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ASYMPTOTICALLY KASNER-LIKE SINGULARITIES

By GRIGORIOS FOURNODAVLOS and JONATHAN LUK

Abstract. We prove existence, uniqueness and regularity of solutions to the Einstein vacuum equa-
tions taking the form

(4)g =−dt2 +
3∑

i,j=1

aijt
2pmax{i,j} dxi dxj

on (0,T ]t ×T3
x, where aij(t,x) and pi(x) are regular functions without symmetry or analyticity

assumptions. These metrics are singular and asymptotically Kasner-like as t → 0+. These solutions
are expected to be highly non-generic, and our construction can be viewed as solving a singular initial
value problem with Fuchsian-type analysis where the data are posed on the “singular hypersurface”
{t= 0}. This is the first such result without imposing symmetry or analyticity.

To carry out the analysis, we study the problem in a synchronized coordinate system. In partic-
ular, we introduce a novel way to perform (weighted) energy estimates in such a coordinate system
based on estimating the second fundamental forms of the constant-t hypersurfaces.
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1. Introduction. The Kasner spacetime ((0,+∞)×T3, (4)g), where

(1.1) (4)g =−dt2 +
3∑

i=1

t2pi(dxi)2

(with pi being constants such that
∑3

i=1 pi =
∑3

i=1 p
2
i = 1) is an explicit solution

to the Einstein vacuum equations

(1.2) Ric((4)g) = 0.

As long as all pi ̸= 0, the Kasner solution moreover represents a singularity as
t→ 0+. This is manifested in particular by the blowup of the Kretschmann scalar
RµναβR

µναβ .
In an influential paper [33], Lifshitz–Khalatnikov considered the class of

spacetimes solutions to (1.2) with the form

(1.3) (4)g =−dt2 +
3∑

i=1

t2piω2
i

where ωi are spatial 1-forms with a “finite limit” as t → 0+ and pi = pi(x) are
now spatially-dependent functions satisfying

∑3
i=1 pi(x) =

∑3
i=1 p

2
i (x) = 1. The

spacetime metrics (1.3) are Kasner-like asymptotically as t → 0+ except that the
Kasner exponents are now functions. They are also sometimes called asymptoti-
cally velocity term dominated (AVTD), a terminology that is used to mean that the
asymptotics near the singularity is described by a simpler system of velocity term
dominated equations [16, 20]. Importantly, it is argued in [33] that this class of
spacetime solutions to (1.2) depend only on three “functional degrees of freedom”,
which is one fewer than that for the Cauchy problem of (1.2), and they are therefore
expected to be highly non-generic.
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In this paper, we construct a large class of solutions to (1.2) with the asymp-
totically Kasner-like behavior of (1.3). Our construction in fact has full three func-
tional degrees of freedom and includes all the spacetimes considered in the heuris-
tics in [33] (see Remark 1.5). Some previous constructions are known with either
analyticity or symmetry assumptions (see Section 1.2.1); our construction is the
first without such assumptions.

More precisely, our goal will be to construct a metric taking the form

(4)g :=−dt2 +g

:=−dt2 +
3∑

i,j=1

aijt
2pmax{i,j}dxi dxj ,

(1.4)

where (t,x1,x2,x3) ∈ (0,T ]×T3 for some T > 0, pi : T3 → R are smooth, time-
independent functions, and aij : (0,T ]×T3 →R are smooth functions (symmetric
in i and j) which extend to continuous functions : [0,T ]×T3 → R. Moreover, aij
obey

(1.5) lim
t→0+

aij(t,x) = cij(x),

where cij are some prescribed smooth functions (symmetric in i and j).
Notice that in the language of (1.3), the ansatz (1.4) imposes the condition

ω1 ∧dω1 = 0 for ω1 = a
1
2
11dx

1. As we will explain in Remark 1.5, this condition is
what restricts the functional degrees of freedom in our construction.

We will prove existence, uniqueness and regularity of solutions of the form
(1.4). The following is our main existence theorem:

THEOREM 1.1 (Existence of solution). Suppose the following assumptions
hold:

(1) The (time-independent) functions cij , pi : T3 → R are smooth for i, j =

1,2,3, and that cij = cji.
(2)

∑3
i=1 pi(x) =

∑3
i=1 p

2
i (x) = 1 pointwise.

(3) It holds that p1(x)< p2(x)< p3(x)< 1 pointwise.
(4) It holds that c11(x), c22(x), c33(x)> 0.
(5) The following three asymptotic differential constraint equations are satis-

fied:

3∑
ℓ=1

[
∂icℓℓ
cℓℓ

(pℓ−pi)+2∂ℓκiℓ+1{ℓ>i}
∂ℓ(c11c22c33)

c11c22c33
κi

ℓ

]
= 0, i= 1,2,3,(1.6)

where κii =−pi (without summing), κ1
2 = (p1−p2)

c12
c22

, κ2
3 = (p2−p3)

c23
c33

, κ1
3 =

(p2 −p1)
c12c23
c22c33

+(p1 −p3)
c13
c33

and κi
ℓ = 0 if ℓ < i, 1{ℓ>i} = 1 if ℓ > i, 1{ℓ>i} = 0 if

ℓ≤ i.
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Then there is a C2 solution to the Einstein vacuum equations (1.2) of the form
(1.4), for a T > 0 depending on cij , pi, which satisfies (1.5).

Remark 1.2 ((1.4) is a Lorentzian metric). Notice that under condition (3),
the eigenvalues of g as in (1.4) are approximately t2picii (i = 1,2,3) for small t.
Hence, given pi as in the theorem and the condition (1.5), it follows that (1.4) is a
well-defined Lorentzian metric in all of (0,T0]×T3, for some T0 > 0.

Remark 1.3 (Localizing the assumptions). For technical convenience, we as-
sume that there is a global system of coordinates on T3 so that the assumptions
of Theorem 1.1 hold. One may in principle hope to use a localization argument
to construct more general spacetimes for which we require only that around every
point in T3, there is a coordinate patch (x1,x2,x3) such that the assumptions of
Theorem 1.1 hold. This, however, is not carried out in the present paper.

Remark 1.4 (Asymptotic CMC condition and asymptotic constraints). The
conditions (2) and (5) in Theorem 1.1 guarantee that a metric of the form (1.4)
satisfies asymptotically, along the level sets of t, (1) the constraint equations and
(2) the CMC gauge to leading order, as t → 0+. More precisely, condition (2) is
equivalent to

(1.7) lim
t→0+

t(trk) =−1, lim
t→0+

t2[R(g)−|k|2 +(trk)2] = 0,

while condition (5) is equivalent to

(1.8) lim
t→0+

t(∇jki
j −∇i trk) = 0, i= 1,2,3;

see Lemma 3.2. Note that condition (2) is algebraic in the Kasner exponents pi’s,
while condition (5) is differential in the cij’s.

Remark 1.5 (Functional degrees of freedom and considerations in [33]). Note
that cij and pi consist of 9 functions. On the other hand, the assumptions (2) and
(5) in Theorem 1.1 impose a total of 5 conditions, leaving 4 functional degrees of
function.

There is in fact an additional residual gauge freedom, namely, we can introduce
a change of coordinates

(1.9) x̃1 = x1, x̃2 = x2, x̃3 = f(x1,x2,x3),

for some smooth f such that ∂f
∂x3 ̸= 0, then the resulting metric will have the same

form as (1.4) (in the sense that the new g̃11 term is O(t2p1), the new g̃12, g̃22 terms
are O(t2p2), and the new g̃13, g̃23, g̃33 terms are O(t2p3).)

Thus, there are a total of 3 functional degrees of freedom, which is one fewer
than that for the initial value problem for the Einstein vacuum equations. It is for
this reason that [33] argued that metrics of the form (1.4) are non-generic.



ASYMPTOTICALLY KASNER-LIKE SINGULARITIES 1187

Notice that while we only construct a non-generic class of spacetimes, we do
construct a class that includes all the metrics considered in [33] (modulo the end-
point case; see Remark 1.6). Indeed, using the change of coordinates in (1.9), one
can locally change coordinates to the form

g = a11t
2p1(dx1)2 +a22t

2p2(dx2)2 +a33t
2p3(dx3)2

+2a12t
p2dx1dx2 +2a13t

p3dx1dx3,

which is exactly the local form of the metrics considered in the work of Lifshitz–
Khalatnikov; see [33, equation (3.25)].

Remark 1.6 (Some limiting cases). Our analysis degenerates in any of the lim-
its p3 → 1 or pi+1 − pi → 0 (see (3) in Theorem 1.1). A particularly interesting
limiting case that we do not cover is when{

x ∈ T3 : p1(x) =−1
3
, p2(x) = p3(x) =

2
3

}
̸= /0,

but still assuming p3(x) < 1, ∀x. While we do not cover this case, it is possible
that [29] is relevant. Notice that to handle possible terms with p2(x) = p3(x), we
need a new argument in constructing the approximate solution in Section 2, but the
analysis in the subsequent sections could in principle be carried out along the same
lines.

Finally, we note that allowing p1(x) = − 1
3 , p2(x) = p3(x) =

2
3 would also

be relevant to constructing Schwarzschild-like singularities since locally the
Schwarzschild singularity could be modeled by the Kasner singularity with
p1 =− 1

3 , p2 = p3 =
2
3 (cf. [21] and discussions in Section 1.2.1).

We now turn to uniqueness. It is hard to talk about geometric uniqueness in the
above singular initial value problem, since the setup itself includes the expression
(1.4) of the spacetime metric. However, we can obtain uniqueness in our gauge, i.e.,
within the class of metrics satisfying (1.4). More precisely, we prove that given two
solutions of the form (1.4) which (1) obey the estimates (1.10) and (1.11) which is
proven in Theorem 1.1 and (2) converge to each other sufficiently fast as t→ 0+,
then they must in fact be the same.

THEOREM 1.7 (Uniqueness of solutions). Given the assumptions of Theo-
rem 1.1, there exists Mu ∈ N sufficiently large (depending on the given data pi
and cij) such that the following holds.

Let (4)g, (4)g̃ be two C3 solutions to the Einstein vacuum equations (1.2) of the
form (1.4) in (0,T ]×T3 for some T > 0, such that

• the corresponding aij and ãij converge to cij with the following rate

(1.10)
∑
|α|≤2

(|∂α
x (aij − cij)|+ |∂α

x (ãij − cij)|) =O(tε);
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• the corresponding ki
j = − 1

2(g
−1)jℓ∂tgjℓ and k̃i

j = − 1
2(g̃

−1)jℓ∂tg̃jℓ obey
the following estimates

1∑
r=0

∑
|α|≤2−r

tr(|∂r
t ∂

α
x (ki

j − t−1κi
j)|+ |∂r

t ∂
α
x (k̃i

j − t−1κi
j)|)

=O(min{t−1+ε, t−1+ε−2pj+2pi});

(1.11)

and
• the g− g̃ and ∂t(g− g̃) converge to 0 sufficiently fast in the following sense:

(1.12)
1∑

r=0

∑
|α|≤3−r

|∂r
t ∂

α
x (g− g̃)|=O(tMu).

Here, ε=min{minx(p3−p2)(x),minx(1−p3)(x)}> 0, and κi
j as in Theorem 1.1.

Then (4)g = (4)g̃ on (0,T ]×T3.

Remark 1.8 (Asymptotics determined by approximate solutions). In the proof
of our existence result (Theorem 1.1), we construct a sequence of smooth approx-
imate solutions {g[n]}+∞

n=0, for which we get more precise asymptotic information,
as t→ 0+, as n increases; see already Sections 1.1, 2 and 3. The actual solutions
that we construct in Theorem 1.1 then have asymptotics determined by an approx-
imate solution g[n](for some large n). From this point of view, one way to interpret
our uniqueness result (Theorem 1.7) is to say that for n sufficiently large, there is
in fact only one solution whose asymptotics are governed by g[n].

Remark 1.9 (Regularity implies asymptotic expansion). Given any Mu ∈ N,
there exists A ∈ N sufficiently large such that if (1.10) and (1.11) are replaced by
the stronger regularity assumptions

(1.13)
∑
|α|≤A

(|∂α
x (aij − cij)|+ |∂α

x (ãij − cij)|) =O(tε),

and

1∑
r=0

∑
|α|≤A−r

tr(|∂r
t ∂

α
x (ki

j − t−1κi
j)|+ |∂r

t ∂
α
x (k̃i

j − t−1κi
j)|)

=O(min{t−1+ε, t−1+ε−2pj+2pi}),

(1.14)

then in fact the convergence condition (1.12) follows as a consequence. In fact,
in this case both g and g̃ have the leading asymptotics given by an approximate
solution g[n] for large n (see Remark 1.8), which then implies (1.12). This can be
proven by revisiting the argument for constructing the approximate solutions in
Theorem 2.1. We omit the details.
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Finally, we state our main regularity theorem. We remark that initially our
proof of the existence theorem (Theorem 1.1) only constructs a solution with finite
regularity. In order to obtain smoothness, we need an additional argument which
relies on the uniqueness result (Theorem 1.7); see Section 1.1.5.

THEOREM 1.10 (Smoothness of solutions). Given the assumptions of Theo-
rem 1.1, there is a smooth solution to the Einstein vacuum equations (1.2) of the
form (1.4) in (0,T ]×T3, for a T > 0 depending on cij , pi, which satisfies (1.5).

In the remainder of the introduction, we will briefly discuss the ideas of the
proof (Section 1.1) and some related works (Section 1.2).

1.1. Ideas of the proof.

1.1.1. Fuchsian analysis of a model wave equation. As far as the singu-
larity is concerned, our basic strategy (which is quite standard, see for instance
[29]) can be most easily explained by a model semilinear equation.

Consider the following nonlinear wave equation

(1.15) □gϕ= (∂tϕ)
2

on a Kasner spacetime (1.1) with constants p1 < p2 < p3 < 1 satisfying
∑3

i=1 pi =∑3
i=1 p

2
i = 1. (Note that the structure of the nonlinear terms plays no role here, and

the nonlinearity (∂tϕ)
2 is chosen here for its simplicity.)

The analogue of our main result in this setup would be to construct bounded
solutions to the nonlinear model equation (1.15). However, the results of [2] imply
that even for the linear wave equation, generic data on say, {t = 1}, give rise to
solutions that blow up as O(log 1

t ) as t → 0+. Thus, in order to obtain bounded
solutions to (1.15), the solution that we build has to be special. This is achieved by
imposing the leading order behavior of ϕ(t,x) = ϕ0(x)+ error, where ϕ0(x) is a
prescribed smooth function which is the limit of ϕ(t,x) as t→ 0+. In fact, we build
our solution as ϕ(t,x) =

∑n
j=0ϕj(t,x)+ϕ(d), where ϕj are increasingly precise

approximations of ϕ, and ϕ(d) is determined by the condition limt→0ϕ
(d) = 0.

Our strategy contains two steps:
(1) (Approximate solution) It is easy to first build an approximate solution by

stipulating an ansatz ϕ[n](t,x) =
∑n

j=0ϕj(t,x), where
• ϕ0(t,x) = ϕ0(x) is the prescribed leading order behavior,
• ϕj obeys the better estimates |∂α

xϕj(t,x)|≲α,j t
jε, and

• |∂α
x {□gϕ

[n](t,x)− (∂tϕ
[n])2(t,x)}|≲α,n t−2+(n+1)ε.

This expansion can simply be obtained inductively by solving (1.15) iteratively as
an ODE in t. Here, we have the flexibility to carry out the expansion to an arbitrary
order n so as to achieve an arbitrarily good (in terms of the t-rates as t → 0+)
approximation to a solution to (1.15).
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Without analyticity, however, one cannot hope to show that this series con-
verges. Instead we perform energy estimates for the error.

(2) (Energy estimates) First notice that for an energy defined by

E(τ) :=
∑
|β|≤4

∫
{t=τ}

(
|∂t∂β

j ϕ|
2 +

3∑
i=1

t−2pi |∂i∂β
j ϕ|

2

)
dx,

it is easy to obtain an estimate of the form (e.g. with C0 = 2)

d

dt
E(t)≤ C0

t
E(t)+C1(E(t))2.

The issue is with the borderline singular term C0
t E(t), which cannot be treated

by Grönwall’s inequality (since limsupt→0+ t
−C0E(t) = +∞). Nevertheless, this is

where the approximation constructed in the previous step becomes useful: instead
of controlling the full solution ϕ, we bound the difference quantity ϕ(d) := ϕ−ϕ[n],
which for n sufficiently large

• can be made to approach 0 with a fast polynomial rate as t→ 0+, and
• satisfies an inhomogeneous nonlinear wave equation where the inhomogene-

ity also → 0 with a fast polynomial rate.
Define now an energy E (d) with ϕ replaced by ϕ(d). For any large N ∈ N, we

can find n∈N large enough (corresponding to a good enough approximation) such
that under appropriate bootstrap assumptions,

d

dt
E (d)(t)≤

(
C0

t
+

Cn

t1−ε

)
E (d)(t)+Cnt

N ,

where Cn may depend on n, but importantly, the constant C0 in the borderline term
is independent of n. The inhomogeneous Cnt

N term arises from the fact that ϕ(d)

satisfies an inhomogeneous equation, and N can be arbitrarily chosen as long as n
is also taken to be large. Thus, we obtain an estimate

d

dt
(t−NE (d)(t))+

N

t
(t−NE (d))≤

(
C0

t
+

Cn

t1−ε

)
(t−NE (d)(t))+Cn.

Recall now moreover that for n sufficiently large we have limt→0+(t
−NE (d)(t)) =

0. Moreover, first choosing N large (by taking n large) and then taking t

small (depending on n), it follows that N
t (t

−NE (d)) on the LHS dominates
(C0

t + Cn

t1−ε )(t
−NE (d)(t)) on the RHS. This gives an estimate for t−NE (d)(t).

Once such energy estimates can be proven for the error ϕ(d), we can in fact de-
duce existence of solutions as follows. Choosing a sequence tI → 0+, we solve for a
sequence of solutions {ϕI}∞

i=0 to (1.15) with (ϕI ,∂tϕI) ↾t=tI= (ϕ[n],∂tϕ
[n]) ↾t=tI .

The energy estimates above allows us to show that {ϕI}∞
i=0 can be solved in

[tI ,T ]×T3 for uniform T > 0 and that there is a limit which solves (1.15) in
(0,T ]×T3.
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1.1.2. Construction of solutions to the Einstein vacuum equations in syn-
chronized coordinates. While the Fuchsian analysis is quite robust, we must
also address the quasilinear, tensorial nature, as well as the gauge invariance, of
the Einstein equations.

If one were to prescribe a wave-coordinate-type gauge, then the construction of
the approximate solution will be algebraically very complex. Instead, we consider
a system of synchronized coordinates, i.e., we impose that the metric takes the form

(1.16) (4)g =−dt2 +gij dxi dxj =−dt2 + t2pmax{i,j}aij dxi dxj .

This gauge captures important anisotropic features of Kasner-like singularities. In
particular, assuming that the aij’s are C2 up to {t = 0}, we know that |gij | ∼
t2pmax{i,j} , |(g−1)ij | ∼ t−2pmin{i,j} ; and importantly (see Lemma 2.6) that

(1.17) |Rici j(g)| ∼ t−2+ε, |Ric(g)|g ∼ t−2+ε.

In such a gauge, the construction of an approximate solution becomes more
tractable. The difficulty, however, is shifted to the estimates for the error terms.
Indeed, even when no singularities are present, it is a priori not clear that the Ein-
stein vacuum equations are hyperbolic in the gauge (1.16); see discussions in Sec-
tion 1.1.4.

1.1.3. Constructing approximate solutions. Following ideas laid out in
Section 1.1.1, we first construct approximate solutions and then use energy es-
timates to obtain actual solutions to the Einstein vacuum equation. In order to
construct approximate solutions, the first step is to solve a system of first order
evolutionary equations. The evolutionary equations will be treated as a system of
ODEs in t (compare Step 1 in Section 1.1.1). In order to close the ODE analysis,
we crucially rely on the bounds (1.17), which show that the spatial Ricci curva-
ture is slightly better than critical, but we also need to additionally make use of the
structure of the full system. We outline some main points here:

• The main difficulty in solving the system of ODEs is that there are many
borderline terms, i.e., linear terms with O(t−1) coefficients. It turns out that these
terms have a reductive structure. By this we mean that we can consider different
components in a sequence of steps. In each step, there are two type of terms with a
borderline O(t−1) coefficient with the following properties.

• One type can be handled by introducing an integration factor. The integration
factor gives a power of t which is consistent with the initial conditions that we
impose.

• Another type of terms with borderline coefficients involve only terms which
have been controlled in previous steps.

• Any other linear terms must have a coefficient that is better, at least
O(t−1+ε).
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Such a structure is important both in estimating the metric components (Lem-
mas 2.11, 2.12) and the components of the (approximate) second fundamental form
(Lemmas 2.8, 2.9).

• In anticipation of the energy estimates needed to construct an actual solution,
we also need to treat different components on different footing in the ODE analysis.
An example of this is that while for i ≤ j, we only prove that (k[n])ij = O(t−1);
for i > j, we need a better estimate and the improvement we need depends on the
precise i, j under consideration; see Lemma 2.8. Such estimates can be traced back
to (1.17), but also require the precise structure of the system.

• Another technical difficulty is that the variable k[n] we work with is only
approximately the second fundamental form.

The evolutionary equations solved in the first step roughly asserts that the
spacetime Ricci curvature components Ric((4)g[n])ij vanish with a very fast rate.
Our second step is then to show that

• k[n] is asymptotically (as t → 0+) approximately the second fundamental
form of the constant-t hypersurfaces, and

• all other spacetime Ricci curvature components also vanish sufficiently fast
as t→ 0+.
Both of these are achieved again by ODE analysis. For the first point, we need
again a reductive structure, which is similar to the type used for the evolutionary
equations. For the second point, the constraints as manifested both in the conditions
on the Kasner exponents and asymptotic constraint equations (1.6) play a crucial
role. See already Lemmas 2.13–2.15 and Proposition 3.3.

1.1.4. Energy estimates in synchronized coordinates. It is a priori un-
clear that under a gauge condition as in (1.16), the metric components themselves
satisfy any hyperbolic system. The main new ingredient is to consider a “wave-type
equation” satisfied by the second fundamental form ki

j of the spatial slice. Since
this is already new for a local existence problem without singularities, we will in-
dicate the ingredients needed only for a local existence result for regular data, i.e.,
for this subsubsection suppose we are given geometric data (Σ,g,k) satisfying the
(usual) constraint equations and we explain how to construct a spacetime solution
to the Einstein vacuum equations in the gauge (1.16).

Assuming that a metric of the form (1.16) obeys the Einstein vacuum equa-
tions, we can deduce that the second fundamental form ki

j obeys the following
system of second order equations:

(1.18) ∂2
t ki

j =∆gki
j −∇i∇

jkℓ
ℓ+(k ⋆k ⋆k)i

j +(∂tk ⋆k)i
j ,

where k⋆k⋆k and ∂tk⋆k are nonlinear terms to be specified in (4.6) in Section 4.1.
Notice that (1.18) is not actually a wave equation, due to the term ∇i∇

jkℓ
ℓ

on the RHS. The key is that the trace of k, i.e., kℓℓ in fact can be proven to have
additional regularity if we further use the Einstein vacuum equations. First, the
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Einstein vacuum equations imply that

∂tkℓ
ℓ = |k|2.

Now we consider h= kℓ
ℓ to be a separate variable and consider the coupled system

for (g,h,k):

∂th= |k|2,
∂2
t ki

j =∆gki
j −∇i∇

jh+(k ⋆k ⋆k)i
j +(∂tk ⋆k)i

j ,

∂tgij =−2kiℓgjℓ.

(1.19)

(This system must hold for h= kℓ
ℓ if the Einstein vacuum equations are satisfied.)

We then attempt to solve (1.19) with initial data where (gij , kij) is as given, h= kℓ
ℓ

and ∂tki
j = Ric(g)ij + kℓ

ℓki
j (which is completely determined by the geometric

data).
The apparent difficulty in solving (1.19) is a potential loss of derivatives. For

instance, energy estimates for the second equation requires two derivative of h and
give only first-derivative estimates for k. The first equation, however, does not seem
to give two derivatives for h if we only have one derivative for k. A similar issue
arises for g and k when we consider commutators for the second equation.

This can nevertheless be resolved by a renormalization together with elliptic
estimates. As an example, we illustrate how to obtain second derivative estimates
for h when only controlling one derivative of k. Commute the first equation with
∆g so that we have, up to error terms,

∂t∆gh= 2kij∆gkj
i+ · · · .

The idea now is to use the second equation in (1.19) so that we obtain

∂t(∆gh−2kij∂tkj i) = 2kij(−∂2
t +∆g)k

i
j + · · ·= · · · .

This allows us to control ∆gh even only controlling one derivative of k. The other
second derivatives of h can then be bounded by ∆gh using elliptic estimates. This
avoids the loss of derivatives.

Standard energy estimates together with this renormalization/elliptic estimates
trick indeed give a solution to (1.19). Furthermore, the choice of initial data and the
structure of the equations allow one to propagate the symmetry of gij and giℓkj

ℓ.
Using moreover the Hamiltonian constraint R(g)− |k|2 + (trk)2 = 0, it can be
shown a posteriori that h= kℓ

ℓ. In particular, we also have that ∂tkℓℓ = |k|2, which
implies that Ric((4)g)tt = 0.

Finally, we need to upgrade the existence result (1.19) to a bona fide existence
result of solutions to the Einstein vacuum equations in the gauge (1.16), i.e., we
need to show that all the Ricci components vanish (in addition to Ric((4)g)tt). For
this purpose, first note that (after accounting for symmetries) the second equation
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in (1.19) gives a system of 6 first order homogeneous equations in Rici j((4)g) and
Ricti((4)g). At the same time, three of the (contracted) second Bianchi equations
give another 3 first order homogeneous equations in Rici j((4)g) and Ricti((4)g).
(The fourth equation is redundant, and does not give us extra information.) It turns
out that these 9 equations form a coupled system of wave-transport equations (see
(5.8) and (5.10)). This wave-transport equations is similar in structure to (1.19), and
can also be treated using energy estimates together with renormalization/elliptic es-
timates. Moreover, the momentum constraint and the choice of initial data, when
solving (1.19), together, guarantee that Rici j((4)g) and Ricti((4)g) are initially van-
ishing. Combining all these we obtain that Rici j((4)g) = 0 and Ricti((4)g) = 0
everywhere, implying that the constructed solution to (1.19) indeed obeys the Ein-
stein vacuum equations.

Obviously, in our setting, we need to handle simultaneously the existence the-
ory and the fact that the metric becomes singular as t→ 0+. For this we combine
the ideas here and Section 1.1.1. A few technical issues arise. For instance, the
Kasner-type geometry dictate that we do not have uniform control of the isoperi-
metric constants as t → 0+. Some care is therefore needed in the application of
Sobolev embedding; in particular we need to be careful which terms are to be put
in L2/L∞ type spaces. Finally, we note that the Fuchsian ideas in Section 1.1.1 are
used not only in solving the system (1.19), but are also used in verifying that the
solution to (1.19) is indeed a solution to the Einstein vacuum equations.

1.1.5. Uniqueness and regularity. To prove uniqueness, we again rely
on the wave equation satisfied by the second fundamental form, and perform t-
weighted energy estimates in a similar way as proving existence. The only subtlety
here is that we must impose that the metrics converge to each other sufficiently fast
as t→ 0+ in order to close the estimate (cf. the statement of Theorem 1.7).

Finally, we prove higher regularity relying on the uniqueness result. The issue
at stake here is that for each additional derivative we try to control, the estimate
in terms of t worsens by one power. Thus, the approximation we choose has to be
successively better for higher and higher derivatives. We then redo the construction
of solutions for better and better choices of the approximations. The uniqueness
result ensures that we have in fact constructed the same solution, thus showing that
the already constructed solution has arbitrarily high derivative bounds.

1.2. Related works.

1.2.1. Fuchsian constructions of singular spacetimes. Many works have
been carried out to construct AVTD singularities in (3+ 1)-dimensional vacuum
spacetimes. All previous works assume either symmetry or analyticity (or both).
The symmetry classes are typically chosen so that AVTD singularities are expected
to be stable within that class. We give a sample of such results, but refer the reader
also to the references therein for further details.
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Gowdy symmetry. AVTD singularities in (unpolarized) Gowdy symmetry
was first constructed by Kichenassamy and Rendall [30] in the analytic category,
in part based on the formal expansion carried out in [25]. A similar analysis was
carried out by Rendall without the analyticity assumption in [36]. See also [46] for
more general topologies, and [5] for a treatment in generalized wave gauges.

Polarized T2 symmetry. Analytic AVTD singularities under polarized T2

symmetry were first constructed in [26]; analyticity was later removed in [4].

U(1) polarized or half-polarized symmetry. Analytic solutions with AVTD
behavior in polarized or half-polarized symmetry with T3 topology were con-
structed by Isenberg–Moncrief in [28]. That for more general topology was later
carried out in [13].

