖〈x〉− r
2 [�2, 〈Dx 〉s′ ]∂iφreg‖L2(�t )

� ‖∂〈Dx 〉s′∂φreg‖L2(�t )
+ ‖[�g, ∂i ]φreg‖L2(�t )

.

Using Lemma 8.5 together with the metric estimates in (5.1), we have, using also
(13.1):

‖[�g, ∂i ]φreg‖L2(�t )
� ε.
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Putting these bounds together, we obtain

‖〈x〉− r
2 [�g, 〈Dx 〉s′ ]∂iφreg‖L2(�t )

� ε + ‖∂〈Dx 〉s′∂iφreg‖L2(�t )
. (13.7)

Step 3: Bounding ∂i [�g, 〈Dx 〉s′ ]φreg Using again the decomposition in (12.6), we
have

〈Dx 〉s′ [�g, ∂i ]φreg = −〈Dx 〉s′ [(∂i (g−1)νβ)∂2νβφreg]
︸ ︷︷ ︸

=:I

+〈Dx 〉s′ [(∂i�λ)(∂λφreg)]
︸ ︷︷ ︸

=:I I
.

(13.8)

By Hölder’s inequality, Lemma 12.6, (5.1) and (5.3),

‖I‖L2(�t )
� ‖〈Dx 〉s′(∂i (g−1)νβ)‖L∞(�t )‖∂2νβφreg‖L2(�t )

+ ‖∂i (g−1)νβ‖L∞(�t )‖〈Dx 〉s′∂2νβφreg‖L2(�t )

� ε 3
2 (‖∂2φreg‖L2(�t )

+ ‖〈Dx 〉s′∂2φreg‖L2(�t )
)

�ε 3
2 ‖〈Dx 〉s′∂2φreg‖L2(�t )

� ε 3
2 ‖〈Dx 〉s′∂∂xφreg‖L2(�t )

,

(13.9)

where in the last line we used ‖〈Dx 〉s′∂2φreg‖L2(�t )
� ‖〈Dx 〉s′∂∂xφreg‖L2(�t )

, which
in turn follow from the wave equation. More precisely, since �gφreg = 0, we use
(12.9), Lemma 12.6, (5.1) and (5.4) to obtain

‖〈Dx 〉s′(∂2t tφreg)‖L2(�t )

� ‖〈Dx 〉s′(�gφreg

(g−1)t t
− ğiλ∂2iλφreg + �

λ∂λφreg

(g−1)t t
)‖L2(�t )

� ‖∂i 〈Dx 〉s′(ğiλ∂λφreg)‖L2(�t )
+ ‖〈Dx 〉s′ [(∂i ğiλ)(∂λφreg)]‖L2(�t )

+ ‖〈Dx 〉s′(�
λ∂λφreg

(g−1)t t
)‖L2(�t )

� ‖〈Dx 〉s′∂∂xφreg‖L2(�t )
.

(13.10)

The term I I in (13.8) can be treated similarly. Using Lemma 12.6, (5.4), we obtain

‖I I‖L2(�t )
� ‖〈Dx 〉s′(�∂i�λ)‖L2(�t )

‖∂λφreg‖L∞(�t )

+ ‖�∂i�λ‖L∞(�t )‖〈Dx 〉s′∂λφreg‖L2(�t )

� ε 3
2 ‖∂λφreg‖L∞(�t ) + ε

3
2 ‖〈Dx 〉s′∂λφreg‖L2(�t )

� ε 3
2 ‖∂φreg‖L∞(�t ) + ε

3
2 ‖∂φreg‖L2(�t )

+ ε 3
2 ‖∂〈Dx 〉s′∂iφreg‖L2(�t )

� ε 9
4 + ε 3

2 ‖∂〈Dx 〉s′∂iφreg‖L2(�t )
,

(13.11)
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where we controlled ‖〈Dx 〉s′∂λφreg‖L2(�t )
by interpolating between ‖∂λφreg‖L2(�t )

and ‖∂λ〈Dx 〉s′∂iφreg‖L2(�t )
(for instance using Plancherel’s theorem), and finally we

used (4.12c) to control both ‖∂φreg‖L∞(�t ) and ‖∂φreg‖L2(�t )

Putting together (13.8), (13.9) and (13.11), we obtain

‖〈x〉− r
2 〈Dx 〉s′ [�g, ∂i ]φreg‖L2(�t )

� ε + ‖∂〈Dx 〉s′∂iφreg‖L2(�t )
. (13.12)

Step 4: Putting everything together Combining the estimates in (13.6), (13.7) and
(13.12), we obtain

sup
t∈[0,T )

‖〈x〉−r−2α∂〈Dx 〉s′∂xφreg‖2L2(�t )
� ε2 +

∫ T

0
‖∂〈Dx 〉s′∂xφreg‖2L2(�τ )

dτ.

By Proposition 12.18 (applied to v = ∂xφreg), we can strengthen the weights on the
left-hand side, i.e.

sup
t∈[0,T )

‖∂〈Dx 〉s′∂xφreg‖2L2(�t )
� ε2 +

∫ T

0
‖∂〈Dx 〉s′∂xφreg‖2L2(�τ )

dτ.

By Grönwall’s inequality, we obtain

sup
t∈[0,TB )

‖∂〈Dx 〉s′∂xφreg‖2L2(�t )
� ε.

