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ASYMPTOTICALLY KASNER-LIKE SINGULARITIES

By GRIGORIOS FOURNODAVLOS and JONATHAN LUK

Abstract. We prove existence, uniqueness and regularity of solutions to the Einstein vacuum equa-
tions taking the form
3
(4)g = _dt* + Z aij $2Pmax{i,5} dg® dapd
i,j=1

on (0,7)¢ x T3, where a;;(t,x) and p;(z) are regular functions without symmetry or analyticity
assumptions. These metrics are singular and asymptotically Kasner-like as ¢ — 0. These solutions
are expected to be highly non-generic, and our construction can be viewed as solving a singular initial
value problem with Fuchsian-type analysis where the data are posed on the “singular hypersurface”
{t = 0}. This is the first such result without imposing symmetry or analyticity.

To carry out the analysis, we study the problem in a synchronized coordinate system. In partic-
ular, we introduce a novel way to perform (weighted) energy estimates in such a coordinate system
based on estimating the second fundamental forms of the constant-¢ hypersurfaces.
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1. Introduction. The Kasner spacetime ((0,-+o0) x T3,(*)g), where

3
(1.1) Wg=—dt?+ > t*i(da’)?

1=1

(with p; being constants such that Z:: 1 Pi = Zgzl pf = 1) is an explicit solution
to the Einstein vacuum equations

(1.2) Ric(Wg) = 0.

As long as all p; # 0, the Kasner solution moreover represents a singularity as
t — 0. This is manifested in particular by the blowup of the Kretschmann scalar
R,ap RHveb,

In an influential paper [33], Lifshitz—Khalatnikov considered the class of
spacetimes solutions to (1.2) with the form

3
(1.3) Wg=—dt?+> 7w}

i=1

where w; are spatial 1-forms with a “finite limit” as ¢ — 0" and p; = p;(x) are
now spatially-dependent functions satisfying 213':1 pi(x) = 23:1 p3(x) = 1. The
spacetime metrics (1.3) are Kasner-like asymptotically as ¢ — 0T except that the
Kasner exponents are now functions. They are also sometimes called asymptoti-
cally velocity term dominated (AVTD), a terminology that is used to mean that the
asymptotics near the singularity is described by a simpler system of velocity term
dominated equations [16, 20]. Importantly, it is argued in [33] that this class of
spacetime solutions to (1.2) depend only on three “functional degrees of freedom”,
which is one fewer than that for the Cauchy problem of (1.2), and they are therefore
expected to be highly non-generic.
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In this paper, we construct a large class of solutions to (1.2) with the asymp-
totically Kasner-like behavior of (1.3). Our construction in fact has full three func-
tional degrees of freedom and includes all the spacetimes considered in the heuris-
tics in [33] (see Remark 1.5). Some previous constructions are known with either
analyticity or symmetry assumptions (see Section 1.2.1); our construction is the
first without such assumptions.

More precisely, our goal will be to construct a metric taking the form

@g:=—dt’ +g
(1.4) 3 o
= —dt’ + ) ayt*Petinda’ dad

ij=1

where (t,z',22,23) € (0,T] x T3 for some T > 0, p; : T> — R are smooth, time-
independent functions, and a;; : (0,7] x T> — R are smooth functions (symmetric
in 7 and j) which extend to continuous functions : [0,7] x T> — R. Moreover, a;;
obey

1.5 li L = Cj;
(1.5) t_l)r51+az3( 71') CZ](x)v

where c;; are some prescribed smooth functions (symmetric in 7 and j).
Notice that in the language of (1.3), the ansatz (1.4) imposes the condition
1

w1 Adw; =0 for wy; = afl dz'. As we will explain in Remark 1.5, this condition is
what restricts the functional degrees of freedom in our construction.

We will prove existence, uniqueness and regularity of solutions of the form
(1.4). The following is our main existence theorem:

THEOREM 1.1 (Existence of solution). Suppose the following assumptions
hold:

(1) The (time-independent) functions c;;, p; : T3 — R are smooth fori,j =
1,2,3, and that Cij = Cjj.

@) Sl pilw) =31 p(x) = 1 pointwise.

(3) It holds that py(x) < p2(x) < p3(z) < 1 pointwise.

(4) It holds that ¢y (), coa(x), c33(x) > 0.

(5) The following three asymptotic differential constraint equations are satis-
fied:

<16>Z[

where ki = —p; (without summing), k1> = (p1 — pz)%zi K2d = (pa —p3)2—2 K1® =

(P2 —=p1) 22+ (p1 —p3) s and Kt =00f 0 <i, Lypsiy = 1if€> i, Lypnyy =01if
<.

Or(cr1c22633 .
pz)+28g/<cz +1{£>Z}£111622m)ﬁ/ :0, 1= 1,2,3,
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Then there is a C? solution to the Einstein vacuum equations (1.2) of the form
(1.4), for a T' > 0 depending on c;j;, p;, which satisfies (1.5).

Remark 1.2 ((1.4) is a Lorentzian metric). Notice that under condition (3),
the eigenvalues of ¢ as in (1.4) are approximately t*Pic;; (i = 1,2,3) for small ¢.
Hence, given p; as in the theorem and the condition (1.5), it follows that (1.4) is a
well-defined Lorentzian metric in all of (0, Tp] x T3, for some Tp > 0.

Remark 1.3 (Localizing the assumptions). For technical convenience, we as-
sume that there is a global system of coordinates on T3 so that the assumptions
of Theorem 1.1 hold. One may in principle hope to use a localization argument
to construct more general spacetimes for which we require only that around every
point in T3, there is a coordinate patch (z1,z2,23) such that the assumptions of
Theorem 1.1 hold. This, however, is not carried out in the present paper.

Remark 1.4 (Asymptotic CMC condition and asymptotic constraints). The
conditions (2) and (5) in Theorem 1.1 guarantee that a metric of the form (1.4)
satisfies asymptotically, along the level sets of ¢, (1) the constraint equations and
(2) the CMC gauge to leading order, as ¢t — 0. More precisely, condition (2) is
equivalent to
(1.7) lim t(trk) = —1, lim *[R(g) — |k|* + (trk)?] = 0,

t—0*

t—0t

while condition (5) is equivalent to

(1.8) lim ¢(V;k7 —V;trk) =0, i=1,2,3;

t—0t
see Lemma 3.2. Note that condition (2) is algebraic in the Kasner exponents p;’s,
while condition (5) is differential in the ¢;;’s.

Remark 1.5 (Functional degrees of freedom and considerations in [33]). Note
that ¢;; and p; consist of 9 functions. On the other hand, the assumptions (2) and
(5) in Theorem 1.1 impose a total of 5 conditions, leaving 4 functional degrees of
function.

There is in fact an additional residual gauge freedom, namely, we can introduce
a change of coordinates

(1.9) =z, =2 P =fla'2? %),

for some smooth f such that % # 0, then the resulting metric will have the same
form as (1.4) (in the sense that the new g term is O(¢?P!), the new g2, go» terms
are O(tP?), and the new §13, g3, 33 terms are O(t2%).)

Thus, there are a total of 3 functional degrees of freedom, which is one fewer
than that for the initial value problem for the Einstein vacuum equations. It is for
this reason that [33] argued that metrics of the form (1.4) are non-generic.
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Notice that while we only construct a non-generic class of spacetimes, we do
construct a class that includes all the metrics considered in [33] (modulo the end-
point case; see Remark 1.6). Indeed, using the change of coordinates in (1.9), one
can locally change coordinates to the form

g = at? (dz')? 4 ant®P? (dz?)? + az3t*P* (dz?)?

+ 2aptP2dz ' da? + 2a15tP da da?,

which is exactly the local form of the metrics considered in the work of Lifshitz—
Khalatnikov; see [33, equation (3.25)].

Remark 1.6 (Some limiting cases). Our analysis degenerates in any of the lim-
its p3 — 1 or p;+1 —p; — 0 (see (3) in Theorem 1.1). A particularly interesting
limiting case that we do not cover is when

{x €T tpi(a) = 1. pale) = pale) = §} 40,

but still assuming p3(x) < 1, Vz. While we do not cover this case, it is possible
that [29] is relevant. Notice that to handle possible terms with ps(z) = p3(x), we
need a new argument in constructing the approximate solution in Section 2, but the
analysis in the subsequent sections could in principle be carried out along the same
lines.

Finally, we note that allowing p;(z) = —%, m(x) =p3(z) = % would also
be relevant to constructing Schwarzschild-like singularities since locally the
Schwarzschild singularity could be modeled by the Kasner singularity with

P = —%, P2 =p3 = % (cf. [21] and discussions in Section 1.2.1).

We now turn to uniqueness. It is hard to talk about geometric uniqueness in the
above singular initial value problem, since the setup itself includes the expression
(1.4) of the spacetime metric. However, we can obtain uniqueness in our gauge, i.e.,
within the class of metrics satisfying (1.4). More precisely, we prove that given two
solutions of the form (1.4) which (1) obey the estimates (1.10) and (1.11) which is
proven in Theorem 1.1 and (2) converge to each other sufficiently fast as ¢t — 0™,
then they must in fact be the same.

THEOREM 1.7 (Uniqueness of solutions). Given the assumptions of Theo-
rem 1.1, there exists M, € N sufficiently large (depending on the given data p;
and c¢;;) such that the following holds.

Let Wg,® g be two C* solutions to the Einstein vacuum equations (1.2) of the
form (1.4) in (0,T) x T? for some T > 0, such that

e the corresponding a;; and G;; converge to c;; with the following rate

(1.10) > (109 (g — cig)| +105 (@ — cij)|) = O(F);

<2
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e the corresponding ki) = —%(g—l)ﬂatgﬂ and ki = —%(g—l)ﬂatgﬂ obey

the following estimates

1
> 3 CroR ) 10 0R R — 1))
(1.11) =5,

_ O(min{t_HE, t—1+€—2pj+2pi});

and
e the g— g and 0,(g — §) converge to 0 sufficiently fast in the following sense:

1
(1.12) > D 10r0g(g—a) = OM™).

r=0 |a|<3—7

Here, ¢ = min{min, (p3 —p;)(x), min, (1—p3)(x)} > 0, and x;’ as in Theorem 1.1.
Then ¥ g =®g on (0,T] x T°.

Remark 1.8 (Asymptotics determined by approximate solutions). In the proof
of our existence result (Theorem 1.1), we construct a sequence of smooth approx-
imate solutions { g™ =, for which we get more precise asymptotic information,
as t — 07, as n increases; see already Sections 1.1, 2 and 3. The actual solutions
that we construct in Theorem 1.1 then have asymptotics determined by an approx-
imate solution g™ (for some large n). From this point of view, one way to interpret
our uniqueness result (Theorem 1.7) is to say that for n sufficiently large, there is
in fact only one solution whose asymptotics are governed by g,

Remark 1.9 (Regularity implies asymptotic expansion). Given any M, € N,
there exists A € N sufficiently large such that if (1.10) and (1.11) are replaced by
the stronger regularity assumptions

(1.13) > (105 (i — i) |+ 105 (@5 — ij)]) = O(°),

|a|<A

and

1
S 3 G0~ k)| H 1002 (R~ )
(1.14) gt

— O(Inin{t—l—l—e7 t—1+s—2p]-+2pi })’

then in fact the convergence condition (1.12) follows as a consequence. In fact,
in this case both g and § have the leading asymptotics given by an approximate
solution g[“] for large n (see Remark 1.8), which then implies (1.12). This can be
proven by revisiting the argument for constructing the approximate solutions in
Theorem 2.1. We omit the details.
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Finally, we state our main regularity theorem. We remark that initially our
proof of the existence theorem (Theorem 1.1) only constructs a solution with finite
regularity. In order to obtain smoothness, we need an additional argument which
relies on the uniqueness result (Theorem 1.7); see Section 1.1.5.

THEOREM 1.10 (Smoothness of solutions). Given the assumptions of Theo-
rem 1.1, there is a smooth solution to the Einstein vacuum equations (1.2) of the
form (1.4) in (0,T] x T3, for a T > 0 depending on Cij» Pi» which satisfies (1.5).

In the remainder of the introduction, we will briefly discuss the ideas of the
proof (Section 1.1) and some related works (Section 1.2).

1.1. Ideas of the proof.

1.1.1. Fuchsian analysis of a model wave equation. As far as the singu-
larity is concerned, our basic strategy (which is quite standard, see for instance
[29]) can be most easily explained by a model semilinear equation.

Consider the following nonlinear wave equation

(1.15) Oy¢ = (0,9)

on a Kasner spacetime (1.1) with constants p; < py < p3 < 1 satisfying Z?:l p; =
Zf: 1 p% = 1. (Note that the structure of the nonlinear terms plays no role here, and
the nonlinearity (9;¢)? is chosen here for its simplicity.)

The analogue of our main result in this setup would be to construct bounded
solutions to the nonlinear model equation (1.15). However, the results of [2] imply
that even for the linear wave equation, generic data on say, {t = 1}, give rise to
solutions that blow up as O(log %) as t — 0T. Thus, in order to obtain bounded
solutions to (1.15), the solution that we build has to be special. This is achieved by
imposing the leading order behavior of ¢ (¢, ) = ¢o(x) + error, where ¢o(x) is a
prescribed smooth function which is the limit of ¢(¢,z) as t — 0. In fact, we build
our solution as ¢(t,z) = >0 #;(t,x) + ¢'?, where ¢; are increasingly precise
approximations of ¢, and ¢4 is determined by the condition lim;_,q oD = 0.

Our strategy contains two steps:

(1) (Approximate solution) It is easy to first build an approximate solution by
stipulating an ansatz ¢/ (¢, ) = > j—0®;(t,x), where

e ¢o(t,z) = ¢o(x) is the prescribed leading order behavior,

e ¢; obeys the better estimates |02 ¢;(t,z)| Sa,; 1€, and

o [0 {0g0 (t,) — (0p™)*(t,2)}| Sam t 2=,

This expansion can simply be obtained inductively by solving (1.15) iteratively as
an ODE in ¢. Here, we have the flexibility to carry out the expansion to an arbitrary
order n so as to achieve an arbitrarily good (in terms of the t-rates as t — 07)
approximation to a solution to (1.15).
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Without analyticity, however, one cannot hope to show that this series con-
verges. Instead we perform energy estimates for the error.
(2) (Energy estimates) First notice that for an energy defined by

3
evrz}jA?}(@%%F+2}*M@$wﬁda
=T i=1

|B|<4

it is easy to obtain an estimate of the form (e.g. with Cy = 2)

Lewy < Lewy+crem)>
dt t

The issue is with the borderline singular term %S (t), which cannot be treated
by Gronwall’s inequality (since limsup, o+ =& () = +o0). Nevertheless, this is
where the approximation constructed in the previous step becomes useful: instead
of controlling the full solution ¢, we bound the difference quantity O = — pln),
which for n sufficiently large

e can be made to approach 0 with a fast polynomial rate as t — 0", and

e satisfies an inhomogeneous nonlinear wave equation where the inhomogene-
ity also — 0 with a fast polynomial rate.

Define now an energy €@ with ¢ replaced by ¢(4). For any large N € N, we
can find n € N large enough (corresponding to a good enough approximation) such
that under appropriate bootstrap assumptions,

d Co C
—ED@)y < [ 4+ e (@) +OutN,
dt ( ) — t + tlfs ( )+ n
where C), may depend on n, but importantly, the constant Cj in the borderline term
is independent of n. The inhomogeneous C,,t" term arises from the fact that D
satisfies an inhomogeneous equation, and [V can be arbitrarily chosen as long as n
is also taken to be large. Thus, we obtain an estimate
d N

_ _ C Ch
Lvemm+ Xeven < (De

)@—Nswkw>+ca.

Recall now moreover that for n sufficiently large we have lim,_o+ (t~NE(@ (1)) =
0. Moreover, first choosing N large (by taking n large) and then taking ¢
small (depending on n), it follows that %(t*N £@) on the LHS dominates
(% + tlc—lg)(t_Ng(d)(t)) on the RHS. This gives an estimate for t V(@ (¢).

Once such energy estimates can be proven for the error ¢(9), we can in fact de-
duce existence of solutions as follows. Choosing a sequence t; — 0™, we solve for a
sequence of solutions {¢}7, to (1.15) with (¢1,0:¢1) 4=, = (I, 9, 0M) Mt -
The energy estimates above allows us to show that {¢;};> can be solved in
[t7,T] x T3 for uniform 7 > 0 and that there is a limit which solves (1.15) in
(0,7 x T3,
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1.1.2. Construction of solutions to the Einstein vacuum equations in syn-
chronized coordinates. While the Fuchsian analysis is quite robust, we must
also address the quasilinear, tensorial nature, as well as the gauge invariance, of
the Einstein equations.

If one were to prescribe a wave-coordinate-type gauge, then the construction of
the approximate solution will be algebraically very complex. Instead, we consider
a system of synchronized coordinates, i.e., we impose that the metric takes the form

(1.16) (4)9 = —dt’ + 9ij dzldz? = —dt* + tszﬂX{i»j}aij dz'da’ .

This gauge captures important anisotropic features of Kasner-like singularities. In
particular, assuming that the a;;’s are C? up to {t = 0}, we know that |g;;| ~
t2Pmaxting} (g~ 1) | ~ ¢~ 2Pminii.s}; and importantly (see Lemma 2.6) that

(1.17) |Ric; 7 (g)| ~t 27, |Ric(g)|, ~t 7.

In such a gauge, the construction of an approximate solution becomes more
tractable. The difficulty, however, is shifted to the estimates for the error terms.
Indeed, even when no singularities are present, it is a priori not clear that the Ein-
stein vacuum equations are hyperbolic in the gauge (1.16); see discussions in Sec-
tion 1.1.4.

1.1.3. Constructing approximate solutions. Following ideas laid out in
Section 1.1.1, we first construct approximate solutions and then use energy es-
timates to obtain actual solutions to the Einstein vacuum equation. In order to
construct approximate solutions, the first step is to solve a system of first order
evolutionary equations. The evolutionary equations will be treated as a system of
ODEs in t (compare Step 1 in Section 1.1.1). In order to close the ODE analysis,
we crucially rely on the bounds (1.17), which show that the spatial Ricci curva-
ture is slightly better than critical, but we also need to additionally make use of the
structure of the full system. We outline some main points here:

e The main difficulty in solving the system of ODE:s is that there are many
borderline terms, i.e., linear terms with O(¢~!) coefficients. It turns out that these
terms have a reductive structure. By this we mean that we can consider different
components in a sequence of steps. In each step, there are two type of terms with a
borderline O(¢~!) coefficient with the following properties.

o One type can be handled by introducing an integration factor. The integration
factor gives a power of ¢ which is consistent with the initial conditions that we
impose.

e Another type of terms with borderline coefficients involve only terms which
have been controlled in previous steps.

e Any other linear terms must have a coefficient that is better, at least
O(t71+€).
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Such a structure is important both in estimating the metric components (Lem-
mas 2.11, 2.12) and the components of the (approximate) second fundamental form
(Lemmas 2.8, 2.9).

e In anticipation of the energy estimates needed to construct an actual solution,
we also need to treat different components on different footing in the ODE analysis.
An example of this is that while for i < j, we only prove that (k[);7 = O(t™");
for ¢ > j, we need a better estimate and the improvement we need depends on the
precise 7, j under consideration; see Lemma 2.8. Such estimates can be traced back
to (1.17), but also require the precise structure of the system.

o Another technical difficulty is that the variable kP we work with is only
approximately the second fundamental form.

The evolutionary equations solved in the first step roughly asserts that the
spacetime Ricci curvature components Ric( () g[“})ij vanish with a very fast rate.
Our second step is then to show that

e kM is asymptotically (as t — 0T) approximately the second fundamental
form of the constant-¢ hypersurfaces, and

e all other spacetime Ricci curvature components also vanish sufficiently fast

ast— 0.
Both of these are achieved again by ODE analysis. For the first point, we need
again a reductive structure, which is similar to the type used for the evolutionary
equations. For the second point, the constraints as manifested both in the conditions
on the Kasner exponents and asymptotic constraint equations (1.6) play a crucial
role. See already Lemmas 2.13-2.15 and Proposition 3.3.

1.1.4. Energy estimates in synchronized coordinates. It is a priori un-
clear that under a gauge condition as in (1.16), the metric components themselves
satisfy any hyperbolic system. The main new ingredient is to consider a “wave-type
equation” satisfied by the second fundamental form k;’ of the spatial slice. Since
this is already new for a local existence problem without singularities, we will in-
dicate the ingredients needed only for a local existence result for regular data, i.e.,
for this subsubsection suppose we are given geometric data (X, g, k) satisfying the
(usual) constraint equations and we explain how to construct a spacetime solution
to the Einstein vacuum equations in the gauge (1.16).

Assuming that a metric of the form (1.16) obeys the Einstein vacuum equa-
tions, we can deduce that the second fundamental form k;/ obeys the following
system of second order equations:

(1.18) Ok = Agkd —ViVIk + (kxkxk) + (Okx k),

where kxkxk and 0;k x k are nonlinear terms to be specified in (4.6) in Section 4.1.

Notice that (1.18) is not actually a wave equation, due to the term V;V/ kot
on the RHS. The key is that the trace of k, i.e., k¢’ in fact can be proven to have
additional regularity if we further use the Einstein vacuum equations. First, the
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Einstein vacuum equations imply that
Dikee® = |k

Now we consider i = k! to be a separate variable and consider the coupled system
for (g,h,k):

8th = ‘k|25
(1.19) Otk = Agki? —ViVIh4 (kxkx k) + 0k xk),
Ohgij = —2kigje.

(This system must hold for h = k¢ if the Einstein vacuum equations are satisfied.)
We then attempt to solve (1.19) with initial data where (g, k;7) is as given, h = kot
and 0;k;7 = Ric(g)s/ + k, k;7 (which is completely determined by the geometric
data).

The apparent difficulty in solving (1.19) is a potential loss of derivatives. For
instance, energy estimates for the second equation requires two derivative of / and
give only first-derivative estimates for k. The first equation, however, does not seem
to give two derivatives for h if we only have one derivative for k. A similar issue
arises for g and k£ when we consider commutators for the second equation.

This can nevertheless be resolved by a renormalization together with elliptic
estimates. As an example, we illustrate how to obtain second derivative estimates
for h when only controlling one derivative of k. Commute the first equation with
A, so that we have, up to error terms,

BtAgh = ZkijAgkji B I
The idea now is to use the second equation in (1.19) so that we obtain
O (Agh =2k Oykj') = 2ki? (—0F + Dg)ki + - =+

This allows us to control Agh even only controlling one derivative of k. The other
second derivatives of h can then be bounded by A h using elliptic estimates. This
avoids the loss of derivatives.

