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A B S T R A C T

A simplified kinetic description of rapid granular media leads to a nonlocal Vlasov-type equation with a
convolution integral operator that is of the same form as the continuity equations for aggregation-diffusion
macroscopic dynamics. While the singular behavior of these nonlinear continuity equations is well studied
in the literature, the extension to the corresponding granular kinetic equation is highly nontrivial. The
main question is whether the singularity formed in velocity direction will be enhanced or mitigated by the
shear in phase space due to free transport. We present a preliminary study through a meticulous numerical
investigation and heuristic arguments. We have numerically developed a structure-preserving method with
adaptive mesh refinement that can effectively capture potential blow-up behavior in the solution for granular
kinetic equations. We have analytically constructed a finite-time blow-up infinite mass solution and discussed
how this can provide insights into the finite mass scenario.
1. Introduction

Granular flows are omnipresent in nature, from large scale mud-
lides to small scale table top experiments [1,2]. Rapid granular flows
r granular gases consist of a large number of small discrete grains,

which interact by instantaneous hard-sphere like collisions [3]. The
physical modeling of granular gases has been revolutionized in the
past decades due to the maturity of kinetic theory. Unlike the ideal
gas particles, the distinct feature of granular particles is the intrinsic
inelasticity of the collisions between grains. As a result, there is a
dissipation of energy, which brings a perturbed system quickly to rest.

Deriving kinetic equations from statistical mechanics of particle sys-
tems undergoing inelastic collisions faces important issues such as the
inelastic collapse [4], i.e. infinite many collisions in finite time. How-
ver, the kinetic description of granular gases [5–7] has been successful

in computing transport coefficients for hydrodynamic descriptions used
in experiments far from their supposed limits of validity [8–14]. We
refer to the seminal book of Brilliantov and Pöschel [3] and the
recent review [15] for further physical and mathematical details and
a comprehensive list of references in the subject.

Let us consider particles moving in a one dimensional setting.
Denoting by 𝑣, 𝑣∗ ∈ R the velocities of two particles before their
collision, and 𝑣′ and 𝑣′∗ the velocities after collision, we can write the
ostcollisional velocities in terms of the precollisional ones as
′ = 𝑣 − 𝜀(𝑣 − 𝑣∗), 𝑣′∗ = 𝑣∗ + 𝜀(𝑣 − 𝑣∗)

∗ Corresponding author.
E-mail addresses: carrillo@maths.ox.ac.uk (J.A. Carrillo), ruiwen.shu@uga.edu (R. Shu), liwang@umn.edu (L. Wang), wuzhexu@umass.edu (W. Xu).

for 0 ≤ 𝜀 = 𝜀(|𝑣 − 𝑣∗|, 𝜃) ≤ 1. This immediately implies the energy
dissipation:

|𝑣′∗|
2 + |𝑣′|2 − |𝑣|2 − |𝑣∗|

2 = −𝜀(1 − 𝜀)(𝑣 − 𝑣∗)2 ≤ 0 ,

and therefore, 𝜀 controls the loss of kinetic energy and is referred
as the restitution coefficient while 𝜃 is a parameter controlling the
strength of inelasticity. Typical restitution coefficients are of the form
𝜀(|𝑣 − 𝑣∗|, 𝜃) = 𝜀0(1 + 𝜃|𝑣 − 𝑣∗|

𝛽 )−1, with 𝛽 ≥ −2 and 0 ≤ 𝜀0 ≤ 1. Then
following the same formal derivation of the Boltzmann equation from
the particle dynamics, the kinetic description of the above inelastic
collision takes the form [16–19]

𝜕𝑡𝑓 + 𝑣 ⋅ 𝜕𝑥𝑓 = ∫R ∫R+

𝐵(𝜃)
{

|𝑣′ − 𝑣′∗|
1
𝐽
𝑓 (𝑣′)𝑓 (𝑣′∗) − |𝑣 − 𝑣∗|𝑓 (𝑣)𝑓 (𝑣∗)

}

× d𝑣∗d𝜃 , (1.1)

where 𝑓 (𝑡, 𝑥, 𝑣) ∶ (0,∞) × R × R ↦ R+ denotes the probability density
function of grains and 𝐽 is the Jacobian of the transformation from
(𝑣, 𝑣∗) to (𝑣′, 𝑣′∗), and 𝐵 is the rate function.

As opposed to the Boltzmann equation whose equilibrium is the
Maxwellian, the equilibrium of (1.1) is a Dirac mass located at the mean
velocity of particles, which means that all particles are at rest in the
comoving frame. This is a direct consequence of energy dissipation. If
in addition to the friction, the granular material is put in interaction
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ith a thermal bath, then a combined effect of friction and diffusion
ay lead to a non-Gaussian, non-Dirac equilibrium [20–22].

In the quasi-elastic regime, i.e., 𝜀 ≃ 1, (1.1) can be formally
pproximated by [16,17,19]

𝜕𝑡𝑓 + 𝑣𝜕𝑥𝑓 = 𝜆
2
𝜕𝑣

(

𝑓 ∫R
|𝑣 −𝑤|

𝛽+1(𝑣 −𝑤)𝑓 (𝑤)d𝑤
)

=∶ 𝜆
2
𝜕𝑣((𝜕𝑣𝑊 ∗𝑣 𝑓 )𝑓 ), (1.2)

where the collision now is described by a nonlocal interaction with
kernel

𝑊 (|𝑣|) = |𝑣|𝛾

𝛾
, (1.3)

where 𝛾 = 𝛽 + 3. This is also a reminiscent of the grazing collision limit
f Boltzmann operators.

The spatially homogeneous version of (1.2), that bares the name of
ggregation equation (upon replacing 𝑣 by 𝑥), has been well studied
n the literature [23,24]. In particular, starting from a bounded initial
ata, there is a sharp threshold that distinguishes the finite time blow-
p versus global in time solution in terms of the Osgood condition.
owever, by allowing a spatial dependence with a free transport dy-
amics, it generates substantial difficulties in understanding its solution
ehavior [25]. In essence, the lingering question is:

Will the singularity formed in 𝑣-direction enhanced or mitigated by
the shear?

Here, we tackle this problem through a series of numerical experi-
ments followed by a heuristic argument. As with many other physical
systems, such as the Navier–Stokes equations for fluids and the Boltz-
mann equation for rarefied gas, a naive discretization would easily
lead to unstable, physics-violated numerical solutions. In principle, this
issue is addressed with the aid of numerical analysis, which provide a
heoretical guarantee and practical insight to the numerical schemes.
espite that numerical analysis has its own theory and tools, it is un-
oubtedly that PDE analysis is the stepping stone for the development
f the numerical analysis of PDEs. Said differently, one needs to have
t least some well-posedness result or apriori estimate of solution for a
DE before one can simulate it numerically with confidence. Otherwise
t is ambiguous to assert that the computed numerical solutions are
hysically relevant.

However, when it comes to possible singular solutions, the theory
s often lacking. One would instead rely on numerical solutions to
ive some guidance on the possible solutions [26–28]. This is the
pproach we are taking here. To this end, we will follow the splitting
pproach in [29] which gives rise to a local in time weak solution, and
ur design principle of the numerical scheme is to preserve as much
hysical quantities as possible, including conservation and dissipation.
ur main challenge to numerically solve (1.2) is the possible singularity

ormation. For this problem, we will integrate a mesh refinement tech-
ique [27] that rearranges a certain amount of grid points dynamically,
nd therefore ensures the high resolution within the possible blow-up
egion. A slight modification that guarantees mass conservation will
lso be added.

Theoretically, for the case 𝛾 = 2, we construct a family of self-
imilar analytic solutions with infinite total mass. The maximal time

of existence for such solutions is always finite, and there is a critical
hreshold which determines whether the velocity support shrinks (in
he super-critical case) or expands (in the sub-critical case) as 𝑡 →
−. Heuristic arguments show that in the super-critical case such

nfinite-mass solution could be approximated by a finite-mass solution,
eading to the finite-time blow-up of a finite-mass solution, while in the
ubcritical case a similar finite-mass solution will not have finite-time
low-up. This threshold for finite-mass solution is verified by numerical
imulations. Further heuristic analysis suggests that this mechanism
ill not lead to a finite-time blow-up if 𝛾 > 2. The case 𝛾 = 2 has a
pecial structure and global-in-time finite mass measure solutions have

2 
een constructed by optimal transport theory [30], where finite mass
oncentration is neither proved or disproved.

In Section 2, we first summarize the solution properties of the spa-
ially homogeneous version of (1.2), as well as the physical quantities
hat we intend to preserve for the spatially inhomogeneous version. In
he next subsection, we introduce the mesh refinement technique and
hen build it into a variational formulation—the Jordan–Kinderlehrer–
tto scheme. Section 3 is devoted to the numerical tests. We first
erify the performance of our scheme validating our numerical solution
ith theoretical predictions for the spatially homogeneous case. We

hen carry out a series of systematic experiments to conjecture the
olution behavior in the spatially inhomogeneous case.1 We finally offer
heoretical evidence in Section 4 to substantiate our numerical findings.

. Structure-preserving numerical schemes

We first discuss the main properties of solutions to the equations
of interest. We focus next on the development of suitable numerical
schemes keeping these properties at the discrete level.

2.1. Solution properties

Consider spatially homogeneous case of (1.2), i.e.,

𝜕𝑡𝑓 = 𝜕𝑣((𝜕𝑣𝑊 ∗𝑣 𝑓 )𝑓 ) (2.1)

with radial kernel 𝑊 (𝑣) = 𝑤(|𝑣|). We first cite the following theo-
rem [24] regarding its sharp threshold dynamics.

Theorem 1. Starting from a bounded, compactly supported, nonnegative
initial data,

• if 𝑤′(𝑟)
𝑟 is monotone decreasing, 𝑤′′(𝑟) > 0 and

∫

1

0

1
𝑤′(𝑟)

d𝑟 < +∞ , (2.2)

then the solution to (2.1) blows up in finite time. The blow-up time
depends only on the initial data through its radius of support and total
mass;

• if 𝑤′(𝑟)
𝑟 is monotone decreasing, 𝑤′′(𝑟) > 0 and

∫

1

0

1
𝑤′(𝑟)

d𝑟 = +∞ , (2.3)

then the solution to (2.1) stays bounded for all time and converges as
𝑡 → ∞ to a Dirac centered at the center of mass of the initial data.

The conditions (2.2) and (2.3) stem from the Osgood condition for
ell-posedness of the ODE 𝑑 𝑅

𝑑 𝑡 = −𝑤′(𝑅), with the former violating the
condition and the latter satisfying it. This theorem, applied to the kernel
(1.3), implies that: infinite time blow-up for 𝛾 > 2 and finite time blow-
up for −1 < 𝛾 < 2, see [23] for further properties. The case of 𝛾 = 2
leads to infinite time blow-up as it can be directly checked since it is
a linear equation once conservation of mass and momentum are taken
into account.

More particularly, when 𝛾 = 3 in (1.3), with a smooth enough initial
condition centered at origin with a compact support, the solution as
𝑡 → ∞ takes the asymptotic form 𝑓 (𝑡, 𝑣) ∼ 1

2 𝛿 1
𝑡
+ 1

2 𝛿− 1
𝑡
. Therefore, when

→ ∞, the solution tends to form two symmetric Dirac delta functions,
hose centers are converging to 𝑣 = 0 at rate 1

𝑡 . More details can be
found [19,23,31,32].

When 𝛾 = 1, we have explicit prediction for the blow-up time since
(2.1) can be viewed as the derivative of the Burgers equation [33].

1 Matlab codes will be available on Github https://github.com/woodssss/
Granular-kinetic-equation.

https://github.com/woodssss/Granular-kinetic-equation
https://github.com/woodssss/Granular-kinetic-equation
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ndeed, 𝑊 = |𝑣| and 𝜕𝑣𝑊 = sign(𝑣), 𝜕2𝑣𝑊 = 2𝛿(𝑣). By setting 𝑢(𝑡, 𝑣) =
− ∫ 𝑣

−∞ 𝑓 (𝑡, 𝑦)d𝑦, we then have

𝜕𝑡𝑢 + 2𝑢𝜕𝑣𝑢 = 0
with initial condition

𝑢0(𝑣) = −∫

𝑣

−∞
𝑓0(𝑦)d𝑦 .

hen the blow-up time is equal to the shock formation time of Burgers
equation, i.e.

𝑇 = − 1
2 min𝑣 𝑢′0(𝑣)

.

Next we cite a few apriori properties of the solutions to the spatially
inhomogeneous case proposed in [25,29].

roposition 1. For 𝛾 > 1, the solution to (1.2) satisfies

• Mass conservation: 𝑑
𝑑 𝑡 ∫R×R 𝑓 (𝑡, 𝑥, 𝑣)d𝑥d𝑣 = 0.

• Momentum conservation : 𝑑
𝑑 𝑡 ∫R×R 𝑣𝑓 (𝑡, 𝑥, 𝑣)d𝑥d𝑣 = 0.

