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Abstract. In this paper, we develop a multiscale hierarchy framework for objective molecular
dynamics (OMD), a reduced-order molecular dynamics with a certain symmetry, that connects it
to the statistical kinetic equation, and the macroscopic hydrodynamic model. In the mesoscopic
regime, we exploit two interaction scalings that lead, respectively, to either a mean-field type or
to a Boltzmann-type equation. It turns out that, under the special symmetry of OMD, the mean-
field scaling leads to a substantially simplified Vlasov equation that extinguishes the underlying
molecular interaction rule, whereas the Boltzmann scaling yields a meaningful reduced model called
the HOMO-energetic Boltzmann equation. At the macroscopic level, we derive the corresponding
Euler and Navier—Stokes systems by conducting a detailed asymptotic analysis. The symmetry again
significantly reduces the complexity of the resulting hydrodynamic systems.
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1. Introduction.

1.1. Objective molecular dynamics. Molecular dynamics (MD) has been the
building block for many physical and biological systems. However, even with the
modern computational capacity, it is still onerous to simulate a large-scale molecular
system. Motivated by the observation that classical MD with certain symmetric prop-
erties [15] evolves within a smaller manifold, objective MD (OMD) aims to leverage
the symmetry and invariance of atomic forces (e.g., (1)—(2)). OMD can be seen as a
specialized form of MD that significantly reduces the computational cost compared
to conventional MD. It has been applied to the failure of carbon nanotubes under
stretching [15], fluid flows with phase transformation [47], hypersonic flows [48], and
dislocation motion in crystals [45].

To explain the idea, consider a structure consisting of M molecules and each
molecule consists of N atoms, denoted as

S:={z;ix€R*:i=1,...,M, k=1,...,N},

where z; ;, is the position of atom £ in molecule ¢. Then this structure is said to be
an objective molecular structure if, for t=1,... M, k=1,...,N,
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{xi,k+Qi7k(mj,l—x17k):j:l,...,M, ZZL...,N}:S.

Here Q; 1 € O(3), where O(3) is the orthogonal group. Putting this into words, this
requirement means that atom % in molecule i (denoted as atom (¢, k) from here on),
after reorientation, sees exactly the same environment as atom & in molecule 1. Such
a property is shared by many crystal structures and alloys.

The objective molecular structure, along with some invariances in the interac-
tions between molecules, generates an invariant manifold of molecular dynamics. In
particular, suppose that the force on atom (i,k) is given by

Jik(oo @1, 0, NS T 1,15, Tjg 1,2, - o TG LN - -)

then it is subject to two fundamental invariances:

(i) Frame indifference. For Q € O(3), c € R3,

1) fir( o, Qrji+ce...,Qr;N+¢,Qxjp11+¢,...,QTjpa N+, ...)
=Qfik(ce Ti1se e TN T 1Ty e s Tjp T, Ny e e e ) -
(ii) Permutation invariance. For all permutations II,
(2) fz,k( .. ,l‘n(jJ), e 7xH(j,N)7xH(j+1,1)v e 75UH(j+1,N)a e )
:fH(Lk)(-~-73:j,17~--7xj,N7~Tj+1,1v~--vxj+1,N7~--)~
Denoting the isometry group in the affine space R? as

(Qlc): QeO0(3), ceR?,

with the product (Q1]c1)(Q2]c2) = (Q1Q2|c1 +Q1c2) and inverse (Q|c) ™1 =(QT| -
QTc). Then its action on R™ can be written as

g(x)=Qx+c, zeR?,

or g=:(Q|c) for short. Now if we assume Q1,..., @ to be constant matrices while
allowing cy,..., cpr to have the following time dependence,

ci(t):ait—i—bi, ai,biERS, i=1,...,M,
then it is obvious that for any x(t), we have

2 2 2:1:
%gi(ﬂﬁ(t)) = %(Qix(t) o) =Q; ddtgt) ,

which, together with the invariance above, implies the existence of a time-dependent
invariant manifold of equations of molecular dynamics.
Building upon such an invariant manifold, the OMD works as follows. It di-

vides M N atoms into N simulated particles—denoted as (1,1), ..., (1,N), concep-
tually the atoms in molecule 1; and (M — 1)N nonsimulated particles—denoted as
(2,1), ..., (2,N), ..., (M,1), ..., (M,N), atoms in molecules 2,..., M. Their posi-

tions have the relation

(3) xi,k(t):gi(xl,k(t)at)7gi:(Qi|Ci(t))a 7;:1’"'7M7 kzla"'aN7
and ¢g; =id. Then the simulated particles move according to the following rule,

d2
(4) mkfdt2 Ty = frr(... 1 Lj1,L52y ¢y Lj Ny Tj4+1,1yLj4+1,2y -y Lj+1,N, - )

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/03/25 to 134.84.192.102 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

1648 RICHARD D. JAMES, KUNLUN QI, AND LI WANG

whereas the nonsimulated particles update directly via (3). The basic theorem of
OMD states that each nonsimulated atom satisfies exactly the equations of molecular
dynamics for its forces. This way, the total number of degrees of freedom is substan-
tially reduced and therefore leads to a much more efficient computational method.
That is, if a cutoff for the atomic forces is introduced, only the simulated atoms,
together with the nonsimulated atoms within the cutoff, need to be tracked. Despite
the positions of the nonsimulated atoms being given by explicit formulas, the overall
motion is typically highly chaotic.

With the number of particles getting large, a coarse-grained model, termed a ki-
netic equation, is introduced to give a statistical description of the collective behavior
of the many-particle system.

1.2. Motivation and previous results. There is now a full-fledged theory on
the derivation of the kinetic and hydrodynamic equations. This theory focuses on
particle interactions within a classically unstructured background. In this paper, our
primary objective is to establish a multiscale framework that emphasizes symmetry.
Since OMD represents an invariant manifold of MD, it is important to know whether
this manifold is in some sense inherited in reduced-order kinetic equations. We aim
to establish such a systematic connection to reduced-order kinetic equations and their
corresponding macroscopic models.

To provide a more compelling representation of our motivation and results, we
use Figure 1 for an illustration.

e Arrow (1) has been explained above; see also [34, 33].

e Arrow (2) is a well-established relationship in kinetic theory. Instead of track-

ing the detailed motions of each molecule in the dynamic system, which is
computationally impractical due to the enormous number of particles, the ki-
netic equation allows us to analyze the system’s behavior without considering
individual particle motions.
To achieve this, the BBGKY hierarchy (from the names of Bogolyubov, Born,
Green, Kirkwood, Yvon) has been proven to be a useful methodology [13].
Additionally, suitable scaling limits are employed to capture the essential
properties of the microscopic regime. Two typical scalings, the mean-field
limit and the Boltzmann—Grad limit, have led to the two different types of
kinetic equations.

v
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FiG. 1. Connections between different models in the multiscale hierarchy. Note: color appears
only in the online article.
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The mean-field limit, stemming from [7], assumes that the force on one parti-
cle is influenced by the entire range of other particles, although the strength of
interaction weakens as the number of particles N increases. As N approaches
infinity, a mean-field/Vlasov-type equation emerges, where the particle dis-
tribution depends on its phase space density. For a comprehensive review on
this topic, refer to [53, 24].

On the other hand, the Boltzmann—Grad limit arises when the particles are
diluted enough that only binary interactions play a significant role, and each
particle experiences a single collision within a given unit of time [55]. In
this case, the Boltzmann equation is formally derived by Grad [30, 31] and
Cercignani [10] with rigorous validation by Lanford [38] for the hard-sphere
model over short times. Extensive studies have been conducted on smooth
short-range potentials [37, 21, 49], and for a recent review, see [50].

Arrow (3) has been discussed in [15, 33], either via heuristic argument of
symmetry in statistical physics language, or by looking for a special ansatz
of the solution that reduces the equation.

To be more specific, recall the classical Boltzmann equation,

(5) O f(t,x,v) +v-Vuf(t,z,v)=Q(f, f)t,z,v), t>0, z€R3 veR3
where
(6)
o(f, Ht,z,v)
/ / (v —vi,0) [f(t, 2,0 ) f(t,z,0)) — f(t,2,0) f(t,2,0,)] dodv,
R3 Js2

with the collision kernel B(v —wv,, o) that describes the intensity of collisions.
Usually, B can be separated as the kinetic part ® and angular part b in the
case of the inverse power law,

V— Uy

B(|v —vs|,0) =b(cos0)D(|v — v|) with cosf =0 - P
where the kinetic collision part ®(|v—v.|) = |v—wv.|” includes a hard potential
(v > 0), Maxwellian molecule (v = 0), and soft potential (y < 0), and the
angular part b(cosf) is often regarded to satisfy Grad’s cutoff assumption,
Le., [s b(cosf)do < co; see more details of the collision kernel B in [55]. Here
(v',v)) and (v,v,) represent the velocity pairs before and after the collision,
respectively. They satisfy the conservation of momentum and energy:

Vvl =vdu,., P4 LR =)+ ot
This allows us to express (v',v}) in terms of (v,v,) using the following equa-
tions:

;o vt v — v ,_v+v*_\v—v*|

2 2 o 2 2

Now translating the OMD symmetry into kinetic language, it means that [15,
p. 155] “the probability of finding a velocity of the form v + A(I +tA)~
at x is the same as the probability of finding a velocity v at 0.” Putting the
words into a formula, we have
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Fltw v+ A(I+tA) " 2) = f(t,0,v),
which is equivalent to

(7)
flt,z,0)=f(t,0,0— A(I +tA) " 2) = g(t,w) with w=v— AT + At)"'z.

Here A is an assignable 3x3 matrix. Then g, which depends on fewer variables,
satisfies the HOMO-energetic Boltzmann equation, a reduced-order model
originally introduced by Galkin [20] and Truesdell [54]:

(8) Dug(t,w) — [A( + tA) " w] - Vag(t,w) = Q(g, 9) (t, w).

An alternative way involves seeking an equi-dispersive solution to (5) [34]. In
other words, we look for the solution ansatz: if f is the solution to (5) and

9) [t z,0)=g(t,w) with w=v—§(t ),
then g satisfies

(10)
atg(tvw) - [at£ + f . VIS]ng(Lw) - [(vzg)w] ! vwg(t7w) = Q(g7g)(tvw)'

Clearly, by a direct calculation, when £(¢,x) is an affine function on x such
that

(11) E(t,x)=L(t)x with L(t):= A(I + At) 'z,

then (10) can be reduced to (8).

