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ABSTRACT

A simplified kinetic description of rapid granular media leads to a nonlocal Vlasov-type equation with a
convolution integral operator that is of the same form as the continuity equations for aggregation-diffusion
macroscopic dynamics. While the singular behavior of these nonlinear continuity equations is well studied
in the literature, the extension to the corresponding granular kinetic equation is highly nontrivial. The
main question is whether the singularity formed in velocity direction will be enhanced or mitigated by the
shear in phase space due to free transport. We present a preliminary study through a meticulous numerical
investigation and heuristic arguments. We have numerically developed a structure-preserving method with
adaptive mesh refinement that can effectively capture potential blow-up behavior in the solution for granular
kinetic equations. We have analytically constructed a finite-time blow-up infinite mass solution and discussed
how this can provide insights into the finite mass scenario.

1. Introduction

Granular flows are omnipresent in nature, from large scale mud-
slides to small scale table top experiments [1,2]. Rapid granular flows
or granular gases consist of a large number of small discrete grains,
which interact by instantaneous hard-sphere like collisions [3]. The
physical modeling of granular gases has been revolutionized in the
past decades due to the maturity of kinetic theory. Unlike the ideal
gas particles, the distinct feature of granular particles is the intrinsic
inelasticity of the collisions between grains. As a result, there is a
dissipation of energy, which brings a perturbed system quickly to rest.

Deriving kinetic equations from statistical mechanics of particle sys-
tems undergoing inelastic collisions faces important issues such as the
inelastic collapse [4], i.e. infinite many collisions in finite time. How-
ever, the kinetic description of granular gases [5-7] has been successful
in computing transport coefficients for hydrodynamic descriptions used
in experiments far from their supposed limits of validity [8-14]. We
refer to the seminal book of Brilliantov and Poéschel [3] and the
recent review [15] for further physical and mathematical details and
a comprehensive list of references in the subject.

Let us consider particles moving in a one dimensional setting.
Denoting by v, v, € R the velocities of two particles before their
collision, and v" and v/, the velocities after collision, we can write the
postcollisional velocities in terms of the precollisional ones as

V=v-ev-v,), U, =v,+ev-0,)

* Corresponding author.

for 0 < € = e(lv—-v,[,0) < 1. This immediately implies the energy
dissipation:
/|2

2 2 2
[WLI7 + 101 = [ol* = [v, > = —e(1 — &)(v — v,)* <0,

and therefore, ¢ controls the loss of kinetic energy and is referred
as the restitution coefficient while 6 is a parameter controlling the
strength of inelasticity. Typical restitution coefficients are of the form
e(lv=0,].0) = gg(1 + 0lv—0v,]")~!, with p > =2 and 0 < &, < 1. Then
following the same formal derivation of the Boltzmann equation from
the particle dynamics, the kinetic description of the above inelastic
collision takes the form [16-19]

a,f+U-0xf=// B(@{IU’—U@I%f(U’)f(UL)— IU—U*If(U)f(U*)}
R JR,
x du,do a.n

where f(t,x,0) : (0,00) X R X R — R* denotes the probability density
function of grains and J is the Jacobian of the transformation from
(v,v,) to (v, v}), and B is the rate function.

As opposed to the Boltzmann equation whose equilibrium is the
Maxwellian, the equilibrium of (1.1) is a Dirac mass located at the mean
velocity of particles, which means that all particles are at rest in the
comoving frame. This is a direct consequence of energy dissipation. If
in addition to the friction, the granular material is put in interaction

E-mail addresses: carrillo@maths.ox.ac.uk (J.A. Carrillo), ruiwen.shu@uga.edu (R. Shu), liwang@umn.edu (L. Wang), wuzhexu@umass.edu (W. Xu).

https://doi.org/10.1016/j.physd.2024.134410
Received 20 April 2024; Accepted 14 October 2024
Available online 28 October 2024

0167-2789/© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).


https://www.elsevier.com/locate/physd
https://www.elsevier.com/locate/physd
mailto:carrillo@maths.ox.ac.uk
mailto:ruiwen.shu@uga.edu
mailto:liwang@umn.edu
mailto:wuzhexu@umass.edu
https://doi.org/10.1016/j.physd.2024.134410
https://doi.org/10.1016/j.physd.2024.134410
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physd.2024.134410&domain=pdf
http://creativecommons.org/licenses/by/4.0/

J.A. Carrillo et al.

with a thermal bath, then a combined effect of friction and diffusion
may lead to a non-Gaussian, non-Dirac equilibrium [20-22].

In the quasi-elastic regime, i.e., ¢ ~ 1, (1.1) can be formally
approximated by [16,17,19]

o f +vof = %60 (f/R lo— w|P* (- w)f(w)dw>

=: %av((auw *, 1)), (1.2)

where the collision now is described by a nonlocal interaction with
kernel

o]
W (vl = = 1.3)
where y = g + 3. This is also a reminiscent of the grazing collision limit
of Boltzmann operators.

The spatially homogeneous version of (1.2), that bares the name of
aggregation equation (upon replacing v by x), has been well studied
in the literature [23,24]. In particular, starting from a bounded initial
data, there is a sharp threshold that distinguishes the finite time blow-
up versus global in time solution in terms of the Osgood condition.
However, by allowing a spatial dependence with a free transport dy-
namics, it generates substantial difficulties in understanding its solution
behavior [25]. In essence, the lingering question is:

Will the singularity formed in v-direction enhanced or mitigated by
the shear?

Here, we tackle this problem through a series of numerical experi-
ments followed by a heuristic argument. As with many other physical
systems, such as the Navier-Stokes equations for fluids and the Boltz-
mann equation for rarefied gas, a naive discretization would easily
lead to unstable, physics-violated numerical solutions. In principle, this
issue is addressed with the aid of numerical analysis, which provide a
theoretical guarantee and practical insight to the numerical schemes.
Despite that numerical analysis has its own theory and tools, it is un-
doubtedly that PDE analysis is the stepping stone for the development
of the numerical analysis of PDEs. Said differently, one needs to have
at least some well-posedness result or apriori estimate of solution for a
PDE before one can simulate it numerically with confidence. Otherwise
it is ambiguous to assert that the computed numerical solutions are
physically relevant.

However, when it comes to possible singular solutions, the theory
is often lacking. One would instead rely on numerical solutions to
give some guidance on the possible solutions [26-28]. This is the
approach we are taking here. To this end, we will follow the splitting
approach in [29] which gives rise to a local in time weak solution, and
our design principle of the numerical scheme is to preserve as much
physical quantities as possible, including conservation and dissipation.
Our main challenge to numerically solve (1.2) is the possible singularity
formation. For this problem, we will integrate a mesh refinement tech-
nique [27] that rearranges a certain amount of grid points dynamically,
and therefore ensures the high resolution within the possible blow-up
region. A slight modification that guarantees mass conservation will
also be added.

Theoretically, for the case y = 2, we construct a family of self-
similar analytic solutions with infinite total mass. The maximal time
T of existence for such solutions is always finite, and there is a critical
threshold which determines whether the velocity support shrinks (in
the super-critical case) or expands (in the sub-critical case) as t —
T~. Heuristic arguments show that in the super-critical case such
infinite-mass solution could be approximated by a finite-mass solution,
leading to the finite-time blow-up of a finite-mass solution, while in the
subcritical case a similar finite-mass solution will not have finite-time
blow-up. This threshold for finite-mass solution is verified by numerical
simulations. Further heuristic analysis suggests that this mechanism
will not lead to a finite-time blow-up if y > 2. The case y = 2 has a
special structure and global-in-time finite mass measure solutions have
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been constructed by optimal transport theory [30], where finite mass
concentration is neither proved or disproved.

In Section 2, we first summarize the solution properties of the spa-
tially homogeneous version of (1.2), as well as the physical quantities
that we intend to preserve for the spatially inhomogeneous version. In
the next subsection, we introduce the mesh refinement technique and
then build it into a variational formulation—the Jordan-Kinderlehrer—
Otto scheme. Section 3 is devoted to the numerical tests. We first
verify the performance of our scheme validating our numerical solution
with theoretical predictions for the spatially homogeneous case. We
then carry out a series of systematic experiments to conjecture the
solution behavior in the spatially inhomogeneous case.! We finally offer
theoretical evidence in Section 4 to substantiate our numerical findings.

2. Structure-preserving numerical schemes

We first discuss the main properties of solutions to the equations
of interest. We focus next on the development of suitable numerical
schemes keeping these properties at the discrete level.