• Decrease of moments for 𝑝 ≥ 2 : 𝑑
𝑑 𝑡 ∫R×R |𝑣|𝑝𝑓 (𝑡, 𝑥, 𝑣)d𝑥d𝑣 ≤ 0.

• Increase of internal energy : for a 𝐶1 convex function 𝑈 with 𝑈 (0) =
0, we have
𝑑
𝑑 𝑡 ∫R×R

𝑈 (𝑓 (𝑡, 𝑥, 𝑣))d𝑥d𝑣 ≥ 0 .

In this proposition, the third part, when 𝑝 = 2, signifies the dissi-
ation of energy, as expected in an inelastic collision. When 𝑝 = ∞, it
mplies that for compactly supported initial data 𝑓 (0, 𝑥, ⋅), the support

of 𝑓 (𝑡, 𝑥, ⋅) remains compact for all 𝑡 > 0. Moving to the fourth part,
a notable selection is 𝑈 (𝑓 ) = 𝑓 ln 𝑓 , representing the negative of the
entropy.

2.2. Numerical method

In this subsection, we present a variational semi-Lagrangian scheme
for the granular kinetic Eq. (1.2). As demonstrated in the theoretical
paper [29], we divide the equation into two stages: a transport step that
is explicitly addressed, and a collision step that is treated implicitly.
More precisely, denote 𝑓 𝑛(𝑥, 𝑣) ≈ 𝑓 (𝑡𝑛, 𝑥, 𝑣), where 𝑡𝑛 = 𝑛𝛥𝑡 with 𝛥𝑡
being the time step, we have:

𝑓 𝑛+ 1
2 − 𝑓 𝑛

𝛥𝑡
+ 𝑣𝜕𝑥𝑓

𝑛 = 0 , (2.4)

and

𝑓 𝑛+1 − 𝑓 𝑛+ 1
2

𝛥𝑡
= 𝜕𝑣((𝜕𝑣𝑊 ∗𝑣 𝑓 𝑛+1)𝑓 𝑛+1) . (2.5)

Periodic boundary condition in 𝑥 and no flux boundary condition in 𝑣
ill be used throughout the paper.

.3. Semi-Lagrangian scheme for the transport step

For the transport step (2.4), we will use the semi-Lagrangian
cheme, which combines the method of characteristic and interpo-
ation. Specifically, let [−𝐿𝑥, 𝐿𝑥] be the computational domain and
efine
0
𝑖 = −𝐿𝑥 + 𝑖𝛥𝑥∕2 , 1 ≤ 𝑖 ≤ 𝑁𝑥, 𝛥𝑥 = 2𝐿𝑥∕𝑁𝑥 ,

s the initial grid points. As time progresses, the grids {𝑥𝑛𝑖 } will
e updated and become nonuniform due to mesh refinement (de-
ails of which will be provided in Section 2.4.3). Given {𝑓 𝑛(𝑥𝑛𝑖 )}

𝑁𝑥
𝑖=1,

𝑓 𝑛+1(𝑥𝑛+1𝑖 )} can be acquired by tracing back the characteristics:

𝑛+1(𝑥𝑛+1𝑖 , 𝑣) = 𝑓 𝑛(𝑥𝑛+1𝑖 − 𝑣𝛥𝑡, 𝑣) ,

3 
here 𝑓 𝑛(𝑥𝑛+1𝑖 − 𝑣𝛥𝑡, 𝑣) is evaluated using piecewise cubic Hermite
nterpolation. To guarantee mass conservation, we re-weight the inter-
olated value by the total mass, namely,

𝑓 𝑛+1(𝑥𝑛+1𝑖 , 𝑣) ∶= max{𝑓 𝑛(𝑥𝑛+1𝑖 − 𝑣𝛥𝑡, 𝑣), 10−10} 𝑀𝑛
𝑀𝑛+1

, (2.6)

where

𝑀𝑛 =
𝑁𝑥−1
∑

𝑖=2
𝑓 𝑛(𝑥𝑛𝑖 , 𝑣)

𝑥𝑛𝑖+1 − 𝑥𝑛𝑖−1
2

+ 𝑓 𝑛(𝑥𝑛1, 𝑣)(𝐿𝑥 +
𝑥𝑛2 + 𝑥𝑛1

2
)

+ 𝑓 𝑛(𝑥𝑛𝑁𝑥
, 𝑣)(𝐿𝑥 −

𝑥𝑛𝑁𝑥
+ 𝑥𝑛𝑁𝑥−1

2
) ,

and let 𝑦𝑖 ∶= 𝑥𝑛+1𝑖 − 𝑣𝛥𝑡

𝑀𝑛+1 =
𝑁𝑥−1
∑

𝑖=2
𝑓 𝑛+1(𝑦𝑖, 𝑣)

𝑦𝑖+1 − 𝑦𝑖−1
2

+ 𝑓 𝑛+1(𝑦𝑛1, 𝑣)(𝐿𝑥 +
𝑦2 + 𝑦1

2
)

+ 𝑓 𝑛+1(𝑦𝑁𝑥
, 𝑣)(𝐿𝑥 −

𝑦𝑁𝑥
+ 𝑦𝑁𝑥−1

2
) ,

where 𝑓 𝑛+1(𝑦𝑖, 𝑣) is defined in (2.6).

2.4. Regularized JKO scheme with adaptive mesh refinement for collision
step

This section centers around solving the collision step (2.5), for
which we will adopt a regularized JKO scheme along with a mesh
refinement technique. In the following, we first introduce the Fisher
information regularized JKO scheme that was proposed in [34], and
extend it to the non-uniform mesh case here. Secondly, in order to
increase the resolution at the blow-up region, we use a mesh refine-
ment technique that was originally proposed in [27], which adaptively
redistribute a large portion of the grid points to the blow-up region.

2.4.1. Regularized JKO scheme
To start, rewrite (2.1) as

𝜕𝑡𝑓 = 𝜕𝑣(𝑓 𝜕𝑣
𝛿 𝐸(𝑓 )
𝛿 𝑓 ) , (2.7)

where the Energy functional is defined as

𝐸(𝑓 ) = 1
2 ∫R ∫R

𝑊 (𝑣 −𝑤)𝑓 (𝑣)𝑓 (𝑤)d𝑣d𝑤 ,

and 𝛿 𝐸
𝛿 𝑓 is the functional derivative of 𝐸. Then (2.7) can be interpreted

as a gradient flow of the 𝐸 with respect to the Wasserstein metric,
and therefore admits the following minimizing movement scheme, also
called JKO scheme:

𝑓 𝑛+1 ∈ ar gmin
𝑓∈𝑎𝑐(𝛺𝑣)

{

1
2
𝑑

(

𝑓 , 𝑓 𝑛+ 1
2
)2

+ 𝛥𝑡𝐸 (𝑓 )
}

. (2.8)

Here 𝑑 (𝑓 , 𝑓 𝑛) is the Wasserstein distance between 𝑓 and 𝑓 𝑛 and
𝑎𝑐

(

𝛺𝑣
)

is the set of probability measures on 𝛺𝑣 that are absolutely
continuous with respect to Lebesgue measure. In this paper, we use the
Benamou-Brenier’s dynamic formulation to numerically compute the
Wasserstein distance. In particular, the distance between two measures
𝑓0d𝑥 and 𝑓1d𝑥 is

𝑑
(

𝑓0, 𝑓1
)2 = min

(𝑓 ,𝑚)∈1 ∫
1

0 ∫𝛺𝑣

𝛷(𝑓 (𝑡, 𝑣), ‖𝑚(𝑡, 𝑣)‖)d𝑣 d𝑡 , (2.9)

where

𝛷(𝑓 , ‖𝑚‖) =
⎧

⎪

⎨

⎪

⎩

‖𝑚‖2

𝑓 if 𝑓 > 0 ,
0 if (𝑓 , 𝑚) = (0, 0) ,

+∞ otherwise ,

and the constraint set 1 consists of
𝜕𝑡𝑓 + ∇𝑣 ⋅ 𝑚 = 0 on 𝛺𝑣 × [0, 1], 𝑚 ⋅ 𝜈 = 0 on 𝜕 𝛺𝑣 × [0, 1],

𝑓 (⋅, 0) = 𝑓0, 𝑓 (⋅, 1) = 𝑓1 on 𝛺𝑣 .
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ere 𝜈 is the outer normal direction of 𝛺𝑣. Substituting (2.9) into (2.8),
nd write 𝑚 = 𝑓 𝑣, we end up with a convex optimization with a linear
onstraint:
⎧

⎪

⎨

⎪

⎩

(𝑓 , 𝑚) = ar g min
𝑓 ,𝑚

1
2 ∫

1

0 ∫𝛺𝑣

𝛷(𝑓 , ‖𝑚‖)d𝑣d𝑡 + 𝛥𝑡𝐸(𝑓 (1, ⋅))

s.t. 𝜕𝑡𝑓 + ∇𝑣 ⋅ 𝑚 = 0, 𝑓 (0, 𝑣) = 𝑓 𝑛(𝑣), 𝑚 ⋅ 𝜈 = 0 .
(2.10)

In practice, to further increase the convexity of the objective func-
ion and preserve the positivity of the desired minimizer 𝑓 ∗, we add a
isher information regularization term
−2𝛥𝑡2 ∫𝛺𝑣

‖∇ log 𝑓‖2𝑓d𝑣

o the objective function and reach the following regularized problem,
riginally proposed in [34]:

𝑓 𝑛+1(𝑣) ∈ ar g inf
𝑚,𝑓 ∫𝛺𝑣

‖𝑚(𝑡)‖2

𝑓 (𝑡)
+ 𝛽−2𝛥𝑡2‖∇ log 𝑓 (𝑣)‖2𝑓 (𝑣)d𝑣 + 2𝛥𝑡𝐸(𝑓 ) ,

(2.11)

such that

𝑓 − 𝑓 𝑛+ 1
2 + ∇𝑣 ⋅ 𝑚 = 0, 𝑚 ⋅ 𝜈 = 0 . (2.12)

Here the artificial time in the dynamic formulation (2.10) is replaced
y one step finite difference in time. This is shown in [34] that
ignificantly reduces the computational cost without violating the first
rder accuracy in time.

.4.2. Non-uniform velocity discretization
Different from [34], we will use a non-uniform discretization in 𝑣 so

s to facilitate the later mesh refinement proposal. To be more specific,
enote the computational domain in 𝑣 to be 𝑣 ∈ [−𝐿, 𝐿] and the number
f grid points as 𝑁𝑣. Let {𝑣𝑖}

𝑁𝑣
𝑖=1 be the grid points, and define

𝛥𝑣𝑖 ∶= 𝑣𝑖 − 𝑣𝑖−1, ℎ𝑖 =
1
2
(𝛥𝑣𝑖 + 𝛥𝑣𝑖+1) .

To discretize (2.11) and (2.12), we evaluate 𝑓 at the grid points
and 𝑚 at the half grid points, i.e., i.e. 𝑚𝑖− 1

2
= 𝑚( 𝑣𝑖+𝑣𝑖−12 ). Then the fully

iscretized version of (2.11) and (2.12) reads
𝑛+1 ∈ ar g min𝐹 (𝑓 , 𝑚) + 𝛥𝑡𝐸(𝑓 , 𝑚) , (2.13)

where

𝐹 (𝑓 , 𝑚) =
𝑁𝑣
∑

𝑗=2

⎡

⎢

⎢

⎢

⎣

2𝑚2
𝑗− 1

2

𝑓𝑗 + 𝑓𝑗−1
+

𝛽−2𝛥𝑡2

𝛥𝑣2𝑖

(

log 𝑓𝑗 − log 𝑓𝑗−1
)2 𝑓𝑗 + 𝑓𝑗−1

2

⎤

⎥

⎥

⎥

⎦

𝛥𝑣𝑗 ,

and

𝐸(𝑓 ) =
𝑁𝑣
∑

𝑖,𝑙=1
𝑊𝑖,𝑙𝑓𝑖𝑓𝑙ℎ𝑖ℎ𝑙 , 𝑊𝑖,𝑙 = 𝑊 (𝑣𝑖 − 𝑣𝑙) .

he constraint function reads

𝑓 𝑛+1
𝑗 − 𝑓 𝑛

𝑗 +
𝑚𝑗+ 1

2
− 𝑚𝑗− 1

2

ℎ𝑗
= 0. (2.14)

Denote 𝑢 = [𝑓 , 𝑚], then the constraint (2.14) can be reformulated
s a linear system 𝐴𝑢 = 𝑏. By introducing the indicator function,
2.13) together with (2.14) can be reformulated into an unconstrained
ptimization problem:

min
𝑢

𝐽 (𝑢) + 𝜒(𝑢), 𝜒(𝑢) =
{

0 A𝑢 = 𝑏 ,
+∞ otherwise ,

(2.15)

here

(𝑢) ∶= 𝐹 (𝑢) + 𝛥𝑡𝐸(𝑢) . (2.16)
s

4 
As discussed in [34], thanks to the convexity of the 𝐽 (𝑢), we can
nvoke the sequential quadratic programming to solve (2.15):
⎧

⎪

⎨

⎪

⎩

𝑧(𝑙+1) ∈ ar g min𝑧
1
2

(

𝑧 − 𝑢(𝑙)
)𝑇

𝖧(𝑙) (𝑧 − 𝑢(𝑙)
)

+∇𝐽
(

𝑢(𝑙)
)𝑇 (

𝑧 − 𝑢(𝑙)
)

+ 𝜒(𝑧),

𝑢(𝑙+1) = 𝑢(𝑙) + 𝑡𝑙
(

𝑧(𝑙+1) − 𝑢(𝑙)
)

.