Arrow (5) is the process that leads from kinetic equations in the mesoscopic
regime to continuum equations in the macroscopic regime. This concept can
be traced back to Maxwell and Boltzmann, who initially founded the kinetic
theory. The study of the hydrodynamic limit was subsequently formulated
and addressed by Hilbert [32]. It aims to derive the fluid dynamic system
as particles undergo an increasing number of collisions, causing the Knudsen
number to approach zero.

The classical compressible Euler and Navier—Stokes equations can be formally
derived from the scaled Boltzmann equation through the Hilbert [32] and
Chapman—Enskog expansions [14, 19]. The asymptotic convergence of these
derivations was rigorously justified by Caflish [9] for the compressible Euler
equations and by De Masi, Esposito, and Lebowitz [16] for the incompressible
Navier—Stokes equations.

Another aspect of studying the hydrodynamic limit pertains to weak solu-
tions, particularly proving that the renormalized solution of the Boltzmann
equation converges to the weak solution of the Euler or Navier—Stokes equa-
tions. This has been partially achieved for incompressible models [1, 40, 51,
28, 29, 39, 36).

Additionally, research on strong solutions near equilibrium is another avenue
of exploration in the hydrodynamic limit. Nishida [44] established local-in-
time convergence to the compressible Euler equations, while Bardos and Ukai
[2], as well as more recent work by Gallagher and Tristani [22], derived solu-
tions for the incompressible Navier—Stokes equations. For a comprehensive
review of this topic, we refer to [12, 24, 52] and the references cited therein.
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The combined transitions (2)+(5) form the central framework of Hilbert’s
sixth problem, aiming to establish a comprehensive depiction of gas dynamics
across all levels of description. The objective is to comprehend macroscopic
concepts such as viscosity and nonlinearity from a microscopic standpoint
[52].

Arrow (6) is a heuristic derivation in the case of the macroscopic motion cor-
responding to an OMD simulation [15, 46]. The macroscopic velocity field of
such a motion is u(z,t) = A(I +tA) ™'z and, by direct substitution, this is an
exact solution of the compressible or incompressible Navier—Stokes equations.
For the latter add the restriction of incompressibility, Tr[(A(] +tA)~!] = 0.
If thermodynamics is included with the former, the energy equation becomes
an ODE for the temperature.

As mentioned earlier, our primary focus is on the completion of the diagram by
establishing connections (4) and (7). The challenges include:

(1)

In the context of OMD, there exist two sets of particles: simulated and un-
simulated. The simulated particles are updated based on Newton’s second
law, while the unsimulated ones undergo updates through a “copy and paste”
mechanism. This fundamental distinction is the primary factor contributing
to the significant speedup achieved by OMD. However, when deriving the cor-
responding kinetic system (i.e., route (4)), a crucial question arises: should
these two sets of particles be treated differently? Using the previous nota-
tion x; with ¢ =1 and k = 1,..., N representing the simulated particles,
and i =2,...,M and k =1,..., N representing the nonsimulated particles,
the question arises: should we allow M to approach oo first, or IV, or both
simultaneously? Furthermore, is there a particular relationship between N
and M that is crucial to achieving a meaningful limit?

In theory, two scalings can be applied in route (4): mean-field scaling or
Boltzmann—Grad scaling. Conceptually, both mean-field and Boltzmann—
Grad scaling make sense in deriving the mesoscopic (also known as kinetic)
models from microscopic particle dynamics, but they emphasize different
kinds of interactions at the particle level:

— The mean-field limit highlights the long-range interactions between parti-
cles by assigning each particle an equal weight of influence, denoted as %,
on any given particle. As a result, a nonlocal (in x) model is anticipated
in the mean-field limit.

— The Boltzmann—Grad limit, on the other hand, emphasizes the local in-
teraction. The rescaling of the interaction from VU (r) to %VU (g) indeed
implies that each particle is unaffected by others unless those particles fall
within its influence range, the e-neighborhood.

However, in our work, due to the intrinsic symmetry and invariance of the
potential in OMD, the expected nonlocal term accounting for interactions
among particles in the mean-field limit vanishes. This results in an over-
simplified model, as seen in (19). On the contrary, the interactions in the
Boltzmann—Grad scaling can be retained, which then leads to the more phys-
ically reasonable HOMO-energetic Boltzmann equation. This circumstance
is unexpected until one delves into the derivation process.

Route (7) that we aim to establish is a lot more formal compared to route
(5)+(6), which is accomplished only in a heuristic manner [15, 46]. This
undertaking is challenging compared to the classical Boltzmann equation,
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due to the intricate handling required for the hyperbolic term on the left-
hand side of the HOMO-energetic equation.

We want to emphasize that, despite obtaining seemingly similar results as one
could from another route, namely, (4) = (2) + (3) and (7) = (5) +(6), this equivalence
is far from obvious. Assessing whether symmetry at the OMD level can be maintained
at the kinetic and hydrodynamic levels is a nontrivial task. Unlike previous approaches
where (2) + (3) or (5) + (7) is assumed to preserve such symmetry, our approach
adopts a more formal derivation without making such assumptions. We systematically
investigate how this symmetry is retained throughout the derivation.

1.3. Basic setup and our results. Prior to discussing the kinetic formulation,
we first lay out some preliminaries. As mentioned before, we denote (x1 5 (), v1 () as
the simulated particles’ location and velocity, and (x; x(¢), v; 1 (¢)) for the associated
nonsimulated particles, ¢ = 2,..., M. In general terms, their relation is formalized
by (3). Throughout this paper, we consider the simplest case of the time-dependent
translation group [33] in which case Q; =1 and ¢;(t) = Z?:l vi(b +ait) = (I +tA);,

where v; = (l/il, Vf, Vf’) €73, by = e, a; = Ae; for orthonormal basis e; and i =1,..., M,
then the relation (3) reduces to
(12) Tik(t) =x16() + (T +tA)y;.

Therefore,
vk (t) = v1x(t) + Ay,
which immediately leads to
ViR (t) —v1(t) = AL +tA) Nz e (t) — z14(2)).
Consequently, define the transformation
w(t) :=v(t) — AT +tA) ta(t),

then a very important observation is that the simulated and nonsimulated particles
will be indistinguishable if written in terms of new variables wy , and w; j:

(13)  wig(t) =vin(t) — AL +tA) g g (t) =v1 5 (t) — AT +tA) 2y 1 (8) = wy x(t)

fori=1,...,M and k=1,...,N. Therefore, for the brevity of notation, we will use
the one single customary subscript ¢ =1,..., N to index all particles throughout the
rest of the paper.! Note that in the following derivation of kinetic limit, the number
of atoms N essentially goes to infinity, which leads the total number of particles M N
in the system to infinity as well.

Since

w;(t) == v (t) — AT +tA) " ay(t)

and

. —1

x; (t) =; (t) = wz(t) + A(I + tA) X; (t) s
a direct calculation shows that

INote that when Q; # I, (12) becomes z;i 1 (t) = Qiw1 1 (t) + (I +tA)v;, which then leads to the

relation v;  (t) — A(I +tA) "1z, 1 (t) = Q;v1 k(t) — A( +tA)~1Q;21 1 (t) . To proceed, it is essential
to identify a suitable change of variable that unifies the dynamics of simulated and nonsimulated

particles. In this context, further investigation into the properties of @ and A and their relationship
is required. We defer this exploration to future work.
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i[A(I—HA)’lxi(t)]

n A(I 4+ tA) iy (t) — AT+ tA) L)

[
(I +tA) o (t) — AT +tA) (1))
(I 4+ tA) " wy(t)

A
A

and, therefore,

wi(t) = 0;(t) — AT +tA) " wy(t)

N
(14) =~ Vo, U(lzit) — i (8)]) — AU +tA)  wi(t)
7

where we have used a specific form of the force:
N
(15) fl,i(~ . ,xj71,:cj72, .. ~;xj+1.,N; . ) = — Z VU11(|£L'j — ZL’ZD .
j=1

Remark 1.1. It is important to note that while the radial condition of the po-
tential function fi; may not be necessary for OMD at the microscopic level (some
symmetric condition such as permutation invariance (2) is indispensable), we will fo-
cus exclusively on radial potential (15) when deriving the kinetic equation for the
remainder of this paper. This choice is mainly due to technical reasons.

More specifically, in section 2.2, where we derive the mean-field limit, the radial
potential is necessary for proving the well-posedness of the mean-field equation (18),
following [8]. Additionally, our derivation of the HOMO-energetic Boltzmann equation
in section 3 closely follows the classical approach using the Boltzmann—Grad limit
described in [21], where the radial condition is also required [21, Assumption 1.2.1].

Nevertheless, we emphasize that radial potentials are prevalent in many real-world
applications across physics, biology, and materials science; radial potentials are ubig-
uitous. Examples include the well-known inverse power law [55] and Lennard—Jones
potential [46, 47]. While nonradial interactions, such as those used to model flocking
behavior [43], have also been explored in the literature, these cases and interactions
involving more than two particles will be addressed in future work.

Finally, the dynamical system of OMD satisfied by the new variables (z;(¢), w;(t))
is summarized as follows: for ¢ =1,2,..., N,

B (1) = wi(t) + AT +tA) " (1),

(16) . N .
wi(t) ==Y Vo, U(lzi(t) — 2;(t)]) — AT +tA) " w;(t).
j=1

i
Result 1: From the microscopic regime to mesoscopic regime (Arrow
(4))
To obtain the corresponding kinetic equation from the fundamental dynamic sys-
tem (16), it is crucial to apply an appropriate scaling operation. We follow the two
classical scalings as follows:

o Mean-field type model: It assumes that the contribution from each particle
has the same weight 1/N:

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.
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&5 (t) = wi(t) + AT +tA) " Lay(1),

(17) 1 &
(1) =~ > VU ([zi(t) = 2()]) — AT +tA)  wi(t).
=1
i
By taking N — oo, we will obtain the mean-field type equation
t
(18) D) gt w) + AT 14 0] - Vg (e,

— [A(I +tA) ] - Vgt ,w) = [V U % pg| (t, ) - Vig(t, z,w),

where py(t,2) = [pa g(t,z,w)dw, and for the sake of rigorously justifying the
limit, the potential U € C" it is assumed that VU is locally Lipschitz and
VU (2)| < C(1+ |x|) for some constant C' > 0. Note that these requirements
on U are primarily for technical reasons, as they will be used to prove the
well-posedness of the mean-field type equation derived in section 2.2.