Combining this with (13.10) yields the desired conclusion (13.5). ��

14 Conclusion of the proof of Theorem 4.3

In this section, we conclude the proof of Theorem 4.3. Theorem 4.3 consists of
parts 1, 2, and 3, which will be proven, respectively, in Proposition 14.1, Propo-
sition 14.2 and Proposition 14.3. (For part 2, we recall the definition of E in
Definition 4.1.)

Proposition 14.1 (Statement 1 ofTheorem4.3) There existsC = C(s′, s′′, R,κ0) > 0
such that (4.8)– (4.11d) hold with Cε in place of ε

3
4 .

Proof We look at each of the bootstrap assumptions (4.8)– (4.11d). We point out the

precise locations in the earlier sections which improve these bounds from ε
3
4 to Cε.

• Improvement of (4.8): it follows directly from (13.5) in Proposition 13.2 and (13.1)
in Proposition 13.1.

• Improvement of (4.9a): it follows from (9.1) and (9.2) in Proposition 9.1, using
also Proposition 5.3 to address the commutator term involving [∂, Zk].

• Improvement of (4.9b): it follows directly from (9.3) in Proposition 9.1.
• Improvement of (4.9c): it follows directly from (12.42) in Proposition 12.25.
• Improvement of (4.9d): it was already stated and proven in Proposition 11.7.
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• Improvement of (4.10a): the ‖∂˜φk‖L2(�t∩Sk2δ)
term follows directly from (10.6) in

Proposition 10.2. The ‖Zk∂˜φk‖L2(�t∩Sk2δ)
term follows (10.7) and the commutation

of Zk with ∂ , using (10.6), (5.5), (5.6).
• Improvement of (4.10b): this follows directly from (10.9) in Proposition 10.3.
• Improvement of (4.11a): it follows directly from (13.2) in Proposition 13.1.
• Improvement of (4.11b): the first term in (4.11b) is bounded by (10.9) in Proposi-
tion 10.3, while the second term in (4.11b) is bounded by (9.1) in Proposition 9.1.

• Improvement of (4.11c): the second term in (4.11c) is bounded by (9.2) in Propo-
sition 9.1.
To control the first term in (4.11c), i.e. to bound supuk∈R ‖Lk∂x˜φk‖L2(Ck

uk
([0,TB ))),

we first notice that it suffices to bound supuk∈R ‖∂x Lk˜φk‖L2(Ck
uk
([0,TB ))) since the

commutator can be estimatedwith the help of Proposition 5.3 and (4.12c). This lat-
ter term can in turn be bounded by ‖EkLk˜φk‖L2(Ck

uk
([0,TB ))) and

‖XkLk˜φk‖L2(Ck
uk
([0,TB ))) thanks to Lemma 5.4 (and the support properties of ˜φk).

The estimate for ‖EkLk˜φk‖L2(Ck
uk
([0,TB ))) follows directly from (9.2), while the

estimate for ‖XkLk˜φk‖L2(Ck
uk
([0,TB ))) follows from using the wave equation (8.8)

and applying the estimates fromProposition 5.2, Proposition 5.5, (4.12c) and (9.2).
• Improvement of (4.11d): it follows directly from (9.3) in Proposition 9.1. ��

Proposition 14.2 (Statement 2 of Theorem 4.3) The following estimate holds:

E � ε.

Proof E is composed of a sum of terms given in Definition 4.1. We treat each of
these terms one by one. Most of these bounds have already been stated in the proof of
Proposition 14.1.

• ‖∂〈Dx 〉s′˜φk‖L2(�t )
� ε: already obtained with the improvement of (4.9c).

• ‖Ek∂˜φk‖L2(�t )
� ε: already obtained with the improvement of (4.9a).

• ‖∂Ek〈Dx 〉s′′˜φk‖L2(�t )
� ε: this follows directly from (12.108) in Proposi-

tion 12.36.
• δ 1

2 ‖∂2˜φk‖L2(�t )
� ε: already obtained with the improvement of (4.9b).

• δ 1
2 ‖∂Ek∂˜φk‖L2(�t )

� ε: the bound δ
1
2 ‖∂Ek∂x˜φk‖L2(�t )

� ε (i.e. the particular
case where the first derivative is spatial) follows directly from (11.24) in Proposi-

tion 11.7. To address the remaining term δ
1
2 ‖∂Ek∂t˜φk‖L2(�t )

, we use (2.3) as

∂Ek∂t˜φk = ∂Ek

(

N (�n˜φk + β i∂i˜φk)
)

= ∂
(

(EkN )(�n˜φk + β i∂i˜φk)
)

+ ∂
(

N (Ek �n˜φk + β i Ek∂i˜φk)
)

= (∂EkN )(�n˜φk + β i∂i˜φk)
︸ ︷︷ ︸

I

+ (EkN )∂(�n˜φk + β i∂i˜φk)
︸ ︷︷ ︸

I I

+ (∂N )(Ek �n˜φk + β i Ek∂i˜φk)
︸ ︷︷ ︸

I I I
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+ N (∂Ek �n˜φk + β i∂Ek∂i˜φk)
︸ ︷︷ ︸

I V

+ (N∂β i )Ek∂i˜φk
︸ ︷︷ ︸

V

.