Standard energy estimates together with this renormalization/elliptic estimates
trick indeed give a solution to (1.19). Furthermore, the choice of initial data and the
structure of the equations allow one to propagate the symmetry of g;; and gz-gkje .
Using moreover the Hamiltonian constraint R(g) — |k|> + (trk)? = 0, it can be
shown a posteriori that i = k,*. In particular, we also have that 9;k,* = |k|?, which
implies that Ric(()g);; = 0.

Finally, we need to upgrade the existence result (1.19) to a bona fide existence
result of solutions to the Einstein vacuum equations in the gauge (1.16), i.e., we
need to show that all the Ricci components vanish (in addition to Ric((4) 9)ut). For
this purpose, first note that (after accounting for symmetries) the second equation
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in (1.19) gives a system of 6 first order homogeneous equations in Ric;7 (<4) g) and
Ric;;(“g). At the same time, three of the (contracted) second Bianchi equations
give another 3 first order homogeneous equations in Ric;7(*)g) and Ricy; () g).
(The fourth equation is redundant, and does not give us extra information.) It turns
out that these 9 equations form a coupled system of wave-transport equations (see
(5.8) and (5.10)). This wave-transport equations is similar in structure to (1.19), and
can also be treated using energy estimates together with renormalization/elliptic es-
timates. Moreover, the momentum constraint and the choice of initial data, when
solving (1.19), together, guarantee that Ric;’ ((4) ¢g) and Ricy; ((4) g) are initially van-
ishing. Combining all these we obtain that Ric;7(()g) = 0 and Ric;(Wg) =0
everywhere, implying that the constructed solution to (1.19) indeed obeys the Ein-
stein vacuum equations.

Obviously, in our setting, we need to handle simultaneously the existence the-
ory and the fact that the metric becomes singular as ¢ — 0. For this we combine
the ideas here and Section 1.1.1. A few technical issues arise. For instance, the
Kasner-type geometry dictate that we do not have uniform control of the isoperi-
metric constants as ¢ — 0T. Some care is therefore needed in the application of
Sobolev embedding; in particular we need to be careful which terms are to be put
in L?/L* type spaces. Finally, we note that the Fuchsian ideas in Section 1.1.1 are
used not only in solving the system (1.19), but are also used in verifying that the
solution to (1.19) is indeed a solution to the Einstein vacuum equations.

1.1.5. Uniqueness and regularity. To prove uniqueness, we again rely
on the wave equation satisfied by the second fundamental form, and perform ¢-
weighted energy estimates in a similar way as proving existence. The only subtlety
here is that we must impose that the metrics converge to each other sufficiently fast
as t — 07 in order to close the estimate (cf. the statement of Theorem 1.7).

Finally, we prove higher regularity relying on the uniqueness result. The issue
at stake here is that for each additional derivative we try to control, the estimate
in terms of ¢ worsens by one power. Thus, the approximation we choose has to be
successively better for higher and higher derivatives. We then redo the construction
of solutions for better and better choices of the approximations. The uniqueness
result ensures that we have in fact constructed the same solution, thus showing that
the already constructed solution has arbitrarily high derivative bounds.

1.2. Related works.

1.2.1. Fuchsian constructions of singular spacetimes. Many works have
been carried out to construct AVTD singularities in (3 + 1)-dimensional vacuum
spacetimes. All previous works assume either symmetry or analyticity (or both).
The symmetry classes are typically chosen so that AVTD singularities are expected
to be stable within that class. We give a sample of such results, but refer the reader
also to the references therein for further details.
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Gowdy symmetry. AVTD singularities in (unpolarized) Gowdy symmetry
was first constructed by Kichenassamy and Rendall [30] in the analytic category,
in part based on the formal expansion carried out in [25]. A similar analysis was
carried out by Rendall without the analyticity assumption in [36]. See also [46] for
more general topologies, and [5] for a treatment in generalized wave gauges.

Polarized T? symmetry. Analytic AVTD singularities under polarized T?
symmetry were first constructed in [26]; analyticity was later removed in [4].

U(1) polarized or half-polarized symmetry. Analytic solutions with AVTD
behavior in polarized or half-polarized symmetry with T> topology were con-
structed by Isenberg—Moncrief in [28]. That for more general topology was later
carried out in [13].

Beyond (3 + 1)-dimensional vacuum spacetimes. The first construction of
analytic solutions with AVTD behavior without symmetries was carried out in [7],
albeit not for the Einstein vacuum equations. Indeed, the construction in [7] was
for the Einstein-scalar field or Einstein-stiff fluid system. An important difference
is that in the presence of a scalar field or stiff fluid, one expects AVTD singularities
to be stable [10, 9]. A similar stability phenomenon is expected to occur in vacuum
for spacetime dimensions > 11 [19]. Correspondingly, there is a construction of
AVTD singularities for high dimensional vacuum (and more general) solutions in
[18]. See also Section 1.2.2.

Analytic singular spacetimes without symmetry assumptions. All the
works above concern regimes (either in symmetry classes or with matter, or in
high dimensions) which at least heuristically should generically have AVTD
behavior near the spacelike singularity. In a recent work of Klinger [32], analytic
vacuum AVTD spacetimes with no symmetry assumptions have been constructed.
The work [32] can be viewed as similar to our result except for requiring the
analyticity assumption and some additional inequalities on the Kasner exponents
p;i’s. (These additional inequalities were used in [32] to apply a black-box Fuchsian
theorem.)

Asymptotically Schwarzschild singularity up to a singular 2-sphere. Fi-
nally, we mention the work [21] of the first author, who constructed a class of
spacetimes approaching the Schwarzschild black hole singularity. The construc-
tion requires no symmetry or analyticity assumptions. While it does not include
a full spacelike singular hypersurface, the construction does include a spacelike
singular 2-sphere.

1.2.2. Stable singularities in general relativity. By “function-counting”
arguments (cf. Remark 1.5), the class of spacetimes we construct are not expected
to be stable. For the vacuum equations in (3 + 1) dimensions, the only known
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stable singularities are in fact null; see [35, 34, 17]. These singularities are in stark
contrast with the AVTD ones, which are spacelike.

As we already mentioned in Section 1.2.1, it has been suggested that in the
presence of a scalar field or stiff fluid [10, 9], or in the vacuum case in spacetime
dimensions > 11 [19], there is an open set of initial data which give rise to asymp-
totically Kasner-like singularities. It is also for this reason that in these settings, the
construction of spacelike singularities with AVTD behavior is simpler.

Spectacular progress has recently been made which indeed proves stability
of spacelike singularities in the aforementioned settings. In the case of Einstein-
scalar field or Einstein-stiff fluid, this was carried out in the breakthrough work by
Rodnianski—Speck [42, 43] and later generalized by Speck [45]. In the case of high
dimensions, assuming spacetime dimensions > 39, Rodnianski—Speck has recently
also constructed a class of stable spacelike singularities in vacuum [44]. (Note that
the remarkable works of Rodnianski—Speck do not cover the whole regimes in
[10, 9, 19]. Whether all of the solutions discussed in [10, 9, 19] are stable remains
an open problem.)

Very recently, the first author and Alexakis considered the stability problem
for the Schwarzschild singularity [1]. Unlike the settings studied by Rodnianski—
Speck, the Schwarzschild singularity is unstable, but nonetheless it was shown in
[1] to be stable within the class of polarized axisymmetric perturbations.

1.2.3. Strong cosmic censorship. The understanding of AVTD singulari-
ties played an important role in understanding the strong cosmic censorship con-
jecture, at least under Gowdy symmetry.

The strong cosmic censorship conjecture has first been resolved in the polar-
ized Gowdy case in [16]. The work relies in particular on [27], in which AVTD
singularities in this setting were studied.

The more general case of the strong cosmic censorship conjecture in unpo-
larized Gowdy symmetry turned out to be significantly more difficult in view of
the so-called “spikes”. This has been treated in the seminal work of Ringstrom
[39] (see also [38]). Here, a form of asymptotic velocity term domination has been
established [37] and plays an important role.

It should again be stressed that outside symmetry classes (Gowdy, polarized
T2, polarized U(1), etc.), AVTD singularities are most likely not generic, and the
role of the study of AVTD singularities in the ultimate resolution of strong cosmic
censorship conjecture is quite unclear.

1.2.4. Numerical works. A discussion of the large number of related nu-
merical works will take us too far afield. For this we will refer the reader to [11]
and the many references therein.

1.2.5. Linear wave equations on singular spacetimes. A closely related
thread of works concerns solving the linear wave equation on a spacetime with a
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spacelike singularity, including Kasner, FLRW and Schwarzschild. See for instance
[31, 3,41, 22,2, 40, 8, 24].

1.2.6. Einstein equations in transport coordinates. At the heart of our
approach is the ability to perform energy estimates in the gauge (1.16), correspond-
ing to a choice of coordinates such that (¢, z?) are all transported by the unit normal
to the spacelike hypersurfaces {t = constant}; recall Section 1.1.4. We highlight
previous works where smooth solutions to the Einstein equations are constructed
in gauge where the spatial x’ coordinates are transported, i.e the metric takes the
form

(1.20) —a?dt? + g;;dz'da?.

The first is the work of Rodnianski—Speck [42, 43] (in which they constructed
stable spacelike singularities; see discussions in Section 1.2.2 above), where « is
determined by stipulating that each constant-¢ hypersurface has constant mean cur-
vature. See also [23] for a different approach in handling this gauge. (Constant
mean curvature foliations, but without spatially transported coordinates, have been
previously used. See for instance [6], which used spatially harmonic instead of
spatially transported coordinates.)

The second is the work of Choquet-Bruhat-Ruggeri [14], in which the authors

consider the spacetime metric of the form (1.20) and impose the condition o =

%, where e is some arbitrary but fixed (i.e., t-independent) Riemannian metric.

They show that in such a gauge, the Einstein equations are hyperbolic.

1.3. Outline of the paper. We end the introduction with an outline of the
remainder of the paper.

The first part of the existence proof will be to construct an approximate solu-
tion. This will be carried out in Section 2, where we give the construction and show
that evolutionary equations are approximately satisfied. In Section 3 we then show
that the constraint equations are also approximately satisfied.

In Section 4 and 5 we then construct an actual solution, thus completing the
proof of Theorem 1.1. This will be carried out in two steps: in Section 4 we will
solve an appropriate system of reduced equations, then in Section 5 we show that
the solutions to the reduced equations that we have constructed in fact obey the
Einstein vacuum equations.

Finally, in Section 6, we end with the proofs of uniqueness (Theorem 1.7) and
smoothness (Theorem 1.10).

Acknowledgments. G. Fournodavlos would like to thank Lars Andersson,
Satyanad Kichenassamy, Jacques Smulevici, and Jared Speck for useful commu-
nications.
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2. Construction of an approximate solution. We work under the assump-
tions of Theorem 1.1. In particular, we fix p; and ¢;; to be as in Theorem 1.1.

Unless explicitly stated otherwise, all the implicit constants (given either in the
< or the big-O or the - < C' notation) that we have in our arguments, from now on,
may depend on p; and c¢;;. Many estimates in this section will involve an n € N or
a multi-index «. Unless otherwise stated, all constants may depend also on n and
.

Our goal in this section is to construct an approximate solution, i.e., we will
construct inductively a metric (n € NU{0}), which takes the form (1.4),

but with a[. !V in place of a;;; as well as an approximate second fundamental form

(k);7. These a[ | are constructed so that lim; o+ a[ }(t x) = c¢ij(x). We will
moreover show that the pairs (g[“], k[“]) we construct indeed form an approx-
imate solution to the evolution equation, i.e., as n becomes larger, 8t(k[“])ij —
Ric(g™)7 — (kM) £ (kM);7 tends to O faster as t — 0*; see already Theorem 2.1.
Unless otherwise stated, we will also be using the Einstein summation con-
vention for repeated indices, with lower case Latin indices running through 1, 2,
3. It should be noted that sometimes we will still write out the sum explicitly in
situations that confusion might arise (e.g., when one has factors of Pmax{i.i}),

[n]

Definition of “¢"" and kM. Define ) ¢/ by setting

(2.1) am = Cij-

v

Now given g™, n € N (and assuming that it is a Riemannian metric on (0,t,] x
T3), define k™ by

(2.2) Ay (kM7 = Ric(g )7 + (kM) L (kM7

subject to the following condition at t = 0:

2.3) (k) = | (8,2) = O,
where k is deﬁned by /{ii = —p; (er every 7= 1 2 3 without Summing) ’{12
(P1=p2) 22, 2% = (p2—p3) 2. kir® = (=i +p2)2§§§ +(p1 —p3) 22 and K/ =0

if ¢ > j; and given kM n e N, define g[“] by
(2.4) Ougly = — (kI g — (klm) g,
subject to the following condition at t = 0:

2.5) ™ — ;5| (t,2) = O(t9),
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where we recall that al® is related to g[“} via (1.4). It readily follows from (2.4) that
the inverse metric (¢™)~! satisfies the equation:

(2.6) ((g™) ") = (kM) ((g™) ) + (KM (™) 1"

Our goal in this section is to establish the properties of the above sequences
{gI} =, {kIM} = given in the following theorem:

THEOREM 2.1. Let p; and c;j be as in the Theorem 1.1. Define
& = min{min(p; — p2)(z),min(1 —p3)(z)} > 0.

Then for n € N, there exist t, > 0 (depending on p;, c;; and n), a smooth Lorentzian
metric (4)g[n] and a (1,1)-tensor (k™) on (0,t,] x T such that the following
holds.

1 Wy
T3 — R (symmetric in i, j):

) takes the following form for some smooth functions a?;-] :(0,t,] x

3 3
@g™ = —a2+ 3 gMdaidad = —d2+ Y alesiin da da.
i,j=1 1,7=1
(2) (Convergence to initial data) For every multi-index o, every 1, j and every

n € N, the functions agl;-] and (K™ satisfy

@7) sup (05! (@ (t,) —cij (2))] < Conl”,
z€T3
(2.8) sup \ag[(k[“])/ (t,w) _ t*lﬂij (‘,L.)H < Ca,n min{t’”s, t71+572pj+2pi}’
zeT3

for some Cy,, > 0 depending on p;, c;j, in addition to o and n. (Recall the defini-
tion of k;/ immediately after (2.3).)

(3) (Estimates for spatial curvature) For every multi-index o, every 1, j and
every n € N, the spatial Ricci curvature satisfies

1

29)  sup > _t"|920] Ric(g™) (t,2)| < Copmin{t >, 72254201y
z€T3 r=0

for some C¢, p, > 0 depending on p;, c;j;, in addition to o and n.
@) (k™ isan approximate second fundamental form) For every multi-index
every i, j and every n € N,

2
@10) D E10o KM + (" gl () < ot
r=0

for some C, , > 0 depending on p;, c;j, in addition to o and n.
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(5) (Evolution equations approximately satisfied) For every multi-index o, the
tensors (k™) 91[?] also satisfy

1
su t" 8§ar o k-[“] ij—RiC [n] ij_ k[n] 14 k[n] ij £
Qi SR 2YIR KD —Rie(g™)i — () () 0.2)

-2 1
< Copt 21,
for some C¢, , > 0 depending on p;, c;j;, in addition to o and n.

Remark 2.2. All the ¢ in the error terms in Theorem 2.1 can be improved
almost to 2¢ (or exactly to 2¢ if we allow some powers of log? in the error terms).
Some estimates can even be further sharpened. We will be content with the weaker
estimates for the sake of simplicity of the exposition.

Remark 2.3. The definition of ¢, together with conditions (2)—(3) in Theorem
1.1, imply that

1 2 2
(2.12) —gﬁplﬁ—e, €<pz<§, §§p3§1—e, p3—p2 > €.

This can be easily checked by using the following parametric form of the Kasner
exponents pp, p2, p3:

- 1+u u(l+u)

u
PR = 3T, . 2 = T, € 17 ),
Turd P Trar P irase et

(2.13) pr=

which is valid at each point 2 € T3, u = u(z).

In the rest of the section, we will prove Theorem 2.1; see the conclusion of the
proof at the end of the section. (In particular, in the course of the proof, it can be
seen that g™ and k™ are well defined.)

2.1. Estimates for ¢l

LEMMA 2.4. There exists to > 0 (depending on c;; and p;) such that the fol-
lowing are true for (t,z) € (0,to] x T?:

(1) The determinant of det g[o] satisfies, for some C' > 0 (depending on c;j and
pi),
2.14) |detg[0] (t,:c) — 611622033t2| < Ct2+€.

(2) The eigenvalues A < Ay < A3 of g% satisfy, for some C' > 0 (depending
on c;j and p;),

|)\z —tzPiCii| S Ct2pi+€.

In particular, choosing to smaller if necessary, g% is a Lorentzian metric on
(O,to] X T3.
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(3) For every multi-index o, the inverse metric (g[o])_1 satisfies, for some Cp, >
0 (depending on «, c;;j and p;),

$+2p1 _ 612033t72p1 (012023*CI3C22)t72p1
ci C11¢22C33 C11¢22C33
(9[0])_1 = _ cncat P 2P (craci3—ciica3)t P2
2.15) C11¢22€33 cn C11¢22€33
@. (erncaz—cizen)t 2P1  (cipciz—ciicas)t P2 123
C11¢22633 C11¢22C33 33

_14[0
+ (g I)Lr]ron
where ‘8;:1((gil>t[:2]ror)ij’ < Ot 2Prmin{i,j} €,
Proof. This is a simple computation and the proof is omitted. O

It will be convenient to define also

1

2.16) ()9 = =2 ()" Drgly

The following lemma gives an estimate for (k%);7.

LEMMA 2.5. For every multi-index «, there exists C,, > 0 (depending on «,
in addition to c;j and p) such that the following estimate holds for all (t,x) €
(0,to] x T3:

02[(K) 7 — 7 k7| (t, ) < Cut™ "=

Proof. By the definition of g itis easy to see that

2pit?Pi ey 2pot?Prley 2pst?iTlegy
Ogl¥ = [ 2p2t? 1y 2pat? ey 2pat*i Ve +(8tg)f[:2]rora
2p3t*P3 ey 2pstPi T eyy 2pstt T ess

where |a%((atg)t[3(1)‘lor)ij| < Oy t?Pmaxtis) 1€ Recalling that

. 1 Cvita [0
(K7 = =2((4®) ") g}
the conclusion of the lemma can be achieved by combining the above computation

with Lemma 2.4. O

The next lemma estimates the Ricci curvature of a general metric g =
213 =1 aijtzz’m‘“{ivj tdz* da’? when a;; satisfies some basic bounds. This in particular
gives an estimate for Ric(g[)7.

LEMMA 2.6. Suppose g is a metric on (0,T) x T3 taking the form @g =
—dt* + Zi =1 aijtZPmaX{iJ}dfci dz?, where a;;j are smooth, symmetric and obey the
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estimates
|a§aij|(t7x) < Caq, |a§6taij|(tvm) < Cat_H_Ev

for some C,, > 0.
Then for every multi-index «, there exists C!, > 0 (depending on C, in addi-
tion to c;j and p) such that the following estimate holds for all (t,x) € (0,T] x T>:

1
(2.17) Z 7020 Ric(g)y?|(t,z) < C! min{t~>T¢ ¢ 2Te=2PiT2pi}
r=0

In fact, the following slightly stronger estimate holds:

1
S 71929; Ric(g) (¢, )

r=0
< C& min{t72+26|logt|2+\a|, 4—2+2e—2p;+2pi |10gt‘2+\a\}'

(2.18)

Proof. Clearly (2.18) implies (2.17); from now on we focus on the proof of
(2.18).

For notational convenience, in this proof we write g% = (g !)

Here is the basic observation. For a pairing ¢*°0,g,. (note the one contracted
index), we have

ab

gabacgae — O(prmin{a,b}Jermax{a,e})|10gt‘ < O(|logt|).

Similarly,
(0e9")(Ddgac), 9" 0zagac = O(llogt?).
So in order to give an estimate for the Ricci curvature, we will find pairs of g~
and derivatives of g which share at least one index.
To make the algebraic structure clear, we will focus on proving the estimate

with |a| =0 and r = 0 in Steps 1 and 2, and then indicate the necessary changes in
Steps 3 and 4.

1

Step 1: Proof of the upper bound t~>7¢. We recall the formula for the Ricci
curvature:

(2.19) Ric(g)i? = g®OT7, — g?9,T], + g®T% T, — g™ T

ic— ab ac™ ib

and that for the Christoffel symbols

1
(2.20) ab = Egce(aagbé + Obgat — OrGab)-
Hence, we notice that every term in (2.19) has either of the forms

(2.21) 9%°00, 19500, 9050,),  9°°9" 20, 904059°" Ot Gtot1
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where among the ¢;’s there is an upper j and a lower ¢ index, while the rest are
contractions among themselves and with respect to a, b.

For the first kind of terms in (2.21), using Lemma 2.4, we notice that they are
of order

(2.22) ‘gabael [932[382492566” < ‘logt’2t*2pmin{a,b}*mein{zz,53}+2Pmax{z5,e6}’

where the pair {/s,/s} contains at least one of the indices a,b,¢»,¢3. Hence, we
have either *2pmin{a,b} + 2pmax{55,€6} >0or *2pmin{€2,€3} + 2pmax{Z5,€6} > 0, leav-
ing

b 050 2,-2 2,-242

‘ga a51 [g ? 38@4955%” 5 |10gt| tp S/ ‘logt’ £t °
for some ¢. On the other hand, the second term in (2.21) satisfies:
b 014 Lol

9200, 90,059™ Ot Gyt |
5 |10g t‘2t72pmin{a,b}72pmin{ll ,22}+2pmax{£4,45}72pmin{26,27}+2pmax{lg,210} ,

lg

where at least three from the indices a, b, £1, {5, {g, {7 are contracted against three
of the indices 44, ¢s, {9, £19. This implies that at least two pairs of exponents having
opposite signs, among

{_2pmin{a,b}a _2pmin{€1 ,52},2pmax{€4,£5}7 _2pmin{€6,€7} ) 2pmax{29,£10}}7
yield non-negative sums, thus, leaving only

1970 9" 01, 9,05 9" Oty 9oyt | S Nlogt|*t 2P0 < [logt|*t 2.

