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Abstract. In this paper, we develop a multiscale hierarchy framework for objective molecular
dynamics (OMD), a reduced-order molecular dynamics with a certain symmetry, that connects it
to the statistical kinetic equation, and the macroscopic hydrodynamic model. In the mesoscopic
regime, we exploit two interaction scalings that lead, respectively, to either a mean-field type or
to a Boltzmann-type equation. It turns out that, under the special symmetry of OMD, the mean-
field scaling leads to a substantially simplified Vlasov equation that extinguishes the underlying
molecular interaction rule, whereas the Boltzmann scaling yields a meaningful reduced model called
the HOMO-energetic Boltzmann equation. At the macroscopic level, we derive the corresponding
Euler and Navier--Stokes systems by conducting a detailed asymptotic analysis. The symmetry again
significantly reduces the complexity of the resulting hydrodynamic systems.

Key words. kinetic theory, multiscale hierarchy, objective molecular dynamics, homoenergetic
Boltzmann equation, hydrodynamic limit
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1. Introduction.

1.1. Objective molecular dynamics. Molecular dynamics (MD) has been the
building block for many physical and biological systems. However, even with the
modern computational capacity, it is still onerous to simulate a large-scale molecular
system. Motivated by the observation that classical MD with certain symmetric prop-
erties [15] evolves within a smaller manifold, objective MD (OMD) aims to leverage
the symmetry and invariance of atomic forces (e.g., (1)--(2)). OMD can be seen as a
specialized form of MD that significantly reduces the computational cost compared
to conventional MD. It has been applied to the failure of carbon nanotubes under
stretching [15], fluid flows with phase transformation [47], hypersonic flows [48], and
dislocation motion in crystals [45].

To explain the idea, consider a structure consisting of M molecules and each
molecule consists of N atoms, denoted as

\scrS := \{ xi,k \in R3 : i= 1, . . . ,M, k= 1, . . . ,N\} ,

where xi,k is the position of atom k in molecule i. Then this structure is said to be
an objective molecular structure if, for i= 1, . . . ,M, k= 1, . . . ,N ,
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KINETIC DESCRIPTION OF OMD 1647

\{ xi,k +Qi,k(xj,l  - x1,k) : j = 1, . . . ,M, l= 1, . . . ,N\} = \scrS .

Here Qi,k \in O(3), where O(3) is the orthogonal group. Putting this into words, this
requirement means that atom k in molecule i (denoted as atom (i, k) from here on),
after reorientation, sees exactly the same environment as atom k in molecule 1. Such
a property is shared by many crystal structures and alloys.

The objective molecular structure, along with some invariances in the interac-
tions between molecules, generates an invariant manifold of molecular dynamics. In
particular, suppose that the force on atom (i, k) is given by

fi,k(. . . , xj,1, xj,2, . . . , xj,N , xj+1,1, xj+1,2, . . . , xj+1,N , . . .) ,

then it is subject to two fundamental invariances:
(i) Frame indifference. For Q\in O(3), c\in R3,

fi,k(. . . ,Qxj,1 + c, . . . ,Qxj,N + c,Qxj+1,1 + c, . . . ,Qxj+1,N + c, . . . )

=Qfi,k(. . . , xj,1, . . . , xj,N , xj+1,1, . . . , xj+1,N , . . . ) .
(1)

(ii) Permutation invariance. For all permutations \Pi ,

fi,k(. . . , x\Pi (j,1), . . . , x\Pi (j,N), x\Pi (j+1,1), . . . , x\Pi (j+1,N), . . . )

= f\Pi (i,k)(. . . , xj,1, . . . , xj,N , xj+1,1, . . . , xj+1,N , . . . ) .
(2)

Denoting the isometry group in the affine space R3 as

(Q | c) : Q\in O(3), c\in R3,

with the product (Q1 | c1)(Q2 | c2) = (Q1Q2 | c1+Q1c2) and inverse (Q | c) - 1 = (Q\top |  - 
Q\top c). Then its action on Rn can be written as

g(x) =Qx+ c, x\in R3 ,

or g =: (Q | c) for short. Now if we assume Q1,. . . , QM to be constant matrices while
allowing c1,. . . , cM to have the following time dependence,

ci(t) = ait+ bi, ai, bi \in R3 , i= 1, . . . ,M ,

then it is obvious that for any x(t), we have

d2

dt2
gi(x(t)) =

d2

dt2
(Qix(t) + ci(t)) =Qi

d2x(t)

dt2
,

which, together with the invariance above, implies the existence of a time-dependent
invariant manifold of equations of molecular dynamics.

Building upon such an invariant manifold, the OMD works as follows. It di-
vides MN atoms into N simulated particles---denoted as (1, 1), . . . , (1,N), concep-
tually the atoms in molecule 1; and (M  - 1)N nonsimulated particles---denoted as
(2,1), . . . , (2,N), . . . , (M,1), . . . , (M,N), atoms in molecules 2, . . . ,M . Their posi-
tions have the relation

xi,k(t) = gi
\bigl( 
x1,k(t), t

\bigr) 
, gi =

\bigl( 
Qi | ci(t)

\bigr) 
, i= 1, . . . ,M, k= 1, . . . ,N ,(3)

and g1 = id. Then the simulated particles move according to the following rule,

mk
d2

dt2
x1,k = f1,k(. . . , xj,1, xj,2, . . . , xj,N , xj+1,1, xj+1,2, . . . , xj+1,N , . . . ) ,(4)
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1648 RICHARD D. JAMES, KUNLUN QI, AND LI WANG

whereas the nonsimulated particles update directly via (3). The basic theorem of
OMD states that each nonsimulated atom satisfies exactly the equations of molecular
dynamics for its forces. This way, the total number of degrees of freedom is substan-
tially reduced and therefore leads to a much more efficient computational method.
That is, if a cutoff for the atomic forces is introduced, only the simulated atoms,
together with the nonsimulated atoms within the cutoff, need to be tracked. Despite
the positions of the nonsimulated atoms being given by explicit formulas, the overall
motion is typically highly chaotic.

With the number of particles getting large, a coarse-grained model, termed a ki-
netic equation, is introduced to give a statistical description of the collective behavior
of the many-particle system.

1.2. Motivation and previous results. There is now a full-fledged theory on
the derivation of the kinetic and hydrodynamic equations. This theory focuses on
particle interactions within a classically unstructured background. In this paper, our
primary objective is to establish a multiscale framework that emphasizes symmetry.
Since OMD represents an invariant manifold of MD, it is important to know whether
this manifold is in some sense inherited in reduced-order kinetic equations. We aim
to establish such a systematic connection to reduced-order kinetic equations and their
corresponding macroscopic models.

To provide a more compelling representation of our motivation and results, we
use Figure 1 for an illustration.

\bullet Arrow (1) has been explained above; see also [34, 33].
\bullet Arrow (2) is a well-established relationship in kinetic theory. Instead of track-

ing the detailed motions of each molecule in the dynamic system, which is
computationally impractical due to the enormous number of particles, the ki-
netic equation allows us to analyze the system's behavior without considering
individual particle motions.
To achieve this, the BBGKY hierarchy (from the names of Bogolyubov, Born,
Green, Kirkwood, Yvon) has been proven to be a useful methodology [13].
Additionally, suitable scaling limits are employed to capture the essential
properties of the microscopic regime. Two typical scalings, the mean-field
limit and the Boltzmann--Grad limit, have led to the two different types of
kinetic equations.

Fig. 1. Connections between different models in the multiscale hierarchy. Note: color appears
only in the online article.
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KINETIC DESCRIPTION OF OMD 1649

The mean-field limit, stemming from [7], assumes that the force on one parti-
cle is influenced by the entire range of other particles, although the strength of
interaction weakens as the number of particles N increases. As N approaches
infinity, a mean-field/Vlasov-type equation emerges, where the particle dis-
tribution depends on its phase space density. For a comprehensive review on
this topic, refer to [53, 24].
On the other hand, the Boltzmann--Grad limit arises when the particles are
diluted enough that only binary interactions play a significant role, and each
particle experiences a single collision within a given unit of time [55]. In
this case, the Boltzmann equation is formally derived by Grad [30, 31] and
Cercignani [10] with rigorous validation by Lanford [38] for the hard-sphere
model over short times. Extensive studies have been conducted on smooth
short-range potentials [37, 21, 49], and for a recent review, see [50].

\bullet Arrow (3) has been discussed in [15, 33], either via heuristic argument of
symmetry in statistical physics language, or by looking for a special ansatz
of the solution that reduces the equation.
To be more specific, recall the classical Boltzmann equation,

\partial tf(t, x, v) + v \cdot \nabla xf(t, x, v) =\scrQ (f, f)(t, x, v), t > 0, x\in R3, v \in R3,(5)

where

\scrQ (f, f)(t, x, v)

(6)

=

\int 
R3

\int 
S2
B(v - v\ast , \sigma ) [f(t, x, v

\prime )f(t, x, v\prime \ast ) - f(t, x, v)f(t, x, v\ast )] d\sigma dv\ast 

with the collision kernel B(v - v\ast , \sigma ) that describes the intensity of collisions.
Usually, B can be separated as the kinetic part \Phi and angular part b in the
case of the inverse power law,

B(| v - v\ast | , \sigma ) = b(cos\theta )\Phi (| v  - v\ast | ) with cos \theta = \sigma \cdot v - v\ast 
| v - v\ast | 

,

where the kinetic collision part \Phi (| v - v\ast | ) = | v - v\ast | \gamma includes a hard potential
(\gamma > 0), Maxwellian molecule (\gamma = 0), and soft potential (\gamma < 0), and the
angular part b(cos \theta ) is often regarded to satisfy Grad's cutoff assumption,
i.e.,

\int 
S2 b(cos \theta )d\sigma <\infty ; see more details of the collision kernel B in [55]. Here

(v\prime , v\prime \ast ) and (v, v\ast ) represent the velocity pairs before and after the collision,
respectively. They satisfy the conservation of momentum and energy:

v\prime + v\prime \ast = v+ v\ast , | v\prime | 2 + | v\prime \ast | 2 = | v| 2 + | v\ast | 2.

This allows us to express (v\prime , v\prime \ast ) in terms of (v, v\ast ) using the following equa-
tions:

v\prime =
v+ v\ast 

2
+

| v - v\ast | 
2

\sigma , v\prime \ast =
v+ v\ast 

2
 - | v - v\ast | 

2
\sigma .

Now translating the OMD symmetry into kinetic language, it means that [15,
p. 155] ``the probability of finding a velocity of the form v + A(I + tA) - 1x
at x is the same as the probability of finding a velocity v at 0."" Putting the
words into a formula, we have
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1650 RICHARD D. JAMES, KUNLUN QI, AND LI WANG

f(t, x, v +A(I + tA) - 1x) = f(t,0, v) ,

which is equivalent to

f(t, x, v) = f(t,0, v - A(I + tA) - 1x) =: g(t,w) with w= v - A(I +At) - 1x .

(7)

Here A is an assignable 3x3 matrix. Then g, which depends on fewer variables,
satisfies the HOMO-energetic Boltzmann equation, a reduced-order model
originally introduced by Galkin [20] and Truesdell [54]:

\partial tg(t,w) - [A(I + tA) - 1w] \cdot \nabla wg(t,w) =\scrQ (g, g)(t,w).(8)

An alternative way involves seeking an equi-dispersive solution to (5) [34]. In
other words, we look for the solution ansatz: if f is the solution to (5) and

f(t, x, v) = g(t,w) with w= v - \xi (t, x) ,(9)

then g satisfies

\partial tg(t,w) - [\partial t\xi + \xi \cdot \nabla x\xi ]\nabla wg(t,w) - [(\nabla x\xi )w] \cdot \nabla wg(t,w) =\scrQ (g, g)(t,w).
(10)

Clearly, by a direct calculation, when \xi (t, x) is an affine function on x such
that

\xi (t, x) =L(t)x with L(t) :=A(I +At) - 1x,(11)

then (10) can be reduced to (8).
\bullet Arrow (5) is the process that leads from kinetic equations in the mesoscopic

regime to continuum equations in the macroscopic regime. This concept can
be traced back to Maxwell and Boltzmann, who initially founded the kinetic
theory. The study of the hydrodynamic limit was subsequently formulated
and addressed by Hilbert [32]. It aims to derive the fluid dynamic system
as particles undergo an increasing number of collisions, causing the Knudsen
number to approach zero.
The classical compressible Euler and Navier--Stokes equations can be formally
derived from the scaled Boltzmann equation through the Hilbert [32] and
Chapman--Enskog expansions [14, 19]. The asymptotic convergence of these
derivations was rigorously justified by Caflish [9] for the compressible Euler
equations and by De Masi, Esposito, and Lebowitz [16] for the incompressible
Navier--Stokes equations.
Another aspect of studying the hydrodynamic limit pertains to weak solu-
tions, particularly proving that the renormalized solution of the Boltzmann
equation converges to the weak solution of the Euler or Navier--Stokes equa-
tions. This has been partially achieved for incompressible models [1, 40, 51,
28, 29, 39, 36].
Additionally, research on strong solutions near equilibrium is another avenue
of exploration in the hydrodynamic limit. Nishida [44] established local-in-
time convergence to the compressible Euler equations, while Bardos and Ukai
[2], as well as more recent work by Gallagher and Tristani [22], derived solu-
tions for the incompressible Navier---Stokes equations. For a comprehensive
review of this topic, we refer to [12, 24, 52] and the references cited therein.
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KINETIC DESCRIPTION OF OMD 1651

The combined transitions (2)+(5) form the central framework of Hilbert's
sixth problem, aiming to establish a comprehensive depiction of gas dynamics
across all levels of description. The objective is to comprehend macroscopic
concepts such as viscosity and nonlinearity from a microscopic standpoint
[52].

\bullet Arrow (6) is a heuristic derivation in the case of the macroscopic motion cor-
responding to an OMD simulation [15, 46]. The macroscopic velocity field of
such a motion is u(x, t) =A(I+ tA) - 1x and, by direct substitution, this is an
exact solution of the compressible or incompressible Navier--Stokes equations.
For the latter add the restriction of incompressibility, Tr[(A(I + tA) - 1] = 0.
If thermodynamics is included with the former, the energy equation becomes
an ODE for the temperature.

