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Abstract

This is the second and last paper of a series aimed at solving the local Cauchy prob-
lem for polarized U(1) symmetric solutions to the Einstein vacuum equations featuring
the nonlinear interaction of three small amplitude impulsive gravitational waves. Such
solutions are characterized by their three singular “wave-fronts” across which the cur-
vature tensor is allowed to admit a delta singularity. Under polarized U(1) symmetry,
the Einstein vacuum equations reduce to the Einstein—scalar field system in (2 + 1)
dimensions. In this paper, we focus on the wave estimates for the scalar field in the
reduced system. The scalar field terms are the most singular ones in the problem,
with the scalar field only being Lipschitz initially. We use geometric commutators to
prove energy estimates which reflect that the singularities are localized, and that the
scalar field obeys additional fractional-derivative regularity, as well as regularity along
appropriately defined “good directions”. The main challenge is to carry out all these
estimates using only the low-regularity properties of the metric. Finally, we prove an
anisotropic Sobolev embedding lemma, which when combined with our energy esti-
mates shows that the scalar field is everywhere Lipschitz, and that it obeys additional
C1Y estimates away from the most singular region.
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1 Introduction

The impulsive gravitational waves. In this paper and [25], our main goal is to construct
and give a precise description of a large class of local solutions to the Einstein vacuum
equations

Ric(Wg) =0 (1.1

which feature the nonlinear, transversal interaction of three impulsive gravitational
waves. An impulsive gravitational wave is a (weak) solution to the Einstein vacuum
equations for which the Riemann curvature tensor has a delta singularity supported on
anull hypersurface. Interaction of impulsive gravitational waves is then represented by
solutions to (1.1) featuring the transversal intersection of such singular hypersurfaces.

In our work, we impose a polarized U(1) symmetry assumption. In other words,
we consider a (3 + 1)-dimensional Lorentzian manifold (I x RZ x SL,® g), where
I € Ris an interval, and assume that the metric takes the following form

WDg =e g 12 (dx3), (1.2)

where ¢ : I X R? — R is a scalar function and g is a Lorentzian metric on I x R2,
i.e. they are independent of the S' = R/(27Z)-direction, which we parameterize
by the coordinate x>. The Einstein vacuum equations then reduce to the (2 + 1)-
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10 Page4of 137 J. Luk, M. Van de Moortel

dimensional Einstein—scalar field system

Ri =2d do,
ic(g) ¢ ®do (1.3)
g = 0.
The following is an informal version of our main theorem (see [25, Theorem 5.2]
for a precise statement):

Theorem 1.1 (Informal main theorem for impulsive gravitational waves) Given a
polarized U(1)-symmetric initial data set corresponding to three (non-degenerate)
small-amplitude impulsive gravitational waves propagating towards each other, there
exists a weak solution to the Einstein vacuum equations corresponding to the given
data up to and beyond the transversal interaction of these waves. In particular, in the
solution, the metric is everywhere Lipschitz and is H> NC L6 forsome 6 € (0, A—IL) away

loc loc
from the three null hypersurfaces corresponding to impulsive gravitational waves.

The §-impulsive gravitational waves. We began the proof of Theorem 1.1 in part I of
our series [25]. We introduced the notion of §-impulsive gravitational waves, which are
smooth approximations of the impulsive gravitational waves at a length scale § > 0.
In our setup, these waves are of small, O(€), amplitude, but being -impulsive means
that their second derivatives could be of pointwise size O (¢5~!) in §-neighborhoods
around the null hypersurfaces on which the singularity propagates. They can be viewed
as more realistic solutions to (1.1) which are “quantitatively impulsive” but without
an actual singularity. For this reason, the study of §-impulsive waves is a problem of
independent interest that we will also address: we give below an informal version of
our result on §-impulsive waves (see [25, Theorem 5.6] for a precise statement).

Theorem 1.2 (Informal main theorem for §-impulsive gravitational waves) Given a
polarized U(1)-symmetric initial data set corresponding to three small-amplitude §-
impulsive gravitational waves propagating towards each other, there exists a smooth
solution to the Einstein vacuum equations corresponding to the given data up to and
beyond the transversal interaction of these waves.

Moreover, for all sufficiently small § > 0, the following holds:

e [Local existence]. The solution exists up to time 1, independently of §.

e [Uniform estimates]. The solution satisfies 5-dependent estimates consistent with
8-approximations of actual impulsive waves.

e [n particular, the metric is uniformly Lipschitz in § everywhere, and obeys uniform-
in-8 H>*NCY (foro € (0, 71;) ) estimates away from the §-impulsive gravitational
waves.

As it turns out, the proof of our main Theorem 1.1 regarding actual impulsive waves
reduces to the proof of Theorem 1.2 on §-impulsive waves. We indeed proved on the
one hand in [25] that given any non-degenerate.! initial data representing three small

I We recall that the non-degeneracy assumption in [25] is only used to solve the constraint equations.

6
Moreover, given O (¢) data, the non-degeneracy assumption can be guaranteed by adding an O (e 5 ) smooth
perturbation; see [25, Remark 4.7].
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amplitude impulsive gravitational waves propagating towards each other, the initial
data can be approximated by those for §-impulsive gravitational waves for all small
enough § > 0. On the other hand, we proved in [25] via a limiting argument that
to any such one-parameter (indexed by §) family of §-impulsive gravitational waves
solutions corresponds an actual impulsive gravitational waves solution, provided that
the §-impulsive waves satisfy specific quantitative estimates for all small § > 0.

Because of the above reduction, the remaining goal is to prove the quantitative
wave estimates for the §-impulsive waves as stated in Theorem 1.2. By the above, this
step completes our resolution of the local Cauchy problem for three actual impulsive
gravitational waves, i.e. it completes the proof of Theorem 1.1.

Wave estimates for the §-impulsive waves. In view of the form of the metric (1.2)
in polarized U(1) symmetry, the estimates for the original (3 4 1)-dimensional metric
* g naturally separate into those for the reduced metric g and for the scalar field ¢.
From now on, we will work in the reduced picture: we will refer to g as the “metric”
part, and ¢ as the “wave” part.

In the context of Theorems 1.1 and 1.2, the wave part is more singular. Indeed, for an
impulsive gravitational wave, d¢ has a jump discontinuity across a null hypersurface,
while g is more regular. Correspondingly, for a §-impulsive gravitational wave, || is
of size O(1), and |8%¢| is of size O (8~") in a §-neighborhood of a null hypersurface.
Thus, in Theorem 1.2, when we prove that the (3 4+ 1)-dimensional metric @ g is
uniformly Lipschitz in § everywhere and obeys uniform-in-8 H>N C!¢ estimates (for
0 € (0, 4—1‘)) away from the §-impulsive gravitational waves, the main challenge is to
prove these bounds for ¢.

In part I of our series [25], we proved estimates for the metric g, as well as for some
associated null hypersurfaces, assuming estimates for ¢ which are consistent with the
spacetime having three interacting §-impulsive waves.

In this paper, we carry out the remaining task, which is to obtain the estimates for
¢ assumed in [25], thus closing a bootstrap argument.

In fact, given the estimates in [25], and recalling from (1.3) that ¢ satisfies a linear
wave equation, we can think of this as a statement concerning the linear wave equation
with §-impulsive wave data on a background with rough metric. (See Sect. 1.2.2 for
further discussions.) The following is an informal version of the main result in this

paper:
Theorem 1.3 (Informal version of the main result in this paper) Suppose that
e theinitial datafor ¢ correspond to three small-amplitude 5-impulsive gravitational
wave propagating towards each other, and
e there is a smooth Lorentzian metric g in [0, Tp) X R2 such that the geometric

estimates for the reduced (2 + 1)-dimensional metric and null hypersurfaces in

[25] hold.

Suppose ¢ is the solution to the linear wave equation (¢ = 0 with the prescribed
data. Then, for all sufficiently small 8 > 0, the following holds in [0, Tg) x R?:

e The solution ¢ satisfies §-dependent estimates consistent with §-approximations
of actual impulsive waves.
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10 Page6of 137 J. Luk, M. Van de Moortel

e ¢ is Lipschitz uniformly-in-8 everywhere, and obeys uniform-in-8 H> N C1? esti-
mates (for 6 € (0, %) ) away from the 5-impulsive gravitational waves.

The precise version of Theorem 1.3 can be found in? Theorem 4.2 and Theorem 4.3.
In particular, we refer the reader

e to Sect.4.1 for the precise assumptions on the initial data of the §-impulsive grav-
itational waves,

e to Sect.5 for the geometric estimates that we need, and

e to Sect.4.3 for the precise wave estimates that we prove.

According to the results in [25], the estimates in Theorem 1.3 complete the proof
of Theorem 1.2.

Comments on the wave estimates. The main issue at stake is that we want to propagate
abound for ||0¢ ||« (r2) everywhere and a bound for ||9¢ || co (r2) (for 6 € (0, 41'1)) away
from the most singular region, while the initial data of ¢ are very rough from the point
of view of isotropic L?-based Sobolev spaces. Indeed, recall that for an impulsive
gravitational wave, d¢ initially has a jump discontinuity across a curve. Thus, for the
§-impulsive wave, in terms of isotropic L>-based Sobolev spaces H*, the data for ¢
only obey the following® §-independent bound:

1961,y o < € (1.4)
This is far too weak to control the Lipschitz and Holder norms (and is even below the
threshold to close the estimates for local existence of the quasilinear problem).

It turns out that in order to close a bootstrap argument, to propagate uniform-in-é
Lipschitz bounds for ¢, and to obtain improved Holder regularity away from the wave
fronts, we need to design energies that exploit the specific nature of the §-impulsive
waves. More precisely, we will use the following more subtle “improved regularity”
in the problem:

1. [Anisotropy]. We prove that each of the three impulsive waves propagates along
specific directions: this property can be proven by differentiating ¢ by vector fields
tangential to the wave front.

2. [Hierarchy of §-dependent estimates: “short pulse bounds” ]. Related to the local-
ization, the solution satisfies a hierarchy of §-dependent bounds involving large
and small quantities, in a manner that is similar to Christodoulou’s short pulse
estimates in [11].

3. [Localization]. The singular parts are initially localized, and we prove that they
remain localized in §-neighborhoods of 3 null hypersurfaces throughout the evo-
lution.

2 Notice that Theorems 4.2 and 4.3 do not explicitly refer to the geometric estimates in [25]. Nonetheless,
in the proof we will indeed first use the bootstrap assumptions and results in [25] to obtain the geometric
estimates; see Sect. 5.

3 Indeed, it is easy to check that a function with a jump discontinuity along a smooth curve in R2 is locally
1
in H2 7 (R2) N L (R?).
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In the energy estimates, it is important that we employ a combination of geometric
and fractional derivatives so as to capture the above features. The main challenge for
closing these energy estimates is that due to the quasilinear coupling, the metric is of
very limited regularity, and we need to propagated the energy bounds for such rough
metrics.

We will further discuss these estimates and sketch the main ideas of the proof in
Section 1.1. After the discussion of the proof, we will discuss some related works in
Section 1.2. Finally, we will outline the remainder of the paper in Section 1.3.

1.1 Ideas of the proof

This section will be organized as follows.

We begin with the geometric setup in Section 1.1.1. Then in Section 1.1.2, we
briefly recall the estimates for the geometric quantities derived in [25].

Turning to the scalar wave, we first introduce in Section 1.1.3 the regular-singular
composition of the scalar wave, which plays an important role in the analysis. Roughly
speaking, this decomposes the scalar wave into a regular part and singular parts, where
the latter are localized and propagating in specific directions.

We then address the proof of the wave estimates, which is the focus of this paper.
Our main wave estimates are L>-based. However, importantly, our L>-based energies
are designed so as to obtain the global Lipschitz estimates as well as the improved
Holder bounds away from the singular region (cf. Theorem 1.1).

e In Section 1.1.4, we discuss the L?-based estimates up to the second deriva-
tive. These estimates already capture particular features of the §-impulsive waves,
including its anisotropy and localization.

e In Section 1.1.5, we motivate the various higher order L? norms that we use by
two anisotropic Sobolev-type embedding results. This is related to the Lipschitz
and improved Holder estimates.

e Finally, in Section 1.1.6, we explain the ideas in the proof of the higher order
L?-based estimates. In particular, we will discuss how the proof of these estimates
are intertwined with the control for the geometry that we discussed in Sect. 1.1.2.

1.1.1 The basic geometric setup
Elliptic gauge. We recall the basic geometric setup in [25]. First, we construct a

solution in an elliptic gauge, i.e. the ((2+1)-dimensional reduced) Lorentzian manifold
(I x R?), g) takes the form I x R? = UIZ, and
te

g = —N%dr® + &¥8;;(dx' + Bidr)(dx! + pldr), (1.5)
where §;; is the Kronecker symbol, the constant-¢ hypersurfaces %; are maximal, and

(as a consequence) the metric components g € {N, y, B} satisfy semilinear elliptic
equations which are schematically of the form

Ag = (3¢)* + (0:9)*. (1.6)
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10 Page8of137 J. Luk, M. Van de Moortel

Fig.1 The vector fields
{Lk, Eg, Xg}: Ly isnull, E, X
are space-like and tangent to ¥;

Eikonal functions and geometric vector fields. In addition to the metric itself, we
constructed — dynamically defined — eikonal functions {uy}i=12,3, satisfying
g Y(duy, duy) = 0, which capture the direction of propagation of the §-impulsive
gravitational waves. Associated with each eikonal function uy, we constructed a frame
of vector fields {Ly, Ex, Xy}, where Ly and E} are tangential to the constant-uy (null)
hypersurfaces C’u‘k and X} is tangent to X; and orthogonal to Ej as depicted in Fig. 1.
These eikonal functions and geometric vector fields are important for capturing the
propagation and interaction of the §-impulsive waves, as we will further explain in
Sects. 1.1.3 and 1.1.4 below.

1.1.2 Summary of the geometric estimates from part |

Continuing our discussion on geometry, we recall some of the estimates for the geo-
metric quantities that we obtained in [25]. As we will see, one of the challenges in
proving the wave estimates is to contend with the low regularity of the metric.

Different components of the metric components in the elliptic gauge (1.5) and
different derivatives of the Ricci coefficients with respect to the {Ly, Ey, Xi} frame
obey different bounds. Especially for the highest order wave estimates, we will use
the precise bounds for these geometric objects.

1. For the metric components in the elliptic gauge, denoted with the schematic nota-
tion g € {N, vy, B;}, we have the following regularity estimates for all R > 0:

2

10: 01l 1 commwiesasy < €5 ol | 2 <€, (17
19 Wheenwi+s2(2) 8 Wl’x’—s” (2,NB(0,R))

where 0 < 5" <5’ < % are fixed but arbitrary parameters, to be explained later.
Note that no estimates were obtained for 87g.

2. The Ricci coefficients i := g(Vg, Lk, Ex) and n; := g(Vx, Lk, Ei) associated
to the null frame {L, Ex, X} are considerably less regular. Denote kx € {xx, 1k},
and introduce coordinates (#, uy, 6;) with uy the eikonal function from Sect. 1.1.1,
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tr = t and 6 such that L6 = 0. Then [25] gives

> (||Kk||L°°(21) + ||LkKk||L°°()Z,)> Se (1.8)

rek €4 Xk Nk}

Observe that Liky is estimated at the same regularity as ky: this is because i
satisfies a transport equation in the L direction due to the Einstein equations (see
[25, Lemma 2.22]).

The other Ex and X derivatives are less regular and only obey mixed L?/L> or
L? bounds:

2 2
”Ekkk”L?,fLZiL%k + ”Xka”LZngiLgk Se, ”Xk’?k"LZ(Z,ﬁB(O,R)) SRE
(1.9)

Note that Xy xx obeys a similar bound as Ej«y, but to bound X1, we need L?in
both u and 6.

To obtain higher order estimates, we are only allowed to commute with an extra
L derivative:

2
1Lk Xixall 2,008y D ILikkl 205,080,R))-
Kk €{ Xk 0k}

Z ||LkEkKk||L2(z,mB(0,R)) <R €2 (1.10)
fek €4 Xk >0k}

Notice that as in (1.9) nx obeys slightly weaker bounds than x; and moreover there
is no estimate to control Lz X ny.

In general, the derivatives of g obey better bounds than i, n;x (due to ellipticity
of (1.6)). However, spatial ellipticity does not merge well with 9, derivatives: 9;g
only obeys weaker bounds, and afg is not controlled in our argument at all. On the
other hand, while xi, nx obeys weaker bounds, they behave better with respect to
Ly derivatives (which contains a d; component); see (1.8), (1.10). (Additionally, one
needs to control various non-trivial commutators when going back and forth between
(1) the eikonal quantities constructed with L and Ej and (2) the metric coefficients
in the elliptic gauge (1.5). We will not get into details here, except for remarking that
they can be controlled using the geometric estimates in [25].)

1.1.3 Regular-singular decomposition and the singular zones

We will impose that the §-impulsive waves are of small amplitude € > 0. The length
scale § at which each é-impulsive wave is localized is required to satisfy 0 < § < €.

We begin by decomposing ¢ into a regular and three singular parts. This is achieved
by solving an auxiliary characteristic-Cauchy problem so that

3
¢ =reg + Y _ br. where Ogppreg = 0 and Ogdhy = 0 fork = 1,2, 3,
k=1

@ Springer



10 Page 100f 137 J. Luk, M. Van de Moortel

where each ak corresponds to a §-impulsive wave propagating along the constant-u
null hypersurfaces C',jk and ¢, is an error term which is more regular. The part ¢,
is regular everywhere in the sense that

||¢reg”H2+s’(R2) S, €,

for some s’ € (0, %); see Sect. 13. The remainder of Sect. 1.1 will thus be devoted to
the discussion of the singular parts $k~

Each 5k is initially regular away from the region {—6 < u; < 0} and is in fact
constructed to vanish for uy < —§. In the region {—38 < uy < 0}, the first and second
derivatives of g only obey initially the following schematic bounds

10| S e, 10%pe] S e (1.11)

(Notice that these are exactly the size estimates one obtains by smoothing out at a scale
ugx ~ § aninitial function ¢y, of amplitude € whose generic first derivatives d¢,oughn
have a jump continuity across the curve given by {u; = 0} and whose generic second
(distributional) derivatives 82¢mugh have a delta singularity supported on {u; = 0}.)
Because of (1.11), ¢~Sk is initially no better than ||¢~Sk I 5250 < 66’% and, in terms of
L?-based Sobolev spaces, it is only the ||8¢~>k|| HS(30) horms, for s < %, that obey the
uniform-in-§ bounds ||8$k|| HY(S0) Ss €.

An important use of the dynamically constructed eikonal functions that we men-
tioned earlier is they can track the location of singularities. Foreach k = 1, 2, 3, define
the corresponding singular zone by

Sk = (=8 <ux < 5} (1.12)

(slightly larger than the initial singular zone {—§ < u; < 0}), measured with respect
to the eikonal functions. We will show that throughout the evolution, the most singular
part of ak is localized in Sé‘. As a first guide to the estimates, the reader can keep in
mind that we will prove the following bounds inside and outside Sg :

o [Interior of the singular zone S(’S‘]. Within this singular region S§ (see (1.12)), our
bounds can be no better than the initial estimates (1.11). We will in fact prove
estimates consistent with the -weights in (1.11). Namely, we prove the L>-based
bound

1Bel sty S €877, (1.13)
as well as the Lipschitz bound for ¢
186kl oo sty S €. (1.14)
e [Exterior of the singular zone Sé‘ J. We prove that the following estimate holds

1Bkl 2y sty S € (1.15)
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Note that this is better than the bounds (1.11) in the singular zone for the initial
data.

Moreover, in terms of L°° based norms, we will show an improved Holder estimate
(compare with the Lipschitz estimate (1.14) above) for ak outside of the singular
zone Sg, i.e. for some 6 € (0, %)

1Bkl 1o @ast) S € (1.16)

We will further explain the proof of the estimates (1.13)—(1.16). In order to derive
these bounds, we will need to prove that improved regularity is exhibited for derivatives
with respect to {L, E}, the vector fields tangential to constant-u; hypersurfaces, as
well as to derive higher order estimates.

1.1.4 The H? energy estimates: anisotropic estimates, short-pulse bounds and
slice-picking

We first discuss our L? based energy estimates for ak up to the second derivative. (The
L>®-based estimates will be discussed in Sect.1.1.5 and the higher order L?-based
estimates will be explained in Sect. 1.1.6.) One of the main challenges of this problem

is that the H? norm of ¢ is no better than & -3 (recall (1.13)). Already at the H 2 level,
we capture the following features of the solutions in our energy estimates (these will
again play a role in the Lipschitz (as in (1.14)) and improved Holder bounds (as in
(1.16)); see Sect. 1.1.5):

1. [Anisotropy]. Derivatives in the geometric directions Ly and Ey are “good” deriva-
tives for ak that are better behaved than others. This phenomenon will allow us
to prove anisotropic H2-estimates where one general derivative is replaced by a
“good derivative”.

2. [Short pulse bounds]. As we mentioned above, the singularity leading to a large
H? norm is only localized in a “small” region of length ~ §. At the same time, in
the singular region, some (integrated) bounds can be proven to be §-small using
the small 6 length as a source of smallness.

3. [Locallzanon] We prove that the singularity for ¢k is localized in a small region
Sa around a null hypersurface. Indeed, we show that ¢>k obeys uniform-in-§ H?
bounds away from Sk as in (1.15). To show such bounds, we rely on a novel slice-
picking argument exploiting the anisotropic bounds and the short pulse bounds. A
§-independent H? bound can then be propagated towards the future of this good
hypersurface.

In the steps below, we explain in more detail these features of our (up to H? level)
energy estimates.

Step 1: Anisotropic energy estimates captured by the good geometric deriva-
tives. At the lowest order, our regularity assumption allows us to easily prove a
§-independent bound

13kl 25,y S € (1.17)
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In fact, we can put in an extra fractional s” € (0, %) derivative (cf. (1.4)) and prove

19(Dx)" ¢k||L2(2,)N (1.18)

However, as mentioned in (1.13), at the second derivative level, we prove an estimate
no better than the following:

18°Bill 2, sty ~ 10° Bl 2s,y S€- 67 (1.19)

As we indicated above, despite (1.19), not all derivatives are equally bad. Since 5;{ is
essentially propagating along constant-u hypersurfaces Cy, , we have better regularity
properties for derivatives in the directions tangential to C,, i.e. directions spanned by
{Li, Ex} (see Sect. 1.1.1 and Fig. 1). Indeed, we prove that 8Lk¢k and 8Ek¢k are more
regular and on constant-¢ hypersurfaces X;:

> N0Ydelliegs, S (1.20)

Yee{Li, Ex}

Step 2: The short pulse bounds in the singular region. The next feature of ¢~Sk
to be emphasized is that the large H? norm (recall (1.19)) is only localized in a small
region S§ (recall (1.12)) of length scale ~ §. The first observation towards proving
the localization is the following: while Sé‘ is a singular region for ak in the sense that
(1 19) cannot be improved, some small-in-§ bounds hold for the lower derivatives in
sk

. To see this, first observe that since the initial data for ¢k is chosen so that q)k =0
for uy < —$4, finite speed of propagation implies that ¢k = 0 on the null hypersurface
{ux = —4} and in fact on the whole half-space {u; < —4§}. Using this vanishing and the
smallness of the § length scale, we can propagate a hierarchy of §-dependent estimates
for 5;( and its derivatives in the singular region Sg‘. (This is reminiscent of the short
pulse estimates of Christodoulou, originally introduced to tackle the problem of the
formation of trapped surfaces for the Einstein vacuum equations [11].) In particular,
we prove the smallness estimate for the H' norm of qSk

~ 1
19kl 25,5ty S € - 62 (1.21)

This is consistent with the initial data bound (1.11) (and the Lipschitz estimate (1.14)
that we hope to prove): 85;( is bounded by € pointwise, and the smallness arises from
the smallness of the §-length scale. Moreover, in this region, 8Lk$k and 8Ek$k also
obey similar smallness bounds, which are better than (1.20):

D=

Y 1Ykl 2 nsty S €82 (1.22)

Yee{Li, Ex}
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Fig.2 The regions for the U = ul";
slice-picking argument

)

up =0 Uk/zouk:—é

Step 3: Localization using a slice-picking argument. The short pulse bounds
(1.21)—(1.22) allow us to use a slice-picking argument to prove that $k obeys H?
bounds with no 5-weights when uy > §, i.e. beyond the singular reg1on S5

Consider Fig.2. For u;y < —8, we have ¢ = 0. The initial ||3> ¢k||L2({ < <0})

norm is large — of size O (€5~ 2)— when —§ < up < 0 (the darker shaded region),
while the initial ||82$k Il 22 ({u; >0p) norm is of size O (€) away from the darker shaded
region (including in the lightly shaded region, which is also of length scale §). In both
the darker shaded region and and lightly shaded region, we can prove the estimates
(1.19), (1.21) and (1.22).

Squaring, integrating (1.22) over ¢ and using Fubini’s theorem to switch the ¢ and
uy integrals, we have

> f ||aYk¢k||L2(Ck duy
Yie{Lk, Ex}

S Y. / 1Ykl 72 5, st di S (e83)? S €%,
Yee{Li, Ex}

where C’ij is a constant uy-null hypersurface. The mean value theorem implies that

there exists u; € [0, §] (the dotted line in the lightly shaded region after the short
pulse) such that the integral over the u; = u;; null hypersurface C 'u‘* satisfies
k

72 2
D 1Yeelaen ) S € (1.23)
Yie{Ly, Ex} k

Using standard energy estimates (assummg sufficient bounds for the metric), in
order to estimate 9> ¢k I L2 (e =u} ) after CK e it suffices to bound (a) the data on X
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in the region {u; > uj} and (b) the flux

Y UVl o, + 10Yedel T e )
Yie{Ly, Ex} "k “

ie.on C ,]4‘* we only need bounds where at least one derivative is tangential to C ]u‘*.
k k

Since (a) we have improved data bound on o N {ux > 0} and (b) uj is picked so
that we have a §-independent bound (1.23) of this flux, we obtain H 2 estimates in the
region {uy > &} C {uy > uz} with no § weights, i.e.

24 <
0 ¢k”L2(E,\S§) ~ €. (1.24)
In other words, the worst bound (1.19) is indeed only saturated in Sé‘ .

1.1.5 Anisotropic embedding results and the Lipschitz and Holder estimates

Recall that we aim at proving the Lipschitz bound (1.14) and the Holder bound (1.16).
This necessitates L2 estimates beyond those discussed in Sect. 1.1.4. Below, we will
explain the embedding results adapted to our setting, and the precise higher order L>
estimates that we will need.

Our embedding results will be used to control 8¢~>k, where 0 denotes a derivative in
the (original) coordinates of the elliptic gauge. In order to take advantage of the good
derivatives, we will also introduce another coordinate system on each X; as follows.
Given k € {1, 2, 3}, pickk’ € {1, 2, 3} with k # k’. Then (uy, u; ) forms a coordinate
system on R? for any fixed ¢. Denote by (@uy» Du,,) the corresponding coordinate
derivatives.

The reader should already think that &Mk, is the “good” derivative for ak, i.e. itis

parallel to Ey, while §,, is a “bad” derivative, and that # denotes a general derivative
in the (ug, uy’) coordinates.
Almost Lipschitz bounds. By comparing with the initial data estimates, one sees that
the bounds (1.19), (1.22) and (1.24) in Sect. 1.1.4 are already the best H 2 estimates that
can be proven. Heuristically, the bounds of Sect. 1.1.4 are almost sufficient to obtain
the desired Lipschitz estimate (1.14) for ¢ except that when trying to use Sobolev
embedding, one encounters a logarithmic divergence in the summation over frequency
scales in a Littlewood—Paley decomposition. However, for any fixed p € [1, 00), the
H? bounds (1.19), (1.22) and (1.24) are still sufficient to give an L? bound:

e [L? bounds away from the singular zone]. Away from the singular zone S§ , the
standard Sobolev embedding HY(B(0, R)) — LP(B(0, R)) give

106k o, sty S 100kl 25ty + 1830l 23, 58 (1.25)

By (1.17) and (1.24) (after justifying that $8q~5k and Bzak are comparable), the
right-hand side of (1.25) is bounded by €, independently of §.
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e [L? bounds inside the singular zone]. To treat the singular region, note that one
can prove a refined version of Sobolev embedding that takes into account the
directions of the derivatives and makes use of the localization of the singular
region. Introducing a cutoff function py localizing 3<$k near Sé‘, we have

~ ~ 1 ~ 1 ~
locdBellLrsy S 1BCokIBON 2 s, Iy (00PN 25, + 1260kl 123,

1 ~ _1 ~ ~
S 8B (okdd) 2 cx,) + 8 2 1By (k3 | 125,y + 1ok 0k Nl 125,
(1.26)

where the second line follows from the first using the Cauchy—Schwarz inequal-
. . . ~ 1
ity. Now even though in our setting ||¢x || ;2 Einsh ~ €572, we have smallness

in the good derivatives estimate (1.22). Thus, modulo controlling the coordi-
nate change and the vector field Ey, (1.19) and (1.22) respectively imply that

1 ~ 1 ~ .
32 ||3(,0k3¢k)JL2(2,) Seand 872 @y, (ﬂkafk)HLZ():,) < €. Using also (1.17) to
control || pxdk | 12 (5, this shows that || ok Pkl Lr(x,) <e.

Anisotropic Sobolev embedding adapted to the problem. In order to improve (1.25),
(1.26), we prove two anisotropic embedding results, designed particularly for our
setting for which we can exploit the anisotropy and localization of our L? estimates.
In the following, we will only give the embedding estimates when applied to 8$k (ora
cutoff version of aak). These estimates are key ingredients in our proof of (1.14) and
(1.16), since they provide the summability over all frequencies that we were lacking
in the above paragraph.

e Our first embedding result (cf. Theorem 15.5) is a Holder estimate on a half space®.
Fors” € (0, 1),

1060005 5,5ty S 1Bkl 25,58y + 190Gl 205,15

FBuy Dy ) 3kl 125, (1.27)

where (Dy, u,, )SN is the fractional derivative operator in the (uy, uy) coordinates.
The estimate (1.27) could be compared with (1.25), where the extra term
||3uk, (Duyg uy )S//aak l.2(x,) on the right-hand side not only allows us to sum over
all frequencies in a Littlewood—Paley decomposition, but also lets us obtain extra
Holder regularity (as long as we are away from Sé‘ ).

e Our second embedding result (cf. Theorem 15.3) is an L°° estimate, involving &
weights on the right-hand side:

~ 1 ~ 1 ~
ok drllLoo(s) S 872 ok 0k ||L2(z;t) +42 ||3uk, (o dr) ||L2(z;t)

l L - - (1.28)
+ 8213 (pkdd) | 125,y + 87 2 1wy (k3B 1 12(x,)»

4 We overlook here the ambiguity in whether the L2, C9, norms are taken with respect to the (x1 R xz)
coordinates or the (uy, u;/) coordinates, since we showed in [25] that (xl, x2) = (g, ugr) is a c!

diffeomorphism. A similar comment applies to (1.28) below.
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where py is a cutoff as in (1.26).
Notice that (1.27) and (1.28) in particular gives the global Lipschitz estimate
(cf. (1.14)):

”a$k||L00(zt) < RHSs of (1.27) and (1.28). (1.29)

The reader may want to compare (1.28) with (1.26). The two new §-weighted terms
51 Il ok dPr l2(s,) and 52 131, B (oxddr) llL2(x,) allow us to sum over all frequen-
cies. In fact, this even allows us to control a Besov norm || ,ok8¢k I BY | (R’ which
is crucial for closmg an endpomt elliptic estimate in part I; see [25, Sectlon 1.1.4].
Notice also that § > ||,ok8¢k ||Lz(21) S e by (1.21).

By (1.27) and (1.29), proving that ¢ is Lipschitz uniformly-in-§ with addi-
tional Holder regularity away from the §-impulsive waves reduces to showing
RHSs of (1.27) and (1.28) < €, and will thus require the following main higher order
estimates

1B (D) 0l 25y S €0 82 1y # ok 25,y S e (1.30)

Recalling that ﬂuk, can be thought of as a good derivative, we see that the first bound
is an estimate combining fractional and good geometric derivatives while the second
bound is a higher order §-weighted estimates involving a good geometric derivative.

The most difficult part of the paper is then to obtain the bounds in (1.30) under
the very limited regularity of the metric. We will explain these L? estimates in the
next subsection.

1.1.6 The higher order energy estimates

The main higher order energy estimates. We now explain the higher order energy estimates we
prove to obtain (1.30). Corresponding to the first term in (1.30), we prove

10 ER(D) Bill 2z, S € 19Le(Dx) Bill 2, < €. (1.31)

Corresponding to the second term in (1.30), we prove

18 Exdi il 2(x,) S €577, 10 L Ledell L2, S €872, (1.32)

One can think that the Ej’s in the first terms in (1.27), (1.28) above are the good
derivatives 8uk/, since ﬂuk, is parallel to Ex. Once (1.31) and (1.32) are obtained, the
bounds from [25] allow us to control all necessary commutator terms (even though
some of them are top order), convert (1.31)—(1.32) into estimates in the (uy, uy)
coordinate system, and to apply them for (1.30); see Sect. 15.

(1.31) and (1.32) are satisfied initially. Notice that (1.31) and (1.32) are consistent with
the initial regularity of the wave. In particular, (1.31) is a statement that the fractional
regularity energy estimate (1.18) still holds after a suitable commutation with the good
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derivatives Ey and L. The main challenge, however, is to propagate such regularity
with only very limited regularity of the metric.

The estimates involving Ly in (1.31) and (1.32). Furthermore, notice that only the
respective firstbounds in (1.31) and (1.32) are used for the anisotropic Sobolev embed-
ding. However, in order to handle some commutators that arise, it is important to
simultaneously prove the second bounds in (1.31) and (1.32).