Step 2: Proof of the upper bound t~>T¢~2Pi+2Pi_ We now move on to prove the
improved estimates when ¢ > j (when ¢ < j the desired estimate follows from that
proven in Step 1). As we are now familiar with this type of argument, let us just
consider the contribution from the second type of term in (2.21) (the first type of
terms can be treated similarly). We now separate out the factor of g7¢ (which gives
a contribution of at worst of O(t2P4)), i.e., we write

Ty lt
G792 00, 90,0597 Otg Grot,0

where exactly one of the £, is b and exactly one of the ¢,, is i. It is easy to check
that at least one of the following must hold:

o After relabelling gfl428439&135946(78489@&0 = gelca@g&cg%dagsgggd, so that
by our basic observation g%a& 9t g£6£7858 Geeey, = O(Jlogt|?). As a result, the
whole term contributes O(¢~2Ps [logt|*), which is better than O (¢ ~2+¢2Pi+2pi),

e After relabelling, we have one of the following:

7°9°°9Y 00gardcgri, 9709 9Y DuganOey -
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For the first term, after noting gdfaagdf = O([logt|), g% = O(t~2+%), git =
O(t=2Pi) and O.gp; = O(t*Pi|logt|), we have

gjbg“gdfaagdfacgbi — O(t72+2€72pj +2p; ’10gt|2) < O(t*2+€*2pj +2p; ) )

For the second term, note that g% d,94, = O(|logt|), g?¢ = O(t~%), ¢i° =
O(t=%Pi) and O.gp; = O(t*Pi|logt|), which then again gives the desired estimate.

Step 3: Higher derivative bounds. It is easy to see that after differentiating by
0%, we at worst pick up additional powers of \logt“a‘, we then obtain the desired
estimate also for higher derivatives of Ric(g);”.

Step 4: Time derivative. For 920;Ric(g);/, the argument is almost identical.
Indeed, exploiting the form of the metric and using the estimate for 95 0;a;;, we no-
tice that 9;g;; = O(t*Praxtist =1 9,g% = O(t ~2Pmintis) 1) and similar behaviors for
their spatial derivatives (up to logarithms). Hence, a power of ¢~! can be factored
out, leaving terms with factors that behave as in the previous steps. This completes
the proof of the lemma. O

2.2. Estimates for kM.

LEMMA 2.7. Consider the nonlinear transport equation

u2

atu:f+t27

where f:(0,1) x T> — R is a function such that |f|(t,z) < t° for some § > 0.
Then there exist t, € (0,1) and a unique solution v : (0,t,) x T> — R such that
Jul(t,z) St

Assuming moreover that |02 f|(t,2) Sa t0. It also follows that |0%u| Sg, t1F°.

Proof. This is proven by a standard Picard iteration, with some extra care trac-
ing the ¢ dependence; we omit the details. U

LEMMA 2.8. Suppose the following holds for some N > 1: there exists ty_1 >
0 such that for every 0 <n < N — 1 and every multi-index o, g™ satisfies the
following estimate for some C,, ,, >0 (depending on o, n, in addition to c;; and p;)
for all (t,x) € (0,tn_1) x T3:

(2.23) 102 (alf — cij)|(t,2) < Cant®.

Then, there exists ty € (0,tn_1) sufficiently small such that for every 1 <n <
N and every multi-index o, the following holds for all (t,x) € (0,tx_1) x T3 for
some C'(;’n > 0 (depending on o, n, in addition to c;j and p;):

021(k™);7 —t ' k) |(t, ) < O, min{t~ "=, ¢ T2y
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Proof. The key difficulty in solving (2.2) is that there are borderline terms with
O(t™") coefficients so that we cannot directly apply Gronwall’s lemma. One can
nevertheless analyze the precise structure of the equations.

Step 1: Solving an auxiliary system. We first solve an auxiliary system

o.M = R(gm—1] hn2
20 { phin) = R(gn1) + (nl)

8t(k[“])¢j = Ric(g[n—l])zj + plnl (k[n})ij

The first equation in (2.24) can be rearranged to
2, ] 25 =1y 2 pm ) 2

Using the bound |R(gi"1)| <2< from the assumptions on g1 together with
Lemma 2.6, (2.25) can be solved using Lemma 2.7 with R satisfying

o (h[n] +1>‘ < t71+£.
xX t ~

Now the second equation in (2.24) can be rearranged to

(2.26)

By [t(k™);7] = tRic(g" )7 + <h[n] + 115) t(kIm), 7.

Using (2.26), Gronwall’s inequality and the estimate in Lemma 2.6, it follows that
there is a unique solution (k[“] )i/ that obeys the initial condition (2.3) and satisfies

(2.27) |3§“[(k[n})ij _ fl/ﬁj” < min{t*“‘f, t71+572pj+2pi}.

Step 2: Finishing the argument. Now that we have solved (2.24) and obtained
estimates (2.26) and (2.27), in order to conclude the argument, it suffices to show
that in fact A = (k[),£. To this end, it suffices to note that

2

) [tz ((k[“])/ + 1)} =t’R (g[“”) +£2((kIM),f + 1) .

Hence, comparing this equation with (2.25), we obtain A = (k[™),¢ by the
uniqueness statement in Lemma 2.7. O

LEMMA 2.9. Suppose the following holds for some N > 2: there exists ty_1 >
0 such that for every 1 <n < N — 1 and every multi-index «, g["] satisfies the
following estimate for some Cy , > 0 (depending on o, n, in addition to c;; and
pi) forall (t,x) € (0,tx_1) x T?:
-1
(2.28) 102 (al — " )| (t,2) < Caut™.

v
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Then, taking ty € (0,tn—1) smaller (compared to Lemma 2.8) if necessary,
for every 2 < n < N and every multi-index «, the following holds for all (t,z) €
(0,tx_1) x T3 for some C'é,m > 0 (depending on o, n, in addition to c;j and p;):

(229) BT — (k) 7] (1,2) < Ch ot

Proof. Step 1: Estimates on the Ricci curvature. The estimate (2.28) implies
that

(2.30) |02 [Ric (™) — Rie(¢™1)7]|(t,2) S ¢3¢ |log e >l

for every 0 <n < N — 1. Indeed, arguing as in the proof of Lemma 2.6, we notice
that the difference of the 03 derivative of the Ricci curvatures can be bounded by

the differences agl;.] -

is controlled by t~272¢[logt[>*1*l. In particular, (2.30) implies

ag;_l] (and their spatial derivatives), multiplied by a term that

(231) 105 [Ric(g")7 —Ric(g" 1)) (t,z) < ¢ 212,

Step 2: Estimates on (k™);7. The assumption (2.28) implies the assumption
of Lemma 2.8 holds. Hence by Lemma 2.8,

(2.32) 09Tk — 7 k)| () St1E

forevery 2 <n < N.
1

In particular, since (by definition) t kit = +» (2.32) implies that

(2.33)

8;‘ |:(k;[n])lz + 1:| '(t,l‘) 5 t_H_E.

Step 3: Estimates on the difference (k™);7 — (k*~1),7. Using (2.2), we obtain,
for 2 <n < N, that
Ou[(k™)7 — (k21)7] = Ric(g* 1) —Ric(g )7
(2.34) + (KM — (k=14 (kI
+ (R (k)T — (k1) ).

It turns out to be useful to first control the trace of kM — kM1, Taking the
trace of (2.34), we obtain

OL((K);! = (K -1),7) = R(g™ 1) — R(g"2)
(R, (R (k) (1)),
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This implies
O (K™ = (k1)) = 2 (R(g" 1) = R(g™))
(P (R4 2 ) (1) (),

By (2.31) in Step 1, the estimate (2.33) in Step 2, the condition (2.3) and Gronwall’s
inequality, it easily follows that

(2.35) 102 (kM — k=100 (2, ) S ¢1Fme

forevery 2 <n < N.
We now return to (2.34), which we rewrite as follows.

Ouft((kM™ — kIP1),7)] = ¢(Ric(g™ )7 — Ric(g"2),7)
+ (kP — g1y £ gy
+[(/A 1,04 ](k[n] g1y

By (2.31) in Step 1, the estimates (2.32) and (2.33) in Step 2, the estimate (2.35)
that we just proved, the condition (2.3) and Grénwall’s inequality, we obtain

05 (k2 — k1) | (1, 2) S o1
for every 2 < n < N, which is what we want to prove. O

2.3. Estimates for /"

LEMMA 2.10. For n € N and gz[?] defined by (2.4)—(2.5), the corresponding
[n]

a;; obeys the equation

815@,?;] [ thpmax{l,j}fzpmax{i,j) ((k[ ] k[o]) [ } (k[o]) (agjl] Céj))
¢
(2.36) B thmax{z,i}*ﬂ?max{i,j} ((k,[n] . k‘[ ]) 14 [n] + (k[O])] (CLE:] _ C&)>
¢
2Pmax i,
e

where kY is as defined in (2.16).

Proof. By (1.4) and (2.4), with repeated indices not summed, we have on the
one hand

g = 2P i gy 2Pt ol 4 2Pmentis) Oyl
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and on the other hand

8 g[ ] Z(k[n]) Zt2pmax{€ ]}a[n Z k;[n] et2pmax{£ z}a[ }
1 ¢

Similarly, by (1.4), (2.1) and (2.16),

— Z thpmax{é 7} Cf _ Z(k.[o])jﬁtzpmax{l,i} Co;

y4
[0 _ $2Pmax{i iy L.

= 8159 g

2pmax{i, J}
Therefore, we obtain

tZPmax{i,j}atag';.] — atgz[?] 2y 2Pt ! aEI;J

- 8t (gl[?] _gig]) 2pmax{zj}t2pmax{z i 1( 1[IJ] _ C’L])
= —Z(k[o]) Aftzpmax{l,j}( [ ] — C)Z] _Z(k[ })jgtzpmaxu,i} (a[n] _ C)ZZ

L

_ Z t2pmax{2 J} [n] [0]> [ ] Z tzpmax{é,i} (k[n} _ k[o} )]Kag:]

L

2pmax{z j}t AP}~ 1( []] - Czj)

Canceling ¢*Pmx(i.3} on both sides, we obtain the desired equation. U

LEMMA 2.11. Suppose the following holds for some N > 1: there exists ty >0
such that for every 1 <n < N and every multi-index «, kol satisfies the estimate
for some Co n, > 0 (depending on o, n, in addition to c;; and p;) for all (t,x) €
(0,tn—1) X T3:

03 [(KM)i? =7 k7)) (t,2) < Cogut ™"

Then, after choosing tx > 0 smaller if necessary, a al ](t x) is well defined and
symmetric for all (t,z) € (0,tx5] x T and for every 1 < n < N. In addition, by
reducing t > O further, gl[-;] (t,z) is a Lorentzian metric.

Moreover, for every multi-index o and 1 < n < N, there exists C(’Ln > 0 such
that

(2.37) \aa( i)t ) < Chnt® \aaata (t,2) < Chat e
for all (t,x) € (0,ty] x T3.

Proof. Clearly 0(a;; ] agz]) = 0. Moreover, at {t = 0}, az[l;] = ¢j; which is

symmetric. It follows that al; is symmetric.
Now given that a[ Vs symmetric, we will only estimate the six components

{ . < j}. Using the equation in Lemma 2.10 and the bounds in Lemmas 2.5

] .

and 2.8 (and implicitly using the symmetry of a;; in the derivation), we obtain the
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following schematic equations:

(2.38) at(a[“l—c)33:O(t*”f)(a[“ ¢)+ 0t~ 5)al,
(2.39) at(a[nl—c)2220(t—1+€)( —¢)+ 0@t "*%)am,
(240)  9(a™ —¢)1 = 0t (@™ —¢) + Ot HF)al,
2

Ko

(241) at(a[n] - 6)23 = @(a[n] - 0)23 m ( ) _ 0)33
+O(t_1+€)(a[n] )+O(t_1+€)a[“],
_ 2
2.42) Or(al = )12 = L2 (@l — c)1p — T (al )
+O@t ) (@™ — )+ Ot )al,
2 3
a3 e =) =T (@ )iy — T (@ )y — T (a" o)

+O@t ") (@ = o)+ Ot ) alm.

Here, we have used the schematic notation that when we write (a™ — ¢) or al™
without explicit indices, it can represent any component.

The key point is a reductive structure for terms with O(¢~!) coefficients: The
diagonal (a™ — ¢); terms do not see any terms with O(t~!) coefficients on the
right-hand side. For the remaining terms, we make the observations that (1) the
linear term has coefficients which is negative and (2) by estimating the terms in the
order as listed above, the only terms with O(t~!) coefficients have already been
estimated in the previous step.

Indeed, the first three equations ((2.38)—(2.40)) give

(2.44) I(a[“]—C)ssl(t)+|(a[“}—C)zzl(t)+|(a[“]—6)uI(t)Sta?ug(la["}—CHICI),
0.t

where we have used the initial condition (2.5).
Using the fourth and fifth equations ((2.41)—(2.42)) and plugging in (2.44), we
obtain

7P| (@~ )oa] 1

(2.45) S PP () — )33 () + P4 ?(l)lg(!a[“] —c|+c])
S sup(a ol +lef)
[0,2]
and
2P (al™ — ) 12 (1)
(2.46) <70l — e)aa| (1) + 7P+ sup(al — ] +|c])

[0,2]
S 7P sup(|al™ — ] + |e]).
[0,4]
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The estimates (2.45) and (2.46) imply

(2.47) [(a™ = €)as[ () +] (™ = )12 (1) S #° ?ul;(la[“] —c+1el).
0,t

Finally, we consider the last equation, argue as above and plug in (2.44) and (2.47)
to obtain

(2.48) [(a™ = ¢)13(¢) < 5 sup(|al™ — ¢| + |c]).
[0.¢]
Combining (2.44), (2.47), (2.48), and choosing ¢ to be sufficiently small, we ob-
tain
supa™ —¢| < = sup|e| < t°.
[0,2]

This proves that a?;] is well defined and moreover shows the first inequality in

(2.37) in the case |a| = 0.

The second inequality in (2.37) (that for 8ta£';]) follows by applying the already
derived bounds to the RHS of the system (2.38)—(2.43).

We then obtain the desired higher order estimates by induction on |«|. For
example, differentiating the equation (2.36) by 02 for |a| = 1, we may treat the
zeroth order terms in the differences al™ — ¢ as already estimated inhomogeneous
terms and repeat the above argument. The same goes for 95 with || = 2 etc. From
this we deduce the estimate (2.50) in general. We omit the details. O

LEMMA 2.12. Suppose the following holds for some N > 1: there exists t >
0 such that for every 1 < n < N and for every multi-index «, knl satisfies the
following estimate for some Cq,, > 0 (depending on o, n, in addition to c;; and
pi) forall (t,z) € (0,ty] x T3:

(2.49) 109 (kM — k=1).71(2, 2) < Cont™ 1472

forevery 1 <n < N.
Then, after choosing t > 0 smaller if necessary, for every multi-index o and
1 <n <N, there exists Cy, ,, > 0 such that

(2.50) 05 (a) —aff It 2) < Ot
. |8§‘(9t(a£';.] _ a[.n.—l])’(t’x) < Céé,nt_Hm,

ij
for all (t,x) € (0,tx] x T3 and for every 1 <n < N.
Proof. First, we note that by Lemma 2.5 and (2.49),
(2.51) 109 (kM — O | (¢, 2) < ¢ 14

forevery 1 <n < N.
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Subtracting the n and n — 1 versions of (2.36), for 7 < j, we have

(2.52)

— Z tzpmax{é,j}fzpmax{i,j} [(k[n] _ k[o])lf(a[n] _ a[nil])g‘j —+ (k[n] — k[nfl])zgaggil]]

l
_ thlumax{l,i}*zpmax{i,j} [(k[n} _ k[m)]e(a[n] _ a[nfl])gi + (k[n] — k[nfl])jea[ep_l]]
J4
— thpmax{f,j}_zpmax{i,j} (K1) £ (ol — a[n—l])ﬁj
¢
_ thlnmax{l,i}fzpmax{i,j} (k[o])]z(a[n] _ a[nfl])h.
l
2pmax{i,j} [n] [n—1]
T (aij —Qy )-

Using equation (2.52) and the estimates in Lemmas 2.5, 2.8 and (2.49), we de-
duce a system of schematic equations in a similar manner as (2.38)—(2.43), namely,

(2.53) at(a[n] - a[nfl])33 — O(tflﬂ-:)(a[n} o a[nfl]) _’_O(tflJrnE)a[nfl]7
2.54)  9(a™ —al )y = 0@ %) (@™ — o) 4 Ot 1) gl
=0t~ [n]

2.55)  Oy(a™ —ay = 0@ ) (0 — oMUy O () al Y,

ka3

.56 By (al™ — a1y, = @(a[nl — g1y, T(a[n] — 1)y,

+ O(t71+a)<a[n] _ a[nfl]) + O(tflJrna)a[nfl]7

2
_ — _ K _

057 By (al — a1y, = w(a[nl — g1y, — Tl(a[n] _ g1y,

+ O(t—1+a)(a[n] _ a[n—l]) + O(t—l-l-na)a[nOI]7

) gty PLTP3 ety R e
O(a a )13 = " (a a )13 ; (a a )23
3

(2.58) - /‘@Tl(a[n] — )y O ) (al — gln- 1y

+ O(t71+ns)a[n71} )

From this point on we can argue as in Lemma 2.11, using the reduc-
tive structure of the system. Note that the system (2.53)—(2.58) is better than
the system (2.38)—(2.43) in that the inhomogeneous terms O(t_]+”5)a[“_l] =
O(t~ 7€), As a result, the argument in Lemma 2.11 gives the better estimate

9207 (ol —al )| (t,2) < Ol T r =0, 1 O

Now a straightforward induction argument using Lemmas 2.8, 2.9, 2.11, 2.12
shows there exists a decreasing sequence of positive times ¢, such that ¢ and
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kM are well defined and smooth in (0,t,] x T3, for all n € N. Moreover, all the
estimates in the conclusions (and proofs) of Lemmas 2.8, 2.9, 2.11, 2.12 hold. In
particular, points (1), (2) in Theorem 2.1 hold true; and after using also Lemma 2.6,
it can be checked that (3) in Theorem 2.1 is also verified.

In the remaining subsections, we prove points (4) and (5) in Theorem 2.1, thus
completing the proof of Theorem 2.1.

2.4. Comparing k™ with the second fundamental form. In this subsec-
tion, we prove point (4) of Theorem 2.1; see the main estimate in Lemma 2.15.
The heart of the matter is the following estimates for ’D[n] (k[n]) [n]

J
(kM) ¢gM.

LEMMA 2.13. For eachn € N, define ) = (k™) g% — (k™) ;£ g Then if
(n+ 1)e > 2, after choosing t,, smaller if necessary, the following estimate holds
for some Cq, , > 0 (depending on o, n, in addition to c;; and p;):

|a§©£1;] ](t,x) < Ca,nt_1+(n+2)€+2p"““{i’j} |logt|2+‘a|,
|3§8t@,£2] ](t,x) < Ca7nt72+(n+2)s+2pmax{i7j} |10gt|2+‘a|
for all (t,x) € (0,t,] x T>.
Proof. Step 1: Derivation of an equation for CDEI;]. By (2.4),

(09 (R = (Dugh (K¢

= — gl (k) (Rl ¢ — g8 () P ()¢
@59 g (PR + g M) )
- —<g£- (1) — g ), k)

(g1 (K — gy (K):0) (k1)

Therefore, (2.59) and the equation (2.2) that define kI it follows that

O = (k)i gly — (k) gl
— Ric(yg [n— 1]) ¢ [n Ric( [nfl])JZggl]
+ (k). [(k['ﬂ) — (k") g5
(2.60) <g]b< “Uebfggb( ")) (k)i
+ (g (k™) 2 — gy (),2) (KM
= Rw(g["-”)/géﬁ ~Ric(g" 1) ]
+ (kM) D (k). D (k)
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. . n—1)\ ¢, [n—1] . L . h
Now since Ric(g )i Gp; 18 symmetric in ¢ and j, we have

Ric(g"1);%q,2 — Ric(g" 1), g7}
(2.61) = Ric(g" )i (g™ — g 1)y —Ric(g" ), (g™ — g
_ O(t72+(n+2)5+2pmax{i7j} |10gt|2),

where the final estimate follows from the form of the metric, Lemmas 2.6, 2.12,
and the fact that

O(min{t_2+2€, t—2+26—2p4+2pi } |10gt|2 % thmaX{jyg} )

— O(min{t‘2+2€+2pf, t—2+26+2pi}|10gt|2) — O(t_2+2€+2pm‘”‘{iﬂj} \logtlz).
Therefore, combining (2.60) and (2.61), we have obtained that

9 =~ (ln)) £ 4 D (ki) ¢ 4 (k7)) 2D

(2.62)
n O(t,2+(n+2)s+2pmax{z’,j} |]0gt|2) .

Step 2: Estimating © 5'] Since © EI;] is manifestly anti-symmetric, it suffices to

estimate ’D[ZI;], ,}3[1113] and ’D[l';] By (2.62), they satisfy the following equations:

_ 1 -
815@[22] _ P2+]t?3 —i—O(t*HE) @[212_(k[n])zlg[llg]_i_(k[n])}l@[lr;]

+ Ot (24 2man(ing) Jog £2),

[ —1
8t©[1n3] _ 1?1—1—% +O(t—1+5) @[1113} _ (k[n])32@[l';] _ (k[n])12©[2[;]

N O(t,2+(n+2)e+2pmax{i,j} ]logtlz),

n [ + -1 — | n n n
ool = | B2 — o=+ | Dl - ()20l — (k1) P2l
+ Ot 22+ 2mati ) |Jog £[?).
Applying the estimates for k™ from Lemma 2.8, we obtain
2, (o) = o)DM 4 o+ Dl

+ O(t—l+5—2p1+2p3)tp1 Q[lg] + O(t—2+p1+(n+2)5+2p3 \logtlz),

(2.63)

o, (") = o)l ool

(2.64)
+ O(t—1+572p2+2p3 )t D [1';] + O(t72+m+(”+2)5+2p3 ‘]Ogﬂz)’
) ) =0 D O )oY

+O(t DN 4 O 2Pt 2e 2 1og 112
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To use these equations, note that when ¢, j, ¢ are all distinct,

(2.66) lim D" =0.

t—0t

Indeed, using the estimates in Lemmas 2.8 and 2.11, one checks that 9[2';], ’D[;;] =

O(t*=1) and D = O (1271, This implies " DI = O (t71+23-1) = O (13— 72),
tngg[l‘;] = O(tr>*2r3=1) = O(tP>~P1) and tps;g[l‘;] = Ot 22~ = O(tP2P1). We
then obtain (2.66) using p; < p2 < p3.