As mentioned earlier, our primary focus is on the completion of the diagram by
establishing connections (4) and (7). The challenges include:

(1) In the context of OMD, there exist two sets of particles: simulated and un-
simulated. The simulated particles are updated based on Newton's second
law, while the unsimulated ones undergo updates through a ``copy and paste""
mechanism. This fundamental distinction is the primary factor contributing
to the significant speedup achieved by OMD. However, when deriving the cor-
responding kinetic system (i.e., route (4)), a crucial question arises: should
these two sets of particles be treated differently? Using the previous nota-
tion xi,k with i = 1 and k = 1, . . . ,N representing the simulated particles,
and i = 2, . . . ,M and k = 1, . . . ,N representing the nonsimulated particles,
the question arises: should we allow M to approach \infty first, or N , or both
simultaneously? Furthermore, is there a particular relationship between N
and M that is crucial to achieving a meaningful limit?

(2) In theory, two scalings can be applied in route (4): mean-field scaling or
Boltzmann--Grad scaling. Conceptually, both mean-field and Boltzmann--
Grad scaling make sense in deriving the mesoscopic (also known as kinetic)
models from microscopic particle dynamics, but they emphasize different
kinds of interactions at the particle level:
-- The mean-field limit highlights the long-range interactions between parti-

cles by assigning each particle an equal weight of influence, denoted as 1
N ,

on any given particle. As a result, a nonlocal (in x) model is anticipated
in the mean-field limit.

-- The Boltzmann--Grad limit, on the other hand, emphasizes the local in-
teraction. The rescaling of the interaction from \nabla U(r) to 1

\varepsilon \nabla U
\bigl( 
r
\varepsilon 

\bigr) 
indeed

implies that each particle is unaffected by others unless those particles fall
within its influence range, the \varepsilon -neighborhood.

However, in our work, due to the intrinsic symmetry and invariance of the
potential in OMD, the expected nonlocal term accounting for interactions
among particles in the mean-field limit vanishes. This results in an over-
simplified model, as seen in (19). On the contrary, the interactions in the
Boltzmann--Grad scaling can be retained, which then leads to the more phys-
ically reasonable HOMO-energetic Boltzmann equation. This circumstance
is unexpected until one delves into the derivation process.

(3) Route (7) that we aim to establish is a lot more formal compared to route
(5)+(6), which is accomplished only in a heuristic manner [15, 46]. This
undertaking is challenging compared to the classical Boltzmann equation,
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1652 RICHARD D. JAMES, KUNLUN QI, AND LI WANG

due to the intricate handling required for the hyperbolic term on the left-
hand side of the HOMO-energetic equation.

We want to emphasize that, despite obtaining seemingly similar results as one
could from another route, namely, (4) = (2) + (3) and (7) = (5) +(6), this equivalence
is far from obvious. Assessing whether symmetry at the OMD level can be maintained
at the kinetic and hydrodynamic levels is a nontrivial task. Unlike previous approaches
where (2) + (3) or (5) + (7) is assumed to preserve such symmetry, our approach
adopts a more formal derivation without making such assumptions. We systematically
investigate how this symmetry is retained throughout the derivation.

1.3. Basic setup and our results. Prior to discussing the kinetic formulation,
we first lay out some preliminaries. As mentioned before, we denote (x1,k(t), v1,k(t)) as
the simulated particles' location and velocity, and (xi,k(t), vi,k(t)) for the associated
nonsimulated particles, i = 2, . . . ,M . In general terms, their relation is formalized
by (3). Throughout this paper, we consider the simplest case of the time-dependent
translation group [33] in which case Qi = I and ci(t) =

\sum 3
l=1 \nu 

l
i(bl + alt) = (I + tA)\nu i,

where \nu i = (\nu 1i , \nu 
2
i , \nu 

3
i )\in Z3, bl = el, al =Ael for orthonormal basis el and i= 1, . . . ,M ,

then the relation (3) reduces to

xi,k(t) = x1,k(t) + (I + tA)\nu i .(12)

Therefore,

vi,k(t) = v1,k(t) +A\nu i ,

which immediately leads to

vi,k(t) - v1,k(t) =A(I + tA) - 1(xi,k(t) - x1,k(t)) .

Consequently, define the transformation

w(t) := v(t) - A(I + tA) - 1x(t) ,

then a very important observation is that the simulated and nonsimulated particles
will be indistinguishable if written in terms of new variables w1,k and wi,k:

wi,k(t) = vi,k(t) - A(I + tA) - 1xi,k(t) = v1,k(t) - A(I + tA) - 1x1,k(t) =w1,k(t)(13)

for i= 1, . . . ,M and k = 1, . . . ,N . Therefore, for the brevity of notation, we will use
the one single customary subscript i= 1, . . . ,N to index all particles throughout the
rest of the paper.1 Note that in the following derivation of kinetic limit, the number
of atoms N essentially goes to infinity, which leads the total number of particles MN
in the system to infinity as well.

Since

wi(t) := vi(t) - A(I + tA) - 1xi(t)

and

\.xi(t) = vi(t) =wi(t) +A(I + tA) - 1xi(t) ,

a direct calculation shows that

1Note that when Qi \not = I, (12) becomes xi,k(t) =Qix1,k(t) + (I + tA)\nu i , which then leads to the
relation vi,k(t) - A(I + tA) - 1xi,k(t) =Qiv1,k(t) - A(I + tA) - 1Qix1,k(t) . To proceed, it is essential
to identify a suitable change of variable that unifies the dynamics of simulated and nonsimulated
particles. In this context, further investigation into the properties of Q and A and their relationship
is required. We defer this exploration to future work.
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KINETIC DESCRIPTION OF OMD 1653

d

dt
[A(I + tA) - 1xi(t)] =A(I + tA) - 1[ \.xi(t) - A(I + tA) - 1xi(t)]

=A(I + tA) - 1[vi(t) - A(I + tA) - 1xi(t)]

=A(I + tA) - 1wi(t)

and, therefore,

\.wi(t) = \.vi(t) - A(I + tA) - 1wi(t)

= - 
N\sum 
j=1
j \not =i

\nabla xi
U(| xi(t) - xj(t)| ) - A(I + tA) - 1wi(t) ,

(14)

where we have used a specific form of the force:

f1,i(. . . , xj,1, xj,2, . . . , xj+1,N , . . . ) = - 
N\sum 
j=1

\nabla Uxi
(| xj  - xi| ) .(15)

Remark 1.1. It is important to note that while the radial condition of the po-
tential function f1,i may not be necessary for OMD at the microscopic level (some
symmetric condition such as permutation invariance (2) is indispensable), we will fo-
cus exclusively on radial potential (15) when deriving the kinetic equation for the
remainder of this paper. This choice is mainly due to technical reasons.

More specifically, in section 2.2, where we derive the mean-field limit, the radial
potential is necessary for proving the well-posedness of the mean-field equation (18),
following [8]. Additionally, our derivation of the HOMO-energetic Boltzmann equation
in section 3 closely follows the classical approach using the Boltzmann--Grad limit
described in [21], where the radial condition is also required [21, Assumption 1.2.1].

Nevertheless, we emphasize that radial potentials are prevalent in many real-world
applications across physics, biology, and materials science; radial potentials are ubiq-
uitous. Examples include the well-known inverse power law [55] and Lennard--Jones
potential [46, 47]. While nonradial interactions, such as those used to model flocking
behavior [43], have also been explored in the literature, these cases and interactions
involving more than two particles will be addressed in future work.

Finally, the dynamical system of OMD satisfied by the new variables (xi(t),wi(t))
is summarized as follows: for i= 1,2, . . . ,N ,\left\{           

\.xi(t) =wi(t) +A(I + tA) - 1xi(t),

\.wi(t) = - 
N\sum 
j=1
j \not =i

\nabla xiU (| xi(t) - xj(t)| ) - A(I + tA) - 1wi(t).
(16)

Result 1: From the microscopic regime to mesoscopic regime (Arrow
(4))

To obtain the corresponding kinetic equation from the fundamental dynamic sys-
tem (16), it is crucial to apply an appropriate scaling operation. We follow the two
classical scalings as follows:

\bullet Mean-field type model: It assumes that the contribution from each particle
has the same weight 1/N :
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1654 RICHARD D. JAMES, KUNLUN QI, AND LI WANG\left\{           
\.xi(t) =wi(t) +A(I + tA) - 1xi(t),

\.wi(t) = - 1

N

N\sum 
j=1
j \not =i

\nabla xiU (| xi(t) - xj(t)| ) - A(I + tA) - 1wi(t) .
(17)

By taking N \rightarrow \infty , we will obtain the mean-field type equation

\partial g(t, x,w)

\partial t
+w \cdot \nabla xg(t, x,w) + [A(I + tA) - 1x] \cdot \nabla xg(t, x,w)(18)

 - [A(I + tA) - 1w] \cdot \nabla wg(t, x,w) = [\nabla xU \ast \rho g] (t, x) \cdot \nabla wg(t, x,w),

where \rho g(t, x) =
\int 
Rd g(t, x,w)dw, and for the sake of rigorously justifying the

limit, the potential U \in C1 it is assumed that \nabla U is locally Lipschitz and
| \nabla U(x)| \leq C(1 + | x| ) for some constant C > 0. Note that these requirements
on U are primarily for technical reasons, as they will be used to prove the
well-posedness of the mean-field type equation derived in section 2.2.
If further considering the homogeneity of g in the space variable x (cf. (7)),
(18) can be reduced to

\partial g(t,w)

\partial t
 - [A(I + tA) - 1w] \cdot \nabla wg(t,w) = 0.(19)

The well-posedness of (18) and (19) have been established in Theorems 2.5,
and Theorem 2.7 provides a rigorous connection between (17) and (19).

\bullet Boltzmann-type model: It emphasizes close neighbor interaction by rescaling
the strength and range of the potential term from \nabla U(r) to 1

\varepsilon \nabla U( r\varepsilon ), i.e., to
derive the Boltzmann-type model, for any given potential-induced force term
\nabla U(r), we rescale it by involving the parameter \varepsilon in the following way: we
add the factor 1

\varepsilon in the front to scale the strength and also add another 1
\varepsilon in

U to make it \nabla U
\bigl( 
r
\varepsilon 

\bigr) 
to scale the range of the potential:\left\{           

\.xi(t) =wi(t) +A(I + tA) - 1xi(t),

\.wi(t) = - 1

\varepsilon 

N\sum 
j=1
j \not =i

\nabla xi
U

\biggl( 
| xi(t) - xj(t)| 

\varepsilon 

\biggr) 
 - A(I + tA) - 1wi(t).

(20)

By applying the Boltzmann--Grad limit, i.e., in d-dimension, (N  - 1)\varepsilon d - 1 =
O(1) as N \rightarrow \infty and \varepsilon \rightarrow 0, we have

\partial g(t, x,w)

\partial t
+w \cdot \nabla xg(t, x,w) + [A(I + tA) - 1x] \cdot \nabla xg(t, x,w)

 - [A(I + tA) - 1w] \cdot \nabla wg(t, x,w) =\scrQ (g, g)(t, x,w) .
(21)

To achieve the desired form of collision operator \scrQ (g, g) as in (6), we assume
that the potential U \in C2 is a radial, nonnegative, nonincreasing function
supported in a unit ball \{ x \in Rd, 0 < | x| < 1\} but unbounded near | x| = 0.
Additionally, we require that both U and \nabla U vanish on the boundary of the
unit ball, and satisfy the condition | x| U \prime \prime (| x| )+2U \prime (| x| )\geq 0 as specified in [21,
Assumption 1.2.1, Lemma 8.3.1]. The detailed derivation of (21) from (20)
via BBGKY hierarchy is laid out in section 3.1, and the related properties
are summarized in section 3.2.
Similarly, if we further take the homogeneity of g into account, (21) becomes
the so-called HOMO-energetic Boltzmann equation (8).
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KINETIC DESCRIPTION OF OMD 1655

It is worth noting that when the potential function U(r) is a power function of
r (e.g., inverse power law U(r) = 1

r\alpha , where \alpha > 1 in d = 3 dimension since \alpha = 1
corresponds to the threshold case of Coulomb potential [55]), the two scaling strategies
can be unified by extracting the scaling parameter \varepsilon out of U( r\varepsilon ). Additionally, our
framework can also include another crucial scaling [50, eq. (45)] that characterizes the
weak interaction between molecules, specifically in the weak-coupling regime. This
inclusion is anticipated to yield the HOMO-energetic Landau equation. For a detailed
derivation of the Landau operator, we direct readers to [50, section 3.2].

Result 2: From the mesoscopic regime to macroscopic regime (Arrow
(7))

Another significant contribution of this paper is the derivation of the hydro-
dynamic equation from the kinetic equation, incorporating the structural proper-
ties inherited from OMD. Specifically, it bridges the gap identified as Arrow (7).
As highlighted in [33], a specific family of unsteady macroscopic flows, associated
with the simplest translation group (12), inherently possesses a bulk velocity field
u(t, x) =A(I+ tA) - 1x in Eulerian form. This velocity field naturally satisfies various
steady and unsteady macroscopic fluid equations, leading us to anticipate that the
conventional hydrodynamic systems governing the evolution of macroscopic quanti-
ties (density \rho and temperature \theta as defined in (52) and (53), respectively) can be
partially reduced.

Recalling that L(t) =A(I + tA) - 1, we have
\bullet by applying the Hilbert expansion, we derive a reduced Euler system from

the HOMO-energetic Boltzmann equation (8):\left\{   \partial t\rho (t) +Tr[L(t)]\rho (t) = 0,

\partial t\theta (t) +
2

3
Tr[L(t)]\theta (t) = 0.

(22)

Details are presented in section 4.2.1;
\bullet by applying the Chapman--Enskog expansion, we obtain the corresponding

reduced Navier--Stokes system with O(\epsilon ) correction terms from the HOMO-
energetic Boltzmann equation (8):

\left\{   
\partial t\rho (t) +Tr[L(t)]\rho (t) = 0,

\partial t\theta (t) +
2

3
Tr[L(t)]\theta (t) = \epsilon \mu (\theta )

1

2

\biggl( 
Tr[L2(t)] +L(t) :L(t) - 2

3
(Tr[L(t)])2

\biggr) 
,

(23)

where the viscosity \mu is defined in (74). See section 4.2.2 for more details.