Beyond (3+ 1)-dimensional vacuum spacetimes. The first construction of
analytic solutions with AVTD behavior without symmetries was carried out in [7],
albeit not for the Einstein vacuum equations. Indeed, the construction in [7] was
for the Einstein-scalar field or Einstein-stiff fluid system. An important difference
is that in the presence of a scalar field or stiff fluid, one expects AVTD singularities
to be stable [10, 9]. A similar stability phenomenon is expected to occur in vacuum
for spacetime dimensions ≥ 11 [19]. Correspondingly, there is a construction of
AVTD singularities for high dimensional vacuum (and more general) solutions in
[18]. See also Section 1.2.2.

Analytic singular spacetimes without symmetry assumptions. All the
works above concern regimes (either in symmetry classes or with matter, or in
high dimensions) which at least heuristically should generically have AVTD
behavior near the spacelike singularity. In a recent work of Klinger [32], analytic
vacuum AVTD spacetimes with no symmetry assumptions have been constructed.
The work [32] can be viewed as similar to our result except for requiring the
analyticity assumption and some additional inequalities on the Kasner exponents
pi’s. (These additional inequalities were used in [32] to apply a black-box Fuchsian
theorem.)

Asymptotically Schwarzschild singularity up to a singular 2-sphere. Fi-
nally, we mention the work [21] of the first author, who constructed a class of
spacetimes approaching the Schwarzschild black hole singularity. The construc-
tion requires no symmetry or analyticity assumptions. While it does not include
a full spacelike singular hypersurface, the construction does include a spacelike
singular 2-sphere.

1.2.2. Stable singularities in general relativity. By “function-counting”
arguments (cf. Remark 1.5), the class of spacetimes we construct are not expected
to be stable. For the vacuum equations in (3 + 1) dimensions, the only known
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stable singularities are in fact null; see [35, 34, 17]. These singularities are in stark
contrast with the AVTD ones, which are spacelike.

As we already mentioned in Section 1.2.1, it has been suggested that in the
presence of a scalar field or stiff fluid [10, 9], or in the vacuum case in spacetime
dimensions ≥ 11 [19], there is an open set of initial data which give rise to asymp-
totically Kasner-like singularities. It is also for this reason that in these settings, the
construction of spacelike singularities with AVTD behavior is simpler.

Spectacular progress has recently been made which indeed proves stability
of spacelike singularities in the aforementioned settings. In the case of Einstein-
scalar field or Einstein-stiff fluid, this was carried out in the breakthrough work by
Rodnianski–Speck [42, 43] and later generalized by Speck [45]. In the case of high
dimensions, assuming spacetime dimensions ≥ 39, Rodnianski–Speck has recently
also constructed a class of stable spacelike singularities in vacuum [44]. (Note that
the remarkable works of Rodnianski–Speck do not cover the whole regimes in
[10, 9, 19]. Whether all of the solutions discussed in [10, 9, 19] are stable remains
an open problem.)

Very recently, the first author and Alexakis considered the stability problem
for the Schwarzschild singularity [1]. Unlike the settings studied by Rodnianski–
Speck, the Schwarzschild singularity is unstable, but nonetheless it was shown in
[1] to be stable within the class of polarized axisymmetric perturbations.

1.2.3. Strong cosmic censorship. The understanding of AVTD singulari-
ties played an important role in understanding the strong cosmic censorship con-
jecture, at least under Gowdy symmetry.

The strong cosmic censorship conjecture has first been resolved in the polar-
ized Gowdy case in [16]. The work relies in particular on [27], in which AVTD
singularities in this setting were studied.

The more general case of the strong cosmic censorship conjecture in unpo-
larized Gowdy symmetry turned out to be significantly more difficult in view of
the so-called “spikes”. This has been treated in the seminal work of Ringström
[39] (see also [38]). Here, a form of asymptotic velocity term domination has been
established [37] and plays an important role.

It should again be stressed that outside symmetry classes (Gowdy, polarized
T2, polarized U(1), etc.), AVTD singularities are most likely not generic, and the
role of the study of AVTD singularities in the ultimate resolution of strong cosmic
censorship conjecture is quite unclear.

1.2.4. Numerical works. A discussion of the large number of related nu-
merical works will take us too far afield. For this we will refer the reader to [11]
and the many references therein.

1.2.5. Linear wave equations on singular spacetimes. A closely related
thread of works concerns solving the linear wave equation on a spacetime with a
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spacelike singularity, including Kasner, FLRW and Schwarzschild. See for instance
[31, 3, 41, 22, 2, 40, 8, 24].

1.2.6. Einstein equations in transport coordinates. At the heart of our
approach is the ability to perform energy estimates in the gauge (1.16), correspond-
ing to a choice of coordinates such that (t,xi) are all transported by the unit normal
to the spacelike hypersurfaces {t = constant}; recall Section 1.1.4. We highlight
previous works where smooth solutions to the Einstein equations are constructed
in gauge where the spatial xi coordinates are transported, i.e the metric takes the
form

(1.20) −α2dt2 +gijdxidxj .

The first is the work of Rodnianski–Speck [42, 43] (in which they constructed
stable spacelike singularities; see discussions in Section 1.2.2 above), where α is
determined by stipulating that each constant-t hypersurface has constant mean cur-
vature. See also [23] for a different approach in handling this gauge. (Constant
mean curvature foliations, but without spatially transported coordinates, have been
previously used. See for instance [6], which used spatially harmonic instead of
spatially transported coordinates.)

The second is the work of Choquet-Bruhat–Ruggeri [14], in which the authors
consider the spacetime metric of the form (1.20) and impose the condition α =√

detg
dete , where e is some arbitrary but fixed (i.e., t-independent) Riemannian metric.

They show that in such a gauge, the Einstein equations are hyperbolic.

1.3. Outline of the paper. We end the introduction with an outline of the
remainder of the paper.

The first part of the existence proof will be to construct an approximate solu-
tion. This will be carried out in Section 2, where we give the construction and show
that evolutionary equations are approximately satisfied. In Section 3 we then show
that the constraint equations are also approximately satisfied.

In Section 4 and 5 we then construct an actual solution, thus completing the
proof of Theorem 1.1. This will be carried out in two steps: in Section 4 we will
solve an appropriate system of reduced equations, then in Section 5 we show that
the solutions to the reduced equations that we have constructed in fact obey the
Einstein vacuum equations.

Finally, in Section 6, we end with the proofs of uniqueness (Theorem 1.7) and
smoothness (Theorem 1.10).

Acknowledgments. G. Fournodavlos would like to thank Lars Andersson,
Satyanad Kichenassamy, Jacques Smulevici, and Jared Speck for useful commu-
nications.
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2. Construction of an approximate solution. We work under the assump-
tions of Theorem 1.1. In particular, we fix pi and cij to be as in Theorem 1.1.

Unless explicitly stated otherwise, all the implicit constants (given either in the
≲ or the big-O or the · ≤C· notation) that we have in our arguments, from now on,
may depend on pi and cij . Many estimates in this section will involve an n ∈ N or
a multi-index α. Unless otherwise stated, all constants may depend also on n and
α.

Our goal in this section is to construct an approximate solution, i.e., we will
construct inductively a metric (4)g[n] (n ∈ N∪ {0}), which takes the form (1.4),
but with a

[n]
ij in place of aij ; as well as an approximate second fundamental form

(k[n])i
j . These a

[n]
ij are constructed so that limt→0+ a

[n]
ij (t,x) = cij(x). We will

moreover show that the pairs (g[n], k[n]) we construct indeed form an approx-
imate solution to the evolution equation, i.e., as n becomes larger, ∂t(k[n])ij −
Ric(g[n])ij − (k[n])ℓ

ℓ(k[n])i
j tends to 0 faster as t→ 0+; see already Theorem 2.1.

Unless otherwise stated, we will also be using the Einstein summation con-
vention for repeated indices, with lower case Latin indices running through 1, 2,
3. It should be noted that sometimes we will still write out the sum explicitly in
situations that confusion might arise (e.g., when one has factors of tpmax{i,j}).

Definition of (4)g
[n] and k[n]. Define (4)g[0] by setting

(2.1) a
[0]
ij = cij .

Now given g[n−1], n ∈ N (and assuming that it is a Riemannian metric on (0, tn]×
T3), define k[n] by

(2.2) ∂t(k
[n])i

j = Ric(g[n−1])i
j +(k[n])ℓ

ℓ(k[n])i
j ,

subject to the following condition at t= 0:

(2.3) |(k[n])ij − t−1κi
j |(t,x) =O(t−1+ε),

where κ is defined by κi
i = −pi (for every i = 1,2,3, without summing), κ1

2 =

(p1−p2)
c12
c22

, κ2
3 = (p2−p3)

c23
c33

, κ1
3 = (−p1+p2)

c12c23
c22c33

+(p1−p3)
c13
c33

and κi
j = 0

if i > j; and given k[n], n ∈ N, define g[n] by

(2.4) ∂tg
[n]
ij =−(k[n])i

ℓg
[n]
ℓj − (k[n])j

ℓg
[n]
ℓi ,

subject to the following condition at t= 0:

(2.5) |a[n]ij − cij |(t,x) =O(tε),
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where we recall that a[n] is related to g[n] via (1.4). It readily follows from (2.4) that
the inverse metric (g[n])−1 satisfies the equation:

(2.6) ∂t((g
[n])−1)ij = (k[n])ℓ

j((g[n])−1)iℓ+(k[n])ℓ
i((g[n])−1)jℓ.

Our goal in this section is to establish the properties of the above sequences
{g[n]}+∞

n=0, {k[n]}+∞

n=1 given in the following theorem:

THEOREM 2.1. Let pi and cij be as in the Theorem 1.1. Define

ε= min{min
x
(p3 −p2)(x),min

x
(1−p3)(x)}> 0.

Then for n∈N, there exist tn > 0 (depending on pi, cij and n), a smooth Lorentzian

metric (4)g
[n]

and a (1,1)-tensor (k[n])i
j on (0, tn]×T3 such that the following

holds.
(1) (4)g

[n]
takes the following form for some smooth functions a

[n]
ij : (0, tn]×

T3 → R (symmetric in i, j):

(4)g
[n]

=−dt2 +
3∑

i,j=1

g
[n]
ij dxi dxj =−dt2 +

3∑
i,j=1

a
[n]
ij t

2pmax{i,j}dxi dxj .

(2) (Convergence to initial data) For every multi-index α, every i, j and every
n ∈ N, the functions a[n]ij and (k[n])i

j satisfy

sup
x∈T3

|∂α
x (a

[n]
ij (t,x)− cij(x))| ≤ Cα,nt

ε,(2.7)

sup
x∈T3

|∂α
x [(k

[n])i
j(t,x)− t−1κi

j(x)]| ≤ Cα,n min{t−1+ε, t−1+ε−2pj+2pi},(2.8)

for some Cα,n > 0 depending on pi, cij , in addition to α and n. (Recall the defini-
tion of κij immediately after (2.3).)

(3) (Estimates for spatial curvature) For every multi-index α, every i, j and
every n ∈ N, the spatial Ricci curvature satisfies

(2.9) sup
x∈T3

1∑
r=0

tr|∂α
x ∂

r
t Ric(g[n])ij(t,x)| ≤ Cα,n min{t−2+ε, t−2+ε−2pj+2pi},

for some Cα,n > 0 depending on pi, cij , in addition to α and n.
(4) (k[n] is an approximate second fundamental form) For every multi-index α,

every i, j and every n ∈ N,

(2.10)
2∑

r=0

tr|∂α
x ∂

r
t (2(k

[n])i
j +(g[n])jℓ∂tg

[n]
iℓ )|(t,x)≤ Cn,αt

−1+(n+1)ε,

for some Cα,n > 0 depending on pi, cij , in addition to α and n.
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(5) (Evolution equations approximately satisfied) For every multi-index α, the
tensors (k[n])ij , g

[n]
ij also satisfy

sup
x∈T3

1∑
r=0

tr
∣∣∂α

x ∂
r
t

(
∂t(k

[n])i
j −Ric(g[n])ij − (k[n])ℓ

ℓ(k[n])i
j
)∣∣(t,x)

≤ Cα,nt
−2+(n+1)ε,

(2.11)

for some Cα,n > 0 depending on pi, cij , in addition to α and n.

Remark 2.2. All the ε in the error terms in Theorem 2.1 can be improved
almost to 2ε (or exactly to 2ε if we allow some powers of log t in the error terms).
Some estimates can even be further sharpened. We will be content with the weaker
estimates for the sake of simplicity of the exposition.

Remark 2.3. The definition of ε, together with conditions (2)–(3) in Theorem
1.1, imply that

(2.12) −1
3
≤ p1 ≤−ε, ε≤ p2 ≤

2
3
,

2
3
≤ p3 ≤ 1−ε, p3 −p2 ≥ ε.

This can be easily checked by using the following parametric form of the Kasner
exponents p1, p2, p3:

p1 =
−u

1+u+u2 , p2 =
1+u

1+u+u2 , p3 =
u(1+u)

1+u+u2 , u ∈ [1,+∞),(2.13)

which is valid at each point x ∈ T3, u= u(x).

In the rest of the section, we will prove Theorem 2.1; see the conclusion of the
proof at the end of the section. (In particular, in the course of the proof, it can be
seen that g[n] and k[n] are well defined.)

2.1. Estimates for g[0].

LEMMA 2.4. There exists t0 > 0 (depending on cij and pi) such that the fol-
lowing are true for (t,x) ∈ (0, t0]×T3:

(1) The determinant of detg[0] satisfies, for some C > 0 (depending on cij and
pi),

(2.14) |detg[0](t,x)− c11c22c33t
2| ≤ Ct2+ε.

(2) The eigenvalues λ1 ≤ λ2 ≤ λ3 of g[0] satisfy, for some C > 0 (depending
on cij and pi),

|λi− t2picii| ≤ Ct2pi+ε.

In particular, choosing t0 smaller if necessary, g[0] is a Lorentzian metric on
(0, t0]×T3.
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(3) For every multi-index α, the inverse metric (g[0])−1 satisfies, for some Cα>

0 (depending on α, cij and pi),

(g[0])−1 =


t−2p1

c11
− c12c33t

−2p1

c11c22c33

(c12c23−c13c22)t
−2p1

c11c22c33

− c12c33t
−2p1

c11c22c33

t−2p2

c22

(c12c13−c11c23)t
−2p2

c11c22c33

(c12c23−c13c22)t
−2p1

c11c22c33

(c12c13−c11c23)t
−2p2

c11c22c33

t−2p3

c33


+(g−1)

[0]
error,

(2.15)

where |∂α
x ((g

−1)
[0]
error)

ij | ≤ Ct−2pmin{i,j}+ε.

Proof. This is a simple computation and the proof is omitted. □

It will be convenient to define also

(2.16) (k[0])i
j :=−1

2
((g[0])−1)jℓ∂tg

[0]
iℓ .

The following lemma gives an estimate for (k[0])ij .

LEMMA 2.5. For every multi-index α, there exists Cα > 0 (depending on α,
in addition to cij and p) such that the following estimate holds for all (t,x) ∈
(0, t0]×T3:

|∂α
x [(k

[0])i
j − t−1κi

j ]|(t,x)≤ Cαt
−1+ε.

Proof. By the definition of g[0], it is easy to see that

∂tg
[0] =

2p1t
2p1−1c11 2p2t

2p2−1c12 2p3t
2p3−1c13

2p2t
2p2−1c12 2p2t

2p2−1c22 2p3t
2p3−1c23

2p3t
2p3−1c13 2p3t

2p3−1c23 2p3t
2p3−1c33

+(∂tg)
[0]
error,

where |∂α
x ((∂tg)

[0]
error)ij | ≤ Cαt

2pmax{i,j}−1+ε. Recalling that

(k[0])i
j :=−1

2
((g[0])−1)jℓ∂tg

[0]
iℓ ,

the conclusion of the lemma can be achieved by combining the above computation
with Lemma 2.4. □

The next lemma estimates the Ricci curvature of a general metric g =∑3
i,j=1aijt

2pmax{i,j}dxi dxj when aij satisfies some basic bounds. This in particular
gives an estimate for Ric(g[0])ij .

LEMMA 2.6. Suppose (4)g is a metric on (0,T ]×T3 taking the form (4)g =

−dt2 +
∑3

i,j=1aijt
2pmax{i,j}dxi dxj , where aij are smooth, symmetric and obey the
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estimates
|∂α

x aij |(t,x)≤ Cα, |∂α
x ∂taij |(t,x)≤ Cαt

−1+ε,

for some Cα > 0.
Then for every multi-index α, there exists C ′

α > 0 (depending on Cα, in addi-
tion to cij and p) such that the following estimate holds for all (t,x) ∈ (0,T ]×T3:

(2.17)
1∑

r=0

tr|∂α
x ∂

r
t Ric(g)ij |(t,x)≤ C ′

α min{t−2+ε, t−2+ε−2pj+2pi}.

In fact, the following slightly stronger estimate holds:

1∑
r=0

tr|∂α
x ∂

r
t Ric(g)ij |(t,x)

≤ C ′
α min{t−2+2ε|log t|2+|α|, t−2+2ε−2pj+2pi |log t|2+|α|}.

(2.18)

Proof. Clearly (2.18) implies (2.17); from now on we focus on the proof of
(2.18).

For notational convenience, in this proof we write gab = (g−1)ab.
Here is the basic observation. For a pairing gab∂cgae (note the one contracted

index), we have

gab∂cgae =O(t−2pmin{a,b}+2pmax{a,e})|log t| ≤O(|log t|).

Similarly,
(∂cg

ab)(∂dgae), g
ab∂2

cdgae =O(|log t|2).
So in order to give an estimate for the Ricci curvature, we will find pairs of g−1

and derivatives of g which share at least one index.
To make the algebraic structure clear, we will focus on proving the estimate

with |α|= 0 and r = 0 in Steps 1 and 2, and then indicate the necessary changes in
Steps 3 and 4.

Step 1: Proof of the upper bound t−2+ε. We recall the formula for the Ricci
curvature:

(2.19) Ric(g)ij = gab∂iΓ
j
ab−gab∂aΓ

j
bi+gabΓj

icΓ
c
ab−gabΓj

acΓ
c
ib

and that for the Christoffel symbols

(2.20) Γc
ab =

1
2
gcℓ(∂agbℓ+∂bgaℓ−∂ℓgab).

Hence, we notice that every term in (2.19) has either of the forms

(2.21) gab∂ℓ1 [g
ℓ2ℓ3∂ℓ4gℓ5ℓ6 ], gabgℓ1ℓ2∂ℓ3gℓ4ℓ5g

ℓ6ℓ7∂ℓ8gℓ9ℓ10
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where among the ℓi’s there is an upper j and a lower i index, while the rest are
contractions among themselves and with respect to a,b.

For the first kind of terms in (2.21), using Lemma 2.4, we notice that they are
of order

(2.22) |gab∂ℓ1 [g
ℓ2ℓ3∂ℓ4gℓ5ℓ6 ]|≲ |log t|2t−2pmin{a,b}−2pmin{ℓ2,ℓ3}+2pmax{ℓ5,ℓ6} ,

where the pair {ℓ5, ℓ6} contains at least one of the indices a,b,ℓ2, ℓ3. Hence, we
have either −2pmin{a,b}+2pmax{ℓ5,ℓ6} ≥ 0 or −2pmin{ℓ2,ℓ3}+2pmax{ℓ5,ℓ6} ≥ 0, leav-
ing

|gab∂ℓ1 [g
ℓ2ℓ3∂ℓ4gℓ5ℓ6 ]|≲ |log t|2t−2pℓ ≲ |log t|2t−2+2ε,

for some ℓ. On the other hand, the second term in (2.21) satisfies:

|gabgℓ1ℓ2∂ℓ3gℓ4ℓ5g
ℓ6ℓ7∂ℓ8gℓ9ℓ10 |

≲ |log t|2t−2pmin{a,b}−2pmin{ℓ1,ℓ2}+2pmax{ℓ4,ℓ5}−2pmin{ℓ6,ℓ7}+2pmax{ℓ9,ℓ10} ,

where at least three from the indices a, b, ℓ1, ℓ2, ℓ6, ℓ7 are contracted against three
of the indices ℓ4, ℓ5, ℓ9, ℓ10. This implies that at least two pairs of exponents having
opposite signs, among

{−2pmin{a,b},−2pmin{ℓ1,ℓ2},2pmax{ℓ4,ℓ5},−2pmin{ℓ6,ℓ7},2pmax{ℓ9,ℓ10}},

yield non-negative sums, thus, leaving only

|gabgℓ1ℓ2∂ℓ3gℓ4ℓ5g
ℓ6ℓ7∂ℓ8gℓ9ℓ10 |≲ |log t|2t−2pℓ ≲ |log t|2t−2+2ε.

Step 2: Proof of the upper bound t−2+ε−2pj+2pi . We now move on to prove the
improved estimates when i > j (when i≤ j the desired estimate follows from that
proven in Step 1). As we are now familiar with this type of argument, let us just
consider the contribution from the second type of term in (2.21) (the first type of
terms can be treated similarly). We now separate out the factor of gjℓ (which gives
a contribution of at worst of O(t−2pj )), i.e., we write

gjbgℓ1ℓ2∂ℓ3gℓ4ℓ5g
ℓ6ℓ7∂ℓ8gℓ9ℓ10 ,

where exactly one of the ℓm is b and exactly one of the ℓm is i. It is easy to check
that at least one of the following must hold:

• After relabelling gℓ1ℓ2∂ℓ3gℓ4ℓ5g
ℓ6ℓ7∂ℓ8gℓ9ℓ10 = gℓ1c∂ℓ3gℓ4cg

ℓ6d∂ℓ8gℓ9d, so that
by our basic observation gℓ1ℓ2∂ℓ3gℓ4ℓ5g

ℓ6ℓ7∂ℓ8gℓ9ℓ10 = O(|log t|2). As a result, the
whole term contributes O(t−2pj |log t|2), which is better than O(t−2+ε−2pj+2pi).

• After relabelling, we have one of the following:

gjbgacgdf∂agdf∂cgbi, gjbgacgdf∂agdb∂cgfi.
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For the first term, after noting gdf∂agdf = O(|log t|), gac = O(t−2+2ε), gjb =

O(t−2pj ) and ∂cgbi =O(t2pi |log t|), we have

gjbgacgdf∂agdf∂cgbi =O(t−2+2ε−2pj+2pi |log t|2)≤O(t−2+ε−2pj+2pi).

For the second term, note that gdf∂agdb = O(|log t|), gac = O(t−2+2ε), gjb =

O(t−2pj ) and ∂cgbi =O(t2pi |log t|), which then again gives the desired estimate.

Step 3: Higher derivative bounds. It is easy to see that after differentiating by
∂α
x , we at worst pick up additional powers of |log t||α|, we then obtain the desired

estimate also for higher derivatives of Ric(g)ij .

Step 4: Time derivative. For ∂α
x ∂t Ric(g)ij , the argument is almost identical.

Indeed, exploiting the form of the metric and using the estimate for ∂α
x ∂taij , we no-

tice that ∂tgij =O(t2pmax{i,j}−1),∂tg
ij =O(t−2pmin{i,j}−1) and similar behaviors for

their spatial derivatives (up to logarithms). Hence, a power of t−1 can be factored
out, leaving terms with factors that behave as in the previous steps. This completes
the proof of the lemma. □

2.2. Estimates for k[n].

LEMMA 2.7. Consider the nonlinear transport equation

∂tu= f +
u2

t2 ,

where f : (0,1)×T3 → R is a function such that |f |(t,x) ≲ tδ for some δ > 0.
Then there exist t∗ ∈ (0,1) and a unique solution u : (0, t∗)×T3 → R such that
|u|(t,x)≲ t1+δ.

Assuming moreover that |∂α
x f |(t,x)≲α tδ. It also follows that |∂α

xu|≲α t1+δ.

Proof. This is proven by a standard Picard iteration, with some extra care trac-
ing the t dependence; we omit the details. □

LEMMA 2.8. Suppose the following holds for some N ≥ 1: there exists tN−1 >

0 such that for every 0 ≤ n ≤ N − 1 and every multi-index α, g[n] satisfies the
following estimate for some Cα,n>0 (depending on α, n, in addition to cij and pi)
for all (t,x) ∈ (0, tN−1)×T3:

(2.23) |∂α
x (a

[n]
ij − cij)|(t,x)≤ Cα,nt

ε.

Then, there exists tN ∈ (0, tN−1) sufficiently small such that for every 1 ≤ n≤
N and every multi-index α, the following holds for all (t,x) ∈ (0, tN−1)×T3 for
some C ′

α,n > 0 (depending on α, n, in addition to cij and pi):

|∂α
x [(k

[n])i
j − t−1κi

j ]|(t,x)≤ C ′
α,n min{t−1+ε, t−1+ε−2pj+2pi}.
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Proof. The key difficulty in solving (2.2) is that there are borderline terms with
O(t−1) coefficients so that we cannot directly apply Grönwall’s lemma. One can
nevertheless analyze the precise structure of the equations.

Step 1: Solving an auxiliary system. We first solve an auxiliary system

(2.24)

{
∂th

[n] =R(g[n−1])+(h[n])2

∂t(k
[n])i

j = Ric(g[n−1])i
j +h[n](k[n])i

j
.

The first equation in (2.24) can be rearranged to

(2.25) ∂t

[
t2
(
h[n]+

1
t

)]
= t2R(g[n−1])+ t2

(
h[n]+

1
t

)2

.

Using the bound |R(g[n−1])|≲ t−2+ε from the assumptions on g[n−1] together with
Lemma 2.6, (2.25) can be solved using Lemma 2.7 with h[n] satisfying

(2.26)
∣∣∣∣∂α

x

(
h[n]+

1
t

)∣∣∣∣≲ t−1+ε.

Now the second equation in (2.24) can be rearranged to

∂t[t(k
[n])i

j ] = tRic(g[n−1])i
j +

(
h[n]+

1
t

)
t(k[n])i

j .

Using (2.26), Grönwall’s inequality and the estimate in Lemma 2.6, it follows that
there is a unique solution (k[n])i

j that obeys the initial condition (2.3) and satisfies

(2.27) |∂α
x [(k

[n])i
j − t−1κi

j ]|≲ min{t−1+ε, t−1+ε−2pj+2pi}.

Step 2: Finishing the argument. Now that we have solved (2.24) and obtained
estimates (2.26) and (2.27), in order to conclude the argument, it suffices to show
that in fact h[n] = (k[n])ℓ

ℓ. To this end, it suffices to note that

∂t

[
t2
(
(k[n])ℓ

ℓ+
1
t

)]
= t2R

(
g[n−1])+ t2((k[n])ℓ

ℓ+
1
t

)2

.

Hence, comparing this equation with (2.25), we obtain h[n] = (k[n])ℓ
ℓ by the

uniqueness statement in Lemma 2.7. □

LEMMA 2.9. Suppose the following holds for some N ≥ 2: there exists tN−1 >

0 such that for every 1 ≤ n ≤ N − 1 and every multi-index α, g[n] satisfies the
following estimate for some Cα,n > 0 (depending on α, n, in addition to cij and
pi) for all (t,x) ∈ (0, tN−1)×T3:

(2.28) |∂α
x (a

[n]
ij −a

[n−1]
ij )|(t,x)≤ Cα,nt

nε.
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Then, taking tN ∈ (0, tN−1) smaller (compared to Lemma 2.8) if necessary,
for every 2 ≤ n ≤ N and every multi-index α, the following holds for all (t,x) ∈
(0, tN−1)×T3 for some C ′

α,n > 0 (depending on α, n, in addition to cij and pi):

(2.29) |∂α
x [(k

[n])i
j − (k[n−1])i

j ]|(t,x)≤ C ′
α,nt

−1+nε.

Proof. Step 1: Estimates on the Ricci curvature. The estimate (2.28) implies
that

(2.30) |∂α
x [Ric(g[n])ij −Ric(g[n−1])i

j ]|(t,x)≲ t−2+(n+2)ε|log t|2+|α|

for every 0 ≤ n≤N −1. Indeed, arguing as in the proof of Lemma 2.6, we notice
that the difference of the ∂α

x derivative of the Ricci curvatures can be bounded by
the differences a[n]ij −a

[n−1]
ij (and their spatial derivatives), multiplied by a term that

is controlled by t−2+2ε|log t|2+|α|. In particular, (2.30) implies

(2.31) |∂α
x [Ric(g[n])ij −Ric(g[n−1])i

j ]|(t,x)≲ t−2+(n+1)ε.

Step 2: Estimates on (k[n])i
j . The assumption (2.28) implies the assumption

of Lemma 2.8 holds. Hence by Lemma 2.8,

(2.32) |∂α
x [(k

[n])i
j − t−1κi

j ]|(t,x)≲ t−1+ε

for every 2 ≤ n≤N .
In particular, since (by definition) t−1κi

i = 1
t , (2.32) implies that

(2.33)
∣∣∣∣∂α

x

[
(k[n])i

i+
1
t

]∣∣∣∣(t,x)≲ t−1+ε.