We now use equations (2.63)—(2.65) to estimate ZDE‘;]. The key is to notice a
reductive structure similar to that in the proof of Lemma 2.11, except in this situa-
tion since the different components have different rates, we argue with a bootstrap
argument.

Make the bootstrap assumptions that

DRI (t,2) < At log ]2,
(2.67) O (¢, 2) < At~ 225 1og 2
[D11(t ) < AR log 2,
where A is a large constant, such that denoting the implicit constant in the big-O

notation in (2.63)—(2.65) by C, we require C < A.
Plugging (2.67) into (2.63), integrating, and using p, > p;, we obtain

2.68)  [@W|(t,2) < Ot s og 12 C AL s g 12,

Arguing similarly, first for ”D[]r;} and then for @E‘;] we also obtain

2.69)  [@M|(t,2) < Ot W3 og 12 C AL s g 12,

270) (@Mt 2) < Ot 0g 12 C AL 22 0 g 12,

Choosing t,, sufficiently small (so that At® < 1), it is easy to check that (2.68)—
(2.70) improves the bootstrap assumptions in (2.67). This gives the stated estimates
n] . —
for ®;; in the lemma when [a| = 0.
The estimates for the spatial derivatives are similar, except that we lose a factor
of [logt| for each derivative we take (cf. (2.18)).

Step 3: Estimating 8t©£';]. Finally, we plug in the estimates for DE';] into
(2.63)—(2.65) to obtain the desired estimates for 95 0,0 E'J'] O

LEMMA 2.14. For each n € N and CDE] as in Lemma 2.13, define (D™)7 :=
(g[“])ﬂ@?z]. Then if (n+ 1)e > 2, the following estimates hold for (t,z) € (0,t,] x
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T" for some Cy ,, > 0 (depending on o, n, in addition to c;; and p;):
2 ~
> trjogor (@) | (t,x)

r=0
<Cpa min{t—1+(n+2)5 |10gt|2+\a\ ’ 41+ (n+2)e=2p;+2p;i |10gt‘2+\a\ 1.

(2.71)

Proof. Step 1: Estimates for Dl (when r =0). By Lemma 2.13, the estimate
9% (¢3¢ = O(t~2Pmintsit} |logt|!*!) and the fact t°[logt|’ <, 1, we immediately ob-
tain
02 (@) (t,)

2.72
( ) < Cn,a min{t71+(n+2)€|10gt|2+\a\’t71+(n+2)572pj+2p¢‘logt‘2+\a\}'

Step 2: Deriving evolution equations for D, Contracting (2.60) with (g[“] ),
using (2.6) and the anti-symmetry of DZ[-';], we obtain

(2.73) 9(DM);" = (k)" (DM);" + Rie(g")i" — (o) Ric(g" 1), gy}
We notice now that since
(g[nfl])jb Ric(g[nfl])jfgg‘lfl] _ RiC(g[nil])ib,

we have
2.74)
Ric(g" )" — (g" >ﬂ’R1c< =) gy
— (g P Ric(g" 1) g+ (g1 Ric (gl 1) g
_ _ _ 1
= —[(g["wb — (g 1)) Ric(gm V) gt — (g )P Ric(g ) gt — gt
— O(t_zpmin{j,b}) X O(tns)
% O(min{t—2+25‘logt‘2+\o¢\ t—2+a—2pg+2pj ]10gt!2+|0‘|}) > O(tZPmax{Z,i})
_ O(|10gt‘2 « Il’lll’l{t 2+(n+2)e t—2+(n+2)s—2pb+2pi})’
where in estimating the terms we have used the form of the metric, computation of
the inverse metric (see (2.15)), Lemmas 2.11 and 2.12, and (2.18).

Differentiating (2.74) by 0%0;, and arguing similarly, we also obtain the fol-
lowing higher derivative bounds for » =0, 1:

02 {t7 07 [(Ric(g1);0 — (g )P Ric(gl1) L]}

(2.75)
g2l xmin{y 22, 22

Plugging the estimate (2.75) into (2.73), using the estimates for Kl (by
Lemma 2.8) and 9;k™ (by (2.2), Lemma 2.6, (2.37) and Lemma 2.8), and
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relabelling the indices, we obtain

oeo (@) = o ( D a2®M).")
(2.76) 1B1<]e

+O(Jlogt*Hlel x min{¢=2+F2)e =2+ (nF2)e=2pt2piy )
and

arr@M) =0 Y do@M)b+o) Y al@M)b
(2.77) 18I<e 18I<]e

+O(|logtH1ol x min {3+ (nH2)e ¢=3+(nt2)e=2ppt2piy)

Step 3: Estimates for 0, and 92D (when r = 1,2). Plugging (2.72) into
(2.76), we obtain

920, (D)|(2,x)

2.78
( ) <Cha min{t72+(n+2)€ |10gt|2+\a\ ’ t72+(n+2)572pj+2p¢ ‘logt‘2+\a\ }
Similarly, plugging in both (2.78) and (2.72) into (2.77), we obtain

0207 (D)7 (¢, )

279
( ) < Cn,a min{t—3+(n+2)5|10gt|2+‘o¢"t—3+(n+2)6—2pj+2pi|10gt‘2+‘a‘}'

Combining (2.72), (2.78) and (2.79) yields (2.71). [l

The next lemma shows that even though k™ is nor the second fundamental
form associated to g/, it is close to being the second fundamental form up to an
error that vanishes sufficiently fast as t — 0.

LEMMA 2.15. When (n+ 1)e > 2, the following estimates hold for (t,x) €
(0,t5,] x T™ for some Cy,, > 0 (depending on o, n, in addition to c;j and p;):
2
(280) 10207 (kM) + (g™ Y g (tx) < Coat ™2 o2,
r=0

Proof. By (2.4) and the definition of D (in Lemma 2.13) and D™ (in
Lemma 2.14),

. 2k, + (g[n})jéatgz[lg] =2(kM),7 — (kM7 — (g[n])jz©£l2]
(2.81) _ _(g[n])jég[lz] _ _(55[n])l]

The desired estimate is then an immediate consequence of Lemma 2.14. O

Lemma 2.15 gives point (4) in Theorem 2.1.
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2.5. (kI");7 and gz[?] satisfy evolution equations approximately. In this
subsection we prove point (5) in Theorem 2.1 (see Proposition 2.17), which then

completes the proof of the theorem.

LEMMA 2.16. For every n € N, the following estimates hold for (t,z) €
(0,t5] x T, for some Cyr, > 0 (depending on c, n, in addition to c¢;; and p;):

|00, (Ric(g™);7 — Ric(g™ 1)7) |(t,2) < Copt > T2 log t]>H1o,

Proof. Going back to the proof of Lemma 2.6 and using the form of
the metrics g™ and g™, we notice that the each term in the difference of
Ric(g™);7,Ric(g™1);7 has the form:

[explicit powers of ¢ and log¢ with behavior O(t~2"2¢|logt|**1*!)]
x [nonlinear terms in 9%al , 9%a"~1 which are linear
in the difference % (al™ — a1, || < 2].
The fact that al™,a["~1 and their spatial derivatives are bounded, while |0%(al™ —
a-1)| < "¢ (see Lemma 2.12), was then used in Lemma 2.9 to infer the bound
(2.30).

Now we verify that a time derivative acting on any of the previous type of

terms, adds at worst a power of ¢~! in their behavior. For the factors which are ex-

plicit powers of ¢ this is evident. If 0; hits either al™, o™= factor or their difference
al — o1 we make use of (2.37), (2.50) and the conclusion follows. Il

PROPOSITION 2.17. For every n € N, the following estimates hold for (t,z) €
(0,t,] x T™, for some Cy, , > 0 (depending on «, n, in addition to cij and p;):
> 70207 (9e(kM™)7 — Ric(g™)i7 — (kM) (k),7) | (¢, 2)
r=0
<, nt72+(n+2)5“0gt‘2+|a\‘

Proof. Using the equation (2.2), the estimate (2.31), and Lemma 2.16, we ob-
tain

92 (1 (k1"),7 —~Ric(g™)7 = (k)" (6),7) £,
= |02 (Rie(g") ~Rie(g"™ 1)) (t,2) S ¢ 2042 logt >

and

020, (9 (k)7 = Ric(g™)7 — (k) (KIM),7) | (£, 2)
= |6§8t(Ric(g[“])ij —Ric(g[n_l])ij)‘(t,x) < 73+ (42| jgg ¢[2Hel

as desired. O
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Proposition 2.17 implies point (5) of Theorem 2.1. Together with the previous
subsections, this completes the proof of Theorem 2.1.

3. Approximate propagation of constraints. We continue to work under
the assumptions of Theorem 1.1 and take g™ and k[ as constructed in the begin-
ning of Section 2 (so that for appropriately chosen ¢, the estimates in Theorem 2.1
hold).

The goal of this section is to show that metrics ()¢ are also approximate
solutions to the constraints, as t — 0, to an order that improves with the increase
of n. To achieve this we argue by propagation of constraints, i.e., we use the second
Bianchi identity as propagation equations and use that the constraints are asymp-
totically valid in the renormalized sense (1.7)—(1.8).

It will be useful to setup some notations that we use in this section. For the
remainder of this section, D will denote the Levi—Civita connection of the space-
time metric ® g™ and V will denote the Levi—Civita connection of the metric g™
on the (spacelike) constant-t hypersurfaces. Moreover, indices are lowered and
raised with respect to the metric g™ (in particular (g% = ((¢™)~1)% in this
section).

PROPOSITION 3.1. Let @) g = —dt® + g, where g is a Riemannian metric.
Define k;/ := —%(gfl)jeatgw (the second fundamental form). Then the following
identities hold:

3.1) Ric(Wg)i? = —8:ki’ +Ric(g)i? + ke'ki?,

(3.2) Ric(Wg) = —(divy k) + Vi(ke"),

(3.3) Ric(Wg)s = 0h(ke") — K|,

(3.4) R(Wg) = =204 (k") + R(g) + [k[* + ("),
G(Wg)? = 0,k +Ric(g)d + ek

3.5) 1o o T2 (02

— 567 [-20u(Re") + Rig) + [+ (e,
(3.6) G(Wg)y = —(divk); + Vi(k"),
G gk = 5[Rle) ~ IR + ('Y

where G(#) g)p is the Einstein tensor of ¥

Proof. The first three identities can be found in [12, Chapter 6, (3.20)-(3.22)]
(after substituting the lapse to be identically 1). The remaining identities follow
from the first three by simple algebraic manipulations. O
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LEMMA 3.2. Givenn € NU{0}, Wgl and k" given by Theorem 2.1 satisfy
the estimates:

|02 [R(g™) — KPP+ (k™)) < Co 2,
(3.8) |05 (8, (tr k™) — |EM2)| < Cp ot 272
|8a k[n]) 8(k[n])8£” < Camtflﬂs.

Proof. By point (3) in Theorem 2.1, it follows that
02 R(g™)] < Cot 2.

Writing also
RO — (a2 = (k[“] —tR),!

(kM
e sz %(sz) (kI — 71 R) T (17 k)

(/~€[“]—t_1 R)j (7 R) =28 ) (R =7 )

t1w); = (KM =t ))?

we conclude the first estimate using condition (2) in Theorem 1.1 and the second
inequality in (3), Theorem 2.1.

For the second estimate, first note that after tracing the first inequality in (3) of
Theorem 2.1, we obtain

102 (9 (tr k™) — R(g™) — (k™)) | < it 2H 1z,

Combining this with the first estimate in (3.8) that we have just established, we
obtain the second estimate in (3.8).

We now turn to the third estimate in (3.8). For notational clarity, we focus on
the case |a| = 0. All the higher derivative bounds are be derived analogously after
noticing the crucial algebraic structure. We compute:

. . e J
V()7 — 0, (k) = 0, (kI — )T — (ki) — 1) - it

— (TP (KM 4 ()3, () ¢

. e
(3.9) — 0, (R )T — () — e i
| ,

— 3" @igfy + 0,0~ dhals (k)

Lo i\ib . o] ) ) g lnl ¢

+§(g )" (9594, +8f9]b abg )J(E™)"
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Notice now that by (2.80), we have:

()3 = = (g 0l + 01441,
Therefore,
20" (0561 — angl (k)
410 = 4(g[“])ebajgz[z](9[“])jc<9t95}
+ g9l g0l + O 1)
— O(tflJrE)’

where in order to show that this = O(¢~!*¢), we look at the second term, relabel
the indices b <+ j and then swap ¢ <+ £ (using that g™ is symmetric), which then
gives the negative of the first term.

For the term —3 (g ]y 6.9 g[n](k:[“]) 7, we first note that if £ > 7, then (k)7 =

O(t=1=2i*2pe) and (g[M)%g; g[';) = O(|logt|), so altogether we get an O(t~!*¢)
contribution. If ¢ < j, then (g[“})gb&g][.b] = O(t°), which together with (k)7 =

O(t~1), we get a combined contribution of O(t~'*¢). We therefore only get the
contribution when j =/, i.e.

w

1 . | 1 o
G115, g (&), =3 5" Ylorgl (k)7 + Ot 1+9).
7=1

Combining (3.10) and (3.11), we have

1 n n n n ]
— (g™ (igly +0y9ly — Bbgl} ) (k™)
(3.12) 3 1

Z [n] ]bag [n])jj+0(t_l+5).

j=1

Plugging (3.12) into (3.9), using the estimate (2.8), and noting that by symme-
try (g7 (9; gg;] ﬁbgj[%]) = 0, we obtain

; 3
. Dk 1 N .
Vi (k)7 — 0yl = S N (gl g, gl (kI
(3.13) j=1
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Finally, notice that the second and third terms in (3.13), when j # b, contribute
only O(t~!*¢). We have thus obtained

W

3/@ 1,
V;(k™)7 — 0tk §j§ Y2 Dggp (K)o
=1

3
1n“lln —l+e
2 5@ arg (0

d;kid 1 Oicor pe | pedipe -1
= logt | +O(t'*
+£§1<2 o & T logt)+ ( )

Ocii kit 1055 pi
+Z Epjlogt—&—]l{bl} —us %5 P
t 2 ij t

jl=1

3

1 <= [ Oicor Ou(cricncess

ot < ;Eé (p@—pi)+28mi€+]l{g>i} ;1022033 )ﬁ/
—1

—I—O(t_H_a),

where in the last equality we use condition (2) in Theorem 1.1. The desired estimate
now follows by employing condition (4) in Theorem 1.1. H

Combining Proposition 3.1, Lemma 3.2 and Theorem 2.1, we deduce the fol-
lowing bounds for the relevant curvature components of (4) g/,

PROPOSITION 3.3. Given n € N such that (n+1)e > 2 and ¥ g™ as in The-
orem 2.1, the following estimates hold:

99 Ric; gl , |02 Ric gl |O%R ) gy,
oG (¢ gmﬂAasGu< '%y<c7 f4+M+na
(3.15) |00, Ricﬂ( n])| <C, t—3+(n+1)5’
(3.16) 02 G (g, |02 Rt (g | € Coppt 041,

for all (t,z) € (0,ty] x T3.
Proof. In this proof, the implicit constants in S depend on «, n, ¢;; and p;.

Step 0: Estimates for Ric;7 (“g™). According to (3.1) in Proposition 3.1 and
the estimates in (2.8), Lemma 2.15 and Proposition 2.17, it follows that

(3.17) |0 [Ric((4)g[“])ij] I(t,z) < t72+(n+2)5“0gt’2+|a|,

which clearly implies in particular the needed estimate for Ric((4) g )i? in (3.14).
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Also, using (2.8), Lemma 2.15 and Proposition 2.17, we also obtain the esti-
mate (3.15) for 92; Ric; 7 (HgM).

It suffices then to show that the estimates for 9% Ricy; (Y g™), 9% Ricy (4 g)
hold true, since all the remaining terms in (3.14) are algebraic combinations of the
previous three.

Step 1: Deriving the ODEs. By virtue of the contracted second Bianchi iden-
tity we have:
1
2
1 .
- _EaiR((“)g[n]) +D; Rlcﬂ((“)g[“])

(g™ iy Ricy; (4 g

O¢Ricy; ((4)g[n]) = D;Ricy ((4)9[11] ) +

1 ; n o
+ E(g[“])ﬂfatgl[} Ric; (4 g™)
(3.18) P | o e
= 5aiRl%(( )g[n])_i(g[n])y Digsy Ricy; (W gM)

=1

_%ai Ric;7(Dg) + V;Ric; (4 gln)),

=11
. . 1 .
OrRicu(Wg™) = Dy Ricu(Wg™) = 3 R (Vgl")) + D7 Ricy; (99
1

: 1 ; .
= iat RlCtt((4)9[n]) ) (9 il ) Eatgj[»l;g] RlCtt((4)9 [n])

=:1II =1V
+ VI (Ricy) (W gy
=V

_%atRiij(<4>g[n])

(3.19)

1
2
=:VI =:VII

(g"™)70,g5 Ric; (W glnl).

where D denotes the Levi-Civita connection of g, and V7(Ric,);(*)gln)
means that we take (Ric;); as a tensor field tangent to the constant-t hypersurfaces
and then differentiate with the connection V, i.e.

VI (Ricy); (Wg™) = (™) 0;(Ricy);(Wg™) — ()Y (T)7; (Rice)o(Vg™).

We now estimate the terms in (3.18) and (3.19). For term I in (3.18), we use
(2.8) and (2.10) in Theorem 2.1 to obtain

(3.20) - |:i+0(t—1+a):| Ricy; (4 ).
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The first term in II can be directly estimated by (3.17). To handle the second
term in II, we compute using the form of the metric and (2.7) to obtain

V; Ric;? (W glny = ajRiCij((“)g[n}) — (Tl ]) ‘Ricy? (4 g
+ (rin ]) Ric; /(W gm)
j 1
aﬂm=§U%M@@uw%]&¢> O(Jlogt))

(F[n])fj Riczj((“)g[“]) ( )Zb( ng] _|_8ng[21;] 8bg[9])RiC£j((4)g[n])

ij

= [O(Jlogt]) - <@Wméﬁmw<“w%
(9™) 091 Ricy? (9 gy = Op([1ogt]) (™) Pg M Rice? (D g™
= Oy (|logt|) Ric; (4 gy

Combining all the above and using (3.17), we obtain
(3.21) o= Ot 2+,

Plugging (3.20) and (3.21) into (3.18) yields

s Ricyi (Y gy + F + O(tl“)] Ric,;(Wg)
(3.22) | t
= 50iRicy(Wgl) + O~ 2HH1e),

Equation (3.19) can be treated similarly. We subtract III to the LHS, use (2.8)
and (2.10) to control the coefficients in IV and VII, keep the term IV, and use (3.15)
for term VI so that we obtain

2
in, ((4) ] il —l+e i ((4) (0]
(3.23) O¢Ricy (Mg )+[t+0(t )] Ricy (g™

= 2V (Ricy); (W gy + O (¢ 3+ nt)e),

In a similar way, we obtain the equations for higher derivatives analogous to
(3.22) and (3.23). After putting in an integrating factor, the equations read

0 (192 Ricy; (Wgny) = %@'aﬁ Ricy(Wg™™)

+0(t5) Y 9 Ricu(Wgl) + 0t~ 0e),
(3.24) 1B<al
By (1202 Ricy (W gM)) = 26292V (Ricy ) j (W g

+O(t1+6) Z afRiCtt((4)g[n])+O(t_l+(n+1)€).
181<le
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Step 2: Solving the ODEs. We will view the two equations in (3.24) as ODEs
in £. In particular we will not be concerned with the loss of derivatives since we
have bounds for all order of derivatives of the approximate solutions.

Note that Lemmas 2.15, 3.2 and the identities (3.2), (3.3) imply the estimates:

(3.25) 102 Ricy; (Mg <7172, 102 Ricy (Wgmh| < 727,

In particular, this means that the initial data (at {t = 0}) for t0% Ricy(*) g™)
and #2902 Ricy; (W g both vanish. Now since |02 Ricy; (W g)| < ¢+ (for all
), it follows that |02V?(Ric;);(WgM)| < ¢t=3+2¢ (for this we simply use that
|02 (ginhyee), |8§“[(g[“])ié(F["])ge]| < t72%¢). Hence, integrating the second equation
in (3.24) and using Gronwall’s inequality, we obtain

(326) 12102 Ricy (Wglm| < 2 4 t(nHe — |92 Ricy (W giM)| < 7242,

Plugging this estimate into the first equation in (3.24), we then obtain using
Gronwall’s inequality

(327)  #|8% Ricy (Wl <25 +1HDe — |92 Ricy (gl < 7142,

Notice that (3.26) and (3.27) improves over (3.25). We now repeat the above argu-
ment, but plugging in these improve estimates to obtain (assuming n > 2)

|09 Ricy (Wg)| S¢7275, |09 Ricy(WgM)| S 7113,

Iterating this argument then gives the desired estimates. (The rate for 0 Ricy; is
limited by the last term on the RHS of the first equation in (3.24).) This completes
the proof of the proposition. O

4. Construction of an actual solution. We continue to work under the
assumptions of Theorem 1.1 and take g™ and k™ as constructed in the beginning
of Section 2 (so that for appropriately chosen ¢y, the estimates in Theorem 2.1 and
Proposition 3.3 hold).

The main result of this section will be to prove existence of a solution to a
system of reduced equations (to be introduced below in (4.9) of Section 4.1). See
Theorem 4.4 for the precise statement of the main result, and see the rest of Sec-
tion 4.3 for a discussion of the proof of Theorem 4.4 and an outline of the later
parts of the section.

4.1. Deriving the reduced equations. As already described in Sec-
tion 1.1.4 in the introduction, we will control k; using a second-order wave-like
equation. In this subsection, we derive the equation that we will use.

By (3.1) in Proposition 3.1, if a metric takes the form (1.4), and k is the second
fundamental form, then

4.1) Ric(Wg)i? = =8k’ +Ric(g)i? + ke'k.
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Taking a J; derivative of (4.1), we obtain

A Ric(Wg)i? = =02k 4 9, Ric(g)i + [k k7).

To compute 0y Ric(g);’, we use the variation of Ricci formula (see for example
equation (2.31) in [15]) and the fact 0;g;; = —2k;;:

OyRic(g)ij = Apkij + Vike' — Vi(divk); — V;(divk);,
where Ay, is the Lichnerowicz Laplacian (on symmetric 2-tensors) given by
Apvij = Agui;+ 2Riem(g)mij€vmg — Ric(g)ieng — Ric(g)jévm.
Using again 0;g;; = —2k;j, it follows that

Oy Ric(g)ij = Agkij +2Riem(g)mijgkme —i—Ric(g)/k:gj — Ric(g)gjk/

(42) i o
+ViVIk — Vi(divk) — VI (divk);.