2. A mean-field model for long-range interaction. In this section, we focus
on the derivation of a mesoscopic model from the mean-field scaling system described
by (17). This leads to the kinetic equation (18), where the particle distribution
function is influenced by an averaged force field. This equation can be further reduced
to (19).

There are two approaches to complete the formalism of the mean-field limit on the
single-particle phase space. One utilizes the concept of empirical measure and estab-
lishes the stability of the mean-field equation through Dobrushin's estimate [17, 27].
The other approach, based on the BBGKY hierarchy, involves the N -particle distri-
bution and demonstrates that it marginally satisfies the mean-field equation. The
former approach is simpler, while the latter is more flexible. In our presentation,
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1656 RICHARD D. JAMES, KUNLUN QI, AND LI WANG

we opt for the latter approach in the formal derivation as it can be applied to both
scalings, and utilize the former approach for rigorous derivation. More details on the
relation between these two approaches can be found in [25, 26].

2.1. Derivation via BBGKY hierarchy. Denote

zi := (xi,wi) , ZN = (z1, . . . , zN )\in \Omega N , \Omega N :=
\bigl\{ 
ZN \in R6N

\bigm| \bigm| xi \not = xj , i \not = j
\bigr\} 

and let

P (N)(t,ZN ) := P (N)(t, z1, . . . , zN ) = P (N)(t, x1,w1, . . . , xN ,wN )

be the N -particle distribution function. Correspondingly, the s-marginal distribution
of P (N), denoted as P (s)(t,Zs), is

P (s)(t,Zs) :=

\int 
R6(N - s)

P (N)(t,Zs, zs+1, . . . , zN )dzs+1 . . . dzN , Zs = (z1, z2, . . . , zs) ,

(24)

and then our goal is to derive the mean-field equation for the first marginal of the
distribution P (1)(t, z1).

Starting with the Liouville equation satisfied by P (N)(t,ZN ),

\partial P (N)(t,ZN )

\partial t
+

N\sum 
i=1

[ \.xi \cdot \nabla xiP
(N) + \.wi \cdot \nabla wiP

(N)](t,ZN ) = 0 ,(25)

and substituting (17) leads to

\partial P (N)

\partial t
+

N\sum 
i=1

wi \cdot \nabla xiP
(N) +

N\sum 
i=1

[A(I + tA) - 1xi] \cdot \nabla xiP
(N)

(26)

 - 1

N

N\sum 
i=1

N\sum 
j=1
j \not =i

\nabla xi
U (| xi  - xj | ) \cdot \nabla wi

P (s)  - 
N\sum 
i=1

[A(I + tA) - 1wi] \cdot \nabla wi
P (N) = 0 .

Integrating (26) over the domain \{ zs+1, . . . , zN\} , we obtain the corresponding
kinetic equation of the s-marginal distribution P (s)(t,Zs),

\partial P (s)

\partial t
+

\int 
R6(N - s)

\Biggl( 
N\sum 

i=1

wi \cdot \nabla xi
P

(N)
+

N\sum 
i=1

[A(I + tA)
 - 1

xi] \cdot \nabla xi
P

(N)

\Biggr) 
dzs+1 . . . zN\underbrace{}  \underbrace{}  

=:(I)

 - 
\int 
R6(N - s)

\left(    1

N

N\sum 
i=1

s\sum 
j=1
j \not =i

\nabla xi
U (| xi  - xj | ) \cdot \nabla wi

P
(N)  - 

N\sum 
i=1

[A(I + tA)
 - 1

wi] \cdot \nabla wi
P

(N)

\right)    dzs+1 . . . zN

\underbrace{}  \underbrace{}  
=:(II)

=

\int 
R6(N - s)

1

N

N\sum 
i=1

N\sum 
j=s+1
j \not =i

\nabla xi
U (| xi  - xj | ) \cdot \nabla wi

P
(N)

dzs+1 . . . zN

\underbrace{}  \underbrace{}  
=:(III)

.
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KINETIC DESCRIPTION OF OMD 1657

For term (I), note that

(I) =
s\sum 

i=1

wi \cdot \nabla xi
P (s) +

s\sum 
i=1

\bigl[ 
A(I + tA) - 1xi

\bigr] 
\cdot \nabla xi

P (s)

+
N\sum 

i=s+1

\int 
R6(N - s)

\bigl[ 
A(I + tA) - 1xi

\bigr] 
\cdot \nabla xi

P (N) dzs+1 . . . zN

=
s\sum 

i=1

wi \cdot \nabla xi
P (s) +

s\sum 
i=1

[A(I + tA) - 1xi] \cdot \nabla xi
P (s)  - (N  - s)Tr[A(I + tA) - 1]P (s) .

Similarly, term (II) becomes

(II) = - 1

N

s\sum 
i,j=1
i\not =j

\nabla xi
U (| xi  - xj | ) \cdot \nabla wi

P (s)  - 
s\sum 

i=1

[A(I + tA) - 1wi] \cdot \nabla wi
P (s)

+ (N  - s)Tr[A(I + tA) - 1]P (s) .

Since particles are indistinguishable, term (III) can be rewritten as

(III) =
N  - s

N

s\sum 
i=1

\int 
R6

\nabla xi
U (| xi  - xs+1| ) \cdot \nabla wi

P (s+1)(t,Zs, zs+1)dzs+1

=
N  - s

N

s\sum 
i=1

\nabla wi
\cdot 
\int 
R6

\Bigl[ 
\nabla xi

U (| xi  - xs+1| )P (s+1)(t,Zs, zs+1)
\Bigr] 
dzs+1 .

Combining the terms (I) - (III) together, we arrive at the following equation for
the marginal distribution P (s):

\partial P (s)

\partial t
+

s\sum 
i=1

wi \cdot \nabla xi
P (s) +

s\sum 
i=1

[A(I + tA) - 1xi] \cdot \nabla xi
P (s)(27)

 - 
s\sum 

i=1

[A(I + tA) - 1wi] \cdot \nabla wi
P (s)  - 1

N

s\sum 
i,j=1
i\not =j

\nabla xi
U (| xi  - xj | ) \cdot \nabla wi

P (s)

=
N  - s

N

s\sum 
i=1

\nabla wi
\cdot 
\int 
R6

\Bigl[ 
\nabla xi

U (| xi  - xs+1| )P (s+1)(t,Zs, zs+1)
\Bigr] 
dzs+1 .

In particular, taking s= 1 in (27) above, it reduces to the two-particle case:

\partial P (1)

\partial t
+w1 \cdot \nabla x1

P (1) + [A(I + tA) - 1x1] \cdot \nabla x1
P (1)  - [A(I + tA) - 1w1] \cdot \nabla w1

P (1)

=
N  - s

N
\nabla w1

\cdot 
\int 
R6

\Bigl[ 
\nabla x1

U (| x1  - x2| )P (2)(t, z1, z2)
\Bigr] 
dz2 .

(28)

To close the hierarchy above, we consider the following ``propagation of chaos""
assumption [55],

P (2)(t, z1, z2) = P (1)(t, x1,w1)P
(1)(t, x2,w2) ,

which says the two particles remain independent throughout the dynamics. Under
this assumption, the right-hand side of (28) becomes
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1658 RICHARD D. JAMES, KUNLUN QI, AND LI WANG

N  - 1

N
\nabla w1 \cdot 

\int 
R6

\Bigl[ 
\nabla x1U (| x1  - x2| )P (2)(t, z1, z2)

\Bigr] 
dz2

=
N  - 1

N

\int 
R6

\Bigl[ 
\nabla x1

U (| x1  - x2| )P (1)(t, x2,w2)\nabla w1
P (1)(t, x1,w1)

\Bigr] 
dx2 dw2

=
N  - 1

N

\int 
R3

\biggl[ 
\nabla x1

U (| x1  - x2| )
\int 
R3

P (1)(t, x2,w2)dw2

\biggr] 
dx2 \cdot \nabla w1

P (1)(t, x1,w1)

=
N  - 1

N
\nabla x1

U \ast \rho P (1)(t, x1) \cdot \nabla w1
P (1)(t, x1,w1).

(29)

By sending N \rightarrow \infty and renaming P (1)(t, x1,w1) by g(t, x,w), (28) is actually (18).
Furthermore, since molecules in different x's see the same environment, the spatial
dependence is removable at the kinetic level. Therefore, g is a spatially homogeneous
function, which then obeys the reduced mean-field equation (19).

2.2. Rigorous justification of the mean-field equation. In this subsection,
we underpin the well-posedness of (18), and establish a rigorous path from OMD to
the mean-field equation. Our approach will follow that in [8].

First, we set up some notation. We denote \scrP 1(R3\times R3) as the space of probability
measures on R3 \times R3 with a finite first moment. This space is equipped with the
Monge--Kantorovich-Rubinstein distance W1, defined as, for V = (X,W )\in R3 \times R3,

W1(\mu ,\nu ) := sup

\biggl\{ \bigm| \bigm| \bigm| \int 
R3\times R3

\varphi (V )(\mu (V ) - \nu (V ))dV
\bigm| \bigm| \bigm| , \varphi \in Lip(R3 \times R3), \| \varphi \| Lip \leq 1

\biggr\} 
,

where Lip(R3 \times R3) denotes the set of Lipschitz functions on R3 \times R3, and \| \cdot \| Lip
represents the associated norm. Additionally, we define \scrP c(R3 \times R3) as a subset
of \scrP 1(R3 \times R3) with compact support. We also introduce a metric space \scrG :=
C
\bigl( 
[0, T ],\scrP c(R3\times R3)

\bigr) 
associated with the distance \scrW 1 defined as follows: for gt(V ) :=

g(t, V ) and ht(V ) := h(t, V ) in \scrG ,

\scrW 1(g(\cdot , \cdot ), h(\cdot , \cdot )) := sup
t\in [0,T ]

W1(gt(\cdot ), ht(\cdot )).(30)

Compared to the classical mean-field equation in [8], the essential difference of (18)
lies in the left-hand side, where the characteristic trajectory (X,W ) := (X(t),W (t))
is written as follows:\left\{       

d

dt
X =W +A(I + tA) - 1X,

d

dt
W = - \nabla U \ast \rho g(t,X) - A(I + tA) - 1W .

(31)

In the rest of this subsection, we will take the simple shear as an example (see [34,
Theorem 3.1]), in which case A is rank-1 and traceless, i.e.,

L(t) =A(I + tA) - 1 =

\left(  0 K 0
0 0 0
0 0 0

\right)  with K \not = 0.(32)

In fact, for the purpose of future extension, we consider a rather general field \xi 
and an operator \scrH that satisfy a certain class of hypotheses, instead of assuming a
specific form. Specifically, we consider the following system:
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KINETIC DESCRIPTION OF OMD 1659\left\{       
d

dt
X = \xi (t,X,W ),

d

dt
W =\scrH [g](t,X,W ) =E[g](t,X) + \eta (t,W ) .

(33)

Here, we will present the sufficient hypotheses that ensure the fulfillment of \xi and
\scrH for the specific case of (31). These hypotheses guarantee the well-posedness of the
mean-field equation (18).

Hypothesis 2.1. (Hypotheses on \xi ).
(i) \xi (t, x,w) is continuous on [0, T ]\times R3 \times R3.
(ii) There exists a constant C\xi > 0,

| \xi (t, x,w)| \leq C\xi (1 + | x| + | w| ) \forall t, x,w \in [0, T ]\times R3 \times R3 .(34)

(iii) \xi is locally Lipschitz in variables x and w, i.e., for any compact set D\subset R3\times R3,
there is a constant L\xi =L\xi (D)> 0 such that

| \xi (t, V1) - \xi (t, V2)| \leq L\xi | V1  - V2| , t\in [0, T ], V1, V2 \in D.

Remark 2.2. Note that \xi (t, x,w) =w+A(I+ tA) - 1x satisfies Hypothesis 2.1 with
A(I + tA) - 1 being a simple shear as in (32). Indeed, we have, for all t\in [0, T ],

| \xi (t, x,w)| = | w+A(I + tA) - 1x| \leq | w| +K| x| 
\leq C\xi (1 + | w| + | x| ),

where C\xi = 1+K. On the other hand, for all t\in [0, T ] and V1, V2 \in D,

| \xi (t, V1) - \xi (t, V2)| \leq | w1  - w2| +K| x1  - x2| 
\leq L\xi | V1  - V2| ,

where L\xi = 2(1 +K).

Hypothesis 2.3. (Hypotheses on \scrH )
(i) \scrH [g](t, x,w) is continuous on [0, T ]\times R3 \times R3.
(ii) For any g(t, \cdot , \cdot )\in Pc(R3\times R3) with support contained in a ball BR \subset R3\times R3 and
for all t\in [0, T ], there exists a constant C\scrH =C\scrH (R,T )> 0, such that

\| \scrH [g](t, \cdot , \cdot )\| L\infty (BR) \leq C\scrH \forall t\in [0, T ].(35)

(iii) For g,h\in P1(R3 \times R3) and any ball BR \subset R3 \times R3,

\| \scrH [g](\cdot , \cdot ) - \scrH [h](\cdot , \cdot )\| L\infty (BR) \leq LipR
\bigl[ 
\scrH (\cdot , \cdot )

\bigr] 
W1

\bigl( 
g(\cdot , \cdot ), h(\cdot , \cdot )

\bigr) 
.(36)

Furthermore, if gt, ht \in \scrG such that supp(gt) \cup supp(ht) \subset BR0
for all t \in [0, T ], then

for any ball BR \subset R3 \times R3, there exists a constant L\scrH =L\scrH (R,R0) such that

max
t\in [0,T ]

\| \scrH [g](t, \cdot , \cdot ) - \scrH [h](t, \cdot , \cdot )\| L\infty (BR) \leq L\scrH \scrW 1

\bigl( 
g(\cdot , \cdot , \cdot ), h(\cdot , \cdot , \cdot )

\bigr) 
(37)

with

max
t\in [0,T ]

LipR
\bigl[ 
\scrH (t, \cdot , \cdot )

\bigr] 
\leq L\scrH .
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1660 RICHARD D. JAMES, KUNLUN QI, AND LI WANG

Remark 2.4. It can be illustrated that the particular operator \scrH [g](t, x,w) =
E[g](t, x) + \eta (t,w) in the designated model (33) satisfies the desired Hypothesis 2.3,
as long as E[g](t, x) = - \nabla U \ast \rho g(t, x) satisfies Hypothesis A.9 as in Appendix A. Con-
sequently, the Lipschitz constant LipR

\bigl[ 
\scrH (\cdot , \cdot )

\bigr] 
in (36) and maxt\in [0,T ] LipR

\bigl[ 
\scrH (t, \cdot , \cdot )

\bigr] 
in (37) will depend on the potential U .