2.1. Solution properties

Consider spatially homogeneous case of (1.2), i.e.,
0.f = 0,((0,W =, ) (2.1)

with radial kernel W(v) = w(|v|). We first cite the following theo-
rem [24] regarding its sharp threshold dynamics.

Theorem 1. Starting from a bounded, compactly supported, nonnegative
initial data,

7, . o
. if “7(’) is monotone decreasing, w''(r) > 0 and

1
/ L < 4o, 2.2)
0

w'(r)

then the solution to (2.1) blows up in finite time. The blow-up time
depends only on the initial data through its radius of support and total

mass;
. if '”T(') is monotone decreasing, w' (r) > 0 and
1
1
—dr =+, 2.3
/0 W T @3

then the solution to (2.1) stays bounded for all time and converges as
t — oo to a Dirac centered at the center of mass of the initial data.

The conditions (2.2) and (2.3) stem from the Osgood condition for
well-posedness of the ODE % = —w'(R), with the former violating the
condition and the latter satisfying it. This theorem, applied to the kernel
(1.3), implies that: infinite time blow-up for y > 2 and finite time blow-
up for —1 < y < 2, see [23] for further properties. The case of y = 2
leads to infinite time blow-up as it can be directly checked since it is
a linear equation once conservation of mass and momentum are taken
into account.

More particularly, when y = 3 in (1.3), with a smooth enough initial
condition centered at origin with a compact support, the solution as
t — oo takes the asymptotic form f(z,v) ~ %6 1+ %57 1. Therefore, when
t — oo, the solution tends to form two symmétric Dirac delta functions,
whose centers are converging to v = 0 at rate % More details can be
found [19,23,31,32].

When y = 1, we have explicit prediction for the blow-up time since
(2.1) can be viewed as the derivative of the Burgers equation [33].

1 Matlab codes will be available on Github https://github.com/woodssss/
Granular-kinetic-equation.
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Indeed, W = |v| and 9,W = sign(v), >W = 26(v). By setting u(t,v) =
- [° £ y)dy, we then have

ou+2ud,u=0
with initial condition

up(v) = —/ Sody.

Then the blow-up time is equal to the shock formation time of Burgers
equation, i.e.
1

T= e
2 min,, uo(v)

Next we cite a few apriori properties of the solutions to the spatially
inhomogeneous case proposed in [25,29].

Proposition 1. For y > 1, the solution to (1.2) satisfies

. ood
* Mass conservation: o /RxR f(,x,v)dxdv = 0.
. d
* Momentum conservation : o foR vf(t,x,v)dxdv = 0.
. d
* Decrease of moments for p > 2 : o /RX]R |o|? £ (¢, x,v)dxdv < 0.

« Increase of internal energy : for a C' convex function U with U(0) =

0, we have
4 U(f(t,x,v))dxdv > 0.
dt Jrxr

In this proposition, the third part, when p = 2, signifies the dissi-
pation of energy, as expected in an inelastic collision. When p = oo, it
implies that for compactly supported initial data f(0, x, -), the support
of f(,x,-) remains compact for all + > 0. Moving to the fourth part,
a notable selection is U(f) = fIn f, representing the negative of the
entropy.

2.2. Numerical method

In this subsection, we present a variational semi-Lagrangian scheme
for the granular kinetic Eq. (1.2). As demonstrated in the theoretical
paper [29], we divide the equation into two stages: a transport step that
is explicitly addressed, and a collision step that is treated implicitly.
More precisely, denote f"(x,v) =~ f(t,.x,v), where t, = nAt with At
being the time step, we have:

n+l n
% 0o " =0, 2.4)
and
fn+1 _ f”‘*‘%
T =0(OW %, Frehpm. 2.5

Periodic boundary condition in x and no flux boundary condition in v
will be used throughout the paper.

2.3. Semi-Lagrangian scheme for the transport step

For the transport step (2.4), we will use the semi-Lagrangian
scheme, which combines the method of characteristic and interpo-
lation. Specifically, let [-L,, L,] be the computational domain and
define

0 : .
x; =—L,+idx/2, 1<i<N,, 4x=2L.,/N,,

as the initial grid points. As time progresses, the grids {x} will
be updated and become nonuniform due to mesh refinement (de-
tails of which will be provided in Section 2.4.3). Given {f "(X?)},-pr
{f "“(x;”“)} can be acquired by tracing back the characteristics:

S o) = G o),
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where f"(x;”rl — v4t,v) is evaluated using piecewise cubic Hermite
interpolation. To guarantee mass conservation, we re-weight the inter-
polated value by the total mass, namely,
M,
S ) = max (G = vdr ), 10710) (2.6)
n+1

where

Nyl x" =X x5+

i1~ il 2T

M, = ¥ [ 0) = S 0L+ )

i=2

n n

Xy Xy
n n X X
+ /"Gy o)Ly - 3 )
. 1
and let y; 1= x/"*' —var
'S Viel =¥ n+y
i+1 — Ji-1 2 1
Moo= Y ™00 =T+ SO oL+ 25
i=2
YN, T IN -1
+ /M O Ly = ———),

where f"*1(y;,v) is defined in (2.6).

2.4. Regularized JKO scheme with adaptive mesh refinement for collision
step

This section centers around solving the collision step (2.5), for
which we will adopt a regularized JKO scheme along with a mesh
refinement technique. In the following, we first introduce the Fisher
information regularized JKO scheme that was proposed in [34], and
extend it to the non-uniform mesh case here. Secondly, in order to
increase the resolution at the blow-up region, we use a mesh refine-
ment technique that was originally proposed in [27], which adaptively
redistribute a large portion of the grid points to the blow-up region.

2.4.1. Regularized JKO scheme
To start, rewrite (2.1) as

_ SE(S)
0,f =0,(f, 5f ) 2.7)

where the Energy functional is defined as

E(=2 /]R /]R W (0 — w) £ (0) f (w)dvduw,

and ‘;—E is the functional derivative of E. Then (2.7) can be interpreted
as a gradient flow of the E with respect to the Wasserstein metric,
and therefore admits the following minimizing movement scheme, also
called JKO scheme:

1\2
f™!' e argmin {ldw (f,f"+§) +AtE(f)} ) (2.8)
rePu(,) L2
Here dyy (f, f") is the Wasserstein distance between f and f” and
P,. (2,) is the set of probability measures on &, that are absolutely
continuous with respect to Lebesgue measure. In this paper, we use the
Benamou-Brenier’s dynamic formulation to numerically compute the
Wasserstein distance. In particular, the distance between two measures
fodx and fdx is
1
2 .
dy (fo. f1)" = min / / D(f (1, v), [Im(t, v)|Ddo dt, (2.9)
0 Ja,

(f;mec,

where

2

[lm]l if f>0,
D(f,Iml)=4 o if (f,m)=1(0,0),
+00 otherwise ,

and the constraint set C; consists of
0f+V, -m=0on,x[0,1, m-v=0onae,xI0,1],
SG0=fo, fG.D=/fonQ,.
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Here v is the outer normal direction of ©,. Substituting (2.9) into (2.8),
and write m = fv, we end up with a convex optimization with a linear
constraint:

1
(f,m):argl}l,i"rql%/o /QU @(f, |Im|)dvdt + AtE(f(1,-)) (2.10)

st. ,f+V, -m=0,£(0,0)=f"v), m-v=0.

In practice, to further increase the convexity of the objective func-
tion and preserve the positivity of the desired minimizer f*, we add a
Fisher information regularization term
p2ar [ IVioe rIPa

QU
to the objective function and reach the following regularized problem,
originally proposed in [34]:

2
™) € arg inf_ / ””}((’t))” + 24|V 1og £ ()| f(v)dv + 2A1E(f),
e 2,
(2.11)
such that
f—f"+%+vv~m=o, m-v=0. (2.12)

Here the artificial time in the dynamic formulation (2.10) is replaced
by one step finite difference in time. This is shown in [34] that
significantly reduces the computational cost without violating the first
order accuracy in time.