If further considering the homogeneity of ¢ in the space variable x (cf. (7)),
(18) can be reduced to

(19) w —[A(T +tA) " w] - Vg(t,w) =0.

The well-posedness of (18) and (19) have been established in Theorems 2.5,
and Theorem 2.7 provides a rigorous connection between (17) and (19).
Boltzmann-type model: Tt emphasizes close neighbor interaction by rescaling
the strength and range of the potential term from VU (r) to 1 VU(%), i.e., to
derive the Boltzmann-type model, for any given potential-induced force term
VU(r), we rescale it by involving the parameter ¢ in the following way: we
add the factor % in the front to scale the strength and also add another % in
U to make it VU (g) to scale the range of the potential:

@i (t) = wi(t) + AL +tA) Lai(t),

N
(20) . 1 |zi(t) — (1)) -1
i(t)=—— Vo,Ul —————— | —A(I+tA i(1).
) == 3V - (I +04) (1)
J#i
By applying the Boltzmann—Grad limit, i.e., in d-dimension, (N — 1)5d_1 =
O(1) as N — oo and € — 0, we have

9g(t,z,w) o
(21) 5 T Vgt w) + [A(I+tA) " a] - Vag(t 2, w)

- [A(I +tA)_1U}] : v’wg(tvwi) = Q(g,g)(t,iﬂ,U/) .

To achieve the desired form of collision operator Q(g, g) as in (6), we assume
that the potential U € C? is a radial, nonnegative, nonincreasing function
supported in a unit ball {x € R% 0 < |z| < 1} but unbounded near |z| = 0.
Additionally, we require that both U and VU vanish on the boundary of the
unit ball, and satisfy the condition |z|U" (|z])+2U’(]z|) > 0 as specified in [21,
Assumption 1.2.1, Lemma 8.3.1]. The detailed derivation of (21) from (20)
via BBGKY hierarchy is laid out in section 3.1, and the related properties
are summarized in section 3.2.

Similarly, if we further take the homogeneity of ¢ into account, (21) becomes
the so-called HOMO-energetic Boltzmann equation (8).

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.
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It is worth noting that when the potential function U(r) is a power function of
r (e.g., inverse power law U(r) = —, where o > 1 in d = 3 dimension since o = 1
corresponds to the threshold case of Coulomb potential [55]), the two scaling strategies
can be unified by extracting the scaling parameter ¢ out of U(%). Additionally, our
framework can also include another crucial scaling [50, eq. (45)] that characterizes the
weak interaction between molecules, specifically in the weak-coupling regime. This
inclusion is anticipated to yield the HOMO-energetic Landau equation. For a detailed
derivation of the Landau operator, we direct readers to [50, section 3.2].

Result 2: From the mesoscopic regime to macroscopic regime (Arrow
(7))

Another significant contribution of this paper is the derivation of the hydro-
dynamic equation from the kinetic equation, incorporating the structural proper-
ties inherited from OMD. Specifically, it bridges the gap identified as Arrow (7).
As highlighted in [33], a specific family of unsteady macroscopic flows, associated
with the simplest translation group (12), inherently possesses a bulk velocity field
u(t,x) = A(I +tA)~ 1z in Eulerian form. This velocity field naturally satisfies various
steady and unsteady macroscopic fluid equations, leading us to anticipate that the
conventional hydrodynamic systems governing the evolution of macroscopic quanti-
ties (density p and temperature 6 as defined in (52) and (53), respectively) can be
partially reduced.

Recalling that L(t) = A(I +tA)~1, we have

e by applying the Hilbert expansion, we derive a reduced Euler system from
the HOMO-energetic Boltzmann equation (8):

Drplt) + THL(1)]plt) =0,
(22) .

@mw+§nwwww

Details are presented in section 4.2.1;

e by applying the Chapman—Enskog expansion, we obtain the corresponding
reduced Navier—Stokes system with O(e) correction terms from the HOMO-
energetic Boltzmann equation (8):

(23)
Oyp(t) + Tr[L(t)]p(t) =0,
010(0) + 3 THL(O0) = (0) 5 (THZA(0] + L(0)s L)~ S(THL(0)?).
where the viscosity u is defined in (74). See section 4.2.2 for more details.

2. A mean-field model for long-range interaction. In this section, we focus
on the derivation of a mesoscopic model from the mean-field scaling system described
by (17). This leads to the kinetic equation (18), where the particle distribution
function is influenced by an averaged force field. This equation can be further reduced
to (19).

There are two approaches to complete the formalism of the mean-field limit on the
single-particle phase space. One utilizes the concept of empirical measure and estab-
lishes the stability of the mean-field equation through Dobrushin’s estimate [17, 27].
The other approach, based on the BBGKY hierarchy, involves the N-particle distri-
bution and demonstrates that it marginally satisfies the mean-field equation. The
former approach is simpler, while the latter is more flexible. In our presentation,
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we opt for the latter approach in the formal derivation as it can be applied to both
scalings, and utilize the former approach for rigorous derivation. More details on the
relation between these two approaches can be found in [25, 26].

2.1. Derivation via BBGKY hierarchy. Denote
2= (x5, w;), Zn=(z1,...,2ny)EQy, QY := {ZNGRGN | x; # Ty, 17&]}
and let
P(N)(t,ZN) = P(N)(t,zl,...,zN):P(N)(t,xl,wl,...,xN,wN)

be the N-particle distribution function. Correspondingly, the s-marginal distribution
of PY) | denoted as P (t, Z,), is

(24)
P(S)(taZs)::/ P(N)(taZs>Zs+lv'"7ZN)dZs+1-~~dZN; Zs:(zlvz%'"vzs)?
R6(N—s)

and then our goal is to derive the mean-field equation for the first marginal of the
distribution P™M (¢, zy).
Starting with the Liouville equation satisfied by PUV)(t, Zy),

OPWMN)(t, Zx)

N
N) 4 b - (V) _
o +3 [#i - Ve, PN iy -V, PMN(E, Zy) =0,

i=1

(25)

and substituting (17) leads to

(26)
P(N)+Z (I +tA) ') - V,, PV
N
I SR ORI,
1=1j=1 =1
JFi
Integrating (26) over the domain {zs11,...,2n5}, We obtain the corresponding

kinetic equation of the s-marginal distribution P(*)(t, Z,),

opr) o
o +/6(N )(Zwt Ve P(N)+Z[A(I+tA) zi]~VT,iP(N)> dzaq1...2n
RO(N —s

1 i=1

=:(I)

1 N s N B
_/6(1\1 ) (NZZ%UM =) - Vu, P = STIA(I + 14) lwiwwiﬂ”)) dzagr .. 2N

i=1j=1 i=1
i

=:(IT)

/RG(Ni)NZ Z Vo, Ullzi — a5]) - Vi, PN dzagr .

i=1j=s+1
JF#i

=:(III)
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For term (I), note that

sz Vm,PS)+Z (I+tA)"'z,] -V, P

* Z /6(N I+tA)_1xi] 'V:L’iP(N) dzsy1...2N

i=s+1

—sz vleSuZ (I+tA)'z] -V, P®) — (N — s)Tr[A(I 4+ tA) 1P

Similarly, term (1) becomes

S

(II)=— — ZV%U (|zi — x5]) - Vo, P — Z (I +tA) tw;] -V, P
J=1 =1
k2

+ (N — s)Tr[A(I + tA) 1P,

Since particles are indistinguishable, term (I1]) can be rewritten as

N—-sg
(III) = N 2/6 vwlU(|xz - $s+1|) ’ vwiP(s+1)<t7ZS7Zs+1)dZs+1
i=17R

_N—s

>V / {V%U(L"Ci—sz+1|)P(s+1)(t,Zsazs+1) dzst1-
i=1 RS

Combining the terms (I)—(III) together, we arrive at the following equation for
the marginal distribution P(*):

ore) N .
(27) o +Zwi- P +Z (I+tA)'z;] -V, PO

_ 1. () _ 1 ). (s)
Z (I+tA) " w;] -V, P Nijzlvm(f(\xl ;) -V, P
i#

vai / [vx‘LU(|xl - x8+1|)P(S+1)(t7ZsaZS+1):| dzs+1 .
i=1 RS

_N-s

In particular, taking s =1 in (27) above, it reduces to the two-particle case:

(28)
opP™

5t Vo, PO+ [A(I 4+ tA) 2] - Vo, PY — [A(I +tA) " wy] - Vo, PO
N_
=S, / (VU (1 = 2al) POt 20,22)] dzs.
RG

To close the hierarchy above, we consider the following “propagation of chaos”
assumption [55],

P(2)(t,21,22) = P(l)(t,iL’l,wl)P(l)(t,CEQ,’LUQ) y

which says the two particles remain independent throughout the dynamics. Under
this assumption, the right-hand side of (28) becomes
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le / leU |l‘1 —Igl)P( )(t 2’1,22):| d22
RS

N 1
N

N 1
/ {leU |z — x2|)/ )(t, Zo,W3) dwg} das - leP(l)(t,xl,wl)
N R3 R3

/ VxlU |5L‘1 —1‘2|)P(1 (t xQ,wg)leP( )(t,xl,wl)} dl‘g d’w2
RS

Vm U*pp(l)(t 501) leP(l)(t,zl,wl).

By sending N — oo and renaming P (¢, 21,w;) by g(t,z,w), (28) is actually (18).
Furthermore, since molecules in different x’s see the same environment, the spatial
dependence is removable at the kinetic level. Therefore, g is a spatially homogeneous
function, which then obeys the reduced mean-field equation (19).

2.2. Rigorous justification of the mean-field equation. In this subsection,
we underpin the well-posedness of (18), and establish a rigorous path from OMD to
the mean-field equation. Our approach will follow that in [§].