Finally, we can define the flow operator at time t\in [0, T ) of (33):

\scrT t
\xi ,\scrH : (X(0),W (0))\in R3 \times R3 \mapsto \rightarrow (X(t),W (t))\in R3 \times R3 .

Following the definition of the solution as in [8, Definition 3.3], for an initial probability
measure g0(x,w)\in \scrP 1(R3 \times R3), the function

g(t, x,w) : [0, T )\rightarrow \scrP 1(R3 \times R3), t \mapsto \rightarrow gt(x,w) := \scrT t
\xi ,\scrH \#g0(x,w)(38)

is a measure-valued solution to (18) in the distributional sense, where g(t, x,w) =
gt(x,w) = \scrT t

\xi ,\scrH \#g0(x,w) is defined as\int 
R3\times R3

\zeta (x,w)g(t, x,w)dxdw=

\int 
R3\times R3

\zeta 
\bigl( 
\scrT t
\xi ,\scrH (x,w)

\bigr) 
g0(x,w)dxdw

for all \zeta \in Cb(R3 \times R3).

2.2.1. Well-posedness theorem of mean-field equation. Our main well-
posedness theorem for (18) states as follows.

Theorem 2.5 (Existence, uniqueness, and stability). Assume the field \xi (t, x,w)
satisfies Hypothesis 2.1 and the operator \scrH (t, x,w) satisfies Hypothesis 2.3.
For any initial datum g0(x,w) \in \scrP c(R3 \times R3), there exists a measure-valued solution
gt(x,w) = g(t, x,w) \in C

\bigl( 
[0,+\infty ),\scrP c(R3 \times R3)

\bigr) 
to (18), and there is an increasing

function R=R(T ) such that for all T > 0,

supp gt(\cdot , \cdot )\subset BR(T ) \subset R3 \times R3 \forall t\in [0, T ].(39)

This solution is unique among the family of solutions C
\bigl( 
[0,+\infty ),\scrP c(R3 \times R3)

\bigr) 
satis-

fying (39).
Moreover, the solution depends continuously with respect to the initial data in the

following sense. Assume that g0, h0 \in \scrP c(R3 \times R3) are two initial conditions, and
gt, ht are the corresponding solutions to (18). Then,

W1(gt(\cdot , \cdot ), ht(\cdot , \cdot ))\leq e2tLW1(g0(\cdot , \cdot ), h0(\cdot , \cdot )) \forall t\geq 0,

where L=max\{ LV ,L\scrH \} with LV in Lemma A.2.

Proof. (Existence and uniqueness): Given any initial condition g0(x,w)\in \scrP c(R3\times 
R3) with support contained in a ball BR0

\subset R3 \times R3 for some R0 > 0, we prove the
local existence and uniqueness of solutions by a fixed-point argument in a complete
metric space (\scrG ,\scrW 1) defined in (30), where the support of g(t, x,w) is contained in
BR for all t \in [0, T ] with R= 2R0, and T > 0 is a fixed time that will be determined
later on.

We now define an operator \Gamma on the space \scrG such that its fixed point is the
solution to the mean-field equation (18). For g \in \scrG , if the field \xi (t, x,w) and operator
\scrH [\cdot ](t, x,w) satisfy Hypotheses 2.1 and 2.3, respectively, we define

\Gamma [g](t, x,w) := \scrT t
\xi ,\scrH [g]\#g0(x,w) .
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KINETIC DESCRIPTION OF OMD 1661

Clearly, if g is the solution to (18) with the initial condition g0(x,w), then \Gamma [g] also
solves the same initial value problem. This can be demonstrated using the method of
characteristics.

To invoke the fixed-point argument, we need to accomplish the following two
tasks.

(I) Show that \Gamma maps g \in \scrG to the same space \scrG under an appropriate choice
of time T1.That is, we need to show that \scrT t

\xi ,\scrH [g]\#g0(x,w) is a probability
measure in \scrP 1 with compact support in BR.
Thanks to Hypotheses 2.1 and 2.3 on \xi (t, x,w) and\scrH (t, x,w), using Lemma A.2,
we see that | ddt\scrT \xi ,\scrH [g](V )| \leq CV for all V \in BR0

\subset R3 \times R3 with CV > 0 de-
pending on R0, T , C\xi , and C\scrH . Then as long as T1 is selected such that
T1 \leq R0

CP
, the support of \Gamma [g](t, x,w) = \scrT t

\xi ,\scrH [g]\#g0(x,w) is contained in BR

with R= 2R0. Meanwhile, \Gamma [g](t, x,w)\in \scrP 1(R3 \times R3) is fulfilled by the mass
conservation. Moreover, the time continuity of \Gamma [g], i.e., t \mapsto \rightarrow \Gamma [g](t, \cdot , \cdot ) fol-
lows from Lemma A.8. This implies that the operator \Gamma [g] mapping from the
space \scrG into itself is well-defined.

(II) Demonstrate that \Gamma is a contraction map in \scrG for specific choices of T2. This
is to show that, for any g,h\in \scrG , the following inequality holds:

\scrW 1

\bigl( 
\Gamma [g](\cdot , \cdot , \cdot ),\Gamma [h](\cdot , \cdot , \cdot )

\bigr) 
\leq C\scrW 1

\bigl( 
g(\cdot , \cdot , \cdot ), h(\cdot , \cdot , \cdot )

\bigr) 
,

where 0 < C < 1 is a constant independent of g and h. Note that, starting
from the same g0 \in \scrP c(R3 \times R3) with support contained in BR, we have

\scrW 1

\bigl( 
\Gamma [g](\cdot , \cdot , \cdot ),\Gamma [h](\cdot , \cdot , \cdot )

\bigr) 
= sup

t\in [0,T2]

W1

\Bigl( 
\scrT t
\xi ,\scrH [g]\#g0(\cdot , \cdot ),\scrT t

\xi ,\scrH [h]\#g0(\cdot , \cdot )
\Bigr) (40)

Further, for t\in [0, T2], we have

W1

\Bigl( 
\scrT t
\xi ,\scrH [g]\#g0(\cdot , \cdot ),\scrT t

\xi ,\scrH [h]\#g0(\cdot , \cdot )
\Bigr) 

\leq etLV  - 1

LV

\Biggl( 
sup

\tau \in (0,T )

\| \scrH [g](\tau , \cdot , \cdot ) - \scrH [h](\tau , \cdot , \cdot )\| L\infty (suppg0)

\Biggr) 

\leq etLV  - 1

LV
L\scrH sup

\tau \in [0,T2]

W1(g\tau (\cdot , \cdot ) - h\tau (\cdot , \cdot ))

=
etLV  - 1

LV
L\scrH \scrW 1(g(\cdot , \cdot , \cdot ), h(\cdot , \cdot , \cdot )),

(41)

where the first inequality comes from Lemma A.3 when \xi 1 = \xi 2 = \xi , while the
second inequality utilizes Hypothesis 2.3.
Taking the maximum over t\in [0, T2] in (41), we see that

\scrW 1

\bigl( 
\Gamma [g](\cdot , \cdot , \cdot ),\Gamma [h](\cdot , \cdot , \cdot )

\bigr) 
\leq eT2LV  - 1

LV
L\scrH \scrW 1

\bigl( 
g(\cdot , \cdot , \cdot ), h(\cdot , \cdot , \cdot )

\bigr) 
.

Since limT2\rightarrow 0
eT2LV  - 1

LV
= 0, we can choose T2 small enough such that we have

eT2LV  - 1
LV

L\scrH < 1. This ensures that the mapping \Gamma is contractive on \scrG .
Combining the analysis above, we prove the existence of a unique fixed point

of \Gamma [g] in \scrG by selecting T = min\{ T1, T2\} . This fixed point, denoted as g(t, x,w),
represents the unique solution to (18) within the local time interval [0, T ].
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1662 RICHARD D. JAMES, KUNLUN QI, AND LI WANG

Moreover, since the time T is independent of the initial condition and mass con-
servation is ensured, we can extend the solution equally to any global time interval
by repeating the same argument. This extension is valid as long as the support of the
solution remains compact, which has been verified in Lemma A.1.

(Stability): Following the previous argument, we can choose any fixed T > 0 and
R> 0 such that the supports of gt(x,w) and ht(x,w) are contained in BR for t\in [0, T ].
Then we have

W1(gt(\cdot , \cdot ), ht(\cdot , \cdot ))

=W1

\Bigl( 
\scrT t
\xi ,\scrH [g]\#g0(\cdot , \cdot ),\scrT t

\xi ,\scrH [h]\#h0(\cdot , \cdot )
\Bigr) 

\leq W1

\Bigl( 
\scrT t
\xi ,\scrH [g]\#g0(\cdot , \cdot ),\scrT t

\xi ,\scrH [h]\#g0(\cdot , \cdot )
\Bigr) 
+W1

\Bigl( 
\scrT t
\xi ,\scrH [h]\#g0(\cdot , \cdot ),\scrT t

\xi ,\scrH [h]\#h0(\cdot , \cdot )
\Bigr) 

\leq \| \scrT t
\xi ,\scrH [g]  - \scrT t

\xi ,\scrH [h]\| L\infty (supp g0) +LipR
\bigl[ 
\scrT t
\xi ,\scrH [h]

\bigr] 
W1

\bigl( 
g0(\cdot , \cdot ), h0(\cdot , \cdot )

\bigr) 
\leq 

\int t

0

e(t - \tau )LV \| \scrH [g](\tau , \cdot , \cdot ) - \scrH [h](\tau , \cdot , \cdot )\| L\infty (BR) d\tau + etLV W1

\bigl( 
g0(\cdot , \cdot ), h0(\cdot , \cdot )

\bigr) 
\leq 

\int t

0

e(t - \tau )LV LipR
\bigl[ 
\scrH 
\bigr] 
W1

\bigl( 
g\tau (\cdot , \cdot ), h\tau (\cdot , \cdot )

\bigr) 
d\tau + etLV W1

\bigl( 
g0(\cdot , \cdot ), h0(\cdot , \cdot )

\bigr) 
.

Noting that LipR
\bigl[ 
\scrH 
\bigr] 
\leq L\scrH for all t \in [0, T ], we can choose L = max\{ LV ,L\scrH \} such

that, for all t\in [0, T ]

e - tLW1(gt(\cdot , \cdot ), ht(\cdot , \cdot ))\leq L

\int t

0

e - \tau LV W1

\bigl( 
g\tau (\cdot , \cdot ), h\tau (\cdot , \cdot )

\bigr) 
d\tau +W1

\bigl( 
g0(\cdot , \cdot ) - h0(\cdot , \cdot )

\bigr) 
.

Then using Gronwall's inequality, we have the following estimate:

W1(gt(\cdot , \cdot ), ht(\cdot , \cdot ))\leq e2tLW1

\bigl( 
g0(\cdot , \cdot ) - h0(\cdot , \cdot )

\bigr) 
\forall t\in [0, T ].

This completes the proof.

2.2.2. Proof of the mean-field limit. As a consequence of the well-posedness
established in Theorem 2.5, we are able to offer a theoretical justification for the mean-
field limit, i.e., (18). Apart from the derivation via the BBGKY hierarchy, an alterna-
tive approach to obtaining the mean-field equation is by assuming that the solution g
represents an empirical measure of a collection of particles, characterized as follows.

Lemma 2.6. Consider the following dynamical system\left\{       
d

dt
xi = \xi (t, xi,wi), i= 1, . . . ,N,

d

dt
wi =\scrH [gNt ](t, xi,wi), i= 1, . . . ,N,

(42)

where \xi (t, x,w) and \scrH (t, x,w) satisfy the Hypotheses 2.1 and 2.3, respectively. Let
gNt (x,w) : [0, T ] \mapsto \rightarrow \scrP 1(R3 \times R3) be a probability measure defined as

gNt (x,w) :=
1

N

N\sum 
i=1

\delta (x - xi(t))\delta (w - wi(t)).(43)

If xi,wi : [0, T ] \mapsto \rightarrow R3, for i = 1, . . . ,N , is a solution to (42), then gNt (x,w) is the
measure-valued solution to (18) with the initial condition

gN0 (x,w) :=
1

N

N\sum 
i=1

\delta (x - xi(0))\delta (w - wi(0)).(44)
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KINETIC DESCRIPTION OF OMD 1663

For the sake of completeness, the detailed derivation is provided in Appendix B.
With the support of Theorem 2.5, we can rigorously justify the convergence of the
measure-valued solution.

Theorem 2.7 (Convergence of the empirical measure). Under the Hypotheses 2.1
and 2.3, for any initial datum g0 \in \scrP c(R3 \times R3), consider a sequence of gN0 in the
form of (44) such that

lim
N\rightarrow \infty 

\scrW 1

\bigl( 
gN0 (\cdot , \cdot ), g0(\cdot , \cdot )

\bigr) 
= 0.

Let gNt be given by (43), where (xi(t),wi(t)) solves (17) with initial conditions (xi(0),
wi(0)). Then we have

lim
N\rightarrow \infty 

\scrW 1

\bigl( 
gNt (\cdot , \cdot ), gt(\cdot , \cdot )

\bigr) 
= 0,

for all t\geq 0, where gt(x,w) is the unique measure-valued solution to (18) with initial
data g0(x,w).