Ideas of proof of (1.31). We now explain the proof of (1.31).

e To prove (1. 31) we bound the commutator terms [[,, Ex(Dy)* ]¢>k and
[Og, L (Dy)* ]¢k- Itis important to both (1) use fractional derivatives with respect
to the elliptic gauge (as opposed to geometric) coordinates and (2) commute with
(Dy)*" first before commuting with the geometric vector fields. This way we
exploit the better regularity of the metric components in the elliptic gauge. (Indeed,
we will not be able to control either [Dg, Ey(Dy,, W> ”]5;{ or [Og, (Dy)* ,/Ek]$k )

e The commutator term [[,, Ex(Dy)* ]qbk schematically gives rise to error terms
of the form

(D) 30;0)(3r),  (00:9)((Dy)" r), (Bg)@*(Dy)* dr).  (1.33)

The terms ((DX)SNE)B,' g)(aak) can be controlled using the metric bound (1.7)
together with (1.14). To control the terms (39;g)(d(Dx)* ¢x), we use (1.18) and
combine it with (1.7) (recall that 0 < s” < 5’ < %). There is a slight subtlety here:

the reason that we need to introduce two different exponents 0 < s” < s’ < %

and estimate 9(D,)* ¢k, 0E (Dy)* qbk, dLy (D) ’$k with the slightly different
order of derivatives is because for the term (9;0; g)(a(Dx)sHE)k), we do not have
L®° bounds for 9,0; g (see (1.7)).

e The third type of error terms in (1.33), i.e. the terms (89)(82( ) qbk) are more
subtle because we do not control general derivatives 82( D)’ q)k To close our
argument, we need show that the only such term arising in the commutator is
schematically of the form d Ex (D, )* " $x. To achieve this, we need to give a sharp
expression for the commutator with fractional derivatives to isolate the main
BEk(Dx)‘Yﬁak term. This in turn requires a refinement of the usual Kato—Ponce
type commutator estimates; see already Proposition 12.9.

e When showing that the top-o -order derivative 32(D,)* //;Ek from the above bullet
point is morally d Ex(D,)* q&k, the term we obtain is Ey(D,)* ’28131)/3(15;(. Since

(Dy)~ 282. is a bounded operator on L?-based Sobolev spaces, the term can be

thought of as like 0 Ex (Dy)* qbk if at least one of v, B is a spatial index. However,
the term becomes much more challenging when (v, 8) = (¢, t) so that we need
to use the wave equation to convert the times indices into spatial ones, and in the
process we are required to handle a large number of commutator terms.

e Since we consider the nonlocal operator (D), the terms involved are no longer
compacted supported. An additional challenge is that the metric components
diverge logarithmically near spatial infinity (a difficulty well-known in the (24 1)-
dimensional case); and moreover the components L, E}c of the commutators
L, = L};Bi and Ey = E,’;B,- also grow near spatial infinity. We therefore use
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K 7283

weighted estimates”, including when understanding terms like Ey (D) B ¢k

described in the above point.

o Finally, the considerations above by themselves cannot control [[g, L (Dy)* ]¢>k
This is because Ly (in the 9;, 91, 0> basis from the elliptic gauge (1.5)) has a 0,
component and thus the result is a term schematically like

(Dx)*" 29) B r),

in addition to terms similar to those we encountered in [[g, Ek( S ]qbk

Recall that (see Sect. 1.1.2) we do not have any bounds for 8 g. To resolve this
issue, we note that such a term can be traced back to a total 8,-derivative, i.e. we
can write

UgLi(D e ¢k F +0,C. (1.34)

While 9,C cannot be controlled, F, C and 9; C can be controlled in L2(X;) using
the same methods as for [[,, Ex(Dy)* ]¢>k Now the key observation is that in the
energy estimate, we schematically have a bulk integral of the form

/ G Le (D) ), C). (135)

To address (1.35), we integrate by parts in t. For the 8t2Lk(Dx)$k term, we can
use the wave equation (1.34) so that up to lower order terms, we obtain three terms
to be controlled

f(a2 Li(D ¢k)C+/FC+/C2 (1.36)

For the first term, we integrate by parts again in the spatial 9; derivative. We can
thus bound these terms using the estimates we have for F, C and 9;C.

Ideas of proof of (1.32). Finally, we explain the proof of (1.32).

e Similar to the proof of (1.31), the exact choice of commutators matters. We will
use E0; and L% as commutators, so that we need to bound [[,, Ekai]ak and
[, L;%]ak;v By contrast, we could for instance neither control [[g, EkEk]ak,
[Lg, 9i Ex]¢y (since we lack general second derivative control of xx and ) nor
[Lg, Li0; ]¢k (since we lack L°° estimates for 9;0; g).

o Terms that arise in [[g, Ey Bl]qﬁk are schematically

dQE;0°dx, dgLI0dk, 99> dr, 9°gddx.

5 We would like to thank an anonymous referee for suggesting us to handle this instead with a commutator

of the form @ (D)’ ! , where @ is compactly supported. While we have not implemented this, we do believe
that this would lead to some simplifications of our arguments.
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As in many of the previous estimates, it is important that these terms have some
structure. First, in 82 g and 93 g there are at most one d; derivative (recall that we
do not control afg). Second, because we do not control 9;9;¢g in L* (see (1.7)),
we would not be able to bound 9; 9, g 8251( in general. Fortunately, the commutator
has a useful structure in that only 9;9; g 8Lk$k or d;0;9 8Ek$k arise.

o There are some further subtleties in the bounds for [[],, L,%]ak.

- [Og, Lﬁ]gk contains terms with second derivatives of x; and n; (which we do
not in general control). Importantly, exactly because we are commuting with
Ly twice, one of the two derivatives on x; and 1 must be Ly so that we can
use (1.10).

— Another dangerous term that arises is (L Ly Xy log N)(L k‘gk), since schemat-
ically it is of the form 8,2 d; g (recall we do not have any control over two time
derivatives of g!). This can be treated with an integration by parts argument
similar to (1.34)—(1.36) in the proof of (1.31).

1.2 Comments and related works

We refer the reader to the introduction of [25] for discussions on impulsive gravitational
waves and other related works in general relativity. Instead, we restrict ourselves to
discussing previous works on wave estimates (for linear and nonlinear wave equations)
related to those in this paper and how our work connects to this existing literature.

1.2.1 Geometric and harmonic analysis techniques for quasilinear wave equations

As we saw from Sect. 1.1, our result in this paper is based on a combination of tech-
niques from geometric analysis and harmonic analysis. Related techniques are used
in many low-regularity problems for quasilinear wave equations. We refer the readers
to [2, 12, 15-17, 30, 31, 37] for a sample of results.

In the specific context of low-regularity solutions to quasilinear hyperbolic equa-
tions featuring one or more singularities propagating along null hypersurfaces,
geometric methods using well-chosen coordinate systems and commuting vector fields
are often employed; see [3, 14, 21-24]. In the present paper, we extend the methods
in these works but further combine them with techniques from harmonic analysis to
handle the interaction of three (§-)impulsive waves.

1.2.2 Linear wave equations with rough coefficients

While our main goal in this paper is to prove wave estimates so as to complete the pro-
gram in [25], when taken on its own, the present paper concerns proving estimates for
a linear scalar wave equation with rough coefficients. Indeed, as seen in Theorem 1.3,
the main result in this paper takes the following form: assuming certain bounds on
the metric and suitable commuting vector fields, then one can propagate §-impulsive
waves type estimates under the flow of the linear wave equation. Such a formulation
does not explicitly refer to general relativity. In this context, let us also remark that the
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techniques we introduce can also be easily adapted to deal with linear wave equations
of the form

g"Po%¢+ B 0,6+ V=0 (1.37)

with suitable regularity assumptions on g"#, BY and V.

Though not directly related to this paper, we mention a small sample of works
concerning estimates for linear wave equations with rough coefficients; see [13, 34,
35].

1.2.3 Interactions of singularities for semilinear wave equations

Our main result Theorem 1.1 can be viewed as a result on the interaction of singular-
ities. In the setup of (1.3), the nonlinear interaction is hidden in the coupling between
the scalar wave and the metric. In the literature, interaction of singularity results are
often studied for the following type of simpler semilinear models:

U = F(¢), (1.38)

where [J is the standard wave operator on R**! and F : R — R is a smooth function.
See for instance [4-9, 18, 19, 26-28, 36, 38].

We remark that even though our methods are specifically designed to handle the
rough metric, they can be easily applied to the model problem (1.38). Indeed, given
initial data which represent three small-amplitude impulsive waves, we can smooth
them out to §-impulsive waves and introduce the decomposition ¢ = ¢;.¢, + Zl3<=1 ak,
where

Ogr =0, Odreg = F ().

(Notice that this is slightly different from Sect. 1.1.3.) It is then not difficult to see that
one can propagate all the L? estimates that we prove in this paper. (In fact, the proof
would be by far easier than that in this paper.) In particular, after taking the § — 0
limit, this shows that the solution remains Lipschitz everywhere and has additional
H? and Holder regularity away from propagating singularities.

Let us note that it is also interesting to study interactions of singularities for semi-
linear wave equations where the nonlinearity depends also on the derivative of the
solution [10, 29] (e.g., nonlinearities satisfying the classical null condition). However,
the techniques introduced in this paper do not immediately apply to these models.

1.3 Outline of the paper

The remainder of the paper is structured as follows.

e In Section 2, we introduce the geometric setup, the equations in various coordinate
systems and the main notations that will be used throughout the paper.
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e In Section 3, we introduce the function spaces and norms that we will use in the
paper.

e In Section 4, we give a precise version of our main results, whose rough versions
were already presented as Theorem 1.1 and Theorem 1.2.

e In Section 5, we recall the main results of Part I [25], including the estimates for
the metric components and for the null hypersurfaces.

e Most of the remainder of the paper is devoted to the proof of the energy estimates.
We begin with some preliminaries towards the energy estimates.

— In Section 6, we prove a technical integration by parts lemma that will be
important in the proof of the energy estimates.

— In Section 7, we give the proof of basic energy estimates with an arbitrary
source term.

— In Section 8, we compute and estimate the commutators between various
vector fields and the wave operator in preparation for the proof of higher order
energy estimates.

e Using the above preliminaries, we first prove energy estimates for ak up to second
derivatives (see Sect. 1.1.4):

— In Section 9, we prove our basic energy estimates up to second derivatives.
— In Section 10, we obtain improved energy estimates up to second derivatives
(see (1.21), (1.22), (1.24)).

e We then prove higher order energy estimates for ak (see (1.31) and (1.32)):

— In Section 11, we prove energy estimates involving up to three derivatives of
&k (and @yeq). .

— In Section 12, we prove fractional energy estimates for ¢ and its good deriva-
tives.

o In Section 13, we prove energy estimates for ¢, the regular part of the solution.

e In Section 14, we combine the results of all previous sections to conclude the
proof of our energy estimates.

e InSection 15, we prove an anisotropic Sobolev embedding result. Using our energy
estimates from Sect. 14, we apply the embedding result to obtain Lipschitz and
improved Holder bounds.

2 Summary of the geometric setup

In this section, we recall the geometric setup introduced in [25], as well as some useful
computations.

In Sect.2.1, we introduce the symmetry assumption and the elliptic gauge in the
symmetry-reduced spacetime.

In Sect.2.2, we introduce the eikonal functions u; and the geometric vector field
(L, Ex, Xi) fork = 1,2, 3 (see Sect. 1.1.1). In Sect.2.3, we compute the covariant
derivatives and commutators with respect to these geometric vector fields.
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In connection with eikonal functions, we introduce in Sect. 2.4 various different sys-
tems of coordinates. Some computations regarding the change of coordinates between
these coordinate systems are given in Sect. 2.5.

2.1 Elliptic gauge and conformally flat spatial coordinates

Definition 2.1 (U(1) symmetry) We say that a (3+1) Lorentzian manifold (M = R? x
S! x I,™® g), where I C R is an open interval, has polarized U(1) symmetry if the
metric ¥ g can be expressed as:

Do =25 + 2P (dx?), 2.1)

where ¢ is a scalar function on / x R? and g is a (2 + 1) Lorentzian metric® on / x R2.

Definition 2.2 (The foliation %;) Given a space-time as in Definition 2.1, we foliate
the 2 + 1 space-time (I x R?, g) with slices {X;};e; where %, are spacelike. We will
later make a particular choice of ¢; see Definition 2.4. The metric can then be written
as

g = —N%dt* + gi;j(dx" + Bldr)(dx! + gldr). (2.2)

In the above, and the remainder of the paper, we use the convention that lower
case Latin indices refer the the spatial coordinates (x] , x2), and lower case Greek
indices to refer to spacetime coordinates @0 x1, x?) = (¢, x!, x?). Repeated
indices are always summed over: repeated lower case Latin indices are summed over

i, j, -+ = 1,2 and repeated lower case Greek indices are summed over w, v, - -+ =
0,1,2.

Definition 2.3 Given (I x R2, g) and {X;};¢; as in Definition 2.2.

1. (Space-time connection) Denote by V the Levi—Civita connection for g.

2. (Induced metric) Denote by g the induced metric on the two-dimensional slice ¥;.

3. (Spatial connection) Denote by V the orthogonal projection of V onto 7%, and
T*3, (and their tensor products).7

4. (Normal to X;) Denote by 7 the future-directed unit normal to %,; 7 admits the
following expression

- 8t - ﬂiai
= —. 2.3
n N (2.3)
and satisfies g (71, 1) = —1. Note that we have the following commutation formula
- . P
[7i,05] = 9y log(N) - 7i + %P . (2.4)

N

6 Note that since ¢ and g are defined on R2 x R, they do not depend on x3, the coordinate on S

7 We remark that for Y, Z € ['(T'S;), Vy Z coincides with the derivative with respect to the Levi—Civita
connection for g.
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Define also ¢ to be the vector field
eo =09 — po; =N -i. (2.5)
5. (Second fundamental form) Define K to be the second fundamental form on X%;:
K(Y,Z) = g(Vyn, Z), (2.6)

forevery Y, Z e T%,.

Definition 2.4 (Gauge conditions) We define our gauge conditions (assuming already
(2.1)) by the following:

1. Forevery t € I, ¥; is required to be maximal, i.e.
@ YK =0. 2.7)

Note that (2.7) defines the coordinate 7.
2. We choose the coordinate system on %, so that g;; is conformally flat: this gauge
condition is written as

gij = 8, 2.8)
where from now on § denotes the Kronecker delta.

We collect some simple computations:

Lemma 2.5 The following holds given g of the form (2.2) satisfying Definition 2.4

1. The inverse metric g~ is given by
1 -1 ’31 ,32
gfl — m ,31 N28_2V —,31,31 —ﬂlﬂ2 . (29)

/32 _,31,82 N2e—2y _ ‘32132
2. The space-time volume form associated to g is given by
dvol = Ne*’dx'dx?dt. (2.10)
The volume form on the spacelike hypersurface ¥; induced by g is given by
dvoly, = e? dx'dx?. (2.11)

3. The wave operator (i.e. the Laplace—Beltrami operator associated to g) is given
by

—ef eo e

0 2y cij a2 N i
Dgf:W_Fe ) 8ijf+FeOf+

v SUJNJ; f
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=i’ f+e VsVo%f 48 il 5’/a,Na,f, (2.12)
where eq and 1 are as in Definition 2.3.
4. The condition (2.7) can be rephrased as
9y BT = 2e0(y), (2.13)
5. The second fundamental form is given by®
o2 2y

Kij = S - (0487 61 = 87 -85 = 0,7 - 814) 1= = - (LB)yj. (2.14)

where £ is the conformal Killing operator (£8);j :== —0,8% - 8;j + 9; B9 - §4; +
9;pe - big.

Finally, we compute the connection coefficients with respect to {eg, 91, d2}:

Lemma 2.6 Given g of the form (2.2) satisfying Definition 2.4,

8(Veyen, e0) = —N - egN, (2.15)
8(Veyen, i) = —g(Vy,eo, e0) = g(Ve,0i, e0) = N - 9;N, (2.16)
8(Va,e0. ) = g(Veydj. i) — e - 0,81 = —g(Vy, ;. e0)
e
= (2e0y - 81 — 0B -84 — 9;B7 - 8ig) 2.17)
e
—7 (85 11_3:3(1 5”—3/3 )
Moreover,
e R
Vo,dj = 537 (34B7 - 8ij — 0ipT - 8jq — 0,7 - 8ig) 7
n (3?ajy+3jaiy—5"faqla,y) 9. (2.18)
N ,
Veye0 = 607 eo+e SN ND;, (2.19)
&N
Veoai = Vd e()+a ,B]a = T [0}
1 ) ) .
+ 5 (aqﬂq 8 ol — siqaf’alﬁq) 3, (2.20)
8 This follows from
2y 2y
Kip = 20 5y - 2 i+ 00 61

together with (2.13).
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2.2 Eikonal functions and null frames

We will define three eikonal functions together with null hypersurfaces and null frames.
Each of these will later be chosen to be adapted to one propagating wave.

Definition 2.7 (Eikonal functions) Given a space-time (I X R?, g) of the form (2.2)
satisfying Definition 2.4, define three eikonal functions uy, k = 1, 2, 3 corresponding
to the three impulsive waves, as the unique solutions to

(g™ oyudpuy =0, 2.21)
(ur)x, = ar + cjx’, (2.22)

which satisfies eguy > 0. Here, ax, cxj € R are constants obeying the following three
conditions
Jei +eh =1, (2.23)

lck1 - cx1 + cx2 - crr2| = Ko, (224)
| —cr2 - cpr +ckr - ezl =1 —ekr - cpn + cra - cr2| = Ko,

for some fixed constant kg € (0, %) and for every k # k" € {1, 2, 3}.

Definition 2.8 (Sets associated with the eikonal functions) Let uy (k = 1, 2, 3) satis-
fying (2.21) and (2.22) in (I x R?, g) be given.

1. For all w € R, define

Cr=1{t.x):wm@.x)=w), ct =[]Jck. c&, =]ck.
Up=w Up=w
(2.25)
2. Forall wi, wy € R, wy € R, define

Sfwiwy) = ) - (2.26)

Wi SUp=wy

3. Define (what we will later understand as) “the singular zone” for aki forany §p > 0

S5, = SK(=80,80) = U ck . (2.27)

—380=<ur<do

Definition 2.9 (Definition of the null frame)

1. Define the null vector L§“” associated to the eikonal function uy by

L = —(g7 Y dguy - d,. (2.28)
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2. Define Ly to be the vector field parallel to L;“’ which satisfies Lyt = N1, i.e.

geo

Ly=px- Ly, px=(N- Lieol)_l~

(2.29)

3. Define the vector field Xy to be the unique vector tangential to X, which is every-
where orthogonal (with respect to g) to C’Lfk N X; and such that g(Xy, L) = —1.

4. Define Ej to be the unique vector field which is tangent to C’u‘k N X, satisfies

g(Ek, Er) = 1 and such that (X, Ey) has the same orientation as (91, 92).

Lemma 2.10 /25, Lemma 2.11]

1. wa is null and geodesic, i.e.
g(LE LE) =0, VLieoLlfw =0.
2. The following holds:
Liug = Exug =0, Ext = Xet =0, Lt =N"', Xpue = ;"
3. The normal n can be expressed in terms of X and Ly, as:
n=L;+ Xy.
4. The triplet (Xi, Ex, Li) forms a null frame, i.e. it satisfies

g(Li Xi) = =1, g(Ex. L) = g(Ex. Xi) = g(Li. Li) = 0.
g(Er, Ex) = g( Xk, Xp) = 1.

5. g~ ! can be given in terms of the (Xy, Ex, Ly) frame by
¢l =—Li®Ly — Ly ® Xx — X ® Ly + Ex ® Ey.
2.3 Ricci coefficients with respect to the {X,, E;, L,} frame

We now define some Ricci coefficients in terms of the frame { Xy, E, Li}:

Xk = &(Vg Lk, Ex) = —g(VE Ex, Ly),
e = &(Vx, Lk, Ex) = —g(Vx, Ek, Ly).

(2.30)

2.31)

(2.32)

(2.33)

(2.34)

(2.35)
(2.36)

All the other Ricci coefficients can, in fact, be determined from xj, n; and contractions

of K.
Lemma 2.11 [25, Lemma 2.19] The following identities hold:

Ve Lk = xx - Ex — K(Eg, Xi) Ly,
Vi Er = (Exlog(N) — K(Eg, Xy)) - L,
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[Ex. Lkl = xx - Ex — Exlog(N) - Ly. (2.39)
Vi Xk = K(Eg, X)X
+ (K (Ex, Ex) — xx) - Ex + K(Eg, Xi) L, (2.40)
Vx, Ex = mi Xk + K(Eg, Xi) Ly, (2.41)
[Ex, Xr] = (K(Ek, X)) —ni) - Xk
+ (K (Ex, Ex) — xk) - Ex, (2.42)

Vi Xk = (—K(Eg, X)) + Exlog N) - E
—(K Xk, Xr) — Xilog(N)) - Xg — (K(Xi, Xg) — X log(N)) - L, (2.43)
Vx Lk =k - Ex — K(X, X) - Lg, (2.44)
[Li, Xi] = —(K(Ek, Xx) — Exlog N +ni) - Eg
— (K(Xk, Xi) — Xglog(N)) - X + Xy log(N) - Lg, (2.45)

Ve Ex = xk - Xi + K(Ex, Ei) - Ly, (2.46)
Vx, X = K(Xk, Xi) - X + (K(Ex, Xx) — i) - Ek

+ K(Xk, Xp) - Ly, (2.47)
Vi L = (K(Xg, Xi) — X log(N)) - Lg. (2.43)

2.4 Geometric coordinate systems (uy, O, t;) and (uy, uy)
2.4.1 Spacetime coordinate system (uy, O, tx)

We now introduce the coordinate 6 such that (uy, 6, ) is aregular coordinate system
on I x R2.

Definition 2.12 1. Given uy satisfying (2.21)—(2.22), and fixing some constants by,
define 0y by

L6 =0, (2.49)
O)150 = bi + gy, (2.50)
where ckl1 = —¢yp and ckl2 = cy1, and cy; are the constants in (2.22).

2. Lett =1t.

3. Denote by (9, , 94, , 9, ) the coordinate vector fields in the (uy, 6, tx) coordinate
system. (Note that we continue to use 9; to denote the coordinate derivative in the
(x!, x2, 1) coordinate system of Sect.2.1.)

Lemma 2.13 [25, Lemma 2.13] Defining &) = (Ex0)~ " and By = X6k, we have

1 _ _ -
Ly = N'a’k’ Ex=0."8, Xi=p;" 8 + Ex-dg,. (2.51)

@ Springer



10 Page280f137 J. Luk, M. Van de Moortel

Lemma 2.14 [25, (2.46)] The metric g in the (tx, uy, 6x) coordinate system is given
by

g =OFdO} — 2uiN diy duy, — 20 ExOF dug dby + i (1 + EZOF) du?.
(2.52)

2.4.2 Spatial coordinate system (uy, uy/) on Z;

Fix k, k' € {1, 2, 3} with k # k. Introduce the spatial coordinate system (u, ug’). So
as to distinguish it from other coordinate derivatives, we define the coordinate vector
fields on X; in the (uy, uyr) coordinate system by (., #.,,)-

We now express (@, #u,,) in terms of (Xj, Ey) in the following lemma:

Lemma 2.15 [25, Lemma 2.18] The vector fields X and Ey can be expressed in the
(ug, uy’) coordinate system as follows:

Xe =g By + 11" - 8 (X, Xi) - By (2.53)
Ex = g - §(Ex, X) - uy- (2.54)

The above transformation can be inverted to give

Buy = 1w - g(Ex, Xi) ' Ex, (2.55)
wi - 8( Xk, Xir)
Bu, = Xy — ———= - E. (2.56)
“* g(Ex, Xp)

2.5 Transformations between different vector field bases and different coordinate
systems

2.5.1 Relations on Z; between (Xj, Ex) and the elliptic coordinate vector fields
(81, 02)

Recall that we fixed the orientation of (X, E}) to be the same as (91, d»).

Lemma 2.16 [25, Lemma 2.16] We have the following identity between E,’c and X,’(
El =X}, E;=X]. (2.57)

Moreover, the coordinate vector fields (1, d2) can be expressed in terms of (E, Xi)
as:

3 = e - (-X,% CEp + E?- Xk> , (2.58)

8 = ¥ - (X,i Ex—E}- Xk) . (2.59)
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2.5.2 Elliptic coordinate derivatives of (uy, Oy, tx)

Recall that #; = ¢ so by definition of the elliptic gauge, 9;7; = 0 and 9,7, = 1. Now we
are going to compute the non-trivial coefficients of the Jacobian between the elliptic
coordinate system (x!, x2, ¢) and the geometric coordinate system (u, Ok, tx).

Lemma 2.17 [25, Lemma 2.17] We have the following identities:

Qg = & 8 XY, (2.60)
dup = B19ux + N - ' (2.61)
00 =¥ 8y - (07 B + 8 x[). (2.62)

00k = P00k + N - B =¥ - B+ (07 Bl + B X[) + N - B 263)
Moreover, for all vector field Y in the tangent space of X; we have

Yup = u; " - g(Y, Xp). (2.64)

3 Function spaces and norms

This section is devoted to the definition of all the function spaces and norms that are
used throughout the remainder of the paper.

3.1 Pointwise norms

Definition 3.1 Define the following pointwise norms in the coordinate system
(¢, x', x?) associated to the elliptic gauge (see Sect.2.1):

1. Given a scalar function f, define
2 2
D fI12 =D @ )7 1af17 =D (@p.)%
i=1 =0

2. Given a higher order tensor field, define its norm and the norms of its derivatives
componentwise, e.g.

2 2 2
1BI7 =Y 1B (0B = ) 10iB/1% KT =) Kyl
i=1

ij=1 ij=1

2 2
0K % := Z Z 19sKij|* etc.

B=0i,j=1
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3. Higher derivatives are defined analogously, e.g.

2
07 F1P = Y 03, )7 100:KI7:= Y 190 Kl*, etc.
B,0=0 =0,1,2
i,jl=1,2

3.2 Lebesgue and Sobolev spaces on Z;

Unless otherwise stated, all Lebesgue spaces are defined with respect to the measure
dx"' dx? (which is in general different from the volume form induced by g).
Before we define the norms, we define the following weight function.

Definition 3.2 (Japanese brackets) Define (x) := /1 + |x|? for x € R? and (s) :=
1+ s2fors e R.

Definition 3.3 (C* and Hélder norms) For k € NU {0} and s € (0, 1), define C¥(X,)
to be the space of continuously spatially k-differentiable functions with respect to
elliptic gauge coordinate vector fields d, with norm

I flleks, = Y supldf £,

1Bl<k =1

and define C**(%,) € Ck(Z,) with spatial Holder norm defined with respect to the
elliptic gauge coordinates as

B B
198 f(x) — 3% £ ()]
I fllckscs,y = I fllckes,) + sup - ~ :
X, yEX, \Bl=k lx — yl
x#y

In the later parts of the paper, we will need to consider Holder spaces in both the
(x', x2) coordinates and the (uy, uy) coordinates. When we need to emphasize the
distinction, we will use the notation C%° ,(%,) = C%°(%,) and C2:%, ,(%,).

x! x2 kU

Definition 3.4 (Standard Lebesgue and Sobolev norms)
1. Fork e NU{0} and p € [1, +00), define the (unweighted) Sobolev norms

1
|a£f|f’<z,x‘,x2>dxldx2>p ,

I f lwer (s, = Z (

Bl<k i

For k € N U {0}, define

I lwoes,y = D esssup [of £1(r.x", x?).
|Bl<k (. x2)ex;

2. Define L?(%;) := WOP(Z,) and HX(Z,) := Wk2(%)).
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Definition 3.5 (Fractional Sobolev norms) For s € R\ (N U {0}), define H*(%;) by

I f sz = I{Dx)* fllL2s,)-

where (D, )* is defined via the (spatial) Fourier transform F (in the x coordinates) by
FUDx)' f) == (§)'F.

Definition 3.6 (Weighted norms)

1. Fork e NU{0}, p € [1, +00) and r € R, define the weighted Sobolev norms by

ey = ()

1
)P BB £1P (1, X1, x2) dx! dx2) "
|Bl<k !

with obvious modifications for p = oo.
2. Define also LY (%,) := W7 (%,) and HK(Z)) = W¥52(%,). Moreover, define
Cf(El) as the closure of Schwartz functions under the L°(%;) norm.

Definition 3.7 (Mixed norms) We will use mixed Sobolev norms, mostly in the
(u, Ok, tx) coordinates in spacetime or the (uy, uy’) coordinates on X,. Our convention
is that the norm on the right is taken first. For instance,

1

2
1fll2 roecs) = (/ (sup f(z, u, ”k’))zduk’) ,
u

Uik v ER ureR
and analogously for other combinations.

Definition 3.8 (Norms for derivatives) We combine the notations in Definition 3.1
with those in Definitions 3.4-3.7. For instance, given a scalar function f,

1

2
10 £l 2, = fzzmﬁfﬁdxldxz ,

1 B=0
and similarly for ||0x f1l2(x,), 100x f [l 2(5,) ete.
3.3 The Littlewood-Paley projection and Besov spaces in (uy, u,) coordinates

Assume for this subsection that k # k’, so that (uy, uy) forms a coordinate system on
.

Definition 3.9 (Littlewood—Paley projection) Define the Fourier transform in the
(ug, up) coordinates by

(FH f) e &) = / /R £ g, w2 OETED du duy.
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1 for|é| <1

Let ¢ : R?2 — [0, 1] be radial, smooth such that =
® [0, 1] @) 0 forlt| > 2

&1 = V18 I* + 15112

Define P(;lk’u"' by

, where

U, Uyr

PO f = (f‘uk,uk/)fl((p(s)fuk,ul\,/ f),
and for ¢ > 1, define P;*"*" f by
Py f = ()TN (0(279) = (9T FU £(§),

Definition 3.10 (The Besov space BZS,’?”) Define the Besov norm B-‘ ¥ (£,) by

00,1

Uk Uyt
1l g s, o= D IR Fllies,-
> q=0

3.4 Lebesgue norms on Cﬁk and 2, N Cﬁk

Recall the definition of C ,’jk from Definition 2.8. The L? norm on C lu‘k is defined with
respect to the measure d6 dty.

Definition 3.11 (L? normon C} ) For every fixed uy, define the L*(C} ([0, T))) norm
by

1
T 2
”f”Lz(C,I;k([O,T))) = (/0 /R|f|2(uk1 9](7 tk) d@k dlk) .

The L2 norm ¥, N C ,’j . is defined with respect to the measure d6j.

Definition 3.12 (L2 norm on £, N C’u‘k) For every fixed ¢ and uj (and recall t = #;),
define the L(%k =N C’ij) norm by

1

2
12 mnck ) = (/ |f|2<uk,ek,rk)dek> :
k Uk R

4 Main results
4.1 Data assumptions for §-impulsive waves
Recall that in our companion paper [25], we defined what it means for (¢, ¢', v, K) to

be an admissible initial data set featuring three §-impulsive waves with parameters
(e,s',s”, R, ko, 8) ([25], Definition 4.8) for parameters in the ranges § > 0, € > 0,
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0<s" <5 < %,O <s' =5 < %,R > 10 and kg > 0. Here, ¢, y and K are the
initial data for these quantities, while ¢’ will be the initial data of 77¢p (where 7 is as in
(2.3)).

In particular, we recall that this definition requires that there exists ¢y, o, e bk, d),/{
(k = 1,2,3) such that supp(¢yeg), SUPP($/,,), supp(er), supp(d;) < B(0, §) :=
(' %) € o, V(x)2 + (%)% < £} and supp($r)Usupp(¢y) < {ux = —8} (where
uy solves the equation (2.21), (2.22) with parameters obeying the conditions (2.23),
(2.24) for k = 1, 2, 3) and moreover that the following (in)equations be satisfied on
2o:

3 3
d=reg+ Y b O =Pt Y B @.1)
k=1 k=1
||¢reg ”Hz'”/(Zo) + ”(b;eg I H+ (Z0) <€, 4.2)
1k llwroe sy + 1Bkl 145 5y + 1Bk lLo(zg) + 1Bkl o5y < € (430)
NEx@kl s () + VERBL o 5) + 16 = XaGall grosr 5y < € (4.3b)

1 1125y + 160l a1 )
- - ~ ~ _1
+ | Exrll g2 sy + 1 Exdpll gz + 10r — Xebrllpazy) < €-872,  (4.4)
1Bk 2 s\ st (—5.0) + 1Dk 1 (50055 (=5.0y) < €- 3)

In the sequel, we shall always consider solutions of the system of equations con-
stituted of (4.1), and

Ricy,(g) = 20,90,9, (4.6)

et = Tedp = g3 = Dgpreg = O, (4.7)

with data on X given by an admissible initial data set featuring three §-impulsive
waves (¢, ¢, vy, K) with parameters (¢, s, s”, R, kg, 8) in the above ranges and
assuming 0 < € < €, 0 < § < §p with 0 < §p < € sufficiently small.
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4.2 Bootstrap assumptions

We will only state the bootstrap assumptions for wave part of the solution. In Part
I of our series, we also had bootstrap assumptions for geometric quantities (metric
components, Ricci coefficients, etc.), but we then improved all of those assumptions
in [25]. In other words, the results in [25] can be rephrased as saying that the bounds for
the geometric quantities can be proven under the bootstrap assumptions (4.8)—(4.12c)
for the wave part. (The more precise statements from [25] will be recalled below in
Propositions 5.2, 5.3 and 5.5 and Lemmas 5.4, 5.6, 5.7.)

In our main estimates (see theorems in Sect.4.3 below, we will work under the
following bootstrap assumptions, where the solution is assumed to remain regular in
[0, T) for some Ty € (0, 1).