Here 𝖧(𝑙) is an approximation of ∇2𝐽 (𝑢(𝑙)), for our particular form of 𝐽
n (2.16), it has the form

(𝖧(𝑙))𝑖,𝑗 =

{

(∇2𝐹 (𝑢(𝑙)))𝑖,𝑖 , if 𝑖 = 𝑗 ,
0, else.

We now summarize our one step regularized JKO scheme in Algo-
rithm 1, which is essentially the same as in [34]. Note that when the
exit flag as defined in Algorithm 1 becomes 𝑒𝑓 = 1, it signifies that the
minimizer cannot be reached even after a sufficiently large number of
iterations. This condition can be regarded as a numerical indicator of
blow-up, and we will demonstrate its significance in the forthcoming
numerical examples section.

Algorithm 1: One step regularized JKO scheme
Input : Grid points {𝑣𝑗}𝑗 , function value {𝑓 𝑛(𝑣𝑗 ) =∶ 𝑓 𝑛

𝑗 }𝑗 , time
step 𝛥𝑡, optimization step 𝜆, max iteration number
𝐼𝑚𝑎𝑥 and a stopping criteria 𝜖

Output: {𝑓 𝑛+1
𝑗 }𝑗 and exit flag 𝑒𝑓

1 1. Compute 𝛥𝑣𝑖 ∶= 𝑣𝑖 − 𝑣𝑖−1 and ℎ𝑖 =
𝛥𝑣𝑖+𝛥𝑣𝑖+1

2 .
2 2. Let 𝑙 = 0, 𝜁 = 1, 𝑒𝑓 = 0 ;
3 while 𝑙 < 𝐼𝑚𝑎𝑥 do
4 if 𝜁 > 𝜖 then
5 𝑧(𝑙+1) ∈

ar g min𝑧
1
2 (𝑧− 𝑢(𝑙))𝑇𝖧(𝑙)(𝑧− 𝑢(𝑙)) + ∇𝐽 (𝑢(𝑙))𝑇 (𝑧− 𝑢(𝑙)) +𝜒(𝑧)

;
6 𝑢(𝑙+1) = 𝑢(𝑙) + 𝜆(𝑧(𝑙+1) − 𝑢(𝑙)) ;
7 𝜁 = ‖𝑢(𝑙+1)−𝑢𝑙‖

‖𝑢𝑙‖ ;
8 else
9 Break ;
10 end
11 𝑙 = 𝑙 + 1 ;
12 end
13 3. 𝑒𝑓 = 1 if 𝑙 = 𝐼𝑚𝑎𝑥;

2.4.3. Adaptive mesh refinement
To investigate the possible blow-up in the solution, we need to keep

increasing the resolution in regions where the solution is concentrated.
Here we follow the approach developed in [27]. The main concept is
to create a dynamic mapping between the original domain and the
interval [0, 1]𝑑 . This mapping ensures that the grid points in [0, 1]𝑑

remain uniformly spaced and finite. However, when transferring the
grid back to the original domain, the points are concentrated more
heavily in the vicinity of singularities.

To better illustrate the idea, let us consider (2.1) with 𝑣 ∈ [−𝐿, 𝐿]
and initial condition 𝑓 (0, 𝑣) = 𝑓0(𝑣). Choose two parameters 𝛿0 and 𝛿,
both in (0, 1), and let

𝑆0 ∶= {𝑣 ∶ |𝑓 0(𝑣)| ≥ 𝛿0‖𝑓
0
‖∞} , (2.17)

hich indicates the blow-up region. Now we intend to find a one-
o-one map 𝑣 = 𝜇(𝑠) between 𝑣 ∈ [−𝐿, 𝐿] and an auxiliary variable
∈ [−1, 1]. Specifically, we seek a mapping such that if we distribute
uniform grid points along 𝑠, then the resulting grid in 𝑣 contains

 𝑁 points within 𝑆0. By doing so, we can densely pack grid points in
he neighbor of the concentration region, i.e., 𝑆0, while maintaining a

parser grid elsewhere. Note that the choice of the mapping function 𝜇
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Fig. 1. Demonstration of Mesh refinement method for 𝑓 (𝑣) = 𝑒−30𝑣2 for 𝑣 ∈ [−2, 2]. The left figure shows the mapping function 𝜇(𝑠) with fixed 𝛿 = 0.5 and various 𝛿0 = 0.2, 0.5, 0.8.
he middle and right one compare function 𝑓 (𝑣) in uniform grid and after mesh refinement (MR).
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ighly depends on the shape of 𝑆0 in (2.17), and we will focus on two
pecific cases.

The first case is when the concentration is symmetrically centered
t a single point. Without loss of generality, let us assume it is centered
t 𝑣 = 0. In this case, we only need to find 𝜇(𝑠) ∶ [0, 1] → [0, 𝐿] and
ubsequently perform an odd extension to extend the mapping to the
ntire domain 𝑠 ∈ [−1, 1]. In particular, define

= {𝑣𝑗 ∶ 𝑓 (𝑣𝑗 ) > 𝛿0(max
𝑖

𝑓 (𝑣𝑖)), 𝑣𝑗 > 0} , 𝑟 = min{𝑣𝑗 ∶ 𝑣𝑗 ∈ 𝑆} , (2.18)

hen we seek a continuous and monotone increasing function 𝑣 = 𝜇(𝑠),
uch that

(0) = 0, 𝜇(𝛿) = 𝑟, 𝜇(1) = 𝐿 .
To this end, we use a straight line to connect 𝑠 = 0 to 𝑠 = 𝛿, and a
oncave up curve to connect 𝑠 = 𝛿 to 𝑠 = 1 if 𝑟

𝛿 < 𝐿; or a concave down
urve otherwise. More specifically, 𝜇 takes the form

𝜇(𝑠) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑟
𝛿 𝑠 𝑠 ∈ [0, 𝛿] ;

𝑎1𝑠5 + 𝑏1𝑠 𝑠 ∈ [𝛿 , 1] , if 𝑟∕𝛿 < 𝐿 ;
𝑎2

1+𝑒−𝑏2𝑠
𝑠 ∈ [𝛿 , 1] , if 𝑟∕𝛿 ≥ 𝐿 ,

(2.19)

where 𝑎𝑖 and 𝑏𝑖, 𝑖 = 1, 2 are two constants depending on 𝑟 and 𝛿 to
nsure continuity of 𝜇(𝑠) at the interface 𝑠 = 𝛿.

In the second scenario, the concentrations are symmetrically posi-
ioned at two points. Once more, without loss of generality, we assume
hat the centers of these two concentrations are at 𝑣 = 0. Similar to
he previous case, we focus on the mapping in the positive part of
he domain and perform an odd extension to cover the entire domain.
efine

= {𝑣𝑗 ∶ 𝑓 (𝑣𝑗 ) > 𝛿0(max
𝑖

𝑓 (𝑣𝑖)), 𝑣𝑗 > 0}, 𝑟1 = min{𝑣𝑗 ∶ 𝑣𝑗 ∈ 𝑆},

2 = max{𝑣𝑗 ∶ 𝑣𝑗 ∈ 𝑆} .

hen we aim to find a continuous and monotone increasing function
(𝑠) such that

𝜇(0) = 0, 𝜇( 1
2
− 𝛿

2
) = 𝑟1, 𝜇( 1

2
+ 𝛿

2
) = 𝑟2, 𝜇(1) = 𝐿 . (2.20)

As with the previous case, we use a straight line to connect 𝑠 = 1
2 − 𝛿

2
o 𝑠 = 1

2 + 𝛿
2 , and use either 𝜇(𝑠) = 𝑎𝑠5 + 𝑏𝑠 or 𝜇(𝑠) = 𝑎

1+𝑒−𝑏𝑠 to connect
𝑠 = 0 to 𝑠 = 1

2 − 𝛿
2 , and 𝑠 = 1

2 + 𝛿
2 to 𝑠 = 1, depending on the concavity.

o be more precise, the expression for 𝜇(𝑠) takes the form:

𝜇(𝑠) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑟
𝛿 𝑠 𝑠 ∈ [ 12 − 𝛿

2 ,
1
2 + 𝛿

2 ] ,

𝑎1𝑠5 + 𝑏1𝑠 𝑠 ∈ [0, 12 − 𝛿
2 ] if 𝑟2−𝑟1

𝛿 ≥ 𝐿 ,
𝑎2

1+𝑒−𝑏2𝑠
𝑠 ∈ [0, 12 + 𝛿

2 ] if 𝑟2−𝑟1
𝛿 < 𝐿 ,

𝑎3𝑠5 + 𝑏3𝑠 𝑠 ∈ [ 12 − 𝛿
2 , 1] if 𝑟2−𝑟1

𝛿 < 𝐿 ,
𝑎4

1+𝑒−𝑏4𝑠
𝑠 ∈ [ 12 + 𝛿

2 , 1] if 𝑟2−𝑟1
𝛿 ≥ 𝐿 ,

(2.21)

where 𝑎𝑖 and 𝑏𝑖, 𝑖 = 1, 2, 3, 4 are constants depending on 𝑟1, 𝑟2 and 𝛿 to
ensure continuity of 𝜇(𝑠) at the interfaces.

To visualize the mapping, we examine a simple function 𝑓 (𝑣) =
𝑒−20𝑣2 with 𝑣 ∈ [−2, 2]. We plot this function using both a uniform mesh
 t

5 
and a non-uniform mesh. As illustrated in Fig. 1, the mesh refinement
approach results in higher resolution near the function’s peak.

Similarly, for the second case, we plot the function 𝑓 (𝑣) =
𝑒−50(𝑣−2)2−50(𝑣+2)2 for 𝑣 ∈ [−4, 4] in Fig. 2. Once more, the mesh
refinement approach provides higher resolution near the function’s
eaks.

In practice, given a mesh 𝑣𝑛𝑗 and corresponding function values
𝑓 𝑛(𝑣𝑛𝑗 ), we can construct an appropriate mapping 𝜇𝑛(𝑠) as described
above to generate a new set of mesh grid 𝑣𝑛+1𝑗 with higher resolution
n the desired region. Note that our mesh refinement method differs

somewhat from the approach proposed in [28], where the author
employed a Gaussian function as the mapping function, along with
three adjustable parameters. Our proposed mesh refinement technique
is more general and comprises an arbitrary number of components.
This enables easy manipulation of the mapping’s shape, including its
monotonicity and concavity. Our approach is not only more flexible
but also capable of handling multiple blow-ups concurrently.

When interpolation is applied, a rescaling is imposed to ensure exact
mass conservation. Specifically, after obtaining 𝑓 (𝑣𝑛+1𝑗 ), the following
procedure is carried out:

𝑓 (𝑣𝑛+1𝑗 ) ∶= max{𝑓 (𝑣𝑛+1𝑗 ), 10−10}
𝑀𝑛
𝑀𝑛+1

, (2.22)

where

𝑀𝑛 =
𝑁𝑣−1
∑

𝑗=2
𝑓 (𝑣𝑛𝑗 )

𝑣𝑛𝑗+1 − 𝑣𝑛𝑗−1
2

+ 𝑓 (𝑣𝑛𝑗 )(𝐿𝑣 +
𝑣𝑛2 + 𝑣𝑛1

2
)

+ 𝑓 (𝑣𝑛𝑁𝑣
)(𝐿𝑣 −

𝑣𝑛𝑁𝑣
+ 𝑣𝑛𝑁𝑣−1

2
) ,

𝑀𝑛+1 =
𝑁𝑣−1
∑

𝑗=2
𝑓 (𝑣𝑛+1𝑗 )

𝑣𝑛+1𝑗+1 − 𝑣𝑛+1𝑗−1

2
+ 𝑓 (𝑣𝑛+1𝑗 )(𝐿𝑣 +

𝑣𝑛+12 + 𝑣𝑛+11
2

)

+ 𝑓 (𝑣𝑛+1𝑁𝑣
)(𝐿𝑣 −

𝑣𝑛+1𝑁𝑣
+ 𝑣𝑛+1𝑁𝑣−1

2
) .