We treat each term individually:

– Term I : by (5.1), (2.3), and the bootstrap assumption (4.12c), we have

δ
1
2 ‖I‖L2(�t )

� δ 1
2 ‖∂EkN‖L2(B(0,R))‖�n˜φk + β i∂i˜φk‖L∞(�t )

� δ 1
2 ‖∂EkN‖L2(B(0,R))‖∂˜φk‖L∞(�t ) � δ 1

2 ε
9
4 � ε.

– Term I I : by (5.1), (2.3) and (9.1), (9.3) we have

δ
1
2 ‖I I‖L2(�t )

� δ 1
2 ‖EkN‖L∞(B(0,R))‖∂(�n˜φk + β i∂i˜φk)‖L2(�t )

� δ 1
2 ε

5
2 δ−

1
2 � ε.

– Term I I I : by (5.1), (2.3) and (9.1), (9.3) we have

δ
1
2 ‖I I I‖L2(�t )

� δ 1
2 ‖∂N‖L∞(B(0,R))‖Ek �n˜φk + β i Ek∂i˜φk‖L2(�t )

� δ 1
2 ε

5
2 δ−

1
2 � ε.

– Term I V : by (5.1) and (11.24) in Proposition 11.7, we have

δ
1
2 ‖I V ‖L2(�t )

� δ 1
2 (‖∂Ek �n˜φk‖L2(�t )

+ ‖∂Ek∂x˜φk‖L2(�t )
) � δ 1

2 εδ−
1
2 � ε.

– Term V : by (5.1), (5.5) and (9.3) we have

δ
1
2 ‖V ‖L2(�t )

� δ 1
2 ‖N∂β i‖L∞(B(0,R)‖Ek∂x˜φk‖L2(�t )

� δ 1
2 εδ−

1
2 � ε.

• δ− 1
2 ‖∂˜φk‖L2(�t∩Sk2δ)

� ε and δ− 1
2 ‖Ek∂˜φk‖L2(�t∩Sk2δ)

� ε: already obtained with
the improvement of (4.10a).

• ‖∂2˜φk‖L2(�t\Skδ ) � ε: already obtained in the improvement of (4.10b).

• ‖∂2〈Dx 〉s′φreg‖L2(�t )
� ε: already obtained in the improvement of (4.8).

��
Proposition 14.3 (Statement 3 of Theorem 4.3) The estimates (4.13a)–(4.16) are sat-
isfied.

Proof We prove each of the estimates (4.13a)–(4.16) individually. Some of these esti-
mates are already obtained in the proof of Proposition 14.1 or Proposition 14.2.

• Proof of (4.13a): it follows directly from (13.5) in Proposition 13.2 and (13.1) in
Proposition 13.1.

• Proof of (4.13b): it was already proven with the improvement of (4.9c).
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• Proof of (4.13c): It follows directly from (12.131) and (12.132) in Proposi-
tion 12.39.

• Proof of (4.14): the first inequality‖∂2˜φk‖L2(�t )
� ε · δ− 1

2 was already
proven with the improvement of (4.9b). The inequality

∑

Y (1)k ,Y (2)k ,Y (3)k ∈{Xk ,Ek ,Lk }
∃i,Y (i)k �=Xk

‖Y (1)k Y (2)k Y (3)k
˜φk‖L2(�t )

� ε · δ− 1
2 follows directly from (11.24) in Proposi-

tion 11.7.
• Proof of (4.15): this follows directly from (11.25) in Proposition 11.8.
• Proof of (4.16): it was already proven with the improvement of (4.10b).

��

15 Lipschitz estimates and improved Hölder bounds for �

In this section, we prove Lipschitz estimates for˜φk , as well as improved C0, s
′′
2 Hölder

estimates for ∂φreg and for ∂˜φk away from the singular zone.
While proving the Lipschitz estimates, we will prove stronger Besov type estimates

(recall Sect. 1.1.5 and [25, Section 1.1.4]). When combined with the energy estimates
that we have already obtained, the result in this section improves the bootstrap assump-
tions (4.12a), (4.12b) and (4.12c).

The following is the main result of this section (recall the definition of E in Defini-
tion 4.1):

Theorem 15.1 (Main Lipschitz and improved Hölder estimates) Let ρk(uk, θk, t) =
ρ̃(

uk
δ
) be a cutoff function, where ρ̃ : R → [0, 1] is smooth function with ρ̃ ≡ 0 on

[2,∞), and ρ̃ ≡ 1 on (−∞, 1].
The following estimates hold for all t ∈ [0, TB) (recall the definition of the Besov

space B
uk ,uk′∞,1 (�t ) in Definition 3.10):

1. For k ∈ {1, 2, 3}, ∂˜φk obeys the following estimate near the singular zone for any
k′ �= k:

‖ρk · ∂˜φk‖Buk ,uk′∞,1 (�t )
� E . (15.1)

2. For k ∈ {1, 2, 3}, ∂˜φk obeys the following estimate away from the singular zone
for any k′ �= k:

‖∂˜φk‖
C0, s

′′
2 (�t∩Ck≥δ)

� E, (15.2)

‖(1 − ρk) · ∂˜φk‖Buk ,uk′∞,1 (�t )
� E . (15.3)

3. The regular part φreg of φ satisfies the following estimate for any k, k′ with k �= k′:

‖∂φreg‖
C0, s

′′
2 (�t )

� E, ‖∂φreg‖Buk ,uk′∞,1 (�t )
� E . (15.4)
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4. As a consequence, the following estimate holds for φ:

‖∂φ‖L∞(�t ) � E . (15.5)

15.1 Localized or anisotropic Sobolev embeddings

In this subsection, we prove two general embedding results, namely Theorem 15.3 and
Theorem15.5. These are the functional bounds (1.28) and (1.27) discussed in the intro-
duction. They will be applied in the later subsections to ∂˜φk , ∂φreg (or appropriately
localized versions) to prove Theorem 15.1.