3. A Boltzmann-type model for short-range interaction. In this section,
we will derive the Boltzmann-type equation based on the scaling in (20).

3.1. Derivation via BBGKY hierarchy. As in the previous section, we begin
with the Liouville equation (25). However, in this case, we need to account for the
range of interaction and define the marginals in the truncated domain R3 \setminus \{ ZN , | xi - 
xj | \leq \varepsilon for i \not = j\} . The marginals are now denoted as \~P (s)(t,Zs) instead of P (s)(t,Zs):

\~P (s)(t,Zs) :=

\int 
R6(N - s)

P (N)(t, z1, z2, . . . , zN )
\prod 

i\in [1,s]
j\in [s+1,N ]

1| xi - xj | >\varepsilon dzs+1 . . . dzN

=

\int 
R6(N - s)

P (N)(t, z1, z2, . . . , zN )1XN\in \scrD s
N
dzs+1 . . . dzN ,

where

\scrD s
N :=

\Bigl\{ 
(x1, . . . , xN )\in R3N

\bigm| \bigm| \bigm| | xi  - xj | > \varepsilon \forall (i, j)\in [1, s]\times [s+ 1,N ]
\Bigr\} 
,

and Zs is defined in (24). Our derivation follows the strategies outlined in King
[37] and Gallagher, Saint-Raymond, and Texier [21]. When s = 1, the truncated
one-particle marginal \~P (1) is

\~P (1)(t, z1) =

\int 
R6(N - 1)

P (N)(t, z1, z2, . . . , zN )
N\prod 
j\geq 2

1| x1 - xj | >\varepsilon dz2 . . . dzN

=

\int 
R6(N - 1)

P (N)(t, z1, z2, . . . , zN )1XN\in \scrD 1
N
dz2 . . . dzN .

(45)

Then our goal is to find the weak form satisfied by \~P (1)(t, z1).
To this end, we first derive a more general form satisfied by s-particle marginals

\~P (s)(t,Zs). Given a smooth and compactly supported function \phi (t,Zs) defined on
R+ \times R6s, we have, by considering (20) and starting from (25),
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1664 RICHARD D. JAMES, KUNLUN QI, AND LI WANG

\int 
R+\times R6N

\left(    \partial P (N)(t,ZN )

\partial t
+

N\sum 
i=1

\Bigl[ 
wi \cdot \nabla xiP

(N) + [A(I + tA) - 1xi] \cdot \nabla xiP
(N)

\Bigr] 
(t,ZN )

 - 
N\sum 
i=1

\left[    1

\varepsilon 

N\sum 
j=1
i\not =j

G

\biggl( 
| xi  - xj | 

\varepsilon 

\biggr) 
\cdot \nabla wiP

(N) + [A(I + tA) - 1wi] \cdot \nabla wiP
(N)

\right]    (t,ZN )

\right)    
\times \phi (t,Zs)1XN\in \scrD s

N
dZN dt= 0.

(46)

Then the equation satisfied by \~P (s)(t,Zs) follows from integration by parts. More
precisely, we denote Xs := (x1, . . . , xs)\in R3s and Ws := (w1, . . . ,ws)\in R3s.

(I) For the first term on the time derivative of P (N), we have\int 
R+\times R6N

\partial P (N)(t,ZN )

\partial t
\phi (t,Zs)1XN\in \scrD s

N
dZN dt

= - 
\int 
R6N

P (N)(0,ZN )\phi (0,Zs)1XN\in \scrD s
N
dZN

 - 
\int 
R+\times R6N

P (N)(t,ZN )
\partial \phi (t,Zs)

\partial t
1XN\in \scrD s

N
dZN dt

= - 
\int 
R6s

\~P (s)(0,Zs)\phi (0,Zs)dZs  - 
\int 
R+\times R6s

\~P (s)(t,Zs)
\partial \phi (t,Zs)

\partial t
dZs dt,

where we notice the definition of \~P (s) in the second equality.
(II) For the second term on the spatial derivative of P (N), we define, for any

coupled index (i, j)\in [1,N ]\times [1,N ],

\Sigma s
N (i, j) :=

\Bigl\{ 
XN \in R3N , | xi  - xj | =\varepsilon 

\bigm| \bigm| \bigm| \forall (k, l)\in [1, s]\times [s+ 1,N ]/\{ i, j\} , | xk - xl| > \varepsilon 
\Bigr\} 
,

which is a smooth submanifold of \{ XN \in R3N , | xi  - xj | = \varepsilon \} . If denoting d\sigma i,j
N as

its surface measure and ni,j the outward normal vector to \Sigma s
N (i, j), we obtain via

integration by parts,

N\sum 
i=1

\int 
R+\times R6N

wi \cdot \nabla xi
P (N)(t,ZN )\phi (t,Zs)1XN\in \scrD s

N
dZN dt

= - 
s\sum 

i=1

\int 
R+\times R6N

wiP
(N)(t,ZN ) \cdot \nabla xi

\phi (t,Zs)1XN\in \scrD s
N
dZN dt

+
N\sum 

i,j=1
i\not =j

\int 
R+\times R3N\times \Sigma s

N (i,j)

ni,j \cdot WNP (N)(t,ZN )\phi (t,Zs)d\sigma 
i,j
N dWN dt

= - 
s\sum 

i=1

\int 
R+\times R6N

wiP
(N)(t,ZN ) \cdot \nabla xi\phi (t,Zs)1XN\in \scrD s

N
dZN dt

+ (N  - s)
s\sum 

i=1

\int 
R+\times R3N\times \Sigma s

N (i,j)

\nu i,s+1

\surd 
2

\cdot (ws+1  - wi)P
(N)(t,ZN )\phi (t,Zs)d\sigma 

i,j
N dWN dt,
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KINETIC DESCRIPTION OF OMD 1665

where \nu i,j =
xi - xj

| xi - xj | and we have used the fact that P (N) satisfies the permutation

invariance, i.e., P (N)(t,Z\sigma (N)) = P (N)(t,ZN ).
Similarly,

N\sum 
i=1

\int 
R+\times R6N

[A(I + tA) - 1xi] \cdot \nabla xi
P (N)(t,ZN )\phi (t,Zs)1XN\in \scrD s

N
dZN dt

= - 
s\sum 

i=1

\int 
R+\times R6s

\~P (s)(t,Zs)[A(I + tA) - 1xi] \cdot \nabla xi\phi (t,Zs)dZs dt

 - 
s\sum 

i=1

\int 
R+\times R6s

Tr[A(I + tA) - 1] \~P (s)(t,Zs)\phi (t,Zs)dZs dt

+ (N  - s)
s\sum 

i=1

\int 
R+\times R3N\times \Sigma s

N (i,j)

\nu i,s+1

\surd 
2

\cdot [A(I + tA) - 1(xs+1  - xi)]P
(N)(t,ZN )\phi (t,Zs)d\sigma 

i,j
N dWN dt.

(III) For the third term including the potential, we split the sum into two parts:

1

\varepsilon 

N\sum 
i=1

N\sum 
j=1
i\not =j

\int 
R+\times R6N

\nabla xi
U

\biggl( 
| xi  - xj | 

\varepsilon 

\biggr) 
\cdot \nabla wi

P (N)(t,ZN )\phi (t,Zs)1XN\in \scrD s
N
dZN dt

=
1

\varepsilon 

s\sum 
i,j=1
i\not =j

\int 
R+\times R6N

\nabla xi
U

\biggl( 
| xi  - xj | 

\varepsilon 

\biggr) 
\cdot \nabla wi

P (N)(t,ZN )\phi (t,Zs)1XN\in \scrD s
N
dZN dt

+
1

\varepsilon 

N\sum 
i,j=s+1

i\not =j

\int 
R+\times R6N

\nabla xi
U

\biggl( 
| xi - xj | 

\varepsilon 

\biggr) 
\cdot \nabla wi

P (s)(t,Zs)\phi (t,Zs)1XN\in \scrD s
N
dZN dt,

where the second term on the right-hand side vanishes due to the appearance of
\nabla wi

\phi (t,Zs) for i= s+ 1, . . . ,N after integration by parts. Therefore, it becomes

1

\varepsilon 

N\sum 
i=1

N\sum 
j=1
i\not =j

\int 
R+\times R6N

\nabla xiU

\biggl( 
| xi  - xj | 

\varepsilon 

\biggr) 
\cdot \nabla wiP

(N)(t,ZN )\phi (t,Zs)1XN\in \scrD s
N
dZN dt

= - 1

\varepsilon 

s\sum 
i,j=1
i\not =j

\int 
R+\times R6N

\nabla xiU

\biggl( 
| xi  - xj | 

\varepsilon 

\biggr) 
\cdot \nabla wi\phi (t,Zs) \~P

(s)(t,Zs)dZs dt.

(IV) For the fourth term on the derivative of w,

N\sum 
i=1

\int 
R+\times R6N

[A(I + tA) - 1wi] \cdot \nabla wi
P (N)(t,ZN )\phi (t,Zs)1XN\in \scrD s

N
dZN dt

= - 
s\sum 

i=1

\int 
R+\times R6s

\~P (s)(t,Zs)[A(I + tA) - 1wi] \cdot \nabla wi\phi (t,Zs)dZs dt

 - 
s\sum 

i=1

\int 
R+\times R6s

Tr[A(I + tA) - 1] \~P (s)(t,Zs)\phi (t,Zs)dZs dt,

where the integration by parts is applied in the equality above.
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1666 RICHARD D. JAMES, KUNLUN QI, AND LI WANG

Combining the terms (I)-(IV) together, (46) becomes\int 
R+\times R6s

\~P (s)(t,Zs)

\Biggl[ 
\partial t\phi +

s\sum 
i=1

\Biggl( 
wi\nabla xi

\phi + [A(I + tA) - 1xi] \cdot \nabla xi
\phi (47)

 - [A(I + tA) - 1wi] \cdot \nabla wi\phi 

\Biggr) 

 - 1

\varepsilon 

s\sum 
j=1
i\not =j

\nabla xiU

\biggl( 
| xi  - xj | 

\varepsilon 

\biggr) 
\cdot \nabla wi\phi 

\Biggr] 
(t,Zs)dZs dt

= - 
\int 
R6s

\~P (s)(0,Zs)\phi (0,Zs)dZs

 - (N  - s)
s\sum 

i=1

\int 
R+\times R3N\times \Sigma s

N (i,s+1)

\nu i,s+1

\surd 
2

\cdot (ws+1  - wi)P
(N)(t,ZN )\phi (t,Zs)d\sigma 

i,s+1
N dVN dt

+ (N  - s)
s\sum 

i=1

\int 
R+\times R3N\times \Sigma s

N (i,s+1)

\nu i,s+1

\surd 
2

\cdot [A(I + tA) - 1(xs+1  - xi)]P
(N)(t,ZN )\phi (t,Zs)d\sigma 

i,s+1
N dVN dt

= - 
\int 
R6s

\~P (s)(0,Zs)\phi (0,Zs)dZs

 - (N  - s)\varepsilon 2
\int 
R+\times R6s

\scrQ s,s+1(P
(s+1))(t,Zs)\phi (t,Zs)dZs dt

+ (N  - s)\varepsilon 3
\int 
R+\times R6s

\scrQ \prime 
s,s+1(P

(s+1))(t,Zs)\phi (t,Zs)dZs dt,

where the derivation of the term\scrQ s,s+1(P
(s+1)) in the last equality directly follows [21,

Paragraph 9.3--9.4], which neglects higher-order interactions except for those between
binary particles:

\scrQ s,s+1( \~P
(s+1))(t,Zs) :=

s\sum 
i=1

\int 
R3

\int 
S2
b(wi  - ws+1, \omega i,s+1)

\times 
\Bigl[ 
P (s+1)(t, x1,w1, . . . , xi,w

\prime 
i, . . . , xs,ws,w

\prime 
s+1)

 - P (s+1)(t,Zs, xi,ws+1)
\Bigr] 
d\omega i,s+1 dws+1,

and, similarly,

\scrQ \prime 
s,s+1( \~P

(s+1))(t,Zs) :=
s\sum 

i=1

\int 
R3

\int 
S2
b

\biggl( 
A(I + tA) - 1 xi  - xs+1

| xi  - xs+1| 
, \omega i,s+1

\biggr) 
\times 

\Bigl[ 
P (s+1)(t, x1,w1, . . . , xi,w

\prime 
i, . . . , xs,ws,w

\prime 
s+1)

 - P (s+1)(t,Zs, xi,ws+1)
\Bigr] 
d\omega i,s+1 dws+1.

Here (w\prime 
i,w

\prime 
s+1) is obtained from (wi,ws+1) by applying the inverse scattering operator

\sigma \varepsilon defined in [21, Definition 8.2.1], i.e.,

\sigma \varepsilon : (xi,wi, xs+1,ws+1)\in \scrS  - 
\varepsilon \mapsto \rightarrow (x\prime 

i,w
\prime 
i, x

\prime 
s+1,w

\prime 
s+1)\in \scrS +

\varepsilon ,
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KINETIC DESCRIPTION OF OMD 1667

where

\scrS \pm 
\varepsilon :=

\bigl\{ 
(xi,wi, xs+1,ws+1)\in R4\times 3

\bigm| \bigm| | xi  - xs+1| = \varepsilon , \pm (xi  - xs+1) \cdot (wi  - ws+1)> 0
\bigr\} 
,

x\prime 
i := - xi + \omega i,s+1 \cdot (xi  - xs+1)\omega i,s+1 +

\varepsilon \tau \ast 
2

(wi +ws+1),

x\prime 
s+1 := - xs+1  - \omega i,s+1 \cdot (xi  - xs+1)\omega i,s+1 +

\varepsilon \tau \ast 
2

(wi +ws+1),

w\prime 
i :=wi  - \omega i,s+1 \cdot (wi  - ws+1)\omega i,s+1, w\prime 

s+1 :=ws+1 + \omega i,s+1 \cdot (wi  - ws+1)\omega i,s+1

with \tau \ast the microscopic interaction time [21, (8.1.10)]. And collision kernel b has the
same definition as in [21, Definition 8.3.3 and eq. (8.3.5)] or, more specifically,

\nu i,s+1 \cdot (wi  - ws+1)d\sigma 
i,s+1
N =

1

\varepsilon 
(xi  - xs+1) \cdot (wi  - ws+1)d\sigma 

i,s+1
N

= \varepsilon 2b(wi  - ws+1, \omega i,s+1)d\omega i,s+1.

