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Abstract

Generalized Algebraic Data Types (GADTs) are a syntactic generalization of the usual algebraic data types

(ADTs), such as lists, trees, etc. ADTs’ standard initial algebra semantics (IAS) in the category Set of sets

justify critical syntactic constructs – such as recursion, pattern matching, and fold – for programming with

them. In this paper, we show that semantics for GADTs that specialize to the IAS for ADTs are necessarily

unsatisfactory. First, we show that the functorial nature of such semantics for GADTs in Set introduces

ghost elements, i.e., elements not writable in syntax. Next, we show how such ghost elements break para-

metricity. We observe that the situation for GADTs contrasts dramatically with that for ADTs, whose

IAS coincides with the parametric model constructed via their Church encodings in System F. Our anal-

ysis reveals that the fundamental obstacle to giving a functorial IAS for GADTs is the inherently partial

nature of their map functions. We show that this obstacle cannot be overcome by replacing Set with other

categories that account for this partiality.

Keywords: GADTs; functorial semantics; (higher-order) initial algebra semantics; partial functions

1. Introduction

As functional languages have become increasingly sophisticated, so too have the data types they
support. Algebraic data types (ADTs) – i.e., data types that are essentially tree types – are well-
known to support an initial algebra semantics (IAS) in any category with enough structure (Manes
and Arbib 1986). The IAS interpretation of an ADT comprises exactly the interpretations of the
terms that are writable in its syntax. IAS interpretations of ADTs provide semantic justification
for useful computational tools for programming with them, such as pattern matching, recursion
rules, induction rules, etc. Also fundamental is that the interpretation of the type constructor
defined by an ADT can be extended to a functor whose action onmorphisms interprets the ADT’s
syntactic map function. Categorical models in which ADTs have IAS interpretations include those
of (Johann and Ghani 2007; Johann et al. 2021; Manes and Arbib 1986). In the model of (Johann
et al. 2021), the syntactic generalization of ADTs known as nested types (Bird and Meertens 1998)
also has IAS interpretations (Manes andArbib 1986; nLab authors 2019). Examples of nested types
include perfect trees and bushes; see Section 3 below.

In addition to ADTs and nested types, modern functional languages such as Haskell, Agda, and
OCaml support generalized algebraic data types (GADTs) (Peyton Jones et al. 2006). As their name
suggests, GADTs syntactically generalize nested types (and thus further generalize ADTs), so that
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ADTs nested types GADTs
syntactically
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syntactically

generalized by

(1)

This sequence of syntactic generalizations suggests that a corresponding sequence of semantic
generalizations might also hold. Specifically, since nested types (and thus ADTs) have IAS inter-
pretations as functors on the category Set of sets and functions between them, we might expect
that there is also an IAS interpretation of GADTs as functors on Set. Further, we might expect that
this IAS of GADTs specializes to the standard IAS for nested types. Then, this interpretation of
GADTs, like the standard IAS of nested types, would specialize to the standard IAS of ADTs. A
semantic analogue of (1), if it existed, would formally justify the use of the word “generalized” in
the moniker “generalized algebraic data type.”

In this paper, we show that, unfortunately, there is no semantic analogue of (1) because there is
no reasonable IAS interpretation of GADTs as functors on Set. A GADT programmer is likely to
use GADTs precisely because they exhibit different behaviors at different types. They are therefore
likely to consider a GADT to be completely specified by its syntax, i.e., to contain no data elements
other than those writable in its syntax. But when GADTs are thought of in this way, the shape of
a particular element of a GADT is actually determined by the data it contains. This is in marked
contrast to the situation for ADTs and nested types, whose type uniformity gives rise to IAS inter-
pretations that allow them to be regarded as type-independent containers that can be filled with
data of any type. The main result of the first part of this paper shows that the type non-uniformity
of GADTs entails that they cannot have IAS interpretations as functors on Set without violating
properties that we expect of models of languages that support them. In particular, Example 8 of
Section 5 shows that a language supporting GADTs cannot have parametric models (Reynolds
1983) in which GADTs are interpreted as functors on Set, at least not if those interpretations are
to coincide with the standard IAS for those GADTs that are ADTs and nested types.1 This finding
is unintuitive, novel, and surprising.