2.4.2. Non-uniform velocity discretization

Different from [34], we will use a non-uniform discretization in v so
as to facilitate the later mesh refinement proposal. To be more specific,
denote the computational domain in v to be v € [-L, L] and the number
of grid points as N,. Let {vi},.]l‘i be the grid points, and define

1
Av; :=v;—v;_y, h;= E(Av,- + Av;y).

To discretize (2.11) and (2.12), we evaluate f at the grid points
and m at the half grid points, i.e., i.e. m_1 = m(w%). Then the fully
discretized version of (2.11) and (2.12) rezads

f™! € argmin F(f,m) + AtE(f, m), (2.13)
where
2m?
Ny i1 -2 4.2 ) )
J=3 B At 2 i+ fim
F(f,my= Y | ——2 +=—— (log f; —log f;_;)” =—2= | 4v,,
(fm) Z% Tihat m (log f; = log f;-1)” =— v;
and
Ny
E(f)= 2 Wi fifihiby . Wi =W —v).
il=1
The constraint function reads
Mgl =m_ 1
n+1 n 2 2 _
- -~ =0. (2.14)

J

Denote u = [f,m], then the constraint (2.14) can be reformulated
as a linear system Au = b. By introducing the indicator function,
(2.13) together with (2.14) can be reformulated into an unconstrained
optimization problem:

. 0 Au=b,
min J @+ xw, xw= { +oo  otherwise . (2.15)
where
J(W) := F(u) + AtE(u). (2.16)

Physica D: Nonlinear Phenomena 470 (2024) 134410

As discussed in [34], thanks to the convexity of the J(u), we can
invoke the sequential quadratic programming to solve (2.15):

z0*D € arg min, % (z - u(”)T HO (z - u(’))

+VJ (u(”)T (z - u(’)) + x(2),
WD =y gy (204D =y O

Here H® is an approximation of V2J(u®), for our particular form of J
in (2.16), it has the form

VEEWDY),,, ifi=],
HD),; = {f) e lelsej

We now summarize our one step regularized JKO scheme in Algo-
rithm 1, which is essentially the same as in [34]. Note that when the
exit flag as defined in Algorithm 1 becomes e, = 1, it signifies that the
minimizer cannot be reached even after a sufficiently large number of
iterations. This condition can be regarded as a numerical indicator of
blow-up, and we will demonstrate its significance in the forthcoming
numerical examples section.

Algorithm 1: One step regularized JKO scheme
Input : Grid points {v,};, function value {f"(v;) =: f j” };» time
step At, optimization step 4, max iteration number
1,,.. and a stopping criteria e
Output: {f*'}; and exit flag e,

Av;+Av;
1 1. Compute Av; :=v; —v;_; and h; = ==

2 2. Let/=0,{=1,e,=0;
3 while/ <1, . do

max

4 if ¢ > ¢ then
5 FAGON=
argmin, %(z —uDYTHO(z —u Dy + VI D) (z —u®) + 4(2)
p WD = @ 4 20D )
(I+1) _ 1
7 ¢ =t
8 else
9 ‘ Break ;
10 end
11 I=14+1;
12 end

13 3.e,=1ifl=1,,;

2.4.3. Adaptive mesh refinement

To investigate the possible blow-up in the solution, we need to keep
increasing the resolution in regions where the solution is concentrated.
Here we follow the approach developed in [27]. The main concept is
to create a dynamic mapping between the original domain and the
interval [0, 1]¢. This mapping ensures that the grid points in [0, 1]¢
remain uniformly spaced and finite. However, when transferring the
grid back to the original domain, the points are concentrated more
heavily in the vicinity of singularities.

To better illustrate the idea, let us consider (2.1) with v € [-L, L]
and initial condition f(0,v) = f,(v). Choose two parameters &, and 6,
both in (0, 1), and let

Sy 1= {v 1 120 2 5l lle} - (2.17)

which indicates the blow-up region. Now we intend to find a one-
to-one map v = u(s) between v € [-L, L] and an auxiliary variable
s € [-1,1]. Specifically, we seek a mapping such that if we distribute
N uniform grid points along s, then the resulting grid in v contains
6N points within S,,. By doing so, we can densely pack grid points in
the neighbor of the concentration region, i.e., S;, while maintaining a
sparser grid elsewhere. Note that the choice of the mapping function u
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§ =05 80 =0.5, § =0.5 09 =0.8, 6 =0.5
2
. 60:0.2 ] ~Uniform ~Uniform
1 _50=0_5 ~MR ~MR
P = =
=0 - =05 =05
Il - -
. //"““‘"’""
/
2 0 0
-1 -0.5 0 0.5 1 -2 -1 0 1 2 -2 1 0 1 2

v v

Fig. 1. Demonstration of Mesh refinement method for f(v) = =3 for v € [-2,2]. The left figure shows the mapping function u(s) with fixed § = 0.5 and various &, = 0.2,0.5,0.8.
The middle and right one compare function f(v) in uniform grid and after mesh refinement (MR).

highly depends on the shape of .S, in (2.17), and we will focus on two
specific cases.

The first case is when the concentration is symmetrically centered
at a single point. Without loss of generality, let us assume it is centered
at v = 0. In this case, we only need to find u(s) : [0,1] — [0, L] and
subsequently perform an odd extension to extend the mapping to the
entire domain s € [—1, 1]. In particular, define

S={v;: flvy)> éo(ml_axf(vi)), v; >0}, r=min{v; : v; €S}, (2.18)

then we seek a continuous and monotone increasing function v = u(s),
such that

u©0)=0, u@=r, u()=L.

To this end, we use a straight line to connect s = 0 to s = §, and a
concave up curve to connect s = § to s = 1 if = < L; or a concave down
curve otherwise. More specifically, u takes the form

gs s €0,6];
us)=4a;s>+bs sels,1], ifr/6<L; (2.19)
H—E,,z sels, 1], ifr/6>L,

where a; and b;, i = 1,2 are two constants depending on r and § to
ensure continuity of u(s) at the interface s = 5.

In the second scenario, the concentrations are symmetrically posi-
tioned at two points. Once more, without loss of generality, we assume
that the centers of these two concentrations are at v = 0. Similar to
the previous case, we focus on the mapping in the positive part of
the domain and perform an odd extension to cover the entire domain.
Define
S={v;: flv))> 5O(miaxf(v‘-)), v; >0}, ry=min{ov; : v; €S},

r, =max{v; 1 v; € S}.

Then we aim to find a continuous and monotone increasing function
u(s) such that

1 o 1 06
) =0, H(§—§)=V1, M(§+§)=r2, ul)y=L. (2.20)
As with the previous case, we use a straight line to connect s = % - g
tos = % + g, and use either u(s) = as® + bs or u(s) = 1+;+’" to connect

s=0tos= % - g, and s = % + g to s = 1, depending on the concavity.
To be more precise, the expression for u(s) takes the form:

r 1 6 1 6
gs SE[E_E’E-'_E]’
5 1 5 s r2—rl
ays’ +bys SE[O’E_E] lfTZL,
1 6 s r2—rl
u(s) = He—zbz s€l0,5+3] if == <L, (2.21)
assd + bys se[%—g,l] ifﬂ%”<L,
ay 1 s . r2—rl
T s€l;+35.1] f = >1L,

where q; and b;, i = 1,2,3,4 are constants depending on r|, r, and 6 to
ensure continuity of u(s) at the interfaces.

To visualize the mapping, we examine a simple function f(v) =
¢=20" with v € [-2,2]. We plot this function using both a uniform mesh

and a non-uniform mesh. As illustrated in Fig. 1, the mesh refinement
approach results in higher resolution near the function’s peak.

Similarly, for the second case, we plot the function f(v) =
e—0W-2P-5002 for y € [-4,4] in Fig. 2. Once more, the mesh
refinement approach provides higher resolution near the function’s
peaks.

In practice, given a mesh v} and corresponding function values
f"(v), we can construct an appropriate mapping u"(s) as described
above to generate a new set of mesh grid v;'“ with higher resolution
in the desired region. Note that our mesh refinement method differs
somewhat from the approach proposed in [28], where the author
employed a Gaussian function as the mapping function, along with
three adjustable parameters. Our proposed mesh refinement technique
is more general and comprises an arbitrary number of components.
This enables easy manipulation of the mapping’s shape, including its
monotonicity and concavity. Our approach is not only more flexible
but also capable of handling multiple blow-ups concurrently.

When interpolation is applied, a rescaling is imposed to ensure exact
mass conservation. Specifically, after obtaining f (v;.'“), the following
procedure is carried out:

f(u;“") = max{f(,);&l)’ 10—10}%:1’ .
where
My = NZ? f(”?)w - ;’ %
p=
+ /Wy (L, = w)
Mo = N,Uz;l f(”?“>L27t} + L, + M)
=
+f(v’;\;rv1)(LU _ w)

2.4.4. Mesh refinement JKO scheme

Combining both the mesh refinement mechanism and the nonuni-
form JKO scheme results in a mesh refinement JKO scheme. First, we
outline the following algorithm for one step of the JKO scheme:

For the evolution problem, we execute Algorithm 2 with two time
stepping strategies. One is to use fixed time step and the other one is the
adaptive time stepping. The latter choice is more expensive but useful
in predicting the more accurate finite blow-up time. The algorithm is
summarized in Algorithm 3.