We will further analyze two groups of terms on the RHS of (4.2):
(1) Denoting G; := Gti(g(“)) and considering it as a tensor on {¢ = constant},
we have

(43)  ViVikt —Vi(divk) — VI (divk); = (g7 )V VG + VIG — ViVik,’.

(2) In three dimensions, the Riemann curvature tensor can be expressed in
terms of the Ricci curvature tensor (see [15, (1.62)]):

Riem(g)™;? ¢ = — Ric(g)™ gi¢ + Ric(g)™ 5] — Ric(g)ie(g~")™

(44) . j s 1 m sJ —1\mj
+Ric(g): 0y *ER(Q)(@ & — (97 )"™ gir),

where R(g) denotes the scalar curvature of g. Therefore, the terms
2Riem(g)™’ gk’ + Ric(g)i ke’ —Ric(g) ki

can be written as some linear combinations of contractions of Ric(g) and k. Using
again (4.1), we can replace Ric(g);7 by Ric(*)g);? + 0k — ke’kiJ.
It therefore follows that the second fundamental form & verifies the following
equation:
— Ok + Agkid —ViVIk + (kxkx k)7 + (9kx k)7
(4.5) = —d;Ric;?! (W g)+ViG7 +VIG;—3k™ Ric,, (Y g)+267 k* Ric,™(Wyg)
— kg Ric; “(Wg) + 2k Ric;? (W g) — (k6] — k7 ) Ric,, ™(Wg),
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where

(kxkxk)? == =2k, | — g™ %ka’ gt + k™6 — gacki®g™

) 1 . .
+Ek70™ — Ekaa(@m&‘] — 9™ gi) | ki
= 4k ki ki = 2ka" (ke "k )67 + (ka®)*6:7 — 3 (k") ki?
(BekH k)T := 0y (ko ki?) — 204k ki® + 20, k™67 ke * — 20k ke
+20eki ko — Opka 07 k" Ok ki +Opki k! — Ok ki
= —30ka’ ki + O (kg "k )07 — Oukika? + 20,k k!

(4.6)

30k ke — %at(k-aa)%sﬁ .
We note that the terms k * k x k and 0,k x k satisfy
(4.7) (kxkH k)it + (B x k)it = Op|k|® — 2k, |k |> + 2ki 0,k
In particular, if (*) g solves the Einstein vacuum equations, then
(4.8) ki = Agkid —ViVIk' + (kxkxk)? + (0k* k).

The equation (4.8) is almost a wave equation for k, except that there is a top order
V,;Vik, term on the RHS. To proceed we think of h = k¢t as an independent vari-
able. If the Einstein vacuum equations were satisfied, then (3.3) in Proposition 3.1
imposes that 9;h = |k|?. It is therefore reasonable to look for a solution to the
Einstein vacuum equations by solving the following coupled system of equations:

Oth = |k|?,
(4.9) Ok = Agk? —ViVIh+ (kxkxk)id + (0pk* k),
Ohgij = —ki'gj0— ki gio-

1

Remark that given a solution to (4.9), it follows that g~ satisfies

(4.10) (g™ =k (g + k(g1

Our strategy will be to solve the system (4.9) and then a posteriori justify that
it is indeed a solution to the Einstein vacuum equations (in Section 5).

4.2. Notations. Before we proceed, we introduce some notations.

In the following we will consider (at least) two spacetime metrics (g =
—dt? + g;;dr’da? and W = —di? + gl[?]dxida:j on the domain I; x T3 (where
I; C R is an interval, possibly open, closed or half-open).

We make the following definitions assuming we are given such I;, g and
(4) gln]
g™.
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Definition 4.1 (Constant-t hypersurfaces). Given ¢ € I; define
Y ={(r,z):T=t,x T}

Definition 4.2 (Connections). (1) Denote by V the Levi—Civita connection of
g, and by V" the Levi—Civita connection of g[“]

(2) Denote V@ := V — V" Remark that V@ is a (

(3) Let r € N and T be an (m,l)-tensor. Define V
tensor given by

1,2)-tensor.
)T to be the (m,l +17)-

(V(’I’)T)]z]m ] :Va]" \v/ T]z ]m'

ar-arpili] Ar = gp-1;

Definition 4.3 (Norms). (1) Given two rank (m,[) tensors T and T, define
the inner product
(TW, Ty = (g7 )" (g7 ) ™ gjrer G (T (TR gm.

IRRY

(2) Given a rank (m,[) tensor 7, define
715 =T, T)g= (g )" (g7 )™ Gjrer *** Gjruen T T

119

(3) Given a tensor 7 and p € [1,+o0), define

1
P
1Tl e = ( / |Tr§volzt) |
t

where voly;, = v/detgdz is the volume form induced by the metric g.
For p = +oo, define

1T N (51,9 := esssupyems| T lg(t, 2)-

(4) For r e NU{0} and p € [1, +oo], define the geometric Sobolev space

1T lwre(s,.0) Z IV T Lo(sy.)-

(5) For r € NU{0} and p € [1,+00], define the homogeneous geometric
Sobolev space

1T o srg) = IV T lio(s,.0)-
(6) For r € NU{0}, define

Hr(ztnq) = WT72(Etvg)> HT(Ztvg) = WT’Z(Ztag)‘
(7) Define the norm t*L?(%,g) (for a € R\ {0}) by

1T e r2(s0,9) =t N T | 22(51.0)-
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(8) Given any two Banach spaces X and Y, the vector spaces X +Y = {zx+y:
reX,yeY}and XNY are endowed with Banach space structures with norms

[ollx+y == inf (zllx +lylly),  [ollxny = l[vllx + llvlly.
v=z+y, (z,y)eX XY

(9) Finally, define LP(%;, ), WP (5, ") and WP (5, gi) etc. as above
but with ¢ replaced by g/ (and V replaced by V).

4.3. Existence of solutions to (4.9) and the main steps of the proof. Our
first step of the proof of Theorem 1.1 is to build a solution to (4.9). The following
is the main existence result for (4.9), whose proof will occupy the remainder of the
section.

THEOREM 4.4. For every s,Nog € N obeying s > 5, there exists ny, s € N
sufficiently large such that for any n > npy, s, there exist Ty, s > 0 sufficiently
small and a solution (g,h, k) to (4.9) in (0, T, s.n) x T2 which satisfy the following
estimates:

s s—1 s+1
S IED e, g+ P N0E D s+ D 1A ez, )
(4.1 1) r=0 . r=0 r=0
+ Y I g Vs, + 107D D r(y.g) <N
r=0

Where k(d> — k - k[n]’ h(d) — h —_ h[n], g(d) — g —g[n]’ (g(d))_l — g_l J— (g[n])_l

Moreover, k;j = ggjk/ is symmetric in i and j.

We will prove Theorem 4.4 with the following steps (see the conclusion of the
proof in Section 4.3.3):

(1) For Tyhux > 0 (with Tyux < TNy, s,n), We construct local solutions to (4.9) in
[Toux, Taux +0) x T3 (with § potentially depending on Tyux) (Lemma 4.5).

(2) For s, N, n and Ty, s, as in Theorem 4.4, we prove uniform estimates to
show that the solution can be extended to [Thux, TN, s,»]- This is carried out in a
bootstrap argument and is the main step (Theorem 4.6, Corollary 4.7).

(3) Using a compactness argument, we take a sequence of auxiliary times
(Taux)i — 07 and extract a subsequence of solutions converging to a limiting solu-
tion to (4.9) on (0,7, 5] x T (Proposition 4.8).

We will further elucidate these steps in the subsubsections below. Most of the
proofs will then be given in later subsections.

4.3.1. Step 1: A local solution. We begin with the following local exis-
tence result for (4.9):
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LEMMA 4.5 (Local existence). For every T,.x > 0 sufficiently small and n € N,
there exist a 6 > 0 (depending a priori both on Ty and n) and a unique smooth
solution (g™, k™, h™) to (4.9) in [Twx, Taux + 0] X T, such that at t = Ty,
(g™, k*"% h2"X) attains the following prescribed values:

g’?‘;lx rt:Taux = gl[?] rt:Taux’ haux Ft:Tdux = (k[n])lz [t:Taux’

(kaux)ij rt:Taux = (k[n})lj rt:Taux’ (atkaux)ij rt:Taux = (8tk;[n])2] rt:Taux :

Moreover, gi;* = g5;*

Such a local existence result is almost standard. The only issue is that the sec-
ond equation of the system (4.9) contains the term V;V7h on the RHS, which seems
to “have one derivative too many”. This issue can be treated by deriving elliptic es-
timates for h, by commuting d;h = |k|? with A, and using the wave equation for
k, see discussions in Section 1.1.4 and Lemma 4.34. We will use this result but will
omit its straightforward proof.

Once existence is obtained, since gfj‘.”‘ is symmetric at t = T, and 8t(g?j‘?x —
g?;’") = 0, it immediately follows that g7 = g7i*.

4.3.2. Step 2: The main bootstrap argument. Our next step is to prove a
uniform time of existence independent of 77,x. To state the result, let us define, for
(g™, E*™* h*"X) as in Lemma 4.5,

d aux — i aux\—1\z7 —1\ij
@12) =g gl (D) = (6™ = ()
(4.13) (kD)7 = (B)7 — (kM7 A = paux _ plnl,
We stipulate that the metric g;;* takes the form (1.4) and define af;* according to

(1.4).
Introduce the following bootstrap assumptions:

(4.14) max |a* — ci5|(t, ) < t2,
Z’J

(4.15) 19 s, g5y + (0™ D yprsmton sy gy < 1,
_ 5

(4.16) Hg(d)HHS“(Et,ga“") + (g 1)(d)HHS+1(Et,g"‘“X) <tz

(1)

(417) ||h(d) ||Hs+1(2t7gaux) + ”k(d) HHS(Ehgaux) + Hatk(d) HHsfl(Ztygaux) t

The following is the main bootstrap theorem, whose proof constitutes most of
this section (in Sections 4.4-4.8):

THEOREM 4.6 (Bootstrap theorem). For every s, Ny € N such that s > 5, there
exists nn,,s € N sufficiently large such that for every n > ny;, s, the following holds
for some Ty, s n, > O sufficiently small.
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Suppose (g™, k™, h**) is the solution to (4.9) on a time interval [Tyux, TBoot)
(for some Tgoor € (TauxsTNy,s,n]) with initial data at t = Ty given as in
Lemma 4.5. Assume moreover that the bootstrap assumptions (4.14)—(4.17) all
hold on [Tyx, Tgoot) X T°.

Then in fact the following estimates hold:

S 5_1
p d
D IR D e, gooy + 0K [, g
r=0 =0
s+1

2r 1 (d) 12
(418) +Zot ”h HHT(Et,ga“X)

s+1
~2(y,.(d
+Zt2r 2| )|,§{T(Et7gaux)
r=0
™) D e, goun)) < CENOT

on [Taux, Tooot) X T2, where C > 0 may depend on s, Ny and the data, but is inde-
pendent of Tyx.

Moreover, taking T, s, smaller if necessary, (4.18) improves over the boot-
strap assumptions (4.14)—(4.17).

As is standard, the bootstrap theorem implies immediately, using a continuity
argument, that the solution can be extended up to time Ty, s p:

COROLLARY 4.7. Let s, No, nandT'n, s ,, be as in Theorem 4.6. Then the local
solution given in Lemma 4.5 can in fact be extended to all of [Tyux, TnNy,sn) X T3.
Moreover, the estimates (4.18) hold.

4.3.3. Step 3: Conclusion of the argument.

PROPOSITION 4.8. Let s, No, n and T'n, s n, be as in Theorem 4.6.

Them there exists a decreasing sequence of auxiliary times {Tyx, [}}r:l C
(0,TNy,5,n), limy_ oo Thux, 1 = O such that the following holds:

(1) The corresponding solutions {(g3"*, k"™, hi"*)}1=, given by Lemma 4.5
converge locally in C° x C? x C? (as I — +0) to a limit (g,k, h).

(2) The limit, which we denote by (g,k,h), solves (4.9) in (0,Tn, 5] x T°.

(3) Denoting g\D = g — gl (1)@ = g=1 — (glP)=1 kD) =k — kD] gna
W) = h — hln the estimate (4.18) holds.

(4) The limit (g, k) satisfies k;; = —%&gij.

The proof of Proposition 4.8 will be given in Section 4.9.

Proof of Theorem 4.4. The limiting solution given by Proposition 4.8 satisfies
all the conclusions of Theorem 4.4. This thus concludes the proof of Theorem 4.4.
0
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4.4. Definition of the energies and an outline of the proof of Theorem 4.6.
From now on until the end of Section 4.8, we focus on the proof of Theorem 4.6.
To lighten our notations, in these sections we write g = ¢g**, a = a®*, h = h*
and k = k™.

The crux of our proof of Theorem 4.6 is to bound an appropriate energy, which
we define now.

Define the energy

s—1

t) _ Zt2r+2H8tk(d) HZ " (Se)
r=0

s+1
(4.19) +Zt2’"llk P +Zt2’"\|h s,

s+1
32D s, g+ 1D DBy 5,0
Define also the modified energy

s—1

gs(t) — ZtZTJFZHf)tV(r)k(d)H%,Z(Et,g)

r=0
s S
2r 1 .(d) 12 2r | ()12
2 IR s, g+ D8 IR e s,
r=0 r=0
(4.20) < e ()2 2
_
+ 22 e, ) 10D s, )
r=0
+ DIV D o g, gy + P IVET 9Dl s, )

+2 ViR (gD 2oy, ),

where VETVp@), visFD g¢@ and vt l)(gfl)(d) are the renormalized top-order
quantities defined by

@21) (v r‘f;rl)h(d))“ i =0y vl @) _ (k:[“]+k: )Ja v (k(d))ji,

T ls ] i1ls]

@22) (Ve Vg DY i ais = AVETY G\ 4 2g, 0,V (k@)

zlwzs,zagzy i1ls—2a

+§/z();-l) 0D (07 G Ve (kD) y™ =V (ki ” — (97" gaaViy ke

1152

d s—2 —1\be m —1\be
+g§b)atv7(j|-~is),2((g 2 G Ve (D) o)™ = Viak) P = (97 ) g4V ke,
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and

@23) (VD (g )@y

1 ig—2Q

=2V (gD —2(g YUY (kD)

Vi) is0a

+((g D892 (g7 Gty Veka)™ = Viakn) = (971) garaViyke?)
(g D)V (97 o Veka)™ = Viaky? — (971 gugaVieykie?).

1 ls—

We remark explicitly that the modified energy and the energy differ by the
following:

e The energy controls the V(") derivative of d;k(? while the modified energy
controls the d; derivative of V(" k(@)

e The modified energy only controls (Y, (9 and (g~ 1) up to s derivatives;
at the top order it only controls the renormalized top-order quantities.

Since the proof will take several subsections, we give an outline of the strategy
for proving Theorem 4.6.

e In Section 4.5, we begin with some preliminary estimates.

e In Section 4.6, we carry out the energy estimate for k(%) using the wave
equation it satisfies.

e In Section 4.7, we carry out the energy estimates for h(®, g(@) and (g=1)(%)
using the transport equations they satisfy. Combining the results in Sections 4.6
and 4.7, we will obtain an estimate of the modified energy gs by the energy &;.

e In Section 4.8, we complete the proof of Theorem 4.6. The main ingredient
is to control & and &, using energy estimates, and the close everything using the
Fuchsian ideas as illustrated in Section 1.1.1.

4.4.1. Remarks on the dependence of constants (and related conven-
tions). Before we proceed, we make some important remarks regarding the
dependence of constants throughout the proof of Theorem 4.6.

From now on fix s € N with s > 5 as in Theorem 4.6.

We will use Cy and C,, as general positive constants. They may change from
line to line. Both Cy and C,, may depend on the data c;j, p; and also s, but impor-
tantly C,, may depend on n while Cj is not allowed to depend on n.

We always assume without loss of generality that Ty, s, < 1.

4.4.2. Remarks regarding k. Another important remark regarding the
proof of the bootstrap argument is that (despite the notation) we do not know that
k is the second fundamental form of the constant-¢ hypersurfaces. (In particular,
we do not know that gy; k:j]é =0.) In fact, it is only after extracting a limit in Propo-
sition 4.8 that we know that the /imiting k is an honest second fundamental form.

4.5. Preliminary estimates for the bootstrap argument. In this subsec-
tion we work under the assumptions of Theorem 4.6. In particular, we assume the
validity of the bootstrap assumptions (4.14)—(4.17).
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4.5.1. Sobolev embedding and basic comparisons of norms.

LEMMA 4.9. The following pointwise estimate holds for all scalar functions f
on (0, Tgoot)-

3
Co 'tV flg <D 10if| < Cot 'V £y

i=1

Proof. By definition, |V f |§ = (97190, f0; f. To get the desired estimates, we
just use a very wasteful estimate that C; '#> < min; ; |(¢7")"| < max; ; |(¢7")7| <
Cot~? (which follows directly from (4.14) and computations as in (2.15)). ]

LEMMA 4.10 (Sobolev embedding). The following holds for every (m,l) %-
tangent tensor T :

_3 _3
@424) ([T ll=(2.9) SCot H I Tllwracsg)y 1T Ls(sig) <Cot ™ H I T llwi2(s,,9)-

In particular, these inequalities imply

(4.25) 1T || L=(,.q) < Cot 3 1T N 2(2,.9)
and
r42
(4.26) 19N e 3o, gy < €0 ZtT"TIIT L7 (5, )

Proof. We first prove the inequalities (4.24) for scalar functions f. Using the
Sobolev embedding for T? in coordinates, it follows that

1
I
g < Co 3 ( / I0§“f|“dw>
t

4.27) o<1
4, ,—4 4 1 -3
sco( [ s+ |Vf|g) da)t < Cot 3 fllwrecs, g
t

where in the penultimate inequality we used Lemma 4.9 and in the last inequality
we have used C|; 1t‘lvolg < dz < Cot~'vols; (which follows from the bootstrap
assumption (4.14)).

For the second inequality in (4.24) for a scalar function f, we proceed similarly
to obtain

1

1 o 2
1l < Cott 3 ( |azf|2dx)
(4.28) o<1 N

1

7 D
gcoti( /E (!f2+t‘2!Vf!2)dx> < Cot s
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Now given a general (m,l) tensor 7, using (4.27) and (4.28) with f, =
\/|T 12+ a? (@ > 0) and taking o — 0, we obtain the desired inequalities in (4.24).

Next, it is easy to see that (4.24) implies (4.25).

Finally, by (4.25), and the fact s —e > 2,

T s+3—gy4—3 T
IVOTN aryresoe gy, gy S COUV O T i) + 4722V T s, )
r+2
< Coztr _THTHHW(Ehg)a
which is (4.26). [l

We will also need to compare norms with respect to g and with respect to the
trivial metric 57 (dz?)2.

LEMMA 4.11. Given any rank (I,m) Y-tangent tensor T,

k
|V[n] R vil) 7"!2}[“] < Ot ke Z Z Z Z $72Po; L. 2Py
(4.29) -

k times =041, b1 5o by 155 dm

2P0y L 2Pim 18;, - TJI Jm|2

Proof. Using the form of the metric (1.4), the bound (2.7) on a™ and the fact
D1 <p2 <p3,

(4.30)
|7—’3[n] :((g[n])fl)mln'”((g[n])fl)izbz ] [ TJ'L']mTcz‘Cm

9jicr " Ggmem Moty iy
S CO § § § § t_2pmin{i1,bl} .. ,tiZPmin{zl,bl},
b1 5eesby J1550m B 5ees8 ClseesCm

A 2Pmax(ye) L. 2P CirCm
tPmax{gy.er} .. ¢=Pmax{jm, r’m}’T1 by 7;1 i

S CO( Z Z t_pmin{il,bl} .. _tfpmin{il,bl} . tpmax{jl,cl} tpmax{Jm cm} ‘TJZ “Jm )

biyeesb G5 Jm

X( DS fp““"“"b'}-'-t_p"“"“l’bz}~tpmax{j1,c1}.-.tpmax{jm,Cm>|7ECi";cm|)
| )
150581 ClyeesCm
<Cop Z g 2P0y L 4720 4 2P0 L 4 2Pim ’72711"::571m|2'

bla---vbl Jlyeeosdm

This proves (4.29) when there are no derivatives (i.e., £ = 0).
Define the flat connection V{120 to be Levi—Civita connection associated to

S (dz?), de.

(ﬂat) ﬂat JivJm _ 9. i
VZ'| . 0 7;11 blm 8“...8“7'1 m.
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Then, since p; < 1—¢ < 1- 35, (4.30) gives

“4.31)
( f
Vi Vz(;dt)ﬂf,m

<Co Z Z Z T LIRS AR USRI 0

U1y-enybp by, bljl Jm

2p; 2p (flat) ﬂat 2
N TR t1m|V . 7;)1 bl|

Ct S T e 0 T

U] ey O14ees0y J1se- s Jm
Now compute
4.32)

[ T Jm
Vil VAT

—A. .. .]1 ]m E E . . ]z ]m
- 8’“ Zk b] + 821 'Ls )Zer]b azS+2 7- be— ]fbe+]"‘bl]

s=0 e=1
+Z Z 95+ 0| [n])’LSJr]’Lea'LSJrZ'“aie—laifaleJrl alr%jlzbjlm]
s=0e=s+2
k 1 m . . . .
+Zza“ F[n )zeﬂfalsﬂ 8ir7~blz.::éjle—1fje+1jm]+“_
s=0 e=1

+ @y P o7 4 (0 (i (o T 4 (riny (i T
—_——

k — 1 factors k — 2 factors k factors

where we have suppressed the indices in terms where the exact contractions do not
matter.

Our goal is to show that in the |- | norm, each term in (4.32) can be bounded
above by the RHS of (4.29). By repeated application of the Cauchy—Schwarz in-
equality (with respect to g), and using (4.31), it suffices to prove

(4.33) 105, -+ 03, (TS| < Gt~ 2,
which is the goal for the remainder of the proof.