The fact that GADTs do not have such specializable IAS interpretations as functors on Set
prompts us to consider interpreting GADTs as functors on other categories. Observing that map-
ping functions over elements of GADTs is notorious for being only partially defined (Johann and
Cagne 2022; Johann and Ghani 2008; Johann and Polonsky 2019) compels us to seek IAS inter-
pretations of GADTs as functors on categories with inherent notions of partiality. But since the
IAS interpretation of a GADT should support pattern matching, recursion rules, induction rules,
and other IAS-derived programming tools for that GADT, it should comprise exactly the inter-
pretations of the terms that are writable in the GADT’s syntax. And since the IAS interpretation
of a GADT should coincide with the standard IAS interpretation whenever the GADT is actually a
nested type or an ADT, the semantic treatment of partial functions must specialize to the standard
semantic treatment of everywhere-defined functions. The latter entails that we take our categories
with inherent notions of partiality to have as subcategories the usual categories supporting IAS for
nested types (including ADTs).

A concrete example of such a category is the category PSet of sets and partial functions between
them. Indeed, this category has Set as a subcategory, and its objects are precisely those of Set.
Drawing inspiration from PSet, in Section 6 we use the considerations of the previous paragraph
to identify other categories that similarly capture computationally relevant notions of partiality.
We consider the main feature of computationally relevant partiality to be that functions propagate
undefinedness. This behavior is akin to that of functions that are strict in the sense of (Burn et al.
1986) and explicitly requiring it captures the computational expectation that a function cannot
produce a value when given as an input an undefined value produced by a(nother) function. The
main result of the second part of this paper is Theorem 18, which considers IAS interpretations of
GADTs in categories equipped with computationally relevant notions of partiality. It shows that,
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in any such category, any extension to GADTs of the standard IAS for nested types in which the
interpretations of the type constructors defined by GADTs extend to functors must be trivial.

Taken together, the two main results of this paper lead us to conclude that GADTs cannot be
interpreted as functors in any reasonable computational setting. So if a functorial semantics like
the one we seek is possible, then it will be necessarily in a setting much more exotic than the ones
GADT programmers are accustomed to using to understand their programs.

This paper is an extended version of the LSFA 2021 paper (Johann et al. 2021). The results of
Sections 2 through 5 were first reported by (Johann et al. 2021), although they have been reworked
here. The work in Section 6 is entirely new.

2. Syntax and Semantics of ADTs

A (unary) ADT has the form2

T a= C1t11 . . . t1k1 | . . . | Cntn1 . . . tnkn

where each tij is a type depending only on a. Such a data type can be thought of as a “container” for
data of type a. The data in an ADT are arranged at various positions in its underlying shape, which
is determined by the types of its constructors C1, . . . , Cn. An ADT’s constructors are used to build
the data values of the data type, as well as to analyze those values using pattern matching. ADTs are
used extensively in functional programming to structure computations, to express invariants of
the data over which computations are defined, and to ensure the type safety of programs specifying
those computations.

List types are the quintessential ADTs. The shape of the container underlying the type

List a= Nil | Cons a (List a)

is determined by the types of its two constructors Nil :: List a and Cons :: a→ List a→ List a.
These constructors specify that the data in a list of type List a are arranged linearly. The shape
underlying the type List a is therefore given by the set N of natural numbers, with each natural
number representing a choice of length for a list structure, and the positions in a structure of
shape n given by natural numbers ranging from 0 to n− 1. Since the type argument to every
occurrence of the type constructor List in the right-hand side of the above definition is the same
as the type instance being defined on its left-hand side, the type List a enforces the invariant that
all of the data in a structure of this type have the same type a. In a similar way, the tree type

Tree a= Leaf a | Node (Tree a) a (Tree a)

of binary trees has as its underlying shape the type of binary trees of units, and the positions in a
structure of this type are given by sequences of L (for “left”) and R (for “right”) navigating a path
through the structure. The type Tree a enforces the invariant that all of the data at the nodes and
leaves in a structure of this type have the same type a.

Since the shape of an ADT structure – i.e., a structure whose type is an instance of an ADT –
is independent of the type of data it contains, ADTs can be defined polymorphically. As a result,
an ADT structure containing data of type a can be transformed into another ADT structure of
the exact same shape containing data of another type b simply by applying a given function
f :: a→ b to each of its elements. In other words, for every ADT T a, its underlying type con-
structor T can bemade an instance of Haskell’s Functor class by defining a type-and-data-uniform,
structure-preserving, data-changing function mapT for it.