Remark 1. In Algorithm 3, there are two indicators for blow-up. One
is when the mesh size Avy;, falls below a threshold ¢,, and the other
is when optimization fails to converge within the maximum number of
iterations. The latter condition is particularly valuable in the finite time
blow-up case when a more accurate prediction of the blow-up time is
desired. In such instances, as time approaches the blow-up time, a large
time step may easily surpass the blow-up time, causing the optimization
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Fig. 2. Demonstration of Mesh refinement method for f(v) = £~50w=27=50w+2’ for ¢ € [—4,4]. The left figure shows the mapping function u(s) with fixed 6 = 0.5 and various
5, =0.2,0.5,0.8. The middle and right one compare function f(v) in uniform grid and after mesh refinement(MR).

time step based on the mesh size A7 = min{ 4¢;, min 0.9AUL¢“‘, O.9AXL¢“‘ }.In
most examples, a fixed time step will be employed unléss the accurate
prediction of the finite blow-up time necessitates the use of an adaptive

Algorithm 2: One step mesh refinement JKO scheme

Input : Parameters §,,6 € (0,1) and a uniform mesh {s i

grid points {¢v7};, function value { f "(v;')} ;» time step
size At and threshold value ¢,,.
Output: updated grid {u;,'+I }, function value f ”“(v;?“) and

time step.

Algorithm 4: Semi-Lagrangian JKO scheme

blow-up indicator e;. Input : Parameters ,,6 € (0,1) and a uniform mesh {s;},
1 1. Acquire f"*'(v%) and e, from Algorithm 1. initial time step 4t,, time stepping strategy, final time
2 2. Determine r according to (2.18) and construct u via (2.19); T, stopping threshold ¢, ,, initial mesh grid {x?}, {U?}
or determine r, and r, according to (2.20) and construction u and initial condition f(0,x,v) = fy(x, v).
via (2.21). Update mesh by setting v;’“ = u(s;). Output: Numerical solution of equation (1.2) with high
3 3. Compute fn+l(U;+1) using the interpolation and rescaling resolution at singularity, numerical blow-up time T

(2.22).

Algorithm 3: Mesh refinement JKO scheme with/without adap-

and blow-up indicators B,, B,.
— min. {0 0 = min. x°
1 1. Compute 4v,,, = m1nj{uj+l - by AXpy, = min; x|
set B, =0 and B, =0, At = 4t ;
2 while r < T, Av,,;, > €., and Ax,,;, > €, ,, e, =0 do

- x%, and

tive time stepping 3 1. Either use fixed time step At = At or adjust the time step
Input : Parameters §),6 € (0, 1) and a uniform mesh {s;}, according to: At = min{mo,min{og%,o,g%}} ;
. . : 01 e o 0,0 v x
%n%t%al grld points {v} }', 1n1t'1a1 condition {/°(W}))};, 4 2. Transport step
1n1t1aé time step At, final time T and threshold values s for j = 1-- N, do
€ an _GU' X . . . 6 ‘ Compute f*(x?,v") fori=1--N, by (2.6);
Output: Numerical solution of equation (2.1) with high d J
resolution at singularity and numerical blow-up time 7 en ..
T 8 3. Collision step
be :
. fori=1--N, do
1 Let1=0, n=0, 4 = Atg, Av,,;, = min; {0, — 0}, e, = 0; ° x
" 0r A0pin = M0 {0;,, =055 ¢ 10 Compute f"* 1(x,f’,v;’) by Algorithm 1 given f*(x}, v})
At > with adapt time step, .
2 while 1 < T and { . ‘i ) @ ) P do and update e/ ;
mindv > ¢, with fixed time step 1 end
3 1. Run Algorithm 2 to get {u;.'“} and {f "+](v;?)} and update 12 4. Mesh refinement
ey 13 For one bump case, determine
4 2. If using adapt time step 14 S ={(x;0)) + fH(x;,05) > §p(max; ; f*(x;,0;)),x; > 0,v; > 0},
5 while e, =1 do then r, = min{x; : (x;,-) €S} and
6 At = At)2 r, =min{v; : (-,v;) € S}, then find u,(s) via r, and (2.19),
7 Run Algorithm 2 to get {v;’“} and {f"“(u}?)} and find p,(s) via r, and (2.19).
update e ; 15 For two bumps case, determine S = {(x;,v;) © f*(x;,v;) >
s end So(max; ; f*(x;,v;)),x; > 0,v; > 0}, then
° S.t=i4+4nn=n+l. re =min{x; : (x;,) € S}, rp =max{x; : (x;,-) € S},
10 end rp1 =min{v; @ (,v;) € S} and rp, = max{v; : (,v;) € S}
1 Ty =1. Then find p,(s) via r,r,, and (2.21), find p,(s) via r,;, r
and (2.21).
16 5. Interpolation
17 Use ‘pchip’ interpolation to get function value at the new
: ; 1 1 1
step to diverge. In response, the time step can be decreased, and this gird points {f"*!(x}" ’”;H )} and rescale the total mass
step can be recomputed iteratively, progressively reducing the time dimensionwise according to (2.6) and (2.22) respectively.;
step until the optimization converges. See Fig. 5 and the discussion in 18 5. Compute Ax,,;, = min,-(x’f'_:'ll - er'l),
Section 3.1 for more details. Avyy, = min/(');':ll _ u;?“) :
. 19 6.t=1+ 41
2.5. Combining the two steps 20 end
21 T,=t;set B, =1if Ax,, <e€, ,;set B,=1if Av,;, <e , or
We now summarize the final algorithm in Algorithm 4 for calculat- Z -1 * e v e
=1

ing the spatially inhomogeneous granular kinetic equation. Note that
for the time step, we can use either a fixed time step 4r, or adapt the
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Table 1
Numerical blow-up time with various 4¢, ¢, and initial conditions with the kernel W (v) = |v|. Here we use N, =121, 6 =0.5 and §, =0.5.
At =0.02 A1 =0.01 At = 0.005 At =0.0025 At =0.00125
f0,0) =g, (v) €, =le=3 0.48 0.48 0.47 0.4675 0.4512
€, =1e-3/2 0.5 0.49 0.49 0.4875 0.4725
€, =1le-3/4 0.52 0.51 0.5 0.5 0.4875
€, =1e-3/8 0.54 0.52 0.51 0.5075 0.4975
€, =1e-3/16 0.58 0.53 0.515 0.5075 0.50375
f(0,v) = g,(v) €, =1le-3 0.24 0.24 0.235 0.235 0.2275
€, =1e=3/2 0.26 0.25 0.245 0.2425 0.2375
¢, =1le-3/4 0.26 0.26 0.25 0.2475 0.245
€, =1e-3/8 0.28 0.26 0.255 0.2525 0.25
€, =1e=3/16 0.28 0.26 0.26 0.255 0.2525
£0,0) = g5(v) 6, =1e-3 0.12 0.12 0.12 0.1175 0.1137
€, =1e=3/2 0.12 0.13 0.125 0.1225 0.1187
€, =1le-3/4 0.14 0.13 0.125 0.125 0.1225
€, =1e-3/8 0.14 0.13 0.13 0.1275 0.1265
€, =1le-3/16 0.14 0.13 0.13 0.1275 0.12625

Table 2
Numerical blow-up time with various 4r and ¢, for initial condition g,(v) with N, = 121,
6=0.5 and §, =0.5.

At =001 At =0.005 At =0.0025 At =0.00125
€, =1le-3 0.49 0.48 0.4775 0.4775

€, =1e=3/2 0.51 0.505 0.50125 0.50125

€, =le=3/4 0.53 0.52 0.52 0.51875

€, =1e=3/8 0.56 0.54 0.5325 0.52875

3. Numerical examples

This section is dedicated to presenting the numerical findings re-
garding the (non)blow-up behavior of the granular kinetic equation.
Specifically, there are several solution behaviors:

(1) no blow-up occurs;

(2) blow-up initially forms in the spatial x direction;

(3) blow-up initially forms in the velocity v direction;

(4) blow-up occurs simultaneously in both the spatial and velocity
directions.

The last case is theoretically possible but exceptionally rare and chal-
lenging to construct. Therefore, our focus will be solely on the first
three cases.