2.4.4. Mesh refinement JKO scheme
Combining both the mesh refinement mechanism and the nonuni-

orm JKO scheme results in a mesh refinement JKO scheme. First, we
utline the following algorithm for one step of the JKO scheme:

For the evolution problem, we execute Algorithm 2 with two time
tepping strategies. One is to use fixed time step and the other one is the
daptive time stepping. The latter choice is more expensive but useful
n predicting the more accurate finite blow-up time. The algorithm is
ummarized in Algorithm 3.

emark 1. In Algorithm 3, there are two indicators for blow-up. One
s when the mesh size 𝛥𝑣min falls below a threshold 𝜖𝑣, and the other
s when optimization fails to converge within the maximum number of
terations. The latter condition is particularly valuable in the finite time
low-up case when a more accurate prediction of the blow-up time is
esired. In such instances, as time approaches the blow-up time, a large
ime step may easily surpass the blow-up time, causing the optimization
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Fig. 2. Demonstration of Mesh refinement method for 𝑓 (𝑣) = 𝑒−50(𝑣−2)2−50(𝑣+2)2 for 𝑣 ∈ [−4, 4]. The left figure shows the mapping function 𝜇(𝑠) with fixed 𝛿 = 0.5 and various
𝛿0 = 0.2, 0.5, 0.8. The middle and right one compare function 𝑓 (𝑣) in uniform grid and after mesh refinement(MR).
t

Algorithm 2: One step mesh refinement JKO scheme
Input : Parameters 𝛿0, 𝛿 ∈ (0, 1) and a uniform mesh {𝑠𝑗}𝑗 ,

grid points {𝑣𝑛𝑗}𝑗 , function value {𝑓 𝑛(𝑣𝑛𝑗 )}𝑗 , time step
size 𝛥𝑡 and threshold value 𝜖𝑣.

Output: updated grid {𝑣𝑛+1𝑗 }, function value 𝑓 𝑛+1(𝑣𝑛+1𝑗 ) and
blow-up indicator 𝑒𝑓 .

1 1. Acquire 𝑓 𝑛+1(𝑣𝑛𝑗 ) and 𝑒𝑓 from Algorithm 1.
2 2. Determine 𝑟 according to (2.18) and construct 𝜇 via (2.19);

or determine 𝑟1 and 𝑟2 according to (2.20) and construction 𝜇
via (2.21). Update mesh by setting 𝑣𝑛+1𝑗 = 𝜇(𝑠𝑗 ).

3 3. Compute 𝑓 𝑛+1(𝑣𝑛+1𝑗 ) using the interpolation and rescaling
(2.22).

Algorithm 3: Mesh refinement JKO scheme with/without adap-
ive time stepping
Input : Parameters 𝛿0, 𝛿 ∈ (0, 1) and a uniform mesh {𝑠𝑗}𝑗 ,

initial grid points {𝑣0𝑗 }, initial condition {𝑓 0(𝑣0𝑗 )}𝑗 ,
initial time step 𝛥𝑡0, final time 𝑇 and threshold values
𝜖𝑡 and 𝜖𝑣.

Output: Numerical solution of equation (2.1) with high
resolution at singularity and numerical blow-up time
𝑇𝑏.

1 Let 𝑡 = 0, 𝑛 = 0, 𝛥𝑡 = 𝛥𝑡0, 𝛥𝑣𝑚𝑖𝑛 = min𝑗{𝑣0𝑗+1 − 𝑣0𝑗 }, 𝑒𝑓 = 0;

2 while 𝑡 < 𝑇 and
{

𝛥𝑡 > 𝜖𝑡 with adapt time step,
min𝛥𝑣 > 𝜖𝑣 with fixed time step do

3 1. Run Algorithm 2 to get {𝑣𝑛+1𝑗 } and {𝑓 𝑛+1(𝑣𝑛𝑗 )} and update
𝑒𝑓 ;

4 2. If using adapt time step
5 while 𝑒𝑓 = 1 do
6 𝛥𝑡 = 𝛥𝑡∕2 ;
7 Run Algorithm 2 to get {𝑣𝑛+1𝑗 } and {𝑓 𝑛+1(𝑣𝑛𝑗 )} and

update 𝑒𝑓 ;
8 end
9 3. 𝑡 = 𝑡 + 𝛥𝑡, 𝑛 = 𝑛 + 1.
10 end
11 𝑇𝑏(𝜖) = 𝑡.

step to diverge. In response, the time step can be decreased, and this
step can be recomputed iteratively, progressively reducing the time
step until the optimization converges. See Fig. 5 and the discussion in
Section 3.1 for more details.

2.5. Combining the two steps

We now summarize the final algorithm in Algorithm 4 for calculat-
ing the spatially inhomogeneous granular kinetic equation. Note that
or the time step, we can use either a fixed time step 𝛥𝑡 or adapt the
0

6 
time step based on the mesh size 𝛥𝑡 = min{𝛥𝑡0,min 0.9 𝛥𝑣min
𝐿𝑣

, 0.9 𝛥𝑥min
𝐿𝑥

}. In
most examples, a fixed time step will be employed unless the accurate
prediction of the finite blow-up time necessitates the use of an adaptive
ime step.
Algorithm 4: Semi-Lagrangian JKO scheme

Input : Parameters 𝛿0, 𝛿 ∈ (0, 1) and a uniform mesh {𝑠𝑗}𝑗 ,
initial time step 𝛥𝑡0, time stepping strategy, final time
𝑇 , stopping threshold 𝜖𝑥,𝑣, initial mesh grid {𝑥0𝑖 }, {𝑣

0
𝑗 }

and initial condition 𝑓 (0, 𝑥, 𝑣) = 𝑓0(𝑥, 𝑣).
Output: Numerical solution of equation (1.2) with high

resolution at singularity, numerical blow-up time 𝑇𝑏
and blow-up indicators 𝐵𝑥, 𝐵𝑣.

1 1. Compute 𝛥𝑣𝑚𝑖𝑛 = min𝑗{𝑣0𝑗+1 − 𝑣0𝑗 }, 𝛥𝑥𝑚𝑖𝑛 = min𝑖 𝑥0𝑖+1 − 𝑥0𝑖 , and
set 𝐵𝑥 = 0 and 𝐵𝑣 = 0, 𝛥𝑡 = 𝛥𝑡0 ;

2 while 𝑡 < 𝑇 , 𝛥𝑣𝑚𝑖𝑛 > 𝜖𝑥,𝑣 and 𝛥𝑥𝑚𝑖𝑛 > 𝜖𝑥,𝑣, 𝑒𝑓 = 0 do
3 1. Either use fixed time step 𝛥𝑡 = 𝛥𝑡0 or adjust the time step

according to: 𝛥𝑡 = min{𝛥𝑡0,min{0.9 𝛥𝑣𝑚𝑖𝑛
𝐿𝑣

, 0.9 𝛥𝑥𝑚𝑖𝑛
𝐿𝑥

}} ;
4 2. Transport step
5 for 𝑗 = 1⋯𝑁𝑣 do
6 Compute 𝑓 ∗(𝑥𝑛𝑖 , 𝑣𝑛𝑗 ) for 𝑖 = 1⋯𝑁𝑥 by (2.6) ;
7 end
8 3. Collision step
9 for 𝑖 = 1⋯𝑁𝑥 do
10 Compute 𝑓 𝑛+1(𝑥𝑛𝑖 , 𝑣𝑛𝑗 ) by Algorithm 1 given 𝑓 ∗(𝑥𝑛𝑖 , 𝑣𝑛𝑗 )

and update 𝑒𝑓 ;
11 end
12 4. Mesh refinement
13 For one bump case, determine
14 𝑆 = {(𝑥𝑖, 𝑣𝑗 ) ∶ 𝑓 ∗(𝑥𝑖, 𝑣𝑗 ) > 𝛿0(max𝑖,𝑗 𝑓 ∗(𝑥𝑖, 𝑣𝑗 )), 𝑥𝑖 > 0, 𝑣𝑗 > 0},

then 𝑟𝑥 = min{𝑥𝑖 ∶ (𝑥𝑖, ⋅) ∈ 𝑆} and
𝑟𝑣 = min{𝑣𝑗 ∶ (⋅, 𝑣𝑗 ) ∈ 𝑆}, then find 𝜇𝑥(𝑠) via 𝑟𝑥 and (2.19),
find 𝜇𝑣(𝑠) via 𝑟𝑣 and (2.19).

15 For two bumps case, determine 𝑆 = {(𝑥𝑖, 𝑣𝑗 ) ∶ 𝑓 ∗(𝑥𝑖, 𝑣𝑗 ) >
𝛿0(max𝑖,𝑗 𝑓 ∗(𝑥𝑖, 𝑣𝑗 )), 𝑥𝑖 > 0, 𝑣𝑗 > 0}, then
𝑟𝑥1 = min{𝑥𝑖 ∶ (𝑥𝑖, ) ∈ 𝑆}, 𝑟𝑥2 = max{𝑥𝑖 ∶ (𝑥𝑖, ⋅) ∈ 𝑆},
𝑟𝑣1 = min{𝑣𝑗 ∶ (⋅, 𝑣𝑗 ) ∈ 𝑆} and 𝑟𝑣2 = max{𝑣𝑗 ∶ (⋅, 𝑣𝑗 ) ∈ 𝑆}.
Then find 𝜇𝑥(𝑠) via 𝑟𝑥1, 𝑟𝑥2 and (2.21), find 𝜇𝑣(𝑠) via 𝑟𝑣1, 𝑟𝑣2
and (2.21).

16 5. Interpolation
17 Use ‘pchip’ interpolation to get function value at the new

gird points {𝑓 𝑛+1(𝑥𝑛+1𝑖 , 𝑣𝑛+1𝑗 )} and rescale the total mass
dimensionwise according to (2.6) and (2.22) respectively.;

18 5. Compute 𝛥𝑥𝑚𝑖𝑛 = min𝑖(𝑥𝑛+1𝑖+1 − 𝑥𝑛+1𝑖 ),
𝛥𝑣𝑚𝑖𝑛 = min𝑗 (𝑣𝑛+1𝑗+1 − 𝑣𝑛+1𝑗 ) ;

19 6. 𝑡 = 𝑡 + 𝛥𝑡.
20 end
21 𝑇𝑏 = 𝑡; set 𝐵𝑥 = 1 if 𝛥𝑥𝑚𝑖𝑛 < 𝜖𝑥,𝑣; set 𝐵𝑣 = 1 if 𝛥𝑣𝑚𝑖𝑛 < 𝜖𝑥,𝑣 or

𝑒𝑓 = 1.
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Fig. 3. Numerical solution with initial condition 𝑔1(𝑣) = 𝑒−2𝑣2 , 𝛿 = 0.2, 𝛿0 = 0.5 and fixed time step 𝛥𝑡 = 0.01 with the kernel 𝑊 (𝑣) = |𝑣|.
Table 1
Numerical blow-up time with various 𝛥𝑡, 𝜖𝑣 and initial conditions with the kernel 𝑊 (𝑣) = |𝑣|. Here we use 𝑁𝑣 = 121, 𝛿 = 0.5 and 𝛿0 = 0.5.

𝛥𝑡 = 0.02 𝛥𝑡 = 0.01 𝛥𝑡 = 0.005 𝛥𝑡 = 0.0025 𝛥𝑡 = 0.00125
𝑓 (0, 𝑣) = 𝑔1(𝑣) 𝜖𝑣 = 1𝑒−3 0.48 0.48 0.47 0.4675 0.4512

𝜖𝑣 = 1𝑒−3∕2 0.5 0.49 0.49 0.4875 0.4725
𝜖𝑣 = 1𝑒−3∕4 0.52 0.51 0.5 0.5 0.4875
𝜖𝑣 = 1𝑒−3∕8 0.54 0.52 0.51 0.5075 0.4975
𝜖𝑣 = 1𝑒−3∕16 0.58 0.53 0.515 0.5075 0.50375

𝑓 (0, 𝑣) = 𝑔2(𝑣) 𝜖𝑣 = 1𝑒−3 0.24 0.24 0.235 0.235 0.2275
𝜖𝑣 = 1𝑒−3∕2 0.26 0.25 0.245 0.2425 0.2375
𝜖𝑣 = 1𝑒−3∕4 0.26 0.26 0.25 0.2475 0.245
𝜖𝑣 = 1𝑒−3∕8 0.28 0.26 0.255 0.2525 0.25
𝜖𝑣 = 1𝑒−3∕16 0.28 0.26 0.26 0.255 0.2525

𝑓 (0, 𝑣) = 𝑔3(𝑣) 𝜖𝑣 = 1𝑒−3 0.12 0.12 0.12 0.1175 0.1137
𝜖𝑣 = 1𝑒−3∕2 0.12 0.13 0.125 0.1225 0.1187
𝜖𝑣 = 1𝑒−3∕4 0.14 0.13 0.125 0.125 0.1225
𝜖𝑣 = 1𝑒−3∕8 0.14 0.13 0.13 0.1275 0.1265
𝜖𝑣 = 1𝑒−3∕16 0.14 0.13 0.13 0.1275 0.12625
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Table 2
Numerical blow-up time with various 𝛥𝑡 and 𝜖𝑣 for initial condition 𝑔4(𝑣) with 𝑁𝑣 = 121,
𝛿 = 0.5 and 𝛿0 = 0.5.