3 Then, given a type-independent way
of rearranging an ADT structure’s shape T a into the shape for another ADT structure T′ a, we get
the same structure of type T′ b regardless of whether we first rearrange the original structure of
type T a into one of type T′ a and then usemap

T′
to convert that resulting structure to one of type

T′ b, or we first usemapT to convert the original structure of type T a to one of type T b and then
rearrange that resulting structure into one of type T′ b. For example, if f :: a→ b, t :: Tree a, and
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g :: Tree c→ List c is a polymorphic function (note that g’s type is implicitly universally quanti-
fied over c) that arranges trees into lists in a type-independent way, then we have the following
rearrange-transform property:

mapList f (g t) = g (mapTree f t)

2.1 ADTs as functors

The standard way to understandADTs is at least fixpoints4 of (first-order) functors on the category
interpreting types. This category is typically taken to be the category Set, whose objects are sets and
whose morphisms are functions between them, and we will do so here unless otherwise specified.
But, as shown in (Johann and Polonsky 2019), we can interpret types as objects in any locally
presentable category (Adámek and Rosický 1994) without affecting the development below.

Syntactically, ADTs can be represented as fixpoints in any language with primitives for sum
types, product types, and recursion. If μ is the fixpoint operator in such a language, and if 1 is its
unit type, then the fixpoint representations of the ADTs List a and Tree a are

List a= μX. 1+ a× X (2)

and

Tree a= μX. a+ X× a× X (3)

respectively. That is, List a can be seen as a fixpoint of FList a, where FList a X= 1+ a× X, by (2),
since

List a= 1+ a× List a

Indeed, every element of List a is either empty or is obtained by consing an element of type a onto
an already-existing structure of type List a, so that the above fixpoint equation is nothing more
than a rewriting of the Haskell data type declaration for List a. Analogously, Tree a can be seen
as a fixpoint of FTree a, where FTree a X= a+ X× a× X, by (3). The intent here is that List a, i.e.,
μFList a, should be interpreted by the semantic fixpointμFList a, where the functor FList a interprets
the type constructor FList a, and Tree a, i.e.,μFTree a, should be interpreted by the semantic fixpoint
μFTree a, where the functor FTree a interprets FTree a.

5 A similar situation obtains for other ADTs.
The fixpoint equations above are entirely sensible at the level of types. But to ensure that the

syntactic fixpoint representing an ADT actually denotes a semantic object computed as a semantic
fixpoint, the corresponding semantic fixpoint calculation must converge. If, as is typical, we inter-
pret our types as sets, then the fixpoint being taken must be of a functor on the category Set of sets
and functions between them, rather than merely of a function between sets nLab authors (2019).
That is, the function F interpreting the type constructor F constructing the body of a syntactic
fixpoint must not only have an action on sets but must also have a functorial action on functions
between sets. Reflecting this requirement back into syntax gives that F must support a function
map satisfying the functor laws. That is, Fmust be an instance of Haskell’s Functor class (with the
aforementioned caveat about the functor laws).

Requiring F to be a functor is critical for the interpretation μF of the ADT T a= μF to exist.
But to ensure that μF is itself a functor, so that the type constructor T associated with T a also
supports its own map function mapT, we can require that F be a functor on the category SetSet

of functors and natural transformations on Set. That is, we can require that F be a higher-order
functor on Set. Writing H in place of F to emphasize that it is higher-order, and reflecting this
requirement back into syntax, we have that T a= (μH) a for a “type constructor constructor” H
that supports suitable6 map functions.

A concrete example is given by the ADT List a. This type is modeled as the fixpoint μFList a of
the first-order functor whose action on sets is given by FList a X = 1+ a× X and whose action on

https://doi.org/10.1017/S0960129524000161 Published online by Cambridge University Press



Mathematical Structures in Computer Science 5

functions is given by FList a f = id1 + ida × f . The type constructor List is modeled by the func-
tor that is the fixpoint μH of the higher-order functor H whose action on a functor F is given
by the functor H F whose actions on sets and functions between them are given by H F X =

1+ X × F X and H F f = id1 + f × F f , respectively, and whose action on a natural transforma-
tion η is the natural transformation whose component at X is given by (H η)X = id1 + idX × ηX .
Reflecting the functorial action of μH back into syntax gives exactly Haskell’s built-inmap func-
tion as the type-and-data-uniform, structure-preserving, data-changing function associated with
List.