Taking the Boltzmann--Grad limit N\varepsilon 2 \rightarrow O(1) (or in the case of general dimen-
sion d, N\varepsilon d - 1 \rightarrow O(1)) as N \rightarrow \infty and \varepsilon \rightarrow 0, the integral term involving \scrQ \prime 

s,s+1 in

(47) vanishes, since N\varepsilon 3 \rightarrow 0 in such a limit. Therefore, formally \~P (s)(t,Zs) satisfies
the following equation in the weak sense:

\partial \~P (s)

\partial t
+

s\sum 
i=1

(wi \cdot \nabla xi
\~P (s) + [A(I + tA) - 1xi] \cdot \nabla xi

\~P (s)  - [A(I + tA) - 1wi] \cdot \nabla wi
\~P (s))

 - 1

\varepsilon 

s\sum 
i,j=1
i\not =j

\nabla xi
U

\biggl( 
| xi  - xj | 

\varepsilon 

\biggr) 
\cdot \nabla wi

\~P (s) =\scrQ s,s+1( \~P
(s+1)).

(48)

In particular, when s = 1 in (48), we have the corresponding equation for one-
particle distribution function \~P (1)(t, z1),

\partial \~P (1)(t, z1)

\partial t
+w1 \cdot \nabla x1

\~P (1)(t, z1) + [A(I + tA) - 1x1] \cdot \nabla x1
\~P (1)(t, z1)(49)

 - [A(I + tA) - 1w1] \cdot \nabla w1
\~P (1)(t, z1) =\scrQ 1,2( \~P

(2))(t, z1),

where the collision operator \scrQ 1,2(P
(2)) is

\scrQ 1,2( \~P
(2))(t, z1)

:=

\int 
R3

\int 
S2
b(w1  - w2, \omega 1,2)

\Bigl[ 
\~P (2)(t, x1,w

\prime 
1, x2,w

\prime 
2) - \~P (2)(t, x1,w1, x2,w2)

\Bigr] 
d\omega 1,2 dw2 .

At this stage, one can find that (49) above is still not solvable due to the existence
of \~P (2) on the right-hand side. Hence, to close up the hierarchy, we introduce the
following propagation of chaos assumption [55, p. 12],

\~P (2)(t, x1,w1, x2,w2) = \~P (1)(t, x1,w1) \~P
(1)(t, x2,w2) ,

which implies the uncorrelation of velocities of two particles that are about to collide.
Then,

\scrQ 1,2( \~P
(2)) =\scrQ 1,2( \~P

(1), \~P (1)) =

\int 
R3

\int 
S2
b(w1  - w2, \omega 1,2)

\times 
\Bigl[ 
\~P (1)(t, x1,w

\prime 
1) \~P

(1)(t, x2,w
\prime 
2) - \~P (1)(t, x1,w1) \~P

(1)(t, x2,w2)
\Bigr] 
d\omega 1,2 dw2 .
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1668 RICHARD D. JAMES, KUNLUN QI, AND LI WANG

Finally, after considering the homogeneity in x and renaming w as w1, w\ast as
w2, and \omega 1,2 as \omega , we arrive at the HOMO-energetic Boltzmann equation (8), where
g(t,w) = \~P (1)(t, z1) = \~P (1)(t, x1,w1).

We mention that the above derivation is formal, and to make it rigorous, the main
difficulty lies in the need to justify the propagation of chaos. Additionally, we need to
construct an appropriate functional space and obtain some a priori uniform estimates
in the BBGKY hierarchy, especially with the additional term L(t)w \cdot \nabla w

\~P (1) in the
HOMO-energetic equation. We refer to [21, Part III] for the related work about the
classical Boltzmann equation.

3.2. Properties of the HOMO-energetic Boltzmann equation. In con-
trast to the classical Boltzmann equation (5), the (8) derived from OMD has been
effectively reduced in dimension due to spatial homogeneity, similar to the principles
of microscopic molecular dynamics. Its solution, often called the HOMO-energetic so-
lution, can be regarded as a special type of solution to the full Boltzmann equation (5).

The existence and uniqueness of the HOMO-energetic solution to (8) in L1 were
initially established by Cercignani in a specific instance of the deformation matrix
L(t) known as the shear affine flow, as discussed in [11]. This analysis considered the
collision operator with an angular cutoff cross section, such as the hard-sphere model.
In the case of the Maxwellian molecule, corresponding to \gamma = 0 in the kinetic part
of the collision kernel B, the hyperbolic effect L(t)w \cdot \nabla wg and the collision effect
\scrQ (g, g) exhibit similar magnitudes. The well-posedness theory of the solution in the
general case has been demonstrated within the class of Radon measures by James,
Nota, and Vel\'azquez [34] or under the Fourier transform framework by Bobylev, Nota,
and Vel\'azquez [6].

One of the fundamental distinctions between the solution to the classical Boltz-
mann equation and the HOMO-energetic solution to (8) lies in their behavior at large
times. It is well known that the solution to the homogeneous Boltzmann equation
converges to the global Maxwellian equilibrium, determined by the initial condition.
However, for the HOMO-energetic equation (8), due to the presence of the deforma-
tion matrix L(t) and its associated viscous heating effect, the equilibrium is no longer
Maxwellian and the energy (or temperature) of the system steadily increases with
time.

In fact, the large-time behavior of the HOMO-energetic solution varies depend-
ing on the interplay between the hyperbolic term L(t)w \cdot \nabla wg and the collision term
\scrQ (g, g). In the case of the Maxwell molecule, where the collision kernel exhibits zero
homogeneity, a distinct self-similar profile has been observed [41]. This self-similar
distribution differs from the Maxwellian distribution and is characterized by a poly-
nomial decay of velocity at the tails. This behavior has been numerically confirmed
in previous studies [23].

More particularly, consider the self-similar transformation

g(t,w) = e - 3\beta tG
\Bigl( w

e\beta t

\Bigr) 
.(50)

Equation (8) can be rewritten as

 - \beta \nabla w \cdot (wG) - \nabla w \cdot (LwG) =\scrQ (G,G) ,(51)

where L \in M3\times 3(R), \beta \in R. Note that the intuition of self-similar scaling (50) comes
from the dimensionless analysis; see more details in [34, p. 818]. Then its well-
posedness is established in the following theorem.
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KINETIC DESCRIPTION OF OMD 1669

Theorem 3.1 ([34]). Let B = b(cos \theta ) be the collision kernel for Maxwellian

molecules and
\int 1

 - 1
b(x)x2(1  - x2)dx be strictly positive. There exists a sufficiently

small k0 > 0 such that, for any \zeta \geq 0 and any L \in M3\times 3(R) satisfying \| L\| \leq k0b,
there exists \beta \in R and G(w) that solve (51) in the sense of measure and satisfy\int 

R3

G(w)dw= 1,

\int 
R3

wjG(w)dw= 0,

\int 
R3

| w| 2G(w)dw= \zeta .

In addition to [34], the existence of the self-similar profile was also established by
Bobylev, Nota, and Vel\'azquez in [6] using the Fourier method. Furthermore, in [18],
a smooth self-similar solution with C\infty -regularity and dependence on a small shear
force was demonstrated based on a perturbative approach.

Remark 3.2. It is important to note that the existence of self-similar solutions
is not limited to the HOMO-energetic solution of (8), but also applies to the clas-
sical Boltzmann equation without deformation forces. However, in the absence of
deformation forces, the existence of self-similar solutions is restricted by the energy
conservation property. Specifically, self-similar solutions can only be demonstrated
when they possess an infinite second-order moment [3]. This condition holds for
certain cases, such as the inelastic Boltzmann equation in granular materials [5, 4].
Moreover, the dynamic stability of these infinite energy self-similar profiles has been
established in [42].

4. From mesoscopic regime to macroscopic regime. In this section, our
focus will be on investigating the hydrodynamic limit for the kinetic model induced
by OMD, which bridges the gap between the mesoscopic regime and the macroscopic
regime.

4.1. Universal conservation laws. We begin by revisiting the macroscopic
quantities that arise from classical fluid mechanics and re-formulate them within the
context of HOMO-energetic flow (9). Notably, owing to the homogeneity in x of
g(t,w), the macroscopic quantities will solely be time dependent.

Noting that in (9) if we begin with
\int 
R3 g(0,w)wdw= 0, then the first moment of

g remains zero, i.e.,
\int 
R3 g(t,w)wdw= 0. This condition is maintained throughout the

derivation, as explained in [35, Remark 2.2]. Therefore, in the subsequent analysis,
we consistently assume that the first moment of g is zero.

\bullet Density \rho (t, x):

\rho (t, x) =

\int 
R3

f(t, x, v)dv=

\int 
R3

g(t,w)dw=: \rho (t) .(52)

\bullet The bulk velocity u(t, x):

u(t, x) =
1

\rho (t, x)

\int 
R3

f(t, x, v)v dv

=
1

\rho (t)

\int 
R3

g(t,w)[w+L(t)x] dw

=
1

\rho (t)

\int 
R3

g(t,w)w dw+ [L(t)x]
1

\rho (t)

\int 
R3

g(t,w)dw

=L(t)x .

\bullet Internal energy e(t, x) and temperature \theta (t, x):
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1670 RICHARD D. JAMES, KUNLUN QI, AND LI WANG

\rho (t, x)e(t, x) =
1

2

\int 
R3

f(t, x, v)| v - u(t, x)| 2 dv

=
1

2

\int 
R3

g(t,w)| w| 2 dw

=: \rho (t)e(t).

Consider the equation of state for perfect gas in three dimensions that

e(t, x) =
kB\theta (t, x)

\gamma a  - 1
=

3

2
\theta (t, x) ,

where \theta is the temperature, kB = 1 is the Boltzmann constant, and \gamma a =
1+ 2

d = 5
3 is the adiabatic exponent. Then the temperature \theta (t, x) at position

x and time t is

\rho (t, x)\theta (t, x) =
2

3

\biggl( 
1

2

\int 
R3

f(t, x, v) [v - u(t, x)]
2
dv

\biggr) 
=

1

3

\int 
R3

g(t,w)| w| 2 dw

=: \rho (t)\theta (t) .

(53)

Note that the involvement of the equation of state is not an implicit assump-
tion that makes our derivation only work for a perfect gas; instead, it merely
illustrates the relation between the internal energy e and temperature \theta to
close the system, allowing us to write the macroscopic equation in the follow-
ing section 4.2 as the time evolution for temperature for better comparison
with previous results in [46, 47].

\bullet The stress tensor Sij(t, x). Denote c(t, x) := v - u(t, x) as the peculiar velocity,
i.e., the deviation of the microscopic velocity of a molecule from the bulk
velocity, then the stress tensor can be written as

Sij(t, x) =

\int 
R3

ci(t, x)cj(t, x)f(t, x, v)dv

=

\int 
R3

wiwjg(t,w)dw

=: Sij(t)

(54)

for i, j = 1,2,3.
\bullet The heat flux qi(t, x):

qi(t, x) =

\int 
R3

cj(t, x)| c(t, x)| 2f(t, x, v)dv

=

\int 
R3

wj | w| 2g(t,w)dw

=: qi(t)

for i= 1,2,3.
Equipped with the aforementioned notations, we can derive the conservation

forms for HOMO-energetic flow by multiplying the collision invariants 1, wj , and
1
2 | w| 

2 on both sides of (8).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

07
/0

3/
25

 to
 1

34
.8

4.
19

2.
10

2 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



KINETIC DESCRIPTION OF OMD 1671\left\{                 

d

dt
\rho (t) +Tr[L(t)]\rho (t) = 0 ,

\rho (t)

\biggl( 
dL(t)

dt
+L2(t)

\biggr) 
= 0 ,

\rho (t)
de(t)

dt
+

3\sum 
i=1

3\sum 
j=1

Sij(t)Lij(t) = \rho (t)
de(t)

dt
+ S(t) :L(t) = 0 ,

(55)

where we use the standard tensor notation S :L=Tr(STL) =Tr(SLT ).
Equation (55) is universally satisfied by the macroscopic quantities, irrespective

of whether the scaling is mean field or Boltzmann--Grad. The first equation represents
the evolution of the density over time, while the second equation holds true for any
L(t) =A(I+ tA) - 1. The third equation describes the evolution of the internal energy
or temperature.

4.2. Hydrodynamic limit of the Boltzmann-type model. Though (55)
universally holds, it is not a closed system due to the absence of an explicit relationship
between e and P . In this subsection, we will address this issue by studying the hydro-
dynamic limit of the HOMO-energetic Boltzmann equation (8). Through asymptotic
analysis, we can derive a constitutive relation that allows us to close the system.

Consider the HOMO-energetic Boltzmann equation in a dimensionless manner,

St\partial tg(t,w) - [L(t)w] \cdot \nabla wg(t,w) =
1

Kn
\scrQ (g, g)(t,w),(56)

where Kn is the Knudsen number, defined as the ratio of the mean free path to
the macroscopic length scale, and St is the Strouhal number, defined as the ratio
between macroscopic velocity and thermal speed. Throughout this section, we assume
that \scrQ (g, g) is equipped with the hard potential collision kernel B under the cutoff
assumption, and

Kn= \epsilon \ll 1 and St = 1 .