Step 3: Estimates on the difference (k[n])ij−(k[n−1])i
j . Using (2.2), we obtain,

for 2 ≤ n≤N , that

∂t[(k
[n])i

j − (k[n−1])i
j ] = Ric(g[n−1])i

j −Ric(g[n−2])i
j

+[(k[n])ℓ
ℓ− (k[n−1])ℓ

ℓ](k[n])i
j

+(k[n−1])ℓ
ℓ[(k[n])i

j − (k[n−1])i
j ].

(2.34)

It turns out to be useful to first control the trace of k[n] − k[n−1]. Taking the
trace of (2.34), we obtain

∂t((k
[n])i

i− (k[n−1])i
i) =R(g[n−1])−R(g[n−2])

+((k[n])i
i+(k[n−1])i

i)((k[n])i
i− (k[n−1])i

i).
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This implies

∂t[t
2((k[n])i

i− (k[n−1])i
i)] = t2(R(g[n−1])−R(g[n−2]))

+

(
(k[n])i

i+(k[n−1])i
i+

2
t

)
t2((k[n])i

i− (k[n−1])i
i).

By (2.31) in Step 1, the estimate (2.33) in Step 2, the condition (2.3) and Grönwall’s
inequality, it easily follows that

(2.35) |∂α
x (k

[n]−k[n−1])i
i|(t,x)≲ t−1+nε

for every 2 ≤ n≤N .
We now return to (2.34), which we rewrite as follows.

∂t[t((k
[n]−k[n−1])i

j)] = t(Ric(g[n−1])i
j −Ric(g[n−2])i

j)

+ t(k[n]−k[n−1])ℓ
ℓ(k[n])i

j

+

[
(k[n−1])ℓ

ℓ+
1
t

]
t(k[n]−k[n−1])i

j .

By (2.31) in Step 1, the estimates (2.32) and (2.33) in Step 2, the estimate (2.35)
that we just proved, the condition (2.3) and Grönwall’s inequality, we obtain

|∂α
x (k

[n]−k[n−1])i
j |(t,x)≲ t−1+nε

for every 2 ≤ n≤N , which is what we want to prove. □

2.3. Estimates for a
[n]
ij .

LEMMA 2.10. For n ∈ N and g
[n]
ij defined by (2.4)–(2.5), the corresponding

a
[n]
ij obeys the equation

∂ta
[n]
ij =−

∑
ℓ

t2pmax{ℓ,j}−2pmax{i,j}
(
(k[n]−k[0])i

ℓa
[n]
ℓj +(k[0])i

ℓ(a
[n]
ℓj − cℓj)

)
−
∑
ℓ

t2pmax{ℓ,i}−2pmax{i,j}
(
(k[n]−k[0])j

ℓa
[n]
ℓi +(k[0])j

ℓ(a
[n]
ℓi − cℓi)

)
−

2pmax{i,j}

t
(a

[n]
ij − cij),

(2.36)

where k[0] is as defined in (2.16).

Proof. By (1.4) and (2.4), with repeated indices not summed, we have on the
one hand

∂tg
[n]
ij = 2pmax{i,j}t

2pmax{i,j}−1a
[n]
ij + t2pmax{i,j}∂ta

[n]
ij ,

[1
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and on the other hand

∂tg
[n]
ij =−

∑
ℓ

(k[n])i
ℓt2pmax{ℓ,j}a

[n]
ℓj −

∑
ℓ

(k[n])j
ℓt2pmax{ℓ,i}a

[n]
ℓi .

Similarly, by (1.4), (2.1) and (2.16),

−
∑
ℓ

(k[0])i
ℓt2pmax{ℓ,j}cℓj −

∑
ℓ

(k[0])j
ℓt2pmax{ℓ,i}cℓi

= ∂tg
[0]
ij = 2pmax{i,j}t

2pmax{i,j}−1cij .

Therefore, we obtain

t2pmax{i,j}∂ta
[n]
ij = ∂tg

[n]
ij −2pmax{i,j}t

2pmax{i,j}−1a
[n]
ij

= ∂t(g
[n]
ij −g

[0]
ij )−2pmax{i,j}t

2pmax{i,j}−1(a
[n]
ij − cij)

=−
∑
ℓ

(k[0])i
ℓt2pmax{ℓ,j}(a[n]− c)ℓj −

∑
ℓ

(k[0])j
ℓt2pmax{ℓ,i}(a[n]− c)ℓi

−
∑
ℓ

t2pmax{ℓ,j}(k[n]−k[0])i
ℓa

[n]
ℓj −

∑
ℓ

t2pmax{ℓ,i}(k[n]−k[0])j
ℓa

[n]
ℓi

−2pmax{i,j}t
2pmax{i,j}−1(a

[n]
ij − cij).

Canceling t2pmax{i,j} on both sides, we obtain the desired equation. □

LEMMA 2.11. Suppose the following holds for some N ≥ 1: there exists tN > 0
such that for every 1 ≤ n ≤ N and every multi-index α, k[n] satisfies the estimate
for some Cα,n > 0 (depending on α, n, in addition to cij and pi) for all (t,x) ∈
(0, tN−1)×T3:

|∂α
x [(k

[n])i
j − t−1κi

j ]|(t,x)≤ Cα,nt
−1+ε.

Then, after choosing tN > 0 smaller if necessary, a[n]ij (t,x) is well defined and
symmetric for all (t,x) ∈ (0, tN ]×T3 and for every 1 ≤ n ≤ N . In addition, by
reducing tN > 0 further, g[n]ij (t,x) is a Lorentzian metric.

Moreover, for every multi-index α and 1 ≤ n ≤N , there exists C ′
α,n > 0 such

that

(2.37) |∂α
x (a

[n]
ij − cij)|(t,x)≤ C ′

α,nt
ε, |∂α

x ∂ta
[n]
ij |(t,x)≤ C ′

α,nt
−1+ε

for all (t,x) ∈ (0, tN ]×T3.

Proof. Clearly ∂t(a
[n]
ij − a

[n]
ji ) = 0. Moreover, at {t = 0}, a[n]ij = cij which is

symmetric. It follows that a[n]ij is symmetric.
Now given that a[n]ij is symmetric, we will only estimate the six components

{a[n]ij : i≤ j}. Using the equation in Lemma 2.10 and the bounds in Lemmas 2.5
and 2.8 (and implicitly using the symmetry of a[n]ij in the derivation), we obtain the
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following schematic equations:

∂t(a
[n]− c)33 =O(t−1+ε)(a[n]− c)+O(t−1+ε)a[n],(2.38)

∂t(a
[n]− c)22 =O(t−1+ε)(a[n]− c)+O(t−1+ε)a[n],(2.39)

∂t(a
[n]− c)11 =O(t−1+ε)(a[n]− c)+O(t−1+ε)a[n],(2.40)

∂t(a
[n]− c)23 =

p2 −p3

t
(a[n]− c)23 −

κ2
3

t
(a[n]− c)33

+O(t−1+ε)(a[n]− c)+O(t−1+ε)a[n],
(2.41)

∂t(a
[n]− c)12 =

p1 −p2

t
(a[n]− c)12 −

κ1
2

t
(a[n]− c)22

+O(t−1+ε)(a[n]− c)+O(t−1+ε)a[n],
(2.42)

∂t(a
[n]− c)13 =

p1 −p3

t
(a[n]− c)13 −

κ1
2

t
(a[n]− c)23 −

κ1
3

t
(a[n]− c)33

+O(t−1+ε)(a[n]− c)+O(t−1+ε)a[n].
(2.43)

Here, we have used the schematic notation that when we write (a[n] − c) or a[n]

without explicit indices, it can represent any component.
The key point is a reductive structure for terms with O(t−1) coefficients: The

diagonal (a[n] − c)ii terms do not see any terms with O(t−1) coefficients on the
right-hand side. For the remaining terms, we make the observations that (1) the
linear term has coefficients which is negative and (2) by estimating the terms in the
order as listed above, the only terms with O(t−1) coefficients have already been
estimated in the previous step.

Indeed, the first three equations ((2.38)–(2.40)) give

(2.44) |(a[n]−c)33|(t)+|(a[n]−c)22|(t)+|(a[n]−c)11|(t)≲ tε sup
[0,t]

(|a[n]−c|+|c|),

where we have used the initial condition (2.5).
Using the fourth and fifth equations ((2.41)–(2.42)) and plugging in (2.44), we

obtain

tp3−p2 |(a[n]− c)23|(t)

≲ tp3−p2 |(a[n]− c)33|(t)+ tp3−p2+ε sup
[0,t]

(|a[n]− c|+ |c|)

≲ tp3−p2+ε sup
[0,t]

(|a[n]− c|+ |c|)
(2.45)

and

tp2−p1 |(a[n]− c)12|(t)

≲ tp2−p1 |(a[n]− c)22|(t)+ tp2−p1+ε sup
[0,t]

(|a[n]− c|+ |c|)

≲ tp2−p1+ε sup
[0,t]

(|a[n]− c|+ |c|).
(2.46)
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The estimates (2.45) and (2.46) imply

(2.47) |(a[n]− c)23|(t)+ |(a[n]− c)12|(t)≲ tε sup
[0,t]

(|a[n]− c|+ |c|).

Finally, we consider the last equation, argue as above and plug in (2.44) and (2.47)
to obtain

(2.48) |(a[n]− c)13|(t)≲ tε sup
[0,t]

(|a[n]− c|+ |c|).

Combining (2.44), (2.47), (2.48), and choosing tN to be sufficiently small, we ob-
tain

sup
[0,t]

|a[n]− c|≲ tε sup |c|≲ tε.

This proves that a[n]ij is well defined and moreover shows the first inequality in
(2.37) in the case |α|= 0.

The second inequality in (2.37) (that for ∂ta
[n]
ij ) follows by applying the already

derived bounds to the RHS of the system (2.38)–(2.43).
We then obtain the desired higher order estimates by induction on |α|. For

example, differentiating the equation (2.36) by ∂α
x for |α| = 1, we may treat the

zeroth order terms in the differences a[n]− c as already estimated inhomogeneous
terms and repeat the above argument. The same goes for ∂α

x with |α|= 2 etc. From
this we deduce the estimate (2.50) in general. We omit the details. □

LEMMA 2.12. Suppose the following holds for some N ≥ 1: there exists tN >

0 such that for every 1 ≤ n ≤ N and for every multi-index α, k[n] satisfies the
following estimate for some Cα,n > 0 (depending on α, n, in addition to cij and
pi) for all (t,x) ∈ (0, tN ]×T3:

(2.49) |∂α
x (k

[n]−k[n−1])i
j |(t,x)≤ Cα,nt

−1+nε

for every 1 ≤ n≤N .
Then, after choosing tN > 0 smaller if necessary, for every multi-index α and

1 ≤ n≤N , there exists C ′
α,n > 0 such that

|∂α
x (a

[n]
ij −a

[n−1]
ij )|(t,x)≤ C ′

α,nt
nε,

|∂α
x ∂t(a

[n]
ij −a

[n−1]
ij )|(t,x)≤ C ′

α,nt
−1+nε,

(2.50)

for all (t,x) ∈ (0, tN ]×T3 and for every 1 ≤ n≤N .

Proof. First, we note that by Lemma 2.5 and (2.49),

(2.51) |∂α
x (k

[n]−k[0])i
j |(t,x)≲ t−1+ε

for every 1 ≤ n≤N .
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Subtracting the n and n−1 versions of (2.36), for i≤ j, we have

∂t(a
[n]−a[n−1])ij

=−
∑
ℓ

t2pmax{ℓ,j}−2pmax{i,j} [(k[n]−k[0])i
ℓ(a[n]−a[n−1])ℓj +(k[n]−k[n−1])i

ℓa
[n−1]
ℓj ]

−
∑
ℓ

t2pmax{ℓ,i}−2pmax{i,j} [(k[n]−k[0])j
ℓ(a[n]−a[n−1])ℓi+(k[n]−k[n−1])j

ℓa
[n−1]
ℓi ]

−
∑
ℓ

t2pmax{ℓ,j}−2pmax{i,j}(k[0])i
ℓ(a[n]−a[n−1])ℓj

−
∑
ℓ

t2pmax{ℓ,i}−2pmax{i,j}(k[0])j
ℓ(a[n]−a[n−1])ℓi

−
2pmax{i,j}

t
(a

[n]
ij −a

[n−1]
ij ).

(2.52)

Using equation (2.52) and the estimates in Lemmas 2.5, 2.8 and (2.49), we de-
duce a system of schematic equations in a similar manner as (2.38)–(2.43), namely,

∂t(a
[n]−a[n−1])33 =O(t−1+ε)(a[n]−a[n−1])+O(t−1+nε)a[n−1],(2.53)

∂t(a
[n]−a[n−1])22 =O(t−1+ε)(a[n]−a[n−1])+O(t−1+nε)a[n−1],(2.54)

∂t(a
[n]−a[n−1])11 =O(t−1+ε)(a[n]−a[n−1])+O(t−1+nε)a[n−1],(2.55)

∂t(a
[n]−a[n−1])23 =

p2 −p3

t
(a[n]−a[n−1])23 −

κ2
3

t
(a[n]−a[n−1]c)33

+O(t−1+ε)(a[n]−a[n−1])+O(t−1+nε)a[n−1],

(2.56)

∂t(a
[n]−a[n−1])12 =

p1 −p2

t
(a[n]−a[n−1])12 −

κ1
2

t
(a[n]−a[n−1])22

+O(t−1+ε)(a[n]−a[n−1])+O(t−1+nε)a[n01],

(2.57)

∂t(a
[n]−a[n−1])13 =

p1 −p3

t
(a[n]−a[n−1])13 −

κ1
2

t
(a[n]−a[n−1])23

− κ1
3

t
(a[n]−a[n−1])33 +O(t−1+ε)(a[n]−a[n−1])

+O(t−1+nε)a[n−1].

(2.58)

From this point on we can argue as in Lemma 2.11, using the reduc-
tive structure of the system. Note that the system (2.53)–(2.58) is better than
the system (2.38)–(2.43) in that the inhomogeneous terms O(t−1+nε)a[n−1] =

O(t−1+nε). As a result, the argument in Lemma 2.11 gives the better estimate
|∂α

x ∂
r
t (a

[n]
ij −a

[n−1]
ij )|(t,x)≤ C ′

α,nt
−r+nε, r = 0,1. □

Now a straightforward induction argument using Lemmas 2.8, 2.9, 2.11, 2.12
shows there exists a decreasing sequence of positive times tn, such that g[n] and
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k[n] are well defined and smooth in (0, tn]×T3, for all n ∈ N. Moreover, all the
estimates in the conclusions (and proofs) of Lemmas 2.8, 2.9, 2.11, 2.12 hold. In
particular, points (1), (2) in Theorem 2.1 hold true; and after using also Lemma 2.6,
it can be checked that (3) in Theorem 2.1 is also verified.

In the remaining subsections, we prove points (4) and (5) in Theorem 2.1, thus
completing the proof of Theorem 2.1.

2.4. Comparing k[n] with the second fundamental form. In this subsec-
tion, we prove point (4) of Theorem 2.1; see the main estimate in Lemma 2.15.

The heart of the matter is the following estimates for D
[n]
ij := (k[n])i

ℓg
[n]
ℓj −

(k[n])j
ℓg

[n]
ℓi .

LEMMA 2.13. For each n ∈ N, define D
[n]
ij = (k[n])i

ℓg
[n]
ℓj − (k[n])j

ℓg
[n]
ℓi . Then if

(n+ 1)ε > 2, after choosing tn smaller if necessary, the following estimate holds
for some Cα,n > 0 (depending on α, n, in addition to cij and pi):

|∂α
xD

[n]
ij |(t,x)≤ Cα,nt

−1+(n+2)ε+2pmax{i,j} |log t|2+|α|,

|∂α
x ∂tD

[n]
ij |(t,x)≤ Cα,nt

−2+(n+2)ε+2pmax{i,j} |log t|2+|α|

for all (t,x) ∈ (0, tn]×T3.

Proof. Step 1: Derivation of an equation for D[n]
ij . By (2.4),

(∂tg
[n]
ℓj )(k

[n])i
ℓ− (∂tg

[n]
ℓi )(k

[n])j
ℓ

=−g
[n]
ℓb (k

[n])j
b(k[n])i

ℓ−g
[n]
jb (k

[n])ℓ
b(k[n])i

ℓ

+g
[n]
ℓb (k

[n])i
b(k[n])j

ℓ+g
[n]
ib (k

[n])ℓ
b(k[n])j

ℓ

=−(g
[n]
jb (k

[n])ℓ
b−g

[n]
ℓb (k

[n])j
b)(k[n])i

ℓ

+(g
[n]
ib (k

[n])ℓ
b−g

[n]
ℓb (k

[n])i
b)(k[n])j

ℓ.

(2.59)

Therefore, (2.59) and the equation (2.2) that define k[n], it follows that

∂tD
[n]
ij = ∂t[(k

[n])i
ℓg

[n]
ℓj − (k[n])j

ℓg
[n]
ℓi ]

= Ric(g[n−1])i
ℓg

[n]
ℓj −Ric(g[n−1])j

ℓg
[n]
ℓi

+(k[n])a
a[(k[n])i

ℓg
[n]
ℓj − (k[n])j

ℓg
[n]
ℓi ]

− (g
[n]
jb (k

[n])ℓ
b−g

[n]
ℓb (k

[n])j
b)(k[n])i

ℓ

+(g
[n]
ib (k

[n])ℓ
b−g

[n]
ℓb (k

[n])i
b)(k[n])j

ℓ

= Ric(g[n−1])i
ℓg

[n]
ℓj −Ric(g[n−1])j

ℓg
[n]
ℓi

+(k[n])a
aD

[n]
ij −D

[n]
ℓj (k

[n])i
ℓ+D

[n]
ℓi (k

[n])j
ℓ.

(2.60)
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Now since Ric(g[n−1])i
ℓg

[n−1]
ℓj is symmetric in i and j, we have

Ric(g[n−1])i
ℓg

[n]
ℓj −Ric(g[n−1])j

ℓg
[n]
ℓi

= Ric(g[n−1])i
ℓ(g[n]−g[n−1])ℓj −Ric(g[n−1])j

ℓ(g[n]−g[n−1])ℓi

=O(t−2+(n+2)ε+2pmax{i,j} |log t|2),

(2.61)

where the final estimate follows from the form of the metric, Lemmas 2.6, 2.12,
and the fact that

O(min{t−2+2ε, t−2+2ε−2pℓ+2pi}|log t|2 × t2pmax{j,ℓ})

=O(min{t−2+2ε+2pj , t−2+2ε+2pi}|log t|2) =O(t−2+2ε+2pmax{i,j} |log t|2).

Therefore, combining (2.60) and (2.61), we have obtained that

∂tD
[n]
ij =−D

[n]
ℓj (k

[n])i
ℓ+D

[n]
ℓi (k

[n])j
ℓ+(k[n])a

aD
[n]
ij

+O(t−2+(n+2)ε+2pmax{i,j} |log t|2).
(2.62)

Step 2: Estimating D
[n]
ij . Since D[n]

ij is manifestly anti-symmetric, it suffices to

estimate D
[n]
23 , D[n]

13 and D
[n]
12 . By (2.62), they satisfy the following equations:

∂tD
[n]
23 =

[
p2 +p3 −1

t
+O(t−1+ε)

]
D

[n]
23 − (k[n])2

1D
[n]
13 +(k[n])3

1D
[n]
12

+O(t−2+(n+2)ε+2pmax{i,j} |log t|2),

∂tD
[n]
13 =

[
p1 +p3 −1

t
+O(t−1+ε)

]
D

[n]
13 − (k[n])3

2D
[n]
12 − (k[n])1

2D
[n]
23

+O(t−2+(n+2)ε+2pmax{i,j} |log t|2),

∂tD
[n]
12 =

[
p1 +p2 −1

t
+O(t−1+ε)

]
D

[n]
12 − (k[n])2

3D
[n]
13 − (k[n])1

3D
[n]
23

+O(t−2+(n+2)ε+2pmax{i,j} |log t|2).

Applying the estimates for k[n] from Lemma 2.8, we obtain

∂t(t
p1D

[n]
23 ) =O(t−1+ε)tp1D

[n]
23 +O(t−1+ε)tp1D

[n]
13

+O(t−1+ε−2p1+2p3)tp1D
[n]
12 +O(t−2+p1+(n+2)ε+2p3 |log t|2),

(2.63)

∂t(t
p2D

[n]
13 ) =O(t−1+ε)tp2D

[n]
13 +O(t−1)tp2D

[n]
23

+O(t−1+ε−2p2+2p3)tp2D
[n]
12 +O(t−2+p2+(n+2)ε+2p3 |log t|2),

(2.64)

∂t(t
p3D

[n]
12 ) =O(t−1+ε)tp3D

[n]
12 +O(t−1)tp3D

[n]
13

+O(t−1)tp3D
[n]
23 +O(t−2+p3+(n+2)ε+2p2 |log t|2).

(2.65)
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To use these equations, note that when i, j, ℓ are all distinct,

(2.66) lim
t→0+

tpiD
[n]
jℓ = 0.

Indeed, using the estimates in Lemmas 2.8 and 2.11, one checks that D[n]
23 ,D

[n]
13 =

O(t2p3−1) and D
[n]
12 =O(t2p2−1). This implies tp1D

[n]
23 =O(tp1+2p3−1) =O(tp3−p2),

tp2D
[n]
13 = O(tp2+2p3−1) = O(tp3−p1) and tp3D

[n]
12 = O(tp3+2p2−1) = O(tp2−p1). We

then obtain (2.66) using p1 < p2 < p3.
We now use equations (2.63)–(2.65) to estimate D

[n]
ij . The key is to notice a

reductive structure similar to that in the proof of Lemma 2.11, except in this situa-
tion since the different components have different rates, we argue with a bootstrap
argument.

Make the bootstrap assumptions that

|D[n]
23 |(t,x)≤At−1+(n+2)ε+2p3 |log t|2,

|D[n]
13 |(t,x)≤At−1+(n+2)ε+2p3 |log t|2,

|D[n]
12 |(t,x)≤At−1+(n+2)ε+2p2 |log t|2,

(2.67)

where A is a large constant, such that denoting the implicit constant in the big-O
notation in (2.63)–(2.65) by C, we require C ≪A.

Plugging (2.67) into (2.63), integrating, and using p2 > p1, we obtain

(2.68) |D[n]
23 |(t,x)≤ Ct−1+(n+2)ε+2p3 |log t|2 +CAt−1+(n+3)ε+2p3 |log t|2.

Arguing similarly, first for D[n]
13 and then for D[n]

12 , we also obtain

|D[n]
13 |(t,x)≤ Ct−1+(n+2)ε+2p3 |log t|2 +CAt−1+(n+3)ε+2p3 |log t|2,(2.69)

|D[n]
12 |(t,x)≤ Ct−1+(n+2)ε+2p2 |log t|2 +CAt−1+(n+3)ε+2p2 |log t|2.(2.70)

Choosing tn sufficiently small (so that Atε ≤ 1), it is easy to check that (2.68)–
(2.70) improves the bootstrap assumptions in (2.67). This gives the stated estimates
for D[n]

ij in the lemma when |α|= 0.
The estimates for the spatial derivatives are similar, except that we lose a factor

of |log t| for each derivative we take (cf. (2.18)).

Step 3: Estimating ∂tD
[n]
ij . Finally, we plug in the estimates for D

[n]
ij into

(2.63)–(2.65) to obtain the desired estimates for ∂α
x ∂tD

[n]
ij . □

LEMMA 2.14. For each n ∈ N and D
[n]
ij as in Lemma 2.13, define (D̃[n])i

j :=

(g[n])jℓD
[n]
iℓ . Then if (n+1)ε > 2, the following estimates hold for (t,x) ∈ (0, tn]×
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Tn for some Cα,n > 0 (depending on α, n, in addition to cij and pi):

2∑
r=0

tr|∂α
x ∂

r
t (D̃

[n])i
j |(t,x)

≤ Cn,α min{t−1+(n+2)ε|log t|2+|α|, t−1+(n+2)ε−2pj+2pi |log t|2+|α|}.

(2.71)

Proof. Step 1: Estimates for D̃[n] (when r = 0). By Lemma 2.13, the estimate
∂α
x (g

[n])jℓ =O(t−2pmin{j,ℓ} |log t||α|) and the fact tε|log t|ℓ ≲ℓ 1, we immediately ob-
tain

|∂α
x (D̃

[n])i
j |(t,x)

≤ Cn,α min{t−1+(n+2)ε|log t|2+|α|, t−1+(n+2)ε−2pj+2pi |log t|2+|α|}.
(2.72)

Step 2: Deriving evolution equations for D̃[n]. Contracting (2.60) with (g[n])jb,
using (2.6) and the anti-symmetry of D[n]

ij , we obtain

(2.73) ∂t(D̃
[n])i

b = (k[n])a
a(D̃[n])i

b+Ric(g[n−1])i
b− (g[n])jb Ric(g[n−1])j

ℓg
[n]
ℓi .

We notice now that since

(g[n−1])jb Ric(g[n−1])j
ℓg

[n−1]
ℓi = Ric(g[n−1])i

b,

we have

Ric(g[n−1])i
b− (g[n])jb Ric(g[n−1])j

ℓg
[n]
ℓi

=−(g[n])jb Ric(g[n−1])j
ℓg

[n]
ℓi +(g[n−1])jb Ric(g[n−1])j

ℓg
[n−1]
ℓi

=−[(g[n])jb− (g[n−1])jb]Ric(g[n−1])j
ℓg

[n]
ℓi − (g[n−1])jb Ric(g[n−1])j

ℓ[g
[n]
ℓi −g

[n−1]
ℓi ]

=O(t−2pmin{j,b})×O(tnε)

×O(min{t−2+2ε|log t|2+|α|, t−2+ε−2pℓ+2pj |log t|2+|α|})×O(t2pmax{ℓ,i})

=O(|log t|2 ×min{t−2+(n+2)ε, t−2+(n+2)ε−2pb+2pi}),

(2.74)

where in estimating the terms we have used the form of the metric, computation of
the inverse metric (see (2.15)), Lemmas 2.11 and 2.12, and (2.18).

Differentiating (2.74) by ∂α
x ∂

r
t , and arguing similarly, we also obtain the fol-

lowing higher derivative bounds for r = 0,1:

∂α
x {tr∂r

t [(Ric(g[n−1])i
b− (g[n])jb Ric(g[n−1])j

ℓg
[n]
ℓi )]}

=O(|log t|2+|α|×min{t−2+(n+2)ε, t−2+(n+2)ε−2pb+2pi}).
(2.75)

Plugging the estimate (2.75) into (2.73), using the estimates for k[n] (by
Lemma 2.8) and ∂tk

[n] (by (2.2), Lemma 2.6, (2.37) and Lemma 2.8), and
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relabelling the indices, we obtain

∂α
x ∂t(D̃

[n])i
b =O(t−1)

( ∑
|β|≤|α|

∂β
x (D̃

[n])i
b
)

+O(|log t|2+|α|×min{t−2+(n+2)ε, t−2+(n+2)ε−2pb+2pi}),
(2.76)

and

∂α
x ∂

2
t (D̃

[n])i
b =O(t−1)

∑
|β|≤|α|

∂β
x∂t(D̃

[n])i
b+O(t−2)

∑
|β|≤|α|

∂β
x (D̃

[n])i
b

+O(|log t|2+|α|×min{t−3+(n+2)ε, t−3+(n+2)ε−2pb+2pi}).
(2.77)

Step 3: Estimates for ∂tD̃[n] and ∂2
t D̃

[n] (when r = 1,2). Plugging (2.72) into
(2.76), we obtain

|∂α
x ∂t(D̃

[n])i
j |(t,x)

≤ Cn,α min{t−2+(n+2)ε|log t|2+|α|, t−2+(n+2)ε−2pj+2pi |log t|2+|α|}.
(2.78)

Similarly, plugging in both (2.78) and (2.72) into (2.77), we obtain

|∂α
x ∂

2
t (D̃

[n])i
j |(t,x)

≤ Cn,α min{t−3+(n+2)ε|log t|2+|α|, t−3+(n+2)ε−2pj+2pi |log t|2+|α|}.
(2.79)

Combining (2.72), (2.78) and (2.79) yields (2.71). □

The next lemma shows that even though k[n] is not the second fundamental
form associated to g[n], it is close to being the second fundamental form up to an
error that vanishes sufficiently fast as t→ 0+.

LEMMA 2.15. When (n+ 1)ε > 2, the following estimates hold for (t,x) ∈
(0, tn]×Tn for some Cα,n > 0 (depending on α, n, in addition to cij and pi):

(2.80)
2∑

r=0

tr|∂α
x ∂

r
t (2(k

[n])i
j +(g[n])jℓ∂tg

[n]
iℓ )|(t,x)≤ Cn,αt

−1+(n+2)ε|log t|2+|α|.