Notice that all the general embedding results derived in this subsection will be
applied in the (uk, uk′) coordinates. In order to keep the exposition general, and also
distinguish the coordinates here from the (x1, x2) coordinates in the elliptic gauge,
we will use (y1, y2) to denote a general coordinate system on R

2. In the following
estimates, ∂y2 can be thought of as a good derivative, and in applications it corresponds
to /∂uk′ .

Before we turn to the actual embedding results, introduce the notations regarding
Fourier transform, and an anisotropic Littlewood–Paley theory decomposition.

Definition 15.2 1. Given f = f (y1, y2) ∈ S(R2), denote by f̂ = f̂ (ξ1, ξ2), or
(F{) = (F{)(ξ1, ξ2), the Fourier transform of f .

2. Let s > 0. Fractional derivatives are defined as in Definition 3.5, except now in
(y1, y2) coordinates, i.e. 〈Dy〉s f := F−1(〈ξ 〉sF( f )). Define also a homogeneous
version by |Dy |s f := F−1(|ξ |sF( f )).

3. Let {Pk}k∈N∪{0} be the Littlewood–Paley projections as in Definition 3.9, except
with (y1, y2) in place of (uk, uk′).

4. Define the anisotropic Littlewood–Paley projections {Pkl}k∈N∪{0}, l∈Z as follows.

Take ϕ : R → [0, 1] be even, smooth and such that ϕ(η) =
{

1 if |η| ≤ 1

0 if |η| ≥ 2
. For

each l ∈ Z, define Pl by

Pl f := F−1
[

(ϕ(2−lξ2)− ϕ(2−l+1ξ2))F f
]

.

Then, for k ∈ N ∪ {0}, l ∈ Z, define

Pkl := Pk ◦ Pl ,

where Pk is as in point 3 above.
5. Define also the notation that

fk := Pk( f ), fkl := Pkl( f ).
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15.1.1 Anisotropic localized Sobolev embedding

Theorem 15.3 Let σ > 1
2 . The following holds for all Schwartz function f with an

implicit constant depending only on σ :

‖ f ‖L∞(R2), ‖ f ‖B∞,1(R2) � inf
δ>0
(δ−

1
2 ‖ f ‖L2(R2) + δσ− 1

2 ‖∂y2 |Dy |σ f ‖L2(R2)

+δ 1
2 ‖∂y f ‖L2(R2) + δ−

1
2 ‖∂y2 f ‖L2(R2)).

Here, B∞,1(R2) is the Besov norm as in Definition 3.10, except with (y1, y2) in
place of (uk, uk′).

Proof By the triangle inequality, ‖ f ‖L∞(R2) �
∑

k≥0
‖ fk‖L∞(R2) = ‖ f ‖B∞,1(R2). It

suffices therefore to bound ‖ f ‖B∞,1(R2).
By scaling, it suffices to show ‖ f ‖B∞,1(R2) � 1 (with an implicit constant

independent of δ), assuming there exists δ > 0 such that

‖ f ‖L2(R2) ≤ δ 1
2 , (15.6)

‖∂y2 |Dy |σ f ‖L2(R2) ≤ δ−σ+ 1
2 , (15.7)

‖∂y f ‖L2(R2) ≤ δ− 1
2 , (15.8)

‖∂y2 f ‖L2(R2) ≤ δ 1
2 . (15.9)

Now we estimate, using the Cauchy–Schwarz inequality, the Plancherel identity,
and the easy volume estimate |{|ξ | ∼ 2k, |ξ2| ∼ 2l}| ∼ 2k · 2l , that

‖ f̂kl‖L1(R2) � ‖ f̂kl‖L2(R2) · 2
k
2 · 2 l

2 � ‖ fkl‖L2(R2) · 2
k
2 · 2 l

2 .

It then follows from (15.6)–(15.9) and the support properties of the Littlewood–Paley
pieces that

‖ f̂kl‖L1(R2) � ‖ fkl‖L2(R2) · 2
k
2 · 2 l

2 � δ 1
2 · 2 k

2 · 2− l
2 , (15.10)

‖ f̂kl‖L1(R2) � ‖∂y2 |Dy |σ fkl‖L2(R2) · 2k·(
1
2−σ) · 2− l

2 � δ−σ+ 1
2 · 2k·( 12−σ) · 2− l

2 ,

(15.11)

‖ f̂kl‖L1(R2) � ‖∂y fkl‖L2(R2) · 2− k
2 · 2 l

2 � δ− 1
2 · 2− k

2 · 2 l
2 , (15.12)

‖ f̂kl‖L1(R2) � ‖∂y2 fkl‖L2(R2) · 2
k
2 · 2− l

2 � δ 1
2 · 2 k

2 · 2− l
2 . (15.13)

We divide the sum into four cases, depending on the values of k and l:

1. When δ−1 � 2k and l ≤ 0, we use (15.12) to obtain

∑

δ−1�2k ,l≤0

‖ f̂kl‖L1(R2) � 1. (15.14)
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2. When δ−1 � 2k and l ≥ 0, we use (15.11) to obtain

∑

δ−1�2k ,l≥0

‖ f̂kl‖L1(R2) � 1. (15.15)

3. When 2k � δ−1 and l ≤ 0, we use (15.10) to obtain

∑

δ−1�2k ,l≤0

‖ f̂kl‖L1(R2) � 1. (15.16)

4. When 2k � δ−1 and l ≥ 0, we use (15.13) to obtain

∑

δ−1�2k ,l≥0

‖ f̂kl‖L1(R2) � 1. (15.17)

Now, combining (15.14)–(15.17), it is clear by the triangle inequality that

‖ f ‖B∞,1(R2) ≤
∑

k∈N∪{0}
‖ f̂k‖L1(R2) ≤

∑

k∈N∪{0}, l∈Z
‖ f̂kl‖L1(R2) � 1.

��

15.1.2 Anisotropic Sobolev embedding into Hölder spaces

Our next goal is an anisotropic Sobolev embedding which maps into Hölder spaces
on a half space. The main result is given in Theorem 15.5 below. We will start with
the following lemma, which is a variant of the desired estimate, but on all of R2.

Lemma 15.4 Let s ∈ (0, 12 ). The following estimate holds for all sufficiently regular
functions f (with an implicit constant depending on s):

‖ f ‖
C0, s2 (R2)

� ‖ f ‖H1(R2) + ‖∂y2 |Dy |s f ‖L2(R2).

Proof As in the proof of Theorem 15.3, we bound the L∞ norm of each Littlewood–
Paley piece in different ways using the Hausdorff–Young, Cauchy–Schwarz inequali-
ties, Plancherel’s theorem and the volume estimate in Fourier space. Hence, denoting
‖ f ‖ := ‖ f ‖H1(R2) + ‖∂y2 |Dy |s f ‖L2(R2), we have

‖ fkl‖L∞(R2) � ‖ fkl‖L2(R2) · 2
k
2 · 2 l

2 � ‖ f ‖ · 2 k
2 · 2 l

2 ,

‖ fkl‖L∞(R2) � ‖∂y2 |Dy |s fkl‖L2(R2) · 2k·(
1
2−s) · 2− l

2 � ‖ f ‖ · 2k·( 12−s) · 2− l
2 ,

‖ fkl‖L∞(R2) � ‖∂y fkl‖L2(R2) · 2− k
2 · 2 l

2 � ‖ f ‖ · 2− k
2 · 2 l

2 ,

‖ fkl‖L∞(R2) � ‖∂y2 fkl‖L2(R2) · 2
k
2 · 2− l

2 � ‖ f ‖ · 2 k
2 · 2− l

2 .
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Without loss of generality, we take ‖ f ‖ = 1. Thus,

‖ fkl‖L∞(R2) � 2
k
2 · 2 l

2 , (15.18)

2
ks
2 · ‖ fkl‖L∞(R2) � 2k·(

1
2− s

2 ) · 2− l
2 , (15.19)

2
ks
2 · ‖ fkl‖L∞(R2) � 2k·(

s
2− 1

2 ) · 2 l
2 , (15.20)

‖ fkl‖L∞(R2) � 2
k
2 · 2− l

2 . (15.21)

For all k ≥ 0, we use (15.19) and (15.20) respectively to sum l ≥ (1 − s)k and
l ≤ (1 − s)k to obtain

∑

l∈Z
2

ks
2 · ‖ fkl‖L∞(R2) �

∑

l≥(1−s)k

2
ks
2 · ‖ fkl‖L∞(R2) +

∑

l≤(1−s)k

2
ks
2 · ‖ fkl‖L∞(R2) � 1.

Recalling that fk = ∑

l∈Z fkl , the above inequalities and the triangle inequality
thus implies

‖ f ‖
C0, s2 (R2)

∼ sup
k≥0

2
sk
2 · ‖ fk‖L∞(R2) � 1

where we have used the Littlewood–Paley characterization of the Hölder space. ��
Using the above lemma, we obtain the main result of this subsubsection via a

reflection argument.

Theorem 15.5 Let s ∈ (0, 12 ), a ∈ R and �L := (−∞, a) × R be the open left half
plane.

Then the following holds for all v ∈ S(R2) with an implicit constant depending
only on s:

‖v‖
C0, s2 (�L )

� ‖v|�L‖H1(�L )
+ ‖∂y2 |Dy |sv‖L2(R2).

Moreover, v|�L can be extended to a C0, s2 (R2) function Rv : R2 → R such that

‖Rv‖
C0, s2 (R2)

� ‖v|�L‖H1(�L )
+ ‖∂y2 |Dy |sv‖L2(R2).

Proof Our strategy is to extend v|�L into a function Rv : R2 → R, which may differ
from v, but for which we can prove boundedness using Lemma 15.4.

By a standard Sobolev extension result (see [1, Theorem 5.19]), there exists a
bounded linear extension operator E : H1(�L) → H1(R2) satisfying E f|�L = f
(which is also bounded E : L2(�L)→ L2(R2)).