First, we set up some notation. We denote P; (R x R?) as the space of probability
measures on R? x R? with a finite first moment. This space is equipped with the
Monge-Kantorovich-Rubinstein distance W1, defined as, for V = (X, W) € R? x R3,

Witnyi=supd| [ o)1) - rV)aV], ¢ e Lip(E B, el <1},

where Lip(R? x R3) denotes the set of Lipschitz functions on R3 x R3, and | - ||Lip
represents the associated norm. Additionally, we define P.(R* x R3) as a subset
of P1(R? x R3) with compact support. We also introduce a metric space G :=
C([0,T], Pe(R? x R?)) associated with the distance W defined as follows: for g,(V) :=
g(t, V) and hy(V):=h(t,V) in G,

(30) Wi(g(s-),h(-) = S Wi(g:(-); b (:))-

Compared to the classical mean-field equation in [8], the essential difference of (18)
lies in the left-hand side, where the characteristic trajectory (X, W) := (X(t), W (t))
is written as follows:

%X W+ A(I+tA)!

d
dt

(31)
—W ==VUx*p,y(t,X)— A(I +tA)~"

In the rest of this subsection, we will take the simple shear as an example (see [34,
Theorem 3.1]), in which case A is rank-1 and traceless, i.e.,

(32) Lt)y=A(I +tA)~ ' = with K # 0.

o O O

K
0
0

o O O

In fact, for the purpose of future extension, we consider a rather general field &£
and an operator H that satisfy a certain class of hypotheses, instead of assuming a
specific form. Specifically, we consider the following system:
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d
—X =£(t,X
dt g( ) 7W))

W = Hlg) (1, X, W) = Elg](¢, X) + (0, W).

(33)

Here, we will present the sufficient hypotheses that ensure the fulfillment of £ and
‘H for the specific case of (31). These hypotheses guarantee the well-posedness of the
mean-field equation (18).

Hypothesis 2.1. (Hypotheses on &).
(i) £(t,z,w) is continuous on [0,T] x R3 x R3.
(ii) There exists a constant C¢ > 0,

(34) |t z,w)| < Ce(1+ |z + |w|)  VE,z,we0,T] x R? x R®.

(iii) ¢ is locally Lipschitz in variables x and w, i.e., for any compact set D C R? x R?,
there is a constant L¢ = L¢(D) > 0 such that

|£(tavl)_E(t"/?”SL{“/l_‘/QL tE[O,T], V1,‘/2€D.

Remark 2.2. Note that £(¢,z,w) =w+ A(I +tA) "1z satisfies Hypothesis 2.1 with
A(I +tA)~! being a simple shear as in (32). Indeed, we have, for all t € [0,7T],

[t 2, w)| = |w + AT +tA) " o] < |w] + K|
< Ce(1 + [w[ +[z]),

where C¢ =1+ K. On the other hand, for all ¢t € [0,7] and V;,V2 € D,

1€(t, V1) = &(t, Vo) < |wy — wa| + K2y — x4
< Le|Vi = Val,

where L =2(1+ K).

Hypothesis 2.3. (Hypotheses on H)
(i) Hlg](t,z,w) is continuous on [0,T] x R? x R3.
(ii) For any g(t,-,-) € P.(R? x R?) with support contained in a ball B C R? x R? and
for all ¢ € [0,T1], there exists a constant Cy; = Cy (R, T) > 0, such that

(35) [H[gl(t, )L (Br) < Cn  YEE€[0,T].
(iii) For g,h € P;(R?® x R?) and any ball Bg C R? x R?,
(36) ”,H[g](v ) - H[h]('v')HLW(BR) SLipR [H(v)] Wy (g(~7~),h(-7')).

Furthermore, if g¢, hy € G such that supp(g:) U supp(ht) C Bg, for all t € [0,T], then
for any ball Bg C R? x R3, there exists a constant Ly = Ly (R, Rp) such that

(37) tIGIE(?:}Y(“] HH[Q](t’ R ) - H[h](t7 R ')”LO"(BR) < LHWI (g('v ] ')7h('7 R ))

with

Li £ < Lay.
e, ipp[H(, )] < Lu
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Remark 2.4. Tt can be illustrated that the particular operator H[g](¢,z,w) =
Elg](t,x) + n(t,w) in the designated model (33) satisfies the desired Hypothesis 2.3,
as long as E[g](t,x) = —VU x py(t, x) satisfies Hypothesis A.9 as in Appendix A. Con-
sequently, the Lipschitz constant Lip[H(-,-)] in (36) and maxc(o,r) Lipg [H(t,,)]
in (37) will depend on the potential U.

Finally, we can define the flow operator at time ¢t € [0,T") of (33):

T 1 (X(0),W(0) € R* x R® i (X (1), W (1)) €ER® x R?.

)

Following the definition of the solution as in [8, Definition 3.3], for an initial probability
measure go(z,w) € P (R3 x R3), the function

(38) g(t,z,w): [0,T) =P (R* xR?),  trs gi(z,w) := 7?7%#90(3;, w)

is a measure-valued solution to (18) in the distributional sense, where g(t,z,w) =
gt(z,w) =T 3 #90(2, w) is defined as

/ C(x,w)g(t,z,w)dz dw :/ ¢ (7?7{(96,111)) go(z,w)dzdw
R3 xR3

R3 xR3
for all ¢ € Cp(R? x R3).

2.2.1. Well-posedness theorem of mean-field equation. Our main well-
posedness theorem for (18) states as follows.

THEOREM 2.5 (Existence, uniqueness, and stability). Assume the field £(t,z,w)
satisfies Hypothesis 2.1 and the operator H(t,z,w) satisfies Hypothesis 2.3.
For any initial datum go(z,w) € P.(R3 x R3), there exists a measure-valued solution
gi(z,w) = g(t,z,w) € C([0,+00),P:(R* x R®)) to (18), and there is an increasing
function R= R(T) such that for all T >0,

(39) supp g¢(-,") C Brry CR? xR* vV t€[0,7].

This solution is unique among the family of solutions C([0,400), Pc(R? x R?)) satis-
fying (39).

Moreover, the solution depends continuously with respect to the initial data in the
following sense. Assume that go,ho € P.(R® x R3) are two initial conditions, and
gt, hy are the corresponding solutions to (18). Then,

Wl(Qt(', ')7ht('v )) < e2tLW1(90('a ')ahO('v )) vt > 07

where L =max{Ly, Ly} with Ly in Lemma A.2.

Proof. (Ezistence and uniqueness): Given any initial condition go(x,w) € Pe(R3 x
R3) with support contained in a ball Bg, C R3 x R? for some Ry > 0, we prove the
local existence and uniqueness of solutions by a fixed-point argument in a complete
metric space (G, W;) defined in (30), where the support of g(t,z,w) is contained in
Bpg for all ¢ € [0,T] with R=2Ry, and T >0 is a fixed time that will be determined
later on.

We now define an operator I' on the space G such that its fixed point is the
solution to the mean-field equation (18). For g € G, if the field £(¢,z,w) and operator
H[|(t,x,w) satisfy Hypotheses 2.1 and 2.3, respectively, we define

F[g] (tv z, w) = 727—[[9]#90(£7 U}) .

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/03/25 to 134.84.192.102 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

KINETIC DESCRIPTION OF OMD 1661

Clearly, if g is the solution to (18) with the initial condition go(x,w), then I'[g] also
solves the same initial value problem. This can be demonstrated using the method of
characteristics.

To invoke the fixed-point argument, we need to accomplish the following two

tasks.

(I) Show that T" maps g € G to the same space G under an appropriate choice
of time T}.That is, we need to show that 727_1[9] #go(x,w) is a probability
measure in P; with compact support in Bg.

Thanks to Hypotheses 2.1 and 2.3 on (¢, z, w) and H (¢, z, w), using Lemma A.2,
we see that |7z (4 (V)| < Oy for all V € Br, C R® x R? with Cy > 0 de-
pending on Ry, T, C¢, and Cy. Then as long as T} is selected such that
T < %, the support of T'[g](t,xz,w) = ¢ H[g]g#go x,w) is contained in Bp
with R =2R,. Meanwhile, I'[g](¢, z,w) € P1(R? x R?) is fulfilled by the mass
conservation. Moreover, the time continuity of T'[¢], i.e., t — T'[g](¢,-,) fol-
lows from Lemma A.8. This implies that the operator F[g] mapping from the
space G into itself is well-defined.

(IT) Demonstrate that I is a contraction map in G for specific choices of T». This
is to show that, for any g, h € G, the following inequality holds:

Wi (F[g](-, ) ')’F[h]('v K )) <CW, (g(" R ')’h('7 ) )) )

where 0 < C' < 1 is a constant independent of g and h. Note that, starting
from the same go € P.(R?® x R?) with support contained in Br, we have

(10)
Wi (Tlgl (o) IR )) = sup Wi (Tekquig #6000 )s Ty #0 ) )

t€[0,13]

Further, for ¢ € [0,T3], we have

W (7271[9]#90('7 ), 7-§t,7{[h]#90('7 ))

etlv —1
< I sup ”H[g](T"a')_’H[h](Tv'v')HL“(Sprgo)
1% T€(0,T)
(41) etLV —-1
<l sy Wil ()~ el
v r€[0,Ts]
etlv — 1
= 7LHW1(9(7 Yy ')7 h(a Yy ))a

Ly

where the first inequality comes from Lemma A.3 when & = & =&, while the
second inequality utilizes Hypothesis 2.3.
Taking the maximum over ¢ € [0,75] in (41), we see that

el2lv 1

Wl(r[g](-,~,-),F[h](-,',-)) < LV

LyWy (g('v ) ')7h(" % )) .

. . ToLy _
Since limp, ¢ ¢ L — 0, we can choose Ty small enough such that we have

Ly
eTzz%LH < 1. This ensures that the mapping I' is contractive on G.

Combining the analysis above, we prove the existence of a unique fixed point
of T'[g] in G by selecting T = min{7T},T2}. This fixed point, denoted as g(t,z,w),
represents the unique solution to (18) within the local time interval [0, T'].
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Moreover, since the time T is independent of the initial condition and mass con-
servation is ensured, we can extend the solution equally to any global time interval
by repeating the same argument. This extension is valid as long as the support of the
solution remains compact, which has been verified in Lemma A.1.