Proof. By (2.4) and the definition of D
[n]
ij (in Lemma 2.13) and D̃[n] (in

Lemma 2.14),

2(k[n])ij +(g[n])jℓ∂tg
[n]
iℓ = 2(k[n])ij −2(k[n])ij − (g[n])jℓD

[n]
iℓ

=−(g[n])jℓD
[n]
iℓ =−(D̃[n])i

j .
(2.81)

The desired estimate is then an immediate consequence of Lemma 2.14. □

Lemma 2.15 gives point (4) in Theorem 2.1.
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2.5. (k[n])i
j and g

[n]
ij satisfy evolution equations approximately. In this

subsection we prove point (5) in Theorem 2.1 (see Proposition 2.17), which then
completes the proof of the theorem.

LEMMA 2.16. For every n ∈ N, the following estimates hold for (t,x) ∈
(0, tn]×Tn, for some Cα,n > 0 (depending on α, n, in addition to cij and pi):∣∣∂α

x ∂t
(

Ric(g[n])ij −Ric(g[n−1])i
j
)∣∣(t,x)≤ Cα,nt

−3+(n+2)ε|log t|2+|α|.

Proof. Going back to the proof of Lemma 2.6 and using the form of
the metrics g[n] and g[n−1], we notice that the each term in the difference of
Ric(g[n])ij ,Ric(g[n−1])i

j has the form:

[explicit powers of t and log t with behavior O(t−2+2ε|log t|2+|α|)]

× [nonlinear terms in ∂α
x a

[n],∂α
x a

[n−1] which are linear

in the difference ∂α
x (a

[n]−a[n−1]), |α| ≤ 2].

The fact that a[n],a[n−1] and their spatial derivatives are bounded, while |∂α
x (a

[n]−
a[n−1])| ≲ tnε (see Lemma 2.12), was then used in Lemma 2.9 to infer the bound
(2.30).

Now we verify that a time derivative acting on any of the previous type of
terms, adds at worst a power of t−1 in their behavior. For the factors which are ex-
plicit powers of t this is evident. If ∂t hits either a[n],a[n−1] factor or their difference
a[n]−a[n−1], we make use of (2.37), (2.50) and the conclusion follows. □

PROPOSITION 2.17. For every n ∈N, the following estimates hold for (t,x) ∈
(0, tn]×Tn, for some Cα,n > 0 (depending on α, n, in addition to cij and pi):

1∑
r=0

tr
∣∣∂α

x ∂
r
t

(
∂t(k

[n])i
j −Ric(g[n])ij − (k[n])ℓ

ℓ(k[n])i
j
)∣∣(t,x)

≤ Cα,nt
−2+(n+2)ε|log t|2+|α|.

Proof. Using the equation (2.2), the estimate (2.31), and Lemma 2.16, we ob-
tain ∣∣∂α

x

(
∂t(k

[n])i
j −Ric(g[n])ij − (k[n])ℓ

ℓ(k[n])i
j
)∣∣(t,x)

=
∣∣∂α

x

(
Ric(g[n])ij −Ric(g[n−1])i

j
)∣∣(t,x)≲ t−2+(n+2)ε|log t|2+|α|

and ∣∣∂α
x ∂t
(
∂t(k

[n])i
j −Ric(g[n])ij − (k[n])ℓ

ℓ(k[n])i
j
)∣∣(t,x)

=
∣∣∂α

x ∂t
(

Ric(g[n])ij −Ric(g[n−1])i
j
)∣∣(t,x)≲ t−3+(n+2)ε|log t|2+|α|,

as desired. □
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Proposition 2.17 implies point (5) of Theorem 2.1. Together with the previous
subsections, this completes the proof of Theorem 2.1.

3. Approximate propagation of constraints. We continue to work under
the assumptions of Theorem 1.1 and take g[n] and k[n] as constructed in the begin-
ning of Section 2 (so that for appropriately chosen tN , the estimates in Theorem 2.1
hold).

The goal of this section is to show that metrics (4)g[n] are also approximate
solutions to the constraints, as t → 0, to an order that improves with the increase
of n. To achieve this we argue by propagation of constraints, i.e., we use the second
Bianchi identity as propagation equations and use that the constraints are asymp-
totically valid in the renormalized sense (1.7)–(1.8).

It will be useful to setup some notations that we use in this section. For the
remainder of this section, D will denote the Levi–Civita connection of the space-
time metric (4)g[n] and ∇ will denote the Levi–Civita connection of the metric g[n]

on the (spacelike) constant-t hypersurfaces. Moreover, indices are lowered and
raised with respect to the metric g[n] (in particular (g[n])ij = ((g[n])−1)ij in this
section).

PROPOSITION 3.1. Let (4)g = −dt2 + g, where g is a Riemannian metric.
Define k̃i

j := − 1
2(g

−1)jℓ∂tgiℓ (the second fundamental form). Then the following
identities hold:

Ric((4)g)ij =−∂tk̃i
j +Ric(g)ij + k̃ℓ

ℓk̃i
j ,(3.1)

Ric((4)g)ti =−(divg k̃)i+∇i(k̃ℓ
ℓ),(3.2)

Ric((4)g)tt = ∂t(k̃ℓ
ℓ)−|k̃|2,(3.3)

R((4)g) =−2∂t(k̃ℓℓ)+R(g)+ |k̃|2 +(k̃ℓ
ℓ)2,(3.4)

G((4)g)i
j =−∂tk̃i

j +Ric(g)ij + k̃ℓ
ℓk̃i

j

− 1
2
δi

j [−2∂t(k̃ℓℓ)+R(g)+ |k̃|2 +(k̃ℓ
ℓ)2],

(3.5)

G((4)g)ti =−(div k̃)i+∇i(k̃ℓ
ℓ),(3.6)

G((4)g)tt =
1
2
[R(g)−|k̃|2 +(k̃ℓ

ℓ)2],(3.7)

where G((4)g)αβ is the Einstein tensor of (4)g.

Proof. The first three identities can be found in [12, Chapter 6, (3.20)–(3.22)]
(after substituting the lapse to be identically 1). The remaining identities follow
from the first three by simple algebraic manipulations. □
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LEMMA 3.2. Given n ∈ N∪{0}, (4)g[n] and k[n] given by Theorem 2.1 satisfy
the estimates: ∣∣∂α

x [R(g[n])−|k[n]|2 +(trk[n])2]
∣∣≤ Cα,nt

−2+ε,∣∣∂α
x [∂t(trk

[n])−|k[n]|2]
∣∣≤ Cα,nt

−2+ε∣∣∂α
x [∇j(k

[n])i
j −∂i(k

[n])ℓ
ℓ]
∣∣≤ Cα,nt

−1+ε.

(3.8)

Proof. By point (3) in Theorem 2.1, it follows that

|∂α
xR(g[n])| ≤ Cα,nt

−2+ε.

Writing also

|k[n]|2 − (trk[n])2 = (k[n]− t−1κ)i
j(k[n]− t−1κ)j

i− [(k[n]− t−1κ)ℓℓ]
2

+
1
t2

∑
i

p2
i −

1
t2

(∑
i

pi

)2
+(k[n]− t−1κ)i

j(t−1κ)j
i

+(k[n]− t−1κ)j
i(t−1κ)i

j −2(t−1κ)ℓ
ℓ(k[n]− t−1κ)ℓ

ℓ,

we conclude the first estimate using condition (2) in Theorem 1.1 and the second
inequality in (3), Theorem 2.1.

For the second estimate, first note that after tracing the first inequality in (3) of
Theorem 2.1, we obtain∣∣∂α

x

(
∂t(trk[n])−R(g[n])− (trk[n])2)∣∣≤ Cα,nt

−2+(n+1)ε.

Combining this with the first estimate in (3.8) that we have just established, we
obtain the second estimate in (3.8).

We now turn to the third estimate in (3.8). For notational clarity, we focus on
the case |α|= 0. All the higher derivative bounds are be derived analogously after
noticing the crucial algebraic structure. We compute:

∇j(k
[n])i

j −∂i(k
[n])ℓ

ℓ = ∂j(k
[n]− t−1κ)i

j −∂i(k
[n]− t−1κ)ℓ

ℓ+
∂jκi

j

t

− (Γ[n])ℓij(k
[n])ℓ

j +(Γ[n])jjℓ(k
[n])i

ℓ

= ∂j(k
[n]− t−1κ)i

j −∂i(k
[n]− t−1κ)ℓ

ℓ+
∂jκi

j

t

− 1
2
(g[n])ℓb(∂ig

[n]
jb +∂jg

[n]
ib −∂bg

[n]
ij )(k

[n])ℓ
j

+
1
2
(g[n])jb(∂jg

[n]
ℓb +∂ℓg

[n]
jb −∂bg

[n]
jℓ )(k

[n])i
ℓ.

(3.9)

[1
32

.1
74

.2
51

.2
]  
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Notice now that by (2.80), we have:

(k[n])i
j =−1

2
(g[n])jℓ∂tg

[n]
iℓ +O(t−1+(n+1)ε).

Therefore,

1
2
(g[n])ℓb(∂jg

[n]
ib −∂bg

[n]
ij )(k

[n])ℓ
j

=−1
4
(g[n])ℓb∂jg

[n]
ib (g

[n])jc∂tg
[n]
cℓ

+
1
4
(g[n])ℓb∂bg

[n]
ij (g

[n])jc∂tg
[n]
cℓ +O(t−1+ε)

=O(t−1+ε),

(3.10)

where in order to show that this = O(t−1+ε), we look at the second term, relabel
the indices b↔ j and then swap c↔ ℓ (using that g[n] is symmetric), which then
gives the negative of the first term.

For the term − 1
2(g

[n])ℓb∂ig
[n]
jb (k

[n])ℓ
j , we first note that if ℓ > j, then (k[n])ℓ

j =

O(t−1−2pj+2pℓ) and (g[n])ℓb∂ig
[n]
jb = O(|log t|), so altogether we get an O(t−1+ε)

contribution. If ℓ < j, then (g[n])ℓb∂ig
[n]
jb = O(tε), which together with (k[n])ℓ

j =

O(t−1), we get a combined contribution of O(t−1+ε). We therefore only get the
contribution when j = ℓ, i.e.

(3.11) −1
2
(g[n])ℓb∂ig

[n]
jb (k

[n])ℓ
j =−

3∑
j=1

1
2
(g[n])jb∂ig

[n]
jb (k

[n])j
j +O(t−1+ε).

Combining (3.10) and (3.11), we have

− 1
2
(g[n])ℓb(∂ig

[n]
jb +∂jg

[n]
ib −∂bg

[n]
ij )(k

[n])ℓ
j

=−
3∑

j=1

1
2
(g[n])jb∂ig

[n]
jb (k

[n])j
j +O(t−1+ε).

(3.12)

Plugging (3.12) into (3.9), using the estimate (2.8), and noting that by symme-
try (g[n])jb(∂jg

[n]
ℓb −∂bg

[n]
jℓ ) = 0, we obtain

∇j(k
[n])i

j −∂i trk[n] =
∂jκi

j

t
−

3∑
j=1

1
2
(g[n])jb∂ig

[n]
jb (k

[n])j
j

+
1
2
(g[n])jb∂ℓg

[n]
jb (k

[n])i
ℓ+O(t−1+ε).

(3.13)
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Finally, notice that the second and third terms in (3.13), when j ̸= b, contribute
only O(t−1+ε). We have thus obtained

∇j(k
[n])i

j −∂i trk[n] =
∂jκi

j

t
−

3∑
ℓ=1

1
2
(g[n])ℓℓ∂ig

[n]
ℓℓ (k

[n])ℓ
ℓ

+
3∑

j,ℓ=1

1
2
(g[n])jj∂ℓg

[n]
jj (k

[n])i
ℓ+O(t−1+ε)

=
∂jκi

j

t
+

3∑
ℓ=1

(
1
2
∂icℓℓ
cℓℓ

pℓ
t
+

pℓ∂ipℓ
t

log t
)
+O(t−1+ε)

+
3∑

j,ℓ=1

(
κi

ℓ∂ℓpj
t

log t+1{ℓ>i}
∂ℓcjj
2cjj

κi
ℓ

t
− 1

2
∂icjj
cjj

pi
t

)

=
1
2t

3∑
ℓ=1

(
∂icℓℓ
cℓℓ

(pℓ−pi)+2∂ℓκiℓ+1{ℓ>i}
∂ℓ(c11c22c33)

c11c22c33
κi

ℓ

)
+O(t−1+ε),

where in the last equality we use condition (2) in Theorem 1.1. The desired estimate
now follows by employing condition (4) in Theorem 1.1. □

Combining Proposition 3.1, Lemma 3.2 and Theorem 2.1, we deduce the fol-
lowing bounds for the relevant curvature components of (4)g[n].

PROPOSITION 3.3. Given n ∈ N such that (n+1)ε > 2 and (4)g[n] as in The-
orem 2.1, the following estimates hold:

|∂α
x Rici j((4)g[n])|, |∂α

x Rictt((4)g[n])|, |∂α
xR((4)g[n])|,

|∂α
xGi

j((4)g[n])|, |∂α
xGtt(

(4)g[n])| ≤ Cα,nt
−2+(n+1)ε,

(3.14)

|∂α
x ∂t Rici j((4)g[n])| ≤ Cα,nt

−3+(n+1)ε,(3.15)

|∂α
xGti(

(4)g[n])|, |∂α
x Ricti((4)g[n])| ≤ Cα,nt

−1+(n+1)ε,(3.16)

for all (t,x) ∈ (0, tN ]×T3.

Proof. In this proof, the implicit constants in ≲ depend on α, n, cij and pi.

Step 0: Estimates for Rici j((4)g[n]). According to (3.1) in Proposition 3.1 and
the estimates in (2.8), Lemma 2.15 and Proposition 2.17, it follows that

(3.17) |∂α
x [Ric((4)g[n])ij ]|(t,x)≲ t−2+(n+2)ε|log t|2+|α|,

which clearly implies in particular the needed estimate for Ric((4)g[n])ij in (3.14).
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Also, using (2.8), Lemma 2.15 and Proposition 2.17, we also obtain the esti-
mate (3.15) for ∂α

x ∂t Rici j((4)g[n]).
It suffices then to show that the estimates for ∂α

x Ricti((4)g[n]),∂α
x Rictt((4)g[n])

hold true, since all the remaining terms in (3.14) are algebraic combinations of the
previous three.

Step 1: Deriving the ODEs. By virtue of the contracted second Bianchi iden-
tity we have:

∂t Ricti((4)g[n]) =Dt Ricti((4)g[n])+
1
2
(g[n])jℓ∂tg

[n]
iℓ Rictj((4)g[n])

=−1
2
∂iR((4)g[n])+Dj Rici j((4)g[n])

+
1
2
(g[n])jℓ∂tg

[n]
iℓ Rictj((4)g[n])

=
1
2
∂i Rictt((4)g[n])−

1
2
(g[n])jℓ∂tg

[n]
jℓ Ricti((4)g[n])︸ ︷︷ ︸
=:I

−1
2
∂i Ricj j((4)g[n])+∇j Rici j((4)g[n])︸ ︷︷ ︸

=:II

,

(3.18)

∂t Rictt((4)g[n]) =Dt Rictt((4)g[n]) =−1
2
∂tR((4)g[n])+DjRictj(

(4)g[n])

=
1
2
∂t Rictt((4)g[n])︸ ︷︷ ︸

=:III

−1
2
(g[n])jℓ∂tg

[n]
jℓ Rictt((4)g[n])︸ ︷︷ ︸

=:IV

+∇
j(Rict)j((4)g[n])︸ ︷︷ ︸

=:V

−1
2
∂t Ricj j((4)g[n])︸ ︷︷ ︸

=:VI

−1
2
(g[n])jℓ∂tg

[n]
iℓ Ricj i((4)g[n])︸ ︷︷ ︸

=:VII

.

(3.19)

where D denotes the Levi–Civita connection of (4)g[n], and ∇j(Rict)j((4)g[n])
means that we take (Rict)j as a tensor field tangent to the constant-t hypersurfaces
and then differentiate with the connection ∇, i.e.

∇
j(Rict)j((4)g[n]) = (g[n])ij∂i(Rict)j((4)g[n])− (g[n])ij(Γ[n])ℓij(Rict)ℓ((4)g[n]).

We now estimate the terms in (3.18) and (3.19). For term I in (3.18), we use
(2.8) and (2.10) in Theorem 2.1 to obtain

(3.20) I =
[
− 1

t
+O(t−1+ε)

]
Ricti((4)g[n]).
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The first term in II can be directly estimated by (3.17). To handle the second
term in II, we compute using the form of the metric and (2.7) to obtain

∇j Rici j((4)g[n]) = ∂j Rici j((4)g[n])− (Γ[n])ℓij Ricℓ j((4)g[n])

+(Γ[n])jjℓ Rici ℓ((4)g[n])

(Γ[n])jjℓ =
1
2
(g[n])jb(∂jg

[n]
bℓ +∂ℓg

[n]
bj −∂bg

[n]
jℓ ) =O(|log t|)

(Γ[n])ℓij Ricℓ j((4)g[n]) =
1
2
(g[n])ℓb(∂ig

[n]
bj +∂jg

[n]
bi −∂bg

[n]
ij )Ricℓ j((4)g[n])

= [O(|log t|)− (g[n])ℓb∂bg
[n]
ij ]Ricℓ j((4)g[n])

(g[n])ℓb∂bg
[n]
ij Ricℓ j((4)g[n]) =Ob(|log t|)(g[n])ℓbg[n]ij Ricℓ j((4)g[n])

=Ob(|log t|)Rici b((4)g[n]).

Combining all the above and using (3.17), we obtain

(3.21) II =O(t−2+(n+1)ε).

Plugging (3.20) and (3.21) into (3.18) yields

∂t Ricti((4)g[n])+
[

1
t
+O(t−1+ε)

]
Ricti((4)g[n])

=
1
2
∂i Rictt((4)g[n])+O(t−2+(n+1)ε).

(3.22)

Equation (3.19) can be treated similarly. We subtract III to the LHS, use (2.8)
and (2.10) to control the coefficients in IV and VII, keep the term IV, and use (3.15)
for term VI so that we obtain

∂t Rictt((4)g[n])+
[

2
t
+O(t−1+ε)

]
Rictt((4)g[n])

= 2∇
j(Rict)j((4)g[n])+O(t−3+(n+1)ε).

(3.23)

In a similar way, we obtain the equations for higher derivatives analogous to
(3.22) and (3.23). After putting in an integrating factor, the equations read

∂t(t∂
α
x Ricti((4)g[n])) =

t

2
∂i∂

α
x Rictt((4)g[n])

+O(tε)
∑

|β|≤|α|

∂β
x Ricti((4)g[n])+O(t−1+(n+1)ε),

∂t(t
2∂α

x Rictt((4)g[n])) = 2t2∂α
x ∇

j(Rict)j((4)g[n])

+O(t1+ε)
∑

|β|≤|α|

∂β
x Rictt((4)g[n])+O(t−1+(n+1)ε).

(3.24)
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Step 2: Solving the ODEs. We will view the two equations in (3.24) as ODEs
in t. In particular we will not be concerned with the loss of derivatives since we
have bounds for all order of derivatives of the approximate solutions.

Note that Lemmas 2.15, 3.2 and the identities (3.2), (3.3) imply the estimates:

(3.25) |∂α
x Ricti((4)g[n])|≲ t−1+ε, |∂α

x Rictt((4)g[n])|≲ t−2+ε.

In particular, this means that the initial data (at {t = 0}) for t∂α
x Ricti((4)g[n])

and t2∂α
x Rictt((4)g[n]) both vanish. Now since |∂α

x Ricti((4)g[n])| ≲ t−1+ε (for all
α), it follows that |∂α

x ∇i(Rict)i((4)g[n])| ≲ t−3+2ε (for this we simply use that
|∂α

x (g
[n])iℓ|, |∂α

x [(g
[n])iℓ(Γ[n])jiℓ]|≲ t−2+ε). Hence, integrating the second equation

in (3.24) and using Grönwall’s inequality, we obtain

(3.26) t2|∂α
x Rictt((4)g[n])|≲ t2ε+ t(n+1)ε =⇒ |∂α

x Rictt((4)g[n])|≲ t−2+2ε.

Plugging this estimate into the first equation in (3.24), we then obtain using
Grönwall’s inequality

(3.27) t|∂α
x Ricti((4)g[n])|≲ t2ε+ t(n+1)ε =⇒ |∂α

x Ricti((4)g[n])|≲ t−1+2ε.

Notice that (3.26) and (3.27) improves over (3.25). We now repeat the above argu-
ment, but plugging in these improve estimates to obtain (assuming n≥ 2)

|∂α
x Rictt((4)g[n])|≲ t−2+3ε, |∂α

x Ricti((4)g[n])|≲ t−1+3ε.

Iterating this argument then gives the desired estimates. (The rate for ∂α
x Ricti is

limited by the last term on the RHS of the first equation in (3.24).) This completes
the proof of the proposition. □

4. Construction of an actual solution. We continue to work under the
assumptions of Theorem 1.1 and take g[n] and k[n] as constructed in the beginning
of Section 2 (so that for appropriately chosen tN , the estimates in Theorem 2.1 and
Proposition 3.3 hold).

The main result of this section will be to prove existence of a solution to a
system of reduced equations (to be introduced below in (4.9) of Section 4.1). See
Theorem 4.4 for the precise statement of the main result, and see the rest of Sec-
tion 4.3 for a discussion of the proof of Theorem 4.4 and an outline of the later
parts of the section.

4.1. Deriving the reduced equations. As already described in Sec-
tion 1.1.4 in the introduction, we will control kij using a second-order wave-like
equation. In this subsection, we derive the equation that we will use.

By (3.1) in Proposition 3.1, if a metric takes the form (1.4), and k is the second
fundamental form, then

(4.1) Ric((4)g)ij =−∂tki
j +Ric(g)ij +kℓ

ℓki
j .
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Taking a ∂t derivative of (4.1), we obtain

∂t Ric((4)g)ij =−∂2
t ki

j +∂t Ric(g)ij +∂t[kℓ
ℓki

j ].

To compute ∂t Ric(g)ij , we use the variation of Ricci formula (see for example
equation (2.31) in [15]) and the fact ∂tgij =−2kij :

∂t Ric(g)ij =∆Lkij +∇
2
ijkℓ

ℓ−∇i(divk)j −∇j(divk)i,

where ∆L is the Lichnerowicz Laplacian (on symmetric 2-tensors) given by

∆Lvij :=∆gvij +2Riem(g)mij
ℓvmℓ−Ric(g)iℓvjℓ−Ric(g)jℓviℓ.

Using again ∂tgij =−2kij , it follows that

∂t Ric(g)ij =∆gki
j +2Riem(g)mi

j
ℓkm

ℓ+Ric(g)iℓkℓj −Ric(g)ℓjkiℓ

+∇i∇
jkℓ

ℓ−∇i(divk)j −∇
j(divk)i.

(4.2)

We will further analyze two groups of terms on the RHS of (4.2):
(1) Denoting Gi :=Gti(g

(4)) and considering it as a tensor on {t= constant},
we have

(4.3) ∇i∇
jkℓ

ℓ−∇i(divk)j −∇
j(divk)i = (g−1)jℓ∇iGℓ+∇

jGi−∇i∇
jkℓ

ℓ.

(2) In three dimensions, the Riemann curvature tensor can be expressed in
terms of the Ricci curvature tensor (see [15, (1.62)]):

Riem(g)mi
j
ℓ =−Ric(g)mjgiℓ+Ric(g)ℓmδji −Ric(g)iℓ(g−1)mj

+Ric(g)ijδmℓ − 1
2
R(g)(δmℓ δji − (g−1)mjgiℓ),

(4.4)

where R(g) denotes the scalar curvature of g. Therefore, the terms

2Riem(g)mi
j
ℓkm

ℓ+Ric(g)iℓkℓj −Ric(g)ℓjkiℓ

can be written as some linear combinations of contractions of Ric(g) and k. Using
again (4.1), we can replace Ric(g)ij by Ric((4)g)ij +∂tki

j −kℓ
ℓki

j .
It therefore follows that the second fundamental form k verifies the following

equation:

−∂2
t ki

j +∆gki
j −∇i∇

jkℓ
ℓ+(k ⋆k ⋆k)i

j +(∂tk ⋆k)i
j

=−∂t Rici j((4)g)+∇iGj+∇
jGi−3kim Ricm j((4)g)+2δji km

ℓ Ricℓ m((4)g)

−kℓ
j Rici ℓ((4)g)+2kℓℓ Rici j((4)g)− (kℓ

ℓδji −ki
j)Ricmm((4)g),

(4.5)
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where

(k ⋆k ⋆k)i
j :=−2kaa

[
−gmaka

jgil+kℓ
mδi

j −gaℓki
agmj

+ki
jδl

m− 1
2
ka

a(δℓ
mδi

j −gmjgil)

]
km

ℓ

= 4kℓℓkajkia−2kaa(kℓmkm
ℓ)δi

j +(ka
a)3δi

j −3(kℓℓ)2ki
j

(∂tk ⋆k)i
j := ∂t(kℓ

ℓki
j)−2∂tkajkia+2∂tkℓmδi

jkm
ℓ−2∂tkiakaj

+2∂tkijkℓℓ−∂tka
aδi

jkℓ
ℓ+∂tka

aki
j+∂tki

ℓkℓ
j −∂tkℓ

jki
ℓ

=−3∂tkajkia+∂t(kℓ
mkm

ℓ)δi
j −∂tki

aka
j +2∂tkℓℓkij

+3∂tkijkℓℓ−
1
2
∂t(ka

a)2δi
j .

(4.6)

We note that the terms k ⋆k ⋆k and ∂tk ⋆k satisfy

(4.7) (k ⋆k ⋆k)i
i+(∂tk ⋆k)i

i = ∂t|k|2 −2kℓℓ|k|2 +2kii∂tkℓℓ.

In particular, if (4)g solves the Einstein vacuum equations, then

(4.8) ∂2
t ki

j =∆gki
j −∇i∇

jkℓ
ℓ+(k ⋆k ⋆k)i

j +(∂tk ⋆k)i
j .

The equation (4.8) is almost a wave equation for k, except that there is a top order
∇i∇

jkℓ
ℓ term on the RHS. To proceed we think of h= kℓ

ℓ as an independent vari-
able. If the Einstein vacuum equations were satisfied, then (3.3) in Proposition 3.1
imposes that ∂th = |k|2. It is therefore reasonable to look for a solution to the
Einstein vacuum equations by solving the following coupled system of equations:

∂th= |k|2,
∂2
t ki

j =∆gki
j −∇i∇

jh+(k ⋆k ⋆k)i
j +(∂tk ⋆k)i

j ,

∂tgij =−ki
ℓgjℓ−kj

ℓgiℓ.

(4.9)

Remark that given a solution to (4.9), it follows that g−1 satisfies

(4.10) ∂t(g
−1)ij = kℓ

j(g−1)iℓ+kℓ
i(g−1)jℓ.

Our strategy will be to solve the system (4.9) and then a posteriori justify that
it is indeed a solution to the Einstein vacuum equations (in Section 5).

4.2. Notations. Before we proceed, we introduce some notations.
In the following we will consider (at least) two spacetime metrics (4)g =

−dt2 + gijdxidxj and (4)g[n] = −dt2 + g
[n]
ij dxidxj on the domain It×T3 (where

It ⊂ R is an interval, possibly open, closed or half-open).
We make the following definitions assuming we are given such It, (4)g and

(4)g[n].
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Definition 4.1 (Constant-t hypersurfaces). Given t ∈ It define

Σt := {(τ,x) : τ = t, x ∈ T3}.

Definition 4.2 (Connections). (1) Denote by ∇ the Levi–Civita connection of
g, and by ∇[n] the Levi–Civita connection of g[n].

(2) Denote ∇(d) := ∇−∇[n]. Remark that ∇(d) is a (1,2)-tensor.
(3) Let r ∈ N and T be an (m,l)-tensor. Define ∇(r)T to be the (m,l+ r)-

tensor given by
(∇(r)T )ji···jma1···ari1···il = ∇a1 · · ·∇arT

ji···jm
i1···il .

Definition 4.3 (Norms). (1) Given two rank (m,l) tensors T (1) and T (2), define
the inner product

⟨T (1), T (2)⟩g := (g−1)i1b1 · · ·(g−1)ilblgj1c1 · · ·gjmcm(T (1))ji···jmi1···il (T (2))ci···cmb1···bl .

(2) Given a rank (m,l) tensor T , define

|T |2g := ⟨T , T ⟩g = (g−1)i1b1 · · ·(g−1)ilblgj1c1 · · ·gjmcmT
ji···jm
i1···il T ci···cm

b1···bl .

(3) Given a tensor T and p ∈ [1,+∞), define

∥T ∥Lp(Σt,g) :=
(∫

Σt

|T |pg volΣt

) 1
p

,

where volΣt =
√

detgdx is the volume form induced by the metric g.
For p=+∞, define

∥T ∥L∞(Σt,g) := esssupx∈T3 |T |g(t,x).