𝛥𝑡 = 0.01 𝛥𝑡 = 0.005 𝛥𝑡 = 0.0025 𝛥𝑡 = 0.00125
𝜖𝑣 = 1e−3 0.49 0.48 0.4775 0.4775
𝜖𝑣 = 1𝑒−3∕2 0.51 0.505 0.50125 0.50125
𝜖𝑣 = 1𝑒−3∕4 0.53 0.52 0.52 0.51875
𝜖𝑣 = 1𝑒−3∕8 0.56 0.54 0.5325 0.52875

3. Numerical examples

This section is dedicated to presenting the numerical findings re-
arding the (non)blow-up behavior of the granular kinetic equation.
pecifically, there are several solution behaviors:

(1) no blow-up occurs;
(2) blow-up initially forms in the spatial 𝑥 direction;
(3) blow-up initially forms in the velocity 𝑣 direction;
(4) blow-up occurs simultaneously in both the spatial and velocity

directions.
he last case is theoretically possible but exceptionally rare and chal-

enging to construct. Therefore, our focus will be solely on the first
hree cases.

We first validate the capability of our proposed numerical solver
Algorithm 3) for the spatially homogeneous case, where analytical
esults are well-established. We then disclose the numerical outcomes
erived from the implementation of our Algorithm 4. Based on these
esults, we formulate a conjecture regarding the blowup behavior for
he spatially inhomogeneous granular kinetic equation.

.1. Finite time blow-up verification: homogeneous problem

We begin by examining the spatially homogeneous case and es-

ablishing an appropriate blow-up criterion (𝜖𝑥,𝑣 in Algorithm 4). To

7 
his end, we consider (1.2) with the kernel 𝑊 (𝑣) = |𝑣| and an initial
ondition 𝑓 (0, 𝑣) = 𝑔(𝑣). The analytical blow-up time for this scenario
s given by:

𝑇 = 1
2 max𝑣 𝑔(𝑣)

.

To evaluate our numerical approach, we consider three one-bump
initial conditions: 𝑔1(𝑣) = 𝑒−2𝑣2 , 𝑔2(𝑣) = 2𝑒−2𝑣2 , and 𝑔3(𝑣) = 4𝑒−2𝑣2 and
ne two-bumps initial condition 𝑔4(𝑣) = 𝑒−10(𝑣−1.5)2 + 𝑒−10(𝑣+1.5)2 , with
nalytic blow-up times 𝑇1 = 0.5, 𝑇2 = 0.25, 𝑇3 = 0.125 and 𝑇4 = 0.5,
espectively. To fully investigate the blow-up behavior, we employ two
ime-stepping strategies. One is with a fixed time step 𝛥𝑡. The numerical
esults with the initial condition 𝑔1 at 𝑡 = 0.5 are depicted in Fig. 3,
here 𝛥𝑡 = 0.01 and the solution 𝑓 (𝑡 = 0.5, 𝑣) nearly converges to a
irac delta function centered at 𝑣 = 0.

More detailed results are provided in the Tables 1, 2 and Fig. 4.
rom Tables 1, 2, we observe that as we reduce the stopping criterion
as indicated by the columns), the numerical blow-up time increases.
onversely, when we decrease the time step size, the numerical blow-
p time decreases. Notably, as we reduce both the stopping criterion
nd the time step size simultaneously, the numerical blow-up time
pproaches convergence with the analytical blow-up time. In Fig. 4,
e observed that the minimum 𝛥𝑣 decreased very rapidly near the
nalytic numerical blow-up time. In this particular test, we have chosen
o omit the exit flag as a stopping criterion, allowing the algorithm to
ontinue running even if the minimizer is not reached, and this is why
e observe oscillations at the tail of the results when the simulation

ime extends beyond the analytical blow-up time.
The second strategy is to employ adaptive step sizes, with the initial

tep size set at 𝛥𝑡0 = 0.01, and subsequently halving it until the
inimization process converges. As depicted in Fig. 5, one can observe

hat the time step size 𝛥𝑡 decays significantly as it approaches the
nalytic blow-up time. Based on these observations, we believe that
ur proposed numerical solver is capable of reproducing the blow-up
olution and accurately capturing the analytic blow-up time.
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Fig. 4. Time versus minimum 𝛥𝑣 for initial condition 𝑔1(𝑣) with fixed 𝛥𝑡 with the kernel 𝑊 (𝑣) = |𝑣|. Here 𝑁𝑣 = 121 and 𝛿 = 0.5, the images from top left to bottom right correspond
o 𝛿0 = 0.05, 0.1, 0.5, 0.8 respectively.
Fig. 5. Time versus adaptive time step size 𝛥𝑡 with the kernel 𝑊 (𝑣) = |𝑣|. Here, we consider the initial condition 𝑔1(𝑣) with 𝑁𝑣 = 121 and 𝛿 = 0.5. On the left is 𝛿0 = 0.05, and on
he right is 𝛿0 = 0.5.
.2. Infinite time blow-up verification: homogeneous problem

We now consider the spatially homogeneous case of (1.2) with
ernel 𝑊 (𝑣) = |𝑣|3, whose solution converges asymptotic approaches
(𝑡, 𝑣) = 𝑀

2 𝛿 1
𝑡
+𝑀

2 𝛿− 1
𝑡

(𝑀 is the total mass) as time approaches infinity.
To demonstrate that our method can capture the desired blow-up
behavior, we consider an initial condition with two symmetric bumps:

𝑓 (0, 𝑣) = 𝑒−10(𝑥−1.5)
2
+ 𝑒−10(𝑥+1.5)

2
. (3.1)

Running algorithm 3 with 𝛿0 = 0.8, 𝛿 = 0.5, 𝛥𝑡 = 0.01 and 𝑁𝑣 = 101, we
observed in Fig. 7 that the two initially symmetric bumps shrinking
to two symmetric Dirac delta bumps and approaching 𝑣 = 0 from
wo sides. Additionally, we examined the rate at which the two peaks
onverge to the origin, and as shown in Fig. 8, they converge with a
ate of 𝑂( 1𝑡 ), which is consistent with the analytical result. In contrast to
he finite time blow-up cases (see Fig. 4), the minimum of 𝛥𝑣 decreases

very slowly.
Comparing Fig. 4 with Fig. 8, it is important to point out that

the minimum of 𝛥𝑣 exhibits distinct patterns. In cases with finite-
time blow-up, the minimum of 𝛥𝑣 experiences a rapid decline as time
approaches or slightly surpasses the analytic blow-up time. Conversely,
8 
in scenarios without finite-time blow-up, the minimum of 𝛥𝑣 decreases
at a considerably slower rate. This observation suggests that one can
confirm the presence of finite-time blow-up by monitoring the rate of
decay of the minimum of 𝛥𝑣, serving as an additional criterion for
detecting finite-time blow-up behavior. In practice, when employing
a fixed time stepping strategy as in Algorithm 3, we suggest setting
the threshold for detecting blow-up in the single bump scenario at
𝜖𝑣 = 1𝑒− 3∕16 (as shown in Fig. 4, Table 1) and setting 𝜖𝑣 = 1𝑒− 3∕8 for
two bumps case (see Fig. 6, Table 2). Furthermore, in situations aiming
at accurately capturing the analytical blow-up time, we implement the
adaptive time step strategy with a threshold set as in Algorithm 3 at
𝜖𝑡 = 5𝑒 − 6 (See Fig. 5).

3.3. Spatially inhomogeneous case with 𝛾 = 3

As previously discussed in Section 1 and numerically verified in
Section 3.2, the spatially homogeneous case of (1.2) with kernel 𝑊 (𝑣) =
|𝑣|3 exhibits an infinite-time blow-up solution. In this section, we aim
to numerically investigate how the spatial dependence will affect the
behavior of the solution solving (1.2).
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Fig. 6. Plot with initial condition 𝑔4(𝑣) and kernel 𝑊 (𝑣) = |𝑣|, 𝑁𝑣 = 121, 𝛿 = 0.5 and 𝛿0 = 0.5. On the left is time versus minimum 𝛥𝑣 and the right is time versus adaptive time
step size 𝛥𝑡.
Fig. 7. Numerical solution with 𝛿0 = 0.8, 𝛿 = 0.5, 𝛥𝑡 = 0.01 and 𝑁𝑣 = 101 with the kernel 𝑊 (𝑣) = |𝑣|3. The left plots the initial condition, the middle depicts 𝑓 (20, 𝑣), and the right
lot provides a zoom-in of 𝑓 (20, 𝑣) at 𝑣 = 0.
Fig. 8. Numerical solution with 𝛿0 = 0.8, 𝛿 = 0.5, 𝛥𝑡 = 0.01 and 𝑁𝑣 = 101 with the kernel 𝑊 (𝑣) = |𝑣|3. The left plot is the position of maximum value of 𝑓 (𝑡, 𝑣), i.e., 𝑃 (𝑡) = max𝑣 𝑓 (𝑡, 𝑣)
nd the right plot is the minimum 𝛥𝑣 along time.
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To achieve this, we consider the following initial condition, which
onsists of two symmetrically located bumps with respect to the origin:

0(𝑥, 𝑣) = 𝑒−𝑎(𝑥+𝑐)
2
𝑒−𝑏(𝑣−𝑑)

2
+ 𝑒−𝑎(𝑥−𝑐)

2
𝑒−𝑏(𝑣+𝑑)

2
. (3.2)

ote that when the spatial dependence is disregarded, (3.2) reduces
o the two bump case discussed in Section 3.2. Consequently, the two
umps, situated with opposite spatial locations, will both move towards
he origin while aggregating their velocity, as described in Section 3.2.
t becomes intriguing to examine which direction exhibits blow-up first,
f indeed there is a blow-up at all.

In practice, we set 𝐿𝑥 = 4, 𝐿𝑣 = 4, 𝑎 = 𝑏 = 6, 𝑐 = 1.5, 𝑑 = 2 and
hen execute Algorithm 4 with 𝛿0 = 0.02, 𝛿 = 0.5, and various values
f the strength of inelasticity 𝜆 solving (1.2). Note that the values of 𝛿0
nd 𝛿 in this case differ from those used in the spatially homogeneous
cenario. This difference is necessary because the small value of 𝛿0 helps
revent oscillations caused by low resolution in regions with small
alues of 𝑓 . A fixed time step of 𝛥𝑡 = 0.05 will be used throughout
he evolution.

Here, we present two representative numerical results for 𝜆 = 4 and
= 10. Additional results for other values of 𝜆 (specifically, 𝜆 = 2, 6, 8)
 l

9 
an be found in Section 3.3. For the case of 𝜆 = 4, the evolution of the
olution unfolds in three distinct stages. At first, the two initial bumps
ove towards the origin. Subsequently, they converge at the origin,

orming a concentration. Finally, due to the smallness of the concen-
ration coefficient, the transport effect prevails over the concentration
ffect, leading to a separation of the two bumps after they pass through
he origin. Such an evolution is illustrated in Fig. 9. A more detailed
lot at 𝑡 = 3 is presented in Fig. 10, explicitly showing that the two
umps have bypassed each other. Most notably, the bottom right plot
n Fig. 10 depicts the decreasing and then increasing changes in 𝛥𝑥
nd 𝛥𝑣, revealing the concentration and separation motion of the two
umps. Additionally, the peak value of 𝑓 (𝑡, 𝑥, 𝑣) undergoes a gradual
ncrease and then decrease, indicating no blow-up.

For 𝜆 = 10, the evolution of the solution also undergoes three stages.
he first two stages are similar to those observed for 𝜆 = 4, but with a
ore pronounced concentration effect. In this case, the solution rapidly

orms a concentration that resembles a Dirac delta at the origin, as
epicted in Fig. 11.

While a stronger concentration effect might suggest a higher like-

ihood of a blow-up solution, we still observe that after an extended
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Fig. 9. Numerical solution of (1.2) with kernel 𝑊 (𝑣) = |𝑣|3 for 𝑁𝑥 = 121, 𝑁𝑣 = 121, 𝜆 = 4. From top left to bottom right are time snapshots at 𝑡 = 0.4, 0.6, 0.8, 1, 1.6, 2.
b
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mixing time at the origin, the solution eventually spreads out along
the 𝑥 direction due to the transport effect. This can be seen in the
zoom-in plot and contour plot on the top right and bottom left of
ig. 12. This observation is further supported by the bottom right plot
n Fig. 12, where the minimum of 𝛥𝑥 initially decreases and then

increases, implying the concentration on 𝑥 at first and finally spreading
out by the transport effect.

We numerically verify the persistence of properties introduced in
Proposition 1 over time for 𝛾 = 3 and 𝜆 = 4 and 𝜆 = 10, with the results
lotted in the first two rows of Fig. 15 for the settings of Figs. 9 and 11
espectively. In Fig. 15, the total mass and momentum are preserved.
he energy (second order moment), third order moment, fourth order
oment and the entropy are decreasing over time. Here the entropy is
efined by 𝑈 (𝑓 ) = −𝑓 log(𝑓 ).