(Stability): Following the previous argument, we can choose any fixed 7' > 0 and
R > 0 such that the supports of g;(z,w) and h:(x,w) are contained in B, for ¢t € [0, T.
Then we have

Wl(Qt('? ')7ht('a ))

=W (T s 0+ ), T g+
<W (727{[9]#90('7 Vs T wum#0 (-, )) + W (7?,7{[11]#90('7 s T g #ho -, ))

< HTEt,H[g] o 7ZH[h]||L°°(supp g90) T LipR [EH[}L]]Wl (90(', ) ho(:s ))
t
S/0 T Hg) (7, ) = HIAI(T ) pee () AT + €5 Wi (g0 ), ol )

< /0 eIV Lip p (MW (g (), B (-, ) d7 + LY W1 (go (-, ), o (- ) -

Noting that Lipp [’H} < Ly for all t € [0,T], we can choose L = max{Ly,Ly} such
that, for all ¢t € [0,

t
eithl(gt('v ')a ht('7 )) < L/ eiTval (gT('a ')a hT('7 )) dr + W1 (90('7 ) - ho(-, )) .
0
Then using Gronwall’s inequality, we have the following estimate:
Wl(gt(" ')’ ht('a )) < e2tLVVl (90('a ) - ho(', )) Vt e [OvT]
This completes the proof. 0

2.2.2. Proof of the mean-field limit. As a consequence of the well-posedness
established in Theorem 2.5, we are able to offer a theoretical justification for the mean-
field limit, i.e., (18). Apart from the derivation via the BBGKY hierarchy, an alterna-
tive approach to obtaining the mean-field equation is by assuming that the solution g
represents an empirical measure of a collection of particles, characterized as follows.

LEMMA 2.6. Consider the following dynamical system

d

axizg(t,xi,wi), ’izl,...,N,

d

dt
where E(t,x,w) and H(t,x,w) satisfy the Hypotheses 2.1 and 2.3, respectively. Let
gN (z,w) : [0, T] — P1(R3 x R®) be a probability measure defined as

(42)
w; Z’H[giN](t,xi,wi), t=1,...,N,

N
(43) o () = 5 D 60 = ()3 — wilt).

If xi,w; : [0,T) = R3, for i =1,...,N, is a solution to (42), then gi¥(z,w) is the
measure-valued solution to (18) with the initial condition

N
(49 (0 0) = 5 D 6 = 4(0)) 6w — wi(0).
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For the sake of completeness, the detailed derivation is provided in Appendix B.
With the support of Theorem 2.5, we can rigorously justify the convergence of the
measure-valued solution.

THEOREM 2.7 (Convergence of the empirical measure). Under the Hypotheses 2.1
and 2.3, for any initial datum go € P.(R® x R?), consider a sequence of g} in the
form of (44) such that

Jim Wi (g (), 90 () =0.

Let gV be given by (43), where (z;(t),w;(t)) solves (17) with initial conditions (;(0),
w;(0)). Then we have

ngnoo Wl (gtN(a ')a gt('v )) = 07
for all t >0, where g¢(x,w) is the unique measure-valued solution to (18) with initial
data go(x,w).

3. A Boltzmann-type model for short-range interaction. In this section,
we will derive the Boltzmann-type equation based on the scaling in (20).

3.1. Derivation via BBGKY hierarchy. As in the previous section, we begin
with the Liouville equation (25). However, in this case, we need to account for the
range of interaction and define the marginals in the truncated domain R3\ {Zx, |z; —
zj| <e fori#j}. The marginals are now denoted as P(*)(t, Z) instead of P(*)(t, Z,):

P(S)(t,ZS) ::/G(N )P(N)(t,zl,ZQ,...,zN) H Loy —zj)>e d2sy1. .. dan
ROY™e i€[1,5]

J€[s+1,N]

:/ P(N)(tazlaz%'"aZN)lXNEDfV dzs+1 dZNa
R6(N—s)
where

D5, ::{(xl,...,mN)eRSN |2 — 2] > € V(i,j)e[l,s]x[s+l,N]},

and Zs is defined in (24). Our derivation follows the strategies outlined in King
[37] and Gallagher, Saint-Raymond, and Texier [21]. When s = 1, the truncated
one-particle marginal P(!) is

N
P(l)(t,zl) =/ P(N)(t,zl,zg, C iy ZN) H Loy —a;>edz2... dzy
(45) R6(N—1) is2

— (N)
7/D§6(N—1) P (t,Zl,ZQ,...,ZN)lXNGfDJIV dzg...dzy.
Then our goal is to find the weak form satisfied by 15(1)(15, 21).
To this end, we first derive a more general form satisfied by s-particle marginals

ﬁ(s)(t,ZS)_ Given a smooth and compactly supported function ¢(t,Zs) defined on
R, x R% we have, by considering (20) and starting from (25),
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(N) N
/ PVt Zn) + Z {Uh Vo, PMY) 4 [A(T 4 tA) ] .vx,p(N)] (t,Zn)
Ry xR6N ot p ‘ ‘

N 1 N

-y ZG(W—%) T PN AT tA) ] T PV | (2 Z)
-1 | €= €

i#]
X ¢(tazs)1XNeD-;V dZx dt=0.

Then the equation satisfied by P®)(t, Z,) follows from integration by parts. More
precisely, we denote X, := (z1,...,25) € R3 and W, := (w1, ...,w,) € R3S,
(I) For the first term on the time derivative of P?")| we have

PWN)(t, Z
/ wﬂt,zs)lxjvebs dZydt
R xR6N ot N

__ PN(0,Zn)$(0, Zo)1xyeps, dZn

R6N
(9 tazs
f/ P(N)(t,ZN)%IXNGD;V dZy dt
R+XRGN

(9t S I

:_/ P(s)(O,ZS)qb(O,ZS)dZS—/ PE(t, Z,)
R6s

Ry xR6s

where we notice the definition of P(*) in the second equality.
(IT) For the second term on the spatial derivative of P
coupled index (7,7) € [1,N] x [1, N],

(V). we define, for any

Y5 (i,7) = {XN e R3V, |z; — xj|=¢ ’ V(k,)e[l,s] x [s+1,N]/{i,j}, |zr—a] >a},

which is a smooth submanifold of {Xy € RN, |z; — x;| = ¢}. If denoting doy as
its surface measure and n*’ the outward normal vector to X%(¢,j), we obtain via
integration by parts,

N
/ w; - Vo, PN (t, Zx5)$(t, Zs)1 x yeps, dZn dt
R+ X]RGN

i=1
s

=— Z/ wi PN (t,Zn) - Vi, 8(t, Zs)1xyeps, dZn dt
]R+ xR6N

=1
N ..
+ / n Wy PN (t, Z5)o(t, Zs) o) AWy dt
i=1 7 R xRN X5 (4,5)
i#j
=— Z/ N wi PN (t,Zn) - Va4, 8(t, Zs) 1 x yeps, dZn dt
i=1 YRy xR
S Ui,s—i—l
Py | petl
i:Zl R, xR3N x 33, (i,5) V2

(wey1 —wi) PNt Zn)o(t, Z,) do! AW dt,
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XTi—Tj

where vh = o] and we have used the fact that P(N) satisfies the permutation
invariance, i.e., PN (¢, Z,(n)) = PN (8, Zy).
Similarly,
N

/ 6N [A(I + tA)_lxi] : VLP(N) (ta ZN)¢(t’ ZS)]-XNGD?V dZydt
i—1 YR xR

== Z/ PO (t, Z)AI 4+ tA) L] - Vo, o(t, Z,)dZ, dt
i=1 R+ xR6s

- / Te[A(I + tA) PO (t, Z)o(t, Zs) dZg dt
i=1 R+ xR6s
Vi,s+1

+ (N —s /
( ); Ry xR3N x 3% (4,5) \@
JAT +tA) N(ze1 — )| PN, Zn)o(t, Zs) o) AW dt.

(III) For the third term including the potential, we split the sum into two parts:

Iy
i=1j=1"R
i#]
1< T; — Tj
== Z /]R o V., U < - J|) 'VwiP(N)(taZN)¢(t,Zs)1XNeDJSV dZy dt
i,j=1"5"+X
i#£]

\n ('“’?mJ) NV PYUE, Z0)(t, Z) 1 x e, A2 di

4 xR6N

N
1 -
+= 3 / Vo, U (M> Vi PO (t, 20)(t, Z6) L xyeps, A2y dt,
ij=s+17 R XRON <
i#]
where the second term on the right-hand side vanishes due to the appearance of
Vo ®(t, Zs) for i=s+1,...,N after integration by parts. Therefore, it becomes

1NN
i#]
1

=¥ / Vo, U ('x_“]> Vo 8t Z) PO (¢, Z,) A Z, dt.
Ei,j=1 R xR6N €
i#£]

Vo, U ('””;%') Ve PN (8, Z0) (1, Z) Ly epy, dZ dt

4 XR6N

S

(IV) For the fourth term on the derivative of w,

N
/ [A(I +tA) " wi] - Vo, PN (8, Zn)(t, Zs) 1 x yepy, A2y dt
R+ xR6N

i=1
s

=-> / PO (t, ZO) AT 4+ tA) " w;] - Vo, 6(t, Zs) A Z dt
i=1 ]R+ xR6s

_ / Te[A(T +tA) PO (¢, Z)o(t, Zs) dZ, dt,
R+ xR6s

=1

where the integration by parts is applied in the equality above.
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Combining the terms (I)-(IV) together, (46) becomes

(47) / PO(1, 2,)
R4 xR6s

— [A(I +tA) " ;)] -Vwiq5>

1< Ly
e <M> V6
E “ E
j=1
i#£]

=— | PY(0,Z,)¢(0,2,)dZ,
R6s

o+ > (wivxi¢ VA +tA) 2] Vi, b
i=1

(t,Z,)dZ, dt

S Vi,s—i—l
_ (N _ 3) / I
Z Ry xR3N x 2% (4,5+1) \/§

(Weg1 — wi)P(N)(t, ZN)B(t, Zs) Aok T dVy dt
S I/i,erl

+(N—s / v
( ); Ry xRN x 58, (6,541) V2
JAI +tA) N agpr — 2) [ PN, Zn)d(t, Zs) dffj\’zsﬂ dVy dt

:—/ P©)(0,24)¢(0, Z,) dZ,
R6s
~ (N = 8)e? / Qs o1 (PO (1, Z0)o(t, Z0) AZ, dt
R+XR6S
P9 [ QL (P26 22) dZdt
Ry xR6s

where the derivation of the term Q 1 1(P**1) in the last equality directly follows [21,
Paragraph 9.3-9.4], which neglects higher-order interactions except for those between
binary particles:

S
Qs,s+1(P(s+1))(t, Zs) = Z/ b(wl - w5+1’wi’s+1)
i=1 /R J§?
X |:P(s+1)(t7$1awla o ’xi’w,/“ ce 7$S7w5’wg+1)
— PG+ (¢, 257mi7w5+1)] dwi 541 dws 1,

and, similarly,

s Tj — Ts+1
;,s+1( (H) t Z Z/Ra /82 < I+tA 1iawi,s+1>

P(S—H)(t L1, W, .- xzaw reeey Ty Ws, S+1)
— P(s+1)(t7Zs7xi7ws+1)i| dwia5+1 dws+1'

Here (wj],w/, ) is obtained from (wZ7 wsH) by applying the inverse scattering operator
oe defined in [21, Definition 8.2.1], i

. +
ot (T, Wi, Tsy1,Wsr1) €SS (f, wl,xsﬂ, s+l)€857
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where

SF = {(2s,wi, 2541, wep1) ERT? | |zi — Toq1]| =€, £(x; — Toi1) - (Wi — wep1) >0},
ETx

!
Ty = =2+ Wi g1 - (T —%HWMH+2(W+wHﬂ
’ ETx
Toy1 7= —Tot1 — Wipst1 " (Ti = T 1 Wis41 + —- 2 (wi +ws 1),
/ A
Wi 1= Wi — Wi sl - (Wi — We 1)Wis 1, Wiy i= Wepl + Wisy1 - (Wi — Wey1)Wist1

with 7. the microscopic interaction time [21, (8.1.10)]. And collision kernel b has the
same definition as in [21, Definition 8.3.3 and eq. (8.3.5)] or, more specifically,

A 1 '
Vz,s+1 . (U) ws+1) do_jvs+1 E(xZ — xs+1) (wi - ws+1)dg§\}s+1

2
=€ b(wi - ws+17wi,s+1) dwi,s+1~

Taking the Boltzmann—Grad limit Ne? — O(1) (or in the case of general dimen-
sion d, Ne?! — O(1)) as N — oo and € — 0, the integral term involving Q) ., in
(47) vanishes, since Ne? — 0 in such a limit. Therefore, formally P®) (¢, Z,) satisfies
the following equation in the weak sense:

(48)
it y P 1 5 1 .
=1
1N i — X - .
_ g Z V., U (|x5x]|> . VwiP(S) _ Qs,s+1(P(S+1)).
1,7=1
i#]

In particular, when s =1 in (48), we have the corresponding equation for one-
particle distribution function P (¢, 21),

P (¢ - .
aaig’zl) +wy - Vg, PY(t,20) + [A(T +tA) 2] - Vo, POt 21)

— [A(I 4 tA)"hwy] - Vi, PO, 21) = Q1 2(PP)(t, 21),

(49)

where the collision operator Q; o(P®)) is
Q12(PP)(t,21)
/ /2 wy — wa,wy2) | PO (t, 21, w), w0, wh) — PO (t, 21, w1, w2,w2) | dwy 2 dws .
R3 Js

At this stage, one can find that (49) above is still not solvable due to the existence
of P on the right-hand side. Hence, to close up the hierarchy, we introduce the
following propagation of chaos assumption [55, p. 12],

P(2)(tvx17w17w27w2) :P(l)(t7$17wl)p(l)(tv‘r27w2)7

which implies the uncorrelation of velocities of two particles that are about to collide.
Then,

Q1,2( =9, 2(P(1) pt / b(wy — wa,w1,2)
R3 Js2

X ﬁ(l)(t,xl,wl) (1)(t,x2,w2)— (1)(t,$17w1)ﬁ)(1)(t,$2,w2):| dw 2 dws .
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Finally, after considering the homogeneity in x and renaming w as wj, ws as
wg, and wq 2 as w, we arrive at the HOMO-energetic Boltzmann equation (8), where
g(t,w) =P (t,21) = PO (t,z1,w).

We mention that the above derivation is formal, and to make it rigorous, the main
difficulty lies in the need to justify the propagation of chaos. Additionally, we need to
construct an appropriate functional space and obtain some a priori uniform estimates
in the BBGKY hierarchy, especially with the additional term L(t)w - Vo P® in the
HOMO-energetic equation. We refer to [21, Part III] for the related work about the
classical Boltzmann equation.

3.2. Properties of the HOMO-energetic Boltzmann equation. In con-
trast to the classical Boltzmann equation (5), the (8) derived from OMD has been
effectively reduced in dimension due to spatial homogeneity, similar to the principles
of microscopic molecular dynamics. Its solution, often called the HOMO-energetic so-
lution, can be regarded as a special type of solution to the full Boltzmann equation (5).

The existence and uniqueness of the HOMO-energetic solution to (8) in L! were
initially established by Cercignani in a specific instance of the deformation matrix
L(t) known as the shear affine flow, as discussed in [11]. This analysis considered the
collision operator with an angular cutoff cross section, such as the hard-sphere model.
In the case of the Maxwellian molecule, corresponding to v = 0 in the kinetic part
of the collision kernel B, the hyperbolic effect L(t)w - V,,g and the collision effect
Q(g, g) exhibit similar magnitudes. The well-posedness theory of the solution in the
general case has been demonstrated within the class of Radon measures by James,
Nota, and Veldzquez [34] or under the Fourier transform framework by Bobylev, Nota,
and Veldzquez [6].

One of the fundamental distinctions between the solution to the classical Boltz-
mann equation and the HOMO-energetic solution to (8) lies in their behavior at large
times. It is well known that the solution to the homogeneous Boltzmann equation
converges to the global Maxwellian equilibrium, determined by the initial condition.
However, for the HOMO-energetic equation (8), due to the presence of the deforma-
tion matrix L(t) and its associated viscous heating effect, the equilibrium is no longer
Maxwellian and the energy (or temperature) of the system steadily increases with
time.

In fact, the large-time behavior of the HOMO-energetic solution varies depend-
ing on the interplay between the hyperbolic term L(¢)w - V,,g and the collision term
9(g,9). In the case of the Maxwell molecule, where the collision kernel exhibits zero
homogeneity, a distinct self-similar profile has been observed [41]. This self-similar
distribution differs from the Maxwellian distribution and is characterized by a poly-
nomial decay of velocity at the tails. This behavior has been numerically confirmed
in previous studies [23].

More particularly, consider the self-similar transformation

(50) gt w) = e~ 3tG (%) .

Equation (8) can be rewritten as
(51) —BVy - (WG) =V, - (LwG) = 9(G,G),

where L € M3y3(R),8 € R. Note that the intuition of self-similar scaling (50) comes
from the dimensionless analysis; see more details in [34, p. 818]. Then its well-
posedness is established in the following theorem.
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THEOREM 3.1 ([34]). Let B = b(cosf) be the collision kernel for Mazwellian
molecules and f_llb(x)mz(l — 2%)dx be strictly positive. There exists a sufficiently
small kg > 0 such that, for any ¢ > 0 and any L € M3«3(R) satisfying | L|| < kob,
there exists 5 € R and G(w) that solve (51) in the sense of measure and satisfy

G(w)dw=1, / ij(w)dwzo,/ |w|*G(w) dw = (.
R3 R3

R3

In addition to [34], the existence of the self-similar profile was also established by
Bobylev, Nota, and Veldzquez in [6] using the Fourier method. Furthermore, in [18],
a smooth self-similar solution with C'°°-regularity and dependence on a small shear
force was demonstrated based on a perturbative approach.

Remark 3.2. It is important to note that the existence of self-similar solutions
is not limited to the HOMO-energetic solution of (8), but also applies to the clas-
sical Boltzmann equation without deformation forces. However, in the absence of
deformation forces, the existence of self-similar solutions is restricted by the energy
conservation property. Specifically, self-similar solutions can only be demonstrated
when they possess an infinite second-order moment [3]. This condition holds for
certain cases, such as the inelastic Boltzmann equation in granular materials [5, 4].
Moreover, the dynamic stability of these infinite energy self-similar profiles has been
established in [42].

4. From mesoscopic regime to macroscopic regime. In this section, our
focus will be on investigating the hydrodynamic limit for the kinetic model induced
by OMD, which bridges the gap between the mesoscopic regime and the macroscopic
regime.

4.1. Universal conservation laws. We begin by revisiting the macroscopic
quantities that arise from classical fluid mechanics and re-formulate them within the
context of HOMO-energetic flow (9). Notably, owing to the homogeneity in z of
g(t,w), the macroscopic quantities will solely be time dependent.

Noting that in (9) if we begin with [ (0, w)wdw =0, then the first moment of
g remains zero, i.e., fRB g(t,w)wdw = 0. This condition is maintained throughout the
derivation, as explained in [35, Remark 2.2]. Therefore, in the subsequent analysis,
we consistently assume that the first moment of g is zero.

e Density p(t,x):

(52) plta) = [ Sty do= [ gltw)dw=ip(e).
R3 R3
o The bulk velocity u(t,x):
u(t,z) = ,o(tl,x) /R3 ft,z,v)vdo

o Internal energy e(t,x) and temperature 0(t,x):
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p(t,x)e(t,z) = % /]RS ft,z,v)|v —u(t,z)|* dv

1
-1 / g(t, w)|w]? duw
2 Jas

=:p(t)e(t).

Consider the equation of state for perfect gas in three dimensions that

_ k:BQ(t,x) _ §9(t,’l}),
Yo — 1 2

e(t,x)

where 6 is the temperature, kg = 1 is the Boltzmann constant, and ~, =
1 +% = % is the adiabatic exponent. Then the temperature 6(¢,x) at position
z and time ¢ is

g0t =2 (3 [ st lo- el ao)

]Rfi
1
(53) -1 / g(t,w)|w]? dw
3 Jas

=:p(t)0(t).

Note that the involvement of the equation of state is not an implicit assump-
tion that makes our derivation only work for a perfect gas; instead, it merely
illustrates the relation between the internal energy e and temperature 6 to
close the system, allowing us to write the macroscopic equation in the follow-
ing section 4.2 as the time evolution for temperature for better comparison
with previous results in [46, 47].

o The stress tensor S;;(t,x). Denote c(t, z) := v—u(t, ) as the peculiar velocity,
i.e., the deviation of the microscopic velocity of a molecule from the bulk
velocity, then the stress tensor can be written as

Sij(t,x) = /]1@3 ci(t,z)ei(t,z) f(t,z,v)dv

= / wiw;g(t, w)dw
R3
=:545(t)

(54)

fori,j=1,2,3.
o The heat flux ¢;(t,x):

Qi(tvm):/RB cj(t,x)|c(t,x)\2f(t,x,v)dv
:/ wj|w|zg(t,w)dw
RS

1 q; (t)

for i=1,2,3.
Equipped with the aforementioned notations, we can derive the conservation
forms for HOMO-energetic flow by multiplying the collision invariants 1, w;, and
|w|* on both sides of (8).
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 olt) + TH{L()o(1) =0,
- plo) (5 + 220 =0,
3 3
o020 LSS s 0L = o0 1 500 Ly =0,
i=1 j—1

where we use the standard tensor notation S: L =Tr(STL) = Tr(SLT).