(4) For r ∈ N∪{0} and p ∈ [1,+∞], define the geometric Sobolev space

∥T ∥W r,p(Σt,g) :=
r∑

r′=0

∥∇
(r′)T ∥Lp(Σt,g).

(5) For r ∈ N ∪ {0} and p ∈ [1,+∞], define the homogeneous geometric
Sobolev space

∥T ∥Ẇ r,p(Σt,g)
:= ∥∇

(r)T ∥Lp(Σt,g).

(6) For r ∈ N∪{0}, define

Hr(Σt,g) :=W r,2(Σt,g), Ḣr(Σt,g) := Ẇ r,2(Σt,g).

(7) Define the norm tαL2(Σt,g) (for α ∈ R\{0}) by

∥T ′∥tαL2(Σt,g) := t−α∥T ∥L2(Σt,g).
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(8) Given any two Banach spaces X and Y , the vector spaces X+Y = {x+y :
x ∈X, y ∈ Y } and X ∩Y are endowed with Banach space structures with norms

∥v∥X+Y := inf
v=x+y,(x,y)∈X×Y

(∥x∥X +∥y∥Y ), ∥v∥X∩Y := ∥v∥X +∥v∥Y .

(9) Finally, define Lp(Σt,g
[n]), W r,p(Σt,g

[n]) and Ẇ r,p(Σt,g
[n]) etc. as above

but with g replaced by g[n] (and ∇ replaced by ∇[n]).

4.3. Existence of solutions to (4.9) and the main steps of the proof. Our
first step of the proof of Theorem 1.1 is to build a solution to (4.9). The following
is the main existence result for (4.9), whose proof will occupy the remainder of the
section.

THEOREM 4.4. For every s,N0 ∈ N obeying s ≥ 5, there exists nN0,s ∈ N
sufficiently large such that for any n ≥ nN0,s, there exist TN0,s,n > 0 sufficiently
small and a solution (g,h,k) to (4.9) in (0,TN0,s,n]×T3 which satisfy the following
estimates:

s∑
r=0

t2r∥k(d)∥2
Hr(Σt,g)

+
s−1∑
r=0

t2(r+1)∥∂tk(d)∥2
Hr(Σt,g)

+
s+1∑
r=0

t2r∥h(d)∥2
Hr(Σt,g)

+
s+1∑
r=0

t2(r−1)(∥g(d)∥Hr(Σt,g)+∥(g−1)(d)∥Hr(Σt,g))≤ t2N0+2s,

(4.11)

where k(d) = k− k[n], h(d) = h−h[n], g(d) = g− g[n], (g(d))−1 = g−1 − (g[n])−1.
Moreover, kij = gℓjki

ℓ is symmetric in i and j.

We will prove Theorem 4.4 with the following steps (see the conclusion of the
proof in Section 4.3.3):

(1) For Taux > 0 (with Taux ≪ TN0,s,n), we construct local solutions to (4.9) in
[Taux,Taux + δ)×T3 (with δ potentially depending on Taux) (Lemma 4.5).

(2) For s, N , n and TN0,s,n as in Theorem 4.4, we prove uniform estimates to
show that the solution can be extended to [Taux,TN0,s,n]. This is carried out in a
bootstrap argument and is the main step (Theorem 4.6, Corollary 4.7).

(3) Using a compactness argument, we take a sequence of auxiliary times
(Taux)i → 0+ and extract a subsequence of solutions converging to a limiting solu-
tion to (4.9) on (0,TN0,s,n]×T3 (Proposition 4.8).

We will further elucidate these steps in the subsubsections below. Most of the
proofs will then be given in later subsections.

4.3.1. Step 1: A local solution. We begin with the following local exis-
tence result for (4.9):
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LEMMA 4.5 (Local existence). For every Taux > 0 sufficiently small and n∈N,
there exist a δ > 0 (depending a priori both on Taux and n) and a unique smooth
solution (gaux,kaux,haux) to (4.9) in [Taux,Taux + δ]×T3, such that at t = Taux,
(gaux,kaux,haux) attains the following prescribed values:

gaux
ij ↾t=Taux = g

[n]
ij ↾t=Taux , haux ↾t=Taux = (k[n])i

i ↾t=Taux ,

(kaux)i
j ↾t=Taux = (k[n])i

j ↾t=Taux , (∂tk
aux)i

j ↾t=Taux = (∂tk
[n])i

j ↾t=Taux .

Moreover, gaux
ij = gaux

ji .

Such a local existence result is almost standard. The only issue is that the sec-
ond equation of the system (4.9) contains the term ∇i∇

jh on the RHS, which seems
to “have one derivative too many”. This issue can be treated by deriving elliptic es-
timates for h, by commuting ∂th = |k|2 with ∆g and using the wave equation for
k, see discussions in Section 1.1.4 and Lemma 4.34. We will use this result but will
omit its straightforward proof.

Once existence is obtained, since gaux
ij is symmetric at t = Taux and ∂t(g

aux
ij −

gaux
ji ) = 0, it immediately follows that gaux

ij = gaux
ji .

4.3.2. Step 2: The main bootstrap argument. Our next step is to prove a
uniform time of existence independent of Taux. To state the result, let us define, for
(gaux,kaux,haux) as in Lemma 4.5,

g
(d)
ij := gaux

ij −g
[n]
ij , ((g−1)(d))ij := ((gaux)−1)ij − ((g[n])−1)ij ,(4.12)

(k(d))i
j :=(kaux)i

j−(k[n])i
j , h(d) := haux −h[n].(4.13)

We stipulate that the metric gaux
ij takes the form (1.4) and define aaux

ij according to
(1.4).

Introduce the following bootstrap assumptions:

max
i,j

|aaux
ij − cij |(t,x)≤ t

ε
2 ,(4.14)

∥g(d)∥W s−1,∞(Σt,gaux)+∥(g−1)(d)∥W s−1,∞(Σt,gaux) ≤ 1,(4.15)

∥g(d)∥Hs+1(Σt,gaux)+∥(g−1)(d)∥Hs+1(Σt,gaux) ≤ t
5
2 ,(4.16)

∥h(d)∥Hs+1(Σt,gaux)+∥k(d)∥Hs(Σt,gaux)+∥∂tk(d)∥Hs−1(Σt,gaux) ≤ t
5
2 .(4.17)

The following is the main bootstrap theorem, whose proof constitutes most of
this section (in Sections 4.4–4.8):

THEOREM 4.6 (Bootstrap theorem). For every s, N0 ∈N such that s≥ 5, there
exists nN0,s ∈N sufficiently large such that for every n≥ nN0,s, the following holds
for some TN0,s,n > 0 sufficiently small.
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Suppose (gaux,kaux,haux) is the solution to (4.9) on a time interval [Taux,TBoot)

(for some TBoot ∈ (Taux,TN0,s,n]), with initial data at t = Taux given as in
Lemma 4.5. Assume moreover that the bootstrap assumptions (4.14)–(4.17) all
hold on [Taux,TBoot)×T3.

Then in fact the following estimates hold:

s∑
r=0

t2r∥k(d)∥2
Hr(Σt,gaux)+

s−1∑
r=0

t2r+2∥∂tk(d)∥2
Hr(Σt,gaux)

+
s+1∑
r=0

t2r∥h(d)∥2
Hr(Σt,gaux)

+
s+1∑
r=0

t2r−2(∥g(d)∥2
Hr(Σt,gaux)

+∥(g−1)(d)∥2
Hr(Σt,gaux))≤ Ct2N0+2s

(4.18)

on [Taux,TBoot)×T3, where C > 0 may depend on s, N0 and the data, but is inde-
pendent of Taux.

Moreover, taking TN0,s,n smaller if necessary, (4.18) improves over the boot-
strap assumptions (4.14)–(4.17).

As is standard, the bootstrap theorem implies immediately, using a continuity
argument, that the solution can be extended up to time TN0,s,n:

COROLLARY 4.7. Let s, N0, n and TN0,s,n be as in Theorem 4.6. Then the local
solution given in Lemma 4.5 can in fact be extended to all of [Taux,TN0,s,n)×T3.
Moreover, the estimates (4.18) hold.

4.3.3. Step 3: Conclusion of the argument.

PROPOSITION 4.8. Let s, N0, n and TN0,s,n be as in Theorem 4.6.
Them there exists a decreasing sequence of auxiliary times {Taux,I}+∞

I=1 ⊂
(0,TN0,s,n), limI→+∞Taux,I = 0 such that the following holds:

(1) The corresponding solutions {(gaux
I ,kaux

I ,haux
I )}+∞

I=1 given by Lemma 4.5
converge locally in C3 ×C2 ×C2 (as I →+∞) to a limit (g,k,h).

(2) The limit, which we denote by (g,k,h), solves (4.9) in (0,TN0,s,n]×T3.
(3) Denoting g(d) = g− g[n], (g−1)(d) = g−1 − (g[n])−1, k(d) = k− k[n] and

h(d) = h−h[n], the estimate (4.18) holds.
(4) The limit (g,k) satisfies kij =− 1

2∂tgij .

The proof of Proposition 4.8 will be given in Section 4.9.

Proof of Theorem 4.4. The limiting solution given by Proposition 4.8 satisfies
all the conclusions of Theorem 4.4. This thus concludes the proof of Theorem 4.4.

□
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4.4. Definition of the energies and an outline of the proof of Theorem 4.6.
From now on until the end of Section 4.8, we focus on the proof of Theorem 4.6.
To lighten our notations, in these sections we write g = gaux, a = aaux, h = haux

and k = kaux.
The crux of our proof of Theorem 4.6 is to bound an appropriate energy, which

we define now.
Define the energy

Es(t) :=
s−1∑
r=0

t2r+2∥∂tk(d)∥2
Ḣr(Σt,g)

+
s∑

r=0

t2r∥k(d)∥2
Ḣr(Σt,g)

+
s+1∑
r=0

t2r∥h(d)∥2
Ḣr(Σt,g)

+
s+1∑
r=0

t2r−2(∥g(d)∥2
Ḣr(Σt,g)

+∥(g−1)(d)∥2
Ḣr(Σt,g)

).

(4.19)

Define also the modified energy

Ẽs(t) :=
s−1∑
r=0

t2r+2∥∂t∇(r)k(d)∥2
L2(Σt,g)

+
s∑

r=0

t2r∥k(d)∥2
Ḣr(Σt,g)

+
s∑

r=0

t2r∥h(d)∥2
Ḣr(Σt,g)

+

s∑
r=0

t2r−2(∥g(d)∥2
Ḣr(Σt,g)

+∥(g−1)(d)∥2
Ḣr(Σt,g)

)

+ t2(s+1)∥ ˜
∇
(s+1)
ren h(d)∥2

L2(Σt,g)
+ t2s∥ ˜

∇
(s+1)
ren g(d)∥2

L2(Σt,g)

+ t2s∥ ˜
∇
(s+1)
ren (g−1)(d)∥2

L2(Σt,g)
,

(4.20)

where
˜

∇
(s+1)
ren h(d),

˜
∇
(s+1)
ren g(d) and

˜
∇
(s+1)
ren (g−1)(d) are the renormalized top-order

quantities defined by

(
˜

∇
(s+1)
ren h(d))i1···is−1 :=∆g∇

(s−1)
i1···is−1

h(d)−2(k[n]+k(d))i
j∂t∇

(s−1)
i1···is−1

(k(d))j
i,(4.21)

(
˜

∇
(s+1)
ren g(d))i1···is−2aij :=∆g∇

(s−1)
i1···is−2a

g
(d)
ij +2gℓ(j∂t∇

(s−1)
i1···is−2a

(k(d))i)
ℓ(4.22)

+g
(d)
bj ∂t∇

(s−2)
i1···is−2

((g−1)begm(i|∇e(k
(d))a)

m−∇(aki)
b− (g−1)begd(a∇i)ke

d)

+g
(d)
ib ∂t∇

(s−2)
i1···is−2

((g−1)begm(j|∇e(k
(d))a)

m−∇(akj)
b− (g−1)begd(a∇j)ke

d),

[1
32

.1
74

.2
51

.2
]  
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and

(4.23) (
˜

∇
(s+1)
ren (g−1)(d))iji1···is−2a

:=∆g∇
(s−1)
i1···is−2a

((g−1)(d))ij −2(g−1)ℓ(j∂t∇
(s−1)
i1···is−2a

(k(d))ℓ
i)

+((g−1)(d))bj∂t∇
(s−2)
i1···is−2

((g−1)iegm(b|∇eka)
m−∇(akb)

i− (g−1)iegd(a∇b)ke
d)

+((g−1)(d))ib∂t∇
(s−2)
i1···is−2

((g−1)jegm(b|∇eka)
m−∇(akb)

j − (g−1)jegd(a∇b)ke
d).

We remark explicitly that the modified energy and the energy differ by the
following:

• The energy controls the ∇(r) derivative of ∂tk(d) while the modified energy
controls the ∂t derivative of ∇(r)k(d).

• The modified energy only controls h(d), g(d) and (g−1)(d) up to s derivatives;
at the top order it only controls the renormalized top-order quantities.

Since the proof will take several subsections, we give an outline of the strategy
for proving Theorem 4.6.

• In Section 4.5, we begin with some preliminary estimates.
• In Section 4.6, we carry out the energy estimate for k(d) using the wave

equation it satisfies.
• In Section 4.7, we carry out the energy estimates for h(d), g(d) and (g−1)(d)

using the transport equations they satisfy. Combining the results in Sections 4.6
and 4.7, we will obtain an estimate of the modified energy Ẽs by the energy Es.

• In Section 4.8, we complete the proof of Theorem 4.6. The main ingredient
is to control Es and Ẽs using energy estimates, and the close everything using the
Fuchsian ideas as illustrated in Section 1.1.1.

4.4.1. Remarks on the dependence of constants (and related conven-
tions). Before we proceed, we make some important remarks regarding the
dependence of constants throughout the proof of Theorem 4.6.

From now on fix s ∈ N with s≥ 5 as in Theorem 4.6.
We will use C0 and Cn as general positive constants. They may change from

line to line. Both C0 and Cn may depend on the data cij , pi and also s, but impor-
tantly Cn may depend on n while C0 is not allowed to depend on n.

We always assume without loss of generality that TN0,s,n ≤ 1.

4.4.2. Remarks regarding k. Another important remark regarding the
proof of the bootstrap argument is that (despite the notation) we do not know that
k is the second fundamental form of the constant-t hypersurfaces. (In particular,
we do not know that gℓ[ikj]ℓ = 0.) In fact, it is only after extracting a limit in Propo-
sition 4.8 that we know that the limiting k is an honest second fundamental form.

4.5. Preliminary estimates for the bootstrap argument. In this subsec-
tion we work under the assumptions of Theorem 4.6. In particular, we assume the
validity of the bootstrap assumptions (4.14)–(4.17).
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4.5.1. Sobolev embedding and basic comparisons of norms.

LEMMA 4.9. The following pointwise estimate holds for all scalar functions f
on (0,TBoot):

C−1
0 t|∇f |g ≤

3∑
i=1

|∂if | ≤ C0t
−1|∇f |g.

Proof. By definition, |∇f |2g = (g−1)ij∂if∂jf . To get the desired estimates, we
just use a very wasteful estimate that C−1

0 t2 ≤ mini,j |(g−1)ij | ≤ maxi,j |(g−1)ij | ≤
C0t

−2 (which follows directly from (4.14) and computations as in (2.15)). □

LEMMA 4.10 (Sobolev embedding). The following holds for every (m,l) Σ-
tangent tensor T :

(4.24) ∥T ∥L∞(Σt,g)≤C0t
− 5

4 ∥T ∥W 1,4(Σt,g), ∥T ∥L4(Σt,g)≤C0t
− 5

4 ∥T ∥W 1,2(Σt,g).

In particular, these inequalities imply

(4.25) ∥T ∥L∞(Σt,g) ≤ C0t
− 5

2 ∥T ∥H2(Σt,g),

and

(4.26) ∥∇
(r)T ∥

(L2∩t−s− 5
2 +εL∞)(Σt,g)

≤ C0

r+2∑
r′=r

tr
′−r∥T ∥Ḣr′ (Σt,g)

,

Proof. We first prove the inequalities (4.24) for scalar functions f . Using the
Sobolev embedding for T3 in coordinates, it follows that

∥f∥L∞(Σt,g) ≤ C0
∑
|α|≤1

(∫
Σt

|∂α
x f |4 dx

) 1
4

≤ C0

(∫
Σt

(|f |4 + t−4|∇f |4g
)

dx)
1
4 ≤ C0t

− 5
4 ∥f∥W 1,4(Σt,g),

(4.27)

where in the penultimate inequality we used Lemma 4.9 and in the last inequality
we have used C−1

0 t−1volΣ ≤ dx ≤ C0t
−1volΣ (which follows from the bootstrap

assumption (4.14)).
For the second inequality in (4.24) for a scalar function f , we proceed similarly

to obtain

∥f∥L4(Σt,g) ≤ C0t
1
4
∑
|α|≤1

(∫
Σt

|∂α
x f |2 dx

) 1
2

≤ C0t
1
4

(∫
Σt

(|f |2 + t−2|∇f |2)dx
) 1

2

≤ C0t
− 5

4 ∥f∥H1(Σt).

(4.28)
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Now given a general (m,l) tensor T , using (4.27) and (4.28) with fα =√
|T |2g+α2 (α> 0) and taking α→ 0, we obtain the desired inequalities in (4.24).

Next, it is easy to see that (4.24) implies (4.25).
Finally, by (4.25), and the fact s−ε > 2,

∥∇
(r)T ∥

(L2∩t−s− 5
2 +εL∞)(Σt,g)

≤ C0(∥∇
(r)T ∥L2(Σt,g)+ ts+

5
2−εt−

5
2 ∥∇

(r)T ∥H2(Σt,g))

≤ C0

r+2∑
r′=r

tr
′−r∥T ∥Ḣr′ (Σt,g)

,

which is (4.26). □

We will also need to compare norms with respect to g and with respect to the
trivial metric

∑3
i=1(dx

i)2.

LEMMA 4.11. Given any rank (l,m) Σ-tangent tensor T ,

|∇[n] · · ·∇[n]︸ ︷︷ ︸
k times

T |2
g[n]

≤ Cnt
−k(2−ε)

k∑
r=0

∑
i1,...,ir

∑
b1,...,bl

∑
j1,...,jm

t−2pb1 · · · t−2pbl

· t2pj1 · · · t2pjm |∂i1 · · ·∂irT
j1···jm
b1,...bl

|2.

(4.29)

Proof. Using the form of the metric (1.4), the bound (2.7) on a[n], and the fact
p1 < p2 < p3,

|T |2
g[n]

= ((g[n])−1)i1b1 · · ·((g[n])−1)ilblg
[n]
j1c1

· · ·g[n]jmcm
T ji···jm
b1···bl T ci···cm

i1···il

≤ C0
∑

b1,...,bl

∑
j1,...,jm

∑
i1,...,il

∑
c1,...,cm

t−2pmin{i1,b1} · · · t−2pmin{il,bl} ·

· t2pmax{j1,c1} · · · t2pmax{jm,cm}T ji···jm
b1···bl T ci···cm

i1···il

≤ C0

( ∑
b1,...,bl

∑
j1,...,jm

t−pmin{i1,b1} · · · t−pmin{il,bl} · tpmax{j1,c1} · · · tpmax{jm,cm} |T ji···jm
b1···bl |

)
×
( ∑
i1,...,il

∑
c1,...,cm

t−pmin{i1,b1} · · · t−pmin{il,bl} · tpmax{j1,c1} · · · tpmax{jm,cm} |T ci···cm
i1···il |

)
≤ C0

∑
b1,...,bl

∑
j1,...,jm

t−2pb1 · · · t−2pbl · t2pj1 · · · t2pjm |T ji···jm
b1···bl |2.

(4.30)

This proves (4.29) when there are no derivatives (i.e., k = 0).
Define the flat connection ∇(flat) to be Levi–Civita connection associated to∑3

i=1(dx
i)2, i.e.

∇
(flat)
i1

· · ·∇(flat)
ir

T ji···jm
b1···bl = ∂i1 · · ·∂irT

ji···jm
b1···bl .
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Then, since pj < 1−ε < 1− ε
2 , (4.30) gives

|∇(flat)
i1

· · ·∇(flat)
ir

T |2
g[n]

≤ C0
∑

i1,...,ir

∑
b1,...,bl

∑
j1,...,jm

t−2pi1 · · · t−2pir · t−2pb1 · · · t−2pbl

· t2pj1 · · · t2pjm |∇(flat)
i1

· · ·∇(flat)
ir

T ji···jm
b1···bl |2

≤ C0t
−(2−ε)r

∑
i1,...,ir

∑
b1,...,bl

∑
j1,...,jm

t−2pb1 · · · t−2pbl · t2pj1 · · · t2pjm |∂i1 · · ·∂irT
ji···jm
b1···bl |2.

(4.31)

Now compute

∇
[n]
i1
· · ·∇[n]

ik
T ji···jm
b1···bl

= ∂i1 · · ·∂ikT
ji···jm
b1···bl +

k−1∑
s=0

l∑
e=1

∂i1 · · ·∂is [(Γ[n])fis+1be
∂is+2 · · ·∂ikT

ji···jm
b1···be−1fbe+1···bl ]

+
k−1∑
s=0

r∑
e=s+2

∂i1 · · ·∂is [(Γ[n])fis+1ie
∂is+2 · · ·∂ie−1∂if∂ie+1 · · ·∂irT

ji···jm
b1···bl ]

+
k−1∑
s=0

m∑
e=1

∂i1 · · ·∂is [(Γ[n])jeis+1f
∂is+2 · · ·∂irT

ji···je−1fje+1jm
b1···bl ]+ · · ·

+(Γ[n]) · · ·(Γ[n])︸ ︷︷ ︸
k−1 factors

∂T +(Γ[n]) · · ·(Γ[n])︸ ︷︷ ︸
k−2 factors

(∂Γ[n])T +(Γ[n]) · · ·(Γ[n])︸ ︷︷ ︸
k factors

T ,

(4.32)

where we have suppressed the indices in terms where the exact contractions do not
matter.

Our goal is to show that in the | · |g[n] norm, each term in (4.32) can be bounded
above by the RHS of (4.29). By repeated application of the Cauchy–Schwarz in-
equality (with respect to g[n]), and using (4.31), it suffices to prove

(4.33) |∂i1 · · ·∂ir(Γ[n])ℓjb|g[n] ≤ Cnt
−(1− ε

2 )(r+1),

which is the goal for the remainder of the proof.
We first make the easy observation that |∂i1 · · ·∂idg

[n]
ab | ≤Cn|log t|dt2max{pa,pb}

and |∂i1 · · ·∂id((g[n])−1)bc| ≤ Cn|log t|dt−2min{pb,pc}. In particular,

|∂i1 · · ·∂id1
g
[n]
ab∂j1 · · ·∂jd2

((g[n])−1)bc| ≤ Cn|log t|d1t2max{pa,pb}|log t|d2t−2min{pb,pc}

≤ Cn|log t|d1+d2t2pbt−2pb = Cn|log t|d1+d2 .



1236 G. FOURNODAVLOS AND J. LUK

We now compute

|∂i1 · · ·∂ir(Γ[n])ℓjb|2g[n]

=
1
4
((g[n])−1)i1i

′
1 · · ·((g[n])−1)iri

′
r((g[n])−1)jj

′
((g[n])−1)bb

′
g
[n]
ℓℓ′

×∂i′1 · · ·∂i′r [(g
[n])−1)ℓ

′a′(∂j′g
[n]
a′b′ +∂b′g

[n]
a′j′ −∂a′g

[n]
b′j′)]

×∂i1 · · ·∂ir [(g[n])−1)ℓa(∂jg
[n]
ab +∂bg

[n]
aj −∂ag

[n]
bj )].

Consider the example expression

|((g[n])−1)bb
′
g
[n]
ℓℓ′ [∂ · · ·∂((g

[n])−1)ℓ
′a′ ][∂ · · ·∂g[n]a′b′ ][∂ · · ·∂(g

[n])−1)ℓa][∂ · · ·∂g[n]ab ]|.

We can pair up g[n] and (g[n])−1 with a common index and conclude that this ex-
pression is ≤ Cn|log t|k+1. All other terms are similar. Hence, we obtain

|∂i1 · · ·∂ir(Γ[n])ℓjb|2g[n]

≤ Cn|log t|r+1 max
i1, i

′
1,...,j,j

′
|((g[n])−1)i1i

′
1 · · ·((g[n])−1)iri

′
r((g[n])−1)jj

′ |

≤ Cn|log t|r+1t−(r+1)(2−2ε) ≤ Cnt
−(2−ε)(r+1),

which is exactly (4.33). □

LEMMA 4.12. For r ≤ s−2,

∥∇
(d)∥W r,∞(Σt,g) ≤ C0(∥g(d)∥W r+1,∞(Σt,g)+∥(g−1)(d)∥W r,∞(Σt,g)).

For r ≤ s,

∥∇
(d)∥Hr(Σt,g) ≤ C0(∥g(d)∥Hr+1(Σt,g)+∥(g−1)(d)∥Hr(Σt,g)).

Proof. Note that

(4.34) (∇(d))ℓij =
1
2
[(g−1)ℓb− ((g−1)(d))ℓb](∇ig

(d)
bj +∇jg

(d)
bi −∇bg

(d)
ij ).

The conclusion is then an immediate consequence of Hölder’s inequality and the
bootstrap assumptions (4.15) and (4.16). □

LEMMA 4.13. For r ≤ s−1,

C−1
0 ∥T ∥W r,∞(Σt,g[n])

≤ ∥T ∥W r,∞(Σt,g) ≤ C0∥T ∥W r,∞(Σt,g[n])
.

Proof. This follows from the bootstrap assumption (4.15) and Lemma 4.12.
□

LEMMA 4.14. For r ≤ s+1,

C−1
0 ∥T ∥Hr(Σt,g[n])

≤ ∥T ∥Hr(Σt,g) ≤ C0∥T ∥Hr(Σt,g[n])
.



ASYMPTOTICALLY KASNER-LIKE SINGULARITIES 1237

Proof. This follows from the bootstrap assumptions (4.15), (4.16) and
Lemma 4.12. □

Note that Lemma 4.13 fails when r = s,s + 1 as we do not control
∥g(d)∥W r,∞(Σt,g). On the other hand, Lemma 4.14 by itself will not be sufficient for
our purpose. Instead we need the following:

LEMMA 4.15. The following holds for any α > 0:

∥∇
(s)T ∥L∞(Σt,g)+tαL2(Σt,g) ≤ C0(∥T ∥W s,∞(Σt,g[n])

+ t−α+ 5
2 ∥T ∥L∞(Σt,g[n])

),

and

∥∇
(s+1)T ∥L∞(Σt,g)+tαL2(Σt,g) ≤ C0(∥T ∥W s+1,∞(Σt,g[n])

+ t−α+ 5
2 ∥T ∥W 1,∞(Σt,g[n])

).

Proof. The main difference with Lemma 4.14 is that we may have terms which
involve s or s+1 derivatives of g(d).

We first consider the term ∇(s)T . When writing ∇(s)T in terms of (∇[n])(s)T ,
there is the term

T [∇(s−1)
∇
(d)]

(meaning s−1 ∇ derivatives acting on the tensor ∇(d)), together with other terms
which are lower order and can be handled directly using the bootstrap assumptions
(4.15) and (4.16). This term cannot be bounded in L∞, and will instead be con-
trolled in L2. For this we note that by Hölder’s inequality, Lemma 4.12, and the
bootstrap assumptions (4.15), (4.16),

∥T [∇(s−1)
∇
(d)]∥L2(Σt,g) ≤ C0∥T ∥L∞(Σt,g)(∥g

(d)∥Hs(Σt,g)+∥(g−1)(d)∥Hs−1(Σt,g))

≤ C0t
5
2 ∥T ∥L∞(Σ,g) ≤ C0t

5
2 ∥T ∥L∞(Σ,g[n]).

This gives the first inequality in the statement of the lemma.
The term ∇(s+1)T is similar except for an additional derivative. Indeed, we

need to control the terms

[∇T ][∇(s−1)
∇
(d)], T [∇(s)

∇
(d)].

Both of these can be controlled in L2(Σt,g) using Hölder’s inequality, Lemma 4.12,
and the bootstrap assumptions (4.15), (4.16) as above. □

4.5.2. An easy consequence of the bootstrap assumption.

LEMMA 4.16.

∥h(d)∥W s−1,∞(Σt,g)+∥k(d)∥W s−2,∞(Σt,g)+∥∂tk(d)∥W s−3,∞(Σt,g) ≤ C0.

Proof. This follows from Lemma 4.10 (Sobolev embedding) and the bootstrap
assumption (4.17). □
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4.5.3. Estimates for background quantities.

PROPOSITION 4.17. For each n ∈ N, define

Ih[n] :=−∂th
[n]+ |k[n]|2,

(Ik[n])i
j :=−∂2

t (k
[n])i

j +∆g[n](k
[n])i

j − (∇i∇
jh)[n]

+(k[n] ⋆k[n] ⋆k[n])i
j +(∂tk

[n] ⋆k[n])i
j .