Then, (56) becomes

\partial tg(t,w) - [L(t)w] \cdot \nabla wg(t,w) =
1

\epsilon 
\scrQ (g, g)(t,w).(57)

4.2.1. The compressible Euler limit. We first derive the compressible Euler
limit through the Hilbert expansion. Specifically, we seek the solution of (57) in the
form of a formal power series in \epsilon :

g\epsilon (t,w) =
\sum 
n\geq 0

\epsilon ngn(t,w) = g0(t,w) + \epsilon g1(t,w) + \cdot \cdot \cdot .(58)

Then at O(\epsilon  - 1), we have

\scrQ (g0, g0)(t,w) = 0 ,

which, by also considering the homogeneity of \rho , \theta in x from a previous discussion,
implies that g0(t,w) is in the form of a Maxwellian distribution, i.e.,

g0(t,w) =\scrM [\rho (t),\theta (t)] :=
\rho (t)

[2\pi \theta (t)]
3
2

e - 
| w| 2
2\theta (t) , \rho (t)> 0, \theta (t)> 0 .(59)
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1672 RICHARD D. JAMES, KUNLUN QI, AND LI WANG

At O(\epsilon 0), we have the following equation:\Bigl( 
\partial t  - [L(t)w] \cdot \nabla w

\Bigr) 
g0(t,w) =\scrQ (g0, g1)(t,w) +\scrQ (g1, g0)(t,w) .(60)

Define the linearized Boltzmann collision operator

\scrL \scrM [\rho ,\theta ]
g := - 2\scrM  - 1

[\rho ,\theta ]
\scrQ (\scrM  - 1

[\rho ,\theta ]
,\scrM  - 1

[\rho ,\theta ]
g) .(61)

According to [25, Theorem 3.11], it is stated that \scrL \scrM [\rho ,\theta ] is an unbounded self-adjoint
nonnegative Fredholm operator. Furthermore, its null space is spanned by the collision
invariants 1,wi, | w| 2, where i= 1,2,3. Moreover, by setting W = w\surd 

\theta (t)
and referring

to [25, eq. (3.64)], we can conclude that A(W )\in (Ker \scrL g0)
\bot 
, where

A(W ) :=W \otimes W  - 1

3
| W | 2I = 1

\theta (t)
w\otimes w - 1

3

| w| 2

\theta (t)
I .(62)

Then, (60) can be rewritten as

\scrL g0

\biggl( 
g1
g0

\biggr) 
= - 

\Bigl( 
\partial t  - [L(t)w] \cdot \nabla w

\Bigr) 
lng0(t,w) .

Upon a direct calculation, the right-hand side of the above equation can be expressed
as follows:\Bigl( 

\partial t  - [L(t)w] \cdot \nabla w

\Bigr) 
lng0(t,w)

=
1

\rho (t)

\Bigl( 
\partial t  - [L(t)w] \cdot \nabla w

\Bigr) 
\rho (t) - 3

2\theta (t)

\Bigl( 
\partial t  - [L(t)w] \cdot \nabla w

\Bigr) 
\theta (t)

+
\Bigl( 
\partial t  - [L(t)w] \cdot \nabla w

\Bigr) \biggl( 
 - | w| 2

2\theta (t)

\biggr) 
=

1

\rho (t)
\partial t\rho (t) - 

3

2\theta (t)
\partial t\theta (t) + [L(t)w] \cdot w

\theta (t)
+

| w| 2

2\theta 2
\partial t\theta (t).

(63)

We can rearrange the right-hand side of (63) and express it as a linear combination
of 1,wi, | w| 2, where i= 1,2,3, and A(W ) in the following form,

 - \scrL g0

\biggl( 
g0
g1

\biggr) 
=

\Bigl( 
\partial t  - [L(t)w] \cdot \nabla w

\Bigr) 
lng0(t,w)

=
1

\rho (t)

\Bigl( 
\partial t\rho (t) +Tr[L(t)]\rho (t)

\Bigr) 
+

1

2

\biggl( 
| w| 2

\theta (t)
 - 3

\biggr) 
1

\theta (t)

\biggl( 
\partial t\theta (t) +

2

3
Tr[L(t)]\theta (t)

\biggr) 
+ A(W ) :D ,

(64)

where D is denoted as

D :=
1

2

\biggl( 
L(t) + [L(t)]\top  - 2

3
Tr[L(t)]I

\biggr) 
.(65)

Clearly, the last term on the right-hand side of (64) belongs to (Ker\scrL g0)
\bot 
, while the

first two terms are in Ker\scrL g0 .
Therefore, the solvability condition, as stated in [25, (3.63)] for the Fredholm

integral problem (64) requires that the right-hand side of (64) is perpendicular to
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KINETIC DESCRIPTION OF OMD 1673

Ker \scrL g0 . This condition further implies that the coefficients of the functions 1 and
1
2

\bigl( 
| W | 2  - 3

\bigr) 
must vanish, i.e.,\left\{   \partial t\rho (t) +Tr[L(t)]\rho (t) = 0,

\partial t\theta (t) +
2

3
Tr[L(t)]\theta (t) = 0 .

Here the first equation reduces to the same equation in (55), while the second one
corresponds to the third equation in (55) with the relationship between the pressure
law, internal energy, and temperature given by

S = \rho (t)\theta (t)I and e(t) =
3

2
\theta (t) .(66)

This system is recognized as the compressible Euler system (22) in the case of the
perfect monatomic gas.

Remark 4.1. We pointed out that the equilibrium (59) shares some similarities
with the long-time behavior of (8). As proposed in [34, section 6.1], in the collision-
dominated scenario, g(t,w) is expected to approach 1

(2\pi )3/2
\beta (t)3/2e - \beta (t)| w| 2--a form

also exhibiting Gaussian characteristics. However, one should not confuse this conjec-
ture with the equilibrium (59) we use here to derive the hydrodynamic limit as they
essentially represent different asymptotics.

4.2.2. The compressible Navier--Stokes limit. We further derive the com-
pressible Navier--Stokes equation by investigating the next-order term in the asymp-
totic expansion. Here we follow [25] and use a slightly different expansion for the
solution:

g\epsilon (t,w) =
\sum 
n\geq 0

\epsilon ngn[\vec{}P (t)](w) = g0[\vec{}P (t)](w) + \epsilon g1[\vec{}P (t)](w) + \cdot \cdot \cdot .(67)

Compared to the Hilbert expansion (58), we require that g0 has the same first five
moments as g\epsilon by construction. That is,\int 

R3

g0[\vec{}P (t)](w)

\Biggl( 
1

| w| 2
2

\Biggr) 
dw= \vec{}P (t) ,

where \vec{}P is a vector of conserved quantities. As a result,\int 
R3

gn[\vec{}P (t)](w)

\Biggl( 
1

| w| 2
2

\Biggr) 
dw=\vec{}0 for all n\geq 1 .(68)

This expansion is termed as Chapman--Enskog expansion.
By taking the moments of (57), the conserved quantities satisfy a system of con-

servation laws:

\partial t \vec{}P (t) =
\sum 
n\geq 0

\epsilon n\Phi n[\vec{}P ](t) =\Phi 0(t) + \epsilon \Phi 1[\vec{}P ](t) + \cdot \cdot \cdot ,(69)

where the flux term \Phi n[\vec{}P ](t) is denoted from the conservation law associated with
(57),

\Phi n[\vec{}P ](t) =

\int 
R3

\Biggl( 
1

| w| 2
2

\Biggr) 
[L(t)w] \cdot \nabla wgn[\vec{}P (t)](w)dw

for n\geq 0.
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1674 RICHARD D. JAMES, KUNLUN QI, AND LI WANG

As with the derivation in the previous section, at the leading order O(\epsilon 0), we
obtain that

0 =\scrQ 
\Bigl( 
g0[\vec{}P (t)], g0[\vec{}P (t)]

\Bigr) 
(w),

which implies that g0[\vec{}P (t)](w) is in the form of a Maxwellian distribution as in (59).
At the next order O(\epsilon 1), we have that\Bigl( 

\partial t  - [L(t)w] \cdot \nabla w

\Bigr) 
g0[\vec{}P (t)](w)(70)

=\scrQ 
\Bigl( 
g0[\vec{}P (t)], g1[\vec{}P (t)]

\Bigr) 
(w) +\scrQ 

\Bigl( 
g1[\vec{}P (t)], g0[\vec{}P (t)]

\Bigr) 
(w).

Using the form of g0[\vec{}P (t)](w) in (59) and the fact that \vec{}P solves (69), the left-hand
side of (70) becomes\Bigl( 

\partial t  - [L(t)w] \cdot \nabla w

\Bigr) 
g0[\vec{}P (t)](w) = g0[\vec{}P (t)](w) [A(W ) :D] +O(\epsilon ),(71)

where the O(\epsilon ) term comes from the high-order terms in (69).
Substituting (71) into (70) and omitting the higher-order term, and using the

definition of linearization operator (61), g1[\vec{}P (t)](w) is determined by\left\{           
\scrL g0[\vec{}P (t)]

\Biggl( 
g0[\vec{}P (t)]

g1[\vec{}P (t)]

\Biggr) 
= - [A(W ) :D] ,

\int 
R3

g1[\vec{}P (t)](w)

\Biggl( 
1

| w| 2
2

\Biggr) 
dw=\vec{}0,

(72)

and, therefore, g1[\vec{}P (t)] can be solved,

g1[\vec{}P (t)] = - g0[\vec{}P (t)](w) [a(\theta , | W | )A(W ) :D] ,

where the scalar quantity a(\theta , | W | ) is denoted as \scrL g0[\vec{}P (t)](a(\theta , | W | )A(W )) =A(W ).
Hence, the first-order correction to the fluxes in the formal conservation law is

\Phi 1[\vec{}P (t)](w) =

\int 
R3

[L(t)w] \cdot \nabla wg1[\vec{}P (t)](w)

\Biggl( 
1

| w| 2
2

\Biggr) 
dw

=

\left(  0

\mu (\theta ) 12

\Bigl( 
Tr[L2(t)] +L(t) :L(t) - 2

3 (Tr[L(t)])
2
\Bigr) \right)  ,

(73)

where the viscosity \mu (\theta ) can be computed as in [25, 5.15]:

\mu (\theta ) =
2

15
\theta 

\int \infty 

0

a(\theta , r)r6
1\surd 
2\pi 

e - r2/2 dr .(74)

Recalling (69) and keeping only the first two-order terms, we have

\partial t \vec{}P (t) =\Phi 0[\vec{}P ](t) + \epsilon \Phi 1[\vec{}P ](t) mod O(\epsilon 2) .(75)

Spelling out the flux terms, we have\left\{   
\partial t\rho (t) +Tr[L(t)]\rho (t) = 0,

\partial t\theta (t) +
2

3
Tr[L(t)]\theta (t) = \epsilon \mu (\theta )

1

2

\Bigl( 
Tr[L2(t)] +L(t) :L(t) - 2

3
(Tr[L(t)])2

\Bigr) 
,

(76)

which recovers the compressible Navier--Stokes system (23). This also corresponds to
(7)--(10) in [46] and (29)--(30) in [47].
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KINETIC DESCRIPTION OF OMD 1675

Appendix A. Preliminary results for the well-posedness of the mean-
field equation.

A.1. Estimates of the new characteristics. Note that (33) can be written as
the characteristic equation of the new variable V := (X,W ),

d

dt
V =\Psi \xi ,\scrH [g](t, V ),

where \Psi \xi ,\scrH [g](t, V ) : [0, T ]\times R3 \times R3 \rightarrow R3 \times R3 is the right-hand side of (33). Then
mean-field equation (18) becomes

\partial g(t, x,w)

\partial t
+ div(\Psi \xi ,\scrH [g]g)(t, x,w) = 0.

To prove the well-posedness of (18), we first study the induced characteristic
trajectories.

Lemma A.1. For the field \xi (t, x,w) satisfying Hypothesis 2.1 and the operator
\scrH (t, x,w) satisfying Hypothesis 2.3, given (X0,W0) \in R3 \times R3, there exists a unique
solution (X,W ) to (33) in C1([0, T ], R3 \times R3) with X(0) = X0 and W (0) =W0. In
addition, there exists a constant C0,T depending only on | X0| , | W0| , T such that

| 
\bigl( 
X(t),W (t)

\bigr) 
| \leq | 

\bigl( 
X0,W0

\bigr) 
| etC0,T \forall t\in [0, T ].

Proof. Considering the field \xi (t, x,w) satisfying Hypothesis 2.1 and the operator
\scrH (t, x,w) satisfying Hypothesis 2.3, where the Lipschtz continuity holds for the dy-
namic equation of X(t) and W (t), the system (33) admits a unique solution on [0, T )
for each initial condition (X(0),W (0))\in R3 \times R3 by applying the standard argument
of ODEs. On the other hand, the bound can be obtained from the at most linear
growth estimate (34) and (35).

Lemma A.2 (Regularity of the characteristic equation). For any T > 0, assume
that the field \xi (t, x,w) satisfies Hypothesis 2.1 and the operator \scrH (t, x,w) satisfies
Hypothesis 2.3. Then, for any closed ball BR \subset R3 \times R3 with R> 0,
(i) \Psi \xi ,\scrH (V ) is bounded in the compact sets: for V = (X,W )\in BR and t\in [0, T ],

| \Psi \xi ,\scrH (V )| \leq CV \forall V \in BR,

where the constant CV > 0 depends on R, T , C\xi , and C\scrH ;
(ii) \Psi \xi ,\scrH (V ) is locally Lipschitz with respect to x,w: for all V1 = (X1,W1), V2 =
(X2,W2) in BR and t\in [0, T ],

| \Psi \xi ,\scrH (V1) - \Psi \xi ,\scrH (V2)| \leq LV | V1  - V2| \forall V1, V2 \in BR,

where the constant LV > 0 depends on R, T , L\xi , and L\scrH .

Lemma A.3 (Dependence of characteristic equation on \xi and \scrH ). Assume that
there are two fields \xi 1, \xi 2 satisfying Hypothesis 2.1 and two operators \scrH 1,\scrH 2 satisfying
Hypothesis 2.3.
For any point V 0 \in R3 \times R3 and R> 0, we assume that

| \scrT t
\xi 1,\scrH 1

(V 0)| \leq R, | \scrT t
\xi 2,\scrH 2

(V 0)| \leq R \forall t\in [0, T ].
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1676 RICHARD D. JAMES, KUNLUN QI, AND LI WANG

Then, for t\in [0, T ], it holds that\bigm| \bigm| \scrT \xi 1,\scrH 1(V
0) - \scrT \xi 2,\scrH 2(V

0)
\bigm| \bigm| 

\leq etLV  - 1

LV

\Biggl( 
| L\xi 1  - L\xi 2 | R+ sup

\tau \in (0,T )

\| \scrH 1(\tau , \cdot , \cdot ) - \scrH 2(\tau , \cdot , \cdot )\| L\infty (BR)

\Biggr) 
,

where the constant LV > 0 depends on R, T , L\xi 1 , and L\scrH 1 .