Note that the rearrange-transform property for fixpoint representations of ADTs is simply the
reflection back into syntax of the instance of naturality for the type-independent function that
rearranges structures of type T a into ones of type T′ a and the structure-preserving, data-changing
functions mapT f and mapT′ f for a function f :: a→ b, where T and T′ are the type constructors
associated with these ADTs, respectively.

Whenever a data type has an interpretation as the least fixpoint of a functor – or, equivalently
by Lambek’s Lemma, as the carrier of the initial algebra of that functor – we say that the data type
has an initial algebra semantics (IAS). As mentioned in Section 1, ADTs and nested types are well-
known to have IAS (Johann and Ghani 2007; Johann et al. 2021; Manes and Arbib 1986). Having
an IAS is the gold standard semantics for a data type: an IAS guarantees that the data type supports
pattern matching on its constructors, an induction rule that can be used to prove properties on
it, an elimination rule guaranteeing that functions over it can be written by recursion, etc. These
essential programming tools are just reflections back into syntax of fundamental properties of IAS.

3. Syntax and Semantics of GADTs

Generalized algebraic data types (GADTs) (Peyton Jones et al. 2006) relax the restriction on the
type instances appearing in a data type definition. The special form of GADTs known as nested
types (Bird and Meertens 1998) allows the data constructors of a GADT to take as arguments data
whose types involve type instances of the GADT other than the one being defined. However, the
return type of each constructor of a nested type must still be precisely the one being defined. This
is illustrated by the definition

PTree a= PLeaf a | PNode (PTree (a× a))

of the nested type PTree a of perfect trees, which introduces the data constructors
PLeaf :: a→ PTree a and PNode :: PTree (a× a)→ PTree a. It enforces not only the invariant
that all of the data in a structure of type PTree a is of the same type a but also the invariant that
all perfect trees have lengths that are powers of 2. GADTs allow their constructors both to take as
arguments and return as results data whose types involve type instances of the GADT other than
the one being defined. An example of a GADT is Seq, whose definition is

data Seq a where

Const :: a→ Seq a

Pair :: Seq a→ Seq b→ Seq (a× b)

(4)

Since the return type of the data constructor Pair is not of the form Seq a for any variable a, Seq
is a proper GADT, i.e., a GADT that is not a nested type.

By contrast with the ADT List a, where the type parameter a is integral to the type being
defined, the type parameter a appears in both PTree a and Seq a as a “dummy” parameter used
only to give the kind ∗ → ∗ of the type constructors PTree and Seq. This is explicitly captured in
the alternative “kind signature” Haskell syntax, which represents PTree and Seq as
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data PTree :: ∗ → ∗where

PLeaf :: a→ PTree a

PNode :: PTree (a× a)→ PTree a

and

data Seq :: ∗ → ∗where

Const :: a→ Seq a

Pair :: Seq a→ Seq b→ Seq (a× b)

respectively. A GADT – even a nested type – thus does not define a family of inductive types,
one for each type argument, like an ADT does, but instead defines an entire family of types that
must be constructed simultaneously. That is, a GADT defines an inductive family of types. Letting

∗n → ∗ denote

n asterisks
︷ ︸︸ ︷

∗ → ∗ → · · · → ∗ → ∗, we take the general form of a GADT to be

data G :: ∗n → ∗ where

Cl :: Fl al → G Kl al
...

Cm :: Fm am → G Km am

(5)

Here, for each i ∈ {1, . . . ,m}, Fi is a type constructor with type signature ∗ni → ∗ that can
involve G itself, and each component Kij of Ki is either a projection or a type constructor in the
language without GADTs whose type signature is ∗ni → ∗. In general, a type constructor T with

type signature ∗k → ∗ is said to have arity k. The overline notation denotes a finite list whose
length is exactly the arity of the type constructor being applied to it. The number of type construc-
tors in each Ki is thus n, and the number of type variables in ai is thus ni. In addition, we require
that each type constructor Fi is constructed inductively according to the following grammar, where
p ranges from 1 to the length of a:

F a, Fl a, F2 a := ap | Fl a× F2 a | Fl a+ F2 a | L→ F a | G (F a) |H (F a) (6)

This grammar is subject to the following restrictions. In the fourth clause, neither G nor any
(other) proper GADT appears in F, and L is a closed type. In the fifth clause, neither G nor any
(other) proper GADT appears in any of the n type constructors in F. These requirements prevent
the nesting of proper GADTs, which would not only render the ambient language inconsistent
(Norell 2022) but would also make it impossible to obtain a parametricity theorem for any lan-

guage extended with GADTs. In the sixth clause, H :: ∗k → ∗ is a data type constructor defined by
any nested type (including truly nested types). It thus subsumes the case in which F a is a closed
type.