Given any N ∈ N, there exists nN,s ∈ N sufficiently large such that whenever
n≥ nN,s,

s+1∑
r=0

tr∥Ih[n]∥Hr(Σt,g)+
s−1∑
r=0

tr∥Ik[n]∥Hr(Σt,g) ≤ Cnt
N+s.

Proof. By Lemma 4.11, it suffices to show that for any given polynomial rate,
n can be chosen sufficiently large so that Ih[n] , (Ik[n])i

j and their coordinate deriva-
tives tend to 0 faster than the given polynomial rate.

Step 1: Proving the estimates for Ih[n] . Recall that by definition h[n] = (k[n])ℓ
ℓ.

By Proposition 3.3, (2.10) and the expression for Rictt((4)g) in (3.3), it follows
that given any polynomial rate in t, we can choose n ∈ N sufficiently large so that
Ih[n] :=−∂th

[n]+ |k[n]|2 and its coordinate derivatives go to 0 faster than the given
polynomial rate in t.

Step 2: Proving the estimates for Ik[n] . By (4.5) and (2.10),

(Ik[n])i
j =−∂t Rici j((4)g[n])+∇i(G[n])j +∇

j(G[n])i

−3(k[n])im Ricm j((4)g[n])+2δji (k
[n])m

ℓ Ricℓ m((4)g[n])

− (k[n])ℓ
j Rici ℓ((4)g[n])+2(k[n])ℓℓ Rici j((4)g[n])

− ((k[n])ℓ
ℓδji − (k[n])i

j)Ricmm((4)g[n])+O(tLn),

(4.35)

where (G[n])i = Ric((4)g[n])ti and Ln is linearly increasing in n.
By Proposition 3.3, given any polynomial rate in t, we can choose n ∈ N suf-

ficiently large so that the terms

−∂t Rici j((4)g[n])+∇i(G[n])j +∇
j(G[n])i−3(k[n])im Ricm j((4)g[n])

+2δji (k
[n])m

ℓ Ricℓ m((4)g[n])− (k[n])ℓ
j Rici ℓ((4)g[n])+2(k[n])ℓℓ Rici j((4)g[n])

− ((k[n])ℓ
ℓδji − (k[n])i

j)Ricmm((4)g[n])

and their coordinate derivatives go to 0 faster than the given polynomial rate in
t. □
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PROPOSITION 4.18. For any n ∈ N,

s−1∑
r=1

tr∥k[n]∥Ẇ r,∞(Σt,g)

+
s−1∑
r=0

(
tr+1∥∇

[n]k[n]∥Ẇ r,∞(Σt,g)
+ tr+2∥∇

[n]
∇
[n]k[n]∥Ẇ r,∞(Σt,g)

)
≤ Cnt

−1+ε,

and

∥∇
(s)k[n]∥

(L∞+ts+
5
2 −εL2)(Σt,g)

≤ Cnt
−s−1+ε,

∥∇
(s+1)k[n]∥

(L∞+ts+
5
2 −εL2)(Σt,g)

≤ Cnt
−s−2+ε.

Proof. This follows from Lemmas 4.11, 4.13 and 4.15, and the estimates for
k[n] in coordinates given by (2.8). □

PROPOSITION 4.19. For any n ∈ N,

∥k[n]∥L∞(Σt,g) ≤ C0t
−1 +Cnt

−1+ε.

Proof. This is similar to the proof Proposition 4.18, except that we need to be
more careful to check that the borderline O(t−1) terms are independent of n (since
Lemma 4.11 does not give an extra tε for the zeroth derivative). Nevertheless, by
(2.8), it follows that the borderline contributions exactly come from t−1κi

j , which
are manifestly independent of n. □

PROPOSITION 4.20. For any n ∈ N,

s−1∑
r=1

tr∥∂tk[n]∥Ẇ r,∞(Σt,g)
≤ Cnt

−2+ε, ∥∂tk[n]∥L∞(Σt,g) ≤ C0t
−2 +Cnt

−2+ε.

Proof. This is a small variation to Propositions 4.18 and 4.19. First, note that
it suffices to control terms on the RHS of (2.2).

• For the term Ric(g[n−1])i
j , we use Lemmas 4.11 and 4.13 and the estimate

(2.9). (Note that there are no borderline terms in this estimate.)
• For the term (k[n])ℓ

ℓ(k[n])i
j , we use Lemmas 4.11 and 4.13 and the estimate

(2.8). For the lowest order term, note that the borderline terms depend only on
t−1κi

j and are thus independent of n. □

Once we obtain the estimates for k[n], the estimates for k can be controlled
after using also the bootstrap assumptions (4.17).
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PROPOSITION 4.21. The following estimates hold for k:

∥k∥L∞(Σt,g) ≤ C0t
−1 +Cnt

−1+ε,

s−2∑
r=1

tr∥∇
(r)k∥L∞(Σt,g) ≤ Cnt

−1+ε,

∥∇
(s−1)k∥

(L∞+ts+
5
2 −εL2)(Σt,g)

≤ Cnt
−s+ε,

∥∇
(s)k∥

(L∞+ts+
5
2 −εL2)(Σt,g)

≤ Cnt
−s−1+ε,

∥∂tk∥L∞(Σt,g) ≤ C0t
−2 +Cnt

−2+ε,

s−3∑
r=1

tr∥∇
(r)∂tk∥L∞(Σt,g) ≤ Cnt

−2+ε,

∥∇
(s−2)∂tk∥

(L∞+ts+
5
2 −εL2)(Σt,g)

≤ Cnt
−s+ε,

∥∇
(s−1)∂tk∥

(L∞+ts+
5
2 −εL2)(Σt,g)

≤ Cnt
−s−1+ε.

Moreover, the above estimates hold both when k is replaced by k[n] and k(d).

Proof. That the estimates hold for k[n] follows from Propositions 4.18, 4.19
and 4.20. That the estimates hold for k(d) follows from (4.17) and Lemma 4.16.

Finally, since k = k[n]+k(d), the estimates also hold for k. □

PROPOSITION 4.22. For any n ∈ N,

s−1∑
r=1

tr∥h[n]∥Ẇ r,∞(Σt,g)
+

s−1∑
r=0

(tr+1∥∂h[n]∥Ẇ r,∞(Σt,g)
+ tr+2∥∇

[n]∂h[n]∥Ẇ r,∞(Σt,g)
)

≤ Cnt
−1+ε,

and
∥h[n]∥L∞(Σt,g) ≤ C0t

−1 +Cnt
−1+ε.

Proof. Recalling that we set h[n] = (k[n])ℓ
ℓ, this can be proven in the same way

as Propositions 4.18 and 4.19. □

PROPOSITION 4.23. The following estimates hold for Ric(g):

s−3∑
r=0

tr∥Ric(g)∥W r,∞(Σt,g) ≤ Cnt
−2+ε,

∥∇
(s−2) Ric(g)∥

(L∞+ts+
5
2 −εL2)(Σt,g)

≤ Cnt
−s+ε,

∥∇
(s−1) Ric(g)∥

(L∞+ts+
5
2 −εL2)(Σt,g)

≤ Cnt
−s−1+ε.



ASYMPTOTICALLY KASNER-LIKE SINGULARITIES 1241

Proof. For simplicity, we write in this proof Ric = Ric(g), Ric[n] = Ric(g[n])
and similarly for the Riemann curvature tensor.

First, notice that by Lemma 4.11 and (2.9), it follows that

s−1∑
r=0

tr∥Ric[n] ∥W r,∞(Σ,g[n]) ≤ Cnt
−2+ε.

As a result, Lemmas 4.13 and 4.15 imply that all the desired estimates when Ric is
replaced by Ric[n].

It thus remains to estimate the difference Ric−Ric[n]. We will bound the dif-
ference of the full Riemann curvature tensor; the bounds for the Ricci curvature
tensor of course follow immediately. We compute

(Riem−Riem[n])ℓijk

= ∂i(Γ−Γ[n])ℓjk−∂j(Γ−Γ[n])ℓik+Γp
jkΓ

ℓ
ip−Γp

ikΓ
ℓ
jp− (Γ[n])pjk(Γ

[n])ℓip

+(Γ[n])pik(Γ
[n])ℓjp

= ∂i(Γ−Γ[n])ℓjk−Γp
ij(Γ−Γ[n])ℓpk−Γp

ik(Γ−Γ[n])ℓjp+Γℓ
ip(Γ−Γ[n])pjk

−∂j(Γ−Γ[n])ℓik+Γp
ij(Γ−Γ[n])ℓpk+Γp

jk(Γ−Γ[n])ℓip−Γℓ
jp(Γ−Γ[n])pik

− (Γ−Γ[n])pjk(Γ−Γ[n])ℓip+(Γ−Γ[n])ℓjp(Γ−Γ[n])pik

= ∇i(Γ−Γ[n])ℓjk−∇j(Γ−Γ[n])ℓik− (Γ−Γ[n])pjk(Γ−Γ[n])ℓip

+(Γ−Γ[n])ℓjp(Γ−Γ[n])pik.

(4.36)

Combining this with (4.34) and the bootstrap assumptions (4.15) and (4.16), it is
easy to see that Riem−Riem[n] can be controlled by

s−3∑
r=0

∥Riem−Riem[n] ∥W r,∞(Σt,g),
s−1∑

r=s−2

∥Riem−Riem[n] ∥Hr(Σt,g) ≤ C0.

This concludes the proof of the proposition. □

4.5.4. Commutator estimates. We will often use the commutator formula
between the Lie derivative in ∂t and covariant derivatives in the spatial directions:

PROPOSITION 4.24. The following commutation formula holds for any (m,l)

Σ-tangent tensor T :

[∂t, ∇a]T j1···jm
i1···il

=−
l∑

r=1

((g−1)begm(ir |∇ek|a)
m−∇(akir)

b− (g−1)begd(a∇ir)ke
d)T j1···jm

i1··· b
r−th index

···il

+
m∑
r=1

((g−1)jregm(b|∇ek|a)
m−∇(akb)

jr − (g−1)jregd(a∇b)ke
d)T j1···

r−th index
b ···jm

i1···il .
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Proof. A direct computation shows

∂t∇aT j1···jm
i1···il =∇a∂tT j1···jm

i1···il −
l∑

r=1

∂tΓ
b
airT

j1···jm
i1··· b

r−th index
···il+

m∑
r=1

∂tΓ
jr
abT

j1···
r−th index

b ···jm
i1···il .

On the other hand, we compute using (4.9) and (4.10) that

∂tΓ
b
ac = (g−1)d(bkd

l)(∂agcl+∂cgal−∂lgac)+(g−1)bl(∂l(gd(akc)
d)

−∂a(gd(lkc)
d)−∂c(gd(akl)

d))

= 2(g−1)d(bkd
l)Γm

acgml+(g−1)bl(∂l(gd(akc)
d)−∂a(gd(lkc)

d)−∂c(gd(akl)
d))

= (g−1)bl(∇l(gd(akc)
d)−∇a(gd(lkc)

d)−∇c(gd(akl)
d))

= (g−1)blgd(a|∇lk|c)
d−∇(akc)

b− (g−1)blgd(a∇c)kl
d.

Combining these computations yields the desired formula. □

PROPOSITION 4.25. Let T be an (m,l) Σ-tangent tensor.
For 0 ≤ r ≤ s−1,

(4.37) ∥[∂t,∇a]T ∥Hr(Σt,g) ≤ Cn

∑
r1+r2=r

t−2−r1+ε∥T ∥Hr2 (Σt,g).

Consequently, for 0 ≤ k≤ s, iterated commutators can be bounded as follows:

(4.38) ∥[∂t,∇i1 · · ·∇ik ]T ∥L2(Σt,g) ≤ Cn

k−1∑
r′=0

t−2−r′+ε∥T ∥Hk−r′−1(Σt,g)
.

Finally, if T is a scalar function, then in fact (4.38) holds for 0 ≤ k ≤ s+1.

Proof. Step 1: Proof of (4.37). Using Proposition 4.24, we have the estimate

∥[∂t,∇a]T ∥Hr(Σt,g)

≤ C0
∑

r1+r2=r
r1≤s−3

∥∇
(r1)∇k∥L∞(Σt,g)∥∇

(r2)T ∥L2(Σt,g)

+C0
∑

r1+r2=r
r1>s−3

∥∇
(r1)∇k∥

(L∞+ts+
5
2 −εL2)(Σt,g)

∥∇
(r2)T ∥

(L2∩t−s− 5
2 +εL∞)(Σt,g)

.

(4.39)

We estimate each of the terms in (4.39). Using the estimates in Proposi-
tion 4.21, the first term in (4.39) can be bounded above as follows:∑

r1+r2=r
r1≤s−3

∥∇
(r1)∇k∥L∞(Σt,g)∥∇

(r2)T ∥L2(Σt,g)

≤ Cn

∑
r1+r2=r

t−2−r1+ε∥T ∥Hr2 (Σt,g).

(4.40)
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Before handling the second term in (4.39), we first note make the following
observations on the numerology:

• When r1 > s−3, since we have r1 + r2 = r ≤ s−1, we have either r2 = 0
or r2 = 1. In particular, r2 +2 ≤ r.
We can thus bound the second term in (4.39) using Proposition 4.21, (4.26) and the
above observations as follows:∑

r1+r2=r
r1>s−3

∥∇
(r1)∇k∥

(L∞+ts+
5
2 −εL2)(Σt,g)

∥∇
(r2)T ∥

(L2∩t−s− 5
2 +εL∞)(Σt,g)

≤ Cn

∑
r1+r2=r
r1>s−3

t−2−r1+ε

(
r2+2∑
r′=r2

tr
′−r2∥T ∥Hr′ (Σt,g)

)

≤ Cn

∑
r1+r2=r

t−2−r1+ε∥T ∥Hr2 (Σt,g),

(4.41)

where the very last estimate follows simply after relabelling.
Combining (4.40) and (4.41) yields (4.37).

Step 2: Proof of (4.38). When 0 ≤ k ≤ s, we compute using the triangle in-
equality and (4.37) to obtain

∥[∂t,∇i1 · · ·∇ik ]T ∥L2(Σt,g)

= ∥[∂t,∇i1 ]∇i2 · · ·∇ikT + · · ·+∇i1 · · · [∂t,∇iℓ ] · · ·∇ikT

+ · · ·+∇i1 · · ·∇ik−1 [∂t,∇ik ]T ∥L2(Σt,g)

≤ C0

k∑
r=1

∥[∂t,∇ir ]∇ir+1 · · ·∇ikT ∥Hr−1(Σt,g)

≤ Cn

k∑
r=1

∑
r1+r2=r−1

t−2−r1+ε∥∇ir+1 · · ·∇ikT ∥Hr2 (Σt,g)

≤ Cn

k∑
r=1

∑
r1+r2=r−1

t−2−r1+ε∥T ∥Hr2+k−r(Σt,g)

≤ Cn

k−1∑
r′=0

t−2−r′+ε∥T ∥Hk−r′−1(Σt,g)
.

(4.42)

This yields (4.38).
Finally, for a scalar function f , [∂t,∇i]f = 0. Hence, in (4.42), we sum only

up to r = k− 1. As a result, we can take up to k = s+ 1. This gives the desired
improvement for scalar functions. □
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4.5.5. Estimates for general equations.

PROPOSITION 4.26 (Transport estimates). Let T be an (m,l) Σ-tangent ten-
sor. Then

d
dt
[t−M∥T ∥2

L2(Σt)
]+

M

t
[t−M∥T ∥2

L2(Σt,g)
]−2t−M

∫
Σt

|⟨T ,∂tT ⟩g|volΣt

≤ C0

t
[t−M∥T ∥2

L2(Σt,g)
].

(4.43)

In particular,

d
dt
[t−M∥T ∥2

L2(Σt)
]+

M

t
[t−M∥T ∥2

L2(Σt,g)
]

≤ C0

t
[t−M∥T ∥2

L2(Σt,g)
]+ t−M+1∥∂tT ∥2

L2(Σt,g)
.

(4.44)

Proof. We first note that by (4.9)

(4.45)
d
dt

∫
Σt

f volΣt =

∫
Σt

(∂tf −kℓ
ℓ)f volΣt .

We will apply (4.45) to f = t−M |T |2g. A direct computation shows that

(4.46) ∂tf =−Mt−M−1|T |2g+2t−M ⟨T ,∂tT ⟩g

+2t−M
ℓ∑

r=1

(g−1)i1i
′
1 · · ·{(g−1)ℓ(irkℓ

i′r)}· · ·(g−1)iℓi
′
ℓgj1j

′
1
· · ·gjmj′mT

j1···jm
i1···iℓ T j′1···j′m

i′1···i′ℓ

−2t−M
ℓ∑

s=1

(g−1)i1i
′
1 · · ·(g−1)iℓi

′
ℓgj1j

′
1
· · ·{gℓ(jskj′s)

ℓ}· · ·gjmj′mT
j1···jm
i1···iℓ T j′1···j′m

i′1···i′ℓ
,

which implies, using Proposition 4.21, that

(4.47)
d
dt
[t−M |T |2g]+

M

t
[t−M |T |2g]≤ 2t−M |⟨T ,∂tT ⟩g|+C0t

−M−1|T |2g.

The pointwise inequality (4.47) implies (4.43) immediately after integrating over
Σt, using (4.45), and applying again the estimates in Proposition 4.21.

Finally, to derive (4.44), we simply note that by the Cauchy–Schwarz inequal-
ity,

2t−M

∫
Σt

|⟨T ,∂tT ⟩g|volΣt ≤ t−M−1∥T ∥2
L2(Σt,g)

+ t−M+1∥∂tT ∥2
L2(Σt,g)

. □

PROPOSITION 4.27 (Energy estimates for wave equations). Let T be an (m,l)

Σt-tangent tensor such that (−∂2
t+∆g)T =F for some (m,l) Σt-tangent tensor F .
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Then

d
dt
[t−M (∥∂tT ∥2

L2(Σt,g)
+∥∇T ∥2

L2(Σt,g)
+ t−2∥T ∥2

L2(Σt,g)
)]

+
M

t
[t−M (∥∂tT ∥2

L2(Σt,g)
+∥∇T ∥2

L2(Σt,g)
+ t−2∥T ∥2

L2(Σt,g)
)]

≤ (C0 +Cnt
ε)

t
[t−M (∥∂tT ∥2

L2(Σt,g)
+∥∇T ∥2

L2(Σt,g)
)+ t−M−2∥T ∥2

L2(Σt,g)
]

+ t−M+1∥F∥2
L2(Σt,g)

.

Proof. Denote by E terms bounded by (C0+Cnt
ε)

t [t−M (∥∂tT ∥2
L2(Σt,g)

+

∥∇T ∥2
L2(Σt,g)

)+ t−M−2∥T ∥2
L2(Σt,g)

].

Step 1: Controlling the first order terms. Applying (4.43) in Proposition 4.26,
integrating by parts and using the Cauchy–Schwarz inequality,

d
dt
[t−M (∥∂tT ∥2

L2(Σt,g)
+∥∇T ∥2

L2(Σt,g)
)]

+
M

t
[t−M (∥∂tT ∥2

L2(Σt,g)
+∥∇T ∥2

L2(Σt,g)
)]

= 2t−M

∫
Σt

(⟨∂tT , ∂2
t T ⟩g+ ⟨∇T , ∂t∇T ⟩g)volΣt +E

= 2t−M

∫
Σt

(−⟨∂tT , F⟩g+ ⟨∂tT ,∆gT ⟩g+ ⟨∇T , ∂t∇T ⟩g)volΣt +E

=−2t−M

∫
Σt

⟨∂tT , F⟩g volΣt

−2t−M

∫
Σt

(⟨∇∂tT , ∇T ⟩g−⟨∇T , ∂t∇T ⟩g)volΣt +E

≤ t−M−1∥∂tT ∥2
L2(Σt,g)

+ t−M+1∥F∥2
L2(Σt,g)

+E

≤ t−M+1∥F∥2
L2(Σt,g)

+E,

(4.48)

where we have used that by Hölder’s inequality and the following commutator
estimate (which uses Proposition 4.25)∣∣∣∣∫

Σt

⟨∇T , [∂t,∇]T ⟩g
∣∣∣∣≤ Cnt

−2+ε∥∇T ∥L2(Σt,g)∥T ∥L2(Σt,g)

≤ Cnt
−1+ε∥∇T ∥2

L2(Σt,g)
+Cnt

−3+ε∥T ∥2
L2(Σt,g)

.

Step 2: Controlling the zeroth order term. It remains to control the zeroth order
term ∥T ∥2

L2(Σt,g)
. For this we simply use Proposition 4.26, and then use (4.48) to
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obtain

d
dt
[t−M−2∥T ∥2

L2(Σt,g)
]+

M +2
t

t−M−2∥T ∥2
L2(Σt,g)

≤ C0

t
t−M−2∥T ∥2

L2(Σt,g)
+ t−M−1∥∂tT ∥2

L2(Σt,g)
≤ E

(4.49)

Summing (4.48) and (4.49), we obtain the desired estimate. □

4.6. Energy estimates for the wave equation for k. In this subsection we
continue to work under the assumptions of Theorem 4.6. In particular, we assume
the validity of the bootstrap assumptions (4.14)–(4.17).

We insert (4.13) into (4.9) to obtain evolution equations for the difference
(k(d))i

j :

∂2
t (k

(d))i
j =∆g(k

(d))i
j +(k ⋆k ⋆k−k[n] ⋆k[n] ⋆k[n])i

j

+(∂tk ⋆k−∂tk
[n] ⋆k[n])i

j +(Ik[n])i
j +Bi

j ,
(4.50)

where the terms (k ⋆k ⋆k), (∂tk ⋆k) are as defined in (4.6), (Ik[n])i
j is as defined

in Proposition 4.17, and Bi
j denotes the following terms:

(4.51) Bi
j =−∇i∇

jh+∇
[n]
i (∇[n])jh[n]+∆g(k

[n])i
j −∆g[n](k

[n])i
j .

The following is the main energy estimates for k(d):

PROPOSITION 4.28. Given N ∈ N, let n ∈ N be sufficiently large so that the
estimates in Proposition 4.17 hold. Then

d
dt

[
t−2N−2s

(
s−1∑
r=0

t2r+2∥∂t∇(r)k(d)∥2
L2(Σt,g)

+
s∑

r=0

t2r∥k(d)∥2
Ḣr(Σt,g)

)]

+
2N +2s

t

[
t−2N−2s

(
s−1∑
r=0

t2r+2∥∂t∇(r)k(d)∥2
L2(Σt,g)

+
s∑

r=0

t2r∥k(d)∥2
Ḣr(Σt,g)

)]
≤ (C0t

−1 +Cnt
−1+ε)t−2N−2sEs(t)+Cnt

3,

where, as before, we have used the notation ∇(r) = ∇i1 · · ·∇ir .

Proof. For 0≤ r≤ s−1, we differentiate (4.50) by ∇(r) to obtain the following
wave equation for ∇(r)k(d):

(4.52) −∂2
t ∇

(r)
i1···ir(k

(d))i
j +∆g∇

(r)
i1···ir(k

(d))i
j

=−∇
(r)
i1···ir(Ik[n])i

j −∇
(r)
i1···irBi

j −∇
(r)
i1···ir(k ⋆k ⋆k−k[n] ⋆k[n] ⋆k[n])i

j

−∇
(r)
i1···ir(∂tk ⋆k−∂tk

[n] ⋆k[n])i
j − [∂2

t ,∇
(r)
i1···ir ](k

(d))i
j +[∆g,∇

(r)
i1···ir ](k

(d))i
j .
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For every 0 ≤ r ≤ s−1, our goal is to show that

tr∥−∂2
t ∇

(r)
i1···ir(k

(d))i
j +∆g∇

(r)
i1···ir(k

(d))i
j∥L2(Σt,g)

≤ (C0t
−2 +Cnt

−2+ε)E
1
2
s (t)+Cnt

N+s,
(4.53)

after which we will apply Proposition 4.27.
The proof of (4.53) will be achieved in Steps 1–5 below in which we bound

each term on the RHS of (4.52).

Step 1: Bounding the inhomogeneous terms. For 0 ≤ r ≤ s− 1, by Proposi-
tion 4.17,

(4.54) ∥Ik[n]∥Hr ≤ Cnt
N+s−r.

Step 2: Bounding the terms in Bi
j . Recall from (4.51) that Bi

j consists of h
terms and k terms. We first compute the exact form of the h terms:

− (g−1)jℓ∇i∂ℓh+((g[n])−1)jℓ∇
[n]
i ∂ℓh

[n]

=−(g−1)jℓ∇i∂ℓh
(d)− (g−1)jℓ∇

(d)
i ∂ℓh

[n]− ((g−1)(d))jℓ∇[n]∂ℓh
[n].

(4.55)

From (4.55), the triangle inequality and Hölder’s inequality, it follows that

∥− (g−1)jℓ∇i∂ℓh+((g[n])−1)jℓ∇
[n]
i ∂ℓh

[n]∥Ḣr(Σt,g)

≲ ∥∇∂ℓh
(d)∥Ḣr(Σt,g)︸ ︷︷ ︸
=:I

+
∑

r1+r2=r

∥∇
(d)∥Ḣr1 (Σt,g)

∥∂ℓh[n]∥Ẇ r2,∞(Σt,g)︸ ︷︷ ︸
=:II

+
∑

r1+r2=r

∥(g−1)(d)∥Ḣr1 (Σt,g)
∥∇

[n]∂ℓh
[n]∥Ẇ r2,∞(Σt,g)︸ ︷︷ ︸

=:III

.

(4.56)

Term I can be directly estimated by the definition of Es(t):

(4.57) I ≤ ∥h(d)∥Ḣr+2(Σt,g)
≤ t−r−2E

1
2
s (t).

By Proposition 4.22, Lemma 4.12, and the definition of Es(t), we have

II ≤ Cn

∑
r1+r2=r

t−2−r2+ε(∥g(d)∥Hr1+1(Σt,g)
+∥(g−1)(d)∥Hr1+1(Σt,g)

)

≤ Cn

∑
r1+r2=r

t−2−r2−r1+εE
1
2
s (t)≤ Cnt

−r−2+εE
1
2
s (t).

(4.58)
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For term IV, we use Proposition 4.22 and the definition of Es(t) to obtain

III ≤ Cn

∑
r1+r2=r

t−3−r2+ε∥(g−1)(d)∥Ḣr1 (Σt,g)

≤ Cn

∑
r1+r2=r

t−2−r1−r2+εE
1
2
s (t)≤ Cnt

−r−2+εE
1
2
s (t).

(4.59)

For the k terms in Bi
j , we compute

∆g(k
[n])i

j −∆g[n](k
[n])i

j

= (g(d))mℓ
∇
[n]
m ∇

[n]
ℓ (k[n])i

j +gmℓ
∇
(d)
m ∇

[n]
ℓ (k[n])i

j +gmℓ
∇m∇

(d)
ℓ (k[n])i

j .
(4.60)

The terms in (4.60) are similar to those in (4.55) (with k taking the place of h)
except—importantly—that (4.60) does not contain second derivative terms of k(d).
This is important because while our energy controls up to s+1 derivatives of h(d),
it only controls up to s derivatives of k(d). Other than this difference, the remaining
terms in (4.60) can in fact be controlled very similarly as those in (4.55). We will
therefore omit the details and simply give the final estimate:

(4.61) ∥∇
(r)Bi

j∥L2(Σt,g) ≲ (C0 +Cnt
ε)t−r−2E

1
2
s (t)

Step 3: Bounding the difference of the nonlinear terms. In this step we control
the Hr norm (for 0 ≤ r ≤ s−1) of k ⋆k ⋆k−k[n] ⋆k[n] ⋆k[n] and ∂tk ⋆k−∂tk

[n] ⋆

k[n].
We begin with k ⋆ k ⋆k−k[n] ⋆ k[n] ⋆ k[n]. For 0 ≤ r < s− 1, we use Hölder’s

inequality, Proposition 4.21, and the definition of Es(t) to obtain

∥k ⋆k ⋆k−k[n] ⋆k[n] ⋆k[n]∥Hr(Σt,g)

≤ C0
∑

r1+r2+r3=r
r1,r2≤s−2

max{r1,r2}≥1

∥∇
(r1)(k[n],k(d))∥L∞(Σt,g)

×∥∇
(r2)(k[n],k(d))∥L∞(Σt,g)∥∇

(r3)k(d)∥L2(Σt,g)

+C0∥(k[n],k(d))∥L∞(Σt,g)∥(k
[n],k(d))∥L∞(Σt,g)∥∇

(r)k(d)∥L2(Σt,g)

≤ Cnt
−1−r1t−1−r2tεt−r3E

1
2
s (t)+C0t

−2t−rE
1
2
s (t)

≤ (C0t
−r−2 +Cnt

−r−2+ε)E
1
2
s (t),

(4.62)

where we have used the shorthand

∥∇
(r1)(k[n],k(d))∥L∞(Σt,g) = ∥∇

(r1)k[n]∥L∞(Σt,g)+∥∇
(r1)k(d)∥L∞(Σt,g), etc.