Proof. We denote Vi(t) = \scrT t
\xi i,\scrH i

(V 0) = (Xi(t),Wi(t)) for i = 1,2 and t \in [0, T ].
These functions satisfy the characteristic system (33): for i= 1,2,\left\{     

d

dt
Vi(t) = \Psi \xi i,\scrH i

(t, Vi(t)),

Vi(0) = V 0.

Then for t\in [0, T ],

| V1(t) - V2(t)| \leq 
\int t

0

| \Psi \xi 1,\scrH 1
(\tau ,V1(\tau )) - \Psi \xi 2,\scrH 2

(\tau ,V2(\tau ))| d\tau 

\leq 
\int t

0

| \Psi \xi 1,\scrH 1
(\tau ,V1(\tau )) - \Psi \xi 1,\scrH 1

(\tau ,V2(\tau ))| d\tau 

+

\int t

0

| \Psi \xi 1,\scrH 1
(\tau ,V2(\tau )) - \Psi \xi 2,\scrH 2

(\tau ,V2(\tau ))| d\tau 

\leq LV

\int t

0

| V1(\tau ) - V2(\tau )| d\tau +
\int t

0

| L\xi 1  - L\xi 2 | R+ \| \scrH 1(\tau , \cdot , \cdot )

 - \scrH 2(\tau , \cdot , \cdot )\| L\infty (BR) d\tau .

Finally, by Gronwall's inequality, we obtain

| V1(t) - V2(t)| \leq 
etLV  - 1

LV

\Biggl( 
| L\xi 1 - L\xi 2 | R+ sup

\tau \in (0,T )

\| \scrH 1(\tau , \cdot , \cdot ) - \scrH 2(\tau , \cdot , \cdot )\| L\infty (BR)

\Biggr) 
.

Lemma A.4 (Regularity of characteristics with respect to time). For any T > 0,
assume that the field \xi (t, x,w) satisfies Hypothesis 2.1 and the operator \scrH (t, x,w)
satisfies Hypothesis 2.3. For any initial condition V 0 =R3 \times R3 and R> 0 such that

| \scrT t
\xi ,\scrH (V 0)| \leq R \forall t\in [0, T ] ,

it holds that

| \scrT t
\xi ,\scrH (V 0) - \scrT s

\xi ,\scrH (V 0)| \leq C| t - s| \forall s, t\in [0, T ],

where the constant C > 0 depends only on R, C\xi , and C\scrH .

Proof. This is a direct consequence of the definition of \scrT t
\xi ,\scrH (V 0) and point (ii) in

Hypothesis 2.1 and point (ii) in Hypothesis 2.3.

Lemma A.5 (Regularity of characteristics with respect to initial condition). For
any T > 0, assume that the field \xi (t, x,w) satisfies Hypothesis 2.1 and the operator
\scrH (t, x,w) satisfies Hypothesis 2.3. For two initial conditions V 0

1 , V
0
2 \in R3 \times R3 and

R> 0 such that

| \scrT t
\xi ,\scrH (V 0

1 )| \leq R, | \scrT t
\xi ,\scrH (V 0

2 )| \leq R \forall t\in [0, T ] ,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

07
/0

3/
25

 to
 1

34
.8

4.
19

2.
10

2 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



KINETIC DESCRIPTION OF OMD 1677

it holds that

| \scrT t
\xi ,\scrH (V 0

1 ) - \scrT t
\xi ,\scrH (V 0

2 )| \leq | V 0
1  - V 0

2 | etLV \forall s, t\in [0, T ],

where the constant LV > 0 depends only on R, C\xi , and C\scrH .

Proof. We denote Vi(t) = \scrT t
\xi ,\scrH (V 0

i ) = (Xi(t),Wi(t)) for i = 1,2 and t \in [0, T ].
These functions satisfy the characteristic system (33): for i= 1,2,\left\{     

d

dt
Vi(t) = \Psi \xi ,\scrH (t, Vi(t)),

Vi(0) = V 0
i .

Hence, by Lemma A.2, we have

| V1(t) - V2(t)| \leq | V 0
1  - V 0

2 | +
\int t

0

\bigm| \bigm| \Psi \xi ,\scrH (t, V1(\tau )) - \Psi \xi ,\scrH (t, V2(\tau ))
\bigm| \bigm| d\tau 

\leq | V 0
1  - V 0

2 | +LV

\int t

0

\bigm| \bigm| V1(\tau ) - V2(\tau )
\bigm| \bigm| d\tau .

Then the Gronwall inequality leads to

| V1(t) - V2(t)| \leq | V 0
1  - V 0

2 | etLV .

In other words, \scrT t
\xi ,\scrH is actually Lipschitz continuous on the ball BR \subset R3 \times R3 with

the associated Lipschitz constant LipR

\bigl[ 
\scrT t
\xi ,\scrH 

\bigr] 
\leq etLV for t\in [0, T ].

A.2. Some preliminary lemmas. This subsection is dedicated to presenting
some preliminary lemmas and hypotheses that will be utilized to establish the well-
posedness of (18). The first part focuses on the transport of probability measures
along the characteristic trajectory, as demonstrated in the previous subsection.

Lemma A.6 ([8, Lemma 3.11]). Let V1, V2 : R3 \rightarrow R3 be two Borel measurable
functions, and let g \in \scrV 1(R3). Then,

W1(V1\#g,V2\#g)\leq \| V1  - V2\| L\infty (suppg).

Lemma A.7 ([8, Lemma 3.13]). Take a locally Lipschitz map \scrT : R3 \rightarrow R3 and
f, g \in \scrP 1(R3) with compact support contained in the ball BR. Then,

W1(\scrT \#f,\scrT \#g)\leq LW1(f, g),

where L is the Lipschitz constant of \scrT on the ball BR.

Lemma A.8 (Continuity with respect to time). For any T > 0, assume that the
field \xi (t, x,w) satisfies Hypothesis 2.1 and the operator \scrH (t, x,w) satisfies Hypothe-
sis 2.3.
For any probability measure g \in \scrP c(R3 \times R3) with compact support in the ball BR,
there exists C > 0 depending only on R, C\xi , and C\scrH such that, for any t, s\in [0, T ],

W1

\Bigl( 
\scrT t
\xi ,\scrH \#g,\scrT s

\xi ,\scrH \#g
\Bigr) 
\leq C| t - s| ,

where \scrT t
\xi ,\scrH is defined as in (38).
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1678 RICHARD D. JAMES, KUNLUN QI, AND LI WANG

Proof. Thanks to Lemma A.6, and Lemma A.4 about the continuity of charac-
teristics with respect to time, we have

W1

\Bigl( 
\scrT t
\xi ,\scrH \#g(\cdot , \cdot ),\scrT s

\xi ,\scrH \#g(\cdot , \cdot )
\Bigr) 
\leq \| \scrT t

\xi ,\scrH  - \scrT s
\xi ,\scrH \| L\infty (suppf) \leq C| t - s| ,

where the constant C > 0 depends on R, C\xi , and C\scrH as in Lemma A.4

Additionally, it is worth mentioning that the operator \scrH g is constructed as \scrH g=
Eg - \eta (t,w) = - \nabla U \ast \rho g(t,X) - A(I+ tA) - 1W . In order for \scrH g to sufficiently satisfy
Hypothesis 2.3, we will refer to the following hypothesis and lemmas concerning E[g]
and U .

Hypothesis A.9 ([8, Hypothesis 3.1]). (i) E(t, x) is continuous on [0, T ]\times R3.
(ii) For some CE > 0,

| E(t, x)| \leq CE(1 + | x| ) \forall t, x\in [0, T ]\times R3.(77)

(iii) E is locally Lipschitz with respect to x, i.e., for any compact support set D\subset R3,
there is an LD such that

| E(t, x) - E(t, y)| \leq LD| x - y| for t\in [0, T ] and x, y \in D.

More particularly, since E(t, x) takes the form E(t, x) =E[g](t, x) =\nabla U \ast \rho g(t, x),
we have the following properties.

Lemma A.10 ([8, Lemma 3.14]). Consider a potential U \in C1 :R3 \rightarrow R such that
\nabla U is locally Lipschitz and there is some constant C > 0,

| \nabla U(x)| \leq C(1 + | x| ) \forall x\in R3 .

Let g \in \scrP 1(R3 \times R3) be a probability measure with support in a ball BR. Then,

\| E[g]\| L\infty (BR) \leq \| \nabla U\| L\infty (B2R)

and

LipR(E[g])\leq Lip2R(\nabla U).

Lemma A.11 ([8, Lemma 3.15]). For g,h\in \scrP 1(R3 \times R3) and R> 0, it holds that

\| E[g] - E[h]\| L\infty (BR) \leq Lip2R(\nabla U)W1(g,h).

Appendix B. Derivation of the mean-field limit using empirical mea-
sure. Here we provide an alternative derivation of the mean-field limit using empirical
measures. Let

gN (t, x,w) =
1

N

N\sum 
i=1

\delta (w - wi(t))\delta (x - xi(t))

be the empirical measure associated with N molecules, where \delta is the Dirac delta
function. Then for any suitable test function \varphi (x,w), we have that
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d

dt

\bigl\langle 
gN (t, x,w),\varphi (x,w)

\bigr\rangle 
x,w

=
1

N

N\sum 
i=1

d

dt
\varphi (xi(t),wi(t))

=
1

N

N\sum 
i=1

\nabla x\varphi (xi(t),wi(t)) \cdot \.xi(t) +
1

N

N\sum 
i=1

\nabla w\varphi (xi(t),wi(t)) \cdot \.wi(t)

=
1

N

N\sum 
i=1

\nabla x\varphi (xi(t),wi(t)) \cdot 
\bigl[ 
wi(t) +A(I + tA) - 1xi(t)

\bigr] 
\underbrace{}  \underbrace{}  

:=(I)

 - 1

N

N\sum 
i=1

\nabla w\varphi (xi(t),wi(t)) \cdot 
1

N

N\sum 
l=1

\nabla xU(| xi(t) - xl(t)| )\underbrace{}  \underbrace{}  
:=(II)

 - 1

N

N\sum 
i=1

\nabla w\varphi (xi(t),wi(t)) \cdot A(I + tA) - 1wi(t)\underbrace{}  \underbrace{}  
:=(III)

,

where the dynamical system (17) about ( \.xi(t), \.wi(t)) is substituted in the last equality
above.

For the first term (I), we have

(I) =
1

N

N\sum 
i=1

\nabla x\varphi (xi(t),wi(t)) \cdot 
\bigl[ 
wi(t) +A(I + tA) - 1xi(t)

\bigr] 
=

\bigl\langle 
gN (t, x,w),

\bigl[ 
w(t) +A(I + tA) - 1x(t)

\bigr] 
\nabla x\phi (x,w)

\bigr\rangle 
x,w

.

Similarly, the third term (III) is rewritten as

(III) = - 1

N

N\sum 
i=1

\nabla w\varphi (xi(t),wi(t)) \cdot A(I + tA) - 1wi(t)

= - 
\bigl\langle 
gN (t, x,w), [A(I + tA) - 1w] \cdot \nabla w\varphi (x,w)

\bigr\rangle 
x,w

.

The second term (II) is a bit more involved:

(II) = - 1

N

N\sum 
i=1

\left[  1

N

N\sum 
j=1

\nabla xU(| xi(t) - xj(t)| ) \cdot \nabla w\varphi (xi(t),wi(t))

\right]  
= - 

\Biggl\langle 
gN (t, x,w),

1

N

N\sum 
j=1

\nabla xU(| x - xj(t)| ) \cdot \nabla w\varphi (x,w)

\Biggr\rangle 
x,w

= - 

\Biggl\langle 
gN (t, x,w),

\Biggl\langle 
\nabla xU(| x - y| ), 1

N

N\sum 
l=1

\delta (y - xj(t))

\Biggr\rangle 
y

\cdot \nabla w\varphi (x,w)

\Biggr\rangle 
x,w

= - 
\Bigl\langle 
gN (t, x,w),

\bigl\langle 
\nabla xU(| x - y| ), \rho gN (t, y)

\bigr\rangle 
y
(t, x) \cdot \nabla w\varphi (x,w)

\Bigr\rangle 
x,w

= - 
\bigl\langle 
gN (t, x,w), [\nabla xU \ast \rho gN ](t, x) \cdot \nabla w\varphi (x,w)

\bigr\rangle 
x,w

,

where \rho gN (t, y) :=
\int 
R3 g

N (t, y,w)dw.
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Combining all terms together, we obtain the following weak form of the evolution
equation for gN :\Biggl\langle 
\partial gN (t, x,w)

\partial t
 - [\nabla xU \ast \rho gN ](t, x,w) \cdot \nabla wg

N (t, x,w) - \nabla w \cdot [A(I + tA) - 1wgN (t, x,w)]

+ \nabla x \cdot 
\Bigl( \bigl[ 

w+A(I + tA) - 1x
\bigr] 
gN (t, x,w)

\Bigr) 
, \varphi (x,w)

\Biggr\rangle 
x,w

= 0 .

In the strong form, it becomes

\partial gN (t, x,w)

\partial t
+

\bigl[ 
w+A(I + tA) - 1x

\bigr] 
\cdot \nabla xg

N (t, x,w) - [A(I + tA) - 1w] \cdot \nabla wg
N (t, x,w)

= [\nabla xU \ast \rho gN ](t, x,w) \cdot \nabla wg
N (t, x,w).

Then, if further considering that gN is homogeneous in x, it reduces to

\partial gN (t,w)

\partial t
 - [A(I + tA) - 1w] \cdot \nabla wg

N (t,w) = 0

since the nonlinear term will vanish due to the symmetry of the potential U ,

[\nabla xU \ast \rho gN ](t, x,w) = \rho gN (t)

\int 
R3

\nabla xU(| x - y| )dy= 0.
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