.4. Spatially inhomogeneous case with 𝛾 = 3∕2

When 𝛾 < 2, a blow-up solution can emerge within finite time
n spatially homogeneous cases. When considering transport, examples
ith finite-time blow-up in velocity space can be readily constructed.
owever, it is nontrivial to devise an appropriate initial condition that

eads to blow-up in both the 𝑥 and 𝑣 simultaneously or blow-up in the
𝑥 direction before the 𝑣 direction. For illustrative purposes, we provide
examples of finite-time blow-up in the 𝑣 direction for 𝛾 = 3∕2.
10 
Typically, when two symmetric bumps initially locate at second
quadrant and fourth quadrant respectively, the blow-up forms in 𝑣
direction before and after two bumps meets at 𝑥 = 0. More particularly,
for initial condition (3.2) with 𝑎 = 𝑏 = 6, 𝑐 = 𝑑 = 2.5 and 𝜆 = 10, the
low-up arises on 𝑣 in finite time before two bumps meet at 𝑥 = 0, see

result in Fig. 13. When 𝑎 = 6, 𝑏 = 3, 𝑐 = 𝑑 = 2.5 and 𝜆 = 5 are selected,
the blow-up arises on 𝑣 in finite time after two bumps have passed the
= 0, see Fig. 14.

Finally, we conduct a numerical verification to ensure that the
onservation or dissipation properties outlined in Proposition 1 persist

over time up to the blow-up time. Conservations of mass and mo-
entum, dissipation of moments and entropy are all well captured.
he results are collected in the last two rows of Fig. 15, with the
hird row corresponding to the settings in Fig. 13 and the bottom row
orresponding to the settings in Fig. 14, respectively.

3.5. To blow-up or not to blow-up: Numerical conclusions

In the last two subsections, we have analyzed, based on our time
adaptive algorithm, a possible scenario of blow-up in the inhomoge-
neous problem (1.2) with initial data (3.2). The numerical experiments
firmly supports the evidence of no blow-up for 𝛾 = 3 (see Figs. 9–12)
while numerical blow-up is detected for 𝛾 = 3∕2 (see Figs. 13–14).
Although theoretical results corroborating these numerical findings are
lacking at present, we have conducted all possible theoretical checks on
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Fig. 10. Numerical solution of (1.2) with kernel 𝑊 (𝑣) = |𝑣|3 for 𝑁𝑥 = 121, 𝑁𝑣 = 121, 𝜆 = 4. Top left: numerical solution 𝑓 (𝑡 = 4, 𝑥, 𝑣). Top right: zoom-in plot of 𝑓 (𝑡 = 4, 𝑥, 𝑣).
ottom left: contour plot of 𝑓 (𝑡 = 4, 𝑥, 𝑣). Bottom right: record of minimum of 𝛥𝑥, 𝛥𝑣 and maximum of 𝑓 (𝑡, 𝑥, 𝑣) at each time step.
the numerical solutions to ensure they satisfy the correct conservations
and dissipations, see Fig. 15.

In this section, we have not shown numerical results for the case of
𝛾 = 2. This case is quite particular since it is the borderline case between
infinite-time blow-up and finite-time blow-up in the homogeneous
case [24]. Moreover, the homogeneous equation for 𝛾 = 2 is equivalent
o a linear equation when conservation of mass and momentum are
aken into account for which it is easy to show that infinite time
low-up happens. Moreover, global-in-time measure solutions have
een constructed for the inhomogeneous problem (1.2) with 𝛾 = 2
n [30] allowing for possible concentrations of mass. Next section is
evoted to show that such concentration of mass happens for infinite
ass initial data. We will provide a self-similar infinite mass blowing-
p solution. Moreover, we will give heuristic arguments and provide
urther numerical evidence that such a finite-time blow-up of solutions
appens for finite-mass initial data for 𝛾 = 2.

. Explicit solutions for 𝜸 = 𝟐

In this section we give some explicit solutions to (1.2) for 𝛾 = 2
nd its modifications, which provide intuition about whether (1.2)
as global wellposedness of 𝐿1 solutions, see [30] for global in time
easure solutions.

.1. Infinite-mass self-similar solutions for 𝛾 = 2

We consider (1.2) with 𝛾 = 2. It can be rewritten as

𝜕𝑡𝑓 + 𝑣𝜕𝑥𝑓 = 𝜆
2
𝜌𝜕𝑣((𝑣 − 𝑢)𝑓 ), 𝜌(𝑡, 𝑥) = ∫R

𝑓 (𝑡, 𝑥, 𝑣)d𝑣,

𝜌(𝑡, 𝑥)𝑢(𝑡, 𝑥) = 𝑣𝑓 (𝑡, 𝑥, 𝑣)d𝑣, (4.1)
∫R a

11 
using the macroscopic quantities 𝜌 and 𝑢. We will construct a class of
infinite-mass self-similar solutions for (4.1). Consider an ansatz of the
form

𝑓 (𝑡, 𝑥, 𝑣) = 𝑚(𝑡)𝜙
(

𝑎(𝑡)(𝑣 − 𝑏(𝑡)𝑥)2
)

, (4.2)

where 𝑚(𝑡) > 0, 𝑎(𝑡) > 0, 𝑏(𝑡) are to be determined. Here 𝜙 is a smooth
nonnegative function with ∫R 𝜙(𝑥2)d𝑥 = 1. A typical choice is 𝜙(𝑥) =
1

√

2𝜋
𝑒−𝑥. It has density and bulk velocity

𝜌(𝑡, 𝑥) = 𝜌(𝑡) = 𝑚(𝑡)
√

𝑎(𝑡)
, 𝑢(𝑡, 𝑥) = 𝑏(𝑡)𝑥 .

Since 𝜌 is constant in 𝑥, (4.2) clearly has infinite total mass. See Fig. 16
for illustration.

Substituting (4.2) into (4.1) and dividing by 𝑚 on both sides, we get
𝑚′

𝑚
𝜙 −

(

−𝑎′(𝑣 − 𝑏𝑥)2 + 2𝑎(𝑣 − 𝑏𝑥)𝑏′𝑥 + 2𝑎𝑏(𝑣 − 𝑏𝑥)𝑣
)

𝜙′

= 𝜆𝑚
2
√

𝑎
(𝜙 + 2𝑎(𝑣 − 𝑏𝑥)2𝜙′) ,

i.e.,
(𝑚′

𝑚
− 𝜆𝑚

2
√

𝑎

)

𝜙 − (𝑣 − 𝑏𝑥)

×
(

−𝑎′(𝑣 − 𝑏𝑥) + 2𝑎𝑏′𝑥 + 2𝑎𝑏𝑣 + 𝜆𝑚
√

𝑎(𝑣 − 𝑏𝑥)
)

𝜙′ = 0 .
Setting the underlined parts equal to zero (collecting 𝑣 terms and 𝑥
terms in the second part), we get
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑚′ = 𝜆𝑚2

2
√

𝑎

𝑎′ = 2𝑎𝑏 + 𝜆𝑚
√

𝑎

𝑎′𝑏 + 2𝑎𝑏′ − 𝜆𝑚
√

𝑎𝑏 = 0
This shows that (4.2) solves (4.1) as long as (𝑚(𝑡), 𝑎(𝑡), 𝑏(𝑡)) solves the
bove ODE system.
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Fig. 11. Numerical solution of (1.2) with kernel 𝑊 (𝑣) = |𝑣|3 for 𝑁𝑥 = 121, 𝑁𝑣 = 121, 𝜆 = 10. From top left to bottom right are numerical solution at 𝑡 = 0.2, 0.6, 0.8, 1, 1.2, 2.
r

4.1.1. Solving the ODE system
We substitute the second equation into the third and get

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑚′ = 𝜆𝑚2

2
√

𝑎

𝑎′ = 2𝑎𝑏 + 𝜆𝑚
√

𝑎

𝑏′ = −𝑏2

Using the density variable 𝜌 = 𝑚∕
√

𝑎, we then have
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜌′ = −𝑏𝜌
𝑚′ = 𝜆

2
𝜌𝑚

𝑏′ = −𝑏2
(4.3)

Denote the initial condition of (𝜌, 𝑚, 𝑏) as (𝜌0, 𝑚0, 𝑏0) with 𝜌0 > 0, 𝑚0 >
, 𝑏0 < 0. First notice that the 𝑏 equation has explicit solution

𝑏(𝑡) = − 1
𝑇 − 𝑡

, 𝑇 = 1
−𝑏0

> 0 ,

which blows up to −∞ at time 𝑇 . Substituting into the 𝜌 equation, we
get

𝜌(𝑡) = 𝜌 exp
(

−
𝑡
𝑏(𝑠)d𝑠

)

=
𝜌0𝑇 . (4.4)
0 ∫0 𝑇 − 𝑡

p
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Then, substituting into the 𝑚 equation, we get

𝑚(𝑡) = 𝑚0 exp
(𝜆
2 ∫

𝑡

0
𝜌(𝑠)d𝑠

)

= 𝑚0 exp
(𝜆
2
𝜌0𝑇 ln 𝑇

𝑇 − 𝑡

)

= 𝑚0

( 𝑇
𝑇 − 𝑡

)
𝜆
2 𝜌0𝑇 . (4.5)

4.1.2. Analysis of the blow-up behavior
Although the solution to (4.3) always blows up at 𝑇 , we need to

analyze whether the corresponding blow-up behavior of the infinite-
mass solution (4.2) can be approximated by a finite-mass solution. This
will be done by calculating the typical width of the velocity support for
(4.2), which is

1
√

𝑎(𝑡)
=

𝜌(𝑡)
𝑚(𝑡)

=
𝜌0
𝑚0

( 𝑇
𝑇 − 𝑡

)1− 𝜆
2 𝜌0𝑇 .

Denote 𝜖(𝑡) = 𝑇−𝑡 as the time before blow-up. Then we get the relations

𝑏 ∼ −𝜖−1, 𝜌 ∼ 𝜖−1, 𝑚 ∼ 𝜖−
𝜆
2 𝜌0𝑇 , 1

√

𝑎
∼ 𝜖

𝜆
2 𝜌0𝑇−1 , (4.6)

as 𝑡 → 𝑇 − (where the notation ∼ means that the two quantities are
elated by a constant multiple). Take a box [−𝜖 , 𝜖] × [−1, 1] in the (𝑥, 𝑣)-
lane (up to constant multiples of its size). Then the mean velocities
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Fig. 12. Numerical solution of (1.2) with kernel 𝑊 (𝑣) = |𝑣|3 for 𝑁𝑥 = 121, 𝑁𝑣 = 121, 𝜆 = 10. Top left: numerical solution 𝑓 (𝑡 = 4, 𝑥, 𝑣). Top right: zoom-in plot of 𝑓 (𝑡 = 4, 𝑥, 𝑣).
ottom left: contour plot of 𝑓 (𝑡 = 4, 𝑥, 𝑣). Bottom right: record of minimum of 𝛥𝑥, 𝛥𝑣 and maximum of 𝑓 (𝑡, 𝑥, 𝑣) at each time step.
a
T

s
c

𝑓

(𝑥, 𝑏(𝑡)𝑥), 𝑥 ∈ [−𝜖 , 𝜖] lies in the box, and the total mass ∬𝑥∈[−𝜖 ,𝜖] 𝑓d𝑣d𝑥 ∼
since 𝜌 ∼ 𝜖−1. We propose the threshold condition

𝜌0𝑇 > 2 . (4.7)

• If (4.7) holds, then the width of the velocity support 1
√

𝑎
→ 0 as

𝑡 → 𝑇 −. This means that most mass of 𝑓 with 𝑥 ∈ [−𝜖 , 𝜖] lies
inside the box [−𝜖 , 𝜖] × [−1, 1] with fixed height. It is likely that
such a infinite-mass solution can be approximated by a finite-mass
solution, leading to finite-time blow-up for a finite-mass solution.

• If (4.7) fails with 𝜆𝜌0𝑇 < 2, then the velocity support 1
√

𝑎
→

∞ as 𝑡 → 𝑇 −. Such an infinite-mass solution cannot be well-
approximated by a finite-mass solution for 𝑡 close to 𝑇 because
sup(𝑥,𝑣)∈supp 𝑓 (𝑡,⋅,⋅) |𝑣| for the latter cannot grow in time. Therefore
we do not expect finite-time blow-up for a finite-mass solution if
its initial data is close to (4.2) in this case.

.2. A conditional blow-up result

In this subsection we give a conditional blow-up result for finite-
ass solutions to (4.1) based on an analysis of the characteristic

flow.
The characteristic flow (𝑋(𝑡; 𝑥, 𝑣), 𝑉 (𝑡; 𝑥, 𝑣)) of a 𝐶1 solution to (4.1)

atisfies the ODE system
̇ = 𝑉 , 𝑉̇ = 𝜆

2
𝜌(𝑡, 𝑋)(𝑢(𝑡, 𝑋 , 𝑉 ) − 𝑉 ); 𝑋(0; 𝑥, 𝑣) = 𝑥, 𝑉 (0; 𝑥, 𝑣) = 𝑣.