When r = s−1, we have terms as in (4.62) which can be controlled similarly,
but also the following extra term, which we in addition use Sobolev embedding in
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(4.26) to obtain

∥k ⋆k ⋆k−k[n] ⋆k[n] ⋆k[n]∥Hr

≤ C0∥∇
(r)(k[n],k(d))∥

(L∞+ts+
5
2 −εL2)(Σt,g)

∥(k[n],k(d))∥L∞(Σt,g)

×∥k(d)∥
(L2∩t−s− 5

2 +εL∞)(Σt,g)

≤ C0∥∇
(r)(k[n],k(d))∥

(L∞+ts+
5
2 −εL2)(Σt,g)

∥(k[n],k(d))∥L∞(Σt,g)

×
2∑

r′=0

tr
′∥k(d)∥Ḣr′ (Σt,g)

≤ Cnt
−r−2+εE

1
2
s (t).

(4.63)

We now turn to ∂tk ⋆ k− ∂tk
[n] ⋆ k[n]. For 0 ≤ r < s− 2, we use Hölder’s

inequality, Proposition 4.21, and the definition of Es(t) to obtain

∥∂tk ⋆k−∂tk
[n] ⋆k[n]∥Hr

≤ C0
∑

r1+r2=r
1≤r1≤s−3

∥∇
(r1)(k[n],k(d))∥L∞(Σt,g)∥∇

(r2)∂tk
(d)∥L2(Σt,g)

+C0
∑

r1+r2=r
1≤r1≤s−3

∥∇
(r1)∂t(k

[n],k(d))∥L∞(Σt,g)∥∇
(r2)k(d)∥L2(Σt,g)

+C0∥(k[n],k(d))∥L∞(Σt,g)∥∇
(r)∂tk

(d)∥L2(Σt,g)

+C0∥∂t(k[n],k(d))∥L∞(Σt,g)∥∇
(r)k(d)∥L2(Σt,g)

≤ Cn

∑
r1+r2=r

t−1−r1+εt−r3−1E
1
2
s (t)+C0t

−1t−r−1E
1
2
s (t)

≤ (C0t
−r−2 +Cnt

−r−2+ε)E
1
2
s (t).

(4.64)

For r = s − 2, we have an additional term when all derivatives hit on
∂t(k

[n],k(d)) so that we cannot put it in L∞. For this term we use Proposition 4.21
and (4.26) to obtain

∥∇
(r)∂t(k

[n],k(d))∥
(L∞+ts+

5
2 −εL2)(Σt,g)

∥k(d)∥
(L2∩t−s− 5

2 +εL∞)(Σt,g)

≤ Cnt
−r−2+ε

2∑
r′=0

tr
′∥k(d)∥Hr′ (Σt,g)

≤ Cnt
−r−2+εE

1
2
s (t).

(4.65)

For r = s− 1, we have additionally (compared to (4.64) and (4.65)) terms
where (1) all but one derivatives hit on ∂t(k

[n],k(d)), (2) all derivatives hit
on (k[n],k(d)), both of which cannot be put into L∞. For these terms we use
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Proposition 4.21 and (4.26) to get

∥∇
(r−1)∂t(k

[n],k(d))∥
(L∞+ts+

5
2 −εL2)(Σt,g)

∥∇k(d)∥
(L2∩t−s− 5

2 +εL∞)(Σt,g)

+∥∇
(r)(k[n],k(d))∥

(L∞+ts+
5
2 −εL2)(Σt,g)

∥∂tk(d)∥
(L2∩t−s− 5

2 +εL∞)(Σt,g)

≤ Cnt
−r−1+ε

(
3∑

r′=1

tr
′−1∥k(d)∥Hr′ (Σt,g)

+
2∑

r′=0

tr
′∥∂tk(d)∥Hr′ (Σt,g)

)

≤ Cnt
−r−2+εE

1
2
s (t).

(4.66)

Step 4: Bounding the commutator terms [−∂2
t +∆g, ∇(r)]. By (repeated appli-

cations of) Proposition 4.24, [−∂2
t , ∇(r)]k(d) consists exactly of terms of the form∑

r1+r2=r

∇
(r1)k∇

(r2)∂tk
(d),

∑
r1+r2=r

∇
(r1)∂tk∇

(r2)k(d),∑
r1+r2+r3=r

∇
(r1)k∇

(r2)k∇
(r3)∂tk

(d).

Thus they can be controlled in exactly the same manner as in Step 3 to obtain

(4.67) ∥[∂2
t ,∇i1 · · ·∇ir ]k

(d)∥L2(Σ,g) ≤ (C0t
−r−2 +Cnt

−r−2+ε)E
1
2
s (t).

On the other hand, the commutator [∆g, ∇(r)] gives rise to curvature terms. In
the 3-dimensional Σt, the Riemann curvature tensor can be expressed in terms of
the Ricci curvature and thus can be controlled using Proposition 4.23 to obtain

∥[∆g,∇i1 · · ·∇ir ]k
(d)∥L2(Σ,g) ≤ Cnt

−r−2+εE
1
2
s (t).(4.68)

Step 5: Putting everything together. Combining Steps 1–4, we have achieved
(4.53).

Therefore, for every 0 ≤ r≤ s−1, we apply Proposition 4.27 with M = 2N+

2s−2r−2 to get

d
dt
[t−2N−2s+2r+2(∥∂t∇(r)k(d)∥2

L2(Σt,g)
+∥k(d)∥2

Ḣr+1(Σt,g)
+ t−2∥k(d)∥2

Ḣr(Σt,g)
)]

+
2N +2s−2r−2

t
[t−2N−2s+2r+2(∥∂t∇(r)k(d)∥2

L2(Σt,g)
+∥k(d)∥2

Ḣr+1(Σt,g)

+ t−2∥k(d)∥2
Ḣr(Σt,g)

)]

≤ C0

t
[t−2N−2s+2r+2(∥∂t∇(r)k(d)∥2

L2(Σt,g)
+∥k(d)∥2

Ḣr+1(Σt,g)

+(C0 +Cnt
ε)t−2∥k(d)∥2

Ḣr(Σt,g)
)]

+ t−2N−2s+3(t2r∥−∂2
t ∇

(r)
i1···ir(k

(d))i
j +∆g∇

(r)
i1···ir(k

(d))i
j∥2

L2(Σt,g)
)

≤ (C0t
−1 +Cnt

−1+2ε)t−2N−2sEs(t)+Cnt
3,
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where in the last line we have controlled [t−2N−2s+2r+2(∥∂t∇(r)k(d)∥2
L2(Σt,g)

+

∥k(d)∥2
Ḣr+1(Σt,g)

+(C0 +Cnt
ε)t−2∥k(d)∥2

Ḣr(Σt,g)
)] using the energy and have used

(4.53).
Summing over

∑s−1
r=0, we obtain the desired estimate. □

4.7. Transport estimates. In this subsection we continue to work under the
assumptions of Theorem 4.6. In particular, we assume the validity of the bootstrap
assumptions (4.14)–(4.17).

We prove in this subsection estimates for h(d), g(d)ij , ((g−1)(d))ij , which are all
derived using the transport equations they obey.

We insert (4.12) and (4.13) into (4.9) to obtain evolution equations for the
differences g(d)ij , (k(d))ij , h(d), and ((g−1)(d))ij :

∂th
(d) = 2(k[n])j i(k(d))ij +(k(d))i

j(k(d))j
i+ Ih[n](4.69)

∂tg
(d)
ij =−2(k[n])(i

ℓg
(d)
j)ℓ −2(k(d))(i

ℓgj)ℓ,(4.70)

∂t((g
−1)(d))ij = 2(k[n])ℓ(j((g−1)(d))i)l+2(k(d))ℓ(j(g−1)i)l.(4.71)

We begin with the more straightforward, less than top-order, estimates for h(d),
g
(d)
ij , ((g−1)(d))ij . Commuting the equations (4.69), (4.70) and (4.71) with ∇r, r ≤
s, we obtain:

∂t∇
(r)h(d) = 2∇

(r)[(k[n])j
i(k(d))i

j ]+∇
(r)(k(d))i

j(k(d))j
i

+∇
(r)Ih[n] +[∂t,∇

(r)]h(d),
(4.72)

∂t∇
(r)g

(d)
ij =−2∇

(r)[(k[n])(i
ℓg

(d)
j)ℓ ]−2gℓ(j∇

(r)(k(d))i)
ℓ

+[∂t,∇
(r)]g

(d)
ij ,

(4.73)

∂t∇
(r)((g−1)(d))ij = 2∇

(r)[(k[n])ℓ
(j((g−1)(d))i)ℓ]

+2(g−1)ℓ(i|∇(r)(k(d))ℓ
|j)+[∂t,∇

(r)]((g−1)(d))ij .
(4.74)

We use (4.72)–(4.74) to obtain the following estimates.

PROPOSITION 4.29. Given N ∈ N, let n ∈ N be sufficiently large so that the
estimates in Proposition 4.17 hold. Then

d
dt

[
t−2N−2s

( s∑
r=0

t2r∥h(d)∥2
Ḣr(Σt,g)

)]
+

2N
t

[
t−2N−2s

( s∑
r=0

t2r∥h(d)∥2
Ḣr(Σt,g)

)]
≤ (C0t

−1 +Cnt
−1+ε)t−2N−2sEs(t)+Cnt,

(4.75)
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and

d
dt

[
t−2N−2s

( s∑
r=0

t2r−2(∥g(d)∥2
Ḣr(Σt,g)

+∥(g−1)(d)∥2
Ḣr(Σt,g)

)
)]

+
2N
t

[
t−2N−2s

( s∑
r=0

t2r−2(∥g(d)∥2
Ḣr(Σt,g)

+∥(g−1)(d)∥2
Ḣr(Σt,g)

)
)]

≤ (C0t
−1 +Cnt

−1+ε)t−2N−2sEs(t).

(4.76)

Proof. We will only prove (4.75); the bound (4.76) can be derived similarly
(and is slightly simpler).

Applying Proposition 4.26 for T = ∇(r)h(d) (0 ≤ r ≤ s) and M = 2N +2s−
2r, it suffices to show that

(4.77) tr∥∂t∇(r)h(d)∥L2(Σt,g) ≤ (C0t
−1 +Cnt

−1+ε)E
1
2
s (t)+ tN+s.

To prove this we consider each term on the RHS of (4.72). First, by Hölder’s
inequality, Proposition 4.21 and (4.26), we obtain

∥(k[n])j i(k(d))ij∥Ḣr(Σt,g)
+∥(k(d))ij(k(d))j i∥Ḣr(Σt,g)

≤ C0
∑

r1+r2=r
r1≤s−2

∥∇
(r1)(k[n],k(d))∥L∞(Σt,g)∥∇

(r2)k(d)∥L2(Σt,g)

+Cn

∑
r1+r2=r
r1>s−2

∥∇
(r1)(k[n],k(d))∥

(L∞+ts+
5
2 −εL2)(Σt,g)

(
r2+2∑
r′=r2

tr
′−r2∥∇

(r′)k(d)∥L2(Σt)

)

≤
∑

r1+r2=r

(C0t
−r1−1 +Cnt

−r1−1+ε)∥k(d)∥Ḣr2 (Σt,g)

≤ (C0t
−1−r+Cnt

−1−r+ε)E
1
2
s (t).

(4.78)

Next, the inhomogeneous term Ih[n] can be bounded using Proposition 4.17 by

(4.79) tr∥∇
(r)Ih[n]∥L2(Σt,g) ≤ Cnt

N+s.

Finally, by Proposition 4.25,

∥[∂t,∇(r)]h(d)∥L2(Σt,g) ≤ Cn

r−1∑
r′=0

t−2−r′+ε∥h(d)∥Hr−r′−1(Σt,g)

≤ Cnt
−1−r+εE

1
2
s (t).

(4.80)

Combining (4.78)–(4.80) yields (4.77). □
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We next turn to the top order derivative estimates for h(d), g(d) and (g−1)(d).
For this we first control the renormalized top-order quantities introduced in
(4.21)–(4.23). (Subsequently we will show using elliptic estimates that the renor-
malized top-order quantities indeed control all top-order derivatives; see already
Lemma 4.34.)

PROPOSITION 4.30. Given N ∈ N, let n ∈ N be sufficiently large so that the
estimates in Proposition 4.17 hold. Then

d
dt
[t−2N−2s+2(s+1)∥ ˜

∇
(s+1)
ren h(d)∥2

L2(Σt,g)
]

+
2N
t
[t−2N−2s+2(s+1)∥ ˜

∇
(s+1)
ren h(d)∥2

L2(Σt,g)
]

≤ (C0t
−1 +Cnt

−1+ε)t−2N−2sEs(t)+Cnt,

(4.81)

and

d
dt
[t−2N−2s+2(s+1)−2(∥ ˜

∇
(s+1)
ren g(d)∥2

L2(Σt,g)
+∥ ˜

∇
(s+1)
ren (g−1)(d)∥2

L2(Σt,g)
)]

+
2N
t
[t−2N−2s+2(s+1)−2(∥ ˜

∇
(s+1)
ren g(d)∥2

L2(Σt,g)
+∥ ˜

∇
(s+1)
ren (g−1)(d)∥2

L2(Σt,g)
)]

≤ (C0t
−1 +Cnt

−1+ε)t−2N−2sEs(t).

(4.82)

Proof. Step 1: Proof of (4.81). The main difference with the estimates in
Proposition 4.29 is that there can potentially be (s+ 1) derivatives of k(d), which

is not controlled by our energy Es(t). The quantity
˜

∇
(s+1)
ren h(d) is in fact designed

exactly to avoid such terms after using the bounds for the wave equation for k(d).
We begin our computations. First,

(4.83) ∂t∆g∇
(s−1)
i1···is−1

h(d) = 2(k[n]+k(d))i
j∆g∇

(s−1)
i1···is−1

(k(d))j
i+ error,

where the error terms have at most s derivatives hitting on k(d) and thus satisfy
the estimates similar to that in the proof of Proposition 4.29 (and their proofs are
therefore omitted):

(4.84) ts+1∥error∥L2(Σt,g) ≤ (C0t
−1 +Cnt

−1+ε)E
1
2
s (t)+ tN+s.

The term 2(k[n] + k(d))i
j∆g∇

(s−1)
i1···is−1

(k(d))j
i, however, cannot be controlled.

Nevertheless, continuing our computations, we see that

∂t((k
[n]+k(d))i

j∂t∇
(s−1)
i1···is−1

(k(d))j
i)

= (k[n]+k(d))i
j∆g∇

(s−1)
i1···is−1

(k(d))j
i+(k[n]+k(d))i

j(∂2
t −∆g)(k

(d))j
i

+{∂t(k[n]+k(d))i
j}{∂t∇(s−1)

i1···is−1
(k(d))j

i}.

(4.85)
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Note that this generates a term (k[n]+k(d))i
j∆g∇

(s−1)
i1···is−1

(k(d))j
i which can be

used to cancel the uncontrollable term in (4.83). Hence, combining (4.83), (4.84)
and (4.85), we obtain

∥∂t(∆g∇
(s−1)
i1···is−1

h(d)−2(k[n]+k(d))i
j∂t∇

(s−1)
i1···is−1

(k(d))j
i)∥L2(Σt,g)

≤ 2∥(k[n]+k(d))i
j(∂2

t −∆g)∇
(s−1)(k(d))j

i∥L2(Σt,g)

+2∥{∂t(k[n]+k(d))i
j}{∂t∇(s−1)

i1···is−1
(k(d))j

i}∥L2(Σt,g)

+(C0t
−2−s+Cnt

−2−s+ε)E
1
2
s (t)+ tN−1.

(4.86)

We now handle to two terms in (4.86). By Proposition 4.21, (4.53) and Hölder’s
inequality,

∥(k[n]+k(d))i
j(∂2

t −∆g)∇
(s−1)(k(d))j

i∥L2(Σt,g)

≤ (∥(k[n],k(d))∥L∞(Σt,g)∥(∂
2
t −∆g)∇

(s−1)(k(d))∥L2(Σt,g)

≤ (C0t
−2−s+Cnt

−2−s+ε)E
1
2
s (t)+Cnt

N .

(4.87)

On the other hand, by Proposition 4.21 and Hölder’s inequality,

∥{∂t(k[n]+k(d))i
j}{∂t∇(s−1)

i1···is−1
(k(d))j

i}∥L2(Σt,g)

≤ (C0t
−2−s+Cnt

−2−s+ε)E
1
2
s (t).

(4.88)

Combining (4.86)–(4.88) and noticing that
˜

∇
(s+1)
ren h(d) is defined exactly to be

(recall (4.21))

∆g∇
(s−1)
i1···is−1

h(d)−2(k[n]+k(d))i
j∂t∇

(s−1)
i1···is−1

(k(d))j
i,

we thus obtain

∥∂t
˜

∇
(s+1)
ren h(d)∥L2(Σt,g) ≤ (C0t

−2−s+Cnt
−2−s+ε)E

1
2
s (t)+Cnt

N−1.(4.89)

The desired estimate (4.81) then follows directly from Proposition 4.26 (for
M = 2N +2s−2(s+1)).

Step 2: Proof of (4.82). The main idea is similar to Step 1, so we will be brief.
The main difference is that for g(d), not only the derivatives of the inhomogeneous
terms create ∇(s+1)k, but the commutator terms also create similar terms, which
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have to be taken care of by a renormalization. More precisely, by (4.70) and Propo-
sition 4.24,

∂t∆g∇
(s−1)
i1···is−2a

g
(d)
ij

=∆g∇
(s−2)
i1···is−2

∇a∂tg
(d)
ij +[∂t,∆g∇

(s−1)
i1···is−2a

]g
(d)
ij

=−2gℓ(j∆g∇
(s−1)
i1···is−2a

(k(d))i)
ℓ

−∆g∇
(s−2)
i1···is−2

((g−1)begm(i|∇eka)
m−∇(aki)

b− (g−1)begd(a∇i)ke
d)g

(d)
bj

−∆g∇
(s−2)
i1···is−2

((g−1)begm(j|∇eka)
m−∇(akj)

b− (g−1)begd(a∇j)ke
d)g

(d)
ib + · · · ,

(4.90)

where the terms denotes by · · · have at most (s+ 1) derivatives on k[n], at most
s derivatives on k and at most (s+ 1) derivatives on g(d), and therefore can be
bounded as in Proposition 4.29 by

∥· · ·∥L2(Σt,g) ≤ (C0t
−1−s+Cnt

−1−s+ε)E
1
2
s (t).

It thus remains to handle all the main terms appearing on the RHS of (4.90).

Now one observes that the quantity
˜

∇
(s+1)
ren g(d) is designed exactly to remove this

term (in a similar way as
˜

∇
(s+1)
ren h(d) is designed in Step 1) so that the additional

error terms are controllable. It thus follows that

(4.91) ∥∂t
˜

∇
(s+1)
ren g(d)∥L2(Σt,g) ≤ (C0t

−1−s+Cnt
−1−s+ε)E

1
2
s (t),

which implies the desired estimate for
˜

∇
(s+1)
ren g(d) in (4.82) after using Proposi-

tion 4.26..

The argument for
˜

∇
(s+1)
ren (g−1)(d) is similar and omitted. □

We conclude this subsection by summarizing what we have achieved so far,
namely that we have obtained an estimate for the modified energy by the energy:

PROPOSITION 4.31. Given N ∈ N, let n ∈ N be sufficiently large so that the
estimates in Proposition 4.17 hold. Then for any t ∈ [Taux,TBoot),

t−2N−2sẼs(t)+2N
∫ t

Taux

τ−2N−2sẼs(τ)
τ

dτ

≤
∫ t

Taux

(C0τ
−1 +Cnτ

−1+ε)τ−2N−2sEs(τ)dτ +Cnt.

Proof. This is an immediate consequence of Propositions 4.28, 4.29 and 4.30.
□

[1
32

.1
74

.2
51
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4.8. Conclusion of the proof of Theorem 4.6. In order to conclude the
proof of Theorem 4.6, we finally need to relate Es and Ẽs (which will be achieved
in Lemmas 4.32 and 4.34), and then use the energy inequality in Proposition 4.31
to deduce our desired estimates.

Recalling now the difference between Es and Ẽs (as described immediately
after their definitions in (4.19)–(4.23)), we need to

• relate ∂t∇
(r)k(d) and ∇(r)∂tk

(d) (achieved using a commutator estimate; see
Lemma 4.32), and

• relate the renormalized top-order quantities and other top-order derivatives
(achieved using elliptic estimates; see Lemma 4.34).

LEMMA 4.32. The following estimate holds:

s−1∑
r=0

t2r+2∥∂tk(d)∥2
Ḣr(Σt,g)

≤ (C0 +Cnt
ε)Ẽs(t).

Proof. We control the commutator [∂t,∇(r)]k(d) using Proposition 4.25 to ob-
tain

s−1∑
r=0

t2r+2∥∇
(r)∂tk

(d)−∂t∇
(r)k(d)∥2

L2(Σt,g)
≤ Cnt

εẼs(t),

from which the desired estimate follows from the definition of Ẽs. □

LEMMA 4.33. Given any tensor ξ tangential to Σt,

∥∇
(2)ξ∥2

L2(Σt,g)

≤ 2∥∆gξ∥2
L2(Σt,g)

+Cnt
−2+ε∥∇ξ∥2

L2(Σt,g)
+Cnt

−4+2ε∥ξ∥2
L2(Σt,g)

.
(4.92)

Proof. We compute

∥∆gξ∥2
L2(Σt,g)

=

∫
Σt

(g−1)a1a
′
1 · · ·(g−1)aℓa

′
ℓgb1b

′
1
· · ·gbmb′m(g

−1)ii
′
(g−1)jj

′︸ ︷︷ ︸
=:G

a1 ···aℓa
′
1 ···a

′
ℓ
ii′jj′

b1 ···bmb′1 ···b
′
m

×∇i∇i′ξ
b1···bm
a1···aℓ ∇j′∇jξ

b′1···b′m
a′1···a′ℓ

volΣt

=−
∫
Σt

G
a1···aℓa′1···a′ℓii

′jj′

b1···bmb′1···b′m
∇i′ξ

b1···bm
a1···aℓ ∇i∇j′∇jξ

b′1···b′m
a′1···a′ℓ

volΣt

=

∫
Σt

G
a1···aℓa′1···a′ℓii

′jj′

b1···bmb′1···b′m
∇j′∇i′ξ

b1···bm
a1···aℓ ∇i∇jξ

b′1···b′m
a′1···a′ℓ

volΣt + error

= ∥∇
(2)ξ∥2

L2(Σt,g)
+ error,

(4.93)
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where terms labelled error (different in the two instances) come from commuting
covariant derivatives and obey an estimate

|error| ≤ C0∥Riem(g)∥L∞(Σ,g)∥∇ξ∥2
L2(Σt,g)

+C0∥Riem(g)∥L∞(Σ,g)∥∇
(2)ξ∥L2(Σt,g)∥ξ∥L2(Σt,g).

As a consequence, since on the 3-dimensional Σt, Riem(g) can be expressed
in terms of Ric(g), we can use Hölder’s inequality and Proposition 4.23 to obtain

∥∇
(2)ξ∥2

L2(Σt,g)

≤ ∥∆gξ∥2
L2(Σt,g)

+C0∥Riem(g)∥L∞(Σ,g)∥∇ξ∥2
L2(Σt,g)

+C0∥Riem(g)∥L∞(Σ,g)∥∇
(2)ξ∥L2(Σt,g)∥ξ∥L2(Σt,g)

≤ ∥∆gξ∥2
L2(Σt,g)

+Cnt
−2+ε∥∇ξ∥2

L2(Σt,g)

+Cnt
−2+ε∥∇

(2)ξ∥L2(Σt,g)∥ξ∥L2(Σt,g),

(4.94)

which implies (4.92) after using Young’s inequality and absorbing 1
2∥∇(2)ξ∥2

L2(Σt,g)

to the LHS. □

LEMMA 4.34. The top order part of the energy for h(d),g(d),(g−1)(d) is
bounded by:

t2(s+1)∥h(d)∥2
Ḣs+1(Σt,g)

+ t2s(∥g(d)∥2
Ḣs+1(Σt,g)

+∥(g−1)(d)∥2
Ḣs+1(Σt,g)

)

≤ (C0 +Cnt
ε)Ẽs(t).

Proof. The key is to use Lemma 4.33. Consider for instance h(d). We first note
that ∆g∇(s−1)h(d) can be written as a linear combination of the renormalized top-

order quantity
˜

∇
(s+1)
ren h(d) and terms which has at most s derivatives of k(d) (and

k[n]) so that it can be checked that

t2(s+1)∥∆g∇
(s−1)h(d)∥2

L2(Σt,g)
≤ (C0 +Cnt

ε)Ẽs(t).

It then follows by the elliptic estimates in Lemma 4.33 and the lower order control
for h(d) by Ẽs(t) that

t2(s+1)∥h(d)∥2
Ḣs+1(Σt,g)

≤ (C0 +Cnt
ε)Ẽs(t).

The estimates for the top-order derivatives for g(d) and (g−1)(d) are similar. □

Combining Lemmas 4.32 and 4.34, we obtain:
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PROPOSITION 4.35. Given N ∈ N, let n ∈ N be sufficiently large so that the
estimates in Proposition 4.17 hold. Then for any t ∈ [Taux,TBoot),

Es(t)≤ (C0 +Cnt
ε)Ẽs(t).

We are now ready to conclude the proof of the bootstrap theorem (Theo-
rem 4.6):

Proof of Theorem 4.6. Given any N ∈ N, choose n ∈ N sufficiently large so
that the estimates in Proposition 4.17 hold.

Combining Propositions 4.31 and 4.35, and integrating in t (noting that we
have trivial data at Taux), we obtain that

t−2N−2s

(C0 +Cntε)
Es(t)+2N

∫ t

Taux

τ−2N−2sEs(τ)
(C0 +Cnτ ε)τ

dτ

≤
∫ t

Taux

(C0τ
−1 +Cnτ

−1+ε)τ−2N−2sEs(τ)dτ +Cnt.

(4.95)

We now choose our constants. First choose N sufficiently large so that

N ≥ max{2C0(C0 +1), 2(C0 +1), N0, 7}.

We then fix an nN0,s ∈N sufficiently large so that whenever n≥ nN0,s, (4.95) holds
with the given N . After fixing n, we then choose TN0,s,n so that CnT

ε
N0,s,n

≤ 1.
Plugging C0 ≤ N

2(C0+1) and CnT
ε
N0,s,n

≤ 1 into (4.95), we then obtain

t−2N−2s

(C0 +1)
Es(t)+2N

∫ t

Taux

τ−2N−2sEs(τ)
(C0 +1)τ

dτ

≤
∫ t

Taux

( N

2(C0 +1)
+1
)τ−2N−2sEs(τ)

τ
dτ +Cnt.

(4.96)

Notice that we have chosen N so that ( N
2(C0+1) +1) ≤ N

C0+1 . We can thus subtract

N
∫ t
Taux

τ−2N−2sEs(τ)
(C0+1)τ dτ from both sides of (4.96) to obtain

(4.97)
t−2N−2s

(C0 +1)
Es(t)+N

∫ t

Taux

τ−2N−2sEs(τ)
(C0 +1)τ

dτ ≤ Cnt,

which immediately implies

(4.98) Es(t)≤ t2N+2s,

after choosing TN0,s,n smaller if necessary. In particular, since we have chosen
N ≥N0 and TN0,s,n ≤ 1, we obtain (4.18).
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Finally, we check that we have improved the bootstrap assumption. For (4.15)–
(4.17), this is immediate from (4.18). For (4.14), note that (4.98) and (4.25) imply

∥g−g[n]∥L∞(Σt,g) ≤ C0t
N+s− 3

2 .

Now note that the smallest eigenvalue of g−1 is ≥ C−1
0 t−2p1 ≥ C−1

0 t2. Hence

t8|aij −a
[n]
ij |

2 ≤ C0t
4pmax{i,j} |aij −a

[n]
ij |

2 ≤ max
i,j

|gij −g
[n]
ij |

2

≤ C0(t
−2)2∥g−g[n]∥2

L∞(Σt,g)
≤ C0t

2N+2s−11.

Now since N ≥ 7 and s ≥ 4, we have |aij −a
[n]
ij | ≤ C0t

3
2 . Combining with (2.7),

we thus obtain

(4.99) |aij − cij | ≤ C0t
ε,

which improves over (4.14) after taking TN0,s,n to be sufficiently small. □

As we discussed in Section 4.3.2, once we have proven Theorem 4.6, we now
also obtain Corollary 4.7.

4.9. Extracting a limit: proof of Proposition 4.8. In this final subsection,
we prove Proposition 4.8, which, as indicated in Section 4.3.3, is the final step of
the proof of Theorem 4.4.

We begin with some easy estimates, which will allow us to extract a limit.
(Notice that these estimates are allowed to degenerate as t → 0, but importantly
they do not depend on Taux.)