Equation (55) is universally satisfied by the macroscopic quantities, irrespective
of whether the scaling is mean field or Boltzmann—Grad. The first equation represents
the evolution of the density over time, while the second equation holds true for any
L(t) = A(I +tA)~L. The third equation describes the evolution of the internal energy
or temperature.

4.2. Hydrodynamic limit of the Boltzmann-type model. Though (55)
universally holds, it is not a closed system due to the absence of an explicit relationship
between e and P. In this subsection, we will address this issue by studying the hydro-
dynamic limit of the HOMO-energetic Boltzmann equation (8). Through asymptotic
analysis, we can derive a constitutive relation that allows us to close the system.

Consider the HOMO-energetic Boltzmann equation in a dimensionless manner,

(56) St019(t,w) — [L(1)u] - Vug(t,w) = Qo) (1),

where Kn is the Knudsen number, defined as the ratio of the mean free path to
the macroscopic length scale, and St is the Strouhal number, defined as the ratio
between macroscopic velocity and thermal speed. Throughout this section, we assume
that Q(g,g) is equipped with the hard potential collision kernel B under the cutoff
assumption, and

Kn=e«x1l and St=1.

Then, (56) becomes

(57) Dug(t, ) (L)) Vug(t,w) = Qg )1, w).

4.2.1. The compressible Euler limit. We first derive the compressible Euler
limit through the Hilbert expansion. Specifically, we seek the solution of (57) in the
form of a formal power series in e:

(58) ge(taw) = Z Engn(taw) = gO(tvw) +€g (tvw) +ee
n>0

Then at O(e~ 1), we have

(g0, 90)(t,w) =0,

which, by also considering the homogeneity of p, 6 in « from a previous discussion,
implies that go(t,w) is in the form of a Maxwellian distribution, i.e.,

_plt) -
o PD>0, 00 >0.

(59) go(t,w) = M) 00ty =
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At O(e%), we have the following equation:

©60) (3~ [L()u] Vi )ao(tw) = Qoo 92) 1, 0) + Qg 00) (1, w).
Define the linearized Boltzmann collision operator

(61) Lty 9= —2M % QML MY ).

lp [p,60]’

According to [25, Theorem 3.11], it is stated that £, ¢] is an unbounded self-adjoint
nonnegative Fredholm operator. Furthermore, its null space is spanned by the collision

. . . 2 . — . — w .
invariants 1,w;, |w|?, where i = 1,2,3. Moreover, by setting W O] and referring

to [25, eq. (3.64)], we can conclude that A(W) € (Ker ﬁgo)l, where

(62) A(W)-—W@W—1|W|2[—Lw®w_1@
. 3 o) 30()

Then, (60) can be rewritten as
Ly, <91> =~ (0 = L@Ww]- Vo) Wmgo(t, w).
9o

Upon a direct calculation, the right-hand side of the above equation can be expressed
as follows:

(00 = (L] - V) In go(t, )

= %t) (3,5 — [L(t)w] .Vw>p(t) - %(t) (315 — [L(t)w] 'Vw)G(t)
(63) w]?
+ (at — [L(t)w] -Vw) <— 29@))
w wl|?
= ﬁ@m(t) - %(t)&ﬂ(t) + [L(t)w] - % + %&0(0'

We can rearrange the right-hand side of (63) and express it as a linear combination
of 1,w;, |w|?, where i =1,2,3, and A(W) in the following form,

—Ly, (g(l)) = <6t — [L(t)w] -Vw) In go (¢, w)
(64) = % (5‘tp(t) + Tr[L(t)]p(t)) + % (L}Zﬁ - >

2
e <8t0(t) + 3Tr[L(t)]0(t)) + AW): D,

where D is denoted as

1

(65) D= (L(t) L) - zTr[L(t)]I) .

Clearly, the last term on the right-hand side of (64) belongs to (Kerﬁgo)J‘, while the
first two terms are in KerLy,.

Therefore, the solvability condition, as stated in [25, (3.63)] for the Fredholm
integral problem (64) requires that the right-hand side of (64) is perpendicular to
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Ker L4,. This condition further implies that the coeflicients of the functions 1 and
% (|W|? = 3) must vanish, i.e.,

Ap(t) + Tr[L(1)]p(t)
8:0(t) + §Tr[L(t)}0(t)

0,
0.

Here the first equation reduces to the same equation in (55), while the second one
corresponds to the third equation in (55) with the relationship between the pressure
law, internal energy, and temperature given by

(66) S=—p®0N] and e(t)= %H(t) .

This system is recognized as the compressible Euler system (22) in the case of the
perfect monatomic gas.

Remark 4.1. We pointed out that the equilibrium (59) shares some similarities
with the long-time behavior of (8). As proposed in [34, section 6.1], in the collision-
dominated scenario, g(t,w) is expected to approach Wﬁ(t)?’/ge_ﬁ(t)'w‘ta form
also exhibiting Gaussian characteristics. However, one should not confuse this conjec-
ture with the equilibrium (59) we use here to derive the hydrodynamic limit as they
essentially represent different asymptotics.

4.2.2. The compressible Navier—Stokes limit. We further derive the com-
pressible Navier—Stokes equation by investigating the next-order term in the asymp-
totic expansion. Here we follow [25] and use a slightly different expansion for the
solution:

(67) ge(t,w) =y €"gn[P()](w) = go[P(D)](w) + egr [P (1)) (w) + -+ -

Compared to the Hilbert expansion (58), we require that go has the same first five
moments as g. by construction. That is,

/ Sgo[ﬁu)](w)( ot ) dw=P(1),

.
where P is a vector of conserved quantities. As a result,

2

(68) /ngn[ﬁ(t)}(w)< & ) dw=0 forall n>1.

This expansion is termed as Chapman—Enskog expansion.
By taking the moments of (57), the conserved quantities satisfy a system of con-
servation laws:

(69) OiP(t) = €"®u[P](t) = Bo(t) + €1 [P](t) + -,
n>0

.

where the flux term ®,,[P](t) is denoted from the conservation law associated with
(57),

®, (Pl = [ ( o ) [L(t)w] - Vugal P0)](0) du

for n > 0.
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As with the derivation in the previous section, at the leading order O(e°), we
obtain that

0= (50l P(0)). 90 ()] ) (w).

which implies that go[P(t)](w) is in the form of a Maxwellian distribution as in (59).
At the next order O(e!), we have that

(70) (00 = (L)) - V) ol PO) (w)
=0 (9l P(0) 1 [P(1)]) () + Q (@ [P(1)], 9o [P)]) (w).

Using the form of go[P(t)](w) in (59) and the fact that P solves (69), the left-hand
side of (70) becomes

(71) (5t = [L()w] - Vw>go [P(8)](w) = go[P(D))(w) [A(W) : D] + O(e),

where the O(¢) term comes from the high-order terms in (69).
Substituting (71) into (70) and omitting the higher-order term, and using the
definition of linearization operator (61), g1[P(t)](w) is determined by

LgoFe) (Z?E;Eg) =—[AW): D],

&mmwm<&>mwa

and, therefore, g; [ﬁ(t)] can be solved,

(72)

—

Qi P(8)] = —go[P())(w) [a(8, W) A(W) : DI,

where the scalar quantity a(6,|W]) is denoted as LB (a(0,[W])AW))=A(W).
Hence, the first-order correction to the fluxes in the tlormal conservation law is

_ R 1
@ [P(D)](w) 4yﬁm«mwwwmm<hﬂ>dw

2

(73) 0

p(0) 5 (Te[L2(0)] + L(1) : L(t) = 2(Tr[L(1)])?)

where the viscosity ((0) can be computed as in [25, 5.15]:

)

2 e 2
74 0 :—9/ a(@,r)rt e " /2dr.
(74) nO)= 550 | a0t
Recalling (69) and keeping only the first two-order terms, we have
(75) 9, P(t) = ®o[P)(t) + €@, [P](t) mod O(?).

Spelling out the flux terms, we have

Oep(t) + Tr[L(t)]p(t) =0,
(76 { 2 1 ) 2 )
0:0(t) + Tr[L($)]6(t) = en(8) 5 (Tr[L (O] + L(t) : L(t) — 5 (Tr[L(®)]) )

which recovers the compressible Navier—Stokes system (23). This also corresponds to
(7)—(10) in [46] and (29)—(30) in [47].
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Appendix A. Preliminary results for the well-posedness of the mean-
field equation.

A.1. Estimates of the new characteristics. Note that (33) can be written as
the characteristic equation of the new variable V := (X, W),

d
3V = Yeu V),
where We 3,11, V) : [0,T] x R? x R® — R® x R is the right-hand side of (33). Then
mean-field equation (18) becomes

Ag(t,z,w)

o +div(We 3199)(t, z,w) =0.

To prove the well-posedness of (18), we first study the induced characteristic
trajectories.

LEMMA A.1. For the field {(t,x,w) satisfying Hypothesis 2.1 and the operator
H(t,z,w) satisfying Hypothesis 2.3, given (Xo,Wy) € R3 x R3, there erists a unique
solution (X, W) to (33) in C1([0,T], R® x R3) with X (0) = X and W(0) = Wy. In
addition, there exists a constant Co v depending only on |Xol|, |Wo|,T such that

(X (), W ()] <[ (Xo, W0)|etC°=T Yt €[0,T).