For the infinite-mass solution (4.2), we have

𝜌(𝑡, 𝑋) = 𝜌(𝑡), 𝑢(𝑡, 𝑋 , 𝑉 ) = 𝑏(𝑡)𝑋 ,
nd thus
̇ = 𝑉 , 𝑉̇ = 𝜆

2
𝜌(𝑡)(𝑏(𝑡)𝑋 − 𝑉 ).

Along the characteristic originating from (𝑥, 𝑣), the quantity 𝛼 =
𝛼(𝑥, 𝑣) ∶= √

𝑎(𝑉 − 𝑏𝑋) = 𝑚0 (𝑣+ 𝑥 ) is conserved in time (by calculating
𝜌0 𝑇

13 
its derivative explicitly). Therefore we get

𝑋̇ = 𝑏𝑋 + 𝛼
√

𝑎
= − 1

𝑇 − 𝑡
𝑋 +

𝛼 𝜌0
𝑚0

( 𝑇
𝑇 − 𝑡

)1− 𝜆
2 𝜌0𝑇

and thus its explicit solution
𝑋(𝑡; 𝑥, 𝑣)
𝑇 − 𝑡

= 𝑥
𝑇

+
𝛼 𝜌0
𝑚0

1
1 − 𝜆

2 𝜌0𝑇

(( 𝑇
𝑇 − 𝑡

)1− 𝜆
2 𝜌0𝑇 − 1

)

.

Now we assume the super-critical case (4.7), and consider a char-
cteristic starting from (𝑥, 𝑣) with 𝑥 < 0 and 𝛼(𝑥, 𝑣) > 0 (i.e., 𝑣 > − 𝑥

𝑇 ).
hen we have 1 − 𝜆

2 𝜌0𝑇 < 0 and thus
𝑋(𝑡; 𝑥, 𝑣)
𝑇 − 𝑡

≤ 𝑥
𝑇

− (𝑣 + 𝑥
𝑇
) 1
1 − 𝜆

2 𝜌0𝑇
.

Therefore, for the nonempty set of velocities such that

− 𝑥
𝑇

< 𝑣 ≤ − 𝑥
𝑇

⋅
𝜆
2
𝜌0𝑇

then we have 𝑋(𝑡; 𝑥, 𝑣) < 0 for any 𝑡 ∈ (0, 𝑇 ), see Fig. 17 Left for
illustration. If the profile 𝜙 in the ansatz is compactly supported, then
by taking 𝑥 sufficiently negative it is always possible to choose (𝑥, 𝑣) ∉
supp 𝑓 (0, ⋅, ⋅) satisfying

− 𝑥
𝑇

< 𝑣 < − 𝑥
𝑇

⋅
𝜆
2
𝜌0𝑇 . (4.8)

Such a characteristic enables us to give a conditional finite-time blow-
up result for finite-mass solutions.

Theorem 2. Assume (4.7) and denote 𝑓 (𝑡, 𝑥, 𝑣) as the infinite-mass
solution (4.2) with 𝜙 compactly supported. Let (𝑥1, 𝑣1) ∉ supp 𝑓 (0, ⋅, ⋅)
atisfy 𝑥1 < 0 and (4.8), and denote (𝑋1(𝑡), 𝑉1(𝑡)) as its corresponding
haracteristic.
Let 𝑓 (𝑡, 𝑥, 𝑣) be a 𝐶1 solution to (4.1), whose initial data satisfies

̃(0,−𝑥,−𝑣) = 𝑓 (0, 𝑥, 𝑣)
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Fig. 13. Numerical solution of (1.2) with kernel 𝑊 (𝑣) = |𝑣|3∕2 for 𝑁𝑥 = 121, 𝑁𝑣 = 121, 𝑎 = 𝑏 = 6, 𝑐 = 𝑑 = 2.5 and 𝐿𝑥 = 𝐿𝑣 = 5. Top left to bottom left are the numerical solution
t 𝑡 = 0.04, 0.1, 0.2, 0.3, 0.4 and the bottom right is the record of minimum of 𝛥𝑥, 𝛥𝑣 and maximum of 𝑓 (𝑡, 𝑥, 𝑣) at each time step.
t
a

t

p

b

and

𝑓 (0, 𝑥, 𝑣) = 𝑓 (0, 𝑥, 𝑣), ∀|𝑥| ≤ |𝑥1|, ∀𝑣.

Denote 𝑇̃ as the maximal existence time for the solution 𝑓 .
If there holds

(𝑋1(𝑡), 𝑣) ∉ supp 𝑓 (𝑡, ⋅, ⋅), ∀𝑡 < max{𝑇 , 𝑇̃ }, 𝑣 ≥ 𝑉1(𝑡), (4.9)

then we have 𝑇̃ ≥ 𝑇 , i.e., the solution 𝑓 has a finite-time blow-up.
The extra condition (4.9) can be checked numerically as the follow-

ing (see Fig. 17 Right for illustration). Suppose (4.9) breaks down at
ime 𝑇∗, then the proof below shows that 𝑓 and 𝑓 agrees for any 𝑡 < 𝑇∗
nd |𝑥| < |𝑋1(𝑡)|. As a consequence, (𝑋1(𝑇∗), 𝑉1(𝑇∗)) ∉ supp 𝑓 (𝑡, ⋅, ⋅) and

(𝑋1(𝑇∗), 𝑏(𝑇∗)𝑋1(𝑇∗)) ∈ supp 𝑓 (𝑡, ⋅, ⋅). Since (4.9) breaks down at time 𝑇∗,
here exists some 𝑣∗ > 𝑉1(𝑡) such that (𝑋1(𝑇∗), 𝑣∗) ∈ supp 𝑓 (𝑇∗, ⋅, ⋅). Since
1(𝑇∗) is between 𝑏(𝑇∗)𝑋1(𝑇∗) and 𝑣∗, we see that supp 𝑓 (𝑇∗, 𝑋1(𝑇∗), ⋅)
as at least two connected components. Therefore, if one can check

numerically that the level sets of 𝑓 (𝑡, ⋅, ⋅) intersecting with any vertical
line always have one connected component, this would indicate that
(4.9) holds.

Proof. Let (𝑋 , 𝑉 ) denote the characteristic flow of 𝑓 , and (𝑋̃ , 𝑉 ) denote
the characteristic flow of 𝑓 . We claim that for any (𝑥, 𝑣) ∈ supp 𝑓 (0, ⋅, ⋅)
with 𝑥 < 𝑥 , we have
1 s

14 
𝑋̃(𝑡; 𝑥, 𝑣) < 𝑋1(𝑡), ∀𝑡 < max{𝑇 , 𝑇̃ } .
Similar holds if 𝑥 > −𝑥1 since 𝑓 is odd in (𝑥, 𝑣).

The paragraphs before Theorem 2 show that 𝑋1(𝑡) < 0 for any 𝑡 < 𝑇 .
Therefore the claim would imply that

𝑓 (𝑡, 𝑥, 𝑣) = 𝑓 (𝑡, 𝑥, 𝑣), ∀|𝑥| ≤ |𝑋1(𝑡)|, ∀𝑣

by tracing back the characteristics in supp 𝑓 (𝑡, ⋅, ⋅). Therefore the finite-
ime blow-up of 𝑓 at time 𝑇 implies that of 𝑓 at 𝑇 provided that 𝑇̃ ≥ 𝑇 ,
nd the conclusion is obtained.

To prove the claim, we assume the contrary that 𝑡∗ > 0 is the earliest
ime such that 𝑋̃(𝑡∗; 𝑥, 𝑣) = 𝑋1(𝑡∗) is reached. Therefore we necessarily

have 𝑉 (𝑡∗; 𝑥, 𝑣) ≥ 𝑉1(𝑡∗). Then, since (𝑥, 𝑣) ∈ supp 𝑓 (0, ⋅, ⋅), we may
ropagate to time 𝑡∗ and get (𝑋̃(𝑡∗; 𝑥, 𝑣), 𝑉 (𝑡∗; 𝑥, 𝑣)) ∈ supp 𝑓 (𝑡∗, ⋅, ⋅).

Combining with 𝑋̃(𝑡∗; 𝑥, 𝑣) = 𝑋1(𝑡∗) and 𝑉 (𝑡∗; 𝑥, 𝑣) ≥ 𝑉1(𝑡∗), we get a
contradiction with (4.9). □

4.3. Approximation of 𝛾 > 2 solutions by 𝛾 = 2 solutions

We consider (1.2) with 𝛾 > 2, and provide a heuristic argument
y approximating it with 𝛾 = 2 solutions. In the spirit of the previous
ubsection, we assume that the typical width of the support of 𝑓 in the
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Fig. 14. Numerical solution of (1.2) with kernel 𝑊 (𝑣) = |𝑣|3∕2 for 𝑁𝑥 = 121, 𝑁𝑣 = 121, 𝑎 = 6, 𝑏 = 3, 𝑐 = 𝑑 = 2.5 and 𝐿𝑥 = 𝐿𝑣 = 5. Top left to bottom left are the numerical solution
at 𝑡 = 0.1, 0.4, 0.8, 1.21.3 and the bottom right is the record of minimum of 𝛥𝑥, 𝛥𝑣 and maximum of 𝑓 (𝑡, 𝑥, 𝑣) at each time step.
w

𝑣-direction is 𝑅𝑣 > 0 which depends on 𝑡 but does not depend on 𝑥.
Then we approximate (1.2) by replacing |𝑣 −𝑤|

𝛾−2 with 𝑅𝛾−2
𝑣 , and get

𝜕𝑡𝑓 + 𝑣𝜕𝑥𝑓 = 𝜆
2
𝑅𝛾−2
𝑣 𝜌𝜕𝑣((𝑣 − 𝑢)𝑓 ) .

For the infinite-mass solution (4.2), we may take 𝑅𝑣 = 1
√

𝑎
. This gives

𝜕𝑡𝑓 + 𝑣𝜕𝑥𝑓 = 𝜆
2

( 1
√

𝑎

)𝛽
𝜌𝜕𝑣((𝑣 − 𝑢)𝑓 ), 𝛽 ∶= 𝛾 − 2 > 0 (4.10)

which is analogous to (4.1), with an extra coefficient on the RHS. Notice
hat (4.2) is still a solution to (4.10) if (𝜌, 𝑚, 𝑏) satisfies (4.3) with 𝜆

2
eplaced by 𝜆

2 (
1
√

𝑎
)𝛽 :

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜌′ = −𝑏𝜌
𝑚′ = 𝜆

2
𝜌1+𝛽𝑚1−𝛽

𝑏′ = −𝑏2

The 𝑏, 𝜌 solution is the same as before, given by (4.4) and (4.5). For the
𝑚 solution, we integrating the 𝑚 equation and get

(𝑚𝛽 )′ ∼ 1 , 𝑚(𝑡) ∼ 1 .

(𝑇 − 𝑡)1+𝛽 𝑇 − 𝑡
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Therefore we get the width of velocity support
1
√

𝑎
∼ 1

as 𝑡 → 𝑇 −.
To discuss the physical meaning of the last result, (following nota-

tions of the previous subsection) we notice that the total mass in the box
[−𝜖 , 𝜖] × [−1, 1] is bounded as 𝑡 → 𝑇 −. However, for any characteristic
curve (𝑋(𝑡), 𝑉 (𝑡)) starting from 𝑋0 < 0, 𝑉0 = 𝑏0𝑋0+

𝛼
√

𝑎0
, 𝛼 ∈ R, we have

𝑋̇ = 𝑉 , 𝑉̇ = −𝜆
2
( 1
√

𝑎
)𝛽𝜌(𝑉 − 𝑏𝑋) ,

and therefore
√

𝑎(𝑉 − 𝑏𝑋) = 𝛼 is conserved (by calculating its time
derivative explicitly). This gives

𝑋̇ = 𝑏𝑋 + 𝛼
𝜌
𝑚

= − 1
𝑇 − 𝑡

𝑋 + 𝛼 𝐶 ,
for some constant 𝐶 > 0 (since both 𝜌, 𝑚 behave like 1∕(𝑇 − 𝑡)). Then

e integrate to get

𝑋(𝑡) = 𝑇 − 𝑡
𝑇

(

𝑋0 + 𝛼 𝐶 𝑇 ln 𝑇
𝑇 − 𝑡

)

.

Recall that 𝑋0 < 0. If 𝛼 > 0, then any characteristic 𝑋(𝑡) reaches 0
before time 𝑇 . See Fig. 18 for illustration.
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Fig. 15. Numerical conservation and dissipation properties. First and second row correspond to 𝛾 = 3 and the numerical solutions in Figs. 9 and 11 respectively. Third and fourth
row correspond to 𝛾 = 3∕2 and the numerical solutions in Figs. 13 and 14 respectively.
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Fig. 16. Illustration of the infinite-mass solution to (4.1) or (4.10) with initial data
(4.2).

Therefore, in the infinite-mass solution, for any particle arbitrarily
far from 0 initially, it always contribute to the mass in [−𝜖 , 𝜖] × [−1, 1]
when 𝑡 is close to 𝑇 . Such contribution, for particles far enough, will
not be possible in a finite-mass solution. Therefore we expect that this
infinite-mass solution cannot be well-approximated by a finite-mass
solution, i.e., a finite-mass solution of (4.10) with a similar initial data
would not have a finite-time blow-up with the same mechanism.