Energy estimates fore, ..

w

sup (”‘preg”Hs/(Et) + ”ad)reg”Hs/(E’) + ”32¢r€g”1_1s’(21)) = €t (4.8)
0<t<Tp
Energy estimates for 51(.
~ ~ 3
sup (10l 2y + ), 1Zkddell s, < €, (4.92)
0=t<Tp Zre{Lg, E}
~ 3 1
sup [19°ll 2z, < €7 - 872, (4.9b)
0<t<Tp
1~ 3
sup [|(Dy)* Orllp2s,) < €4, (4.9¢)
0<t<Tp
~ 3 1
sup [0 ExdxPillp2(x,) < €% -8 2. (4.9d)
0<t<Tpg
Improved energy estimates for $k.
~ ~ 3.1
sup (196kl 2mnsty + D 12Kkl pagmnst,) < €7 282, (410a)
O<t<Ts Zye{Ly, Ex)
~ 3
sup 192Gkl 2, 5ty < €7 (4.10b)
0<t<Tp
Flux estimates for the wave variables.
3
max sup Z (||Zk3x¢reg||L2(C5k([o,TB))) + ||Zk¢reg||L2(c5k([o,TB)))) =< €4,
UER 7 e(Ly, Ex)
(4.11a)

~ ~ 3
I’]l;l%?( sup Z (||Zk/8x¢k||L2(CLI§/,([O,T3))\S§) + ”Zk/(ﬁk”LZ(C{f/,([O,TB)))) =< €4,
R 7Ly, By k k

(4.11b)
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3
max sup (”Lka ¢k||L2(Ck (10,Tp))) + ||Ek¢k||L2(Ck (o, TB)))) < €4, (41 IC)
ukER
Zu oy < €i.§2 4.11d
I?%XMSHEPR Z | Zi x¢k”L2(C,I4(l;,([0»TB))) = € . 4. )
K Zk/E{Lk/, Ek’}
Besov and L° estimates for the wave variables.
3
su max u u/ < €%, 4.12a
0<t<pTB (k.K')kAK 190recll priv ) < (4-122)
3
su max 0 Uty < €4, 4.12b
Lo max 10l ez < (4.12b)
3
sup  ([[0¢regllLoe(s,) + max ||3¢k||L°<>(E,)) < €4. (4.12¢)
0<t<Tp

4.3 Main wave estimates

The following are the main results for this paper. They are stated and assumed in Part |
in order to prove the main existence result for §-impulsive waves and impulsive waves.

4.3.1 The main Lipschitz and improved Holder bounds

Definition 4.1 Define £(¢) to be the following norm,

EW) = 13(Dx)* Bl 25, + IEcdPkll 125, + 19 Ek (D2 Gell 2,
+ 82 (10%ull 2z + 10 Ecddell 2 s
+ 87210k 25, s+ 0 NP 25,0,
+10%Bk 25,58 + 107 (D) Bregll 2z,

The following is the main result for obtaining Lipschitz and improved Holder

bounds. It is stated in our previous paper [25] as [25, Theorem 7.3], and will be proven
in this paper.
Theorem 4.2 Let (¢, ¢', y, K) be an admissible initial data set featuring three §-
impulsive waves with parameters (€, s',s”, R, ko) (as defined in [25, Definition 4.3])
forsome 0 <8 < 83,0 <e<e€,0<s" <5 < %,0<s’—s”< %,R> 10 and
Ko > 0, where 0 < 8o < €g are additionally assumed to be sufficiently small.

Assume the bootstrap assumptions of Sect. 4.2 i.e. (4.8)—(4.12c) hold for some Tp €
(0, 1). Then

LHSs of (4.12a)—(4.12¢) + sup ([[0¢regll o0 + ||3¢k|| L) SE,
0<t<Tpg 2(Z) (E,QCM)

where the implicit constant in < depend only on s', s”, R, Ko.

The proof of Theorem 4.2 will be carried out in Sect. 15.
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4.3.2 Energy estimates

The following is the main wave energy estimates stated as [25, Theorem 7.4], which
we will prove in this paper.

Theorem 4.3 Let (¢, ¢', y, K) be an admissible initial data set featuring three §-
impulsive waves with parameters (€, s, s”, R, ko) (as defined in [25, Definition 4.3])
forsome 0 <8 <8),0<e<ep,0<s”" <s < %,0<s’—s”< %,R> 10 and
Ko > 0, where O < 8o < €g are additionally assumed to be sufficiently small.

Assume the bootstrap assumptions of Sect.4.2 i.e. (4.8)— (4.12c) hold for some
Tp € (0, 1). Then

1. there exists C = C(s’,s”, R, ko) > 0 such that (4.8)— (4.11d) hold with Ce in

place of € %,
2. the following estimate involving the norm & is satisfied:

E<e,

where the implicit constant in < depend only on s’, s”, R, ko.
3. The following wave energy estimates are satisfied:

”¢reg||H2+:’(Et) + ||3t¢reg||H1+s’(Et) S, €, (4.13a)
”(pk”Hlﬂ’(zt) + ||8I¢k||Hx’(2t) ,S €, (4.13b)
||Lk¢k”H1+S,(E,) + ||Ek¢k||H1+s’(zt) + ||81Lk¢k”HS’(2t) + ||81Ek¢k”HS’(Et) 5 €.
(4.13¢)
e 2 3 _1
107Gkl 25,y + > VY Gl o,y Se- 872, (4.14)
vy v @ v elXy, Ex, Li)
30,7 # Xy
> 1 -
I6ll 3z + 1Bl p2sy S €872 + 1l pssy) + 17PN m2(sy)» (4.15)
)~
10~k ||L2(Z,\S§) 5 €, (416)

where, as before, the implicit constant in < depend only on s, s, R, K.

The proof of Theorem 4.3 will occupy most of this paper. The conclusion of the
proof can be found in Sect. 14.

In view of the parameters that the implicit constants are allowed to depend on in
Theorem 4.2 and Theorem 4.3, from now on, constants C > 0 or implicit constants
in < are allowed to depend only on s', s”, R, k9. We will also often take ¢y and &y
to be sufficiently small without further comments.
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5 Estimates from part |

In this section, we will assume that (¢, ¢’, v, K) constitute an admissible initial data
set featuring three impulsive waves with parameters (¢, s’, s”, R, kg, §) (recall

Sect.4.1) for parameters in the ranges 0 < § < 89, 0 < € < €9, 0 < s” <’ < %

0<s' —s5" < %, R > 10 and kg > 0, with 0 < 8y < ¢q sufficiently small. Moreover,
we will assume that the bootstrap assumptions of Sect.4.2 i.e. (4.8)—(4.12c) hold for
some T € (0, 1).

We recall the following results follow from [25, Theorem 7.1] and its proof.

Lemma 5.1 [25, Lemma 8.1] The following holds on %; for all t € [0, Tp) and for
k=1,2,3:

1. supp(¢yeg). supp(ér) S B(0. R),
2. supp(¢)  {(t. x) : ug(t, x) = —8}.

Next, we collect some estimates for the metric components in the elliptic gauge
proven in [25]. The first three statements are directly9 from [25], while the fourth
statement can be easily derived from the first three.

Proposition 5.2 1. Defining « = 0.01, the metric component quantities
gefe? —1, e —1, B/, N—1, N7' =1, gug —myp, (g7 —m"P)

(where m is the Minkowski metric) satisfy the following estimates:

3
sup (llglly2oo (s + 108l 2 + 188l 2 )Se2. (5.0
0<t<Tg -« w5 o (Z0)

—S/+X”—

2. [25, Proposition 9.21] Taking g as in the previous part,

571, (5.2)

LS

2
sup [[09y9ll L2, Se
0<t<Tpg

3. [25, Propositions 9.8, 9.20] Let w be a cutoff such that w = 1 on B(0, 2R) and
@ =0onR%\ B(0,3R). Then for g as above,

o o 3
sup  [{Dx)* 379l 12(x,) + (D) (@ (@00l 12, S €2 (5.3)

0<t<Tpg

3
9 Strictly speaking, to obtain the inequality || (D )S/ (@ (3x0r gl 2 =) < €2 requires using Theorem 12.5
in addition to [25, Propositions 9.20]; we omit the straightforward details.
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4. DefineT* = (g~ 1P F)‘ , where F)‘ are the Christoffel symbols. Then the follow-
ing estimates hold:

[N}

sup (T Iz =)+ I L2, ) Sez,
0<r<Tp w SVﬂj/ (=)

sup ||8 F “LZ(EtQB(O 3R)) ~ < 625 2 (54)
0<t<Tp

1l

sup  [(Dx)* (@ T M)l 2(x,) S €
0<t<Tpg

Proposition 5.3 [25, Lemma 8.2, Lemma 8.4, Proposition 10.5] The following esti-
mates hold for Lﬂ, E,’{ and X,’(

sup (||L Lo (z) + ||Ek||L°°€(>:,) + ||Xk||L°°€(E,)) S, (5.5)
0<t<Tp

sup (||3sz||L°°4 =)+ ||3th||L<1><>4 =)+ ||3xL e, =)

0<t<Tp
+||8Xk||Lf°4 =)+ ||8Ek||L(l’°4u():,)) €3, (5.6)
OSStliPTB(II8 Ejll 12508038y + 102 XE 12(2,080.3R))
F100: Lyl 2(5,nB0.3R)) S . ()

Lemma 5.4 [25, Lemma 8.3, Lemma 10.4] For any sufficiently regular function f,
and for all (x,t) € R2 x [0, Tp):

10; f1Cx, 1) S (0 (EfICx, 1) + | X fl(x, 1)), (5-8)
10 f1Ce, ) S () Lk f1(x, 1) + [0x f1(x, 1)), (5.9)
00 F106, 1) S 0 (Lef1(x, 1) + 1 Xi flGe, 0) + (07 Ee fl(x, 1), (5.10)

and for second derivatives, the following estimates hold

100x fll .2(s,nB(0,3R))

S Z Z 1Y Zk fll2csnB0,3R)) T+ 10x fll22¢5,nB(0,3R)), (5-1D)
Yi€{L, Xk, Ex} Zxe{ Xk, Ex}

2
197 fllL2(z,nB(0.3R))

S Z 1Y Zi fl .2(s,nB0,3R)) T 19 I 22(5,nB(0,3R))- (5.12)
Yi,Zye{Li, Xk, Ex}

Proposition 5.5 [25, Propositions 9.22, 10.1, 10.2, 10.3] The following estimates hold:

) S €, (5.13)
(1)

sup (1Kl (z) + 10:KllLge (s + 10Kl

0<t<Tp

7
2 s +x”+a
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sup (Ixellzse, (s + Imilleee s + Lixillioe s + ILimeline (s) S €2,

0<t<Tpg

I

(5.14)
3

su B + ||E < €2, 5.15

O§t<TBI,)ukE]R(” XXk”Lék(EmCﬁk) I k77k||L5k(2[nc/L;k)) ~ ( )
sup (|1 Lk0x Xkl L2(s,nB(0.R))
0<t<Tp
2 < .3

+ 1Lk Exnell 2,080, R)) T Z ILikkll2(s,nBo.R)) S €25 (5.16)

Kk €{ X Mic}

3
sup (I110g stk — Yasympe (XD log [x 11205,y + lociellzge, 5) S €2, (5.17)

0<t<Tpg

sup (|| log(O)

0<t<Tp
_ 3
~ Vasympo (XD T0g x5, 5 + 140) B0 Oull 2 (5,001, ) S €30 (.18

where Yasymp € [0, Ce) is a constant defined by lim|y| %; see [25, Definition
4.2].

The following lemma gives estimates on various changes of variables:

Lemmab5.6 1. [25, Corollary 8.6] For any k # k', the map ! X3 > (ug, uy)isa
C-diffeomorphism on T, with entry-wise pointwise estimates independent of 8:

10;ui], |0iup| S 1, (5.19)
duy duj
1§|det[g;;k‘ g;;]| <. (5.20)
ax2 9x2

2. [25, Proposition 8.7] Forany k = 1,2, 3,
02kl S €. (5.21)
3. [25, (2.11), (2.47), (7.2a), (7.2b), (7.3d), (7.3e)] The Jacobian determinant Jy

corresponding to the transformation (x', x2) — (uy, 6y), defined by duy A dby, =
Jidx' A dx?, obeys the following estimate

sup (I1ellzoocz,) + 1 o) S 1. (5.22)

0<t<Tp

Lastly, as a consequence of (2.24) we have the following estimate:

Lemma5.7 [25, (8.13)] For all k # k' we have

Ko
5 = le(Er Xl = 2. (5.23)
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6 An integration by parts lemma

In this section, we prove an integration by parts lemma (Proposition 6.2) which will
later be useful to control the energy (see Corollary 7.5).

The main purpose of the estimate in Proposition 6.2 will be to handle inhomoge-
neous terms in wave equations which can be written as an e( derivative. In other words
suppose L,v = f1 + h - eg fo, we want to get rid of the time derivative eg f> and to
replace it by dy f> using the wave equation (2.12) (see the first term in the right-hand
side of (6.3)).

As a first step towards Proposition 6.2, we first prove a simple lemma:

Lemma 6.1 For any two smooth functions hy, hy which are Schwartz class for every
t € [0, Tg), the following holds for all T € (0, Tp):

hy - eohldxdt—f—/ / hi - eghy dxdt
t Et

)

SUP IRl 22y 12l 2¢s,)- (6.1
te[O

Proof Since eg = 3; — B'9;, an explicit computation gives

T T
/ / eohy - hy dxdt = / (aiﬂl -hy-hy — hy-eohy) dxdt
0 N 0 o

+/ h1~h2dxdt—/ hy-hadxdt.
Xr o

Using the L bound for 3; 8’ in Proposition 5.2, and applying Holder’s inequality, we
obtain the desired estimate. O

The following is the main result of the section.

Proposition 6.2 Let v be a smooth function which is Schwartz on X,. Suppose Ugv =

fi+h-eofo
Assume that h satisfies the bounds

1(x) Rl (s, + 1{x) " *0h| L=z, S 1. (6.2)
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Then, the following estimate holds for allr > 1 and all T € [0, Tp):

T
|/ /(x)_zr(ng)(eov)ezydxdtl
0 x;

< sup )90 2 1) T2 fall 2
1€[0,T)
. 6.3)
+ [0 Al + 1007 Al dt
T r
[ 0007 00205 - (10607 Az + 10078 flliagsy + 100750 ol ) .
Proof We first write
T
/ /(x)_zr(ljgv)(eov)ezydxdt
0 X
T T
- / / (xX)7 fi(eov)e® dxdt + f / (x)"2 h(eo f2)(eov)e* dxdt
(6.4)

/ / =2 fi(egv)e?” dxdt — / / ~F h(eo(x)") frlegv)e? dxdt
% P

[ / hleo((x)™% f2))(eov)e® dxd.
P

The first term in (6.4) can be easily controlled as follows, using the Cauchy—Schwarz
inequality and the fact that 7 < Tp < 1:

’foT f);, ()7 f1 - (eov)e* dxdt| SUPg<;<T ||(x>7%f1||L2(E,) -l (X>7(r+2a)3v||L2(>:,),
(6.5)

where we have bounded ||(x)_%+2°‘e2y||Loo(z[) < land ||<)C)_%+2a,3j62y||L00(2t) <
1 using (5.1). )

For the second term in (6.4), notice that eo(x)"? = %ﬁixi(x)’%’z. Hence, by
Holder’s inequality, Proposition 5.2 and (6.2), we get

T .
[ [ o E ot s pene dxar
0 >
T
< /0 1) "Rl ooz, - 1) 72 fall2syy - 1)~ CT2900] 125,y dt (6.6

T
< / 1) 72 fall 2,y - 1) ™T2080] 125, dt.
0
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For the third term in (6.4), we integrate by parts. Using Lemma 6.1 with 7 =
(x)_%rh(eov)ez’”, hy = (x)_% J2, and then using Holder’s inequality, Proposition 5.2
and (6.2), we obtain

T
]/ f2< - Teo ()5 f)leqv)e diedi|
13
/ [ =Rl oo () + 1) 2 om)l oo (5] - 100) ™2 fall 2,y - 1) ™02 equll 2y di

_3r _r
+| / / 7 fo(efure® dxdr]+ sup 1067 T hleou)e 25, 16072 foll 25,
tel0,T)

sfo 1672 fall 2z, - ) “>aan2(z)dr+]f fE 2 h- fa(ue ddi]
t
+sup 1) T2 00) 05 10072 fall 2,

tel0,T)

6.7)

Now, we use (2.12) to write e3v = —N2yv + e 2" N2§%/ Bizjv +eglog(N) - egv +
e_ZVN(SijBiNajv so that

T
f f<x>—2’-e2V-h.f2-(e§v)dxdt
0o Jx,

1 11

T T
—f / ()72 ~h»f2~N2~(\:|gv)dxdt+/ / @) b fo N2 (U0} vydxdr  (6.8)
0 Jx, (U

T T B
+f / (x)7% . e <h~f2<e010g(N)-(eov)dxdt+/ / ) he fo-N-(8Y8;Nojvydxd .
% 0 P

111 1v

We start with the easiest terms /// and /V: an immediate application of the
Cauchy—Schwarz inequality, Proposition 5.2 and (6.2) yields:

T
3 _r —(r
|111|+|1V|562/ 1) foll 2,y - 1) 2900 25,y dE. (6.9)
0

For 11 in (6.8), we integrate by parts in 9;, and then use Holder’s inequality, (6.2)
and (5.1) to obtain

T
1< / 1) 240, ((x) " RfaND Il 205 1) "2 0,0]1 25, dit
0 (6.10)

/ U4x) "2 foll oy + 100728 oll 2z DI ™20 000 1o, .

We now turn to the main term / in (6.8). We write again Ll,v = f1 +h - eg f2. The
term involving f] can be estimated directly using Holder’s inequality, (6.2) and Propo-
sition 5.2. For the term involving ep( f22), we integrate by parts again with Lemma 6.1,
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and then bound the resulting terms using Holder’s inequality, (6.2) and (5.1). (The
weights functions involved in the integration by parts argument can be treated as in
(6.6)). We thus obtain

T
|I|§/0 1)~ 2 fill L2,
. T
~||<x>‘7fz||Lz<z,)dt+(/ /<x)—2’e2V.hz-eo(ff).dexdz (6.11)
0 o

T
5/0 (1) 72 fill3a g, + 16072 f2ll7a g, ) di-

Plugging (6.9)—(6.11) into (6.7) and (6.8) gives the desired bounds for the third term
in (6.4). Combining this with (6.5) and (6.6) yields the conclusion of the proposition.
O

7 Basic energy estimates and commutator estimates

In this section, we prove some basic energy estimates which will be repeatedly used
in the later part of the paper.

7.1 Stress-energy-momentum tensor and deformation tensor

Lemma7.1 [. Defining T, ,[v] = d,vd,v — %gw(gfl)”ﬂagvf)ﬁv, and suppose 1
and (X, Ex, Ly) are as in (2.3) and Definition 2.9. Then fork = 1,2, 3,

T[], 7)) = % . ((ﬁv)z + (X2 + (Ekv)2> - % ((ﬁv)2 + e—zV(axv)z) GAY

T[] (7, ;) = (iv)(dv), T@)(@;.d;) = (3;v)(d;v) — %am—e%fwﬂ + (8xv)?),
(7.2)

1
((Le)? + E)?). (1.3)

T]l(Lg,n) = 3

2. Tyylv] satisfies
(7" VoTywlv] = Dgv - 0.

3. Defining in addition "7 (Zy. Z2) = 5 (§(Vz,i1. Z2) + §(Vz,ii, Z1)), we have

Tlv], P = —e~2 5% (5iv) (3;v) (3 log N)
i 1 ~ (7.4)
+ eSS K 1 [(0,0)(9jv) = 581 (= () + Bxv)))].

Proof Parts 1 and 2 are explicit computations.
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We turn to 3. By Lemma 2.6, V;7i = e~27 §Y (3; log N)d;. Hence, using also (2.6),
we have

- Lo - R 1 -
D@, n) =0, Dr@,d) = 5-a,- logN, ™ (d;,9;) = Kij. (7.5)

We compute using (2.9) that

T[v],uv(ﬁ)ﬂ/w
= T[]Gi, 1) P G, 7t) (7.6)
— 2e7 2§ Tw](7, 0) P (7, 0y) + e~ 87879 T w1 (8;, ;)P (3, 8,),

which implies the desired conclusion after plugging in (7.1), (7.2) and (7.5). O
7.2 Volume forms
Lemma 7.2 [25, Lemma 2.14] The spacetime volume form induced by g is given by
dvol = N - ¢* dx' Adx’Adt = px - N - Ordix Aduy A dby.
The volume form on L, induced by g is given by
dvoly, = e dx' Adx? = ,u%@,g dug N dbg. (7.7)
Let dvolcﬁk be the volume form on C]u‘k such that duy A dvolc, = dvol. Then

deZC:I;k = —ux-N-Ordty NdOy = g - N - OrdOy A diy. (7.8)

7.3 The main energy estimate

In this subsection, we prove two basic energy estimates.

The first estimate (Proposition 7.3) applies only to compactly supported functions
(so that weights can be ignored), and allows for localization in the uj variable. The
second estimate (Proposition 7.4) is a weighted estimate for general (not necessarily
compactly supported) functions which does not allows for ux-localization.'”

The following is the first general energy estimate.

Proposition7.3 Given k € {1,2,3}, any T € [0, Tp) and any —o0 < Uy < U; <
400, define

Dyl =t x) e R x R? 11 € [0, T, ux(t, x) € [Uo, Url}. (7.9)

10" One could combine the two energy estimates to obtain a more general proposition, incorporating both
weights and u-localization. We will not need such a general statement, and therefore only prove the easier
estimates.
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For any'' k' € (1,2, 3}, the following holds for all solutions v to Uev = f, with
supp(v), supp(f) C {(¢, x) : |x| < R}, with a constant depending only on R:

sup v, , .7 |+ sup E | Zpvll 1 Ay ®.T
L2(x,nD L2(CK nDy7”
t€[0,T) (:NPygu,) ”k’ERZk/e{Lk/,Ek/} ( 0% Uo.Uy)
T (7.10)
< |lov Ziv dt.
Sl ”LZ(ZQODS‘O):S )+ E | Zk ||L2(CII;OQD$3:KT]1) +/(; ”f“Lz():t”Dgz’,zT/I)

! Zye{Ly, Ex}

Proof Step 1: The case k' = k By Lemma 7.1 (Point 2) and O,v = f, we have
V', (v) = f0,v. Hence,

VY (T [v]i") = Tlvlw P + f - fiv. (7.11)

Fix T € [0, Tp) and Uy, U; as in the statement of the proposition. For every t €

[0.T]and U € [Up, Uy]. define D7, := {(t.x) € R x R? : 1 € [0, 7), uy(t.x) €

[Ug, U)}. Note that clearly Dgco)z, - Dg(o):gl .

Integrating V" (T, [v]7i*) on the spacetime region Df, ; and using Stokes’ the-
orem, we obtain (for T, = T,,[v])

/ T, 7t) dvols,
=D

Uy, U
_ T(n, n) dvols, +/ TG, (—dug)®) dvol -+ '
- /D(k).r VY (Tuvii) dvol.
Uy, U

Using (—duy)® = /Lk_lLk (by (2.28) and (2.29)), the computations for T in (7.1),
(7.3), the computations for the volume forms in Lemma 7.2, and the computations for
VY (Tyw[v]*) in (7.11) and (7.4), we obtain using (7.12) that

1 N N
7/ . [¢% (iiv)* + (0,v)*]dx' dx2+/ . 2 L) + (Epv)*] diy oy
2 Z,mD},U‘;, C;(JQD;J&;/ 2

=1 =11

- f © [—e*“a”@v)(a,-v)(az log N)] -Ne¥ dx'dx*
e

Ug U

=111

iy particular, k" could be the same as k, and could also be different from k. The same comment applies
to Propositions 8.9, 8.11 and 8.13.

@ Springer



10 Page 46 of 137 J. Luk, M. Van de Moortel

o 1
—/ o [e*“m”wmq[(aiv)(a,-v) - 58,-/-(—621/ (iiv)? + (B,0))] + f-ﬁvi| -Ne¥ dx'dx* dr
Dy

=1V
= 1/ [ezy(ﬁv)z+(8xv)2]dxldx2+/ Ol (Lgv)* + (Epv) 1 dity d6 .
2 Jxonpgy Ch, DY D k2
=V =VI
(7.13)
By Proposition 5.2, Proposition 5.5 and support properties of v,
T+ 112 vl o o) > NZevi, o oy 719

Zre{Li, Ex}

Using Proposition 5.2, Proposition 5.5, the Cauchy—Schwarz inequality and Young’s
inequality, we get that

T
III|+|IV]| <Ce2 v dt+C ) ‘ dt
LI+ 11V € / I HLz(): QDgOZ) /0 I U”LZ(EMD(U/‘S:;/)”f”LZ(E,ﬂD;fg‘fU)
1+C % +C ! d ’
< | = . t .
= |5 +Ce ES[I(;PT] 19 vIILZ(Eng()Z) /0 A1l 2 s, mD(k)r)

(7.15)

Finally, the data terms can be controlled using Proposition 5.2 and Proposition 5.5
applied at t = O:

<
VI+ VIS 1001, 0 o+ D ||ZkU||L2(C oty (416
Yo Zie{L, Ex}

Plugging the estimates (7.14)—(7.16) into (7.13), and taking supremum over all
t € [0, T]and U € [Uy, U], we obtain

sup [|dv]|?
1e[0,T]

1
< (§+Ce3) sup (|92

t€[0,T]

+C Z ”Zkv”LZ(c D)
Zre{Li, Ex}

T
+ C (A ”f”Lz(Etngzg) dt)

Note that while the supremum at first only gives sup,, <[y, v,] for the second term
on the left-hand side of (7.17), we can change this to sup,, cr after noticing that

Ct ND=0ifur € R\ [Uy, Uy].

+sup Y 1 Zwl?

UER 7, elLy, Er)

(k).T

L2(ZND ) L2(Ck ng" 5

7.+ Cllov]?

o) L2(ZnDY )

L2(3, mD“‘)
(7.17)

2
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The first terms on the right-hand side of (7.17) can be absorbed to the left-hand side
for €¢ sufficiently small, giving

sup [|av]|?

+ su Ziv
1€[0,T] LA(Z:NDY 7)) oY Iz ”L2(ck np®-T )

uE€R 7, Ly, Ey) Yot
2

T
: + Z ”ZkU”LZ(C" ﬂD(k) T + (/(; ||f||L2(Zng\3:£) dl) .

Zie{Lk, Ex}

< low? 0.1
L2(ZoNDy;, U

(7.18)

The bound (7.18) gives the control of the first term in (7.10), and of the second term
in (7.10) when k&’ = k.
Step 2: The general case To complete the proof of (7.10), we need to bound the
second term on the left-hand side of (7.10), corresponding to the flux on C ]ij, in the
case k' # k. Fix k' # k and U’ € R, integrate the same quantity V" (T, [v]#*) but
now on D' 1= D"} np*): ol =Dyl N {(t.x) T up (2, x) < U'), and use Stokes’
theorem. We then obtaln an analogue of (7.13), except with D(k) y Teplaced by 7',
and with an additional flux term fck’ D M [(Lpv)? + (Exv)?1dty d6p on the
left-hand side. Y

We now control the bulk terms (i.e. terms corresponding to /77 and IV in (7.13))
in the same manner as in Step 1. Since D’ C D(ko) T we obtain an analogue of (7.18),
but with the control of an addition flux term on the left-hand side:

sup H&vH 2 T sup E HZkUH k + E | Zyrv ” ’
L2(:ND’) L2(ck "D’ 2cK Apr
1€[0.7] uk€R 7. e(Ly, Ex) ( ) Zye(Ly . Ey) LAeynD)
: Z ' 2
< llovll + I1Zvl + / I/ T, dr) .
~ ) (k).T 2(ck 0.7 12(z,nD%:
L2(ZoNPyg ') Zeellr. B} L2(Cy "Dy ) 0 (ENDy )

(7.19)

We now take supremum over all U’ € R. Noting that C¥, N D' = Cy K Dg‘o) Z, we
deduce from (7.19) that

sup D N Zkvll

D(k) )
up €R Zpe{Ly, Ep) “w Yo.U

2

T
Sy, o oyt > ||Zkv|\L2(CA D) +( / ||f||L2(ng>.5)dt> :
Zre{Li, Ex) 0 o

(7.20)

(7.20) thus bounds the second term in (7.10) when k’ # k. Combining this with (7.18)
concludes the proof. O
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Finally, we prove a version of Proposition 7.3 with weights. (Note that the weights
can clearly be improved, but will not be relevant for later applications.)

Proposition 7.4 Let v be a smooth function which is Schwartz for on Z; for all 0 <
t < Tpg.

Then for all r > 1, the following holds for any T € [0, Tp), with a constant
depending only on r:

sup [[(x)" T 209u)2, < ) T 2av)2,

te[0.7) (%) ~ (Z0)

‘ (7.21)

+ sup ‘/ f ()2 (o) (Cgv) €2 dx dr|.

te[0,T) ' JO T
Proof Using the multiplier (x) "7, we have, by (7.4),

V(T ol 0™ = = (x) 7™ 5" Giv) @0)(31 log N)

+ (1) e 8 ST K, [(3;0) (95 v)
(7.22)

1
~ zal-j<—e2V (iv)? + (3,v)?)]

+ ()7 (@) - v+ (87D T[] @ () =2 ik
Using (2.9), it can be computed that

—1yvo —2r —2r{x)" 2 —2ycij _ pinj
(7)1 (00 (x) )8y = ———s—— (B'xith + (N?e ™76 — B8/)x;; ).
which in particular implies, by the metric estimates of Proposition 5.2 and the bound
in Lemma 5.4, that

181" Ty [V]1(3p (x) 27" | < ()72 "1 Gy - (Xgw)? + (Egv)?,

where the implicit constant is allowed to depend on r.

Then we use Proposition 5.2 (specifically e =2 < (x)%, |8, log N| < e(x)~!11<,
K| < e(x)"!and ITwlv]l S (x)2%.13v|?, where the indices p and v are in the coordi-
nate system (¢, x!, x*)) and Lemma 5.4, and repeating the argument of Proposition 7.3
we get, integrating (7.22) on {0 < ¢’ < t}:

/ e (x) T [(1v)? + (Xxv)? 4 (Exv)?1dx'dx?
P

~

N f ¥ (x) 7 [(1v)? + (Xxv)? + (Exv)*ldx'dx?
P}

=:1
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t
+ / f ()2 G2 4 (X0)? + (Egw)?]dx dxdr’

=11

x) " (Ogv) - iiv - Ne? dx'dx?dr'|. (7.23)

=11

We now bound each term on the right-hand side of (7.23).
1. Forterm I, we note that by Proposition 5.2 and Proposition 5.3, €2 (x) =" [(nv)*+
(X0 + (o) £ |05 0] and thus 1 5 0~ 2ov g
2. Forterm /1, since 10a = 0.1 < 1 — «, it can be absorbed to the left-hand side
using Gronwall’s inequality.
3. Finally, we just keep the term /71 as it is (which is allowed on the right-hand side
of (7.21)), since Ni = ey.
Combining the above bounds, it follows that

/ ¥ (x) 7Y [(v)? + (Xpv)? + (Exv)?]dx'dx® < RHS of (7.21).
o
Finally, notice that by (5.8), (5.10) and Proposition 5.2,

1)~ 20017, 5 ) S /2 e (x) " [(11v)* + (Xxv)? + (Exv)*]dx'dx?

t

which therefore gives the desired result. O
Corollary 7.5 Let v be a smooth function which is Schwartz on ¥; forall0 <t < Tp.
Suppose Ugv = f1 + h - eq f2, where fi, f> and h are all smooth and Schwartz on %,
forall0 <t < Tp, and h satisfies (6.2).

Then for all r > 1, the following holds for any T € [0, Tp), with a constant
depending only on r:

sup [ (x) "1, 5

tel0,T)
S ix)” zavuLz(z)Jr sup [1(x) 72 fall7a s,
1€[0,7)
T . 5
+/ (1672 il gy + 10072 ol + 1) 200 ol g, ) .
0

Proof We first apply Proposition 7.4 so that

sup [1(x) " H00)|7, 5 S 1020070y,
tel0,T)

+ sup ‘f/ )" (ev) - (Ogv) ¥ dx dt|.

1€[0,T)
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Controlling the last term by Proposition 6.2, we obtain

sup [[(x) 2903,

1€[0,T) (Z0)

T
S 2000725 +/ ()72 fill 72,y + 1) 72 f2ll7a g, ) di
0

+ sup (1) 090] 205 I1X) T2 fallp2x
t€l0,T)

T
+ /0 1)~ 302

: (n ()72 fill 2z, + 11672 foll 2y + ||<x>—%axfz||u(z,>) dr.

For the terms on the last two lines, we use Young’s inequality and absorb
sup,epo.7) | (x)~ 205y 12(x,) to the left-hand side. For the terms on the last line,
we additionally use the Cauchy—Schwarz inequality in 7, giving the desired inequality.

O

8 Basic estimates for the commutations with the wave operator
8.1 Two auxiliary estimates

To streamline the later exposition in this section, before we even consider the commu-
tations with the wave operator, we first prove in this subsection two auxiliary estimates
in Propositions 8.2 and 8.3. They concern second derivatives of the metric (in the geo-
metric coordinates or in the elliptic gauge coordinates) which are not bounded in
L.

The estimates in this subsection apply either to X; or to a half space in the uy
variable. In the remainder of this subsection, for a fixed k, we will use D to denote
one of the following sets:

D = {(t,x) € [0, Tp) x R? : u(t, x) > Uy},
D ={(t,x) €[0,Tp) x R2: ur(t, x) < U}, (8.1)

where Uy € [—00, 00), Uy € (—0o0, co]. Notice that either ¥, N D = X, (when
Up = —oo or Uy = o0) or ¥; N D is a half-space in ug (when Uy or U] is finite).

Before we proceed to the first auxiliary estimate in Proposition 8.2, we first need
the following simple lemma.

Lemma8.1 Let k # k/, and let D be one of the sets in (8.1). For all f which is
sufficiently regular,

||f||L5kL32,(2,mD) S W las,opy + 1Ecf N2, (5,0D)- (8.2)

16
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Proof First, by the standard 1-dimensional Sobolev embedding,

||f||LgkLgi/(z,mD) SUfllz  gnp) + Wup fllz  (s0D)- (8.3)

Uj ity ujesugr

Finally, by (2.55), (5.17), (5.23) and Lemma 5.6, we obtain (8.2). (Note that we need

a small positive weight, e.g., (x) %, here because there is a - factor in (2.55), which
grows slowly at infinity according to (5.17).) O

Proposition 8.2 Fix k and let D be one of the sets in (8.1). The following holds for any
sufficiently regular f:

3
loexi P2 s,nmy TIEI 2 5,0p) €2 WP 5,0p) H B2 (5,00):
-7 7 -8 -8

(8.4)

Proof By (5.22), we can bound the L2(%,) norm in either the (x!, x2) or the (uy, 6)
coordinates. Denoting & € {01 xk, 92 xx, Exnr}, we first use Holder’s inequality in the
(uk, Bx) coordinate system to obtain

_1 _1
1) ™% A fll2snp) S (Sup 1Al ((z,0mync,,)) - 10T FllLz LeosnD)
ureR k k0% (8 5)

<3 ~%
Se? - |{x) f”L%kLg’f(E,ﬂD)'

Notice now that for a fixed &’ # k, the LﬁkLgf norm is equal to the L2 . L, norm.
Hence, by (8.2),
[I{x) 4f||LgkLg;(>:,mD) S T3 fll2emnpy + 16073 B fll 2 (5,n)
£ 1
+ 1) 16 (Ex (x) ™ %) fll 25,0y (8.6)
1
8

_ _1
S8 fll2s,npy + )" Ex fll 25,y

where we have used |E (x)’£| < (x)’%“ (by Proposition 5.3).
Combining (8.5) and (8.6) then yields (8.4). O

We now turn to our second auxiliary estimate.