We first validate the capability of our proposed numerical solver
(Algorithm 3) for the spatially homogeneous case, where analytical
results are well-established. We then disclose the numerical outcomes
derived from the implementation of our Algorithm 4. Based on these
results, we formulate a conjecture regarding the blowup behavior for
the spatially inhomogeneous granular kinetic equation.

3.1. Finite time blow-up verification: homogeneous problem

We begin by examining the spatially homogeneous case and es-
tablishing an appropriate blow-up criterion (¢, , in Algorithm 4). To

this end, we consider (1.2) with the kernel W (v) = |v| and an initial
condition f(0,v) = g(v). The analytical blow-up time for this scenario
is given by:

B 1

" 2max, g(v)’

To evaluate our numerical approach, we consider three one-bump
initial conditions: g;(v) = 2, 2 W) = 26~ and g(v) = 4e~2" and
one two-bumps initial condition g,(v) = e 10@=157 4 o= 10w+157 | yrith
analytic blow-up times T; = 0.5, T, = 0.25, T; = 0.125 and T, = 0.5,
respectively. To fully investigate the blow-up behavior, we employ two
time-stepping strategies. One is with a fixed time step 4z. The numerical
results with the initial condition g, at + = 0.5 are depicted in Fig. 3,
where A7 = 0.01 and the solution f(tr = 0.5,v) nearly converges to a
Dirac delta function centered at v = 0.

More detailed results are provided in the Tables 1, 2 and Fig. 4.
From Tables 1, 2, we observe that as we reduce the stopping criterion
(as indicated by the columns), the numerical blow-up time increases.
Conversely, when we decrease the time step size, the numerical blow-
up time decreases. Notably, as we reduce both the stopping criterion
and the time step size simultaneously, the numerical blow-up time
approaches convergence with the analytical blow-up time. In Fig. 4,
we observed that the minimum Av decreased very rapidly near the
analytic numerical blow-up time. In this particular test, we have chosen
to omit the exit flag as a stopping criterion, allowing the algorithm to
continue running even if the minimizer is not reached, and this is why
we observe oscillations at the tail of the results when the simulation
time extends beyond the analytical blow-up time.

The second strategy is to employ adaptive step sizes, with the initial
step size set at Af, = 0.01, and subsequently halving it until the
minimization process converges. As depicted in Fig. 5, one can observe
that the time step size Ar decays significantly as it approaches the
analytic blow-up time. Based on these observations, we believe that
our proposed numerical solver is capable of reproducing the blow-up
solution and accurately capturing the analytic blow-up time.
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Fig. 5. Time versus adaptive time step size Ar with the kernel W (v) = |v|. Here, we consider the initial condition g,(v) with N, = 121 and 6 = 0.5. On the left is 5, = 0.05, and on

the right is 6, = 0.5.
3.2. Infinite time blow-up verification: homogeneous problem

We now consider the spatially homogeneous case of (1.2) with
kernel W (v) = |v|®, whose solution converges asymptotic approaches
ft,v)= %5 1+ %57 1 (M is the total mass) as time approaches infinity.
To demonstrate that our method can capture the desired blow-up
behavior, we consider an initial condition with two symmetric bumps:

£(0,0) = e—lo(x—1.5)2 + e—lO(x+l.5)2‘ @3.1)

Running algorithm 3 with §, = 0.8, § = 0.5, 4r = 0.01 and N, = 101, we
observed in Fig. 7 that the two initially symmetric bumps shrinking
to two symmetric Dirac delta bumps and approaching v = 0 from
two sides. Additionally, we examined the rate at which the two peaks
converge to the origin, and as shown in Fig. 8, they converge with a
rate of 0(%), which is consistent with the analytical result. In contrast to
the finite time blow-up cases (see Fig. 4), the minimum of Av decreases
very slowly.

Comparing Fig. 4 with Fig. 8, it is important to point out that
the minimum of Av exhibits distinct patterns. In cases with finite-
time blow-up, the minimum of Av experiences a rapid decline as time
approaches or slightly surpasses the analytic blow-up time. Conversely,

in scenarios without finite-time blow-up, the minimum of Av decreases
at a considerably slower rate. This observation suggests that one can
confirm the presence of finite-time blow-up by monitoring the rate of
decay of the minimum of Av, serving as an additional criterion for
detecting finite-time blow-up behavior. In practice, when employing
a fixed time stepping strategy as in Algorithm 3, we suggest setting
the threshold for detecting blow-up in the single bump scenario at
€, = le—3/16 (as shown in Fig. 4, Table 1) and setting ¢, = le—3/8 for
two bumps case (see Fig. 6, Table 2). Furthermore, in situations aiming
at accurately capturing the analytical blow-up time, we implement the
adaptive time step strategy with a threshold set as in Algorithm 3 at
€, = 5e — 6 (See Fig. 5).

3.3. Spatially inhomogeneous case with y = 3

As previously discussed in Section 1 and numerically verified in
Section 3.2, the spatially homogeneous case of (1.2) with kernel W (v) =
|v]® exhibits an infinite-time blow-up solution. In this section, we aim
to numerically investigate how the spatial dependence will affect the
behavior of the solution solving (1.2).
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To achieve this, we consider the following initial condition, which
consists of two symmetrically located bumps with respect to the origin:

folx.v) = e—a(x+c)2 e—b(u—d)2 + e—a(x—c)2 e—b(u+d)2 ) (3.2)

Note that when the spatial dependence is disregarded, (3.2) reduces
to the two bump case discussed in Section 3.2. Consequently, the two
bumps, situated with opposite spatial locations, will both move towards
the origin while aggregating their velocity, as described in Section 3.2.
It becomes intriguing to examine which direction exhibits blow-up first,
if indeed there is a blow-up at all.

In practice, we set L, =4, L, =4,a=b=6,c=15,d =2 and
then execute Algorithm 4 with §, = 0.02, § = 0.5, and various values
of the strength of inelasticity A solving (1.2). Note that the values of &,
and 6§ in this case differ from those used in the spatially homogeneous
scenario. This difference is necessary because the small value of 5, helps
prevent oscillations caused by low resolution in regions with small
values of f. A fixed time step of At = 0.05 will be used throughout
the evolution.

Here, we present two representative numerical results for 4 = 4 and
4 = 10. Additional results for other values of 4 (specifically, 4 = 2,6,8)

can be found in Section 3.3. For the case of A = 4, the evolution of the
solution unfolds in three distinct stages. At first, the two initial bumps
move towards the origin. Subsequently, they converge at the origin,
forming a concentration. Finally, due to the smallness of the concen-
tration coefficient, the transport effect prevails over the concentration
effect, leading to a separation of the two bumps after they pass through
the origin. Such an evolution is illustrated in Fig. 9. A more detailed
plot at + = 3 is presented in Fig. 10, explicitly showing that the two
bumps have bypassed each other. Most notably, the bottom right plot
in Fig. 10 depicts the decreasing and then increasing changes in Ax
and Ao, revealing the concentration and separation motion of the two
bumps. Additionally, the peak value of f(z,x,v) undergoes a gradual
increase and then decrease, indicating no blow-up.

For A = 10, the evolution of the solution also undergoes three stages.
The first two stages are similar to those observed for A = 4, but with a
more pronounced concentration effect. In this case, the solution rapidly
forms a concentration that resembles a Dirac delta at the origin, as
depicted in Fig. 11.

While a stronger concentration effect might suggest a higher like-
lihood of a blow-up solution, we still observe that after an extended
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Fig. 9. Numerical solution of (1.2) with kernel W (v) = |v|* for N, = 121, N, = 121, A = 4. From top left to bottom right are time snapshots at ¢ = 0.4,0.6,0.8, 1, 1.6, 2.

mixing time at the origin, the solution eventually spreads out along
the x direction due to the transport effect. This can be seen in the
zoom-in plot and contour plot on the top right and bottom left of
Fig. 12. This observation is further supported by the bottom right plot
in Fig. 12, where the minimum of Ax initially decreases and then
increases, implying the concentration on x at first and finally spreading
out by the transport effect.

We numerically verify the persistence of properties introduced in
Proposition 1 over time for y = 3 and 4 = 4 and 4 = 10, with the results
plotted in the first two rows of Fig. 15 for the settings of Figs. 9 and 11
respectively. In Fig. 15, the total mass and momentum are preserved.
The energy (second order moment), third order moment, fourth order
moment and the entropy are decreasing over time. Here the entropy is
defined by U(f) = —f log(f).