Next we analyze what this might imply for the global wellposedness
for (1.2). Suppose we take the initial data (4.2) with 𝜙 supported in
[−1∕2, 1∕2]. Then the solution 𝑓 (𝑡, 𝑥, 𝑣) to (4.10), for fixed 𝑡, 𝑥, is always
supported in [𝑏𝑥− 1

2
√

𝑎
, 𝑏𝑥+ 1

2
√

𝑎
] in the 𝑣-direction. For such a function

𝑓 , we always have |𝑣 −𝑤| ≤ 1
√

𝑎
if 𝑣 ∈ supp 𝑓 (𝑡, 𝑥, ⋅). This suggests

that the approximation from (1.2) to (4.10) is making the aggregation
stronger. Since (4.10) is not likely to have finite-time blow-up for finite-
mass solutions, we deduce heuristically that the same is true for (1.2)
corroborating our numerical findings for 𝛾 = 3 in Section 3.3.
17 
4.4. Numerics for spatially inhomogeneous case with 𝛾 = 2

This section dedicates to provide further numerical evidence to
our analytical findings for the case 𝛾 = 2. As discussed previously in
Section 1, for the spatially homogeneous case, the solution is the critical
case between finite-time and infinite time blow-up solution in 𝑣. As a
result, it introduces the more intricate question of whether there will
be blow-up in 𝑥 before the blow-up occurs in 𝑣, and also whether the
shear in 𝑥 will accelerate the blow-up in 𝑣.

To examine the solution behavior, we will adhere to the theoretical
findings in this section and validate the conjecture in Section 4.1.2.
Specifically, we consider the following initial condition:

𝑓0(𝑥, 𝑣) =
⎧

⎪

⎨

⎪

⎩

1
√

2𝜋
𝑒−𝑎(𝑏𝑥+𝑣)2 , −𝑥1 ≤ 𝑥 ≤ 𝑥1;

1
√

2𝜋
𝑒−𝑎(𝑏𝑥+𝑣)2𝑒−1000(𝑥−𝑥1)2 , else ,

(4.11)

This initial condition is constructed to resemble the infinite mass case
tudied in Section 4.1. Here 𝜌0 = ∫ 𝑓0(0, 𝑣)d𝑣 =

√

1
2𝑎 . It is conjectured

hat when the relation (4.7) is satisfied, with 𝑎 = 120 and 𝑏 = 10, one
expects a blow-up in the solution around 𝑇 = 0.1 when 𝜆 > 2

𝜌0𝑇
=

20
√

240 ≈ 310. The blow-up is anticipated to behave similarly to the
infinite mass scenario represented in (4.6). Therefore, our first task is
o verify that the asymptotic behavior of the solution indeed follows
4.6). More particularly, as 𝜆 approaches the blow-up threshold of 310

(i.e., 𝜆
2 𝜌0𝑇 → 1), we expect that 𝜌 ∼ 𝜖−1 and 𝑚 ∼ 𝜖−

𝜆
2 𝜌0𝑇 . However, the

exact 𝜖(𝑡) is unknown since the analytic blow-up time is also unknown.
Therefore, we numerically check if log 𝜌

log𝑚 → 1 instead, which is verified
in Fig. 19.

Next we numerically check the blow-up conditions stated in Theorem
Practically, this involves verifying that the level sets of the numerical
solution intersect any vertical line with just one connected component,
the numerical results are demonstrated in Fig. 20. Additional results
with more values of 𝜆 can be found in Appendix A.2.

Furthermore, by experimenting with various aggregation constants
𝜆, we are able to numerically validate both the blow-up criterion and
the corresponding blow-up times 𝑇 = 0.1, see results in Table 3.

In addition, we present the evolution for 𝜆 = 310 in Fig. 21. In
contrast to the slow decay and the eventual increase of the minimum
of 𝛥𝑥 in Fig. 12, the minimum of 𝛥𝑥 decreases dramatically and rapidly
falls below the blow-up criterion, which provides additional evidence

of blow-up on 𝑥 direction.
Fig. 17. Left: a particle trajectory for (4.1) which satisfies 𝑋(𝑡; 𝑥, 𝑣) < 0 for any 𝑡 ∈ (0, 𝑇 ). Right: a possible scenario in which (4.9) breaks down.
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able 3
umerical solution of (1.2) with kernel 𝑊 (𝑣) = |𝑣|2 for 𝑁𝑥 = 121, 𝑁𝑣 = 201, 𝛿 = 0.5, 𝛿0 = 0.5 and adaptive time stepping strategy with 𝜖 = 5𝑒−6. The table shows the numerical
low-up time 𝑇𝑏 for various 𝜆.

𝜆 220 260 280 290 300 304 306 308 310

𝑇𝑏 0.10349 0.10154 0.10066 0.10047 0.10027 0.10018 0.10016 0.10012 0.10009
Fig. 18. A particle trajectory for (4.10) which passes 𝑥 = 0.

Fig. 19. Numerical solution of (1.2) with kernel 𝑊 (𝑣) = |𝑣|2 for 𝑁 𝑥 = 121, 𝑁𝑣 = 201,
𝛿 = 0.5, 𝛿0 = 0.5 and adaptive time stepping strategy with 𝜖 = 5𝑒 − 6. The figure shows
that log 𝜌

log𝑚
approaches to 1 as 𝜆 → 310.

5. Conclusion

In this paper, we investigate the well-posedness of the granular
inetic equation, a challenging problem characterized by the possibility
f finite or infinite-time blow-up. To tackle this challenge, we propose a
tructure-preserving numerical scheme designed to mimic the underly-

ing gradient flow of the associated energy functional. Consequently, our
cheme upholds key physical properties, including conservation and en-
ropy decay. Additionally, we integrate a mesh refinement mechanism
hat dynamically assigns a denser grid to regions of high concentration.
his approach enhances resolution in concentrated regions, enabling
he detection of potential blow-ups in the solution. To employ this
umerical tool for investigating solution behavior, we meticulously

choose a set of representative initial conditions for our experiments.
Our numerical findings can be summarized in three aspects:

1. For 𝛾 = 3, despite the initial formation of a pronounced concentra-
tion in the 𝑥 direction, the transport effect eventually takes over

and disperses the concentration. This observation prompts us to p

18 
conjecture that for 𝛾 > 2, the solution will not exhibit finite-time
blow-up in either the 𝑥 or 𝑣 direction.

2. In the critical case with 𝛾 = 2, through the construction of special
solutions, we establish that there is always a finite-time blow-up
for the infinite-mass solution. Subsequently, we perform a finite-
mass approximation to the infinite-mass scenario, and numerical
evidence suggests that the blow-up can occur in the 𝑥 direction
within a finite time.

3. For 𝛾 < 2, we presented two examples, both demonstrating finite-
time blow-up in the 𝑣 direction. It remains an open question
whether a blow-up will also occur in the 𝑥 direction. While
we believe that blow-up in both 𝑥 and 𝑣 directions can occur
simultaneously, constructing a suitable initial condition for this
scenario poses a significant challenge and will be a topic for future
investigation.

CRediT authorship contribution statement

José A. Carrillo: Conceptualization, Formal analysis, Funding ac-
quisition, Investigation, Methodology, Project administration, Supervi-
sion, Writing – original draft, Writing – review & editing. Ruiwen Shu:
Conceptualization, Formal analysis, Investigation, Writing – original
draft, Writing – review & editing. Li Wang: Conceptualization, For-
mal analysis, Funding acquisition, Investigation, Methodology, Project
administration, Supervision, Writing – original draft, Writing – re-
view & editing. Wuzhe Xu: Data curation, Investigation, Methodology,
Software, Validation, Visualization, Writing – original draft, Writing –
review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

JAC and RS were supported by the Advanced Grant Nonlocal-CPD
(Nonlocal PDEs for Complex Particle Dynamics: Phase Transitions, Pat-
terns and Synchronization) of the European Research Council Executive
Agency (ERC) under the European Union’s Horizon 2020 research and
innovation programme (grant agreement No. 883363). JAC was also
partially supported by the Engineering and Physical Sciences Research
Council (EPSRC) under grants EP/T022132/1 and EP/V051121/1. LW
and WX are partially supported by NSF grant DMS-1846854. We also
acknowledge the generous support from the Simons Foundation for
the authors to participate in the program ‘‘Frontiers in kinetic theory:
connecting microscopic to macroscopic scale’’ held at the Isaac Newton
Institute (UK) in Spring 2022, where the part of the work was finished.

Appendix

Some Supplementary numerical examples are presented for com-
pleteness.

A.1. Supplementary results for spatially inhomogeneous cases with 𝛾 = 3

Additionally, numerical results for 𝜆 = 2, 𝜆 = 6 and 𝜆 = 8 are
resented in Figs. 22, 23 and 24 respectively.
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Fig. 20. Numerical solution of (1.2) with kernel 𝑊 (𝑣) = |𝑣|2 and initial condition (4.11) for 𝜆 = 310, 300, 290 and 280 with 𝑁𝑥 = 121, 𝑁𝑣 = 201, 𝛿0 = 0.5 and 𝛿 = 0.5 in both 𝑥 and
𝑣. From top to bottom the plots show numerical solutions and their zoom-in at the numerical blowup time.
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Fig. 21. Numerical solution of (1.2) with kernel 𝑊 (𝑣) = |𝑣|2 for 𝑁𝑥 = 121, 𝑁𝑣 = 201, 𝜆 = 310. Top two rows are time snapshots. Bottom left: the zoom-in plot at numerical blow-up
time. Bottom right: record of minimum of 𝛥𝑥, 𝛥𝑣 and maximum of 𝑓 (𝑡, 𝑥, 𝑣) at each time step.
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Fig. 22. Numerical solution of (1.2) with kernel 𝑊 (𝑣) = |𝑣|3 for 𝑁𝑥 = 121, 𝑁𝑣 = 121, and 𝜆 = 2. Top left is the 𝑓 (𝑡 = 4, 𝑥, 𝑣), top right is the zoom in of 𝑓 (𝑡 = 4, 𝑥, 𝑣), bottom left
s the contour zoom in plot of 𝑓 (𝑡 = 4, 𝑥, 𝑣) and bottom right is the record of minimum of 𝛥𝑥, 𝛥𝑣 and maximum of 𝑓 (𝑡, 𝑥, 𝑣) at each time step.
Fig. 23. Numerical solution of (1.2) with kernel 𝑊 (𝑣) = |𝑣|3 for 𝑁𝑥 = 121, 𝑁𝑣 = 121, and 𝜆 = 4. Top left is the 𝑓 (𝑡 = 4, 𝑥, 𝑣), top right is the zoom in of 𝑓 (𝑡 = 4, 𝑥, 𝑣), bottom left
s the contour zoom in plot of 𝑓 (𝑡 = 4, 𝑥, 𝑣) and bottom right is the record of minimum of 𝛥𝑥, 𝛥𝑣 and maximum of 𝑓 (𝑡, 𝑥, 𝑣) at each time step.
u
a

.2. Supplementary results for spatially inhomogeneous cases with 𝛾 = 2

In this part, we present supplementary examples to numerically
check the blow-up condition described in Theorem 2. In Fig. 25, we
present supplementary results for 𝛾 = 2 with initial condition (4.11)
21 
sing different values of 𝜆, and the snapshots of evolution with 𝜆 = 310
re presented in Fig. 26. In these two figures, the level sets at 𝑓 (𝑡, 𝑥, 𝑣) =

0.1 intersect any vertical line with only one connected component,
which verify the blow-up condition.
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Fig. 24. Numerical solution of (1.2) with kernel 𝑊 (𝑣) = |𝑣|3 for 𝑁𝑥 = 121, 𝑁𝑣 = 121, and 𝜆 = 6. Top left is the 𝑓 (𝑡 = 4, 𝑥, 𝑣), top right is the zoom in of 𝑓 (𝑡 = 4, 𝑥, 𝑣), bottom left
is the contour zoom in plot of 𝑓 (𝑡 = 4, 𝑥, 𝑣) and bottom right is the record of minimum of 𝛥𝑥, 𝛥𝑣 and maximum of 𝑓 (𝑡, 𝑥, 𝑣) at each time step.

Fig. 25. From top to bottom are numerical solutions of (1.2) with kernel 𝑊 (𝑣) = |𝑣|2 and their zoom-in plots at the numerical blowup time for initial condition (4.11) with
𝜆 = 260 and 220. Here we use 𝑁𝑥 = 121, 𝑁𝑣 = 201, 𝛿0 = 0.5 and 𝛿 = 0.5 for both the 𝑥 and 𝑣.
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Fig. 26. Snapshots of the contour plots for the evolution of the numerical solution to (1.2) with kernel 𝑊 (𝑣) = |𝑣|2 for 𝑁𝑥 = 121, 𝑁𝑣 = 201, 𝜆 = 310.
Data availability

Data will be made available on request.
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