All of the particular GADTs considered in this paper conform to the syntax in (5). In addition
to specifying the syntax of the GADTs we consider, we also assume that GADTs come equipped
with constructs for defining functions (uniquely) over them. More precisely, each n-ary GADT G
comes together with a rule of the following form:

Given a type expression E a, whose n free type variables are the components of (7)

a, and terms ti :: ∀ai. Fi ai → E Ki ai for each i ∈ {1, . . . ,m}, there is a unique

term t :: ∀a. G a→ E a such that t ◦ ci = ti for each i ∈ {1, . . . ,m}.

This will be important in the proof of Theorem 18 below.
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Proper GADTs are used in precisely those situations in which different behaviors at different
instances of a data type are desired. This is achieved by allowing the programmer to give the type
signatures of the GADT’s data constructors independently – as is made explicit by the alternative
syntax above – and then using pattern matching to force the desired type refinement. The same
technique can be used to support type-indexed inductive families in dependent type theory. Note,
however, that the impredicative nature of languages supporting GADTs entails they behave quite
differently from those supporting type-indexed inductive families.

Applications of GADTs include generic programming, modeling programming languages via
higher-order abstract syntax, maintaining invariants in data structures, and expressing constraints
in embedded domain-specific languages. GADTs have also been used, e.g., to implement tagless
interpreters (Pasalic and Linger 2004; Peyton Jones et al. 2006; Pottier and Régis-Gianas 2006), to
improve memory performance (Minsky 2015), and to design APIs (Penner 2020).

3.1 GADTs are not functors

In this section, we show that, by contrast with the situation for ADTs and nested types, proper
GADTs do not support map functions. That is, since proper GADTs are not uniform in their type
parameters, they cannot be regarded as type-independent containers that can be filled with data
of any type the way that ADTs and nested types can. But since a GADT’s map function is just the
reflection back into syntax of the functorial action of the functor interpreting it, this entails that, by
contrast with the situation for ADTs and nested types, proper GADT syntax cannot be interpreted
as functors on Set. We will consider various approaches to recovering functorial interpretations
of GADTs in the remainder of the paper.

Example 1. The GADT Seq defined in (4) comprises sequences of any type a, and sequences
obtained by pairing the data in two already-existing sequences. Syntactically, Seq contains no ele-
ments other than these. We naturally expect a GADT’s interpretation, like those for ADTs and nested
types, to contain only those data elements that are representable by its syntax. However, the defini-
tion in (4) specifies that an element of Seq of the form Pair t1 t2 must have the shape of a sequence
of data of pair type rather than a sequence of data of an arbitrary type. This means that the clause
of map for the Pair constructor should feed map a function f :: (a× b)→ c and a term of the form
Pair t1 t2 for t1:: Seq a and t2:: Seq b, and produce a term Pair t3 t4 for some appropriately typed
terms t3 and t4.However, it is not clear how to achieve this since c need not necessarily be a product
type. And even if c were known to be of the form w× z, we still wouldn’t necessarily have a way to
produce data of type w× z from only f :: a× b→w× z and t1 and t2 unless we knew, e.g., that f
was a product (f1:: a→w)× (f2:: b→ z) of functions. Since Seq does not support a map function,
it cannot be made into a functor.

As already noted, the fact that the syntax of GADTs allows non-variable type arguments in the
return types of their data constructors establishes a strong connection between a GADT’s shape
and the data it contains. With ADTs, we first choose the shape of the container and then fill that
container with data of whatever type we like; critically, the choice of shape is independent of the
data to be stored. With GADTs, however, the shape of the container may actually depend on (the
type of) the data to be contained. For example, Const can create data of any shape Seq a, but
Pair can produce data of shape Seq a only if a is a pair type. As a result, modifying the data in a
GADT’s container may change the shape of that container, or even produce an ill-typed result.

To determine the possible shapes of a GADT’s container, we must pattern match the type of
the data to be contained. For this, it is essential that a GADT calculus supports an equality type
Eq. This type is a singleton set when its two type arguments are the same and is the empty set oth-
erwise. That is, it is the syntactic reflection of semantic equality function Eq. Then, every GADT
can be written in terms of Eq (Cheney and Hinze 2003; Hinze 2003; McBride 1999; Schrijvers
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8 P. Cagne et al.

et al. 2009; Sheard and Pasalic 2004), so that Eq is, in some sense, the quintessential GADT.
Unfortunately, however, Eq itself cannot be interpreted as a functor on Set, as the next example
shows.