As a consequence, defining R f = E( f|�L ), we have

‖Rv‖H1(R2) � ‖v|�L‖H1(�L )
; (15.22)
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and usingmoreover that ∂y2 is tangential to the boundary together with an interpolation
argument, we obtain

‖∂y2 |Dy |s(Rv)‖L2(R2) � ‖∂y2 |Dy |sv‖L2(R2). (15.23)

Since Rv|�L = v, by (15.22), (15.23) and Lemma 15.4,

‖v‖
C0, s2 (�L )

� ‖Rv‖
C0, s2 (R2)

� ‖Rv‖H1(R2) + ‖∂y2 |Dy |s(Rv)‖L2(R2)

� ‖v|�L‖H1(�L )
+ ‖∂y2 |Dy |sv‖L2(R2).

��

15.2 Converting the estimates into (uk, uk′) coordinates

In this subsection, we convert the L2 bounds in E (see Definition 4.1), which are
defined with respect to the (x1, x2) coordinate system in the elliptic gauge and with
the geometric vector field Ek , into estimates in the (uk, uk′) coordinate system. This
will later allow us to apply the embedding results obtained in Sect. 15.1 in the (uk, uk′)
coordinate system.

In the remainder of the section, recall the coordinate system (uk, uk′) and the nota-
tions introduced inSect. 2.4.2. In particular, recall that (/∂uk , /∂uk′ )denote the coordinate
partial derivatives in the (uk, uk′) coordinates.

15.2.1 Equivalence of Lp andW1,p norms

Lemma 15.6 For any p ∈ [1,∞],

‖ f ‖L p

x1,x2
(�t )

� ‖ f ‖L p
uk ,uk′ (�t )

� ‖ f ‖L p

x1,x2
(�t )
,

‖ f ‖
W 1,p

x1,x2
(�t )

� ‖ f ‖
W 1,p

uk ,uk′ (�t )
� ‖ f ‖

W 1,p
x1,x2

(�t )
.

Similar estimates hold when the L p and W 1,p norms are taken over subsets of �t .

Proof This is an immediate consequence of (5.19)–(5.20). ��
Because of the above lemma, for the remainder of the section, we will write

L p(�t ), etc. without precisely indicating whether the coordinate system (x1, x2)
or (uk, uk′) is used.

15.2.2 L2 estimates involving Ek

Lemma 15.6 controls the change of variables for isotropic L p or W 1,p spaces. In this
subsection, we translate some estimates in E that involve the good derivative Ek , and
write them in terms of /∂uk′ ; see Lemma 15.8.

We begin with a simple lemma.
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Lemma 15.7 For k �= k′, the following holds for all t ∈ [0, TB):

‖μk · g(Ek, Xk′)−1‖W 1,∞(�t∩B(0,R)) � 1. (15.24)

Proof This follows from (5.17), (5.1), (5.5), (5.6) and (5.23). ��
Lemma 15.8 (L2 estimates under coordinate change) For k �= k′, the following holds
for all t ∈ [0, TB):

‖/∂uk′ ∂˜φk‖L2(�t∩Sk2δ)
� δ 1

2 · E . (15.25)

‖/∂2ukuk′ ∂˜φk‖L2(�t )
+ ‖/∂2uk′uk′ ∂˜φk‖L2(�t )

� δ− 1
2 · E, (15.26)

Proof The bound (15.25) follows from (2.55), Lemma 15.6 and the definition of E
(Definition 4.1).

For (15.26), we first control the /∂uk′ or /∂uk derivative by ∂x using Lemma 15.6.
We then write /∂uk′ in terms of Ek using (2.55). Finally, applying the product rule and
(15.24), and using Definition 4.1, we obtain

‖/∂2ukuk′ ∂˜φk‖L2(�t )
+ ‖/∂2uk′uk′ ∂˜φk‖L2(�t )

� ‖∂x /∂uk′ ∂˜φk‖L2(�t )

= ‖∂x [μk′ · g(Ek, Xk′)−1Ek∂˜φk]‖L2(�t )

� ‖μk · g(Ek, Xk′)−1‖W 1,∞(�t∩B(0,R))(‖Ek∂˜φk‖L2(�t )
+ ‖∂x Ek∂˜φk‖L2(�t )

)

� δ− 1
2 · E .

��

15.2.3 L2 estimates involving fractional derivatives

Lemma 15.9 Let (y1, y2), (z1, z2) be two systems of coordinates on R
2 such that

1 �
∣

∣

∣ det

(

∂zi
∂ y j

)

i j

∣

∣

∣ � 1,
∣

∣

∣

∂zi
∂ y j

∣

∣

∣ � 1. (15.27)

Then, for every 0 < σ < 1, the following holds for all f ∈ S(R2):

‖〈Dz1,z2〉σ f ‖L2
z (R

2) � ‖〈Dy1,y2〉σ f ‖L2
y(R

2) � ‖〈Dz1,z2〉σ f ‖L2
z (R

2). (15.28)

Proof Define the change of variable map y : z ∈ R
2 → y(z) ∈ R

2 and define the
linear map Φy : f ∈ L2(R2)→ Φy( f ) := f ◦ y ∈ L2(R2).