3.4. Spatially inhomogeneous case with y = 3/2

When y < 2, a blow-up solution can emerge within finite time
in spatially homogeneous cases. When considering transport, examples
with finite-time blow-up in velocity space can be readily constructed.
However, it is nontrivial to devise an appropriate initial condition that
leads to blow-up in both the x and v simultaneously or blow-up in the
x direction before the v direction. For illustrative purposes, we provide
examples of finite-time blow-up in the v direction for y = 3/2.

10

Typically, when two symmetric bumps initially locate at second
quadrant and fourth quadrant respectively, the blow-up forms in v
direction before and after two bumps meets at x = 0. More particularly,
for initial condition (3.2) with a =b =6, ¢c =d = 2.5 and A = 10, the
blow-up arises on v in finite time before two bumps meet at x = 0, see
result in Fig. 13. When a =6, b=3, c =d =2.5 and 1 =5 are selected,
the blow-up arises on v in finite time after two bumps have passed the
x =0, see Fig. 14.

Finally, we conduct a numerical verification to ensure that the
conservation or dissipation properties outlined in Proposition 1 persist
over time up to the blow-up time. Conservations of mass and mo-
mentum, dissipation of moments and entropy are all well captured.
The results are collected in the last two rows of Fig. 15, with the
third row corresponding to the settings in Fig. 13 and the bottom row
corresponding to the settings in Fig. 14, respectively.

3.5. To blow-up or not to blow-up: Numerical conclusions

In the last two subsections, we have analyzed, based on our time
adaptive algorithm, a possible scenario of blow-up in the inhomoge-
neous problem (1.2) with initial data (3.2). The numerical experiments
firmly supports the evidence of no blow-up for y = 3 (see Figs. 9-12)
while numerical blow-up is detected for y = 3/2 (see Figs. 13-14).
Although theoretical results corroborating these numerical findings are
lacking at present, we have conducted all possible theoretical checks on
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Fig. 10. Numerical solution of (1.2) with kernel W (v) = |v|* for N, =121, N, = 121, A = 4. Top left: numerical solution f(r = 4, x,v). Top right: zoom-in plot of f(r = 4,x,v).
Bottom left: contour plot of f(t =4,x,v). Bottom right: record of minimum of Ax, Av and maximum of f(z,x,v) at each time step.

the numerical solutions to ensure they satisfy the correct conservations
and dissipations, see Fig. 15.

In this section, we have not shown numerical results for the case of
y = 2. This case is quite particular since it is the borderline case between
infinite-time blow-up and finite-time blow-up in the homogeneous
case [24]. Moreover, the homogeneous equation for y = 2 is equivalent
to a linear equation when conservation of mass and momentum are
taken into account for which it is easy to show that infinite time
blow-up happens. Moreover, global-in-time measure solutions have
been constructed for the inhomogeneous problem (1.2) with y = 2
in [30] allowing for possible concentrations of mass. Next section is
devoted to show that such concentration of mass happens for infinite
mass initial data. We will provide a self-similar infinite mass blowing-
up solution. Moreover, we will give heuristic arguments and provide
further numerical evidence that such a finite-time blow-up of solutions
happens for finite-mass initial data for y = 2.

4. Explicit solutions for y =2

In this section we give some explicit solutions to (1.2) for y = 2
and its modifications, which provide intuition about whether (1.2)
has global wellposedness of L! solutions, see [30] for global in time
measure solutions.

4.1. Infinite-mass self-similar solutions for y =2
We consider (1.2) with y = 2. It can be rewritten as
A
o f +vof = Eﬂau((v—u)f), p(t,x) = / f(@t,x,v)dv,
R

p(t, X)u(t,x) = / vf(t,x,v)do, “4.1)
R

using the macroscopic quantities p and u. We will construct a class of
infinite-mass self-similar solutions for (4.1). Consider an ansatz of the
form

[t x,0) = m)(alt)(v - bE)x)*) (4.2)

where m(t) > 0,a(t) > 0, b(t) are to be determined. Here ¢ is a smooth
nonnegative function with fR ¢(x*)dx = 1. A typical choice is ¢(x) =

—L_e=, It has density and bulk velocity

Vor
m(t)

p(t,x) = p(t) = )
Val(t)

Since p is constant in x, (4.2) clearly has infinite total mass. See Fig. 16
for illustration.
Substituting (4.2) into (4.1) and dividing by m on both sides, we get

u(t,x) = b(t)x.

%¢ - (—a’(u — bx)? + 2a(v — bx)b'x + 2ab(v — bx)u)qs’

= MM b+ 2a(0 - b)),

Ve
ie.,
(m’ Am

m 2\/;

X (—a'(u — bx) + 2ab'x + 2abv + Am\/a(v — bx))d)’ =0.

)é—w=1bx)

Setting the underlined parts equal to zero (collecting v terms and x
terms in the second part), we get

' Am?
m =
2v/a
d =2ab+ Am\/z
d'b+2ab' — AmyJab =0

This shows that (4.2) solves (4.1) as long as (m(1), a(t), b(t)) solves the
above ODE system.



J.A. Carrillo et al.

t=0.2
1
1
0.8
0.5
0.
5
4
2
0
5
1600
2000 - 1400
1200
1000 1000
800
600
0.
5 400
2 200
- -2
\ 5 X

Physica D: Nonlinear Phenomena 470 (2024) 134410

t=0.6

1.4
1.2

0.8
0.6
0.4
0.2

- 80

60

40

20

x10*

1.5

0.5

o

-2
v X

-5

Fig. 11. Numerical solution of (1.2) with kernel W (v) = |v|® for N, =121, N, =121, 2= 10. From top left to bottom right are numerical solution at r = 0.2,0.6,0.8,1,1.2,2.

4.1.1. Solving the ODE system
We substitute the second equation into the third and get
' = Am?
2/a
) d =2ab+ /lm\/;
b/ - _ b2

Using the density variable p = m/ \/E, we then have

p=-bp
, A
Im = zpm 4.3)
b = _b2

Denote the initial condition of (p,m, b) as (p,, my, by) with py > 0, my >
0, by < 0. First notice that the b equation has explicit solution
by=-——, T="L 5o,
T—1 —by

which blows up to —co at time 7. Substituting into the p equation, we
get

t P()T
o(0) = po exp(— b(s)ds) - (4.4)

0 Z

12

Then, substituting into the m equation, we get

m(t) = m exp(% /Ot p(s)ds)
T )%FOT .

A T
=my exp(poTln ﬁ) = mo(ﬁ (45)

4.1.2. Analysis of the blow-up behavior

Although the solution to (4.3) always blows up at T, we need to
analyze whether the corresponding blow-up behavior of the infinite-
mass solution (4.2) can be approximated by a finite-mass solution. This
will be done by calculating the typical width of the velocity support for
(4.2), which is
1 _ & _ Po ( T

Va() m(t)  m,

T-t
Denote e(t) = T—t as the time before blow-up. Then we get the relations

(4.6)

4
)]_EPOT

1

A 1 A
- - —5p0T SpoT—1
b~—e", p~€1, mn~e¢€ 2”0’ — ~e2P0 .

a
as t —» T~ (where the notation ~ means that the two quantities are
related by a constant multiple). Take a box [—e, €] X [—1, 1] in the (x, v)-
plane (up to constant multiples of its size). Then the mean velocities
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Fig. 12. Numerical solution of (1.2) with kernel W (v) = |v|3 for N, =121, N, =
Bottom left: contour plot of f(r =4,x,v). Bottom right: record of minimum of Ax, Av and

(x, b(1)x), x € [—¢, €] lies in the box, and the total mass f/x e fdvdx ~
1 since p ~ e~!. We propose the threshold condition
ApoT > 2. 4.7)

« If (4.7) holds, then the width of the velocity support La - 0 as
t —» T~. This means that most mass of f with x € [—e,¢] lies
inside the box [—e, €] X [-1,1] with fixed height. It is likely that
such a infinite-mass solution can be approximated by a finite-mass
solution, leading to finite-time blow-up for a finite-mass solution.

If (4.7) fails with ApyT < 2, then the velocity support N

o as t — T~. Such an infinite-mass solution cannot be well-
approximated by a finite-mass solution for ¢ close to T" because
SUP(x yyesupp /() |V] foOr the latter cannot grow in time. Therefore
we do not expect finite-time blow-up for a finite-mass solution if
its initial data is close to (4.2) in this case.

4.2. A conditional blow-up result

In this subsection we give a conditional blow-up result for finite-
mass solutions to (4.1) based on an analysis of the characteristic
flow.