Example 2. The equality GADT Eq is defined by

data Eq a b where

Refl :: Eq a a
(8)

This GADT cannot be made into a functor: if Eq supported a function

mapEq :: (a→ c)→ (b→ d)→ Eq a b→ Eq c d

then defining

eqElim :: Eq a b→ b→ a

eqElim Refl x= x

would allow us to construct an element

eqElim (mapEq id0 absurd Refl) 1

of the empty type 0, where 1 is (by abuse of notation) the unique element of the unit type 1, and
absurd :: 0→ 1 is the empty function. But this is not possible.

Since a proper GADT can always be written in terms of Eq, its map function must necessarily
involve Eq’s map function, too. But since the Eq does not support a map function, it is immediate
that GADTs cannot, in general, support map functions either. For Seq, this can be seen by noting
that, given a function f :: (a× b)→ c, the term mapEq (a×b) f Refl would have type Eq (a× b) c.
But, as above, we have no way to produce a term of this type in the absence of a functorial map
function for Eq, and thus no way to produce a term of type Seq c using the Pair constructor, as is
required by the clause ofmapSeq for Pair. A similar analysis is obtained for other proper GADTs.

4. Recovering Functoriality

One way to read the results of Section 3.1 is as saying that, if we want to interpret types in Set,
then wemust be willing to accept that the interpretations of proper GADTswill necessarily contain
“extra” elements that are not reachable in syntax. We will call such extra elements in the semantics
ghost elements. The functorial completion (Johann and Polonsky 2019) of a GADT adds ghost
elements to complete the interpretation of its syntax from a function on types to a functor on
types. As we have seen, functoriality is absolutely essential to the initial algebra semantics of data
types.

Since being a functor entails supporting a map function satisfying the functor laws, the func-
torial interpretation of a data type must include the entire “map closure” of its syntax. Intuitively,
this means that the functorial interpretation of Eq, for example, contains not just interpretations
of those data elements representable by its syntax, but also interpretations of all data elements of
the formmapEq f g s for all types t1, t2, t3, and t4, all functions f :: t1 → t3 and g :: t2 → t4 defin-
able in the language, and all s :: Eq t1 t2, as well as all interpretations of data elements of the form
mapEq h k s

′ for all appropriately typed functions h and k and each element s′ already added to
the data type, and so on. Functorial completion for Eq adds, in particular, interpretations of the
problematic data elements of the formmapEq h k Refl from Example 2, even though thesemay not
themselves be of the form Refl. All of these elements are ghost elements for Eq. Similarly, we see
that the functorial interpretation of Seq contains not just interpretations of those data elements
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representable by its syntax, but also interpretations of all data elements of the formmapSeq f s for
all types t1 and t2, all functions f :: t1 → t2 definable in the language, and all s :: Seq t1, as well as
interpretations of all data elements of the formmapSeq g s

′ for each appropriately typed function g
and each element s′ already added to the data type, and so on. Functorial completion for Seq adds,
in particular, interpretations of the problematic data elements of the form mapSeq g (Pair t1 t2)
from Section 3.1, even though these may not themselves be of the form Pair t3 t4 for any terms t3
and t4. All of these elements are ghost elements for Seq. Importantly, functorial completion adds
no ghost data elements to the interpretations of GADTs that are ADTs or other nested types.

We will now make the above precise, by showing formally that the functorial completion of a
proper GADT necessarily contains more data elements than those representable in the GADT’s
syntax because it adds ghost elements to the GADT’s interpretation. When interpreted as their
functorial completions, GADTs can, like ADTs, be modeled as fixpoints of higher-order functors.
Syntactically, higher-orderness is essential: since the type arguments to the GADT being defined
are not necessarily uniform across all of its instances in the types of its data constructors, GADTs
cannot be seen as first-order fixpoints the way ADTs can. Semantically, (higher-order) functors
are essential: as in the standard semantics for ADTs, functoriality guarantees the existence of the
(higher-order) fixpoints being computed (nLab authors 2019).