We first make the easy observation that |0;, - - - 0;, ggg| < Cp|logt|¢t?max{pa,po}
and |0, --- 05, ((g™)~1)?| < Cy,|logt|4t—2™iM{Ps:Pe} | In particular,

10, -+ By, g{[l‘;)]ajl ...ajdz((g[n])*l)bc’ < Cp|logt| ¢2maxipap}|og ¢|d2¢ 2 min{py, pe}
< Cp|logt|H1%42Pvy =20 = O, |log |2,
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We now compute

|05, -+ 0, (F[“])ﬁbljm

1 n|\—1\i;4" n|\—1\i,.7 n\—1\j5' 7/ [n]\—1\bb _[m

= (™) () () T (g™ g
x By -0y (o))" @y g0ty + gy — gy
X0y 03, (™) ™) (919 + 094 — Oagyy).

Consider the example expression

1((g™) ") gl[D---a((g™) ) ) [0---agl 1[0~ - a(g™) ) “][0-- - '],

We can pair up g and (g[“])_1 with a common index and conclude that this ex-
pression is < Cj, |logt|[¥*1. All other terms are similar. Hence, we obtain

103,03, (T 24
SCn]logt]T“ max \((g[n])*l)ili'l...((g[n])*l)iv-i’r((g[nl)*l)jj"

o JHaa
01,85

< Cn|10gt|r+1t—(r+1)(2—2s) < Cnt—(zfe)(rﬂ),
which is exactly (4.33). 0
LEMMA 4.12. Forr <s-—2,
IV llwre(sy.g) < Collg P llwra =g+ (g~ D lwres, )-
Forr <s,
IV (52,9 < Colllg s s.g) + 10 D 11 (50,0

Proof. Note that

L., _ d d d
@34 (VG =l )" = (gD NV +Vigy — Vogi)).
The conclusion is then an immediate consequence of Holder’s inequality and the
bootstrap assumptions (4.15) and (4.16). [l

LEMMA 4.13. Forr <s—1,

Co T lwre(s, gity < I T lwre(s1g) < Coll Tllyprrim s, giny -

Proof. This follows from the bootstrap assumption (4.15) and Lemma 4.12.
g

LEMMA 4.14. Forr <s-+1,

Co 'NT N i sy gy < N T e (21,9) < Coll Tl (55, giy-
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Proof. This follows from the bootstrap assumptions (4.15), (4.16) and
Lemma 4.12. O

Note that Lemma 4.13 fails when » = s,s +1 as we do not control
lg'¥ lwr=(s,,g)- On the other hand, Lemma 4.14 by itself will not be sufficient for
our purpose. Instead we need the following:

LEMMA 4.15. The following holds for any o > 0:

s —at3
IVEOT | Lo (5g) 10 12(0g) < ColllT llywse sy gy 2N T |l 1o (5, g0m1)):

and
_ 5
IVEDT oy g)t0 12(200) < CollT lypssnmpzy giy F 21T lwimgs, giy)-

Proof. The main difference with Lemma 4.14 is that we may have terms which
involve s or s+ 1 derivatives of g(d).

We first consider the term V*)7. When writing V()7 in terms of (V™))
there is the term

TIVE-Dv@)]

(meaning s — 1 V derivatives acting on the tensor v(d)y, together with other terms
which are lower order and can be handled directly using the bootstrap assumptions
(4.15) and (4.16). This term cannot be bounded in L™, and will instead be con-
trolled in 2. For this we note that by Holder’s inequality, Lemma 4.12, and the
bootstrap assumptions (4.15), (4.16),

ITIVE IV s, ) < Coll T o209y 19V 2 (509) F 18 D111 (2,.99)
< Cot? [ T (5.9 < Cot T oz i

This gives the first inequality in the statement of the lemma.
The term VD7 is similar except for an additional derivative. Indeed, we
need to control the terms

[Vﬂ[v(sfl)v(d)]y T[V(S)v(d)]_

Both of these can be controlled in L?(¥;, g) using Holder’s inequality, Lemma 4.12,
and the bootstrap assumptions (4.15), (4.16) as above. O

4.5.2. An easy consequence of the bootstrap assumption.
LEMMA 4.16.
B D [[yprs-tim 5. g) + 1B D 17203, 9) + 106D 357530255, 9 < C.

Proof. This follows from Lemma 4.10 (Sobolev embedding) and the bootstrap
assumption (4.17). O
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4.5.3. Estimates for background quantities.
PROPOSITION 4.17. For each n € N, define

Iyw = —8th[n] + |/€[n] ’2,
(Tm)i? 1= =07 (k™) + Ay (B — (V97 )
+ (kP kg gy 4 (9, e el 7

Given any N € N, there exists ny s € N sufficiently large such that whenever

n 2 nN,S)
s+1 s—1
D Ml (s + O gl ir(s,.g) < O™+
r=0 r=0

Proof. By Lemma 4.11, it suffices to show that for any given polynomial rate,
n can be chosen sufficiently large so that I}, (I )i and their coordinate deriva-
tives tend to O faster than the given polynomial rate.

Step 1: Proving the estimates for I ». Recall that by definition A = (kD)L
By Proposition 3.3, (2.10) and the expression for Ric ((g) in (3.3), it follows
that given any polynomial rate in ¢, we can choose n € N sufficiently large so that
Iw = —8,hI + \k[“] |? and its coordinate derivatives go to O faster than the given
polynomial rate in .

Step 2: Proving the estimates for I;m. By (4.5) and (2.10),

(Iyw)i? = =0, Ric;? (Wgl) 4+ v;(GIM)T 4 vi (gIm);
—3(kM), " Ricy, 7 (W gy 4 zgg(k[n])mé Ric,™(# g
— (k™7 Ric; {(W gy 42k Ric, 7 (9 gy
— (k)67 = (k) Ricy, ™ (W g™) + O (),

(4.35)

where (G™); = Ric(#gM);; and L, is linearly increasing in n.
By Proposition 3.3, given any polynomial rate in ¢, we can choose n € N suf-
ficiently large so that the terms
— O Ric; 7 (Wg) + v, (g7 4 w7 (g, — 3(kM), ™ Ric,, 7 (W gM)
+25g(/€[n])mf Ric, ™ (W gy — (kM7 Ric; ¢ (W gy + 2(kM)  Ric; 7 (4 g
= (k)57 = (KI)7) Ric, ™ (99

and their coordinate derivatives go to O faster than the given polynomial rate in
t. O
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PROPOSITION 4.18. Foranyn € N,

s—1
D ™ rens, g
r=1

s—1
+ Z (t’““ ||Vl ln] virree(s50,0) ¢r+2|| yinlynl g ln] HWT’W(Et,g)) <Ot
r=0

and

[V <O,

5
(L4712 75 L2)(Sh,9)

HV(erl)k[n] H < Cnt7872+s'

(L6372 12) (1,)
Proof. This follows from Lemmas 4.11, 4.13 and 4.15, and the estimates for
kM in coordinates given by (2.8). O

PROPOSITION 4.19. For anyn € N,
& Lo, g) < Cot ™!+ Crpt 5.

Proof. This is similar to the proof Proposition 4.18, except that we need to be
more careful to check that the borderline O(¢~!) terms are independent of n (since
Lemma 4.11 does not give an extra t° for the zeroth derivative). Nevertheless, by
(2.8), it follows that the borderline contributions exactly come from t~ k7, which
are manifestly independent of n. U

PROPOSITION 4.20. Foranyn € N,

s—1
D 10k o, gy < Cut 2, 100 || Lo, g) < Cot ™%+ Crt ™27,
r=1

Proof. This is a small variation to Propositions 4.18 and 4.19. First, note that
it suffices to control terms on the RHS of (2.2).

e For the term Ric(g"~1);7, we use Lemmas 4.11 and 4.13 and the estimate
(2.9). (Note that there are no borderline terms in this estimate.)

e For the term (k)¢ (k[);7, we use Lemmas 4.11 and 4.13 and the estimate
(2.8). For the lowest order term, note that the borderline terms depend only on
t~'k;7 and are thus independent of n. O

Once we obtain the estimates for k[“], the estimates for k& can be controlled
after using also the bootstrap assumptions (4.17).
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PROPOSITION 4.21. The following estimates hold for k:

k]| L=(5,.9) < Cot ™"+ Crt ™15,

s—2
S IV Rl < Cat ™,

r=1
(s=1) —s+e
HV k“(Lm+ts+%7sL2)(Zt,g) S Cnt s

IV©k| < Cnt ™71,

(L 372 12) (S1.)
106k || 1(52,,9) < Cot ™+ Crt 727,

s—3

ZtrHV(r)atkHLm(zt,g) < Cpt 2,

r=1

Hv<s—2>atk;||( < Cpt ™,

5
Lo+ 34 12)(5 )

Hv(sfl)atkn( < Cntfsflﬁe'

L°°+ts+%*5L2)(2t,g)
Moreover; the above estimates hold both when k is replaced by k™ and k'®.

Proof. That the estimates hold for k™ follows from Propositions 4.18, 4.19
and 4.20. That the estimates hold for k(@) follows from (4.17) and Lemma 4.16.
Finally, since k = k4 %) the estimates also hold for k. O

PROPOSITION 4.22. Foranyn € N,

s—1

s—1
S R regs, g+ D ETIORM yriegsy, o)+ IVEORM s, )

r=1 r=0

S Cntfl*‘rE"

and
[ o, g) < Cot ™"+ Cpt 1=

Proof. Recalling that we set Rl = (kz[“] )¢*, this can be proven in the same way
as Propositions 4.18 and 4.19. g

PROPOSITION 4.23. The following estimates hold for Ric(g):

s—3
Z t" || RlC(g) H Wr>(3¢,9) < Cnt_2+€a
r=0

|V~ Ric(g) < Cpt ™57,

lm st
(571) 1 < —s—14¢
||V Rlc(g)H(L‘X‘thﬁgstz)(Et,g) - Cnt :
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Proof. For simplicity, we write in this proof Ric = Ric(g), Ric™ = Ric(gM)
and similarly for the Riemann curvature tensor.
First, notice that by Lemma 4.11 and (2.9), it follows that

s—1

ZtTH Ricl [[yyree(5,gy < Crt 242
r=0

As aresult, Lemmas 4.13 and 4.15 imply that all the desired estimates when Ric is
replaced by Ricl™.

It thus remains to estimate the difference Ric — Ric™. We will bound the dif-
ference of the full Riemann curvature tensor; the bounds for the Ricci curvature
tensor of course follow immediately. We compute

(Riem — Rlem[n])wk

= 0,(0 =TI, — 0,0 — TG 4+ T T — T8 1, — (T)E (T}
+ ()5 (TS,

= 0y(0 =TI)f — TP (0 —TM), — TP (0 —TI)f 4+ 1,0 —TM)P,
— ;T =Tl 412 (0 =T, T2 (0 -] — 15, (0 —TM)?,
— (0 =TWhE (@ =T + (T —TR) (-1

= V(T =T, —v,(T —Th)j — (T —Tk)P (r—TM)]

n|\/ n

+ (@ =Thh (r -1

(4.36)

Combining this with (4.34) and the bootstrap assumptions (4.15) and (4.16), it is
easy to see that Riem — Riem™ can be controlled by

s—3 s—1
ZHRlem Riem!™ [ Wwre=(1.9)> Z || Riem — Riem™ || ;- (Seg) < Co-
r=0 r=s—2
This concludes the proof of the proposition. g

4.54. Commutator estimates. We will often use the commutator formula
between the Lie derivative in 0; and covariant derivatives in the spatial directions:

PROPOSITION 4.24. The following commutation formula holds for any (m,1)
Y-tangent tensor T :
[@, ]7']1 “Jm

R
l

== (g7 Gm(i Vekio)™ = Viakiny® = (67 ga@Vip ke T

T— th index
r=1

T—th index

Z In(vVeki)™ = Viakn = (97 V" ga@Vi ke VTG,
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Proof. A direct computation shows

r—th index

l

J1Jm __ Ji+ ]m b g1+ ]m Jr J1° b “Jm

OVT " =VaO T E 8,5FMT7;1 +E oL T .
—1 r— Lhmdex

On the other hand, we compute using (4.9) and (4.10) that

oTh. = (g7 )"k (Oager + Ocgat — O1gac) + (97 (Ou(ga(ake))
— 0a(gake)t) — 0c(gaakn®))
=2(g7" “kd Laegmi+ (9" (0(9aake)) = 0a(9auke ') —Oc(9akn®))
= (97" Vi(gaakeo™) — Valgaake®) — Ve(gauky®))
= (97" 9a(a Vikin" = Viake' = (97 ga@V e k.

Combining these computations yields the desired formula. g

PROPOSITION 4.25. Let T be an (m,l) X-tangent tensor.
For0<r<s-—1,

@37 MOsVal Tl SCn 3o 47 Tl 5,0
r1+ry=r
Consequently, for 0 < k < s, iterated commutators can be bounded as follows:

k—1

(4’38) H [atv Vil e Vik]THLZ(Et,g) < Cn Z t_z_rl+€ ”THH]C—T‘I—I (S4,9)°
r'=0

Finally, if T is a scalar function, then in fact (4.38) holds for 0 < k < s+ 1.

Proof. Step 1: Proof of (4.37). Using Proposition 4.24, we have the estimate

1106 Vol T e (2,.9)
< Co Z IVEIVE| o500 IV Tl 1205, )

r1+7r2="

(4.39) Tl§3:3
+Co Y [VIIVE|

r1+7r2="1
r1>s—3

7”2
PR L P e

Lw+t5+r5L2
We estimate each of the terms in (4.39). Using the estimates in Proposi-
tion 4.21, the first term in (4.39) can be bounded above as follows:

> IVEOVEI s, IV T2,

rit+ry=r

(4.40) n<s=d
< Cn Z t_z_rl+€‘|THHr2(Zhg)'

rit+ry=r
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Before handling the second term in (4.39), we first note make the following
observations on the numerology:

e When r; > s — 3, since we have r; + 1, = r < s — 1, we have either r, =0
or rp = 1. In particular, r, +2 < r.
We can thus bound the second term in (4.39) using Proposition 4.21, (4.26) and the
above observations as follows:

(1) (r2)
DO A7 PN L Cy B

rit+ro=r
ry>s—3
ry+2
—_— /—
<oy e (S, )
ri+r=r r'=r;
ri>s—3
<O Y T Tl s,
ri+r=r

where the very last estimate follows simply after relabelling.
Combining (4.40) and (4.41) yields (4.37).

Step 2: Proof of (4.38). When 0 < k < s, we compute using the triangle in-
equality and (4.37) to obtain

”[8t7vil . ‘Vik]THLZ(Et,g)
= H[ahVZ-l]Viz . "VikT+"'+Vz’1 [3t’Vi£] Vsz

T+t Vil o 'Vik—l [6t, Vik]THLZ(Zt,g)
k
< COZ | I:at7v7f'r}vir+l T VikTHHT*l(Ehg)

r=1

k
(4.42) L
SCnZ Z 13 : T1+€||Vir+l "'VikTHHTZ(Zt,Q)

r=1r;+r=r—1

k
o
< an Z t T1+€||T||Hrz+k*”(2t,g)

r=1r;+ry=r—1
k—1
0l
SCnZt 2 T+€||T||Hk*”*1(2t,g)'

r'=0

This yields (4.38).

Finally, for a scalar function f, [0;,V;]f = 0. Hence, in (4.42), we sum only
up to r = k — 1. As a result, we can take up to kK = s+ 1. This gives the desired
improvement for scalar functions. O
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4.5.5. Estimates for general equations.

PROPOSITION 4.26 (Transport estimates). Let T be an (m,l) X-tangent ten-
sor. Then

d, M _
&[t M”THZLZ(zt)]"‘?[t M\\Tuiz(zt,g)]_% M/ (T, 0:T) g| vols,
(4.43) Co ¥y
!
In particular,
d, _ M
s p M\|T\|2LZ(zt)]+7[t YT 25, )]

Co. _ _
< EMIT I )+ AT o, g

Proof. We first note that by (4.9)

(4.45) 4 fvolg, = / (B¢ f — k*) fvoly,.
dt b pN

We will apply (4.45) to f =t~ ™|T]|3. A direct computation shows that
4.46) Oy f = —Mt M T2 42t M(T,0,T ),

¢
+2t™M Z(g_l JRURES {(g—l )f(lrkzw)} . (g—1 )Zz%gjl] ngJm’]Zl lszc]] Jm,

4
-M —1\iy4 —1\ip%, 4 m m
—2t MY (g (g g g Ky G, TR T j :

which implies, using Proposition 4.21, that

L M

@4n o

TR <27 YT, 0T |+ Cot ™ T
The pointwise inequality (4.47) implies (4.43) immediately after integrating over
>’t, using (4.45), and applying again the estimates in Proposition 4.21.

Finally, to derive (4.44), we simply note that by the Cauchy—Schwarz inequal-

ity,

27 | T 0T )glvols, <6 T, g+ 10T s, O
t

PROPOSITION 4.27 (Energy estimates for wave equations). Let T be an (m,)
-tangent tensor such that (—03+2,)T =F for some (m,l) Xy-tangent tensor F.
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Then

d

ST

VT 2y g) 21T a0

(Z¢,9) (Zt,9)

M _
+7[t M(HatTH%Z(zt,g)"‘”VTHZLZ(Et,g)"'t 2\\7-“3;2(2t,g))]

(C’o + C,t¢ )
t

T F s, -

< Y N0T s,y IV T 2, )+ 2T (s, )

Proof. Denote by E terms bounded by %[ M 10,7 sy T
IVT 120, 0) +t Y 21T 22, )

Step 1: Controlling the first order terms. Applying (4.43) in Proposition 4.26,
integrating by parts and using the Cauchy—Schwarz inequality,

d
MO T s, ) T IVT 725, )]

dt
M a7 VT3
+ U0 T 2,0+ IVT 25, )]

=2"M [ (8T, 0FT) g+ (VT,d,VT),)vols, + E

pan

=2M [ (0T, F)g+ (0T, AT+ (VT,0VT)y)voly, + E
(4.48) bt

= —2757M g <8tT, ]:>g VOth
¢

—2 M [ ((VO,T,VT)y— (VT,8VT),)voly, + E
Xy

< M-t HatTHiz(ng) ¢ M HJ:HZLZ(EM) +E

—-M
<t s, g + B

where we have used that by Holder’s inequality and the following commutator
estimate (which uses Proposition 4.25)

< Cnt VT 2 I T 2250 0)

/ VT, [0, VT,
3¢

3
< Cot™ VT2, )+ Cnt I T, )

Step 2: Controlling the zeroth order term. It remains to control the zeroth order
term HTH%z (Sig)" For this we simply use Proposition 4.26, and then use (4.48) to
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obtain
d M +2
ST R, )+ ot T s,
(4.49) c
0, M- M-
< Tt I g g+ 1||‘9'fT”2L2<zt,g) <E
Summing (4.48) and (4.49), we obtain the desired estimate. O

4.6. Energy estimates for the wave equation for k. In this subsection we
continue to work under the assumptions of Theorem 4.6. In particular, we assume
the validity of the bootstrap assumptions (4.14)—(4.17).

We insert (4.13) into (4.9) to obtain evolution equations for the difference
(k).

2 (kD)7 = Ay(B D)+ (ke kexk — kM 5 o) glnl), g
(4.50) A A A
+ Bk x k — Ok w kYT 4 (1) + B,

where the terms (kx kx k), (9;k k) are as defined in (4.6), (I, ); is as defined
in Proposition 4.17, and B;7 denotes the following terms:
@.51) B = —V;Vin+ VI (VI Rl A (k)7 — A (k).

The following is the main energy estimates for k(%)

PROPOSITION 4.28. Given N € N, let n € N be sufficiently large so that the
estimates in Proposition 4.17 hold. Then

s—1 i
d _ —2s T T d T d
& [t e (th POV L5, g+ D IE )HZ'T(Et,g))]

r=0 =0
s—1 s
IN+2s | oy s 242 ) 1.(d) |2 27 1.(d) |12
A DOV OO Lo, gy + D IR e,
r=0 =0

where, as before, we have used the notation V) = Vi -V,

Uy

Proof. For 0 <r < s—1, we differentiate (4.50) by V(") to obtain the following
wave equation for V(") ()

2y(7) (r) ) j
(452) -9V, ., (k;( )) +A VZl i (kD)
=V (L) =V B =V (kxkock — K gl gl 0

V) (Ohexk— Ok« k)T — (92, V v (D) + (8, V7, 1)

Byl Bty
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For every 0 <r < s—1, our goal is to show that

) =32V (D) + AV (KDY s, )

11 11 Z

(4.53)
< (Cot 2+ C’nt‘2+5)5§ (t) 4+ CptNte,

after which we will apply Proposition 4.27.
The proof of (4.53) will be achieved in Steps 1-5 below in which we bound
each term on the RHS of (4.52).

Step 1: Bounding the inhomogeneous terms. For 0 < r < s — 1, by Proposi-
tion 4.17,

(4.54) [ Lol || < CrptN 57
Step 2: Bounding the terms in B;7. Recall from (4.51) that B;/ consists of h
terms and k terms. We first compute the exact form of the h terms:
— (g™ Vadeh+ (™) Y VM opht

(433 —13¢ (d) ~1\jly(d) 5 7] —1\(d)\jéyn] 5 7 [n]
= —(g7 "Y' V;0,h\Y — (g 1YV TV op™ — (g 1) DY VG RM.