Proposition 8.3 Let D be one of the sets in (8.1) for some k. For all smooth function f
which is Schwartz class on %, for all t € [0, Tp), the following estimate holds for all
t €0, Tg), whereg e {e* — 1, e —1, B/, N—1, N~ ! —1, &vB» (g7HvP).

3
109xg - flli2cs,npy S €21 f a1 (s,nD)- 8.7
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Proof We use Holder’s inequality to obtain

100x9 - fllL2z,np) S 1008l a¢x,npy - 1f L4z, nD)-
Since 5" — 5" < %, Proposition 5.2 implies an L* estimate for 89, g. On the other
hand, f can be controlled using the Sobolev embedding H H(R?) — L*R?) or
H! (REL) — L4(Ri). (In the case where X; N D is a half-space in uy, we perform
Sobolev embedding for the half-space in the (ug, uy’) coordinates (for k¥ # k), and
note that the Hxll (20, H!  (Z,) norms, or the Lil,xz(EZ), L% (%,) norms,

Uje Uy Uk, Ut

are equivalent by ’(5. 19)—(5.20)). Hence,

100:8 - Flli2s,0my S €2 1 Ismomy S € 1F s nmy-
O
8.2 Computations of the commutators
8.2.1 The wave operator
Lemma 8.4 For any C? function v:
Ogv = — Liv — 2XxLgv + Efv + 2nc Exv — (X log(N)) Lv — xi Xxv
= — L}v — 2L Xpv + EZv 4 2(Ex 1og(N) — K (Ey, Ex)) Exv (8.8)

+ (X log(N))Likv + (= xk — 2K (Xk, Xi) + 2Xj log(N)) Xiv.
Proof By (2.34), we have
Ogv = —L3v + (Vi Li)v — 2Xg(Lgv) + 2(Vx, Li)v + Efv — (Vg Ep)v.
Hence, by (2.48), (2.44) and (2.46), we get

Ugv = —L%v —2XyLrv + E,%v + 2ni Exv
— (K(Xk, Xr) + K(Ek, Ex) + Xglog(N))Liv — xi Xyv.

Now, by (2.7) and the fact that (Xi, Ex) is a g-orthonormal frame, we have
K (Xk, Xr) + K(Ex, Ex) = 0, proving the first equality of (8.8). The second equality
follows from the first combined with (2.45). O

In the three subsubsections below, we compute the commutator of [1, with 9;, Ej
and Ly respectively. We introduce the following conventions: for each commutator
we divide into three types of terms; see the statements of Lemmas 8.5, 8.6 and 8.7. [
has second derivatives of metric and first derivatives of v; I I has first derivatives of
metric and second derivatives of v; I 11 contains at most one derivative of the metric
or v.
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8.2.2 Commuting the wave operator with 9,
Lemma 8.5 For any c3 functionv andl = 1,2,

[, Og] v =10 () + 110 (W) + TT1(3)(v),

where
) dreq log(N .
1600 = + T Dago %zg() eov + e~ 80 log(N);v, (8.9)
28/3 —2y ¢ija2 —2y ¢ija2
T11(3)(v) = — 29 logN - Ogv + N2 ———epdjv + 29 log Ne 7”8]8 V=207 e V8]8
(8.10)
, BBl
I11(9;)(v) =20;logN - 9; log(N)e_zy(SUij 1,3N2,3 v
N . .
— %alﬁfaju —28)y - e~ 51 ; 1og(N);v. (8.11)

Proof First, from the definition of ey = d; — /9 ;, we get the commutator identity

(3, e0l = — 1 879;.

We now compute the commutator. By (2.12) there are four terms to control.
The first term is

2
- 20;log N 1
[al,ﬁ}v: 2o 15,

20;log N , 1 1

= T@ov - m [8], 60] egv — N2 6’0([81, 60] )
20/10gN ,  §p/ eo(d187) ap’

= TEOU-'-WBJEOU-FTE)]'U-F N 608 v
20/logN , 29/ B’ eo(azﬂf)

= TEOU+W€03]‘U+W[3J,EO]U+ N2 djv
N 72
-2 2
=20 logN(—ng—i—e V(S”E) vt N3 eov—i—T(S”E) NO; v)

20,7 BB eo(dB7)
3 603]’1) — Taqv + Ta]’l},

+

where in the last line we expressed e(z)v in terms of the other derivatives and [, v using
(2.12).
The second term is

[al, e~ i af]] v =20y - 69020,
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The third term is

eoN _ eoN eoN j
3I,F60 v =0( )eov—Fal,B djv

N3
drep log(N) 20;log(N)egp log(N) eoN j
= N2 e — N2 e — WGI,B djv,

and the fourth term is

e727/ .. 872;/ ..
. SUHND; | v =01(——3N)87d;v
N N

= =20y - e 278 3; 1og(N)djv + e 27 8 87 1og(N)djv.

Finally, we regroup according to our convention described above, noticing that the
w‘eov terms cancel in 111(9;). ]

8.2.3 Commuting the wave operator with Ej
Lemma 8.6 For any C3 function v,
[Ex. O] v = 1(EQ) () + THI(E) ) + T (E) (),

where

I(ER)(v) = (—=2Xg xk + 2Exnk — Lixx) - Exv — Egxi - Xpv
+ (LrEx + 22X Ex — ExXy) log(N) - Lgv,
TI(EQ)(v) = 2E; log(N) - L}v 4 2(Ex log(N) + i — K (E. X)) - XeLige | o
—2xk - Xk Exv — 2K (E, Ex) - ExLyv,
TII(ER)(v) = xx - (ke — K(Ek, Xp)) - Xpv
+ Xk - 2xx — Xxlog N — K (Eg, Ex)) - Exv (8.14)
+ Exlog(N) - (Xg log(N) — xx) - Liv.

(8.12)

Proof Step 1: The main computation. From (8.8), we see that

[Ekv Dg] v

= Lx([Lx, Ex]v) + [Lk, Ex]Lrv + 2Xk([Lk, Ex]v) + 2[ Xk, Ex]Likv
+ 2Eknk - Exv — Exxk - Xgv — Xk - [Ex, XiJv
— (X log(N)) - [Ek, Li]v — Ex Xy log(N) - Liv.

(8.15)

We deal with all the terms one by one. For the first commutator, notice using (2.39)
that

Li([Lg, Ex]v) = Exlog(N) - Liv — xi - Li Exv

@ Springer



Nonlinear Interaction of Three Impulsive... Page 550f 137 10

— Lixk - Exv+ Ly Erlog(N) - Lyv, (8.16)
Similarly,
[Li, Ex]Liv = Exlog(N) - Liv — i - ExLyv. (8.17)
Now using (2.39) and (2.42), we obtain

Xi([Lg, Ex]v) = Exlog(N) - XpLgv — xx - XpExv

— Xixk - Exv + X Eglog(N) - Liv, (8.18)
[Xk, Ex]Lgv = (g — K(Eg, Xp)) - XpLyv
+ (e — K(Eg, Ei)) - ExLiv. (8.19)

Step 2: Rewriting some terms We rearrange the term — xi Ly Exv from (8.16), which
we write by (2.39) as

—Xk Lk Exv = —xk ExLgv — xi[Li, Ex]v
= —xk(ExLgv — xx - Exv+ Exlog N - Lyv). (8.20)

Notice that all instances of xi - ExLiv in (8.16) + (8.17) +2 x (8.18) +2 x (8.19)
then cancel.

Finally, we conclude the proof by plugging (8.16)—(8.19) into (8.15), expanding the
remaining terms using Lemma 2.11, and finally substituting in (8.20). Note that we
split into the terms 7, /1 and /11 according to our convention described in Sect. 8.2.1
above. O

8.2.4 Commuting the wave operator with Ly
Lemma 8.7 For any C? function v,
[Li, Og]v = 1L @) + T (L) () + TTT(Lp) (v),

where

I(Lp)(v) = — Lk - Xev+ QLgk — Exxi) - Exv
+ (E,% log(N) — L Xk log(N)) Ly,
IT(Li)(v) =2 (K(Eg, Xi) + i) - ExLiv + 2 (K (Xk, X)) — X log(N)) - XiLgv
—2X; log(N) - Liv — 2y - Efv,

(8.21)

(8.22)
TTT(Lg)(v) = xi - (K(Xk, Xi) — X log(N)) - Xpv
+ Xk - (K(Eg, Xi) — 2E log(N) — ng) - Exv (8.23)
+ 21k - Exlog(N) + (Ex log(N))* — xi - Xk log(N)) - Lyv.

@ Springer



10 Page 56 of 137 J. Luk, M. Van de Moortel

Proof By (8.8), we have

[Lk» Dg] v
A(Ly) B(Ly) C(Ly)
= —=2[Lk, XglLgv + [Lk, Ex]Exv + Er([Lg, Ex]v) +2Lgnk - Exv — L xg - Xgv
—Li Xy log(N)Lgv + 2ni[ Lk, Ex]v — xi[Li, Xi]v.
Dy (L) D> (L)

We treat each term separately. We start with A(Ly) and using (2.45) we obtain

A(Ly) = 2(K(Ek, Xi) — Exlog N + i) - Ex Liv + 2(K (X, Xi)
— X log(N)) - XxLyv — 22X log(N) - L}v.

Now we handle B (L) using (2.39):

B(Ly)

= — 2y - E}v — Exxx - Exv + Exlog(N) - Ly Exv + Ex log(N) - ExLyv
+ EZlog(N) - Lyv

= — 2y - E}v — Exxx - Exv + 2E; 10g(N) - ExLyv 4 EZ10g(N) - Lyv
— Erlog N(xx - Exv — Exlog N - Liv).

For C(Ly) and D (Lg), there is nothing to do.
Finally, for D>(Ly) we use (2.39) and (2.45) to get

Do(Li) = xk - (—nk + K(Ex, Xi) — Exlog(N)) - Exv
+ Xk - (K (Xg, Xi) — Xi log(N)) - Xyv
+ 2 Er log(N) — xk - Xi log(N)) - Lyv.

Rearranging the terms according to conventions in Sect.8.2.1 for 7, /1 and I11
yields the conclusion. O

8.3 Estimating the commutator [[4, 9]

In the remainder of this section, we bound the commutators of U, with different
vector fields. Once we bound the commutators, we also obtain an energy estimate for
the commuted quantity using Proposition 7.3.

In this subsection, we begin with the commutator [[g, 9;]. We recall that this
commutator is computed in Lemma 8.5.

Proposition 8.8 For any k € {1, 2, 3}, define D as one of the sets in (8.1). Then the
following holds for all solutions v to U,v = f, with supp(v), supp(f) € {(z,x) :
x| < R}:
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3
I ai]v””([OVTB)A,LZ(EMD)) Ser- (HaxavllL}([O,Ts),LZ(ExﬁD)) + ”f”Lrl ([0¢TB)-L2(210D)))'

Proof We control each term in Lemma 8.5. Controlling the metric terms using (5.1),
we immediately obtain

3
||11(al)(U)||L2(2,mD) Ser- (||3x3U||L2(2,mD) + ||DgU||L2():,mD))7

ITTI@) W) 25,0y S € - 1001 25,np) S € - 102001 12(5,0D) -

where in the last inequality, we used supp(v) € B(0, R) and Poincaré’s inequality.

For 1(9;)(v), notice that after using (5.1) and the support properties, each term is
bounded above by |09, g-dv|, where 99, g is as in Proposition 8.3. Thus, Proposition 8.3
implies

3
2

3
||1(3l)(U)||L2(2,mD) Sez. ||3U||H1(2,mD) Sez- ||8x3U||L2(z,mD)y

where we again used Poincaré’s inequality in the last inequality.
Taking the Lt1 norm of these three inequalities, and using Ue,v = f, yields the
claimed estimate. O

Now, we use the commutator estimate in Proposition 8.8 to control the energy for
the commuted function:

Proposition 8.9 Suppose Ugv = f with v and f both smooth and compactly sup-

ported in B(0, R) for every t € [0, Tp). Let —oo < Uy < U; < +o0, with either

Uy = —o0 or Uy = oo (or both). Let D = Dgg:gf, where Dgi))gf is given by (7.9).
Then, for any k’,

sup  [[00xv]l25,np) +  SUP > 1Zedevllaey op)
0<t<Tp up €00.UD 7, (L1, Ey) ¥

5 ||8axU||L2(EOm'D) + Z ”ZkaxU”LZ(CILf/O) + “axf”L,l([O,TB),LZ(E,ﬂ'D))'
Zre{Lg, Ex}

Proof We apply the energy estimate in Proposition 7.3, but to 9; v instead of v. Notice
that [, (9;v) = [Og, 9;]v + 9; f. Hence, combining the energy estimate in Proposi-
tion 7.3 with the bound for the commutator [[g, 9;] in Proposition 8.8, we obtain

sup |09, vll12(5,np) +  SUP Z 1Ze vl 2y
0<t<Tp uy €[Uoy,Ur) Zye{Ly, Ey) K

3
< ||8axv”L2(20ﬂ'D) + Z ||Zk3xv||L2(c’;JO) +e€2- ||3X8U”L,1(IO,TB),LZ(EM’D))
Zye{Ly, Ex}

1AL qo.70), 222Dy + 19 Fll Lt 0, 79), 125D -

. 3
Now notice that by T < L e2110x9vll 110, 74),22(z,nD))

Se 3 SUpg<; -7, [109xvl12(x,np)» and hence this term can be absorbed by the left-hand
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side. Moreover, using that supp(f) € B(0, R), we have ||f||L,1 ([0.T5),L2(2:D)) <
”?Xf ”L}([O,TB.), L2(5,nD)) by Poincaré’s inequality. Combining all these observations
yields the desired estimate. O

8.4 Estimating the commutator [[g, Ex]

Next, we turn to the commutator [[g, E]. Unlike the estimates in Sect. 8.3, when
we bound [[g, Ex]v, we will not assume v to be compactly supported. (We remark
that such bounds for non-compactly supported v are needed for the applications in
Sect. 12.)

Proposition 8.10 Fix k and define D as one of the setsin (8.1). Let v be smooth function
which is in Schwartz class for every t € [0, Tg). Then, for all r > 1, the following
holds forall t € [0, Tp):

_r 3
1) [Og. Exlvllp2immpy S €7 - Uvll2sopy + Y. 10Zevllp2iz,nmy)-
Zre{Ek, Li}

where the implicit constant is allowed to depend on r.

Proof Recall the computation of [[g, E¢] in Lemma 8.6. We now bound the terms
I1(Ey), II(Ey), I11(Ey) from Lemma 8.6.

We first recall the definition of 7 (Ex)(v) in (8.12). By the L°° bound for Ly xx in
(5.14), the L*° estimates for the geometric vector fields in Proposition 5.3, and the L*°
estimates for the metric coefficients and their derivatives in (5.1), we get (recalling
o =0.01)

3
[H(EQ|(v) < €2]0v]+ (x)* (18x x| + | Exnil) |Exv| + (x)"[9dN| - [Lyv] .
——

=:A =:B =:D
(8.24)
We control the L? , (X;) norm of each term. The term A obviously satisfies
2
3
1All2 , (,0m) S €2 1001 20, np)- (8.25)
2
For B, we use Proposition 8.2, » > 1 and Proposition 5.3 to obtain
1Bll2, (5,0m) S 1000xel + 1Exnkl) - Exvll 2 | (5,0,
3 -3
< 3 3 2
S €2 ”Ekv”Lil(ZﬁD) +e€2 ”EkU”Lil()jtnD)
8 8 (8.26)

3 3
Se vl g,mp) +ENIEDN L | (50
~T6 -6
3 3
Se2|ovlias,) + €2 I0EkvilL2(s,nD)-
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The term D can be handled by Proposition 8.3, giving

IG6) 27190 N - [ Livlll 25, np)

3 (8.27)
< €2(19vll 25, mp) + 1D Lev] 205, 7D)-
Combining (8.24)—(8.27), we obtain
1) ™21 (ED ) 125,nD)
3
S (vlpgem+ Y 10Zwlpgap). 82

Zye{Ex, Lk}

By (8.13) and the estimates in Propositions 5.2, 5.3 and 5.5, we have the pointwise
estimate!?

HI(E) )] S €2 (19Lyv| + 19 Exv]). (8.29)
In a similar manner, but starting with (8.14), we also obtain the pointwise estimate
[ITI(Ep)(v)]| < €3|ov. (8.30)
By (8.29) and (8.30), it follows immediately that

1) ™2 TT(EQD) ) 205,0p) + 100) "2 TTTERD) ()l 25,0

3

562 . (“av”LZ(Etm'D) + Z ”aZkU”LZ(Etﬂ'D))' (831)
Zie{Ek, L}

Combining Lemma 8.6, (8.28) and (8.31) yields the conclusion. O

In the next proposition, we are going to use Proposition 8.10 to estimate the energy
commuted with the vector field Ey, this time for compactly supported functions (so
that the spatial weights become irrelevant).

Proposition 8.11 Suppose Ugv = f with v and f both smooth and compactly sup-

ported in B(0, R) for every t € [0, Tp). Let —oo < Uy < U; < +oo, with either

Uy = —o0 or Uy = oo (or both). Let D = Dg?;f where ’Dgco)gf is given by (7.9).
Then, for any k',

12 Notice that one could even put in additional decaying weights of (x) in this estimate, but this will not
be necessary.
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sup  I0Evll 2z, npy + sup D IZeErvll per apy
0<t<Tp u €R Zyelly. Ey) Uy

SIOE2sgomy + D WZErvlac
Zre{Ly, Ex} 0

3
+e2 vl qo 2oyt 2o 19Zkvligo. 7). 225,0D))
Zie{E, Ly}

THESN L) 0, 75), L2(2,nD)):

Proof This is an immediate consequence of the combination of Proposition 7.3 and
Proposition 8.10, since

Ug(Exv) = [Hg, Ex]v+ E f.

8.5 Estimating the commutator [y, L]

The final commutator to estimate is [[Jg, Li]. We will prove analogues of Proposi-
tions 8.10 and 8.11 with Ej replaced by Ly.

Proposition 8.12 Fix k and define D as one of the setsin (8.1). Let v be smooth function
which is in Schwartz class for every t € [0, Tp). Then, for all r > 1, the following
holds forallt € [0, Tp):

_r 3
1) "2 [Og, Lol 2m,opy S €7 - Uvll2somy + Y 10Zivll25,0m)-
ZrelEx, Li}

where the implicit constant is allowed to depend on r.

Proof We bound the terms I (L), I1(Ly), I11(Ly) from Lemma 8.7, following the
same lines of reasoning as for Proposition 8.10. We get (recall « = 0.01):

3
(L)) < €210v] + ()2 ([9g xe] + 005 N]) - [0v],
I11(Li)()] < €2]aLg).
[ TT(Ly)()| S €]9v].

These terms are exactly those in Proposition 8.10, and therefore can be treated in
exactly the same manner. O

The next proposition is analogous to Proposition 8.11:

Proposition 8.13 Suppose Ugv = f with v and f both smooth and compactly sup-
ported in B(0, R) for every t € [0, Tp). Let —oo < Uy < Uy < +o0o, with either
Uy = —o0 or Uy = oo (or both). Let D = Dg?;f where Dg(o);f is given by (7.9).
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Then, for any k'

sup [19Livll2gnmy + s D I ZiLivl ey ap)
0=1<Tg U €R 7 (L, By k

3
2

SIOLevll sy +€2 - UVl qo . 2mnny T 2 19ZevllL)qo.m.c25,0m))

Zire{Eg, Lk}

T ULk fll Lt q0.75). L2 (5, D))

Proof Noting (g (Lgv) = [[g, Li]v + Ly f, this is an immediate consequence of
Propositions 7.3 and 8.12. O

9 Energy estimates for J)k up to two derivatives I: the basic estimates

The goal of this section is to obtain energy estimates, for the scalar field commuted
with zero or one derivative on the whole of ¥;. When there is no commutations or
one commutation with a good derivative, we bound the energy uniformly in §, while
if there is one commutation with a general spatial derivative, we allow the energy to
grow in 871

We note already that some of these estimates will be later improved in Sect. 10, by
localizing on different regions of the spacetime.

The main result of this section is the next proposition:

Proposition 9.1 The following energy estimate holds for the lowest order energy:

sup 106kl 2z + sup Y N Zedillaer oy S€ O
0<t<Tp u €R Zyelly. Ey) k

The following energy estimate holds after commutation with one good vector field:

Y Csuwp 19Zidillamy + s D Ve Zedel 2y o,y S €
ZielLy, Ex) 0=1<Tr Ry (L Ey) k

9.2)

Finally, the following energy estimate holds for more general second derivatives of

Prs

27 ~ 1
sup 10°Gell2my + sup D0 1Zidiill ey o,y S €872
0<t<Tp upeR Zuvelly. Ey) upr

9.3)

Proof Step 1: Proof of (9.1) This is an immediate consequence of the energy estimate
in Proposition 7.3 (with v = ¢, f = 0, Uy = —o0, and U; = o0), and the initial
data bound in (4.3a).
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Step 2: Proof of (9.2) Summing the estimates in Propositions 8.11 and 8.13 with
v = ¢ (sothat f =Ugv = g = 0), we have

Do Csw 10Zideliamy+sup YT IV Zeelae qo.man)

Zielly, Ey) 0s1<Ts Ry e(Ly, By
S D 10Zdulliaisy + €TI0kl o2z €T D 10ZkBell L o,rp) 1280
Zire{Li, Ex} 07 Zi€lEk, Lk}
=1 =111

9.4)

The data term can be controlled using (4.3a) and (4.3b) by I < €. The term /] <

€ e < e by (9.1). For the term /71, we can absorb it by the first term on the
left-hand side, after choosing €y smaller if necessary. Putting all these together gives
9.2).

Step 3: Proof of (9.3) Using Proposition 8.9 with v = ¢, Uy = —oo and U; = oo,
we obtain

sup 100Gkl 2cmy + sup D 1 Zedsdellaer 0.1
1€[0,Tp) uy€R 7. e(Ly. Ey) ! (9.5)

~ 1
S 100x Prcll .2 (%) Sedz,

where we used (4.9b) in the final inequality. In particular, this controls every term in

(9.3), with the only exception being the term sup || 855;( lz2(s,)-
1€[0,Tp)

Inordertobound sup 82kl 2z, we write 93 = 3, (B3 + N - Ly + N - Xy).
1€[0,Tg)
Then, using the bounds for the metric in Proposition 5.2, together with Proposition 5.3,
we have

~ ~ ~ ~ _1
sup (105 dellr2cs,y S 10kllr2cs,) + 100cBill oy + Y 10Zkdellracs,) S €877,
1€[0.75) ZpelEr . Li)

where at the end we used (9.1), (9.2) and (9.5). Putting everything together gives (9.3).
O

10 Energy estimates for ?13,( up to two derivatives ll: the improved
estimates

In this section, we derive improved estimates for the first and second derivatives of
¢r. We will obtain two improvements:

e In the (slightly enlarged) singular region S’2‘5, A and 3 Zy satisfy smallness
(in terms of §) bounds in energy. (See (1.21) and (1.22) in the introduction, and
Proposition 10.2 below.)
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e Away from the singular region, i.e. in ¥; \ S§5, the L? norm of 8251( is bounded
independently of § ~1 in contrast to the global bound in (9.3). (See (1.24) in the
introduction, and Proposition 10.3 below.)

These two improved bounds are highly related: indeed, in order to obtain the latter
estimate, we use the former estimate together with a slice-picking argument.
We begin with the localized estimate restricted to the initial data.

Proposition 10.1 The following estimates hold on the initial hypersurface ¥q:

106kl L2 mynst,) < € - 82, (10.1)
~ 1
Yo 19Zkdullasynst) S €87 (10.2)
Zre{Ly, Ex}

Proof Recall that on the initial hypersurface Xq, (ug, ;) are affine functions of
(x!, x2); see (2.22) and (2.50). Therefore, in all the following estimates, we can easily
bound |9, f| < |9y f1, as well as pass between Lil xz(EO) and Lﬁkﬂk (Xo).

Givenany f : X9 — Rsuchthatsupp(f) € B(O: R)MN{uy > —4}, the fundamental
theorem of calculus, the Minkowski inequality and the Cauchy—Schwarz inequality
imply that for every u; > —8,

U

~ 1
”f”Lgk(EOmC/’;k)§/8 ”aukf”Lgk(zoﬂcgk)duk f, lux + 6|2 Haxf”LZ(EO). (10.3)

We now apply (10.3) to f = d¢y and f = 9 Zgy (for Zx € {Ex, Li}). First, by (4.4),
we have

=

1x 0kl L2 (50) + 1105 Zk 3|l 12(5y) S €872

Hence, using (10.3), we have

sup (100l 2 moncy + D 10Zkdell3myncy ) Se (104)
uy €[—28,25] ik o eelln En) k

Finally, Holder’s inequality implies that

180l 2sonsty + D 18Zkdkll gyt
Zre{Ly, Ex}

1 ~ ~ 1
S87 sup (196Kl 2 sonet s+ DL 19Zedkllz synct ) S €87
up€[—28,28] k k ZeelLe Ex) k k

(10.5)
O
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It is now straightforward to use the energy estimates in Propositions 7.3, 8.11
and 8.13 to propagate the initial data bounds (10.1) and (10.2) to all future times. This
gives our first improved energy estimate.

Proposition 10.2

g 1
sup ”84)1{”1‘2(20512{5) 5 €62, (10.6)
0<t<Tp
g 1
sup D 10Zkkl s st S €87 (10.7)

0=1<T8 7 e(Ly, Ex)

Proof Applying Proposition 7.3 with v = ¢~>k, f =0,Uy = —28, Uy = 24, and
bounding the initial data terms by Proposition 10.1 and Lemma 5.1, we obtain (10.6).

Next, we apply Propositions 8.11 and 8.13 with v = ak, f=0Uy = —o0,
U = 25. (Note that even though we apply the propositions with Uy = —o0, since qNSk
is supported only in {u; > —4} (by Lemma 5.1), we indeed obtain an estimate which
is integrated over X; N S’2‘5.) We thus obtain

s Yo 19Zivl g ng,
=<8 7, e{Ly. Ex)

S Y 10Zwlagynsk, (10.8)
Zie{Lg, Ex}

3
+e2(10vl g0 2mmoy T DL 18ZkvllLgo.my 2cmnsh))-
Zye{Ey, L}

The first term in (10.8) is bounded < €52 by Proposition 10.1. The second term is
< €382 by the estimate (10.6) that we just proved. Finally, the last term obeys

3 3
€2 > 18Zwll oy 2mnsky S € S D 19Zevll 2, nst)-
ZielEy, Ly} 0=t<T8 7, e{Ly, Ex}

This can thus be absorbed by the left-hand side. This concludes the proof of (10.7). O

We now turn to the second improved energy estimate, which is an improved estimate
after the singular zone.

Proposition 10.3 The following away-from-the-singular-zone estimate holds:

sup |92l 25, k)
tel0,Tp) =

+ sup Z ||Zk/ax¢k”LZ(CJL:/,([()’TB))\%) Se (10.9)
Uk€l8,:400) 7 &L, By k
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Proof Step 1: Finding a good slice We square (10.7) and we integrate on [0, Tp) to
obtainonD :={0 <t < Tp,0 < ux <4}:

f |0 Zere|*dxdx?dr < €% 6.
Zre{Ly, Er}

Controlling the commutator [0, Zk]$k using Proposition 5.3 and (10.6), we obtain

> f|Zk8¢k|2dxldx2dt<62 8.

Zre{Ly, Er}

Since the volume measures dx' dx2 dr and duy d6y dty are comparable (by (5.22)),
it follows that

Tp
> f/ / | Zk 0k (uk, Ok, 1) dO dty duge S €% - 5.

Zire{Ly, Er}

By the mean value theorem, there exists uZ € [0, &] such that

2
Z ” Zk8¢k ”LZ(C{:* (10,T3)))
Zie{Lg, Ex}

Tp
S Z / / | Z el > (u}, O, 1) dbi di < €. (10.10)

Zie{Ly, Er}

Notice that for this special value u,’g, the estimate (10.10) is better than the bound

provzided by Proposition 9.1, which would have €26~! on the right-hand side instead
of €.
Step 2: Applying an energy estimate in the regular region The key point now is that
we can apply an energy estimate again, but only in the region where u; > uy*. The
initial data for this new problem has two parts: the energy on the hypersurface C];;’i is
good (i.e. §-independent) thanks to (10.10), while the energy on the restriction of the
initial hypersurface X9 N {ux > u.} is good by assumption on the data since uy k > 0.

More precisely, we apply Proposition 8.9 with v = q)k, f =0,Uy = uf and
U; = +o0. Note in particular that D corresponds to C¥ -

sup ||83x¢k||L2(2 ﬂC" ) + sup § : ||Zkax(pk”Lz(Ck’ (10, 75)NCk )
1€10.Tp) ueR 7, (Lo Ey) =k
(10.11)

ar
<o ¢k||L2(EoﬂCi ) + Z ”Zka¢k“L2(Ck*([0,T3))) f, €,
U ZielLi, B g

where in the last inequality we used (4.5) and (10.10).
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Notice that (10.11) bounds every term in (10.9) except for ||812,¢~Sk ||L2(Emck ) In
E

order to bound this term, we write Btzt = 0 (,8’6,' + N - Lp + N - Xy) and use the
estimates (5.1), (9.1), (9.2) together with the bound (10.11) that we just established. O

11 Energy estimates for the third derivatives

In this section, we prove energy estimates for the third derivatives of ak and ¢ycg.

There are two different estimates that we prove. The first type are estimates that
concern ¢~5k. These are third derivative estimates where among the three derivatives
on <$k, there is at least one good derivative Ly or Ej; see Proposition 11.7 for a
precise statement. As we discussed in Sect. 1.1.6, these derivatives will be proven using
spec:1a11y chosen commutators E}0, and Ly Lg. It will be shown that the estimates for
10 Exdy gbk lz2(x,) and ||0L k¢k l 2(x,) will indeed be sufficient to deduce the remaining
desired bounds for third derivatives for ¢. This will occupy Sects. 11.1-11.4. (Notice
that this type of anisotropic third derivative estimates can also be derived for ¢, but
it is unnecessary and will not be derived. The fact that this is unnecessary is because
Greg € H 245" uniformly in 8; see Sect. 13.)

The second type of estimates we derive in this section concerns third derivatives
for ¢, where none of the derivatives are required to be good. This includes bounding
both $k and ¢, ... These estimates will be proven in Sect. 11.5; see Proposition 11.8.
These estimates are easier to obtain because we allow the bound to be very large in
terms of § 1.

11.1 Commutations of the three derivatives

We first show that it suffices to control specific combination of order of commutators,
namely that we only have to bound [|d Ex0x Pk |l 2 (x,) and ||8L,%¢k l22(x,); see Corol-

lary 11.3. This is particularly important because Ejd, and L% have better properties
when commuted with g, thus allowing us to obtain the desired estimate.
We first prove the following commutation estimate.

Lemma 11.1 Leto € S3 be apermutation, and let Y(l) Y@ and Y® be three (possibly
non-distinct) vector fields from the set {Ly, Ex, Xy, 1, 01, 02}. Then

||Y(1)Y(2)Y(3)¢k”L2(E,) <e.8 + ”Y(G(l))Y(J(Z))Y(JO))d)k”LZ(E,)'

Proof C_learly, it su@ces to control . _ _
1Y D, YO Dl 205,y and [YO[Y D YOIl 25, Observe that since 7i =
Li + X (by (2.32)), we can assume that YD, Y@ y® € {1, Ey, Xy, 01, 02}
We begin with [[Y D, Y DY Dyl 2s,. Using Proposition 5.3, we see that Ly,
E ,’< and X ,’( obey C! bounds on B(0, R). Hence, using Holder’s inequality and (9.1),

@ Springer



Nonlinear Interaction of Three Impulsive... Page 67 of 137 10

(9.3), we obtain
Iy @,y DY Ol 25,

SC Y 1Y e nmo.r) 1076,
Yiee{Lk, Ex, Xk}

+( Z ||3Y,5||L°°(>:,mB(0,R)))||3$k||L2(>:,)]
Yee{Li, Ex, Xk}

5 ~ ~ 5 _1 _
Ser(10%Pull 2z, + 10kl 2x,) S €3 - (€872) S e 2.

(11.1)

D=

To bound ||[Y D[y ), Y(l)]ak llz2(x,), we first observe that Proposition 5.3 does not
give L2(%,) control of all second (spacetime) derivatives of L', E,’C and X ,’C on B(0, R).
Nonetheless, the only second derivative that is not controlled is the term 812th(-

Next, observe that in the set {Ly, Ex, X, 01, 02}, the only vector field with a 9,
component in the {3;, d;, d,} basis is Ly. Since [L, L] = 0, [Y), Y] cannot
generate a d; L' term. As a result, using Holder’s inequality, Proposition 5.3, and (9.1),
(9.3) together with the bootstrap assumption (4.12c), we obtain

YOy 9y D1l 25,

S Z ||32Yli 25,0,y + 199 Li Il 225,00, RO 19k L (5))
Yie{Ex, Xi}

+ > Y o minpo.ry 102Gl 25,
Yy e{Ew, Xk, Lk}

s o~ ~ 5 _1 _
Ser(10gxllLoecs,) + ||32¢k||L2(z,)) Set-(e872) Sed 2.