The characteristic flow (X (; x, v), V (t; x, v)) of a C! solution to (4.1)
satisfies the ODE system

X=V, V= % o(t, X)(ut, X, V)=V); X(O0;x,v)=x, V(0;x,0) = v.
For the infinite-mass solution (4.2), we have

P, X)=p(n), ult,X,V)=>b0nX,

and thus

X=V, V= % p(BBOX = V).

Along the characteristic originating from (x,v), the quantity a«
a(x,v) 1= \/E(V -bX)= ?(v + %) is conserved in time (by calculating
0

13
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121, 2 = 10. Top left: numerical solution f(¢ = 4,x,v). Top right: zoom-in plot of f(r = 4,x,v).

maximum of f(z,x,v) at each time step.

its derivative explicitly). Therefore we get
1 ap ( T )“%/IUT

Xobx+ oL T
mg

Va
and thus its explicit solution
Xwxv) _x apy 1

T—t T myq-— % poT

T—1t Tt

()" -,

Now we assume the super-critical case (4.7), and consider a char-
acteristic starting from (x, v) with x < 0 and a(x,v) > 0 (i.e., v > —%).
Then we have 1 — %pOT < 0 and thus
Xtx,0)  x 1

X
__(U+_)T'
T -t I_EPOT

- T T

Therefore, for the nonempty set of velocities such that

X x A
T SUSTTg
then we have X(#;x,v) < O for any t+ € (0,T), see Fig. 17 Left for
illustration. If the profile ¢ in the ansatz is compactly supported, then
by taking x sufficiently negative it is always possible to choose (x, v) &
supp f(0, -, -) satisfying
A

2

Such a characteristic enables us to give a conditional finite-time blow-
up result for finite-mass solutions.

poT

X X
—?<U<—? pOT. (48)

Theorem 2. Assume (4.7) and denote f(t,x,v) as the infinite-mass
solution (4.2) with ¢ compactly supported. Let (x;,v,) ¢ supp f(0,-,-)
satisfy x; < 0 and (4.8), and denote (X,(¢),V,(t)) as its corresponding
characteristic.

Let f(t,x,v) be a C! solution to (4.1), whose initial data satisfies

£, —x,—v) = £(0,x,0)
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Fig. 13. Numerical solution of (1.2) with kernel W (v) = |v]>? for N,=121, N,=12l,a=b=6,c=d=25and L, = L, =5. Top left to bottom left are the numerical solution
at +=0.04,0.1,0.2,0.3,0.4 and the bottom right is the record of minimum of Ax, 4v and maximum of f(z,x,v) at each time step.

and
F0,x,0) = £(0,x,v),

Denote T as the maximal existence time for the solution f.
If there holds

(X1(1),v) & supp f(1,-,),

then we have T > T, i.e., the solution f has a finite-time blow-up.

Vx| < |x], Yo.

vt < max{T,T}, v > V| (¥), (4.9

The extra condition (4.9) can be checked numerically as the follow-
ing (see Fig. 17 Right for illustration). Suppose (4.9) breaks down at
time T,, then the proof below shows that f and f agrees for any ¢ < T,
and |x| < |X,(r)|. As a consequence, (X,(T,), V;(T,)) & supp f(t,-,-) and
(X,(T,), b(T,)X(T,)) € supp f(t,-,-). Since (4.9) breaks down at time T,
there exists some v, > V(¢) such that (X,(T,), v,) € supp f(T,,-,-). Since
Vi(T,) is between b(T,)X,(T,) and v,, we see that supp f(T,, X,(T.), ")
has at least two connected components. Therefore, if one can check
numerically that the level sets of f(t,-,-) intersecting with any vertical
line always have one connected component, this would indicate that
(4.9) holds.

Proof. Let (X, V) denote the characteristic flow of £, and (X, V) denote
the characteristic flow of f. We claim that for any (x, v) € supp £(0, -, -)
with x < x;, we have

14

X(t;x,v) < X,(t), Vt<max{T,T}.

Similar holds if x > —x, since f is odd in (x, v).
The paragraphs before Theorem 2 show that X, (r) < 0 forany ¢t < T.
Therefore the claim would imply that

f.x,v) = ft,x,0),

by tracing back the characteristics in supp f(t, -, -). Therefore the finite-
time blow-up of f at time 7 implies that of f at T provided that 7 > T,
and the conclusion is obtained.

To prove the claim, we assume the contrary that 7, > 0 is the earliest
time such that X(z,; x, v) = X,(¢,) is reached. Therefore we necessarily
have V(t,;x,v) > V;(t,). Then, since (x,v) € supp f(0,-,-), we may
propagate to time 7, and get (X(¢,;x,v), V(t,;x,v)) € supp f(t,.-,).
Combining with X(t,;x,v) = X,(t,) and V(t,;x,v) > Vi(,), we get a
contradiction with (4.9). O

Vx| < 1X, (@), Vo

4.3. Approximation of y > 2 solutions by y = 2 solutions

We consider (1.2) with y > 2, and provide a heuristic argument
by approximating it with y = 2 solutions. In the spirit of the previous
subsection, we assume that the typical width of the support of f in the
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Fig. 14. Numerical solution of (1.2) with kernel W (v) = |0]?? for N,=121, Ny=121,a=6,b=3,c=d =25 and L, = L, =5. Top left to bottom left are the numerical solution
at 1=0.1,04,0.8,1.21.3 and the bottom right is the record of minimum of Ax, Av and maximum of f(z,x,v) at each time step.

v-direction is R, > 0 which depends on ¢ but does not depend on x.
Then we approximate (1.2) by replacing |v — w|?’~2 with R/, and get

O, f +vo f = %RZ‘Zan((v -wf).

For the infinite-mass solution (4.2), we may take R, = % This gives
a
Af 1\
0f +vo.f = §<—) PO (0 —=1f). Bi=y-2>0
Va
which is analogous to (4.1), with an extra coefficient on the RHS. Notice
that (4.2) is still a solution to (4.10) if (p, m, b) satisfies (4.3) with %

(4.10)

replaced by %(ﬁ)ﬁ :
p=~bp
w = %pHﬁml—ﬁ
b, — _b2

The b, p solution is the same as before, given by (4.4) and (4.5). For the
m solution, we integrating the m equation and get

1 m(t)~L.

sy o 1
Y ~ o

Therefore we get the width of velocity support
1

— ~1
a
ast—->T".

To discuss the physical meaning of the last result, (following nota-
tions of the previous subsection) we notice that the total mass in the box
[—e,€e] X [-1,1] is bounded as t+ — T~. However, for any characteristic
curve (X (t), V(1)) starting from X, < 0, V; = by X+ —=, a € R, we have

i1 véo
v r__21 s _
X=V, V= 2(\/3) p(V —bX),

and therefore \/Z(V — bX) = a is conserved (by calculating its time
derivative explicitly). This gives

X=bX+al ==L x+ac,

m T—-t
for some constant C > 0 (since both p,m behave like 1/(T — 1)). Then
we integrate to get
T
T-—t ) '

X)) = % (XO +aCTn
Recall that X; < 0. If « > 0, then any characteristic X(¢) reaches 0
before time 7. See Fig. 18 for illustration.
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typical support
of f(t,~")

\

Fig. 16. Illustration of the infinite-mass solution to (4.1) or (4.10) with initial data
(4.2).

Therefore, in the infinite-mass solution, for any particle arbitrarily
far from O initially, it always contribute to the mass in [—e¢, €] X [-1,1]
when ¢ is close to T. Such contribution, for particles far enough, will
not be possible in a finite-mass solution. Therefore we expect that this
infinite-mass solution cannot be well-approximated by a finite-mass
solution, i.e., a finite-mass solution of (4.10) with a similar initial data
would not have a finite-time blow-up with the same mechanism.

Next we analyze what this might imply for the global wellposedness
for (1.2). Suppose we take the initial data (4.2) with ¢ supported in
[-1/2,1/2]. Then the solution f(z, x, v) to (4.10), for fixed ¢, x, is always
supported in [bx — ﬁ?’ bx + i;] in the v-direction. For such a function
f, we always have |v—w| < La if v € supp f(t,x,-). This suggests
that the approximation from (1.2) to (4.10) is making the aggregation
stronger. Since (4.10) is not likely to have finite-time blow-up for finite-
mass solutions, we deduce heuristically that the same is true for (1.2)
corroborating our numerical findings for y = 3 in Section 3.3.

support of fq
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4.4. Numerics for spatially inhomogeneous case with y = 2

This section dedicates to provide further numerical evidence to
our analytical findings for the case y = 2. As discussed previously in
Section 1, for the spatially homogeneous case, the solution is the critical
case between finite-time and infinite time blow-up solution in v. As a
result, it introduces the more intricate question of whether there will
be blow-up in x before the blow-up occurs in v, and also whether the
shear in x will accelerate the blow-up in v.