From (4.55), the triangle inequality and Holder’s inequality, it follows that

1= (g~ Videh+ ((9™) "V VMO v s, )

SV DN s, 0+ D IV i (2, 9 10 ™ a5, )

rit+ry=r

=:1
(4.56) ~

+ Z HH’I Ztg ||V 6Khn]HV[/TZ (Z g)

r1+Tr2="r

=:1II

Term I can be directly estimated by the definition of E4(t):

(4.57) L P 252()

By Proposition 4.22, Lemma 4.12, and the definition of £(t), we have

H<Co Y 27 (g gnsg 10 Vg s, )

r1+7r2="r

< Cn Z t727r27r1+588% (t) < Cnt77"72+585% (t)

rit+ry=r

(4.58)
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For term IV, we use Proposition 4.22 and the definition of &(t) to obtain
M<Cu D 7767 Vs,
r1+7ry="r

< Cn Z t727r17r2+588% (t) < Cnt77"72+555% (t)

r1+ry=r

(4.59)

For the k terms in 5,7, we compute

460) Ag(K™)iT — Ay (k)7
' — (g“Dymiv vl () 4 gty @yl g g gy, oD g

The terms in (4.60) are similar to those in (4.55) (with k taking the place of h)
except—importantly—that (4.60) does not contain second derivative terms of k(%
This is important because while our energy controls up to s+ 1 derivatives of h(?),
it only controls up to s derivatives of £(%). Other than this difference, the remaining
terms in (4.60) can in fact be controlled very similarly as those in (4.55). We will
therefore omit the details and simply give the final estimate:

. 1
(4.61) IVTIBI | 205, 0y S (Cot+ Crt)t " 2E2 (t)

Step 3: Bounding the difference of the nonlinear terms. 1In this step we control
the H" norm (for 0 < r < s — 1) of kx k* k — kM x kM 5 kM and 0,k  k — 9, kM x
enl,

We begin with kx kxk — ks k) 5 kM For 0 < r < s — 1, we use Holder’s
inequality, Proposition 4.21, and the definition of £(t) to obtain

[k x ok — K KPS k| g, o
<Co Y, IVIIEN ED)| s, )

T+ Ar3=r
r,T2<s—2
max{ry,ry}>1

(4.62) > ”V(rz) (k[n] , k(d)) HL“(Zt,g) Hv(rs)k(d) HLZ(Et,g)
+ Coll (K™ KDY | s, ) | B KDY | o5, ) IV R D | 1205, )
<Cpt I t—l—”tst—ﬁgé (t)+ Cot—zt—Tgf (t)
< (Cot ™2+ Cnt*“”f)f;é (t),
where we have used the shorthand

VO R D) o(s9) = IV VR Loy g) + IVORD o, . et

When r = s — 1, we have terms as in (4.62) which can be controlled similarly,
but also the following extra term, which we in addition use Sobolev embedding in
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(4.26) to obtain

[ Ko e — kP s 0 s 00|

< Col [V (K™, K1) (R B D) | o,

e sist3-e 220

(d)
X Hk ||(L20t_s_%+EL°°)(Ztag)

(4.63) < Col [V (KM, K@) I KDY (35,

5
(L= +t""27°L2)(Se,9)

2
<D I D s,
r’'=0

< Cnt*’”*”fgé ().

We now turn to ik xk — 9:kM % kM. For 0 < r < s — 2, we use Holder’s
inequality, Proposition 4.21, and the definition of £,(t) to obtain

10k 5 ke — k™ s k™ |
<Co Y VIIE D) i, ) IVPORD 25, )

r1+ry=r
1<r;1<s-3

+Co Z RAREACGEN S | 2=(3.9) |V ) 22(s0,9)
1242

+ Coll (K™, KDY | s, ) IV 0D | 125, )
+ Col| 0 (k™ KDY | o2, ) IV D | 25, o)

(4.64)

<Ch Y. gl g2 (1) 4 Gt~ IER (1)

r1+ry="r

1
< (Cot T2 CutTTTAEER (1),

For r = s — 2, we have an additional term when all derivatives hit on
8t(k[“} , k’(d)) so that we cannot put it in L. For this term we use Proposition 4.21
and (4.26) to obtain

V8, (kM KDy &

5 5
(L>+t5T27°[2)(4,9) (L2052 L) (2y,9)

(4.65) 2 :
< Cut ™Y R D s, g < Ot T EEL (1),
r'=0

For r = s — 1, we have additionally (compared to (4.64) and (4.65)) terms
where (1) all but one derivatives hit on 8t(k[“],k(d)), (2) all derivatives hit
on (k™ k(9)), both of which cannot be put into L. For these terms we use
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Proposition 4.21 and (4.26) to get
r— 1 [n] (d)
VDR sy IV sy

+ VIR R D) |

10k (L2534 =) (S4,9)

(4.66) | e 2, J
<G (S 5+ S 1K 5,
r'=0

r'=1

5
L°°+ts+77EL2) (Zt.9)

< Cot T IEEL (D).

Step 4: Bounding the commutator terms [—9} + A4, V(")]. By (repeated appli-
cations of) Proposition 4.24, [—9?, V(")]k(@) consists exactly of terms of the form

Z v Ev() g, k@) Z v g, kv ) (@)

ri+ra=r rit+ro=r

PR AR AL A AR

ri+ry+ri=r

Thus they can be controlled in exactly the same manner as in Step 3 to obtain
(4.67) 1[07, V5, ---VZT] HLz w,9) < (Cot™"™ 24t 2+5)52( t).

On the other hand, the commutator [A, V()] gives rise to curvature terms. In
the 3-dimensional ¥;, the Riemann curvature tensor can be expressed in terms of
the Ricci curvature and thus can be controlled using Proposition 4.23 to obtain

1
(4.68) 1[Ag, Vi, ”'V’ir]k(d)HLz(E,g) < Ot "THEER ().

Step 5: Putting everything together. Combining Steps 1-4, we have achieved
(4.53).

Therefore, for every 0 <r < s— 1, we apply Proposition 4.27 with M =2N +
2s—2r—2to get

d S+2r

alt U0V R s, g+ I s, g+ IR s, )
2N +28—2r—2 . nr s+2r r

+ t [t N5 42 +2(H&tv( )k(d)Hsz(Zt,g) T ”k(d)HiV“(Et»g)
_2 2

2R s, )]

Co—aN—2s+2r42 () (d) |12 (d) 2
<7[t (Hatv HL2(2“9)+”k HHTH(Zhg)

+(Co+(]nt€)t*2||k ||2
2V 2V (KDY + AV (K D)2, )

< (C()til +Cnt71+25)t72N72sgs(t) +Cnt3,

T(Zy g))]
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where in the last line we have controlled [t=2NV=25t2r+2(||9, V(") f(d) |2 125y T
| () ||Hr+1 ot (Co 4 Crt®)t~2|| kD2 "z, g))] using the energy and have used
(4.53).

Summing over Zi;(l), we obtain the desired estimate. U

4.7. Transport estimates. In this subsection we continue to work under the
assumptions of Theorem 4.6. In particular, we assume the validity of the bootstrap
assumptions (4.14)—(4.17).

We prove in this subsection estimates for h(4), gg.i), (g~ ") @)%, which are all
derived using the transport equations they obey.

We insert (4.12) and (4.13) into (4.9) to obtain evolution equations for the
differences gg-i), (K@), h(@ and ((g~1)( )4

(4.69) Apht = 2(kI ;i (kD)7 4 (kD) (kD) 4 L
(4.70) gl = =2(k™) g\ = 2(6D) g0,
4.71) Ay (g~ ") D)1 = (kM) (g~ 1)@ 2 (kD) (g~ 1)L,

We begin with the more straightforward, less than top-order, estimates for h(%),
g, ((g7") @), Commuting the equations (4.69), (4.70) and (4.71) with V", 7 <
s, we obtain:

@.72) A = 2V (R (kD) 7] 4 VO (kD) F (D) i
+ VO + [0, VOTRD,
@73 PAYY )glj) - —2V(T)[(kj[n])(/g(,§lz] 29y VO (K@),
+ [0, Vgl
gy OV =29 (g )

+2(g7! )If(i\v(r)(k(d))elj) + [0y, V(r)]((g—l)(d))ij‘
We use (4.72)—(4.74) to obtain the following estimates.

PROPOSITION 4.29. Given N € N, let n € N be sufficiently large so that the
estimates in Proposition 4.17 hold. Then

& [y (S, )]

r=0
4.75) 2N T _on—2s - 2r 2
T T (1 )]
< (Cot ™ 4 Cpt 1) V=258 (1) + Ot
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and

(il:t 2N— 2s<z(:)t2'r 2 Hg Hzrgtg +||( *1) )H%{T(Et,g))>]

2N 1 _on- s - r— -
+ [ (29 B+ 1D s,
r=0

< (Cot—l +Cnt_1+6)t_2N_2553(t).

(4.76)

Proof. We will only prove (4.75); the bound (4.76) can be derived similarly
(and is slightly simpler).

Applying Proposition 4.26 for 7 = V" A@ (0 < r < s) and M = 2N +2s —
2r, it suffices to show that

(4.77) 10,V R D L2, ) < (Cot ™+ Cpt 1*5)52( )RR

To prove this we consider each term on the RHS of (4.72). First, by Holder’s
inequality, Proposition 4.21 and (4.26), we obtain

(4.78)
D RN 5, )+ I ED) ED) 5 o, )

<Co > IVIIEED) | o, ) IV VRO 25, )

r1+ry="r
ri<s—2
T‘2+2
+C Z ||V<T1)(k‘[n},k(d>)”(Lw+ts+%—sL2 ( Z t” 7‘2||V d)HLZ(Et))
ri+ro=r r'=ry
ry>s—2

< D (Cot T Cot T ED s, )

r1+ry="

1
< (Cot™ T 4 Cpt 1Y E2 (1),
Next, the inhomogeneous term [, s can be bounded using Proposition 4.17 by
(4.79) IV Ll 25, g) < Cut ™ F.

Finally, by Proposition 4.25,

r—1

1106, VOLRD | 123, ) < Cn D 72 FE R s
(4.80) £,9) /Z() H 1(3t,9)

< Cnt”*’“*aeé (t).

Combining (4.78)—(4.80) yields (4.77). O
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We next turn to the top order derivative estimates for h(®, g(9) and (g~ Hd,
For this we first control the renormalized top-order quantities introduced in
(4.21)-(4.23). (Subsequently we will show using elliptic estimates that the renor-
malized top-order quantities indeed control all top-order derivatives; see already
Lemma 4.34.)

PROPOSITION 4.30. Given N €N, let n € N be sufficiently large so that the
estimates in Proposition 4.17 hold. Then

d N (&)
9 pran-2si2(sen) ||Vr§n I ||L2(Zt,g)]

dt
(4.81) 2 i o
42V t [t 2N —-25+2(s+1) ||Vresn ”L2(Zt,g)]
< (Cot ™'+ Cnt )28 (1) + Cit,
and
. Ty (s+1), _
dt[t 2N —25+2(s+1)— (”Vrgn ”Lz (S1,9) +||Vr§n (g 1)(d)”%2(2t79))]

4.82 2N 1) 1)
( ) +2 ; [t 2N—-25+2(s+1)— (Hvr:;r g HL2 Etg+|‘vr:: ( *) )H%z(zt’g))}

< (Cot—1+cnt—1+a)t—2N 28((/‘8( )

Proof. Step 1: Proof of (4.81). The main difference with the estimates in
Proposition 4.29 is that there can potentially be (s+ 1) derivatives of k@ which

is not controlled by our energy &(t). The quantity v R) is in fact designed

exactly to avoid such terms after using the bounds for the wave equation for (@),
We begin our computations. First,

483)  AVEY AD =2k p kD) IAVETD (K@) 1 error,

where the error terms have at most s derivatives hitting on k(%) and thus satisfy

the estimates similar to that in the proof of Proposition 4.29 (and their proofs are
therefore omitted):

(4.84) 51 ||error]| 12 (Seg) < (Cot™ 'ro, t_1+5)5 (t) +tVFs.

The term 2(kM 4+ k(@) 1A, v ((kD);7, however, cannot be controlled.

B lg
Nevertheless, continuing our computatlons we see that

oK™+ D)0V (K ))

ll 7/9 1
4.85) = (k1 pd >> TAGVETD (KDY i (R D) (92— A ) (kD)
O, kD) o,V ) (kD)0
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Note that this generates a term (kM + k(@),7 A, vis D (k@));7 which can be

Uis—1

used to cancel the uncontrollable term in (4.83). Hence combining (4.83), (4.84)
and (4.85), we obtain

s—1 7
10,2V R@ 2k 4 K D)d g,V (R D)) s, )
< 2| (K 4+ kD)7 (07 — A)VED D) | s,
+20{0 (K + D) V) (KDY s, )

+ (Cot 275 + Cnt*Z*”E)Sé )+t 1,

(4.86)

‘We now handle to two terms in (4.86). By Proposition 4.21, (4.53) and Holder’s
inequality,
IR+ D) (07 = Ag)VE D (RD) 7 2z, )
(4.87) < (I E D) | o, ) 1(0F = Bg)VEDED) | 25, )

< (Cot >~ + Cnt*Z*”E)EE (t) 4+ Cpt™.

On the other hand, by Proposition 4.21 and Holder’s inequality,

O™ + D)0V (KDY s, )

s—1

(4.88) ]
< (Cot 275 4 Cpt 275F9)E2(1).

Combining (4.86)—(4.88) and noticing that V& V(@) is defined exactly to be
(recall (4.21))

AVED BD (k) k(D) g vE D (@)1

ipis—1 U ts—1

we thus obtain

(4.89) 10, Vrg;‘l ||L2 Sog) S (Cot_2 sS4 C, 2 s+s)52( )—{—CntN_l.

The desired estimate (4.81) then follows directly from Proposition 4.26 (for
M =2N+2s—2(s+1)).

Step 2: Proof of (4.82). The main idea is similar to Step 1, so we will be brief.

The main difference is that for ¢(?), not only the derivatives of the inhomogeneous

s+1)

terms create V( k, but the commutator terms also create similar terms, which
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have to be taken care of by a renormalization. More precisely, by (4.70) and Propo-
sition 4.24,

(4.90)
aA V(S 1) g(d)

11 ZS 2a71)

—AVED V0,0l D 4 [0,8,907) 191D

11°ls—2 ] i1tg_naldig

= 204380V 1) L (D)
_ _ e d
— AV (07 g Vekay™ = Viakiy? = (97 gagaVake gy,

- —1\be d
_Ag E1 Zs) 2((9 1) (]\V k ) (ak])b_(g l)b gd(an)ked)gz(b)Jr---,

where the terms denotes by --- have at most (s + 1) derivatives on k™, at most
s derivatives on k and at most (s + 1) derivatives on ¢(®, and therefore can be
bounded as in Proposition 4.29 by

|l < (Cot ™=+ Cut ™ =549 (1),

It thus remains to handle all the main terms appearing on the RHS of (4.90).
(s+1)

Now one observes that the quantity Ve, '¢(@ is designed exactly to remove this

term (in a similar way as Vge,f Dh() is designed in Step 1) so that the additional
error terms are controllable. It thus follows that

4.91) 10, Vi g D] (s, ) < (Cot ™' =5+ Ct ™!~ s+oVE2 (1),

(s+1)

which implies the desired estimate for Vye, ~¢(?) in (4.82) after using Proposi-
tion 4.26..
(s+1

The argument for V& (g~1)(@ is similar and omitted. O

We conclude this subsection by summarizing what we have achieved so far,
namely that we have obtained an estimate for the modified energy by the energy:

PROPOSITION 4.31. Given N € N, let n € N be sufficiently large so that the
estimates in Proposition 4.17 hold. Then for any t € [Tyux, TBoot),

T—ZN—ngS(T)

T

. t
t7 N2 (1) +2N / dr

t
S/ (CoT*1 +CnT’”E)T’2N’25<€S(7) dr + Cpt.
Taux

Proof. This is an immediate consequence of Propositions 4.28, 4.29 and 4.30.
0
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4.8. Conclusion of the proof of Theorem 4.6. In order to conclude the
proof of Theorem 4.6, we finally need to relate £; and c‘:’; (which will be achieved
in Lemmas 4.32 and 4.34), and then use the energy inequality in Proposition 4.31
to deduce our desired estimates.

Recalling now the difference between & and gs (as described immediately
after their definitions in (4.19)—(4.23)), we need to

e relate atV(T)k(d) and V(T)atk(d) (achieved using a commutator estimate; see
Lemma 4.32), and

o relate the renormalized top-order quantities and other top-order derivatives
(achieved using elliptic estimates; see Lemma 4.34).

LEMMA 4.32. The following estimate holds:

s—1

> 2|0,k HZTZ o < (Co+Cnt )E(t).
r=0

Proof. We control the commutator [3;, V(")]k(%) using Proposition 4.25 to ob-

tain
s—1 _
Zt2r+2HV(T‘)atk(d) _ atV(T)k(d) H%Z(Et,g) < O 1EE, (t),
r=0

from which the desired estimate follows from the definition of gs [l

LEMMA 4.33. Given any tensor £ tangential to 3,

V2625,

(4.92)
< 2||A96H22(Et,g) +Ont_2+€||V£||i2(2t7g) + Cnt_4+2€”£”%/2(2t,g)'

Proof. We compute

186€ 0725, )

=/E (g~ )M (g7 ) gy - gon, (97 ) (g7
t

ap- aza azu gy

T by bm by by
b - TIL
(493) xViVifga ~ay V 'V 5 1. VOl
_ ap-- alal anij by bm 1
== |8 i, Vebal Vv Vg , ,Volzt
t
- ap- CLgCLI agzz]] bi-bm, b,
_/2 ijl bl b, ViVl ,WVVQ“ _ ,volgt+error
t

= |v® 5||L2(Et7g)+error,
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where terms labelled error (different in the two instances) come from commuting
covariant derivatives and obey an estimate
lerror| < Co||Riem(g)]| =55 [IVE 2205,
: 2
+ Col| Riem(9) | 1~5.) IV V€ 225, ) ]| 20

As a consequence, since on the 3-dimensional ¥;, Riem(g) can be expressed
in terms of Ric(g), we can use Holder’s inequality and Proposition 4.23 to obtain

||V(2)£H2L2(Zt7g)
<Al T2(s, o)+ Col Riem(9) || =(s.) [ VElI 7215, o)
(4.94) +Co||Riem(g) || =520 IV @€l 25, o) 1€l 205, )
< HAgf‘ﬁ:Z(zt,g) +Cnt72+€HV£H%2(Et,g)
+Cnfzﬁ”v(z)gny(zt,g)HfHLl(zt,g)v

which implies (4.92) after using Young’s inequality and absorbing 4 5 HV )¢ I 12
to the LHS.

(Z¢,9)

LEMMA 4.34. The top order part of the energy for h\® g(@ (g=1)(@ s
bounded by:

PODRDIE, o+

< (CO +Cnt8)gs( )

U9 @B 5, 00+ 18 D B, )

Proof. The key is to use Lemma 4.33. Consider for instance h(@) . We first note
that AgV(S_l)h(d) can be written as a linear combination of the renormalized top-

(

order quantity Vré”n+ 1)h( ) and terms which has at most s derivatives of k(¢ (and
kM) so that it can be checked that

AV VR s, ) < (Cot Cut)Eu(t).

It then follows by the elliptic estimates in Lemma 4.33 and the lower order control
for h(¥) by E,(t) that

IR D s, g S (Co+ Crt)E(D).
The estimates for the top-order derivatives for ¢ and (¢~ !)(?9) are similar. U

Combining Lemmas 4.32 and 4.34, we obtain:
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PROPOSITION 4.35. Given N € N, let n € N be sufficiently large so that the
estimates in Proposition 4.17 hold. Then for any t € [Tyux, TBoot),

Es(t) < (Co+ Cut®)E(1).

We are now ready to conclude the proof of the bootstrap theorem (Theo-
rem 4.6):

Proof of Theorem 4.6. Given any N € N, choose n € N sufficiently large so
that the estimates in Proposition 4.17 hold.
Combining Propositions 4.31 and 4.35, and integrating in ¢ (noting that we
have trivial data at T},x), we obtain that
4—2N-2s bopm2N=2sg (1)

——&(t)+2N ——=d
(C0+0nts) ( ) T (CO+CnT€)T T

4.95) .
§/ (C()T_l+OnT_l+€)T_2N_2553(7')dT+Cnt.

We now choose our constants. First choose N sufficiently large so that
N > max{ZCo(CO + 1), 2(Co+ 1), Ny, 7}.

We then fix an ny, s € N sufficiently large so that whenever n > ny, s, (4.95) holds
with the given V. After fixing n, we then choose Ty, s, so that CnTﬁ,msm <.

Plugging Cp < % and C, T, ¢, < 1 into (4.95), we then obtain

t72N72s t 7_72N72s(c/‘s (7_)

—E&(t 2N _
Gorn oW+ n (CotDr O

t N T —2N— 255( )
< 1 d t.
—/TM<2(00+1)Jr ) T 7+ Ca

(4.96)

Notice that we have chosen N so that (ﬁ +1)< % We can thus subtract

—2N-— 256 ( ) . )
deux G d7 from both sides of (4.96) to obtain
t 2N — 28 —2N 288 )

4.97 N dr < Cyt,
( ) (CO+1 + /aux CO""l T>0Unp
which immediately implies
(4.98) E(t) < {2N+2s

after choosing T, s, smaller if necessary. In particular, since we have chosen
N > No and Ty, s,n < 1, we obtain (4.18).
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Finally, we check that we have improved the bootstrap assumption. For (4.15)—
(4.17), this is immediate from (4.18). For (4.14), note that (4.98) and (4.25) imply

N4g—3
Hg_g[n”’l/""(zt,g) < Cot™M TR,
Now note that the smallest eigenvalue of g~ is > C, '¢t~2"1 > C,; 't*. Hence
8 2 AP (i 2 2
t%]az; — alll[? < Cot*Pmaxtin ay; —all)? < max| g;; ~ ol
< C«O(t—Z)ZHg _g[n] ”%W(Et,g) < Cot2N+28_11.

Now since NV > 7 and s > 4, we have |a;; — a£;]| < C’Ot%. Combining with (2.7),
we thus obtain

(4.99) lai; — cij| < Cot®,
which improves over (4.14) after taking T'v, s to be sufficiently small. O

As we discussed in Section 4.3.2, once we have proven Theorem 4.6, we now
also obtain Corollary 4.7.

4.9. Extracting a limit: proof of Proposition 4.8. In this final subsection,
we prove Proposition 4.8, which, as indicated in Section 4.3.3, is the final step of
the proof of Theorem 4.4.

We begin with some easy estimates, which will allow us to extract a limit.
(Notice that these estimates are allowed to degenerate as ¢ — 0, but importantly
they do not depend on Tx.)

LEMMA 4.36. Let s, No, n and Ty, s, be as in Theorem 4.6. For every T
T" satisfying 0 < T' <T" < TN, s n, there exists a constant C > 0 independent of
Taux such that the following holds (with definitions in (4.12) and (4.13)).

Let Ty € (0,T'] and suppose (g™*,k** h*™*) is the solution to (4.9) on
[Taux, TNy, s,n) X T3 given by Corollary 4.7. Then

sup sup Y (1070200 |+ 10702 (g™ 1) D)) (¢, )
te[T", T €T3 o <4

+ > (050K |+ 107osn ) (¢ 2) < C.
r+|a|<3

Proof. When there is no d; derivative, this just follows from (4.18) and Sobolev

embedding. To obtain the estimates with the 0; derivatives, we use in addition the

equations (4.50), (4.69), (4.70) and (4.71). [l

LEMMA 4.37. Let s, No, n and Ty, s, be as in Theorem 4.6. There exists
a sequence of auxiliary times {Tyux,1}7> C (0, TNy s.m)» iMoo Taux, 1 = O such
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that the corresponding solutions {(g3"*, k3", h3")} 1=, given by Lemma 4.5 con-
verge locally in C? x C? x C? norm (as I — +o) to a limit (g,k, h) which solves
(4.9) in (0, T, s.n] X T3. Moreover, after denoting gD =g—gl (g =¢g-1_
(=1, kD =k — kM and b = b — b, the estimate (4.18) holds.