(11.2)

=

Combining (11.1) and (11.2) yields the conclusion. O
Proposition 11.2 The following holds for all t € [0, Tp):

1 2) . (3)~ _1 . a7 . ~
Z ”Yk( )Yk( )Yk( )¢k“L2(E,) S €672+ H()Ek()x¢k”L2(E,) + II()L]%¢/<||L2(E,)'
Yg”,Y{”.Y,f}_)e[xk,Ek,Lk)
3,77 #Xs

Proof BylLemma 11.1,itsufficesto control Y, k( Dy k(z) Y, ,{(3)51( with any order of Y, k(l), Y, k(z)

and Yk(3). We consider all possible cases below. (We will silently use that supp(gk) -
B(0, R) so that we do not need to be concerned about the weights at infinity.)

Case 1: At least one of Y, k(i) = Ej} There are two subcases: 1(a) there is at least
one other spatial vector field Ej or Xj, and 1(b) Yk(l)Yk(z) Y, ,((3) is some commutation
of ExLyLg. In case 1(a), we assume Yk(z) = Ej and Yk(3) € {Ek, Xi}. Expanding
Yk(3) in terms of 9;, and using the bounds in Proposition 5.3, we can control the

term by € - 572 + [|0Eg 8X$k lz2(x,)- In case 1(b), the term is trivially controlled by
1 ~
€872 + ||0LEg I 12(x,)-
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Case 2: At least one of Y, k(” = L, and none of them is E; The three vector fields
must therefore be (commutations of) 2(a) Ly Ly Lg, 2(b) Xg Ly Ly, or 2(c) X; Ly Xg. In
cases 2(a) and 2(b), clearly we have (using Proposition 5.3)

1Ll 2x,) + Xk Ledkll 2¢s,) S 10Ledkll 125,

which is acceptable. In case 2(c), we use the wave equation Dgak = 0 and the
expression (8.8), as well as the bounds in Propositions 5.2—-5.5 to obtain

1 X L Xi | 12(%)
~ ~ 3 ~ ~
SUIXeLidullr2cs,) + 1 Xk Egdill2cs,) + €2 (107l 125,y + 19kl (s,))-

The first two terms are other combinations of Yk(l) Yk(z) Yk(3)¢7k which we have controlled
above, while the last two terms are bounded above by € - § -3 using (9.3) and the
bootstrap assumption (4.12c). O

In fact, we can slightly strengthen Proposition 11.2 to include 7 and 9, derivatives.

Corollary 11.3 The following estimates hold for all t € [0, Tg):

Dy@ 37
3 Yy Gl s,
v v® v (X, Ex, Li,dg.71)

3,7 =E or vV =Ly

_1 ~ ~
Se- 877 4 0E il r2cs,) + 10L7k N 125, ) (11.3)

and

1 2)7
> 187" Y P Gell2x,)

1 2 =
YD ¥ Xk, Ex Ly, 3y i)
3i.Y"=Ex orv" =Ly

_1 ~ ~
S €872 + 0 Edxdill 25,y + IOLEGkll 25, (11.4)

Proof Clearly it suffices to prove (11.3), since (11.4) follows from using (11.3) together
with (5.8) (5.10).
Comparing to Proposition 11.2, the only new vector fields in (11.3) are 7 and 9.
e Since n = Ly + Xi (by (2.32)), if we have the vector field 7 (but not 9;), we can
reduce directly to Proposition 11.2.

e Suppose now among Yk(l), Yk(z), Yk(3), there is at least one 9, and one Z; €
{Lk, Ex}. Then using Lemma 11.1 to commute the vector fields, it suffices to
bound

Z 180 Zell 125, -

Zre{Li, Ex}
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After using (5.11), this can in turn be reduced to a term as in Proposition 11.2 and
plus another term ZZke{Lk,Ek} 10x ZkPic |l 2 (5, The latter term can be controlled
using Proposition 9.1.

]

Remark 11.4 Note that despite Corollary 11.3, we do not control a term such as
10: Lk 0Pkl 2 (x,)- This is due to a lack of control of 8t2LZ from Proposition 5.3.

11.2 Controlling || aEkaxJJk 2z,

Proposition 11.5

~ 1 3 ~
sup 10 Exdcdull oy, S€-872+€2 sup [0Lidull 2y, (11.5)
tel0,Tg) t€l0,Tp)

Proof We apply energy estimates for E;d, 5/(. First, we write
g (Exdg$r) = [Cgs Ex10gk + Ex((Tg. 3 10).

Step 1: Controlling [L,, Ek]aqak By Proposition 8.10 and the support properties of
¢r, we obtain

~ 3 ~ ~
T, Exlogfillrzcs,y S €2 - U0°Gellamy + D, 10Zidgellras,)
ZrelEx Li}

_1 3 ~ 3 ~ _1 3 ~
5 € - (S 2+4€2 ||8Ek3x¢k||L2(2,)+62 ”8L/%¢k”L2(E[) 5 € - 8 24€2 ||8Li¢k”L2(Z[),

where in the last line we additionally used (9.3), Corollary 11.3 and bootstrap assump-
tion (4.9d). ~

Step 2: Controlling || Ex([Ug, Bq]ak) l22(x,) By Lemma 8.5, [, 9,1 can be written
as a sum of terms of the schematic form

Q(g) - 00,8 - 0k, Q) - 0xg- DOk, 2(g) - deg - 0y, R(g) - (3g)* - I,

with g € {N, B, y} and Q(g) a smooth function of the metric coefficients. (The
important feature to notice here,!3 other than the number of derivatives, is that there
are no terms with 8,2’\9 or 0y 0y g. Itis also useful to note that there are no €2 (g)-9; g- 0y 0 ak
or (g) - 9,9 - NPy terms.)

Therefore, using

e that E} is a spatial derivatives, satisfying (5.5),
o that |2(g)] < 1,19g] < €2, 32g] < €2 on the support of gy (by (5.1)), and

e that |8$k| < e%w by (4.12c) and Lemma 5.1, where & € C2° is a cutoff such
that @ = 1 on B(0, 2R) and supp(@) < B(0, 3R),

13 One may observe that there are also no terms with ﬁzak, but this is irrelevant for the argument below.
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we obtain

|Ex([Cg, 9, 16%)

3 3.9~ ~ L~
< € (1002g] + 193xg]) + €78 pk| + 1898/ (| Exdxpi| + | Exiicpic])
~———
A B D (11.6)

3 ~ L~
+ €2 (|Exd2¢k| + | Exidegil) -
F

We now control each term in (11.6). The term A can be bounded using (5.1) and
(5.2):

Bl
[}
I
(o2}
|
ISE
A
m
NI
(o2}
|
=

Al 25 S €

The term B can be bounded using (9.3):

ESIN
D=
m
ENEN)
D=

IBll2s,) S € €6 § 2.

The term D can be bounded by first using Proposition 8.3 and then using (9.2) and
Corollary 11.3:

3 ~ L~ ~ o~
IDl2cs,) S€? (IIEk3x¢k||L2<z,) + 1Exnéiliz2cs,) + 10x Exdxdrell 2 (s, + ||3xEkn¢k||L2<z,)>
505 1 3 ~ 30~
Se+€2 877 + €2 |0Erdedill 25, + €2 10L7dk 12(5,)-
Finally, for the term F', we use Corollary 11.3 to obtain

1

_1 3 ~ 3 ~
872 + €2 |0 Exdx il 2x,) + €2 10L;BrN 125,

[STiv

IFll2x,) S€

Putting all these together, we obtain

~ _1 3 ~ 3 ~
| Ex([Og, 8q]¢k)“L]([O,TB);LZ():,)) Se-872 +e2 ||3Ek3x¢k||L2(zl) +e€2 ||3L£¢k ||L2(E,)'

Step 3: Putting everything together Combining the estimates in Steps 1 and 2, we
obtain

~ 1 3 ~ 3 ~
I (Exdg i)l 125, S €872 + €210 E il s,y + €2 10L7 0k 125, -
Therefore, applying Proposition 7.3 with v = Ej 8q$k, Up = —oo0 and Uj = +o0,

and bounding the initial data by (4.4), we obtain

~ _1 3 ~ ~
sup || Eg0xdx ||L2():t) S€e-8724€2 sup (||3Ekax¢k||L2()j,) + ||3L%¢k||L2(gt))~
t€[0,Tg) t€l0,Tp)
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Choosing e sufficiently small, we can absorb €3 Sup;e0.74) 19 Ek A i 12(x,) by the
term on the left-hand side, thus concluding the proof. O

11.3 Controlling || 0’-,2(¢k||1_2(z,)

Proposition 11.6

||3Lk¢k||L2(z,) Se-d 117

Proof We apply energy estimates to L,%Eﬁk. First, we expand

Og(L2¢r) = [Og, LilLigr + Li((0g, Li1r). (11.8)

The first term will be controlled in Step 1 and the second term will be controlled in
Steps 2-3 below, after which we carry out the energy estimates in Step 4.

Step 1: Controlling [, Li]Ly¢r We use Proposition 8.12 and supp(¢x) € B(0, R)
to obtain

~ é ~ ~
0. LilLedillogsy S €7 - U@l + Y. 10ZkLidellzas,)
Zie{Ex, Li}
1

5 _1 9 1 3 ~
Se2.872 +52 10 Ex0x ¢k||L2(z,) +€2 ||3Lk¢k||L2(z,) Se€r-dT2 te ‘|3L1%¢k||L2(E,)7
(11.9)

where in the last line we additionally used (9.3), Corollary 11.3 and the bootstrap
assumption (4.9d).
Step 2: Controlling L[, Lk]qbk except for one term Recalhng the notatlons from
Lemma 8.7, we need to handle Li[Og, Li] ¢k = Lk(I(Lk)¢k) + Lk(II(Lk)q)k) +
Li(ITI(L)i).

Using the L*° bounds in (5.1), (5.5), (5.6), (5.14), and (4.12c¢), it is easy to deduce
from (8.21), that

|Li(I(Lidr) + Li Xy 1og(N) - Lidp)|
Setm+e - |92 + et - (02EL + 102XL) - o o
9 ~ 3 .
+ (€7 + 3Lk x| - 100, glr + €71007g|m

9 ~ 3
+ 19 xk| - (€3 + |LyExdprc]) + €% - (|Lgdy xi| + 1L xx| + |Link Do,

where, as in Proposition 11.5, g € {,Bi, N,y} and @ is a smogth cutoff with
supp(@) < B(0,3R). We isolated the term Ly (L Xy log(N) - Ly¢x) on the left-
hand side of (11.10), which will be treated in later steps.
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Arguing similarly, but starting with (8.22), (8.23), we obtain

ILe( ILOGO| S €2 - (1OL2Ge] + |Le E2Ge| + 192Bi]) + (€3 + 1905g] + 19K]) - 19 L],
(11.11)

ILe(TTILO)G)] S € - 10%p] + €3 - (100,q] + 19K ]) - , (11.12)

where g and @ are as in (11.10). (Note that in (11.11) we have used LkaLkak =
Xid; L3 + (X, L — L"8, X?)dy Ly combined with (5.5), (5.6); similarly for
LiExLigr.)

We now control the terms (11.10), (11.11) and (11.12). We begin with the right-
hand side of (11.10). First, using the bootstrap assumption (4.9b) and (5.1), (5.2),
(5.7), (5.14), (5.15), (5.16), we handle all the linear terms to obtain

I L (I (Ligr + Ly Xg log(N)) - Lkak)HLZ(z,)

9 1 ~ ~ (11.13)
Se€r 872+ 0Lk - 90x8ll 12(x,) + 10x Xk - Lk Exdrllp2(x,)-

For the 8Lk5k - 00y g term in (11.13), we first use Lemma 5.4 (for |8Lk$k|) and then
apply (8.7), Corollary 11.3, Proposition 5.3, (9.1), (9.3) and the bootstrap assumption
(4.9d) to obtain

0L - 90xall 2gr,y S D IYeLar - 00cgl 2,
Yie{Xk, Ex, Li}

3 ~ ~
e Y (WeLifellras, + 10YiLidel 2x,)
Yie{Xk, Ex,Li}

_1 3 ~ ~ ~
872+ e2([0%kl 12(x,) + IO Exdxill 12,y + 10 Lek Nl 12(,)
.5_

N

(11.14)

24\
I

€

1 3 27
2 + €2 ||3Lk¢k ”Lz(E[)'

A
o

€

For the 0, xx - Lg Ekfﬁk term in (11.13), we use (8.4) and then Proposition 5.3, Corol-
lary 11.3 together with (9.1), (9.3) and the bootstrap assumption (4.9d) to obtain

10x Xk - LkEk¢~3k||L2(z,)
S L Exdrll2cs,) + | ExLi Exdll L2 (s,
5 _1 3 ~ e e
872 +€2(10% Pkl L2x,) + 10 Ex il r2s,) + 19Li Bkl 2(,)

1

1 3 ~
. (S 2 + €2 ”aL%q&k”LZ(Er)

(11.15)

(S]]

€

AR AN
o

€

Plugging (11.14)—(11.15) into (11.13), we obtain

~ ~ 9 _1 3 ~
1Lk (I (L + LiXglog(N)) - Ledi) l12¢s,) S €% 872 + €2 | 0L;ell 125, )-
(11.16)
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For the term in (11.11), we use the estimates (5.1), (5.13), (5.2), (9.1), (9.3) and
Corollary 11.3 together with (8.7) to get
Lk ILOGON 25,y S €F 872 + 100x0 - OLidel 2 s
+ €2 9EPell s, + €2 IOL3Bel 2
St 570 4 e ALl gz (11.17)
+ e 9Edx il 2 s,y + € I0LEe N 12 s,
et 570+ e ALl s,

ENN-}

where we have used (2.14) to rewrite d K in terms of 90, g, and in the last inequality
we have used (11.14) and the bootstrap assumption (4.9d).

Finally, for the term in (11.12), we simply use (9.3) and the estimates (5.1) and
(5.13) to obtain

NLE(TTTLOGO s,y S €677 Se-872. (11.18)
Step 3: Controlling Ly Xy 10g(N) - L@ and dx(Li Xy 1og(N) - Lrgy) Combining

(11.9) in Step 1 and (11.16)—(11.18) in Step 2 (together with Lemma 8.7), we have
proven

©

1

~ ~ 1 3 ~
10 (Lidk) + Li(Li Xy log(N) - L)l 2s,) S €% 872 + €2 ||3L%¢k||L2(2,)-
(11.19)

We will not directly estimate the term Ly (L Xk log(N) - Lkak) Instead, we rely
an integration by parts argument using Corollary 7.5. In preparation of the integration
by parts argument, we estimate Lka log(N) - qubk and 9y (Lx Xy log(N) - Lk¢k)

First, for L X log(N) - Lk¢k, we use the bootstrap assumption (4.12c) and the
estimates (5.1), (5.5), (5.6) to obtain

~ 9

As for the derfiyative 0x(Li Xy log(N)- Ly ak), the Leibniz rule generates two terms:
if 9, falls on L¢y we get

~ 9 _ 1 3
| Lk Xk 1og(N) - 0x Liillp2(x,) S €% -872 €2 ||3Lk¢k||L2(2,),
where we used (8.7) and Corollary 11.3 together with (5.5), (5.6), (5.1) and the boot-
strap assumption (4.9d).
If, instead, d, falls on L X log(N), we get

~ o 1
Il Le Xk 10g(N) - Ll 25,y S 10 Le Xi 10g(N) | 125, n 0,1y 1Bk o5,y S €3 872,
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where we used the bootstrap assumption (4.12c) together with (5.1), (5.2), (5.5), (5.6),
(5.7). Therefore, using (5.5) again, we prove that

| Xx[Lix Xi log(N) - Lkgk]IILz(z,) S 110x (L Xi log(N) - ka?s'k)lle(z,)
Set 8570 + €2 0Ll s, (11.21)

Step 4: An integration by parts argument and putting everything together Therefore,
writing the decomposition Ly = —X; + N e (by (2.32), (2.5)) and combining the
estimates in (11.19) and (11.21), we get

1 3

~ _ ~ 9 1 3 ~
10 (Lid) — N~ eo(Li Xk log(N) - Lidi) |l 125,y S €% - 872 + €2 [0L;dxll 25, -

Writing g (L2¢r) = fi + N~'eg fo with fo = L X log(N) - Ligy, we have
therefore proved that

[STIo%

1 ~
(872 + 0Ll 25, )-
(11.22)

10 (L) — N 'eo foll 2z, = I fillr2gs,) S €

On the other hand, (11.20) and (11.21) give

1

3 ~
872 + €2 0Lidxll 2 s, (11.23)

[STI)

I f2ll2csy + 10x L2l p2cs,) S €

By (11.22) and (11.23), applying Corollary 7.5 we get

I0LEBel17 5 5,
t
~ 3 _ 3 g
SIOLEGI a5, + €2 - 87 + €2 /0 10L; el 7o, AT

+ sup [[(x) 7" Ly Xk log(N) - Lidrll 2z,

0<t<t
3 3 ~
5 -1 5 2 2
562 8 + €2 Sup ||8Lk¢k”L2(E )
0<t<t ’

where for the last inequality we have used

e the assumption on the data (4.4) (recall indeed that 5}( - X k;ﬁk = Lk$k on %)
together with (5.5), (5.6) to control the data term; and

e (5.1) and the bootstrap assumption (4.12c) with the Holder’s inequality to bound
the last term.

Taking the supremum over ¢ € [0, T), and absorbing supy_, 7, ||8Li$k||iz(E ) to
the left-hand side, we obtain (11.7). This concludes the proof of the proposition. O
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11.4 Energy estimates for three derivatives of ak with at least one good
derivative

We finally obtain our main result regarding the energy estimates for three derivatives
of ¢k, where at least one of the three derivatives is Ej or Ly.

Proposition 11.7 The following estimate holds for all t € [0, Tp):

Dy@ 3T 1
Z ”Yk( )Yk( )Yk( )¢k||L2(Z,) Se-d2. (11.24)
v v ¥ (X B Loy 1)
3, YV =Ex or v =1Ly

In particular, the bootstrap assumption (4.9d) holds with e replaced by Ce.

Proof This follows immediately from the combination of Corollary 11.3, Proposi-
tion 11.5 and Proposition 11.6. O

11.5 General third derivatives of ¢

We end this section with an estimate for general third derivatives of ¢. We will not
require any derivative to be good. In fact, the estimate we prove applies to the full ¢,
and not just ¢~>k. Notice that the proposition only bounds |06 2 (5, in terms of the
H? norm of the initial data. In particular, while the right-hand side is finite for each
fixed § > 0, it is allowed to blow up very rapidly as § — 0.

Proposition 11.8 The following estimate holds for all t € [0, Tp):

_1 -
1001l p2cs,) S €872 + Bllpscxy) + 17D m2(x,)- (11.25)

Proof Letting I'* := (g_l)”ﬁFﬁ , we write (g f = (g_l)“ﬂafﬂf + I'*9; f. Hence,
using the support properties of ¢, the estimates for the derivatives for g~ and I in
Proposition 5.2, and the bootstrap assumption (4.12c), we can bound the commutator

(g, al?j] as follows:

g, 977161 = 1078 ~)"P)o556 + 20 (87133 56 + (0 TH.6 + 20 T35, 0|

3 3 3
< €210%p] + €219, 0%p| + €T |20+ 8,700, ¢, (11.26)
— — ———
=:/ =11 =III =1V

where @ € C2° is a cutoft such that @ = 1 on B(0, R) and supp(zw) € B(0, 3R).
The terms 7 in (11.26) can be estimated directly using (4.8) and (9.3) so that

ENN-}

3 _1
1 l2s S €219%@l2x,) S €t -8 2. (11.27)
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We turn to term 7/ in (11.26). This term is bounded by € 5 |0 8$¢| unless we have two
9, derivatives, in which case we need to control 3,9, d;¢. Since (g~ )" = —#, we

have 82¢ = N2(2(g~")" aqus + (g~ Hi a,?qu +I'*3,¢) (using Cp¢p = 0). Therefore,
using Proposition 5.2, (9.3) and the bootstrap assumptions (4.12c), (4.8), we have

3 3
18x9% @l 125,y S 10050 12¢s,) + € X 10T 1 12,y + €217 125,
9.1
S 1097 125,y + €387 2.

Putting all these together, we thus obtain
15 1 3
1T 2s) S€F 872 +€2]|0050 ] 125, (11.28)

We bound the remaining term in (11.26). By (5.4), 111 in (11.26) can be bounded
by

o

3 _1
”III”LZ(Et) S E4||8§FA||L2(Eth(0’3R)) 5 €4 .52, (1129)
To handle term 7V in (11.26), first observe that we can use Proposition 5.2 to bound
[0, T4 < €3 + |0x9;g] on B(0,3R), where g is as in Proposition 8.3. Hence, using
Proposition 8.3 together with (4.8) and (9.3), we obtain

3 9 1 3
||IV||L2(2,) 5 €2 ”82¢||L2(2,) + |||88xg| . |aax¢|||L2():,) 5 €357 2 te2 ||88x¢||H1(2’)
1 3

< €357 +€200%ll 23, )- (11.30)

o

where in the last line we also used that supp(¢) € B(0, R) and applied Poincaré’s
inequality.
Combining (11.26)—(11.30), we obtain

1 3

9 _1 3
IO 03101 20y S €7 - 672 + €2 13020 2(5,). (11.31)

Since [y al?qu =[O, 3i2j]¢, applying the energy estimates in Proposition 7.3 (for
v =128}¢, Uy = —o0, U = 00) with (11.31), we have

D=

9 _ 3
sup 11092125,y S 100501 25, + €% 872 +€2 sup (897925,
t€[0,Tg) 1€[0,Tp)

To obtain the desired estimate, we absorb the last term to the left-hand side, and
bound the data term as follows: using (2.3) we get

100701 12(20) S 11l 35y + INGigp + B i)l 25
_1 -
S €672 1Dl u3sy) + 1@l 2(sy)
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where in the last inequality we have used (9.1), (9.3), and the metric estimates of
Proposition 5.2. O

12 Fractional energy estimates for &)k

In this section, we prove the energy estimates for &y that involve fractional derivatives.
These include

e bounds for ||8(DX)S,¢7/{||L2(E,) to be proven in Sect. 12.5, and
e bounds for ||8Ek(Dx)‘”¢~>k||Lz(2[) and ||3Lk(Dx>s”$k”L2(2[) to be proven respec-
tively in Sect. 12.6 and Sect. 12.7. (See also some auxiliary estimates in Sect. 12.8.)

These estimates are the most technical ones in this paper, as they involve simul-
taneously the geometric vector fields, the weights at spatial infinity and fractional
derivatives. Some of the main preliminaries regarding the fractional derivatives and
the weights can be found in Sect. 12.1 and Sect. 12.4, respectively. We also refer the
reader back to Sect. 1.1.6 for some comments on the analysis.

12.1 Fractional derivative commutator estimates

Definition 12.1 Define the Fourier transform in the x = (x!, x2) coordinates with the
following normalization: for all f € L*(R?)

£ = (FNE) = / /R Fe I g i,

and denote by F~! the corresponding inverse Fourier transform.

1 f <1
Let g : R2 — [0, 1] be radial, smooth such that o) = orfl = , Where
0 forl§|>2
€] = VI&112 + 6212
Define Py by

Pof = (F) (p&F[),
and for ¢ > 1, define P, f by
Pyf = (F) (@& F f (&),
where we introduced @, (§) := p(2798) — p(279H1§).

Definition 12.2 With the notations of Definition 12.1, we further define

on(0,8) =Y Y Gi(0)F;(&),

Jkilk—jl=1
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o0, €)=Y > Pr0)j(E),

Jj kik>j+1

on0,8) =" > G0)F;&).

Jj kik<j—1
Note that since ) ;- @ = 1, we also have gnn + op + i = 1.

Definition 12.3 For any multiplier m (o, &) real-valued function on R2, we define the
para-product

T (fi. f2)(x) = / P (5, ) Fi (o) o () do d,

£eR2?,0eR?
We also define the high-high m-para-product of fi and f>

pp (M) (f1, f2)(x) = Ty-m(f1, f2)(x)
= / ATIETO Y (0, E)m o, ) f1(0) fr(§)dadE,
£eR2,0eR?

the high-low m-para-product of f; and f>

M (m)(f1, f2)(X) = Tpy.m(f1, f2)(x)
= / ATETD T g (0, Ym (o, £) f1(0) f(E)do dE,
£eR2?,0eR?

and finally the low-high m-para-product of f} and f>

i (m)(f1, f2)(X) = Tym(f1, [2)(X)
= / TICEH Ty (6, Eym(o, €) f1(0) f2(€)dodE.
£eR2,0eR?

Since ¢n1, nn, @i, form a partition of unity, note that
T (f1, f2) = Dpn(m)(f1, f2) + Tum)(f1, f2) + Tip(m)(f1, f2).

We also denote Iy, (f1, f2) = pn(D(f1, f2), Ou(f1, f2) = (D (f1, f2),
i (f1, f2) = O (D (f1, f2).

Next, we recall the Coifman—Meyer theorem. This can be found for instance in
[33]:

Theorem 12.4 (Coifman—Meyer) Let m (&, ) be a smooth function on R? which obeys
the following bounds for any multi-indices v, B:

1020 m (0, &) Svp ((€) + (o)) "ITIAL
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We say that m is a Coifman—Meyer multiplier.
Then for any 1 < p,q,r < oo such that % =
(00, 00), (00, 1), (1, 00), we have,

1 1
» + g and (p.q) #

I T (S5 f2)||Lf(]R2) S ||f1||LP(R2)||f2||Lq(R2)~

Moreover, if m is a high-high Coifman—Meyer multiplier in the sense that
suppm(o, &) C {(0,&) € R? x R? : 107! o| < |£] < 10|o|}, then the following
end-point estimate holds:

10 (f1s 2@y S I fillpmom) | 21l L2 @2)-

We will need several different Kato—Ponce type commutator estimates to estimate
(Dy)*(fh) — f{Dx) h; see Theorem 12.5-Corollary 12.10. The difference among
these propositions is essentially the number of derivatives that is put on f.

Theorem 12.5 (Li [20, Theorem 1.1]) Forall0 < 6 < land 1 < p < o0 and
1 < p1, pp < oo with % = % + %, the following holds for all f, h € S(R*) with a
constant depending only on p1, p» and 0:

KD (Fh) = FUD W Lr @2y S D) fll o @2y 11l Lo 2

An easy consequence of Theorem 12.5 is the following estimate'*

Lemma126 Forany(0) <60 < land2 < p;, p/l, D2, p2 < —G—oosuchthat——i—l =

1 P2
! + o
2= p’l

0 0
x) (fh)||L2(R2) S KD f”LPl (R2)||h||LP2(JR2) + ||f||Lp’1 (Rz)”(DX) h||Lp’2(R2)-

Proposition 12.7 Let 6 > 0 and p € [2,+o0]. Then the following holds for any
£, h € S(R?) with an implicit constant depending only on 6 and p:

() = FUD W) S 1 hwtrg) WD R 22,

Proof First, by the Plancherel formula we have

KD (Fh) — FUD DIl L2g2y
-1 ez”"@*"”(<2n@+a>> (x&)’) f(0)h(E)dods
£eR?,0€R?

L2(R2)

We will now write 1 = ¢y(0, &) + onn(o, &) + oni(o, £) and analyze each term
separately.

14 Remark that this estimate can also be derived directly, and is in fact much easier than Theorem 12.5.
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Step 1: The low-high term To handle this term, we need to exploit the commutator
structure to obtain the sought estimate.

o (0, )2 (£ +0))? — (278)%)
1 (12.1)
— 4720 gin (o, &) / (& +10))' (0 - & + 10)) d.
=0

Note that (£) =01y, (0, &) f[]:()(Zn(é +10))?72(& + t0); dt is a Coifman-Meyer
multiplier (for each 7). Indeed, on the support of ¢, (§ +to) and (£) are comparable
when ¢ € [0, 1]. Hence it is enough to show that for any v, 8:

1
”&‘f((é)“’“/ (& +10)772(E + t0); d;)‘ < (&) ML
t=0

which is an elementary computation. It follows from Theorem 12.4 that

D) (T (F 1) = T (f4 (D) W2 2
< D 0—1h )
S I lwr g2y I{Dx) ”L%(Rz)
Step 2: The high high terms We do not need the commutator structure. In other words,

we bound (D (I'Ihh(f h)) and Iy, (f, ( gh) separately.
We begin w1th the term (D ) (Mpn(f, h)).

(D) (T (F s I 2 g2y S ZnPk ) (T (D172 g2

S XX 229k||Pk’f||Lp(R2)||Pk”h|| .

k K:k'>k—3k":|k"—k'|<3 LP=2(R?)
20k
S O 2RI | Pkl
K kK=K | <3 kik<k'+3 " 2(RZ)
SO @KNP )@ PRI, )
k! k”'\k”*k’|<3 LP— Z(RZ)
2k 2(0—1k"
< (sup2 1P I ) Q22O NPkl o, )
k" Lr— Z(RZ)

SUAIZ 1 ey (D) )2
wlp(R2) =X L7 R

Note that for any fixed k, we sum (k’, k) over {(k’, k"), k' > k=3, |k —k'| < 3}
because the support of the ¢; (only) overlaps with the supports of ¢;_1 and @; 1.

To handle the term ITy,;, ( £, (D, )?h), we rely on the Coifman—Meyer theorem. First,
it is easy to check that <§—><phh (0, é ) is a Coifman—Meyer multiplier. Therefore, for
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p € [2, +00), the Coifman—Meyer theorem gives

1T (f (D) W) 22y S D) fll Loy (D) " I 25

LP-2(R2)
SN w2y 1{Dx |

L 1) 2 (RZ)

When p = 400, we use moreover that we have a high-high multiplier so that
the BMO endpoint holds'>. Combining this with the estimate ||(D,) f|| BMO(R?) <
AN Wloo(R2), W obtain

T (f (D) W) 22y S IDx) fllsaro @2y (D<) ™ Rl 2 g2
S ||f||W1,oo<Rz)||<Dx>9—1h||Lz<Rz>-
Step 3 The high-low terms In a similar manner as in Step 2, we estimate
(D (l'lhl(f h)) and Iy (f, ¢ Yo h) separately.
The (D)? (T (f, h)) term can be estimated as follows:

100 Mt (F. G2 g0, ZHPk(Dx)e(nhl(fsh))Hsz(Rz)

< Z Z Z 220k\|Pk’f“Lp(R2)”Pk”th 5

k KK —k|<3 K" k" <k+3 LP=Z(R2)
20k 2

S DD Dl 10 N 12l e (12.2)

K Kk =k —6 LP=2(R?) ’
<Y Y 22 ])k)(sup22k 1P £17 p )N Per I 5,

K Kk =k —6 LP— Z(RQ)

s

< (sup2?C )P ,f||Lp(R2)>(222<9 DRI 5y ) S I gy 1O R

K LP=2(R?) T

For the T (f, (Dy)?h) term, we begin with the trivial estimate

I (f AP D17 2y S Z 1PeTT (f (D) W) 72 g2,

DD 22‘”‘ 1Pe 112 ) oy | Perhl?
k k':|k'—k|<3 k":k"<k+3 LP=2(R?)

SYY Y PRSI ey I Pkl
k Kk —k|<3 Kk <k-+3 LP=2(R?)

This coincides with the second line of (12.2) and we can argue in exactly the same
way. O

15 Note that we need to use the BMO estimate here because the Riesz transform (Dx)™ 19, is not bounded
on L. Instead, we rely on the fact that H<DX>f”BM0(]R2) < HBXfHBMO(]RZ) b ||f”W1,oo(R2)~
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Corollary 12.8 Let p € 2,+0]and 0 < 6, < 61 < 1 such p > ﬁ. Then the

following holds for any f, h € S(R?) with an implicit constant depending only on p,
01 and 6;:

IKD)2(fh) — FUDD2M 22y S 1 e @y 1D hll 2 g2y

Proof This follows from Proposition 12.7 and the Sobolev embedding H% % (R?) <
2

L2 (R2). 0
Next, we need a more precise commutator estimate which essentially gives the

“main term” of the commutator up to some residual error satisfying better estimates.
To set up the notation, for any f,h € S (Rz), define

T2 h) i= (D) (fh) — FUDh) — 087 (3; £)(3;(Dx)P k), (12.3)
Define also I1;, T2 (f, h) by

T TS (f, 1) o= (D) T (f, B — T (f, (Dx)?h) — 08" T, (8; f, 8 (Dx)? %)

and similarly for [T, T2,(f, k) and T1;,; T2 (f, h). Then the following estimate holds.

Proposition12.9 Let 6 > 0 and p € (2, +oc]. Then the following holds for any
£, h € S(R?) with an implicit constant depending only on 6 and p:

ITECF Dl 2@y S I lwzr@y (D201 20 (12.4)

LP=2(R?)

Proof Note that the only difficulty concerns the low-high term. For the high-
high and high-low interactions, it is easy to check as in the proof of Proposi-
tion 12.7 that each of the terms [[(Dx)? Tlin (f, W)l 2 g2y ITIan (f. (D) )|l 12R2).

T34 (3 £+ 9D )l 22y D) Tt (s W 2g2ys 1T (f s (D))l L2 g2
and || T4 (3; £, 0j(Dx)?2h)| 12 (g2, is bounded by the right-hand side of (12.4); we
omit the details.

For the low-high term, we continue the computation of (12.1). More precisely, we
use

1
r(1) =r(0) +r(0) + / (1 —t)r"(t)dt
t=0

with r(t) = (27 (& + t0))? to obtain
(2n(E +0))" — 2n8)") — 4?0 278)" (& - 0)
1
=47%0 t:o(l — {420 —2) 27 (& +10))! (o - (£ +10))? 12.5)
+ 27 (€ +10))??|o|?} dr
=:m(o, &).
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Notice that
m(o, &) = |o*ma(0. &) + Y _ 0i0;(mp)ij(0. §),
ij

where m 4 and m p are defined by

1
ma(o, &) := 4726 (1 —){4n20 —2) 27 (€ + 10))! 4|0 > + 2t (0 - §))
=0

+2m(E +10))? 2} dt,

and
1
(mp)ij(0.§) = 16700 — 2)&'5]'] (1 =0 @2r(& +10)" " dr.
1=0

Itis easy to check that (§)™""¢i, (0, §)ma(o. §) and (§)~" g (0. §) (mp)ij (0. )
are both Coifman—Meyer multipliers.
The computation (12.5) implies that

IR T (f h>||Lz<Rz)
KD T (f, h) — T (f ¢ — 08 T (i £ 9;(Dx)’ 2 h) || 12m2)
S T (A ) 22y + Z ||T<p,,1<m3),._,.(a,-,-f, M2 @e)

i,j

< D 9—2h
S Wl NP0 2,

where in the last line we have used the Coifman—Meyer theorem (Theorem 12.4).
This gives the desired estimates for the low-high interaction. As described in the

beginning the high-high and high-low are easier, and we have therefore completed the

proof of the proposition. O

We record another easy but useful way to estimate the term in Proposition 12.9:

Corollary 12.10 Let Trf:% be as in (12.3). Let p € (2,400] and 0 < 6r < 01 such

p > ﬁ. Then the following hold for any f, h € S(R?) with implicit constant

depending only on p, 61 and 65:

ITECf 2 g2y
Smin{|| fllwipwzy D) T Al 22y | w2 @) 1D 2Rl 2g2))

Proof On the one hand, by the triangle inequality, Corollary 12.8 and Holder’s inequal-
ity,

ITECF Dl 2@y S U F lwr @y (DO Rl 2g2).
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On the other hand, by the triangle inequality, Proposition 12.9 and the Sobolev
2p
embedding H% % (R2) < L72 (R2),

ITECF Dl 2@y S U f lwzr @ (D) 2Rl 2g2).-

Combining yields the result. O

Finally, we need an auxiliary commutation lemma concerning the commutation of
a vector field with the (inhomogeneous) Riesz transform.