The bounds (15.27) obviously imply that #y : L2(R2) → L2(R2), #y :
H1(R2)→ H1(R2) are boundedmapswith bounded inverses. The desired conclusion
thus follows from interpolation. ��

Returning to our setting, this implies by Lemma 5.6 that
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Lemma 15.10 For s ∈ {s′, s′′}, the following estimate holds for all Schwartz function
f :

‖〈Dx 〉s f ‖L2(�t )
� ‖〈Duk ,uk′ 〉s f ‖L2

uk ,uk′ (�t )
� ‖〈Dx 〉s f ‖L2(�t )

.

After the above preliminaries, we are ready to translate the control for E into L2

estimates on the derivatives of ∂˜φk in the (uk, uk′) coordinate system. We begin with
the

Lemma 15.11 For k �= k′, the following holds for all t ∈ [0, TB):

‖/∂uk′ 〈Duk ,uk′ 〉s
′′
∂˜φk‖L2

uk ,uk′ (�t )
� E .

Proof Consider the following chain of estimates:

‖/∂uk′ 〈Duk ,uk′ 〉s
′′
∂˜φk‖L2(�t )

= ‖〈Duk ,uk′ 〉s
′′
/∂uk′ ∂

˜φk‖L2(�t )
(15.29)

� ‖〈Dx 〉s′′/∂uk′ ∂˜φk‖L2(�t )
= ‖〈Dx 〉s′′(μk′g(Ek, Xk′)−1Ek∂˜φk)‖L2(�t )

(15.30)

� ‖〈Dx 〉s′′(�μk′g(Ek, Xk′)−1)‖L∞(�t )‖〈Dx 〉s′′(Ek∂˜φk)‖L2(�t )

� ‖〈Dx 〉s′′Ek∂˜φk‖L2(�t )
(15.31)

� ‖Ek〈Dx 〉s′′∂˜φk‖L2(�t )
+ ‖〈Dx 〉s′′−1∂x∂˜φk‖L2(�t )

(15.32)

� ‖∂Ek〈Dx 〉s′′˜φk‖L2(�t )
+ ‖〈Dx 〉s′′∂˜φk‖L2(�t )

. (15.33)

For (15.30), we first use Lemmas 15.10 and 15.6, and then (2.55). To obtain the first
inequality in (15.31), we use Lemma 12.6 (and supp(˜φk) ⊆ B(0, R)). In the second
inequality, ‖μk′g(Ek, Xk′)−1‖W 1,∞(B(0,3R)) is bounded using (15.24). For (15.32), we
write Ek = Ei

k∂i and use Proposition 12.7 and (5.6) to estimate the commutator

[〈Dx 〉s′′ , Ei
k]. For (15.33), the first term is obtained after commuting [∂, Ek], and

using (5.6) again; while the second term is obtained by the L2-boundedness of the
inhomogeneous Riesz transform 〈Dx 〉−1∂x . Finally, note that both terms on (15.33)
are controlled by E , which concludes the proof. ��
Lemma 15.12 For k �= k′, the following holds for all t ∈ [0, TB):

‖/∂uk′ 〈Duk ,uk′ 〉s
′′
∂φreg‖L2

uk ,uk′ (�t )
� E .

Proof This is similar to Lemma 15.11 except it is much easier because we control
‖∂∂x 〈Dx 〉s′′φreg‖L2(�t )

and ‖〈Dx 〉s′′∂φreg‖L2(�t )
(instead of only

‖∂Ek〈Dx 〉s′′φreg‖L2(�t )
and ‖〈Dx 〉s′′∂φreg‖L2(�t )

); we omit the details. ��

15.3 Boundedness of@˜�k in the singular region: proof of (15.1)

In the next few subsections, we will prove the estimates asserted in Theorem 15.1; see
the conclusion of the proof in Sect. 15.6. We begin with (15.1).
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Proof of (15.1) We apply Theorem 15.3 to f = ρk · ∂˜φk in the coordinate system
(y1, y2) = (uk, uk′) and with σ = 1. Note that ∂y2 in the notations of Theorem 15.3
corresponds to /∂uk′ . In order to use Theorem 15.3, it suffices to show that

δ− 1
2 ‖ρk∂˜φk‖L2(�t )

︸ ︷︷ ︸

=:I
, δ

1
2 (‖/∂2uk′uk′ (ρk∂˜φk)‖L2(�t )

+ ‖/∂2ukuk′ (ρk∂˜φk)‖L2(�t )
)

︸ ︷︷ ︸

=:I I
,

δ
1
2

(

‖/∂uk (ρk∂˜φk)‖L2(�t )
+ ‖/∂uk′ (ρk∂˜φk)‖L2(�t )

)

︸ ︷︷ ︸

=:I I I

, δ− 1
2 ‖/∂uk′ (ρk∂˜φk)‖L2(�t )

︸ ︷︷ ︸

=:I V
� E .

To control the terms I , I I , I I I and I V above, first note that the cutoff function ρk
satisfies

|ρk | � 1, /∂uk′ρk = 0, |/∂ukρk | � δ−1, supp(ρk) ⊆ Sk2δ. (15.34)

We first bound term I , using (15.34) and the δ− 1
2 ‖∂˜φk‖L2(�t∩Sk2δ)

term in E .
To bound term I I , we use (15.34) together with the estimates in Lemma 15.8.