To illustrate the process of computing the functorial completion of a proper GADT, consider
again the GADT Seq. Because its type argument varies in the instances of Seq appearing in the
types of its data constructor Pair, Seq cannot be modeled as the fixpoint of any first-order functor.
As shown in (Johann and Polonsky 2019), it can, however, be modeled as a solution to the higher-
order fixpoint equation

H F b= b + (Lanλcd.c×d λcd.Fc× Fd) b

where LanK F is the left Kan extension of the functor F along the functor K. In general, the left
Kan extension LanK F : E → D of F : C → D along K : C → E is the best functorial approximation
to F that factors through K. Intuitively, “best functorial approximation” means that LanK F is the
smallest functor that both extends the image of K to D and agrees with F on C, in the sense that,
for any other such functor G, there is a morphism of functors (i.e., a natural transformation) from
LanK F to G. Formally, this is captured by the following definition (MacLane 1971):

Definition 3. If F : C → D and K : C → E are functors, then the left Kan extension of F along
K is a functor LanK F : E → D together with a natural transformation η : F → (LanK F) ◦K such
that, for every functor G : E → D and natural transformation ³ : F →G ◦K, there exists a unique
natural transformation ´ : LanK F →G such that (´K) ◦ η = ³ . This is depicted in the diagram

C D

E

F

K

LanK F

G

To represent GADTs as fixpoints in a setting in which types are interpreted as sets, a calcu-
lus must support a primitive construct Lan in such a way that the type constructor LanK F is the
syntactic reflection of the left Kan extension LanK F of the functor F interpreting F along the

functor K interpreting K. If F and the n components of K all have type signature ∗k → ∗, then

LanK F has type signature ∗n → ∗. It also comes together with a term eta :: ∀b. F b→ LanK F K b
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and the following rule: Given a type expression E a, whose n free type variables are the compo-

nents of a, and a term u :: ∀b. F b→ E K b, there is a unique term t :: ∀a. LanK F a→ E a such that
t ◦ eta= u. For our purposes, the categories C, D, and E must all be of the form Setm for some
m, and the functors F and K must be finitely accessible. This ensures that the left Kan exten-
sions LanK F all exist, since each category Setm is locally finitely presentable (see (Johann and
Polonsky 2019) for a detailed account). Using Lan we can then rewrite the type of a constructor
C :: F a→ G (K a) as C :: (LanK F) a→ G a since, by Definition 3, morphisms (i.e., natural transfor-
mations) from F to G ◦K are in one-to-one correspondence with those from LanK F to G. That is,
writing F ⇒G for the set of natural transformations from a functor F to a functor G, we have

F ⇒G ◦K 
 LanK F ⇒G (9)

The calculus must also support a primitive type constructorμ that is the syntactic reflection of the
(now higher-order) fixpoint operator on SetSet . Using μ and Lan we can then represent a GADT
as a higher-order fixpoint. For example, we can represent the GADT Seq as

Seq a= (μφ.λb. b+ (Lanλcd.c×dλcd.φc× φd) b) a

The fact that LanK F is the best functorial approximation to F factoring through K means that
the type constructor LanK F computes the smallest collection of data that is generated by the cor-
responding GADT data constructor’s syntax and also supports a map function. Such a fixpoint
representation of any GADT thus comprises the smallest data type that both includes the data
specified by that GADT’s syntax and also supports a map function. When viewed as fixpoints,
then, proper GADTs are underspecified by their syntax.

We can use Definition 3 to make precise the intuition that functorial completion adds in new
elements to interpretations of proper GADTs. This will be shown explicitly in the next example.
Despite its simplicity, the GADT defined in (10) serves as an informative case study highlighting
the difference between simply interpreting a proper GADT’s syntax and interpreting a proper
GADT’s syntax as a functor – even if we are content to consider only the data elements it contains
and ignore whether or not it supports a map function.

Example 4. Syntactically, the GADT G defined by

data G a where

C :: G 1
(10)

comprises a single data element, namely C :: G 1. As the definition of G makes clear, G’s effect is
simply to test its argument for equality against the unit type 1. To compute the interpretation of G’s
fixpoint representation we first note that the type of G’s solitary constructor C :: G 1 is equivalently
expressed as C :: 1→ G 1 or, using (9), as C :: (Lanλu.1 λu.1) a→ G a, where λu.1 is the syntactic
reflection of the constantly 1-valued functor from the category Set0 with a single object to Set. We
can therefore represent G as