Proof. Considering the field £(¢, x,w) satisfying Hypothesis 2.1 and the operator
H(t,z,w) satisfying Hypothesis 2.3, where the Lipschtz continuity holds for the dy-
namic equation of X (t) and W (t), the system (33) admits a unique solution on [0,7T)
for each initial condition (X (0), W (0)) € R? x R? by applying the standard argument
of ODEs. On the other hand, the bound can be obtained from the at most linear
growth estimate (34) and (35). 0

LEMMA A.2 (Regularity of the characteristic equation). For any T >0, assume
that the field £(t,x,w) satisfies Hypothesis 2.1 and the operator H(t,x,w) satisfies
Hypothesis 2.3. Then, for any closed ball Br C R? x R? with R >0,

(i) Wen (V) is bounded in the compact sets: for V= (X,W) e Bg and t €[0,T],

[Wen (V) <Cy VYV EDBR,

where the constant Cy >0 depends on R, T, C¢, and Cy;
(if) Wen (V) is locally Lipschitz with respect to x,w: for all Vi = (X1, W1),Va =
(XQ,WQ) in Br and t € [O,T],

|Wen (V1) = Ve n (Vo) < Ly |Vi = Vo| VVi, Vi € Bg,

where the constant Ly >0 depends on R, T', L¢, and L.

LEMMA A.3 (Dependence of characteristic equation on £ and H). Assume that
there are two fields &1,& satisfying Hypothesis 2.1 and two operators Hy, Ho satisfying
Hypothesis 2.3.

For any point VY € R3 x R? and R >0, we assume that

T, VOISR, T

2,

1w, (VO|<R Vte|0,T).
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Then, for t €10,T], it holds that
|7-5177'11 (VO) - 7—52,7-12 (V0)|

etlv — 1
S |Le, — Le, |R+ sup [[Ha(7,+,+) = HalT, )L (BR) |
14 7€(0,T)

where the constant Ly >0 depends on R, T', L¢,, and Ly, .

Proof. We denote Vi(t) = T} 5, (V°) = (X;(t),Wi(t)) for i = 1,2 and ¢ € [0,T].
These functions satisfy the characteristic system (33): for i =1,2,

d
aVz(t) = \IJ&,Hi (t7 VZ(t))7

V;(0)= V.
Then for ¢t € [0,T7,

Vi(t) — Va(t)] < / We, (7, Vi (7)) = We, g0, (7, Va ()] dr
< / [We, 70, (7, VA7) = Wy 30, (7, Va (7)) | d
0 t
n / We, 24, (7 V(7)) — Wey 0, (7, Va(r))| dr

<ty [ W -viar+ [ e - LalR+ ()
= Ha(7, )L (Br) dT.

Finally, by Gronwall’s inequality, we obtain

etlv 1
|‘/1(t)_‘/2(t)| < L <|L51_L€2|R+ sup |Hl(T7'a')_HQ(T7'7')||L°°(BR)> -0
v r€(0,T)

LEMMA A4 (Regularity of characteristics with respect to time). For any T > 0,
assume that the field £(t,x,w) satisfies Hypothesis 2.1 and the operator H(t,x,w)
satisfies Hypothesis 2.3. For any initial condition V° =R3 x R3 and R >0 such that

|7Z’H(VO)| < R Vie [OvT]v
it holds that
I TEn(VO) =T (VO <Clt—s| ¥ s,t€[0,T],

where the constant C' >0 depends only on R, C¢, and Cy.

Proof. This is a direct consequence of the definition of 7?,?—1(‘/0) and point (ii) in
Hypothesis 2.1 and point (ii) in Hypothesis 2.3. d

LEMMA A.5 (Regularity of characteristics with respect to initial condition). For
any T > 0, assume that the field £(t,z,w) satisfies Hypothesis 2.1 and the operator
H(t,z,w) satisfies Hypothesis 2.3. For two initial conditions V°,Vy € R3 x R® and
R >0 such that

TEn (VOISR [TEn(V) <RV te0T],
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it holds that
1 TEn(V0) = Ty (V) < VP = VRl ettv W s,k €[0,T],

where the constant Ly >0 depends only on R, C¢, and Cy.

Proof. We denote Vi(t) = T4, (V%) = (Xi(t), Wi(t)) for i = 1,2 and ¢ € [0,T].
These functions satisfy the characteristic system (33): for i =1,2,

%Vi(t) = U, (8, Vi(2)),
Vi(0) = V.

Hence, by Lemma A.2, we have
Vi(t) = Va(®)l < [V = V2| + /Ot | We30(8,VA(7)) = We (8, Va(r)) | dr
< VO V9| + Ly /Ot IVi(r) — Va(r)| dr.
Then the Gronwall inequality leads to

Vi(t) = Va()] < [V = V' e' V.

In other words, 7?7—[ is actually Lipschitz continuous on the ball Br C R? x R? with
the associated Lipschitz constant Lipg [T¢,,] <e'tv for t € [0,T]. u|

A.2. Some preliminary lemmas. This subsection is dedicated to presenting
some preliminary lemmas and hypotheses that will be utilized to establish the well-
posedness of (18). The first part focuses on the transport of probability measures
along the characteristic trajectory, as demonstrated in the previous subsection.

LEMMA A.6 ([8, Lemma 3.11]). Let V1,Va : R® — R® be two Borel measurable
functions, and let g € V1(R?). Then,

Wi (Vigtg, Va#tg) < [IVi — Val| Lo (suppg)-

LEMMA A.7 ([8, Lemma 3.13]). Take a locally Lipschitz map T : R® — R? and
f,9 € P1(R3) with compact support contained in the ball Br. Then,

Wl(T#f, T#g) < LWl(fa g)v

where L is the Lipschitz constant of T on the ball Bp.

LEMMA A.8 (Continuity with respect to time). For any T > 0, assume that the
field &(t,x,w) satisfies Hypothesis 2.1 and the operator H(t,x,w) satisfies Hypothe-
sis 2.3.

For any probability measure g € P.(R3 x R3) with compact support in the ball Bp,
there exists C >0 depending only on R, C¢, and Cy such that, for any t,s € [0,T7],

Wi (T stte, Tontta) < Clt = sl,

where T4, is defined as in (38).
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Proof. Thanks to Lemma A.6, and Lemma A.4 about the continuity of charac-
teristics with respect to time, we have

Wi (Téautto (), Teatto () < 1T — Tnlli unps) < Clt = sl

where the constant C' >0 depends on R, C¢, and Cy as in Lemma A.4 a

Additionally, it is worth mentioning that the operator Hg is constructed as Hg =
Eg—n(t,w)=-VUxpy(t,X)—A(I+tA)~'W. In order for Hg to sufficiently satisfy
Hypothesis 2.3, we will refer to the following hypothesis and lemmas concerning E[g]
and U.

Hypothesis A.9 ([8, Hypothesis 3.1]). (i) E(t,z) is continuous on [0, 7] x R3.
(i) For some Cg >0,

(77) |E(t,2)| < Cp(1+|z|) Vt,ze[0,T] x R3.

(iii) E is locally Lipschitz with respect to z, i.e., for any compact support set D C R?,
there is an Lp such that

|E(t,z) — E(t,y)| < Lplz —y| forte[0,T] and z,y € D.

More particularly, since E(t,z) takes the form E(t,z) = E[g|(t,xz) = VU % py(t,z),
we have the following properties.

LeEMMA A.10 ([8, Lemma 3.14]). Consider a potential U € C1:R® — R such that
VU is locally Lipschitz and there is some constant C > 0,

VU (z)| <C(1+]|z|]) VzeR®.
Let g € P1(R3 x R3) be a probability measure with support in a ball Bg. Then,

19l L= (Br) < IVU | Lo (B25)

and
Lipp(Elg]) < Lipyp(VU).
LEMMA A.11 ([8, Lemma 3.15]). For g,h € P1(R® x R3) and R >0, it holds that
1Elg] — Bl i~ (5 < Lipar(VU)Wa(g, h)

Appendix B. Derivation of the mean-field limit using empirical mea-
sure. Here we provide an alternative derivation of the mean-field limit using empirical
measures. Let

N

gV (t,x,w) = % > 6w —wi(t)d(z — 24(t))

i=1

be the empirical measure associated with N molecules, where § is the Dirac delta
function. Then for any suitable test function ¢(x,w), we have that
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(g () e ),
1L d
= N;a@(%(t) w;(t))
1 < ad
=N vago(xl(t) w;(t)) Z wi(t)) - wi(t)

N
— % va@(xi(t);wi(t)) [wi(t) + AT + tA) i (8)]

:<I>

N
i=1

:=(11)

N
_% va@(xi(t),wi(t)) 'A(I‘*‘tA)_lwi(t),
i=1

:=(ITT)

where the dynamical system (17) about (&;(t),w;(¢)) is substituted in the last equality

above.
For the first term (I), we have

N
= % Z Vaep(wi(t), wi(t)) - [wi(t) + AT +tA) "z (t)]
= <gN(t,z, w), [w(t) +A(I+ tA)flx(t)] qui)(x,w»mu .
Similarly, the third term (I17) is rewritten as
(II1) = va<p w;(t)) - AT 4 tA) " w;(t)

=—(g" (t’x’W)a [A(T +tA)" ] - Vwe(z,w)),
The second term (/) is a bit more involved:

N

(1) = Z[ ZV U(las(t) — 2;(t )I)-wa(mi(f%wi(t))]

i=1

T, w

N
:_<9N(t7x7w)7 <VIU(|x_y|)7 ;Za(y_xj(t))> 'Vw@(wi)>

Nitzw), (VaUl(lz = yl),pgs (£9)), (6.2) - Vasola,w) )

= gN(t7x7w)7 [va*pgN](tvx)'vw(p(x7w)>z’wa

where pyn (t,y) := [s g™ (t,y,w) dw.

T, w
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Combining all terms together, we obtain the following weak form of the evolution

equation for g™:

N
W — [VoU * pyn](t,z,w) - Vg (t,z,w) — Vy - [AT +tA)  wg™ (t, 2, w))]
+ V- ( [w+ AT +tA)" '] gN(t,x,w)), p(z,w) =0.

ogN (t,z,w)

x,w

In the strong form, it becomes

5 + [w+ A(I +tA) 2] - Vaug" (tz,w) — [A(L +tA) " w] - Vg™ (tz,w)
= [V, U x pyn|(t,2,w) - Vg™ (t, 2, w).
Then, if further considering that ¢’V is homogeneous in z, it reduces to

g™ (t,w)

ot — [A(I +tA) '] - Vg (t,w) =0

since the nonlinear term will vanish due to the symmetry of the potential U,

(1]

2]

(3]

(4]

[5]

[6]

[7]

(8]

[9]
(10]

(11]

(VU % pgn](t, z,w) = pyn (t) /]R3 V.U(Jx —y|)dy =0.
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