Lemma 12.11 Let Y'9; be a vector field on R2 such that Y € WL2(R2) and f e
L%(R?). Denoting R; = 8j(Dx)_1, we have

Y. Ri]fl ooy S max 1Y llwroo@e) - I1f 1|2 @2)-
Proof By the Calderén commutator estimate (see [32, Corollary on p.309]),
100 R; (Y f) = Y0 R; fll 2y S max 1Y oo, - 11122y
Hence, by the triangle inequality and the L?-boundedness of R s

1Y, Ri] £ ooy S N8R (Y ) = Y0 R; fll 2oy + IR LB Y £l 22y

S lnj?é ||Yl||W1~00(R2) : ||f||L2(R2)-

12.2 Notations for this section

We now define some notations that will be useful for the remainder of the section.
From now on, fix a cutoff function @ € CZ° such that @ = 1 on B(0,2R) and
supp(zw) € B(0, 3R).
We also introduce the following notations for the wave equation.
Let (2 and O' be operators defined by

=02(f) =0
—1 2 s
g f = (@ oy f—T" -0, f. (12.6)

where (g~1)"# are the components of the inverse matrix of g,g, as expressed in (2.2)
and

_ I _
M= (g )", T = (7)™ ugop + 980w — dogup)  (127)
(in the coordinate system (z, x! x2) of (2.2)).
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Finally, define

g = (e Hv L, 2 HY

T ST e (129
so that
92 = ——0, — 3792 + F—ka (12.9)
= (g~ s~ 8 Y (g~ A :

12.3 Preliminary estimates

The following basic estimate will be repeatedly used. (Recall the notation for @
defined in the beginning of Sect. 12.2.)

Lemma 12.12 Let v be a smooth, compactly supported function on B(0, R) and f be
a smooth function. Then

(Dx)* (fv)||L2(z,) S ||wf||LoonW1,2(z,)||<Dx)s U||L2(z,)~

Proof Note that fv = @ fv. Hence, by Theorem 12.5 (with p = 2, p; = %,
P2 = %) and Holder’s inequality,

s’ s’
{Dx)” (fo)llz2s,) S e flleeeyllvllgy s,y + 1(Dx) (wf)”ﬁ(z,)”v”L135-/@,)

Sl fllpenwiacs,) “v“Hf’(E,)’

’ 2
where in the last inequality we have used Sobolev embeddings H!(Z,) < W* 'V (%)
/ 2
and H® () — L1 (%;). O

We apply Lemma 12.12 in the special case where v = 3A$k-
Lemma 12.13 Let f be a smooth function satisfying
”w'f”Loomwl,Z(Et) 5 1.

Then

I(Dx)* (far00ll 25,y S 19(Dx)" Bl 2s,)-

Proof Using the support properties in Lemma 5.1, the result follows from Lemma 12.12
with v = 0y ¢. O

We will derive a few of consequences of Lemma 12.13.
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Lemma 12.14 Let f be a smooth function satisfying

”w'f”Loomwl,Z(Et) 5 1.

Then (recall the notation in (12.8)):

(D) (F&7 03801 12¢5,) S 19(Dx)* Gill 123, (12.10)

D Lf 38 @0 125, S 13D Gell2cs,) - (12.11)
. T, o~

(D2 [f(g_—?fjf]nm,) S 10(Dx)* il 25, (12.12)

Proof The estimates follow immediately from Lemma 12.13 and the estimates (5.1).
O

Another consequence of Lemma 12.13 is that we can control negative fractional
derivatives of 3¢y, i.e. terms of the form (Dy)* ~19% . We start with a more general
lemma, before turning to (D, )* ~'3%¢y; in Lemma 12.16.

Lemma 12.15 Let f be a smooth function satisfying'®

I fllenwiac,) + Il 0i fllss,) S 1. (12.13)

and v be a smooth, compactly supported function on B(0, R). Then

D)~ F 202,y S 10D Vil 2cs,) (12.14)
and
||<Dx)s,7l(fazztv)||L2(z,) S ||3<Dx)s/v||1‘2(2,) + ||ng||L2(z,)- (12.15)
Proof For (12.14), note that
I(Dx) N (F 302,

S I 10 (f B0 25,y + 14D 1@ @0l 2,
S IDx)* (forv)ll 2z, + 10 fllas)loavlias,) S I10(Dx)" vli2(s,),
where in the penultimate estimate we have used Sobolev embedding (D)1

L%(Z,) — L2(%,) (which is true since s’ < %) and Holder’s inequality, and in
the last estimate we have used Lemma 12.13.

16 1t should be noted that the W2 bound on & f in (12.13) is extraneous, as it is implied by the other
bounds. We state the assumption as in (12.13) so as to make the application of Lemma 12.14 more obvious.
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We now prove (12.15). We rewrite Bt%v in terms of [y v using (12.9) and apply the
triangle inequality to obtain

D) " F20) 2,

, O . o
< ||<Dx>f—1[f<(gj';,t o+ i l)t,nnm,)

S IRD (0301 2,y + (D) (5, (f“))(axvnuu(z,)
Ffr*ov

+ ”(D”S/_I(W

Mizes,) + (D) 7 (f & 1),,)||Lz<zt>’

where R; = ai(Dx)_l as before.
For the first term, we use that R; : Lz(E,) — Lz(E,) is bounded and then use
Lemma 12.12,(12.13) and (5.1) to bound itby < [|0(Dy)* v|[12(x,)- For the second and

third terms, we use in addition the Sobolev embedding (DX)S/_1 : L% () = L2(Z)).
For instance, for the second term we have (using v = @ v and Holder’s inequality)

(D2 1@ (£ 8D @0l 205,y S M@ FEMN @B 4

L3(E)
S (I8 fllpaspll gtlliees,) + 1o flleesy o digl aes,)) 1002,
S ovllz2es,y,

where in the last estimate we used (12.13) together with (5.1). The third term is similar

and omitted. For the fourth term, we use the Sobolev embedding (D )“,_1 : L% (=) —
Lz(E,) and the estimates (12.13), (5.1) to get

(D >H<f(( ,l)t,»an(z,) S 10vll 25,
We have thus obtained (12.15). m]
Lemma 12.16 Let f be a smooth function satisfying
@ fllponwizs,) + 10 fllias,) S 1- (12.16)
Then
(D) (580 2,y S 19(D0) Bkl (s, - (12.17)

Proof This follows immediately from an application of Lemma 12.15, with v = ¢k
since ¢ is smooth compactly supported in B(0, R) and ngﬁk =0. O
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12.4 Weighted estimates and cutoffs

12.4.1 Gaining weights in the estimate for 8(Dy)*’ ak
Lemma 1217 Let w € C2° be a cutoff function such that w = 1 on B(0, 2R) and

supp(w) C B(0,3R); and w’' € C2° such that @’ = 1 on B(0, R) and supp(w’) C
B(0,2R). Let P be a fixed pseudo-differential operator (of arbitrary order). Then

e, Pl is a pseudo-differential operator of order — oo.
In particular, for any o € R, the following estimate holds:

1P, &) f o ey S I 22 (12.18)
where the implicit constant depends only on P, R and o.

Proof Since 0, and @’ have disjoint support, the desired conclusion follows from
the usual symbolic calculus for pseudo-differential operators; see for instance [32,
Theorem 2 on p.237]. O

Proposition 12.18 Let v be a smooth, compactly supported function on B(0, R). Then
v satisfies the following

19(Dx)* vl 2¢5,) S 1) D) Vll2es,) + 180l 25y (12.19)

Proof Let w € C°(R?; R) be as in Lemma 12.17.
Using the fact v = @ v, we compute

’

(D) v = wd(Dy)" v — [, (Dy)" 10v.
Since @ is compactly supported, we can bound

I d(Dx) vl 25,y S 1x)"9(Dx)* vl 2(5,). On the other hand, [, (Dy)*] :
L? — L7 is bounded by Lemma 12.17. Hence (12.19) follows. O

Proposition 12.19
18(Dx)* Gell L2,y S ) 3D Gell2s,y + 100kl 25,y (12.20)

Proof After we recall that 51( is supported in B(0, R) for every f, (12.20) is obtained
as an immediate application of Proposition 12.18 with v = ¢. O

12.4.2 Gaining weights in the estimates for 9Ey (Dy)s” (%k and aL (Dy)s" (751(

Our next goal will be to prove an analogue of Proposition 12.19, but with also commu-
tations with Ey and Ly ; see already Proposition 12.23. In order to achieve this, we need
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to understand weighted bounds and derivative bounds involving [, (D, )SN]. This will
be achieved in the next three lemmas, before we finally turn to Proposition 12.23.
Note that we use (DX)SH here instead of (D x)s/ since we will only estimate
8Ek(Dx)S”$k and aLk(Dx)Sﬂgk (in terms of 9(D,)* ¢k) where we recall that 0 <
s" < s < % It is important to comment that we cannot estimate 3 Ex (D, )* "ér and

ALy (Dy)* ¢y due to the low regularity of the metric; see the second bullet point in the
explanation of (1.31) in Sect. 1.1.6.

Lemma 12.20 Let f be a smooth function which is supported in B(0, R) for each t.
Then

1) [, (D) 1f 2y S 1 2 s
Proof Step 1: An easy reduction Obviously,
2
1) @, (D) 1f 25, = M@, (D) 1f a5, + D 15 T, (D) 1125, -
=1

Since [[[@, (Dx)* 1fll 25y S I{Dx)* "2 fll12(x,) by Lemma 12.17, it suffices to
show that for £ =1, 2,

I, (DO 1 2y S DD Fllaesy S Ifllasy. (1221

Step 2: Proof of (12.21) We compute

o, (D) 1f = o, (Do) 1" )+ wxt, (D) 1f =[x, (D) (@ f)

=:1 =11 =111

(12.22)

We have by Lemma 12.17 and the support property of f that

12z, S KD 0 DNz S I flzs) S 12,

Before handling /7 and 111, first note that using the Fourier transform, it can easily
be checked that for any Schwartz function f,

[xe’ (Dx>_y//]f _ S//<DX)S//_28Zf- (12.23)

From (12.23), it immediately follows that

12, + 1T 2cs) S D T Fllasy S 12,

Combining the estimates for I, I/ and /11, we have thus proven (12.21), which
by Step 1 implies the desired estimate. O

@ Springer



10 Page 90 of 137 J. Luk, M. Van de Moortel

Lemma 12.21 Let [ be a smooth function which is supported in B(0, R) for each t.
Then, for every index v,

) dule, (D) 1fll2cs) S 18 F 1 2cs,)-

Moreover, if v = i is a spatial index, we have the improved estimate'’

1), (D™ 1 f 2z, S DO Fllzacs,)- (12.24)
Proof Step 0: An easy reduction

By Lemma 12.17 and the Poincaré inequality (since f is compactly supported in
B(0, R)),

[0y [, ( f||L2(>:,) S sy 10 fllzesy SN0 f s,y

Hence, by a reduction similar to Step 1 of Lemma 12.20, it suffices to prove that
fort =1, 2,

Ix*8; [, (Dy)* 1f||Lz<z,> ||af||Lz<z,>,
||x£3i[w'a Dy) ]f||L2(2,) ~ ||(Dx)3 f||L2():,) (12.25)

Step 1: Estimates for general v We compute

xboylm, (D) 1f = Loy (@ (Dx)* f) = xLou (D) (@ f)

= dulw, (D) 16 ) + 0 (@ xl, (D) 1) =00 (1, (D) 1 £)) —@ux DI, (D) 11 -
=:1 =11 =111 =1V

(12.26)

The term I needs to be treated differently for v =i and v = ¢; see Steps 2 and 3
below.

Fortheterms I/ and I11,

we use (12.23) and the L2-boundedness of the (D)~ !9y to obtain

1112,y < 180(@ (Dx)* 28k Pl 25y S 1D 7 Fll2es,)
+1I{ x)s _lavf”LZ(z,) (12.27)

and

111125, < 1Dx)* 7202, Pl 2s,) S D0 7100 fll2(s,)- (12.28)

17 Note that this is indeed an improvement since f is compactly supported in B(0, R) and we can apply
the Poincaré inequality.
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The term IV is the simplest. Since d,x’ is bounded (in L), we have by
Lemma 12.17

1V I2) S DT 2 Fllizey S I l2es,)- (12.29)

Step 2: Estimates when v = t We handle term [ in (12.26) when v = ¢. Note that

"

[0, [z, (D)’ Jx¢] = 0. Hence, using Lemma 12.17, we obtain

o, (D) 1 Pl 25,
Il (D) 1 )l 25,
D 20 Pl s,

<
S0 fllzecg,y S 19 FN2cs,),

||I||L2(2[)

(12.30)

where we have used the support property of f.
On the other hand, by (12.27)~(12.29) (and the L?-boundedness of (D,)* ~! as
well as the Poincaré inequality), we have

I 2cs,y + M2 + 1TV 25y SN0 fll2(s,)- (12.31)

Combining (12.30) and (12.31), we have thus proven the first estimate in (12.25).
Step 3: Estimates when v = i If v = i, by Lemma 12.17, we have

1125,y = 18i[@, (D) 1 Pl 123,
SIDD T Ol S I flles,) (12.32)
Sl S KD fllaes,)s

where we have used the support property of f.
On the other hand, by (12.27)—-(12.29) (and the L?-boundedness of <Dx)—la,»), we
have

T 2x,) + 1T 2x,) + TV 25, S D2 flli2es,)-

Together with Step 2, we have thus completed the proof of (12.25), which then
implies the lemma. O

Lemma 12.22 For every index v, B,

1(x)825[, (Dx)* 1kl 2x,) S 10(Dx)° Bl 125,

Proof Step 0: Preliminary computations Using Lemma 12.17, if (v, B) # (¢, t), we
have

1920 (D) 1l 25, S 13D il 2 (12.33)
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In the case (v, 8) = (¢,1), we know that [3,%, [, (Dx)s”]] = 0 and hence by
Lemma 12.17 and Lemma 12.16, we have

192 0@ (D) 1kl 125, < D) 203kl 125, S 18¢Dx)" il 2s -
(12.34)

Using (12.33) and (12.34) and arguing as in Step 1 of Lemma 12.21, it suffices to
prove

Ix“92 [, (D) 1l 25, < 18¢Dx)* Gell 2cs,- (12.35)

We then compute using (12.22) that

x avﬁ[w (Dx)* 161
=02, [ (D) 1d0) — Bux) 0p (. (Dx)* 1B) — @px") @y (. (Dx)* 131)
= 025 (o, (D) 10 B0 +0Z (@ (x’, (D) 1) —025 (1, (D) 10 ) (12.36)
=:1 =11 =111
—(@xH@p (@, (Dx)* 161)) —(Bpx") @y (. (Dx)* 180)) -
=1V =V

We control each term in (12.36) in the steps below.
Step 1: Term I We separate into three cases. When (v, B) = (i, j), by Lemma 12.17
and Poincaré’s inequality (since supp(¢x) C B(0, R)),

107 ([, (D) 1 B 25y S 10D @D 25,y S 10kl 125

When (v, B) = (i, t), since [0;, [, (Dx>s”]xe] = 0, we use Lemma 12.17 and then
Lemma 12.13 to obtain

192 ([, (D) 1 Bl 2cs,) S D) T & 0@l 2x,) S 13(Dx) Bell 2, )-

Finally, when (v, ) = (1, 1), since [32, [@, (Dy)*" ]x] = 0, we use Lemma 12.17
and then Lemma 12.16 to get

192 ([, (D) 1 Bl 2cs,) S D) 2@ 280l 12,y S 18(D2)* Bell 12, )-
Thus in all cases

1205, S 19(Dx)* dellr2s,)-

Step 2: Terms 11 and 111 Terms I1 and 111 are very similar — we will only treat
I11. We use the formula (12.23). When one of v or § is a spatial derivative, it follows
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easily from (12.23) and the support properties of bx that
192 (@ [, (D) 1001 125,y S 100kl 125, )-

If (v, B) = (1, 1), we use [32, w[xt, (D;)*"]] = 0, the equation (12.23) and then
Lemma 12.16 to obtain

162 (w[xe (Dx)" 160 12¢x,)
Sl (D) 20007 Bl r2cs,y S MDD bkl 2,y S 104D Gell 2, -

In either case

1110125,y S 10(D2)" Bl 2s,)-

The same holds for /71 in a similar manner; we omit the details.
Step 3: Terms IV and V Since 9,x¢ and 8,3)5Z are both bounded, we have, by
Lemma 12.17,

V2w, + 1VIz) S 100w, (De) 1kl 2¢s,) S 10(Dx) dell 125,

We have thus estimated every term on the right-hand side of (12.36) and proven
(12.35). As argued in Step 0, this gives the lemma. O

Proposition 12.23 Foranyr > 0, the following holds (with implicit constants depend-
: 18
ingonr)®°:

19 Ex(Dx)* il 2¢x,) S0 IE(DL) Gkl 2cx,) + 18(Dx)* Gkl 125,
(12.37)

1OLi(D) Gl 2cx,) S 1) " ILk(D2) il L2z, + 18(D2) Gill 125, )-
(12.38)

Proof We will only prove (12.37) 1 in detall (12.38) is similar.
Since dEy{Dy)* q)k = 0Er(Dy)* (w¢k) we compute

VEL(Dy) G = wdEW(D,)" Gi + 0l(Exew ) (D) 1]
— D[, (D) 1k + (0w) Ex (D) .

In particular, by the bounds of Ej in (5.5), (5.6) and the support properties of @,

10 Ex ( Dy)* ¢k||L2(2[) ~ ||3Ek(Dx ¢k||L2():,mB(0 %R))"‘”a Dy)* ¢k”L2(2,ﬁB(O 3R))

=:1 =11
+ [(Dx)* ¢k||L2(E)+||3Ekw (Dyx)* ]‘f’k”LZ(E[)

=111 =1V

18 We remark that the estimates hold with [19¢ Dx)5 c}bklle(E ) replaced by HB(D,()Y ¢kHL2(): ) on the
right-hand side, but the exposition becomes slightly less convenient when citing earlier lemmas.
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The terms I and /] are obviously bounded by the right-hand side of (12.37).
For the term /11, we use interpolation and then Poincaré’s inequality to obtain

D Bell 2,y S 1Bl L2,y + 108kl 20,y S 108Gkl 125,y S 194D el 125, -
(1) () () () ()
(12.39)

For the term 1V, we use the bounds for E,‘: in (5.5), (5.6), Holder’s inequality and
Lemmas 12.21 and 12.22 to obtain

18y Exl@, (Dx)* 1]l 2¢s,)
ST O EL | ooz ()8l (D) 1kl 125,

+ 1) T ES e e 1082, [ (D) el 12s,
SO Bl 2x,) + 190kl 125,y S 19D Gill 2, -

12.4.3 Auxiliary weighted estimates for commutator of a vector field and Riesz
transform

Lemma 12.24 Let f, h be smooth functions such that

1) Rl ooz + Il hllyrenweas,) S 1
l@ fllLeqwiacs,) + @0 fllas,) S 1.

Then, for R; = Bj(Dx)_l, we have

166) ™ [hi RIRUD) (f0.80 11125, S 10(Dx) Gkl 25y, (12.40)
and

100) ' 1hdy, RiRg (D) 1(f 580 2(s,) S 10D el oy, (1241)

Proof Step 1: Proof of (12.40) We first compute

[h0;, RiR;1(D (f3x¢k)
= [(@h)9;, RzRq]< O (f 1) + hl3: RiRg (D), & )(f 5.6
=1 =11
—Ri Ry (h3:[{Dx)*", @ 1(f 3800} —Ri Ry (h (i) (D2)* (f:1)) -
111 =1V
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Term I can be bounded using Lemmas 12.11 (with ¥ = h9;), Lemma 12.13 and
the identity [Y, RjR;] = [Y, R/]1R; + Ri[Y, R;] so that

||I||L2(z;,) ~ ||Wh||wl oc(z;,)” (fak¢k)||L2():,) S 19D )s ¢k||L2(z;,)o

For term /7, we use Holder’s inequality, Lemmas 12.17 and 12.13 to obtain

1) ™ T 2,y S ) Rl oo 108 Ry Ry (D) (fam)nu(z,)
S x)s _1 fax¢k)||L2(2,) 5 [9(Dx)* ¢k||L2(2,)-

For the term /11, we use the boundedness of the Riesz transform, Holder’s inequal-
ity, the improved estimate (12.24) in Lemma 12.21 and then Lemma 12.13 to obtain

1T 2s,) S IRGIDLY @ 1(f 0,80 12(x,)
S oo 1) 1D, @ 1(f 3001 12(x,)
SIUD (F3.800 12,y S 13(D2) Gell 2, )-

Finally, for the term /V, we use the L2%-boundedness of the Riesz transform,
Holder’s inequality and Lemma 12.13 to obtain

V2w, S I1h8iw e (D) (F8.80 25, S 13(Dx)* Bl 2(5,)-
Step 2: Proof of (12.41) We first notice that
[hd;, RiRg(Dx)* 1(f0381) = [hd;, RiRg1(Dx)* (f0,8%) + RiRg[hd;, (Dx)* 1(f 9,.%)-

In view of (12.40) (which controls the first term) and the boundedness of the Riesz
transform, it therefore suffices to prove

1023, (D) 1CF 80l 125,y S 13(Dx)" Bell 2, )-
On the other hand,

[h;, (D) 1(f 1) = [hd;, (Dx)*] (wfaw?m

= W (D), @ 1(f ) + [(@h)d;, (D) 1(f .
=:1 =:11
— (D))" (@) f (0] +h (@) (Dx)* (f3:.00) -
=111 =1V

For term 7, we use Holder’s inequality, Lemmas 12.17 and 12.13 to obtain

1) ™ 2w, S 160 " Rl 181Dy, @1 380 | 25,
SIDD " T 8002w, S 10D Bl 25,
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For term 11, we use Proposition 12.7 (with p = 00), the L2%-boundedness of
9;(Dy)~! and Lemma 12.13 to obtain

1T 205, S ehllyreo (DY ™10 (£ 02801l 125,
SIUDD (fdoll 2z, S 10D Bl s, )-
For term /11, note that @ = 1 on supp(ak), hence (8,~w)8x$k = 0 which implies

111 =0.
Finally, term IV can be treated exactly as term /V in the proof of (12.40) so that

V25, S 19D Gill 2z,

12.5 Estimates for a(Dx)" ak

In this section, we bound || B(Dx)"/ak l22(x,)- We will give the main result in Propo-
sition 12.25 and give a high level proof. The main estimates that are used in the proof
will be proven in Propositions 12.26 and 12.27 below.

Proposition 12.25

sup [19(Dx)* Gill 25, S € (12.42)
t€l0,Tg)

Proof By Corollary 7.5 (with v = (Dy)* ¢, fi = Og(Dy)* ¢k, f> = 0) and Propo-
sition 12.19, for every T € [0, T3),

sup 19(Dx)" Gl }a s,
t€[0,T)

S 720D Gl oy, + sup 106k172x,,
tel0,T)

T T
+ /O 18¢D)" Bill2 s, dT + /0 100) ™20 (D) Bl s, dT

T T
S e+ / 19(Dx)* Gl }as., dT + / 100) "2 0 (Dx)* Gl 72, , AT,
0 0

where in the last line we have used the cflvata bound (4.3a) and the estimate (9.1).
Clearly, Uy (Dy)* ¢ = [Hg, (Dy)* 1¢x. Using (12.6), we in fact have

Og (D) i = (2, (D) 1x — [0, (D) 1.
In Propositions 12.26 and 12.27 below, we will prove respectively that for r > 1,
100 102, (D 1kl s,y S 100D BellF o s, (12.43)
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and
160513 D) 1kl o,y S 19D BellF o s, - (12.44)
Hence,
12 2 ! 2
sup [19(D2)" Bl 2oy, S €+ / 18(D.)" Bl 2 5, -
1€[0,7) 0
The desired estimate therefore follows from Gronwall’s inequality. O

Given the proof of Proposition 12.25 above, we need to prove the commutator
estimates (12.43) and (12.44). For both of these bounds, we also prove corresponding
commutator estimates for more general functions. (These more general commutator
bounds will be useful later in Sect. 13.)

Proposition 12.26 Let v be a smooth, compactly supported function on B(0, R). Then
forr > 1,

1605102 (D Tl 2z, S 100D Vs, + 100l s, (1245
As a result, (12.43) holds.

Proof Recall from (12.6) that (1> = (g~ ")"# szﬂ. By the support properties of v, we

have Bfﬁv = wafﬂv. Hence,

16072002, (D) Wl 2 g, = 10 721D (g™ o250 — (7P (D) 02501l 2,
S MDY @ @) Po2y0) — (e )P (D) 020l 2 5,
=:/
+10) 26 PUD w1020l 25, -

=11

(12.46)

By Proposition 12.7 with p = oo, the estimates for the metric components in (5.1),
and Lemma 12.15, [ in (12.46) is bounded by

I (87925 (Dx) v — (D) (@ (g7 030 125,
N ||w(g_1)vﬁ||le°°(2,)||<Dx)s _lagﬂUHLZ(z,) S N0(Dx) vl 2s,) + 100l 25,y

By Holder’s inequality, (5.1), Lemmas 12.17 and 12.15, 11 in (12.46) can be con-
trolled by

IT S )72 (87D Pl IKDL) . w1050l 125,
SIHUDY) 205l 2s,) S 10(D) vllz2s,) + 100 2s,)-
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Combining the above estimates gives (12.45). ~
Finally, since ¢ is supported in B(0, R) for every ¢, and that Loy = 0, (12.43)
follows from (12.45). O

Proposition 12.27 Let v be a smooth, compactly supported function on B(0, R). Then
forr > 1,

r

llx) =23, <Dx>s,]v||L2(2,) S 19D )S/vllem). (12.47)
As a result, (12.44) holds.

Proof Recall that 0! = ' 9, . We will in fact not need the commutator structure and
bound each term separately. By Holder’s inequality and the estimates for I'* in (5.4),
we have

1) 20N (D) V)l 25,y = 146) " 2T*03(Dx) vll 125,
S )T ooz 194D vl 123,

On the other hand, by (5.4), we have ||wrk||Lwﬂwl,2(E e%. Hence, by

Lemma 12.12, we obtain

BES

1) ™2(Dx)* (@)l 25,y = 1D T80 25, S 13(Dx) vl 2(5,)-

Combining the above estimates gives (12.47). We then conclude (12.44) by using
(12.47), 0 g¢>k = 0 and the support property of ¢>k O

12.6 Estimates for 6Ek(Dx)’” ak

Similarly as in Sect. 12.5, let us first give a high level proof of our main estimate. The
main steps will be postponed to a number of propositions below.

Proposition 12.28 The following estimate holds for all t € [0, Tg):
I~ 3 I~
I0Ek(Dx)” dillr2es,) S € +€210Lk(Dx)” dillr2s,)- (12.48)

Proof Take r > 2. By Corollary 7.5 (with v = Ek(Dx)Sﬁak, fi= Dg(Ek(Dx)Sﬂak)
and f, = 0),

sup [ (x) " OE(DY)” Bl
te[0,T)
T
S x)2OER(D,)* ¢k||iz(20)+/0 1) O Ex (D) @l 3y, dT (12.49)
5 T
56 +/0 ”( ) 2|:| Ek( ) ¢k”L2(E)d
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where we have bound the initial data term as || {(x)~ 3 0Er(Dy)* ¢k || (50 S < €2 using

the assumptions (4.3a) and (4.3b) on X (using additionally (2.3), (5 5), (5.6), (5.1)
and Proposition 12.7 to address commutator terms involving fractional derivatives).

Using (12.37) and (12.42), we can gain weights on the left-hand side of (12.49) as
follows

sup ”8Ek< > ¢k”L2(E)
+e[0,T)

T
S 62 + sup ”8<Dx)s ¢k”%2(2r) +f ||<x)_7DgEk< ) ¢k”L2(Z )
te[0,T) 0

T
sét [ M0 EOEDY Bl s, d
Thus, in order to prove the bound (12.48), it suffices to show

sup [1(x) 20 Ex (D) il 25,y S €
t€[0,Tp)

3
e > 10Zi(Dy)" Bl 2cs,)- (12.50)
Zye{Ek, Li}

since we can then absorb the € > 10 Ex(Dy)* qbk [ 22(x,) terms into the left-hand side of
(12.50) using the smallness of €.
To prove (12.50), we need to control (recall the notation in (12.6))

g Ex(Dx)* ¢ = [Og, Ex (D) 16

= [Og, ExN(Dx)" G + E[OY, (D) 1k + Ex[2, (D) 165
(12.51)

We further expand the last term in (12.51) using the product rule. First, we will intro-
duce the notation

@ =g )P —m", (12.52)
where m is the Minkowski metric. Note moreover that

(2 (D) 16k = (87102, (D) 1

=g )"0k, (D) 1. 0:[(2)"P1 = :ls ).
(12.53)
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Now we compute the last term in (12.51) using the product rule and (12.53) (recall
here (12.3)):

Ed[CP, (Do) 1 = Ejo;[C%, (D) 1k
= E,i(axg—l)“ﬂ)u x>s w105k
+arE,';[(a-(g‘l)“'%a2 (Dx)*" il
— Ep(Dy)" o (3 (8")")025 1]
+ ELLE)PUDD 10,500
+wEk[<g“>“ﬁa,v,3< D) ¢
— Ep(Dy)* [w(g—l)”ﬁa,vﬂm (12.54)
=Ek[w(a'(g—1)”ﬂ>a (D) i
— E(Dy)" [ (3: (g "))
+ EL3i(g)P)UD) w1021
+ ELLE D PUDD . 10,50
—5"8791(d; (w(g”)“ﬁ»Ekam Dy)* 2]
EiTi (@ (@) 97,5(De)" o).

Therefore, by (12.51) and (12.54), in order to obtain (12.50), it suffices to prove

106) ™2 [, Edl(D)* Gkl 2,

Se+er Y 10ZiD Bl 2, (12.55)
Zie{E, Ly}

166) ™2 B[O (D) Vil 125,y S € (12.56)
1) "2 B3 (s ) P)UDY) w102kl 2s,

HI) T2 EL G PUDY . @) 5l 25, S € (12.57)
||<x>—%{E,i[w(ai<g—1>“ﬁ>az< 0 il

—EL(D) [ (387 )")ok il 25, S €. (12.58)
1) 25”8791 ( (8P 5 (Dx)* 2 Gilll 125,

e+ 3 OE(DD Bl os,, (12.59)
IEL T3 (@ (3™, 035D 0l 125, S € (12.60)

The above six estimates will respectively be proven in Propositions
12.29, 12.30, 12.31, 12.32, 12.34 and 12.35 below, for r > 2. O
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Proposition 12.29 For r > 2, the estimate (12.55) holds, i.e.

(S

1x) ™2 [Og, Ex] (Dy)* Pellr2s) S €

§ 1~
+e2 Y 10Zi(Dy) Bellas,)-
Zye{Ek, Ly}

Proof By Proposition 8.10, we obtain

_r "es 3 "~
[I{x)"2 [Dg, Ek] (Dy)* ¢k||L2(2t) S €2(|[a(Dy)* ¢k||L2(2t)
3 s
+e2 > 0Zi(Dy) Bellracs,)-
Zie{Ek, L}
To conclude, we control the first term by (12.42). O
Proposition 12.30 Let Ol :=T%*0, as in (12.6). Then, forr > 2,

< ed. (12.61)
12(5,)

|72, [0 (00" |

In particular, (12.56) holds.

Proof That (12.56) holds is immediate from (12.61) and the estimate (5.5) for E,’C
From now on we focus on (12.61). ~ ~
Using the product rule and the fact that @ ¢y = ¢,

%[00, 0 G = (D0 @ T 080 — w0, (D) 33 + T, (D) 10303
+ (D) (@ (T3, 00) — @ (T (Dx)* 05 + BT M, (D2 10,1
= [(Dy)*, @ T0,00; ¢k + T [, (D2 10,9,

=1 =11
+ (D), 3, T,

=111

+ @)@, (Dx)* 10,8 .

=1V

By Corollary 12.8 we have

~ 9
1y SIT 12, - Wil s, S € (12.62)
Il

R (

using (12.42) and the estimate (5.4).
For 11, we use Lemma 12.17, Holder’s inequality and (5.4), (9.1) to obtain

1) "2 1 | 25,y S I 72D oo 1D @103 61l L2,
3
2

s s (12.63)
S€2Dx) T bklras) S €2 1hdilas,) S €

o
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For 111, we apply the commutator estimate in Theorem 12.5 with p; = oo, p =
p2 = 2 to obtain

wa ~ 2
11125 S HDx) @D L2(x,) - 10kllLoe(z) S €7, (12.64)

using (5.4) to control || (DX)S//(w 3|l 2(x,) and the bootstrap assumption (4.12c).

For IV, we use Lemma 12.17, Sobolev embedding (H%_S” (R%) < L®°(R?%)) and
Holder’s inequality to obtain

1) 2TV 2,y S 1720 T 205 1D w10kl oo (x,)

3 " 3
< e2||[(Dy)* , w]d " Sez|a
S D @081 3 SIS,y

SN0l s, S €, (12.65)

where in the second line we have used (5.4) and (9.1). Combining (12.62)—(12.65)
yields the proposition. O

Proposition 12.31 For any indices (v, B),

IUDx)* 187,50kl 125,y S € (12.66)
and

IUDx)*" 102kl 125, S € (12.67)

As a consequence, (12.57) holds.