To estimate I I I , we use (15.34) and the bounds for δ− 1
2 ‖∂˜φk‖L2(�t∩Sk2δ)

and

δ
1
2 ‖∂2˜φk‖L2(�t )

in E .
Finally, the bound for term I V can be obtained using (15.34) and Lemma 15.8. ��

15.4 Hölder estimates for@˜�k away from the singular zone: proof of (15.2) and
(15.3)

Even though we are interested in the Hölder estimates in the coordinates of the elliptic
gauge (see (15.2), (15.3) and Definition 3.3), in order to make use of the good deriva-
tive, we will apply Theorem 15.5 in the (uk, uk′) coordinate system. Nevertheless, it
is easy to check that the Hölder norms in these two coordinate systems are equivalent
as we will state in the following lemma.

Lemma 15.13 For any σ ∈ (0, 1), and any open domain � ⊆ �t with a Lipschitz
boundary, the following holds for all Schwartz functions f :

‖ f ‖Cσuk ,uk′ (�t∩�) � ‖ f ‖Cσ (�t∩�) � ‖ f ‖Cσuk ,uk′ (�t∩�).

Proof This is an immediate consequence of Lemma 5.22. ��
We are now ready to prove (15.2) and (15.3).

Proof of (15.2) and (15.3) Step 1: Proof of (15.2) In view of Lemma 15.13, it suffices
to prove Hölder estimates in the (uk, uk′) coordinates. We apply Theorem 15.5 to
v = ∂˜φk , �L := {uk≥δ, uk′ ∈ R} ⊆ �t , s = s′′ in the coordinate system (uk, uk′).
Note (as in Sect. 15.3) that ∂y2 = /∂uk′ .
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By Theorem 15.5, we know that (15.2) holds as long as we can verify

‖(∂˜φk)|�L‖H1(�L )
+ ‖/∂uk′ 〈Duk .uk′ 〉s

′′
∂˜φk‖L2(�t )

� E . (15.35)

Now the first term in (15.35) can be controlled using the ‖∂〈Dx 〉s′˜φk‖L2(�t )
and

‖∂2˜φk‖L2(�t\Skδ ) terms in the definition of E (Definition 4.1); while the second term is
controlled by Lemma 15.11.
Step 2: Proof of (15.3) First, notice that the application of Theorem 15.5 in Step 1
in fact gives a stronger result: namely, ∂˜φk admits an extension R∂˜φk defined on the
whole �t so that ‖R∂˜φk‖

C
0, s2
uk ,uk′ (�t )

� E .
Let � be the cutoff function as in the beginning of Sect. 12.2. It can be checked

explicitly that ‖� · (1 − ρk)‖Buk ,uk′∞,1
� 1. (If the reader prefers not to carry out the

explicit estimate for the corresponding oscillatory integral, one can more easily check
that� · (1− ρk) obeys the assumptions of Theorem 15.3, and apply Theorem 15.3 to
deduce the Besov bound.)

Using the fact that ‖ f1 f2‖Buk ,uk′∞,1
� ‖ f1‖Buk ,uk′∞,1

‖ f2‖Buk ,uk′∞,1
, we have ‖� · (1−ρk) ·

R∂˜φk‖Buk ,uk′∞,1
� E . Finally, one checks that the support properties for � , 1 − ρk and

˜φk imply that (1−ρk) ·∂˜φk = � · (1−ρk) · R∂˜φk . This concludes the proof of (15.3).
��

15.5 Hölder estimates for the regular part: proof of (15.4)

Having completed the estimates for ˜φk , we now turn to the estimate for φreg .

Proof of (15.4) We begin with the first estimate in (15.4). Pick any k′ �= k. By the
equivalence of the Hölder norms (Lemma 15.13), it suffices to prove that ∂φreg is in

C
0, s

′′
2

uk ,uk′ (�t ). For this, we apply Lemma 15.4 in the (uk, uk′) coordinate system.
It suffices to check

‖∂φreg‖L2(�t )
+ ‖/∂uk∂φreg‖L2(�t )

+ ‖/∂uk′ ∂φreg‖L2(�t )

+‖/∂uk 〈Duk ,uk′ 〉s
′
∂φreg‖L2(�t )

� E .

The bounds for the first three terms follow directly from the definition of E (Defini-
tion 4.1) and Lemma 15.6, while the last term is controlled in Lemma 15.12.

Finally, since C
0, s

′′
2

uk ,uk′ ⊆ B
uk ,uk′∞,1 (�t ) continuously, we obtain the second estimate

in (15.4). ��

15.6 Conclusion of the proof of Theorem 15.1: proof of (15.5)

In view of the estimates derived in Sects. 15.3–15.5, in order to conclude the proof of
Theorem 15.1, it suffices to prove (15.5).
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Proof of (15.5) In the following, we use that B
uk ,uk′∞,1 (�t ) embeds continuously into

L∞(�t ) whenever k �= k′.
• Combining (15.1) and (15.3), and using the triangle inequality, we have, for every
k and every k′ �= k,

‖∂˜φk‖L∞(�t ) � ‖∂˜φk‖Buk ,uk′∞,1 (�t )
� E . (15.36)

• The second inequality in (15.4) implies that for any choice of k �= k′,

‖∂φreg‖L∞(�t ) � ‖∂φreg‖Buk ,uk′∞,1 (�t )
� E . (15.37)

Combining (15.36), (15.37), and using the triangle inequality, we have

‖∂φ‖L∞(�t ) ≤ ‖∂φreg‖L∞(�t ) +
3

∑

k=1

‖∂˜φk‖L∞(�t ) � E .

��
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