LEMMA 4.36. Let s, N0, n and TN0,s,n be as in Theorem 4.6. For every T ′,
T ′′ satisfying 0 < T ′ < T ′′ ≤ TN0,s,n, there exists a constant C > 0 independent of
Taux such that the following holds (with definitions in (4.12) and (4.13)).

Let Taux ∈ (0,T ′] and suppose (gaux,kaux,haux) is the solution to (4.9) on
[Taux,TN0,s,n)×T3 given by Corollary 4.7. Then

sup
t∈[T ′,T ′′]

sup
x∈T3

∑
r+|α|≤4

(|∂r
t ∂

α
x g

(d)
ij |+ |∂r

t ∂
α
x ((g

−1)(d))ij |)(t,x)

+
∑

r+|α|≤3

(|∂r
t ∂

α
x k

(d)
ij |+ |∂r

t ∂
α
xh

(d)|)(t,x)≤ C.

Proof. When there is no ∂t derivative, this just follows from (4.18) and Sobolev
embedding. To obtain the estimates with the ∂t derivatives, we use in addition the
equations (4.50), (4.69), (4.70) and (4.71). □

LEMMA 4.37. Let s, N0, n and TN0,s,n be as in Theorem 4.6. There exists
a sequence of auxiliary times {Taux,I}+∞

I=1 ⊂ (0,TN0,s,n), limI→+∞Taux,I = 0 such
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that the corresponding solutions {(gaux
I ,kaux

I ,haux
I )}+∞

I=1 given by Lemma 4.5 con-
verge locally in C3 ×C2 ×C2 norm (as I →+∞) to a limit (g,k,h) which solves
(4.9) in (0,TN0,s,n]×T3. Moreover, after denoting g(d) = g−g[n], (g−1)(d) = g−1−
(g[n])−1, k(d) = k−k[n] and h(d) = h−h[n], the estimate (4.18) holds.

Proof. The existence of a limit follows from Lemma 4.36, the Arzela–Ascoli
theorem, and a standard argument extracting a diagonal sequence. Since the limit
is achieved locally in C3 ×C2 ×C2, it follows that the limit satisfies the system
(4.9).

Finally, we prove that the limit obeys the estimate (4.18). First, note that the
estimate (4.18) implies that for every t, there is a subsequence {Taux,Iℓ}

+∞

ℓ=1 for
which {(gaux

Iℓ
,kaux

Iℓ
,haux

Iℓ
)}+∞

ℓ=1 has a weak limit satisfying (4.18). This limit must
coincide with the local C3 ×C2 ×C2 limit, thus showing the bound (4.18). □

The very final statement we need in order to complete the proof of Proposi-
tion 4.8 is that gjj′kij

′
is symmetric in i and j. The key to such a statement is the

following lemma.

LEMMA 4.38. Suppose (g,k,h) solves (4.9). Then the term (gjj′ki
j′ −gij′kj

j′)

satisfies an inhomogeneous wave equation of the following form:

(∂2
t −∆g)(gjj′ki

j′ −gij′kj
j′)

=Xa1b1cd
a2b2ij

ka1
a2kb1

b2(gcℓkd
ℓ−gdℓkc

ℓ)+Y a1cd
a2ij

∂tk
a2
a1
(gcℓkd

ℓ−gdℓkc
ℓ)

+Za1cd
a2ij

ka2
a1
∂t(gcℓkd

ℓ−gdℓkc
ℓ),

where X , Y and Z are some tensor products of g, g−1 and δ.

Proof. Step 1: Easy reductions. First, a direct computation shows that

∂2
t (gjj′ki

j′ −gij′kj
j′)

=−∂t{(gjbkj′b−gj′bkj
b)ki

j′ − (gibkj′
b−gj′bki

b)kj
j′}

− (gj′bkj
b−gjbkj′

b)∂tki
j′ +(gjj′∂

2
t ki

j′ −gij′∂
2
t kj

j′)−2gjj′kbj
′
∂tki

b.

Notice that all the terms on the first line are of the form as required by the lemma.
It thus follows from (4.9) that

(∂2
t −∆g)(gjj′ki

j′ −gij′kj
j′)

= gjj′{(k ⋆k ⋆k)ij
′
+(∂tk ⋆k)i

j′}

−gij′{(k ⋆k ⋆k)jj
′
+(∂tk ⋆k)j

j′}−2gjj′kbj
′
∂tki

b+ · · · ,

(4.100)

where · · · denotes terms which are of the form as required by the lemma. (Notice
in particular that the Hessian of h term drops of because it is symmetric.)
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Investigating now the terms in k ⋆k ⋆k and ∂tk ⋆k, we only need to check that

Qi
j′gjj′ −Qj

j′gij′ ,

where

Qi
j′ ∈ {kij

′
, δi

j′ , ki
aka

j′ , ∂tki
j′ , [(∂tki

a)ka
j′ − (∂tka

j′)ki
a]}

is of the form required by the lemma. (Note that the term [(∂tki
a)ka

j′−(∂tka
j′)ki

a]

comes from combining terms in ∂tk ⋆k and −2gjj′kbj
′
∂tki

b.)
Now clearly if Qi

j′ ∈{kij
′
, δi

j′}, then Qi
j′gjj′−Qj

j′gij′ is of the desired form.
For Qj′

i = ki
aka

j′ , we compute

ki
aka

j′gjj′ −kj
aka

j′gij′ = ki
a(ka

j′gjj′ −kj
j′gaj′)−kj

a(ka
j′gij′ −ki

j′gaj′),

which is of the desired form.
For Qj′

i = ∂tki
j′ , we compute

gjj′∂tki
j′ −gij′∂tkj

j′

= ∂t(gjj′ki
j′ −gij′kj

j′)+gjbkj′
bki

j′ +gj′bkj
bki

j′ −gibkj′
bkj

j′ −gj′bki
bkj

j′

= ∂t(gjj′ki
j′ −gij′kj

j′)+(gjbkj′
b−gj′bkj

b)ki
j′ − (gibkj′

b−gj′bki
b)kj

j′ ,

which is of the desired form.
For Qj′

i = [(∂tki
a)ka

j′ − (∂tka
j′)ki

a], we compute

[(∂tki
a)ka

j′ − (∂tka
j′)ki

a]gjj′ − [(∂tkj
a)ka

j′ − (∂tka
j′)kj

a]gij′

= ∂t(ki
agj′a−kj′

agia)kj
j′ +∂t(kj′

agja−kj
agj′a)+∂tki

a(ka
j′gjj′ −kj

j′gaj′)

−∂tkj
a(ka

j′gij′ −ki
j′gaj′)

+(gbakj′
a−gj′akb

a)kj
bki

j′ +(gj′aki
j′ −gj′ika

j′)kj
bkb

a

− (gbakj′
a−gj′akb

a)ki
bkj

j′ − (gj′akj
j′ −gj′jka

j′)ki
bkb

a,

which is of the desired form. This concludes the proof. □

We are now ready to show that gjj′kij
′
is symmetric in i and j.

LEMMA 4.39. Given a limit (g,k,h) as in Lemma 4.37, the limiting k is in fact
the second fundamental form, i.e., kij := gjj′ki

j′ =− 1
2∂tgij .

Proof. Denoting kij := gjj′ki
j′ , the equation for g implies that ∂tgij =−kij −

kji. Hence, in order to prove the lemma, it suffices to show that kij is symmetric in
i and j.

To this end, we define (kaux
I )ij := (gaux

I )jj′(k
aux
I )i

j′ , and first obtain an estimate
for its anti-symmetric part. By Lemma 4.38, (kaux

I )ij− (kaux
I )ji satisfies a homoge-

neous wave equation. By the choice of initial data for kaux
I ,gaux

I (recall Lemma 4.5)
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and Lemma 2.13, it follows that

∥((kaux
I )ij − (kaux

I )ji, t∂t((k
aux
I )ij − (kaux

I )ji)) ↾t=Taux,I ∥H1(ΣTaux,I ,g)×L2(ΣTaux,I ,g)

≤ Ct−1+(n+1)ε.

(4.101)

We now perform energy estimates for (kaux
I )ij − (kaux

I )ji using the wave equa-
tion in Lemma 4.38 (in a manner similar to the k energy estimates in the proof of
Theorem 4.6, only simpler). By choosing n sufficiently large, the estimate (4.101)
allows one to take care the borderline terms and moreover show that for any T0 ∈
(0,TN0,s,n),

(4.102) lim
I→+∞

sup
t∈[T0,TN0,s,n)

∥(kaux
I )ij − (kaux

I )ji∥H1(Σt,g) = 0.

Finally, since kij is the pointwise limit of (kaux
I )ij as I→+∞ (by Lemma 4.37),

the estimate (4.102) implies that kij is symmetric in i and j, which is what we
wanted to prove. □

Proof of Proposition 4.8. Proposition 4.8 follows directly from Lemmas 4.37
and 4.39. □

5. Vanishing of the Einstein tensor. The goal of this section is to show
that the solution of (4.9), constructed in Theorem 4.4 in subsection 4.3, is in fact a
solution to the Einstein vacuum equations. This then concludes the proof of Theo-
rem 1.1; see the conclusion of the proof at the end of the section.

We begin with the following:

PROPOSITION 5.1. There exists Nh ∈N sufficiently large such that the follow-
ing holds.

Let s ≥ 5 and N0 ≥ Nh. Then, for n ≥ nN0,s, the solution (g,h,k) to (4.9)
given by Theorem 4.4 satisfies

h= kℓ
ℓ.

In particular, (4) Ric((4)g)tt = 0.

Proof. Once we establish that h= kℓ
ℓ, it follows from the first equation in (4.9)

that ∂tkℓℓ = |k|2. According to (3.3), this in turn implies that (4) Ric((4)g)tt = 0.
Taking the trace of the second equation in (4.9) and using the identity (4.7), we

obtain

∂t[∂tkℓ
ℓ−|k|2] = ∆g(kℓ

ℓ−h)+2kii[∂tkℓℓ−|k|2].

Since by (4.9) ∂th= |k|2, it follows that

(5.1) ∂2
t (kℓ

ℓ−h) = ∆g(kℓ
ℓ−h)+2kii∂t(kℓℓ−h).
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Note that this is a wave equation for (kℓℓ − h). We can then carry out a similar
energy estimates as in the proof of Theorem 4.4 to obtain

t2∥∂t(kℓℓ−h)∥2
L2(Σt,g)

+
1∑

r=0

t2r∥kℓℓ−h∥2
Hr(Σt,g)

≤ C0 +Cnt
ε

t

(
t2∥∂t(kℓℓ−h)∥2

L2(Σt,g)
+

1∑
r=0

t2r∥kℓℓ−h∥2
Hr(Σt,g)

)
,

(5.2)

where we have used the estimates for k given in Proposition 4.21. Here, as in the
previous section, we use C0 to denote constants depending only on s, cij and pi,
while Cn can depend in addition on n and N0.

At the same time, by Theorem 4.4 and the fact that h[n] = (k[n])ℓ
ℓ,

(5.3) ∥kℓℓ−h∥2
H1(Σt,g)

+∥∂t(kℓℓ−h)∥2
L2(Σt,g)

≤ 2t2N0+2s−2.

In particular, choosing Nh sufficiently large, the estimates (5.2), (5.3) and
Grönwall’s inequality implies that

∥kℓℓ−h∥2
H1(Σt,g)

+∥∂t(kℓℓ−h)∥2
L2(Σt,g)

= 0,

which in turn implies the desired conclusion. □

PROPOSITION 5.2. There exists NG ≥Nh and nG sufficiently large such that
the following holds.

Let s ≥ 5 and N0 ≥ NG. For n ≥ max{nN0,s, nG}, take the solution (g,h,k)

to (4.9) given by Theorem 4.4. Then (4)g = −dt2 + g is in fact a solution to the
Einstein vacuum equations, i.e., Ric((4)g) = 0, and k is the corresponding second
fundamental form of the constant-t hypersurfaces.

Proof. For this proof, we denote Gi = Gti(
(4)g) and Gij = Gij(

(4)g), both
thought of as Σt-tangent tensors. We also use the notation that ∇ is the Levi–Civita
connection for the spatial metric g.

Step 1: Derivation of a system of equations. By (4.5) and the wave equation
(4.8), we have

∂t Rici j((4)g)

= ∇iGj +∇
jGi−3kim Ricm j((4)g)+2δji km

ℓ Ricℓ m((4)g)

−kℓ
j Rici ℓ((4)g)+2kℓℓ Rici j((4)g)− (kℓ

ℓδji −ki
j)Ricmm((4)g).

(5.4)

Taking the trace of (5.4) and using the fact that Rictt((4)g) = 0, we also have:

(5.5) ∂tR((4)g) = 2∇jGj +2kmℓ Ricℓ m((4)g).
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The combination of (5.4) and (5.5) implies the following equation for the Einstein
tensor Gi

j((4)g):

∂tGi
j((4)g) := ∂t Rici j((4)g)−

1
2
δi

j∂tR((4)g)

= ∇iGj +∇
jGi− δi

j
∇ℓGℓ−3kim Ricm j((4)g)

+ δji km
ℓ Ricℓ m((4)g)−kℓ

j Rici ℓ((4)g)

+2kℓℓ Rici j((4)g)− (kℓ
ℓδji −ki

j)Ricmm((4)g).

(5.6)

Note that Rici j((4)g) can be written in terms of Gi
j((4)g): Rici j((4)g) =

Gi
j((4)g) + 1

2δi
jR((4)g), where R((4)g) := −Rtt(

(4)g) + Rℓ
ℓ((4)g) = Rℓ

ℓ((4)g)

by Proposition 5.1. Taking the trace we get Rici i = Gi
i + 3

2Rℓ
ℓ((4)g) so that

Rℓ
ℓ((4)g) = 2Gi

i((4)g). It follows that

(5.7) Rici j((4)g) =Gi
j((4)g)+ δi

jGℓ
ℓ.

We can thus rewrite (5.6) as

(5.8) ∂tGi
j = ∇iGj +∇

jGi− δi
j
∇ℓGℓ+(k ⋆G)i

j ,

where (k ⋆G)i
j is some quadratic contraction of k and G whose exact form is

unimportant.
On the other hand, by the contracted second Bianchi equations and the fact that

DtGti(
(4)g) = ∂tGi+ki

jGj , and DjGi
j((4)g) = ∇jGi

j+kj
jGi+ki

jGj , we obtain

(5.9) ∂tGi = kj
jGi+∇jGi

j((4)g).

Taking ∂t of (5.9), applying (5.8), and using the commutation formula in Proposi-
tion 4.24, we obtain the wave equation

∂2
t Gi = ∂t(kj

jGi)+∇j(∇iGj+∇
jGi− δi

j
∇ℓGℓ+(k ⋆G)i

j)+[∂t,∇j ]Gi
j

=∆gGi+k ⋆k ⋆G+∂tk ⋆G+k ⋆∂tG+∇k ⋆G+k ⋆∇G,
(5.10)

where in the last equality we have also used that the curvature tensor Riem(g) can
be expressed in terms of G, k and ∂tk using (4.4), (3.1), and (5.7), so that

∇j(∇iGj +∇
jGi− δi

j
∇ℓGℓ) = ∇j∇iGj +∆gGi−∇i∇jGj

=∆gGi+k ⋆k ⋆G+∂tk ⋆G.

Here, k ⋆k ⋆G, etc. are in principle explicit, but we do not carry out the computa-
tions as the exact form is unimportant.
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Step 2: Energy estimates and vanishing of the Einstein tensor. Our goal now
is to perform energy estimates using (5.8) and (5.10) so as to show that G and G are
both ≡ 0. Investigating the terms in (5.8) and (5.10), we note that the RHS of (5.10)
has terms with one derivative of G, which apparently leads to a loss of derivatives.
Nevertheless, this can be treated in exactly the same manner as (4.9).

Define the energy

E(t) =

1∑
r=0

t2r∥∂tG∥2
Ḣr(Σt,g)

+

2∑
r=0

t−2+2r∥G∥2
Ḣr(Σt,g)

+

2∑
r=0

t−2+2r∥G∥2
Ḣr(Σt,g)

,

(5.11)

and modified energy

Ẽ(t) =
1∑

r=0

t2r∥∂t∇(r)G∥2
L2(Σt,g)

+
2∑

r=0

t−2+2r∥G∥2
Ḣr(Σt,g)

+
1∑

r=0

t−2+2r∥G∥2
Ḣr(Σt,g)

+ t2∥∇̃(2)G∥2
L2(Σt,g)

,

(5.12)

where

(∇̃(2)G)i
j :=∆gGi

j −∂t∇iGj −∂t∇
jGi+ δi

j∂t∇ℓGℓ.

We now carry out energy estimates for the wave-transport system (5.8) and
(5.10) in a manner similar to that for (4.9) in Theorem 4.4. Note that we in particu-
lar need to use the elliptic estimates in Lemma 4.33. Nevertheless, the present case
is much easier because of the linearity of the system. We omit the proof and give
the estimates

(5.13)
d
dt
E(t)≤ C0 +Cnt

ε

t
E(t),

where we again used the convention that C0 depends only on s, cij and pi, while
Cn can depend in addition on n and N0. We now fix C0 and Cn so that (5.13) holds.

We now need to show, using (5.13), that E(t)≡ 0. For this purpose it suffices
to check that

(5.14) lim
t→0+

t−C0E(t) = 0,

so that we can apply Grönwall’s inequality to d
dt(t

−C0E(t))≤ Cn

t1−ε (t
−C0E(t)).
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Define G[n] = Gti(
(4)g[n]) and G

[n]
ij = Gij(

(4)g[n]). Then by Proposition 3.3,
there exists nG ∈ N such that if n≥ nG, then

lim
t→0+

t−C0

(
1∑

r=0

t2r∥∂tG[n]∥2
Ḣr(Σt,g)

+
2∑

r=0

t−2+2r∥G[n]∥2
Ḣr(Σt,g)

+
2∑

r=0

t−2+2r∥G[n]∥2
Ḣr(Σt,g)

)
= 0.

(5.15)

On the other hand, by (4.11) in Theorem 4.4, if NG is sufficiently large and
N0 ≥NG, then

lim
t→0+

t−C0

(
1∑

r=0

t2r∥∂t(G−G [n])∥2
Ḣr(Σt,g)

+
2∑

r=0

t−2+2r∥(G−G [n])∥2
Ḣr(Σt,g)

+
2∑

r=0

t−2+2r∥G[n]∥2
Ḣr(Σt,g)

)
= 0.

(5.16)

Therefore, choosing N0 ≥ NG and n ≥ max{nN0,s,nG}, we obtain (5.14) by
using (5.15) and (5.16). This gives E(t) ≡ 0. Together with Proposition 5.1, this
gives that the Einstein tensor vanishes identically. □

We end the section with the conclusion of the proof of Theorem 1.1:

Proof of Theorem 1.1. This follows immediately from Theorem 4.4 and
Proposition 5.2. □

6. Uniqueness and smoothness of solutions: proofs of Theorems 1.7 and
1.10. We prove Theorems 1.7 and 1.10 in Sections 6.1 and 6.2 respectively.

6.1. Uniqueness of solutions.

Proof of Theorem 1.7. Let (4)g, (4)g̃ be two solutions to the Einstein vacuum
equations (1.2) satisfying the assumptions of Theorem 1.7.

In this proof, we use C to denote positive constants depending only on cij and
pj , and use C ′ to denote positive constants which depend in addition on the implicit
constants in (1.10), (1.11) and (1.12).

Notice that it suffices to prove uniqueness on a sub-domain (0,T ′]×T3 (for
some 0<T ′ <T ) since in the region [T ′,T ]×T3, we are away from the singularity,
and uniqueness will follow from standard uniqueness results. For this reason, we
will take T ′ sufficiently small so as to assume C ′(T ′)ε ≤ 1.
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Step 1: Estimating k and k̃. Using the estimates (1.10) and (1.11), and arguing
as in Propositions 4.18 and 4.19, we obtain

(6.1)
2∑

r=0

tr(∥∇
(r)k∥L∞(Σt,g)+∥∇̃

(r)k̃∥L∞(Σt,g))≤ Ct−1,

and

(6.2)
1∑

r=0

tr(∥∇
(r)∂tk∥L∞(Σt,g)+∥∇̃

(r)∂tk̃∥L∞(Σt,g))≤ Ct−2,

where ∇̃ denotes the Levi–Civita connection of g̃.

Step 2: Estimating the convergence rate as t→ 0+. Let

(6.3) h= kℓ
ℓ, h̃= k̃ℓ

ℓ.

Define the variables

g(d) := g− g̃, (g−1)(d) := g−1 − g̃, h(d) := h− h̃, k(d) := k− k̃.

Given any M ′
u ∈ N we can choose Mu sufficiently large so that by (1.10) and

(1.12),

∥g(d)∥H2(Σt,g)+∥(g−1)(d)∥H2(Σt,g)+∥h(d)∥H2(Σt,g)

+∥k(d)∥H1(Σt,g) ≤ C ′tM
′
u .

(6.4)

Moreover, given any M ′′
u ∈N we can choose Mu even larger so that by (1.12),

(6.5) ∥Ric(g)−Ric(g̃)∥L2(Σt,g) ≤ C ′tM
′′
u .

Now since both (4)g and (4)g̃ solve (1.2), the RHS of (3.1) vanishes for both metrics.
Hence, using (6.1), (6.4) and (6.5), we obtain

(6.6) ∥∂tk(d)∥L2(Σt,g) ≤ C ′ max{tM ′
u−1, tM

′′
u}.

Step 3: Energy estimates. We now carry out energy estimates for (g(d),h(d),
k(d)). First, we note that they satisfy a system of equations analogous to (4.50),
(4.69), (4.70), (4.71) as follows.

• By definition of k and k̃, we immediate obtain the transport equation
∂tg

(d) =−2k̃(iℓg
(d)
j)l −2(k(d))(iℓgj)l.

• By (6.3) and (3.3), h(d) satisfies a transport equation ∂th
(d) = |k|2 −|k̃|2.

• Arguing as in Section 4, it follows that both k and k̃ satisfy the wave equation
(4.8) (with the corresponding metric g and g̃). We take the difference to obtain a
wave equation for k(d).
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Note that these equations are similar to but simpler than (4.50), (4.69) and (4.70)
in the sense that the system is homogeneous.

We can thus carry out energy estimates in exactly the same way as in the proof
of Theorem 4.4, including using a modified energy together with elliptic estimates.
In particular, defining

Eu(t) =
2∑

r=0

[t−2+2r(∥g(d)∥2
Hr(Σt,g)

+∥(g−1)(d)∥Hr(Σt,g))+ t2+2r∥h(d)∥Hr(Σt,g)]

+

1∑
r=0

t2r∥k(d)∥L2(Σt,g)+ t2∥∂tk(d)∥L2(Σt,g),

we can run the energy estimates in Theorem 4.4 using the bounds established in
Steps 1 and 2 above.

• Estimates (6.1) and (6.2) in Step 1 guarantee that

(6.7)
d
dt
Eu(t)≤

C

t
Eu(t)

for some fixed constant C > 0 depending only on the constants in (1.11).
• Taking C as in (6.7), estimates (6.4) and (6.6) in Step 2 guarantee that if Mu

sufficiently large, then

(6.8) limsup
t→0+

t−CEu(t) = 0.

The bounds (6.7) and (6.8) immediately imply that Eu ≡ 0, which in particular
implies g ≡ g̃, which is what we wanted to prove. □

6.2. Regularity of solutions. Our goal in this subsection is to prove The-
orem 1.10. As already mentioned in the introduction, for the proof we rely on our
uniqueness result.

We first introduce a piece of notation for the rest of this subsection. Let s ≥
5 and N0 ∈ N. For n ≥ nN0,s, Theorem 4.4 and Proposition 5.2 give a solution
to the Einstein vacuum equations of the form (1.4) which satisfies the estimates
(4.11). We denote such a solution by gN0,s,n and denote the corresponding second
fundamental form by kN0,s,n.

We need the following lemma, which checks the conditions (1.10) and (1.11)
in Theorem 1.7.

LEMMA 6.1. Let nN0,s be as in Theorem 4.6 and NG, nG be as in Propo-
sition 5.2. There exists Nc ≥ NG sufficiently large such that if N0 ≥ Nc, s ≥ 5
and n≥ max{nN0,s,nG}, then for g = gN0,s,n and k = kN0,s,n, there exists C > 0
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depending on N0, s, n, cij and pi such that∑
|α|≤2

|∂α
x (aij − cij)| ≤ Ctε,(6.9)

1∑
r=0

∑
|α|≤2−r

tr|∂r
t ∂

α
x (ki

j − t−1κi
j)| ≤ Ct−1+ε.(6.10)

Proof. In this proof, we allow the implicit constants C > 0 to depend on N0,
s, n, cij and pi.

We first prove (6.9). Since s≥ 5, by (4.11) and (4.25), we have

2∑
r=0

tr∥g−g[n]∥W r,∞(Σt,g) ≤ CtN0+s− 3
2 .

Now note that the smallest eigenvalue of g−1 is ≥ C−1t−2p1 ≥ C−1t2. Hence,

|(g−g[n])ij |+ t2|∇ℓ(g−g[n])ij |+ t4|∇b∇ℓ(g−g[n])ij | ≤ CtN0+s− 7
2 .

Writing the covariant derivatives in terms of coordinate derivatives, using gij −
g
[n]
ij = t2pmax{i,j}(aij −a

[n]
ij ), and choosing Nc sufficiently large, we thus obtain

(6.11)
∑
|α|≤2

|∂α
x (aij −a

[n]
ij )| ≤ Ctε.

The estimate (6.9) then follows from (6.11), (2.7) and the triangle inequality.
The proof of (6.10) is similar, where we first use (4.11) and (4.25) to obtain

2∑
r=0

tr∥k−k[n]∥W r,∞(Σt,g)+
1∑

r=0

tr+1∥∂t(k−k[n])∥W r,∞(Σt,g) ≤ CtN0+s− 5
2 .

Then, after choosing Nc sufficiently large, we can obtain the desired (6.10) using
(2.8) and the triangle inequality. □

We are now ready to prove Theorem 1.10:

Proof of Theorem 1.10. Given Mu as in Theorem 1.7, the following holds:
• There exists nr ∈ N sufficiently large such that if n, n′ ≥ nr, then

(6.12)
1∑

r=0

∑
|α|≤3−r

|∂r
t ∂

α
x (g

[n]−g[n
′])|=O(tMu).

This is because of the estimates (2.29) and (2.50) derived in the proof of Theo-
rem 2.1.
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• There exists Nr ≥Nc (where Nc is as in Lemma 6.1) sufficiently large such
that the following holds. Suppose s≥ 5, N0 ≥Nr and n≥ nN0,s, then

(6.13)
1∑

r=0

∑
|α|≤3−r

|∂r
t ∂

α
x (gN0,s,n−g[n])|=O(tMu).

This is a direct consequence of (4.11) and Sobolev embedding.
Fix (gN0=Nr,s=5,n0 ,kN0=Nr,s=5,n0) on (0,TN0=Nr,s=5,n0 ]× T3, where n0 ≥

max{nN0=Nr,s=5, nr, nG}. We want to show that this particular solution is
in fact smooth. Let s0 ≥ 5 be arbitrary. By Theorem 4.4 we obtain a so-
lution (gN0=Nr,s=s0,n,kN0,s=s0,n) on (0,TN0=Nr,s=s0,n] × T3 for some n ≥
max{nN0=Nr,s=s0 , nr, nG}. We now claim that in fact on the common domain of
existence (0,min{TN0=Nr,s=5,n0 , TN0=Nr,s=s0,n}]×T3, we have

(6.14) gN0=Nr,s=5,n0 ≡ gN0=Nr,s=s0,n.

To prove the claim, it suffices to verify the conditions of Theorem 1.7:
• Since s ≥ 5 and N0 = Nr ≥ Nc, the conditions (1.10) and (1.11) hold be-

cause of Lemma 6.1.
• By (6.12), (6.13) and the triangle inequality, our choice of n0, n, N0, s im-

plies that

1∑
r=0

∑
|α|≤3−r

|∂r
t ∂

α
x (gN0=Nr,s=5,n0 −gN0=Nr,s=s0,n)|=O(tMu),

i.e., (1.12) holds.
This establishes (6.14).

As a result of (6.14), it follows that the fixed solution (gN0=Nr,s=5,n0 ,

kN0=Nr,s=5,n0) is in Hs0+1 ×Hs0 for every

t ∈ (0,min{TN0=Nr,s=5,n0 ,TN0=Nr,s=s0,n}].

Now we use energy estimates as in the proof of Theorem 4.4 to show propagation
of regularity: it then follows that the solution is in Hs0+1 ×Hs0 for every t in the
original time interval, i.e., for every t ∈ (0,TN0=Nr,s=5,n0 ].

Since s0 can be arbitrarily large, it follows from Sobolev embedding and the
equations (4.9) that the fixed solution (gN0=Nr,s=5,n0 ,kN0=Nr,s=5,n0) is in fact
smooth in (0,TN0=Nr,s=5,n0 ]×T3. This concludes the proof of the theorem. □
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