Proof Assuming (12.66) and (12.67), it follows from Holder’s inequality, and the
estimates (5.5), (5.1) that

1) "2 EL i (8 )Py w10kl s,
+ 1) 2ENGEDPUD @107 i) 125,
S 2 EL @ (7))o 1Dy, w102kl 2 (s,
) T2 EL @D Pl D @185,50k 125, S €.

i.e. (12.57) holds (recall the notation (g—l)vﬂ from (12.52)).
To obtain (12.66), we note that by Lemma 12.17, the L2-boundedness of 9; (D) !,
Lemma 12.16, and Proposition 12.25,

D), @150kl L2¢x,) S 0D T 005 Bk 12y S 10(D0)° il 2,y S €.

The estimate (12.67) is even simpler and can be obtained similarly. O
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Proposition 12.32 For any index (v, B) and any f satisfying

I, e, S

(12.68)
W S/—J” (2[)

we have

£ (D) 9%k — (D2)*" (f280 125,y S (12.69)

As a consequence, for any index o,

1o (35 (8~ )32 (D) i — (Dx)* [ (85 (87 "P)025 i)l 125, < €

(12.70)
In particular, (12.58) holds.
Proof Step 1: Proof of (12.69) By Corollary 12.8 and (12.68),
LHS of 1269) S I/ 12, - D ™ 05l 2y
< IDx) 02kl 2 s - (12.71)

The estimate (12.69) thus follows from Lemma 12.16 and Proposition 12.25.
Step 2: Proof of (12.70) and (12.58) By (12.69), to establish (12.70) requires only
that

lo @D, = <1
W s'=s7(5))

which in turn follows from (5.1).
Using (12.70), Holder’s inequality and (5.5), we obtain

1) " 2H{EL [ (3 (g™)"P)0%5 (D) il — EL(DL) [ (0 (g ™))% bl 125,
< I >—%E;;||Loo<z,)||[a-f<a-(g—1)”ﬂ>a2 (D) $i
— Ej(Dy)" [ (3 (7))l 2 (s, S €

which establishes (12.58). O

Next, we consider the term (12.59); the main estimate will be obtained in Propo-
sition 12.34 below. To ease the exposition, we prove an important but technically
involved commutator estimate in the following lemma:

Lemma 12.33 Let Y’ be a smooth function satisfying

1) Y oz S 1. @Y iy s ynweee) S 1.
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Then

1) Y Ry Ri(D2)* (8" 021) — RiRg(Dx)* (Z*Y' 9280} 12(x,) S
(12.72)

Proof We consider separately the cases when we sum X over the spatial indices and
when A = ¢.
Step 1: Summing ) over spatial indices We compute

YRR (D) (870%,41) — Ry Ri{Dx)*" (87" 9% i)

= [Y'8), RyRi(Dy)* 137 8,B1) —Y' Ry Ri (Dy)* (8,8 (0]
=:1 =7 (1273)

+ RyRi (D) 1Y (3;87)(3: )]

=111

The term (x)~'7 is bounded in L?(X,) by € using (12.41) (with h = Y, f = gi),
(5.1) and Proposition 12.25. (x)~' 17 and (x) ™' 111 are both bounded in L(X,) by €
by the assumed estimates on Y?, the L?-boundedness of R;, (5.1), Lemma 12.13 and
Proposition 12.25. Combining these observations give (12.72) when A is only summed
over the spatial indices.

Step 2: The . = t case It is notationally more convenient to prove more generally that
for f satisfying || f || w200 (x,) S 1, we have

1)~ Y Ry R (D) (f01) — RiRg (D) (fY' i)}l p2s,y S €. (12.74)
First we compute, using the wave equation for br (see (12.9)), that

— Y'RyRi(Dy)" (f0360)
T8, 01

=Y 0y R (D) " (F&70% i + TRk

LR
= [Y'd,, R,-R,»<DX>‘Y”]<f§”ax¢7k>
= ‘ N , o (1275)
+ RiR; (D) [Y' (3, (f37)(@:60)] + RiRj (D) (Y' f§7*0%, 1)

=11 =111

p : ~ v fT 0,0
—Y' Ry Ri (D) [(9;(f§7) 0,801 + Y' Ry Ri(Dy)* (%

=1V

),

=V

where the term Y’ 9, R; (D ys' =1 (fgfka ¢k) is computed in a way similar to (12.73).
The main term in (12.75) is I11. Indeed term / can be controlled by (12.41) in
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Lemma 12.24 (combined with (5.1)), while terms /1, IV and V can be handled using
Lemma 12.13 (again combined with (5.1)) so that

3
M2z + 1M 2sy + 1 Vs, + 1V 2, S €t (12.76)

)~
Finally, for the term /717 in (1~2.75), we shuffle the 9; and 9, derivatives and once
again use the wave equation for ¢y (recall again (12.9)) to obtain
11 =R;iR;(Dy)" (Y' f§792, 1)
= RiRy (D))" (f§7"Y' 0%, dk) + Ri Ry (Dy)* [(3;(fY'§)) (9:60)]
— RiR; (D) 1@ (fY'E") (@601

” ~ . YtrAa 7
= —RiRy(D) (/Y020 —Ri Ry (Dy)* <%> (12.77)
=111
=11l
+ RiRy (D) [0 (fY'§7%) (@801 —Ri R (D) [0 (fY'§7)) (0001
=111z =111y

The main term here is /71; (i.e. it is included in the main term on the left-hand side
of (12.74)). Using again Lemma 12.13 (or obvious modifications), we have

3
1L s,y + T 2cs,) + H Tl 2s,) S €3 (12.78)
Combining (12.75)—(12.78), we obtain the desired estimate. O
Proposition 12.34 Let Y be a spacetime vector field satisfying
1) ™'Y ez + 10: Y llzoecz,) + 12) 9 Yooz
+||wyv||Wl,oomw2,4(Et) SJ l (1279)
Then for any spacetime index (v, B) # (t,t) andr > 2,
1) "2 (D) 207 5kl 25,y S IOV (D2) Gellrags,y +€ (12.80)
Also,
r "_ ~ _ 0, bx
1602 (Y (D) 7202, bk + Y0 (D) 20y (— o) 2
! an® ' (g EED (g1

S NAY(Dx) il 2z, + €

In particular, (12.59) holds.
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Proof Once we obtain (12.80), (12.59) follows easily from the fact that Ej has only
spatial components, the estimates (5.1) and (5.5), (5.6). More precisely, taking advan-
tage of the compact support of @, we obtain

Is"8991(0 (e (3~ 1)P) Exdd (D) 2Bl 125,
1) 28 (@ (3~)P) oo ) 100) 2 Excdg 5 D) 2Bl 125,
18 @ (3Pl ooz 1) ™2 B (D0 Bkl 125,

; "~
< 2(DED) Fill 2z, +6)-

A

A

In the remainder of the proof we focus on proving (12.80) and (12.81): (12.80) will
be proven in Steps 1-2 and (12.81) will be established in Step 3. The proof of (12.80)
will be further split into two cases: the (v, 8) = (i, j) case will be treated in Step 1;
the (v, B) = (i, t) case will be treated in Step 2.

Step 1: Proof of (12.80) when (v, B) = (i, j) In this case,
Y(Dy)* 7293 ik = Y70, Ri R85 (Dx)" i
=[Y" 8y, RiR;j105(Dx)" ¢k — RiR;[(94Y7) (35 (Dy)* )]
+ RiRj (3 (Y (D) $1)).

Using Lemma 12.24 for the first term, and using the L2-boundedness of R; (and
Holder’s inequality) for the second and third terms, we thus obtain

)~ 2Y (D2 207kl 12¢s)
SN3D) Bl 2z, + 19 Y ooz 18(Dx)* il L2,
+18Y (Dx) il 12,
SNV (D) Gkl 2s,) + €
where we have used (12.79) and Proposition 12.25.

Step 2: Proof of (12.80) when (v, ) = (i, t) Decompose ¥ = Y9, + Y'9, and
commute Y9, with Ry R;(Dy)* . We then obtain

Y(Dy)*" 7203, bk = [Y 8¢, RyRI(Dx)* 0, + RqR,»<Yfaz<Dx>f”a,$k)( 1252,
+ Y9, Ri (D) 02y

Rearranging, this implies

YD) 7200, 6k — Ry Ri(Y (D) 0,)
= [Y*0y, Ry Ri1(D.)* 0Bk + (Y Ry Ri(Dx)* 92 — Ry Ri (Y (D))" 02 61)) .

=/ =11

(12.83)
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We begin with the main term on the left-hand side of (12.83). We compute

YD) r = 0 (Y (D) $) — @ (3 Y")du (D)
—@ Y3, UD)" @ g — (0¥ 0,m) (D2) B

Hence, by L?%-boundedness of R, R;,Holder’s inequality, (12.79), (9.1), Lemma 12.21,
(12.39) and Proposition 12.25,

IRy Ri (Y (D) 90 12,
< 1Y (D0 Fell 2,y + 18V Lo (s 190 (D) Bell 125,
+ 1) 8Vl e (H)IUD " 1kl 2, (12.84)
+ 18 | Loz 0D Bl 2(5,))
S 1Y (D) Fellp2x,) +e.

By Lemma 12.24 and Proposition 12.25, the term 7 in (12.83) can be bounded as
follows,

1) 2 2wy S 1D 3l 2s,) S €. (12.85)

For the commutator term / /, since in general [ Y7, R, R;]is only bounded L? =) —
LZ(E,) (instead of gaining one derivative), we need to use the wave equation for ¢k
and then exploit the gain given by Lemma 12.24. More precisely, we compute using
(12.9) and 3, ¢ = @ ;. Py that

Y'RyRi (Dx)* 0261

Hoir iy v TH9,
= —Y'RgRi(Dx)" (g”?)f-xqﬁk)—Y’RqRi(Dx)s ((g,l),t

— R R Y (Dx)* (%03 §1) — [Y'9;, RgRi1(D0)" (372 )
—Ry R Y (D) [(3;87) (03601
Y Ry Ri (D) 1387 (0,601

» T3,
t K
YR Ri{Dx)" (S

= RgR;Y'(Dx)" 0281 —1Y'9}. Ry R:1(Dx)* (70, 0)
=11
—RgRi (@Y (Dx)" 13,8 @.80])
:~112
— Ry RAY' (D), @ 1((3;87%) (03 81)))
=0

)

)

@ Springer



10 Page 108 of 137 J. Luk, M. Van de Moortel

. N o T,
+ 'Ry Ry (Dx)* 10873101 =Y' Ry Ri (D) ((g_Tﬁ'D
=1l =115
9,4
+ Ry RV (D) i;fleRqR VD) eI ST (1286)
=:11¢ =117

The first term on the right-hand side of (12.86) is the main term (recall again
term /7 in (12.83)). We will bound all the other terms. First, //; can be bounded by
Lemmas 12.24, and the estimates (5.1) and Proposition 12.25,

1l 2cs,) S 18(D Gill 2z, S €. (12.87)

The terms I I», I I+, I Is and I I are easier: We use the L2-boundedness of R;, Holder’s
inequality, the assumption (12.79), Lemma 12.14 and Proposition 12.25 to obtain

1 Ll 2 s, + 1660 "2 Tl 2 g,y + 1) T2 T sl 2x,y + M Tl 25, S €
(12.88)

For 115 and I I7, we use the L?-boundedness of R;, Holder’s inequality, the assumption
(12.79), Lemma 12.20, (9.1), (5.1), (5.4) to obtain

11025y + 1 7l 2(s,)
ST Y oo (K UDR) ., @138 @38 1 123,

+ 1) [(Dy), Iy _?;élf)”wz,)) (12.89)

A¢k
SN@;8™) @l 2s,) + || T lr2es) S

Plugging in the estimates (12.87)—(12.89) into (12.86), we obtain

11N 2,y = 1Y Ry Ri(Dx)*" 07k — Ry RiY' (D) 9l 2z, S €
(12.90)

Combining (12.84), (12.85) and (12.90), and returning to (12.83), we thus obtain

1Y (D) 7202, Bll 125 S IRRi (YD) 9l 2,y + Il 22,y + 1T 25,
S10Y (D) Bl 2 s, + €.

as desired.
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Step 3: Proof of (12.81) We begin with an application of the wave equation (recall
(12.9)):

Y(D.) 7202,k = —Y RgRi(Dx)* (8™ 0:0)

=:1
~ v T*0, 6,
+Y Ry (D) T (@87 (03601 —Y ' ReRy (D) ( (g_ifj’f)
11
111
L~
—Y’Bth(Dx)S”_l(F 8“f”‘). (12.91)

(gfl)tt

Note that the last term —Y'9; R, (Dy)* 71(1“ ??;’;f) is present in the statement of
(12.81). It is therefore sufficient to control each of I,IIand I11 in (12.91). This will
be carried out in Steps 3(a)-3(c) below.

Step 3(a): Term I in (12.91) As in Step 2, we write ¥ = Y49, +Y'9,. We compute

YR, Ri(Dy)* (39,0
= [Y%3r, Ry Ri(Dx)* 187 0:6) + Ry Ri (Dx)* Y (308™) (0161)]

=0 =1
+ RyRi(Dx)* 8™ (Y 300, 1)] (12.92)
=13
+ Y R Ri (D) [(8,8™) (.01 + Y' Ry Ri(Dy)* (802 ) -
=iy =I[5

I, I, 14 are easier error terms. Indeed, using Lemma 12.24, (12.79) and (5.1) for I3,
using Lemma 12.14 for I and /4, and then applying Proposition 12.25, we have the
estimates

11l 25y + 1202z, + Hall2s,) S € (12.93)

we skip the details.
We will combine /3 and /5 in (12.92). First, by Lemma 12.33,

1)~ (Us — Ry Ri(Dx)" (8" Y 030 125, S €. (12.94)

Therefore, recalling the definition of I3 and /5 in (12.92) and then using (12.94), we
obtain

|1+ Is — Ry R (D) 18" (Y 3,301l 125y S (12.95)
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We next estimate the term Ry R; (Dx)* [g”‘(Ya,\m)] (appearing in (12.95)). By the
L2-boundedness of R4 R; and Yakqbk = wY8A¢>k, Proposition 12.7 and (5.1)

IRGRi (D) 18 (Y0801l 25,y S I4Dx) [ 8™ (Y3801 125,
< w‘vi)L =} D SNYB &) 2

g ||L =) [{Dx) A/(Zjli“L = (12.96)
+ ll g ooy (D<) 'Y okl 125,

SIUD Y0l 2cx,) + (D) 1Y 8% Gell 2,

We then bound each term on the right-hand side of (12.96). For the first term, we use
85)»@( = wafm, Proposition 12.7, (12.79), Lemma 12.16 and Proposition 12.25 to
obtain

(D) (Y782 ¢k)||Lz(z,)—||< O @Y 0% Gl 12z,
< oY 95, (D) ¢k||L2(>:,)
+qu“||W1,oo(§2||<Dx>S”—183A¢7k||Lz<z,> PR
S @ g, (Y (D) $ll 2 ¢x,) + 193 @ Y )l zoo s 130 (D) il 2s,
+ (D) 7102 Brll 2,
< N8Y (D) Gill 2, + €

For the second term on the right-hand side of (12.96), we directly use Lemma 12.16
and Proposition 12.25 to obtain

D) 1YY 02, Gl 125,y S 19D Gill 25, S € (12.98)
Plugging (12.97) and (12.98) into (12.96), we thus obtain
IR R (Dx)* 18 (Y 0,801l 125,y S 1OV (D2 Gill 2z, + € (12.99)

Finally, we combine (12.93), (12.95) and (12.99) to obtain

11205,y S IRg R (D) 18 (Y 03801 123,y + € S 110Y (D) Gell 25, + €.
(12.100)
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Step 3(b): Term 11 in (12.91) We again write Y = Y49, +Y'9, and expand as follows:

11 =YR,(Dy)" *1[(81 3 (101
= Y R, Re(Dx)* [(3:3™)(3:.80)]

=11
+ Y Ry (Dy)* (02 8™) (.01 (12.101)
=11
+ Y Ry(D) (38 02 0]
=I5

The term I1; can be directly handled by (12.79), Lemma 12.14 and Proposi-
tion 12.25 so that

1) 211 |25, S €. (12.102)

I is even easier: we use the L2-boundedness of R, (Dx)‘”_l, (12.79), (5.1) and
the bootstrap assumption (4.12c) to obtain

1) ™3 1 Il 2y SIGO ™ Y oo 1078 080l 25,

o 9
SI@ZE™M @@ 25 S N078 ™ 2w 10kl Lo (s, S €3

For the term /73 in (12.101), we use (12.79), Lemma 12.16, (5.1) and Proposi-
tion 12.25 to obtain

1) "2 1Bl s, S €. (12.103)
Finally, combining (12.102) and (12.103) yields
1) "2 | 2,y S €. (12.104)

Step 3(c): Term 111 in (12.91) The very final term /77 in (12.91) is simple. Indeed,
by Holder’s inequality, (12.79), Lemma 12.14 and Proposition 12.25,

_r , T* 3)315](
10751 g2y S 100~V iz LD () gy S € (12:109)

Finally, we plug the estimates (12.100), (12.104) and (12.105) into (12.91) to obtain
(12.81). O

Proposition 12.35 When (v, B, 0) # (t,t,1),

w

1T (@ (8™, 02,5 (Dx)* Pl 25,y S €2, (12.106)
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where we recall the notation (="' from (12.52).
In particular, (12.60) holds.

Proof That (12.60) holds is immediate from (12.106) and the fact that E; does not
have a t component. From now on we focus on the proof of (12.106).
By Corollary 12.10 and (5.1), the left-hand side of (12.106) is bounded by

LHS of (12.100) 5 =@ )1l D) 7202 sl L2(5,)

2
2, =57 (=)
3 o ~
S D) 7200 5Bkl 25,
Note that if two of o, v, 8 are spatial, we use Proposition 12.25 to get
(Dx) 7203 g el 2,y S 10(Dx)* il 2,y S €
which gives the desired estimate.

The only remaining case to consider (after relabeling) is (v, 8,0) = (¢,¢,1). By
the L?-boundedness of (D,)~'9;, Lemma 12.16 and Proposition 12.25,

) ~ RPOR
(D) 720, il 2,y S D2 5l r2es,y S €

which again gives the desired estimate. O

12.7 Estimates for AL, (Dy)* $k

As in Sect. 12.6, we begin with a high level proof, leaving the main estimates in later
propositions.

Proposition 12.36

1Lk (D) ill 25,y S €- (12.107)
Moreover, combining (12.48) with (12.107), we obtain

19 Ex(Dx)* Gl 25, S €. (12.108)
Proof In order to prove ||8Lk(Dx)“Nq~5k|| L2(%) < €, we will derive and use the wave
equation for Ly (DX)S”%/(.

Our main strategy is to decompose
O Li(Dy)* e = Li3,C + F (12.109)

for appropriate C and F (Step 1). The term F will be bounded in L?(%;), while the

term L} d,C will be treated with an additional integration by parts in 7. The relevant
estimates will be treated in Step 2 below.
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Step 1: Achieving the decomposition (12.109) We first write (recall the notation in
(12.6))
O Li(D)" ¢k = [Og, Li(D)* 1k = [, Lil(Dy)"
+ L0 (Do) 1k + Ll T2, (D) 1. (12.110)
Now, recalling the notation in (12.3) and (12.52), the last term in (12.110) can be

further computed using the product rule as follows, by the same computation that led
to (12.54):

"

L[, (D) 1x = LY 8, [0, (D) 1o
= Lo (0,(g7")"")0%5( D) il — L (D) [ (8,810
+ L @u (e )PUD), @102k + LETGE ) PUDY) @183, 5]
— 578790 (w (3P (Liddp(Dx)" 2hi) — LE T (@ (@), 83 50).

(12.111)

There are a few terms in (12.110) and (12.111) which cannot be estimated directly
and have to be separated out. First, there are the following terms:

L’kat[DW D 1B, LLGEH'UDYY, @10,

(12.112)
LTS (@ (37", 83,60).

The term —s”8/9[(9;(w ((é_l)"ﬂ))Lka;W3 (D) 2] also cannot be controlled
directly. It can be shown (see (12.123) below) that up to controllable error, this term
is essentially the following:

o
s”afq(aﬂw(g—l)”))L,iat<Dx>f”‘28q<%>- (12.113)
8

In order to handle the terms in (12.112) and (12.113), we define

r‘auiik)

C =04 (D) 1 + 57679 (9 (e (@~ (D) 20
[ ’< ) ]¢k+s (/(w(g ) ))< ) q((g—l)tt (12114)

+ @YD) D1k — T (@ ()", 82¢k).

It is easy to check that

/"o~ . Vi FAB &
Li3,C = Lo, [0 (D) 1k + 58793 (e (37)")) Loy (Dy)* _284(@——?)%
+ Lie YD, @ 19],fk — lieq;w%(é‘l)” CHI (12.115)
8 @D 0y ()

+ @0 (e YD), w12 — LL T (0 (@ (3™, 9260
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so that the first four terms are exactly the uncontrollable terms in (12.112) and (12.113),
and the last three terms are error terms generated in this process.
Finally, we define F as follows so that (12.109) holds by (12.110), (12.111),
(12.114) and (12.115):
Fi= [Og, Lil(Dy)" i
+L (0" (D) 16k + L 10 (e~ H)UD), w1075 4]
FLELEDPUDY w107, p0k] — L3~ (Dx)* w18},
+LE @ (3, (8702 (D2) fi) — LD [ (3, (8~ ]
—s"8091(0; (@ (37") ")) Lid, 5 (Dx)* ]

. " r+o
—s"879(d; (W(g_l)vﬁ))Lzat (Dy)* _284( (g 7??:)
LgTrgs(W(g_l)Uﬂ7 3,3wﬂak) + Ly res(w(g'_l)” am¢k)
* 9.0

58702 (w (g 1)")(D >S’*28q< ) — (3 (g YD), w102 ¢k

(g=hHr
FLLTS 3@ (3™, 83¢0). (12.116)

Step 2: The estimates We will handle the F term and the L'9,C term separately.
For the F term, we will prove that for all r > 2

)2 Fll ) Seted Y 10ZuD) Bill . (12117)
Zre{Ex, Li}

In view of (12.116), the following estimates together imply (12.117) (note in particular
the similarity of (12.118)—(12.124) with (12.55)—(12.60)):

100) =510, LD Bell oy Sete Y. 10Zu(Da) Belliacs,)-

Zye{Ex, Ly}
(12.118)
1) "2 L 100, (D) 1kl 125, S € (12.119)
1) "2 LEL@u (e DN w102 125, S € (12.120)
1) HLE TG PUDy) 18] 5]
—LL @Y UDY w105, Bil 2 s, S € (12.121)
Ix) "2 {LEL w(a (™))% (Dx) i
_m O [ @))% 2 s, S € (12.122)
100) " 25"879{(0; (e (3=)P)) L0} 5 (D) 2
+L;<aj(w<g'—l>”>)a,<Dx>f”—2aq<%)}||m,) < (12.123)
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I

1) T2 ILE T (@ (3D, 83,5600 — LiTae@ @D, 83,801l 2, S €

(12.124)
r . r'o

1)~ 25”879 (0% (ar (3~ )")(Dy)* 20, oy j;’?’,‘mz(z,) Se, (12.125)

1) ™2 @ (g~ D) @12kl L2, S € (12.126)

1) "2 LE TS @ (@ (@)™, 920l 125, S €. (12.127)

The estimates (12.118)—(12.127) will be proven in Proposition 12.37.
On the other hand, we will prove in Proposition 12.38 below that the term C in
(12.114) can be bounded as follows for all ' > 1:

1)~ 7 Cllacs,) + 1072 0:Cllax,) S € (12.128)

Step 3: Putting everything together We rewrite L'9,C = leoC + ﬂla,-c using (2.5)
and (2.31). We now apply Corollary 7.5 with v = Li(D,)* d)k, f1 = F + IBiC,

for=C,h= N and r > 2. Note that the bound (6.2) holds for 4 = N thanks to (5.1).
Thus

sup [1(x) " PDILL(DR)" Bell7a s,
tel0,T)

S 1) 729 Lk(Dy)* ¢k||L2(E)+ sup 1) 2Cl3ag,
€[0,7)
(12.129)

T
+/0 (1) ™2 fill7a g, + 10072 Cll a5, + 106) "20:Clla 5, ) d
2 r L 2
5 € +‘/(; ||<x)7§f1”L2():l)dt

where in the last line, we have used the initial data bounds in (4.3a) and (4.3b), as well
as controlled C using (12.128).

Notice thatby choosing r’ = r—1,(12.128) and (5.1) imply that || (x)’% %’ i Cllr2 s,
< €. Combining this with (12.117), we thus obtain

_r 3 ey
||(x) 2f1||L2(Zt) 5 €+ €2 Z ||azk(Dx>s ¢k”L2(E,)‘
Zie{Ek, L}

Plugging this into (12.129), and then using (12.23) and Proposition 12.25, we thus
obtain

1~ 3 1~
10Li{De)" Bl sy Se+e€r D 110Zi(De) Gillr2cs,)-
Zye{Ek, Li}
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Then we wuse (12.48) and the smallness of € to absorb the

€3 > zeetbr. 10Zk{Dx)* Gkl 125, terms into the left-hand side: both (12.107) and
(12.108) follow immediately. O

Proposition 12.37 The estimates (12.118)—(12.127) hold for r > 2.

Proof Step 1: Proof of (12.118) This follows from Proposition 8.12 applied with
v = (Dy)* ¢y and Proposition 12.25.

Step 2: Proof of (12.119) This follows from Proposition 12.30 and (5.5).

Step 3: Proof of (12.120) This follows from Proposition 12.31, Holder’s inequality
and (5.5), (5.1).

Step 4: Proof of (12.121) By Holder’s inequality, (5.5), (5.1), we get

1) LY )P LD, @193 il — Li (8™ ) UDY) @103, i) 125,

S Y T 2LE @Y e 1D @103, 8k 25,
W, B, ) #(,1,1)

§ 1" ~
€2 > DY @105,k r2x,) S €
W, B, 1) #(,1,1)

A
Ll

(Note that —L%(g~")'[(Dx)*", @19}, ¢k exactly removes the (v, B, 1) = (1,1,1)
contribution from the first term.) Note also that in the final inequality, we have used
(12.66) from Proposition 12.31 (since there is no (v, 8, u) = (¢, t, t) term).

Step 5: Proof of (12.122) This follows from (12.70) in Proposition 12.32 and (5.5).
Step 6: Proof of (12.123) First, using Holder’s inequality and (5.1), we obtain

c o . p I8,
1)~ 25"879((3; (g™ )P)Lid] 5 (D) 2k + Li(3j (g3 (Dy)* ‘28q<@_7i)d§’,‘>}||m,>

SO 185 Pl 160 T2 Lid) g (D2) 2kl 25,
. B)#(1,1)

_ _r "o o TH00k
1987 oy 1) ™ HLadg (D)4 Lide (Do) 720 (=i Mz
3 _r VA~
Ser Y )T ILid) s (D0 il s,
v, B)#(1,1)

3 _r "_n~ "_ F}La)‘gk
+ €2 (x) T Lk, (Dy) T2k + Lidy(Dy) zaq(WHllm,)-

To conclude, we apply Proposition 12.34 with ¥ = L; (where the bounds (12.79) are
given by (5.5), (5.6)): more specifically we use (12.80) for the first term and (12.81)
for the second term.

Step 7: Proof of (12.124) This follows from Holder’s inequality, (5.5) and Proposi-
tion 12.35. (Note that Lf{ Tr‘gs/(w(g_l)”, af,,éﬁk) exactly removes the contribution in

LETS (e (31, 03, 40) where (11, v, B) = (t,1,1).)
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Step 8: Proof of (12.125) By Sobolev embedding, (Dy) 23, : L*(X,) — L*(%,) is
bounded. Thus by Holder’s inequality, Lemma 12.14 and Proposition 12.25,

175965 o YDy I

_ //F 8)~¢k r~ 5
||8 (w(g 1)”)||L4(2[)||(D ) W”LZ(E,) ~ 62 0(Dy)* ¢k||L2(2,) Sez,

where we have used Holder’s inequality and the condition 0 < s" —s” < % to deduce

182 (6™ )l 4¢s) < €7 from (5.1).
Step 9: Proof of (12.126) By Holder’s inequality, (5.1), Lemma 12.17, Lemma 12.16
and Proposition 12.25,

1) ™2 @ (gD, @102kl 2cs,)
< ) 2@ (87 D oo (D) 202Gkl 125,y S €2

w

Step 10: Proof of (12.127) By Holder’s inequality and Corollary 12.10 (with 8; = s,
0, =s",p= ﬁ), (5.1), (5.5), Lemma 12.16 and Proposition 12.25,

Ix) "2 LTS (3 (@ (3™, 8260l 2¢x,)
< ) T2 L ooz 10 (@ (37| s

2 D ‘Y,_132~k 2
20 MDY 0Bl

3 - 1o 5
< D) T 9 el 2z S 3Dy bill2zy) S €2

W

Proposition 12.38 Let C be asin (12.114). Then for allr > 1

()7 2Cll2(s,y + 1) 728 Cll2cs,) S €

Proof We consider the four terms in (12.114) respectively in Steps 1-4 below.

Step 1: [0', (D) 1

That || (x)~2[0!, (Dy)* 16kl 12(x,) < € follows from Proposition 12.27 and Propo-
sition 12.25; that || (x)_%a,-[Dl, (Dx>s”]$k”L2(E[) < € is a consequence of Proposi-
tion 12.30. . .

Step 2: 5"879(3; (w (§~))(D)*" 204 (A4 %)

By (5.1), ||(x)*%aj(w(éfl)”)llLoo(z,) < €3, Hence, using Holder’s inequality,

~

Lemma 12.14, the L?-boundedness of (Dx)’zaq, and Proposition 12.25, we obtain

) _ oo T8, 3 o T*p 5
10737859 3y G D 2 (N 25, S € DY <%>|\Lz@)~ e
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To estimate the derivative, we use also the product rule, Holder’s inequality, (5.1),
Lemma 12.14 and Proposition 12.25 to obtain

8, 1
(g~ Hr )>

(x)"29; (s”sfq(aj(w(g‘)"))(D;;)“aq(

L2(Z)
__ r’ 3A¢k
< 19 @ @Dz (D) (e

0
197 (@ (3 L) (D) _1(( _i\;]?]:)HL 2(%)

3 o TH8,¢1
S €2|(Dy)’ (W)”LZ(E,) S

N\u-

Step 3: (g7 )"[(Dy)*", @13%¢x To bound (g~ [(Dy)*", @192 itself, we use
Holder’s inequality, the estimate (5.1), Lemma 12.17, Lemma 12.16 and Proposi-
tion 12.25 to obtain

10072 @D U w10kl (s,

S 2@ oo 1002 202Gkl 125, S €.

For the derivative, we first use the product rule to distribute the 9; derivative and
then argue in a similar way as above, i.e.

1)~ 20: (g™ 1(Dx)*, @192} 125,
S )20 (e ™) e s 1 (D) —28,[¢k||Lz(z,)
1) "2 ooz D) T 2kl 125,y S

Step 4: TS.(w(3~")", 02¢x) For T:.(w (3", 82¢y) itself, we use Corol-
lary 12.10, the estimate (5.1), Lemma 12.16 and Proposition 12.25 to obtain

"

T8 (@™, 92601125, S 1@ ooy D) T 92kl 25, S €

For the derivative, we first use product rule to obtain

119 Tres (o (g_l)” att¢k) ”LZ(Z;)

ST @ (@ @), 280125, + 1T (@ @D, 83,002, -
(12.130)

The first term in (12.130) can be estimated using Corollary 12.10, the estimate (5.1),
Lemma 12.16 and Proposition 12.25 to obtain
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1T @ (@ @™ 82 a0l 2cs,)

S @@ I )||<Dx>s APl 2z, S e

N (=

The second term in (12.130) can also be estimated as follows using Corollary 12.10,
the estimate (5.1), Lemma 12.16 and Proposition 12.25

T2 (@ (gD, 83,0125, Sl @ D7l S E)||< D T2l s S €
t

—s" (

12.8 Control of E @ and L@y in H'*

We turn to the estimates that are analogous to (12.107) and (12.108) but with vector
fields and fractional derivatives taken in a slightly different order.

Proposition 12.39 The following estimates are satisfied:

Yo 1 Zdilligiir s, S e (12.131)
Zie{Ex, Li}
Yo 19 Zebell e s, S e (12.132)
Zye(Ey, Li}

Proof Take Z € {Ly, Ex}: the goal is to show [[(Dy)*" (3, Zkdi) 125, S € We
write the following identity

(D) 0 Zadi) = (D) (v ZDaide) + (D2 (Zi;aua,-$k)
— (Dy)* ((avzk)a ¢k) + @ Zidu (D) G + (D), ZL 10,y

= (02" (w0 ZD0idi ) + @ Zi(D2)” i — (0,20 (D) i
N ———
7 11 111

" + ~
+ [(Dx)* @ Z10v0; ¢ -
v

We will treat each term separately.
For I, we use Lemma 12.6

11125,y S Nl DZP) oo (2 119 il e =) T lew D Z) v s 19 Bl (s,

S €3 + I DZ) g1 5 19iPrll Lo ) S €
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where for the second inequality we used (5.6) and Proposition 12.25 and for the last
one we used (5.6), (5.7) and the bootstrap assumption (4.12c).
For 11, we use (12.107) and (12.108) and we get directly

10205, S €

For 111, we use (5.6) and Proposition 12.25 to obtain

11Vl 2cs,) S 10Z¢ Loz nB0.3R) 13 (Dx)* Gll2s,) S €.

For IV, we use Proposition 12.7 with f = Z]i{ZD', h= 8,,8,-¢~>k, 0 =s" and p = oo:

V25 SN ZElwioocs,nBo.3r) 1{Dx) T 3i80(Dx) il 125,
SN(Dx) el 2, S €

where for the second inequality we have used (5.5), (5.6) and the L2-boundedness of
the operator (D, )~'9;, and for the last inequality we have used Proposition 12.25. 0O

13 Energy estimates for ¢beq

In this section, we prove energy estimates for ¢,.g. We will prove that ¢, is bounded
in H2' (%), uniformly in 8. Since ¢, is initially more regular, the proof of the
energy estimates for ¢y, is also considerably easier than the higher order energy
estimates for ¢.