To examine the solution behavior, we will adhere to the theoretical
findings in this section and validate the conjecture in Section 4.1.2.
Specifically, we consider the following initial condition:

1 _ 2
e a(bx+v) R

V2
1 e—a(bx+u)2 2= 1000(x—x, )2 . else,
V2

—x; £ x < Xp;5

folx,v) = (4.11)

This initial condition is constructed to resemble the infinite mass case

studied in Section 4.1. Here p, = [ f,(0,v)dv = z—la It is conjectured

that when the relation (4.7) is satisfied, with a = 120 and b = 10, one
2

expects a blow-up in the solution around 7 = 0.1 when 1 > =
0

204/240 = 310. The blow-up is anticipated to behave similarly to the
infinite mass scenario represented in (4.6). Therefore, our first task is
to verify that the asymptotic behavior of the solution indeed follows
(4.6). More particularly, as A approaches the blow-up threshold of 310
(i.e., %pOT — 1), we expect that p ~ ¢~ and m ~ e 200l However, the
exact e(f) is unknown since the analytic blow-up time is also unknown.
Therefore, we numerically check if 1;’5 £ _, | instead, which is verified

e
in Fig. 19.

Next we numerically check the blow-up conditions stated in Theorem 2.

Practically, this involves verifying that the level sets of the numerical
solution intersect any vertical line with just one connected component,
the numerical results are demonstrated in Fig. 20. Additional results
with more values of A can be found in Appendix A.2.

Furthermore, by experimenting with various aggregation constants
A, we are able to numerically validate both the blow-up criterion and
the corresponding blow-up times 7' = 0.1, see results in Table 3.

In addition, we present the evolution for 4 = 310 in Fig. 21. In
contrast to the slow decay and the eventual increase of the minimum
of Ax in Fig. 12, the minimum of Ax decreases dramatically and rapidly
falls below the blow-up criterion, which provides additional evidence
of blow-up on x direction.

Ve

supp f (T, -, )

Vi(Ty)

b(T2) XA(T)

Xi(Ty)

Fig. 17. Left: a particle trajectory for (4.1) which satisfies X(7;x,v) < 0 for any € (0,7). Right: a possible scenario in which (4.9) breaks down.
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Table 3

Physica D: Nonlinear Phenomena 470 (2024) 134410

Numerical solution of (1.2) with kernel W (v) = |v|* for N, = 121, N, = 201, 6 = 0.5, &, = 0.5 and adaptive time stepping strategy with e = 5e—6. The table shows the numerical

blow-up time 7, for various A.

A 220 260 280 290

300

304 306 308 310

T, 0.10349 0.10154 0.10066 0.10047

0.10027

0.10018 0.10016 0.10012 0.10009

support of fj

Fig. 18. A particle trajectory for (4.10) which passes x = 0.

102}

A=220
—\=260

A=260
—=290

A=300
—\=310
—--slope=1

logm

10°
log p

10°

Fig. 19. Numerical solution of (1.2) with kernel W (v) = |u|2 for Nx =121, N, =201,
5=0.5, § = 0.5 and adaptive time stepping strategy with ¢ = 5e — 6. The figure shows
that %22 approaches to 1 as 4 — 310.

logm

5. Conclusion

In this paper, we investigate the well-posedness of the granular
kinetic equation, a challenging problem characterized by the possibility
of finite or infinite-time blow-up. To tackle this challenge, we propose a
structure-preserving numerical scheme designed to mimic the underly-
ing gradient flow of the associated energy functional. Consequently, our
scheme upholds key physical properties, including conservation and en-
tropy decay. Additionally, we integrate a mesh refinement mechanism
that dynamically assigns a denser grid to regions of high concentration.
This approach enhances resolution in concentrated regions, enabling
the detection of potential blow-ups in the solution. To employ this
numerical tool for investigating solution behavior, we meticulously
choose a set of representative initial conditions for our experiments.
Our numerical findings can be summarized in three aspects:

1. For y = 3, despite the initial formation of a pronounced concentra-
tion in the x direction, the transport effect eventually takes over
and disperses the concentration. This observation prompts us to

18

conjecture that for y > 2, the solution will not exhibit finite-time
blow-up in either the x or v direction.

2. In the critical case with y = 2, through the construction of special
solutions, we establish that there is always a finite-time blow-up
for the infinite-mass solution. Subsequently, we perform a finite-
mass approximation to the infinite-mass scenario, and numerical
evidence suggests that the blow-up can occur in the x direction
within a finite time.

3. For y < 2, we presented two examples, both demonstrating finite-
time blow-up in the v direction. It remains an open question
whether a blow-up will also occur in the x direction. While
we believe that blow-up in both x and v directions can occur
simultaneously, constructing a suitable initial condition for this
scenario poses a significant challenge and will be a topic for future
investigation.
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Appendix

Some Supplementary numerical examples are presented for com-
pleteness.

A.1. Supplementary results for spatially inhomogeneous cases with y = 3

Additionally, numerical results for 4 = 2, A = 6 and 1 = 8 are
presented in Figs. 22, 23 and 24 respectively.



J.A. Carrillo et al. Physica D: Nonlinear Phenomena 470 (2024) 134410

Zoom int = 0.10009

t=0.10009

T T

-0.01 -0.005 0 0.005 0.01
X x10™

X
t= 0-10027 Zoom in t = 0.10027

o

-0.01 -0.005

X x1074

Zoom int = 0.10047

-0.01 -0.005

0
X X x10™
.10066 Zoom in t = 0.10066

-0.01  -0.005 0 0.005  0.01 15 1 05 0 05 1 15
x x x10

Fig. 20. Numerical solution of (1.2) with kernel W (v) = |v|> and initial condition (4.11) for 4 = 310,300,290 and 280 with N, =121, N, =201, 6, =0.5 and 6 = 0.5 in both x and
v. From top to bottom the plots show numerical solutions and their zoom-in at the numerical blowup time.
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Fig. 21. Numerical solution of (1.2) with kernel W (v) = |v|* for N, = 121, N, =201, A = 310. Top two rows are time snapshots. Bottom left: the zoom-in plot at numerical blow-up
time. Bottom right: record of minimum of Ax, 4v and maximum of f(t,x,v) at each time step.
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Fig. 22. Numerical solution of (1.2) with kernel W (v) = |v|® for N, = 121, N, = 121, and A = 2. Top left is the f(r = 4,x,v), top right is the zoom in of f(r = 4,x,v), bottom left
is the contour zoom in plot of f(r=4,x,v) and bottom right is the record of minimum of Ax, 4v and maximum of f(z,x,v) at each time step.
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Fig. 23. Numerical solution of (1.2) with kernel W (v) = |v|® for N, = 121, N, = 121, and 4 = 4. Top left is the f(t = 4,x,v), top right is the zoom in of f(t = 4,x,v), bottom left
is the contour zoom in plot of f(r =4,x,v) and bottom right is the record of minimum of Ax, 4v and maximum of f(z,x,v) at each time step.

A.2. Supplementary results for spatially inhomogeneous cases with y =2 using different values of 4, and the snapshots of evolution with A =310
. . are presented in Fig. 26. In these two figures, the level sets at f(t, x, v) =

In this part, we present supplementary examples to numerically
check the blow-up condition described in Theorem 2. In Fig. 25, we
present supplementary results for y = 2 with initial condition (4.11) which verify the blow-up condition.

0.1 intersect any vertical line with only one connected component,
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Fig. 24. Numerical solution of (1.2) with kernel W (v) = |v|* for N, =121, N, =121, and A = 6. Top left is the f(r = 4,x,v), top right is the zoom in of f(t = 4,x,v), bottom left
is the contour zoom in plot of f(r=4,x,v) and bottom right is the record of minimum of Ax, 4v and maximum of f(z,x,v) at each time step.
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Fig. 25. From top to bottom are numerical solutions of (1.2) with kernel W (v) = |v|*> and their zoom-in plots at the numerical blowup time for initial condition (4.11) with
4 =260 and 220. Here we use N, = 121, N, =201, §, =0.5 and é = 0.5 for both the x and v.
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Fig. 26. Snapshots of the contour plots for the evolution of the numerical solution to (1.2) with kernel W (v) = |v|* for N, = 121, N, =201, 4 = 310.

Data availability

Data will be made available on request.
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