Proof. The existence of a limit follows from Lemma 4.36, the Arzela—Ascoli
theorem, and a standard argument extracting a diagonal sequence. Since the limit
is achieved locally in C° x C? x C?, it follows that the limit satisfies the system
4.9).

Finally, we prove that the limit obeys the estimate (4.18). First, note that the
estimate (4.18) implies that for every ¢, there is a subsequence {7}y, IZ}ZS for
which {(g3*, k3, h$)}, = has a weak limit satisfying (4.18). This limit must
coincide with the local C? x C? x C? limit, thus showing the bound (4.18). [l

The very final statement we need in order to complete the proof of Proposi-
tion 4.8 is that gjj/kij/ is symmetric in ¢ and j. The key to such a statement is the
following lemma.

LEMMA 4.38. Suppose (g,k,h) solves (4.9). Then the term (gjj/kij/ - gij/k:jj,)
satisfies an inhomogeneous wave equation of the following form:

= X0 k0, ki, " (gerka” — gacke") + Y Ok (geeka” — gacke")
+ Zgzlic]dkgfat (geeka’ — gacke"),

where X, Y and Z are some tensor products of g, g~ and 9.

Proof. Step 1: Easy reductions. First, a direct computation shows that

0F gk’ — giyki?)
=~ {(gjpkj® — gjnk;®Vki? — (ginkj® — gjnki®)k;7}
— (9y0k;” — gk " Ok’ + (9,90t ki? — g1y k") — 2955k Duki.

Notice that all the terms on the first line are of the form as required by the lemma.
It thus follows from (4.9) that

(07 = Bg)(gjyki? = i)
(4.100) = g;i{(kxkxk)? + Ok +k)T}
— gig{ (kxkxk) 7 + (Dekx k)7 } = 2955k Oiki® + -+,

where - -- denotes terms which are of the form as required by the lemma. (Notice
in particular that the Hessian of h term drops of because it is symmetric.)
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Investigating now the terms in kx kx k and 0;k x k, we only need to check that
Qij/gjj/ - ijlgij/7
where
Qi € {k?, 67, ki'ka?, Ok, [(Opki®ka” — (Oka )kif]}

is of the form required by the lemma. (Note that the term [(9;k;%) ko — (9;ka” ) ki
comes from combining terms in 0¢k % k and —2gjj/kbj/8tkib.)
Now clearly if Q;7 € {k‘ij/, 5/}, then Qij/gjj/ — ij/gij/ is of the desired form.

For Qf = ki“k:aj/, we compute
kika” g — ki ke’ i = ki (ka” 950 — 57 gag?) = ki (ka’ i — ki ga),
which is of/ the desired form.
For Q) = d;k;7, we compute
9150k’ — gij Oekes”
- 8t(g”/k:ﬂ/ — g”lk]]/) + gjbk‘j/bk‘i‘j, + gj/bkjbk‘ij/ - gibkj/bkjj/ — gj/bkibkjj/
= 0u(gjiki® — gipki?) + (gjhk® — gk — (givky® — gpnki®) k7,
which is of the desired form.
For Q) = [(0iki®) ko’ — (9ika’)k:], we compute
[(Deki®Vka? — (Bka” Vi) gjj — [(Ok;Vha® — (Dpkia® Vi giy
== Ot(kiagj/a — kj/agm)k‘jj/ + 8t(k‘j/agja — kjagj’a) =+ 8tk‘ia(k‘aj/gjj/ — k‘jj/gaj/)
- atkja(kaj/gij’ - kij/gaj’)
+ (gbaky® — gk Ve ki + (gjaki? — gyrika® kP
— (goaky® — gyaks ki — (gyaks? — gyika® Veihs?,
which is of the desired form. This concludes the proof. g

We are now ready to show that gjjrkij/ is symmetric in ¢ and j.

LEMMA 4.39. Given a limit (g,k,h) as in Lemma 4.37, the limiting k is in fact
the second fundamental form, i.e., k;; := gjj/kij/ = —%@gzj.

Proof. Denoting k;; := gjj/k:ij/, the equation for g implies that 0;g;; = —k;j —
k;;. Hence, in order to prove the lemma, it suffices to show that £;; is symmetric in
7 and j.

To this end, we define (k3™);; := (g3%),;#(k3"*);/", and first obtain an estimate
for its anti-symmetric part. By Lemma 4.38, (k3"*);; — (k3"%); satisfies a homoge-

neous wave equation. By the choice of initial data for k%", g7"* (recall Lemma 4.5)
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and Lemma 2.13, it follows that

(4.101)
ICCRT™)ig = (K1) i 80 ((RT™)ig — (K1) i) Ti=Tun s i1 (51,
< Ct71+(n+l)€'

ux, I ’g)XLz(ETauX,I 79)

We now perform energy estimates for (k3"*);; — (k9**),; using the wave equa-
tion in Lemma 4.38 (in a manner similar to the k£ energy estimates in the proof of
Theorem 4.6, only simpler). By choosing n sufficiently large, the estimate (4.101)
allows one to take care the borderline terms and moreover show that for any 71 €

(07TN0,S,TL)a

(4.102) lim sup I (KT™)ig — (BT™)jill o1 (s,,9) = O-

Iode tE[T():TNO,s,n)

Finally, since k;; is the pointwise limit of (k5"*);; as  — +oco (by Lemma 4.37),
the estimate (4.102) implies that k;; is symmetric in 4 and j, which is what we
wanted to prove. O

Proof of Proposition 4.8. Proposition 4.8 follows directly from Lemmas 4.37
and 4.39. g

5. Vanishing of the Einstein tensor. The goal of this section is to show
that the solution of (4.9), constructed in Theorem 4.4 in subsection 4.3, is in fact a
solution to the Einstein vacuum equations. This then concludes the proof of Theo-
rem 1.1; see the conclusion of the proof at the end of the section.

We begin with the following:

PROPOSITION 5.1. There exists Ny, € N sufficiently large such that the follow-
ing holds.
Let s > 5 and No > Ny,. Then, for n > ny, s the solution (g,h,k) to (4.9)
given by Theorem 4.4 satisfies
h=k".

In particular, ® Ric(¥g)y; = 0.
Proof. Once we establish that h = k4%, it follows from the first equation in (4.9)
that 0;k¢* = |k|%. According to (3.3), this in turn implies that “) Ric((4)g)tt =0.

Taking the trace of the second equation in (4.9) and using the identity (4.7), we
obtain

[0ike’ — |k?) = Ay (ke® — h) + 2k:' [0k’ — |K).
Since by (4.9) 9;h = |k/|?, it follows that

(5.1) 07 (ke —h) = Ay (k" — h) +2k;' 0, (ke* — h).
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Note that this is a wave equation for (k,* —h). We can then carry out a similar
energy estimates as in the proof of Theorem 4.4 to obtain

1
£2(|0; (k" — ) H%Z(Et,g) + th’"Hk/ - hHJZLIT(Et,g)
r=0

1
Co+cnt€ r
S—F <t2‘|at(k/ - h)”iZ(zt,g) + th [ hH%{r(zt,g)> ;
r=0

5.2)

where we have used the estimates for £ given in Proposition 4.21. Here, as in the
previous section, we use Cj to denote constants depending only on s, ¢;; and p;,
while C), can depend in addition on n and Nj.

At the same time, by Theorem 4.4 and the fact that hl" = (k)¢

(5-3) e = il (5, g) + 100 (e = B[, g) < 282704272

In particular, choosing N, sufficiently large, the estimates (5.2), (5.3) and
Gronwall’s inequality implies that

ke’ = BlBgs s, g+ 190 (e = 1) 225, ) = O,
which in turn implies the desired conclusion. O

PROPOSITION 5.2. There exists Ng > Ny, and ng sufficiently large such that
the following holds.

Let s > 5 and Nog > Ng. For n > max{ny, s, ng}, take the solution (g,h,k)
to (4.9) given by Theorem 4.4. Then Vg = —dt?> + g is in fact a solution to the
Einstein vacuum equations, i.e., Ric((4) g) =0, and k is the corresponding second
fundamental form of the constant-t hypersurfaces.

Proof. For this proof, we denote G; = G4(#g) and &;; = G;;(Wg), both
thought of as >.;-tangent tensors. We also use the notation that V is the Levi—Civita
connection for the spatial metric g.

Step 1: Derivation of a system of equations. By (4.5) and the wave equation
(4.8), we have

A Ric;? (Wg)
(5.4) = VG +VIG; — 3k Ricy,? (M g) + 267k, Ric, ™ (P g)
— kgj Ricie((4)g) + Zk/ Ricij((A')g) — (kgg(sg — kij) Ricmm((4)g).
Taking the trace of (5.4) and using the fact that Rictt((“) g) = 0, we also have:

(5.5) 8 R(Wg) =2V,G7 + 2k, Ric,™(Wg).
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The combination of (5.4) and (5.5) implies the following equation for the Einstein
tensor G/ (¥ g):

0,6 (Wg) 1= aiRicd (W) ~ 2690,R(Wg)
=V,G/ + VG — 67V,G" — 3k Ric,, ' (W g)
+ 67k Ric,™(Wg) — ke’ Ric; /(W g)
+ 2k Ric; ! (W g) — (k' — k7 ) Ric, ™(Wg).

(5.6)

Note that Ric;7(g) can be written in terms of G/(*)g): Ric;7(Wg) =
Gl (Wg) + %5@4‘3((4)9), where R(Wg) := —Ry(Wg) + R (Wg) = RA(Wyg)
by Proposition 51 Taking the trace we get Ric;? = G, + %R/((“) g) so that
R/A(Wg) =2G;H(Wyg). It follows that

(5.7) Ric;/(Wg) =&,/ (Wg)+678,".
We can thus rewrite (5.6) as
(5.8) 0B :Vigj+ngi_5ijvfgé+(k*®)ij;
where (kx®);/ is some quadratic contraction of k& and & whose exact form is
unimportant.

On the other hand, by the contracted second Bianchi equations and the fact that
DGi(Wg) = 0,G; + k7 Gj, and D; G/ (M g) = V; 8,7 + k;7G; + ki G, we obtain

(5.9) 04G; = kjjgi+VjQ5,~j((4)g).

Taking 0; of (5.9), applying (5.8), and using the commutation formula in Proposi-
tion 4.24, we obtain the wave equation

0;Gi = 0k’ G)+V;(ViG' + VI G — 67V (G + (k% ©)7) +[0, V167

5.10
(5.10) =NgGi+kxkxG+OkxG+k*0G+VhkxG+EkxVS,

where in the last equality we have also used that the curvature tensor Riem(g) can
be expressed in terms of &, k and 0k using (4.4), (3.1), and (5.7), so that

Vi(ViG? +VIG; —37V,G") = V;ViG? + Ay Gi — V;V; G
=NgGi+k*xkxG+0k*G.

Here, kx kx G, etc. are in principle explicit, but we do not carry out the computa-
tions as the exact form is unimportant.
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Step 2: Energy estimates and vanishing of the Einstein tensor. Our goal now
is to perform energy estimates using (5.8) and (5.10) so as to show that & and G are
both = 0. Investigating the terms in (5.8) and (5.10), we note that the RHS of (5.10)
has terms with one derivative of G, which apparently leads to a loss of derivatives.
Nevertheless, this can be treated in exactly the same manner as (4.9).

Define the energy

1 2
B(t) =Y 0G0 5,00+ Dt 1G5,
r=0

(5.11) r=0

2
—2+42 2
28N 5,
r=0

and modified energy

1 2
E(t)=Y 10V s, g+ 2t G s, )
r=0

(5.12) =0

1 v
T8, )+ IVOG s,
r=0

where

(VO®) = A&7 — 9, V;G! —0,VIG; + 57 0,V,G".

We now carry out energy estimates for the wave-transport system (5.8) and
(5.10) in a manner similar to that for (4.9) in Theorem 4.4. Note that we in particu-
lar need to use the elliptic estimates in Lemma 4.33. Nevertheless, the present case
is much easier because of the linearity of the system. We omit the proof and give
the estimates

d Co+ Cpt®
5.13 —FE(t) < ——E(t
(5.13) SE(M) < B (),
where we again used the convention that C depends only on s, ¢;; and p;, while
C), can depend in addition on n and Ny. We now fix Cy and C), so that (5.13) holds.

We now need to show, using (5.13), that E(¢) = 0. For this purpose it suffices
to check that

(5.14) lim t @ E(t) =0,

t—0*

so that we can apply Gronwall’s inequality to & (t~ 0 E(t)) < t({i’; (=S E(1)).
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Define G = G (Wg) and (’5?;] = G;j(Wg). Then by Proposition 3.3,
there exists ng € N such that if n > ng, then

1 2
lim G0 (thruatgw Byt S IG B

t—0t s e
(5.15) = ) =
—242r 2 _
+Zt H®[n]” ‘T‘(Et7g)> =0.
r=0

On the other hand, by (4.11) in Theorem 4.4, if N¢ is sufficiently large and
Ny > Ng, then

1 2
lim ¢-C (zt%uaxg—g["m%p@t,ngt‘W||<g—g[“]>u2~ )

t—0t = o
(5.16) = ) =
—242r 2 _
+Zt + H@[n]H 'T(Zt,g)> =0.
r=0

Therefore, choosing Ny > N¢ and n > max{ny,s,n¢}, we obtain (5.14) by
using (5.15) and (5.16). This gives E(t) = 0. Together with Proposition 5.1, this
gives that the Einstein tensor vanishes identically. g

We end the section with the conclusion of the proof of Theorem 1.1:

Proof of Theorem 1.1. This follows immediately from Theorem 4.4 and
Proposition 5.2. 0

6. Uniqueness and smoothness of solutions: proofs of Theorems 1.7 and
1.10. We prove Theorems 1.7 and 1.10 in Sections 6.1 and 6.2 respectively.

6.1. Uniqueness of solutions.

Proof of Theorem 1.7. Let (4) g, ) g be two solutions to the Einstein vacuum
equations (1.2) satisfying the assumptions of Theorem 1.7.

In this proof, we use C' to denote positive constants depending only on c;; and
pj, and use C' to denote positive constants which depend in addition on the implicit
constants in (1.10), (1.11) and (1.12).

Notice that it suffices to prove uniqueness on a sub-domain (0,7"] x T? (for
some 0 < T" < T') since in the region [T”, T x T3, we are away from the singularity,
and uniqueness will follow from standard uniqueness results. For this reason, we
will take T" sufficiently small so as to assume C'(T")¢ < 1.
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Step 1: Estimating k and k. Using the estimates (1.10) and (1.11), and arguing
as in Propositions 4.18 and 4.19, we obtain

2

(6.1) > VTRl (s, + IV R 5, ,g) < CEY
r=0
and
1
(6.2) D VIO 15, g) + IV O] o5, ) < CE 2,
r=0

where V denotes the Levi—Civita connection of §.
Step 2: Estimating the convergence rate ast — 0". Let
(6.3) h=k' h=Fk"

Define the variables

gVi=g-g, (¢ ")Y=g"=5 nD:=h—h, ED:=k-F

Given any M, € N we can choose M,, sufficiently large so that by (1.10) and
(1.12),

19 20,0 + 10 DN 20,00 + DD N 12(3,.0)

(6.4) ,
D | 1 (s, ) < C'tM,

Moreover, given any M, € N we can choose M, even larger so that by (1.12),
(6.5) IRic(g) — Ric(3)| z2(s;, 5 < O™

Now since both () g and “) g solve (1.2), the RHS of (3.1) vanishes for both metrics.
Hence, using (6.1), (6.4) and (6.5), we obtain

(6.6) 10:k D | 25, ) < O max{tMu! M},

Step 3: Energy estimates. We now carry out energy estimates for (g(%), h(®),
k(d)). First, we note that they satisfy a system of equations analogous to (4.50),
(4.69), (4.70), (4.71) as follows.

e By definition of k and %, we immediate obtain the transport equation
Ay = —27*3(11{9](»?1) —2(kD)gi-

e By (6.3) and (3.3), (¥ satisfies a transport equation 9;h(?) = |k|> — |E|2.

e Arguing as in Section 4, it follows that both k and & satisfy the wave equation
(4.8) (with the corresponding metric g and §). We take the difference to obtain a
wave equation for k(@)
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Note that these equations are similar to but simpler than (4.50), (4.69) and (4.70)
in the sense that the system is homogeneous.

We can thus carry out energy estimates in exactly the same way as in the proof
of Theorem 4.4, including using a modified energy together with elliptic estimates.
In particular, defining

r=

2
Eult) =Y [ U9 D T .90+ 100 N arr(s209) + 2 IR 1175, )]
0
1

+ R D (s, )+ POFD | L2, ),
r=0

we can run the energy estimates in Theorem 4.4 using the bounds established in
Steps 1 and 2 above.
e Estimates (6.1) and (6.2) in Step 1 guarantee that
d C
t

(6.7) —E&(t) <

dt Eult)

for some fixed constant C' > 0 depending only on the constants in (1.11).
e Taking C as in (6.7), estimates (6.4) and (6.6) in Step 2 guarantee that if M,
sufficiently large, then

(6.8) limsupt~©&,(t) = 0.

t—0t

The bounds (6.7) and (6.8) immediately imply that £, = 0, which in particular
implies g = g, which is what we wanted to prove. g

6.2. Regularity of solutions. Our goal in this subsection is to prove The-
orem 1.10. As already mentioned in the introduction, for the proof we rely on our
uniqueness result.

We first introduce a piece of notation for the rest of this subsection. Let s >
5 and Ny € N. For n > ny, s, Theorem 4.4 and Proposition 5.2 give a solution
to the Einstein vacuum equations of the form (1.4) which satisfies the estimates
(4.11). We denote such a solution by gn, s and denote the corresponding second
fundamental form by kn, s n.

We need the following lemma, which checks the conditions (1.10) and (1.11)
in Theorem 1.7.

LEMMA 6.1. Let ny, s be as in Theorem 4.6 and Ng, ng be as in Propo-
sition 5.2. There exists N. > Ng sufficiently large such that if Ny > N., s > 5
and n > max{nny, s,nq}, then for g = gn,.sn and k = kn, s n, there exists C >0
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depending on Ny, s, n, ¢;j and p; such that

(6.9) > 102 (ai; — ei)| < OF,
|| <2
1
(6.10) S oros(kd —t k)| < CE

=0 |a|<2—7r

Proof. In this proof, we allow the implicit constants C' > 0 to depend on N,
s, m, ¢;j and p;.
We first prove (6.9). Since s > 5, by (4.11) and (4.25), we have

>
> g = g™ wre(s,,g) < CtNots=3,
r=0

Now note that the smallest eigenvalue of g‘l is > C~1t72P1 > C~ 142, Hence,
_1
(9= )i+ £1Velg — g + [ VoVlg — g™ < L0773,

Writing the covariant derivatives in terms of coordinate derivatives, using g;; —
(]

gz[?] — 2Pmax{i,j} (ai; — a;; ), and choosing N, sufficiently large, we thus obtain

6.11) N[0 (ay; —all)| < CF.
|a| <2

The estimate (6.9) then follows from (6.11), (2.7) and the triangle inequality.
The proof of (6.10) is similar, where we first use (4.11) and (4.25) to obtain

2 1
Zter — k" lwre(sig) + Ztrﬂ 10 (k — k[n])er’m(Zhg) < OMots=3
r=0 r=0

Then, after choosing NN, sufficiently large, we can obtain the desired (6.10) using
(2.8) and the triangle inequality. U

We are now ready to prove Theorem 1.10:

Proof of Theorem 1.10. Given M, as in Theorem 1.7, the following holds:
e There exists n, € N sufficiently large such that if n, n’ > n,., then

1
(6.12) > 19708 (g™ — g = oM.
=0 |a|<3—r

This is because of the estimates (2.29) and (2.50) derived in the proof of Theo-
rem 2.1.
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o There exists IV, > N, (where N, is as in Lemma 6.1) sufficiently large such
that the following holds. Suppose s > 5, Ng > N, and n > npy, s, then

1
(6.13) Do 10702 (g — g™ = O(EM™).

=0 |a|<3—r

This is a direct consequence of (4.11) and Sobolev embedding.

Fix (gNo:NmS:ino’kNoZNmSZiNO) on (OvTNO:Nr,SZino] x T, where no =
max{ny,=n, s=s, "r, NG }. We want to show that this particular solution is
in fact smooth. Let sg > 5 be arbitrary. By Theorem 4.4 we obtain a so-
lution (gNy=N,,s=so.m> ENg,s=s0,n) ON (0, TNy=N, s=s0,n] X T3 for some n >
max{nny=n, s=s,; "r, NG }. We now claim that in fact on the common domain of
existence (0, min{7Tny=n, s=5mngs I Ng=N, s=so,n }] X T3, we have

(614) 9No=N,,s=5,n9 = GNy=N,,s=s¢,n"

To prove the claim, it suffices to verify the conditions of Theorem 1.7:

e Since s > 5 and Ny = N, > N,, the conditions (1.10) and (1.11) hold be-
cause of Lemma 6.1.

e By (6.12), (6.13) and the triangle inequality, our choice of ng, n, Ny, s im-
plies that

1
> D 10708 (INg=Nr s=5m0 — INo=Nys=s0.m)| = O(E"),

r=0 |a|<3—r

i.e., (1.12) holds.
This establishes (6.14).

As a result of (6.14), it follows that the fixed solution (gn,—n, s=5n,
ENo=N, s=5.n,) is in H®T1 x H*% for every

te (0, min{T]\/b:Nms:ino 5 TN():NT,S:S(),TZ}] .

Now we use energy estimates as in the proof of Theorem 4.4 to show propagation
of regularity: it then follows that the solution is in H*%! x H*® for every ¢ in the
original time interval, i.e., for every t € (0,Tn,=N, s=5n,)-

Since s can be arbitrarily large, it follows from Sobolev embedding and the
equations (4.9) that the fixed solution (gn,=n, s=5ny,ENy=N,,s=5n,) is in fact
smooth in (0, 7Ny=N, s—5.n,] X T. This concludes the proof of the theorem. ~ [J
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