We begin with the energy estimates for up to the second derivative of ¢;.¢. These
bounds follow easily from the general energy estimates derived in Sects.7 and 8.3.

Proposition 13.1 The following estimates hold:

sup (100breg | 22(5,) + 107 ¢reglr2es,) S € (13.1)
te[0,Tp)
max sup Z (||Zk3x¢reg||L2(c5k([0,TB))) + ||Zk¢reg||L2(c{§k([o,rg)))) Se
uk€R 7, e(Li Ex)
(13.2)

Proof Werecall that ¢, is compactly supported on B(0, R) and satisfies g¢og = 0.
Thus we can apply Proposition 7.3 and Proposition 8.9 simultaneously with Uy = —oo
and Uy = 400 to get

sup  ([10¢regllp2(x,) + 100xPregll2(x,)) Se (13.3)
t€[0,Tp)

max sup Z (||Zkax¢reg||L2(C5k([0,TB))) + ||Zk¢reg||L2(c5k([o,TB)))) Se
“eR 7, e(Ly Ex)
(13.4)
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after using (4.2) to bound the initial data term.
Compared with the desired estimates (13.1) and (13.2), the only thing missing is
a bound on ||3t2z¢’reg||L2(2,)- Using the wave equation [ly¢,.e = 0, we can rewrite

8,%¢reg by (12.9) as terms which can be bounded using (13.3) above together with
(5.1) and (5.4), yielding the desired estimate. O

We then turn to the energy estimates for the 2 + s” derivatives of ¢,,. For this we
will also use the commutator estimates with fractional derivatives proven in Sect. 12.

Proposition 13.2 The following estimate holds for all t € [0, Tp):

(D) 9 Bregll ot (5, S € (13.5)

Proof Step 1: Using Corollary 7.5 We recall that ¢,.¢ is compactly supported on
B(0, R) and satisfies Ug¢rog = 0. We apply the energy estimates in Corollary 7.5

with v = (Dy)* 8 $reg, f» = 0 and

fl = Dg<Dx>S/ai¢reg = [Dg’ (Dx>S/]ai¢reg + (D)C>S/[Dg’ ai](lareg

to get that for every T € (0, Tp),

sup [1(x) 740D Bibreg 7o,
tel0,T)

T
S 150D D2 g, + /0 (1)~ 5 (T (D) 10
+ (D) g, 31breg) 2 (13.6)

T A !
5 62 + / ||<x>7§[[]gv (DX>S ]ai¢r€g”i2(21) dr
0
T r / 2
+ /0 [[(x)"2(Dy)* (g, 0i1reg ”Lz(zr) dz,

where in the last line we have controlled the data term using (4.2).
Step 2: Bounding [Ug, (Dx)* 19; ¢reg Recall the decomposition [y = —O'+ 02 from
(12.6). By (12.47) (applied to v = 9;¢¢,), We obtain

1062 10" (D) 10 breg 2,y S 19D Bidreg 23, -
By (12.45) (applied to v = 9;¢rcg), We get
||(X>7%[D2, <Dx)s,]3i¢reg”L2(E,) 5 ||3(DX>S/8¢reg”L2(E,) + ”[ng 3i]¢reg||L2(2,)~

Using Lemma 8.5 together with the metric estimates in (5.1), we have, using also
(13.1):

”[ng ai](ll’reg"L2():,) S €.
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Putting these bounds together, we obtain
166) 2 [Ty (D) 10iregll 2,y S € + 19D Didregllzsy. (137

Step 3: Bounding 9;[g, (DX)S,]¢reg Using again the decomposition in (12.6), we
have

(D) [y, 8i1¢res = —(Dx)* 131 (8™)"P)0%5breg] + (D) [(BiT) (B3 breg )]
=1 =11

(13.8)

By Holder’s inequality, Lemma 12.6, (5.1) and (5.3),

1125 S 10D0)* @ (8™ Pl 1825 breg 125,
+118i (8™ Pl ooz (D) 028 res 125,
< e%<||az¢reg||m,> + (D) 8% Pregll 12(5,) (13.9)
NEZ ||(Dx)s 9 bregllL2s,)
S D 00 Bregll L2z,
where in the last line we used ||<Dx)S,82¢reg”L2(2r) < KD )5,88x¢reg||Lz(Z,),which

in turn follow from the wave equation. More precisely, since [y, = 0, we use
(12.9), Lemma 12.6, (5.1) and (5.4) to obtain

I{Dx)* (87 dre)ll 25,

s Oobree I3, ¢yre
< DX ( (g_"j)fj — 807 breg + (f—f;t,g)Ile(z»
S [10; (D > (gl)ha)\(ﬁreg)”Lz(E,) + (D )S/[(aig’m)(a)\(breg)]||L2(2,) (13.10)

/ F 3A¢
+ I{Dx)* ((g_—l)r;g)”LZ(z,)

,S I (Dx>s 88xqbreg ”LZ(Et)'

The term /1 in (13.8) can be treated similarly. Using Lemma 12.6, (5.4), we obtain

||II||L2(2,) ~ ||<Dx)s (0 r* )”LZ(Z,)”8A¢reg”L°°(2t)
+ 1l 8T | ooz, 1 (Dx)* 3A¢reg||L2(z,)

3 3 !

S €210 gregllioecs,) + €21(Dx)" 0idregllias, (13.11)
3 3 2 /

S €2[10reglliocs,) + €2110bregll2(x,) + €2 10(Dx)* dibregll (s,
9 3 !

Set +€2[|0(Dy)* didreglli2cs,)s
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where we controlled || (DX)S/3A¢reg 2z, by interpolating between |03 ¢yeg | L2(Z)

and |9, (Dx)“/a,-qbreg lz2(x,) (for instance using Plancherel’s theorem), and finally we
used (4.12¢) to control both [[d¢reg |l Loo(x,) and |0¢,egllz2(x,)
Putting together (13.8), (13.9) and (13.11), we obtain

1) 2D Dy, 3:1bregll 125, S € + 19D idregll 2z, (13.12)

Step 4: Putting everything together Combining the estimates in (13.6), (13.7) and
(13.12), we obtain

T
sup [1(x) 7" 240(Dx)" Bedreglliay,, S €+ /0 19(Dx)* xBreg 25, dT-
te[0,T)

By Proposition 12.18 (applied to v = 9x¢;g), We can strengthen the weights on the
left-hand side, i.e.

T
sup ||0(Dy)’ 3x¢reg||22(2t) S e + / 0(Dx) 8x¢reg||22(21) dr.
1€[0,T) 0

By Gronwall’s inequality, we obtain

sup [[8(Dx)" dxdregli7ay,) S €.
t€[0,Tp)

Combining this with (13.10) yields the desired conclusion (13.5). O

14 Conclusion of the proof of Theorem 4.3

In this section, we conclude the proof of Theorem 4.3. Theorem 4.3 consists of
parts 1, 2, and 3, which will be proven, respectively, in Proposition 14.1, Propo-
sition 14.2 and Proposition 14.3. (For part 2, we recall the definition of £ in
Definition 4.1.)

Proposition 14.1 (Statement 1 of Theorem 4.3) There exists C = C(s’, s”, R, kg) > 0
3
such that (4.8)— (4.11d) hold with Ce in place of €+.

Proof We look at each of the bootstrap assumptions (4.8)— (4.11d). We point out the
precise locations in the earlier sections which improve these bounds from e% to Ce.

e Improvement of (4.8): it follows directly from (13.5) in Proposition 13.2 and (13.1)
in Proposition 13.1.

e Improvement of (4.9a): it follows from (9.1) and (9.2) in Proposition 9.1, using
also Proposition 5.3 to address the commutator term involving [9, Z].

e Improvement of (4.9b): it follows directly from (9.3) in Proposition 9.1.

e Improvement of (4.9¢): it follows directly from (12.42) in Proposition 12.25.

e Improvement of (4.9d): it was already stated and proven in Proposition 11.7.
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e Improvement of (4.10a): the || 8¢~Sk | L2(5insk) term follows directly from (10.6) in

Proposition 10.2. The || Z aEEk Il L2(5,n5k) term follows (10.7) and the commutation
of Z; with 9, using (10.6), (5.5), (5.6).
Improvement of (4.10b): this follows directly from (10.9) in Proposition 10.3.
Improvement of (4.11a): it follows directly from (13.2) in Proposition 13.1.
Improvement of (4.11b): the first term in (4.11b) is bounded by (10.9) in Proposi-
tion 10.3, while the second term in (4.11b) is bounded by (9.1) in Proposition 9.1.
e Improvement of (4.11c): the second term in (4.11c¢) is bounded by (9.2) in Propo-
sition 9.1.
To control the first term in (4.11¢), i.e. to bound sup,, ¢ | Lk 3x$k ”Lz(C’,jk([O,TB)))’

we first notice that it suffices to bound sup,, < |9x Lioxll L2(Ck ([0.Tp))) Since the
lk ’

commutator can be estimated with the help of Proposition 5.3 and (4.12¢). This lat-
ter term can in turn be bounded by |[|ExLi¢xllp2ck o.15)) @and
uk ’

I1X kLkak ll2(ck (10.15))) thanks to Lemma 5.4 (and the support properties of $k).
[ -
The estimate for || ExLx¢rllp2(ck (j0,75))) follows directly from (9.2), while the
uj ’

estimate for || X kLkakH L2(Ck ([0.Tp))) follows from using the wave equation (8.8)
le ’

and applying the estimates from Proposition 5.2, Proposition 5.5, (4.12c) and (9.2).
e Improvement of (4.11d): it follows directly from (9.3) in Proposition 9.1. m|

Proposition 14.2 (Statement 2 of Theorem 4.3) The following estimate holds:
E<e
Proof £ is composed of a sum of terms given in Definition 4.1. We treat each of

these terms one by one. Most of these bounds have already been stated in the proof of
Proposition 14.1.

° ||8(Dx)s/$k 2z < e: already obtained with the improvement of (4.9¢).
° ||Ek8$k|| 12(x,) S €: already obtained with the improvement of (4.9a).
o 10Ek(Dy) $ll 2z, S e this follows directly from (12.108) in Proposi-

ti(l)n 12.36.

82102kl L2(%) < e: already obtained with the improvement of (4.9b).

5210 Exddull 2, S € the bound 82 9 Exddill 2(x,) < € (ie. the particular
case where the first derivative is spatial) follows directly from (11.24) in Proposi-

tion 11.7. To address the remaining term 8% ||8Ek8,$k lz2(x,)> we use (2.3) as

0B = 0E (NGigic+ B0 ) = 0 ((EN)Gde + B i) )
+0 (N (Exiidy + B Eci o))
= QERN) i + B0 ) + (ExN)3 i + B'0: )
I 11

+ (ON)(Exiigy + B Exdidr)
111
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+ N(3Exiidy + B OEix) + (NOB) Exdi i .
1A% \%4

We treat each term individually:

Term I: by (5.1), (2.3), and the bootstrap assumption (4.12c), we have

1
822z S 57 I0ExN 280, R))||”¢k + B0 ¢k||L°C(Et)
S 57 ||3EkN||L2(B(0,R))||3¢k||L°°(Z,) < 5751 Se.

Term 7/1: by (5.1), (2.3) and (9.1), (9.3) we have

1 o~ P
52 111205, S 82N ExNllLes©.r) 107k + B'3iPi) 125,
< 52e351 <e.

Term I11: by (5.1), (2.3) and (9.1), (9.3) we have

1
82|11 L2¢s,y S 02 NON L (B, R’y | Exiidpi + B Exd; ¢k||L2(2,)

1
<48z €352 <e.

Term /V: by (5.1) and (11.24) in Proposition 11.7, we have

1 =
SNV L2z, S 82 10 ERidil s, + 10 Exdeill 2(z,) S 87e872 Se.

Term V: by (5.1), (5.5) and (9.3) we have
1 L1
2V, S 53 INOB' I (B0, k) | Exdx ¢k||L2(z;,) N 51e57 Se

o 57 ”a‘zk”LZ():,mS;‘ ) S < eand 53 ||Ek8q§k||L2(Z sty S < e: already obtained with
the 1mpr0vement of (4.10a).
o |32 ¢k|| 12 (2 \sh S < e: already obtained in the improvement of (4.10b).

e [0%(D,)* ‘preg”Lz(E;) < €: already obtained in the improvement of (4.8).

m}

Proposition 14.3 (Statement 3 of Theorem 4.3) The estimates (4.13a)—(4.16) are sat-
isfied.

Proof We prove each of the estimates (4.13a)—(4.16) individually. Some of these esti-

mates are already obtained in the proof of Proposition 14.1 or Proposition 14.2.

e Proof of (4.13a): it follows directly from (13.5) in Proposition 13.2 and (13.1) in
Proposition 13.1.
e Proof of (4.13b): it was already proven with the improvement of (4.9¢).
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e Proof of (4.13c): It follows directly from (12.131) and (12.132) in Proposi-
tion 12.39. _
e Proof of (4.14): the first inequality||d¢y | L2(3) < € - 872 was already

proven with the improvement of (4.9b). The inequality ZY“) vy y®
k Tk Tk

{ Xk, Ex,Li}
3i.v" £ X
Y2y P Gl o, S € - 872 follows directly from (11.24) in Proposi-
tion 11.7.
e Proof of (4.15): this follows directly from (11.25) in Proposition 11.8.
e Proof of (4.16): it was already proven with the improvement of (4.10b).

15 Lipschitz estimates and improved Hoélder bounds for ¢

In this section, we prove Lipschitz estimates for ak, as well as improved C% T Holder
estimates for d¢,., and for A away from the singular zone.

While proving the Lipschitz estimates, we will prove stronger Besov type estimates
(recall Sect. 1.1.5 and [25, Section 1.1.4]). When combined with the energy estimates
that we have already obtained, the result in this section improves the bootstrap assump-
tions (4.12a), (4.12b) and (4.12¢).

The following is the main result of this section (recall the definition of £ in Defini-
tion 4.1):

Theorem 15.1 (Main Lipschitz and improved Holder estimates) Let pg (ug, 6k, t) =
P (%) be a cutoff function, where p : R — [0, 1] is smooth function with p = 0 on
[2,00), and p = 1 on (—o0, 1].

The following estimates hold for all t € [0, Tp) (recall the definition of the Besov
space Bz”lu"/ (%;) in Definition 3.10):

1. Fork € {1, 2,3}, 851( obeys the following estimate near the singular zone for any
k' # k:

ok 9Bkl o 5, S E- (15.1)

2. Fork € {1,2,3}, 8$k obeys the following estimate away from the singular zone
forany k' # k:

106l o . SE (15.2)
™7 (%NCEy)
1= p) - 0kl o 5 S €. (15.3)

3. The regular part ¢r.q of ¢ satisfies the following estimate for any k, k' withk # k':

" < Uj Uy <
189regl oy o SE 100regl e 5 S € (15.4)

@ Springer



Nonlinear Interaction of Three Impulsive... Page 1270f 137 10

4. As a consequence, the following estimate holds for ¢:

0llLes,) S E. (15.5)

15.1 Localized or anisotropic Sobolev embeddings

In this subsection, we prove two general embedding results, namely Theorem 15.3 and
Theorem 15.5. These are the functional bounds (1.28) and (1.27) discussed in the intro-
duction. They will be applied in the later subsections to Adr, 0¢reg (or appropriately
localized versions) to prove Theorem 15.1.

Notice that all the general embedding results derived in this subsection will be
applied in the (uy, uy’) coordinates. In order to keep the exposition general, and also
distinguish the coordinates here from the (x!, x?) coordinates in the elliptic gauge,
we will use (y', y?) to denote a general coordinate system on R?. In the following
estimates, 0,2 can be thought of as a good derivative, and in applications it corresponds
to au s

Before we turn to the actual embedding results, introduce the notations regarding
Fourier transform, and an anisotropic Littlewood—Paley theory decomposition.

Definition 15.2 1. Given f = f(yi, y2) € S(R?), denote by f = f(&, &), or
(F{) = (FY (&1, &), the Fourier transform of f.

2. Let s > 0. Fractional derivatives are defined as in Definition 3.5, except now in
(', y?) coordinates, i.e. (Dy)' f = F~L((&)* F(f)). Define also a homogeneous
version by [D,[* f 1= F (€[ F(f)).

3. Let {Pt}kenujoy be the Littlewood—Paley projections as in Definition 3.9, except
with (y!, y?) in place of (u, uy').

4. Define the anisotropic Littlewood—Paley projections { Py;}renuio}, 1e7 as follows.

{1 iffnl <1
Take ¢ : R — [0, 1] be even, smooth and such that ¢ () = . .
- 0 if|n| =2

each [ € Z, define P; by

Pif = F @@ ) -0 e Fr].
Then, for k € NU {0}, € Z, define
Py == Pro Py,

where P is as in point 3 above.
5. Define also the notation that

Jie = Pe(f)y S = Pu(f).
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15.1.1 Anisotropic localized Sobolev embedding

Theorem 15.3 Let o > % The following holds for all Schwartz function f with an
implicit constant depending only on o :

I fllzoe ey, 1B ®2) S 511;13(5_%||f||L2(R2) +80_%”ay2|Dy|Uf||L2(R2)
+87 0y fll 2wy + 872 10,2 f 22y
Here, By 1 (R?) is the Besov norm as in Definition 3.10, except with (y', y?) in
place of (uy, uy).
Proof By the triangle inequality, || fllzm®2) < k§)||fk||L°°(R2) = 1fllpy, w2 It

suffices therefore to bound || fll 5 | r2)-
By scaling, it suffices to show | fllz @2 < 1 (with an implicit constant

~

independent of §), assuming there exists § > 0 such that

Ifll2@ey < 52, (15.6)
19521 Dyl fll2r2y < 5otz (15.7)
13y f N2y <677, (15.8)
18,2 f 2y < 87 (15.9)

Now we estimate, using the Cauchy—Schwarz inequality, the Plancherel identity,
and the easy volume estimate [{|&]| ~ 2K |1&| ~ 21} ~ 2K . 2! that

2 2 k L k L
I frllrwey S Wfrill2ey <22 - 22 S 1 fullzgey - 22 - 22.

It then follows from (15.6)—(15.9) and the support properties of the Littlewood—Paley
pieces that

A k L 1 k _L
I frrllr ey S W fuill2rey - 2% -22 $62-22.2772, (15.10)
I il gy S 10,210y 1° fuall ooy - 250G 277 S 5703 .ok o3,
(15.11)
2 _k L _1 _k 1A
I frrll L gay S8y full 2gey - 272 -22 $872-272 .22, (15.12)

R k
I full ey SN0y2 frll2mey - 22 -272 $82-22-272, (15.13)

We divide the sum into four cases, depending on the values of k and /:
1. When 8! < 2% and I < 0, we use (15.12) to obtain

S Wl S 1. (15.14)

5-1<2k <0
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2. When §~! < 2% and 1 > 0, we use (15.11) to obtain

Do Ml S 1. (15.15)

§-1<2k >0
3. When 2K < 87! and [ < 0, we use (15.10) to obtain

Yo Ml S 1. (15.16)

§-1>2k 1<0
4. When 2% < s~ Vand! > 0, we use (15.13) to obtain

Y Ml S (15.17)

§-12>2k >0

Now, combining (15.14)—(15.17), it is clear by the triangle inequality that

e @y < D Ihlney < Y. lulpg S 1

keNU{0) keNU{0}, [€Z

15.1.2 Anisotropic Sobolev embedding into Holder spaces

Our next goal is an anisotropic Sobolev embedding which maps into Holder spaces
on a half space. The main result is given in Theorem 15.5 below. We will start with
the following lemma, which is a variant of the desired estimate, but on all of R2.

Lemma 15.4 Lets € (O, %). The following estimate holds for all sufficiently regular
functions f (with an implicit constant depending on s):

IF1l 0 S I e @2y + 10,21Dy P fll 2 we)-

"3 (R2) ~

Proof As in the proof of Theorem 15.3, we bound the L°° norm of each Littlewood—
Paley piece in different ways using the Hausdorff—Young, Cauchy—Schwarz inequali-
ties, Plancherel’s theorem and the volume estimate in Fourier space. Hence, denoting

LI = 1f Ny + 10,21Dy1* fll L2g2), we have

| fiall o) S Wil 2@ - 2% -2 S I f1-28 - 22,

I fill o2y < 119,21 Dy ¢ fklan(Rz 2FG 27s < f)| 2R L2
I full ooy < 13y futll 2oy 272 22 S FI1-272 - 22,

I full ooy S 18,2 fuall 2y - 28 -272 S UFI-28 272,
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Without loss of generality, we take || f|| = 1. Thus,

I fiall oy S27 - 27, (15.18)
2% | full gy S2AG7P 273, (15.19)
2% | full gy S28G7D 28, (15.20)
I ftll oo rey S 27 272 (15.21)

For all £ > 0, we use (15.19) and (15.20) respectively to sum [/ > (1 — s)k and
[ < (1 — s)k to obtain

D27 fullpe@y S Y. 27 M fullie@y + Y. 27 -l S 1.

leZ I>(1=s)k I<(1=s)k

Recalling that fi = )., fu. the above inequalities and the triangle inequality
thus implies

sk
Do g, ~ S92 - felea) S 1

where we have used the Littlewood—Paley characterization of the Holder space. O

Using the above lemma, we obtain the main result of this subsubsection via a
reflection argument.

Theorem 15.5 Let s € (0, %), a € Rand Qp := (—00, a) x R be the open left half
plane.

Then the following holds for all v € S(R?) with an implicit constant depending
onlyons:

vl

N
0% @y S lvie @) + 10,21Dy P vll 2 w2y

Moreover, v|q, can be extended to a C 0.3 (R?) function Rv : R* — R such that
IRV 03 oy S Vie i @) + 19,21 Dy " vll 12 g2
Proof Our strategy is to extend v|g, into a function Rv : R?> — R, which may differ
from v, but for which we can prove boundedness using Lemma 15.4.
By a standard Sobolev extension result (see [1, Theorem 5.19]), there exists a
bounded linear extension operator E : H Q) — HY(R? satisfying Efiq, = f

(which is also bounded E : L2(Q1) — L%(R?)).
As a consequence, defining Rf = E(fiq,), we have

||RU||H1(R2) < ||U|QL||H1(QL)§ (15.22)
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and using moreover that 9, is tangential to the boundary together with an interpolation
argument, we obtain

19,2 Dy I* (RV) I 2m2) S 19y2] Dyl vl L2 (r2)- (15.23)
Since Rvjg, = v, by (15.22), (15.23) and Lemma 15.4,

1olos g, S IRV o5 o) S IRV 2y + 10,21 Dy 1 (R 22y

S lvie g, + 18521 Dy vll 22y

15.2 Converting the estimates into (uy, uy’) coordinates

In this subsection, we convert the L2 bounds in &€ (see Definition 4.1), which are
defined with respect to the (x!, x?) coordinate system in the elliptic gauge and with
the geometric vector field Ej, into estimates in the (uy, uy’) coordinate system. This
will later allow us to apply the embedding results obtained in Sect. 15.1 in the (uy, uy’)
coordinate system.

In the remainder of the section, recall the coordinate system (i, 1) and the nota-
tions introduced in Sect. 2.4.2. In particular, recall that (¢, - 3 o) denote the coordinate
partial derivatives in the (uy, uy’) coordinates.

15.2.1 Equivalence of LP and W'+ norms

Lemma 15.6 Forany p € [1, 0],

||f||[‘:1 XZ(E’) 5 ||f||[‘5k~uk/():f) ,S ”f”L_fl_xz():t)’

< <
”f”Wlipxz(Et) ~ ”f”Wu]kpuk/(Et) ~ ”f”W]lp,(z(Et)

Similar estimates hold when the LP and WP norms are taken over subsets of %;.
Proof This is an immediate consequence of (5.19)—(5.20). m]

Because of the above lemma, for the remainder of the section, we will write
LP(%,), etc. without precisely indicating whether the coordinate system (x!, x?)
or (uy, uy) is used.

15.2.2 L2 estimates involving Ei
Lemma 15.6 controls the change of variables for isotropic L? or W17 spaces. In this
subsection, we translate some estimates in £ that involve the good derivative Ej, and

write them in terms of 3uk/; see Lemma 15.8.
We begin with a simple lemma.
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Lemma 15.7 For k # k', the following holds for all t € [0, Tg):

ik - g(Ex, Xi) ™ lwioocs,npio.ry S 1- (15.24)
Proof This follows from (5.17), (5.1), (5.5), (5.6) and (5.23). O

Lemma 15.8 (L? estimates under coordinate change) For k # k', the following holds
forallt € [0, Tp):

~ 1
||3uk/8¢k||L2(2 ﬂSk ) ,S 82 - €&. (15.25)
||3ukuk,3¢k||L2(z,) + ”3uk,u,\,a¢k”L2(2t) s~ -5 (15.26)

Proof The bound (15.25) follows from (2.55), Lemma 15.6 and the definition of £
(Definition 4.1).

For (15.26), we first control the ﬂuk, or §,, derivative by 9, using Lemma 15.6.
We then write §, . in terms of Ej using (2.55). Finally, applying the product rule and
(15.24), and using Definition 4.1, we obtain

2 Y 2 7
||3ukuk,a¢k||L2(z,) + ”a"k/”k/ Ikl 25,y < 110 3uk/a¢k||L2():t)
= ||0x [pr - g(Ek, Xk’)_lEka¢k]||L2(2,)

< ||uk 8(Ex. Xi) ™ lwioo(zn 0.1y 1Ex 0Bk 125, + 1105 Exddell 2(s,)
<872 €.
O
15.2.3 L? estimates involving fractional derivatives
Lemma 15.9 Let (y1, y2), (21, 22) be two systems of coordinates on R? such that
0 0z
1<‘det< Zl) ‘51, T <. (15.27)
yj ayj

Then, for every 0 < o < 1, the following holds for all f € S(R?):

I{D 21, zz) f||L2(R2) S KD Vi yz)af||L2(R2) S KD 21, zZ>Jf||Lg(R2)~ (15.28)

Proof Define the change of variable map y : z € R> — y(z) € R? and define the
linear map @, : f € L*(R?) — & (f) := f oy e L2(R?).

The bounds (15.27) obviously imply that ®, : L*(R?) — L%*(R?), ®,
H'(R?) — H'(R?) are bounded maps with bounded inverses. The desired conclusion
thus follows from interpolation. O

Returning to our setting, this implies by Lemma 5.6 that
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Lemma 15.10 Fors € {s', 5"}, the following estimate holds for all Schwartz function

I

||<Dx)sf||L2():,) ,S ”<D“k’”k/>Sf”L3k,uk/()3r) § ||<Dx>sf||L2(>:,)~

After the above preliminaries, we are ready to translate the control for £ into L?
estimates on the derivatives of d¢y in the (ug, uy) coordinate system. We begin with
the

Lemma 15.11 For k # k/, the following holds for all t € [0, Tg):
VB (Dugae ) 903, 5 S E-

Proof Consider the following chain of estimates:

1B (Duga)* 0Gk 1205) = 1 Duyg ) B 0125, (15.29)
S DL By 08kl 1205, = 14D (g (Ex, Xi) ™ Exdd)ll s,y (15.30)
< D) (@ i g (Ex. Xi) ™D Loz 1{Dx)* (Exd il 12 s,

S IDx)" Exddell 2s,) (15.31)
< NE(D) 9kl 1205,y + 1D 00kl 125, (15.32)
< IOED) Gell 2z, + (D) 0kl 125, )- (15.33)

For (15.30), we first use Lemmas 15.10 and 15.6, and then (2.55). To obtain the first
inequality in (15.31), we use Lemma 12.6 (and supp(ak) C B(0, R)). In the second
inequality, || r g (Ek, XM Wl.o(B(0,3R)) 18 bounded using (15.24). For (15.32), we
write E;, = E,’;Bi and use Proposition 12.7 and (5.6) to estimate the commutator
[(Dx)s”, E,i]. For (15.33), the first term is obtained after commuting [0, Ej], and
using (5.6) again; while the second term is obtained by the L?-boundedness of the
inhomogeneous Riesz transform (D)~ 'd,. Finally, note that both terms on (15.33)
are controlled by &£, which concludes the proof. O

Lemma 15.12 For k # k/, the following holds for all t € [0, Tg):

” auk/ (Duk,uk/ >S a¢reg ||L2

RCARSES

Proof This is similar to Lemma 15.11 except it is much easier because we control

1805 (Dx)* @regli2s,) and  [{Dy)* 0regl 2(s,)  (imstead  of  only
10Ek(Dx)* Preglli2(x,) and [{Dx)* 0regllp2(x,)); we omit the details. O

15.3 Boundedness of 6$k in the singular region: proof of (15.1)

In the next few subsections, we will prove the estimates asserted in Theorem 15.1; see
the conclusion of the proof in Sect. 15.6. We begin with (15.1).
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Proofof (15.1) We apply Theorem 153 to f = py - 3¢y in the coordinate system
(', y%) = (ux, ux) and with o = 1. Note that dy2 in the notations of Theorem 15.3
corresponds to #, o+ In order to use Theorem 15.3, it suffices to show that

_1 ~ 1 ~ ~
8720kl L2,y 82 Uy (PROBON 25, + gy, (PkIFON 25,

=:1 =11

1 ~ ~ _1 ~

82 (It PO 23,y + Wy POFON 1203, ) 87 iy (01BN 23, S €.

=111 =1V

To control the terms I, 11, I11 and IV above, first note that the cutoff function py
satisfies

okl S 1. Buppk =0, Bkl 871 supp(p) € S5, (15.34)

We first bound term 7, using (15.34) and the 8’% ”aak”ﬁ(zms’ga) termin &.
To bound term 71, we use (15.34) together with the estimates in Lemma 15.8.
. Lo~
| To estimate 111, we use (15.34) and the bounds for 2 ||0¢x ||L2(2t0512(5) and
82(19°¢rll 2x,) in €.
Finally, the bound for term /V can be obtained using (15.34) and Lemma 15.8. O

15.4 Holder estimates for 6&,( away from the singular zone: proof of (15.2) and
(15.3)

Even though we are interested in the Holder estimates in the coordinates of the elliptic
gauge (see (15.2), (15.3) and Definition 3.3), in order to make use of the good deriva-
tive, we will apply Theorem 15.5 in the (u, uy) coordinate system. Nevertheless, it
is easy to check that the Holder norms in these two coordinate systems are equivalent
as we will state in the following lemma.

Lemma 15.13 For any o € (0, 1), and any open domain Q < %; with a Lipschitz
boundary, the following holds for all Schwartz functions f:

1flicg, ., zne Sfllcosne S 1 leg, .,

(ZNQ)-
Proof This is an immediate consequence of Lemma 5.22. O
We are now ready to prove (15.2) and (15.3).

Proofof (15.2) and (15.3) Step 1: Proof of (15.2) In view of Lemma 15.13, it suffices
to prove Holder estimates in the (uy, uy) coordinates. We apply Theorem 15.5 to
v = 3y, Q= {up>8, up € R} € %,, s = s” in the coordinate system (ug, uy).
Note (as in Sect. 15.3) that 3> = Dy
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By Theorem 15.5, we know that (15.2) holds as long as we can verify
110G 12 | 1102y + 1By (Dugary)* 9Gkll 25, S E- (15.35)

Now the first term in (15.35) can be controlled using the ||3<Dx)s/$k||L2(g,) and
I 82$k Il (EsH terms in the definition of £ (Definition 4.1); while the second term is
controlled by Lemma 15.11.
Step 2: Proof of (15.3) First, notice that the application of Theorem 15.5 in Step 1
in fact gives a stronger result: namely, 8$k admits an extension Raak defined on the
whole 3, so that || R || 0.3 <E&.

gy (Zt)

Let @ be the cutoff funcktién as in the beginning of Sect. 12.2. It can be checked
explicitly that ||@ - (1 — pp)|| B < 1. (If the reader prefers not to carry out the
explicit estimate for the corresp(;;iding oscillatory integral, one can more easily check
that @ - (1 — py) obeys the assumptions of Theorem 15.3, and apply Theorem 15.3 to
deduce the Besov bound.)

Using the fact that [| fi f2ll e S ILfill g WL f2ll guaense . we have flzor - (1= i) -

Raak I Bk < &. Finally, one checks that the support properties for @, 1 — p; and
00,1

?q;k imply that (1 — p) - 8$k =w-(1—pp)- Raak. This concludes the proof of (15.3).
O

15.5 Holder estimates for the regular part: proof of (15.4)

Having completed the estimates for 5;{, we now turn to the estimate for ¢, .

Proof of (15.4) We begin with the first estimate in (15.4). Pick any k¥’ # k. By the
equivalence of the Holder norms (Lemma 15.13), it suffices to prove that 3¢, is in

CL,,;;TMk, (Z;). For this, we apply Lemma 15.4 in the (uy, 1) coordinate system.
It suffices to check

||a¢reg||L2(2,) + ”auk a‘lsreg”Lz(E,) + ||auk/a¢reg||L2(E,)
F1B i (D) 3regllr2cs,) S E-
The bounds for the first three terms follow directly from the definition of £ (Defini-

tion 4.1) and Lemma 15.6, while the last term is controlled in Lemma 15.12.

. . 0,% , . . .
Finally, since C,,kj,k, C B:ﬁyf"'(E,) continuously, we obtain the second estimate

in (15.4). O

15.6 Conclusion of the proof of Theorem 15.1: proof of (15.5)

In view of the estimates derived in Sects. 15.3—15.5, in order to conclude the proof of
Theorem 15.1, it suffices to prove (15.5).
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Up g
00,1

Proof of (15.5) In the following, we use that B
L (X;) whenever k # k'

(X;) embeds continuously into

e Combining (15.1) and (15.3), and using the triangle inequality, we have, for every
k and every k' # k,

l0¢illLoecsy S N0kl g 5, S €. (15.36)
e The second inequality in (15.4) implies that for any choice of k # k’,
10¢reg llLoo(x)) < ||3¢reg||B;‘£v:‘k/(zl) <E. (15.37)

Combining (15.36), (15.37), and using the triangle inequality, we have

3

199 oo (s < 10¢reglliocz) + Y 10kl S €.
k=1

O
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