G a= (μφ.λb.(Lanλu.1 λu.1) b) a

The interpretation of G is obtained by computing the fixpoint of the interpretation of the body
λb.(Lanλu.1 λu.1) b of the syntactic fixpoint μφ.λb.(Lanλu.1 λu.1) b and applying the result to a.
But since the recursion variable φ does not appear in this body, the interpretation of the fixpoint
is just the interpretation of the body itself. The interpretation of G a is therefore (Lanλu.1λu.1)A,
where A interprets a. It turns out, however, that, for any set A, (Lanλu.1λu.1)A is, in fact, exactly A.
Indeed, Proposition 7.1 of (Bush et al., 2003) gives that (Lanλu.1λu.1)A can be computed as

( ⋃

U:Set0, f :(λu. 1)U→A

(λu.1)U
)

/ ∼ =
( ⋃

U:Set0, f :1→A

1
)

/ ∼
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where U is the unique object of Set0, ∗ is the unique element of the singleton set 1, and ∼ is the
smallest equivalence relation such that (U, f , ∗) and (U, f ′, ∗) are related if

U U

A

( u.1) idU

f f

=

1 1

A

id1

f f

commutes, i.e., if f = f ′. Since the relation generating ∼ is already an equivalence relation, we have
that (U, f , ∗)∼ (U, f ′, ∗) iff f = f ′. Thus, up to isomorphism, (Lanλu.1λu.1)A= {f : 1→A}, i.e.,
(Lanλu.1λu.1)A=A.

Notice that this is different from what we expect just by looking at G’s syntax. Indeed, we expect
exactly one data element at instance G 1 and no elements at any other instances. However, the inter-
pretation of the fixpoint representation of G has data elements at every instance other thanG 0.These
additional data elements can be obtained by reflecting back into syntax the elements mapG fa c ∈GA
resulting from applying the functorial actionmapG of G’s interpretation G to the functions fa : 1→A
determined by the elements a of A �= ∅ and the interpretation c of C.

More fundamentally, we have

Example 5. Syntactically, the GADT Eq defined in (8) comprises the data elements Refl :: Eq c c
for each type c, and no others. In other words, Eq’s effect is to test the equality of its two argu-
ments. To compute the interpretation of the binary GADT Eq’s fixpoint representation, we first note
that Eq’s sole constructor Refl :: Eq c c is equivalently expressed as Refl :: 1→ Eq c c or, using (9),
as Refl :: (Lanλc.(c,c) λc.1) a b)→ Eq a b, where λc.1 is the syntactic reflection of the constantly 1-
valued functor from the category Set to itself, and λc.(c, c) is that of the diagonal functor from Set to
Set2 mapping every set C to the pair (C, C).We can therefore represent Eq as

Eq a b= (μφ.λc.(Lanλc.(c,c) λc.1) c) a b)

The interpretation of Eq is obtained by computing the fixpoint of the interpretation of the body
λd e.(Lanλc.(c,c) λc.1) d e of the syntactic fixpoint μφ.λd e.(Lanλc.(c,c) λc.1) d e and applying the
result to a and b. But since the recursion variable φ does not appear in this body, the interpretation
of the fixpoint is just the interpretation of the body itself. The interpretation of Eq a b is therefore
(Lanλc.(c,c)λc.1) (A, B), where A and B interpret a and b, respectively. It turns out, however, that,
for any sets A and B, (Lanλc.(c,c)λc.1) (A, B) is, in fact, the singleton set 1. Indeed, Proposition 7.1 of
(Bush et al. 2003) gives that (Lanλc.(c,c)λc.1) (A, B) can be computed as

( ⋃

C:Set, f :(λc. (c,c)) C→(A,B)

(λc.1) C
)

/ ∼ =
( ⋃

C:Set, f :C→A, g:C→B

1
)

/ ∼

where∼ is the smallest equivalence relation such that (C, f , g, ∗) and (C′, f ′, g′, ∗) are related if there
exists h : C → C′ such that

( c.(c, c))C ( c.(c, c))C

(A, B)

( c.(c,c)) h

( f ,g) ( f ,g )
=

(C,C) (C ,C )

(A, B)

(h,h)

( f ,g) ( f ,g )
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commutes. We can see that any element (C, f , g, ∗) is related to (A× B, π1, π2, ∗), where π1 :A×

B→A and π2 :A× B→ B are the first and second projections out of A× B, respectively. In other
words, ∼ relates any element with any other. Thus, up to isomorphism, (Lanλc.(c,c)λc.1) (A, B)= 1.

Notice that this is different from what we expect just looking at Eq’s syntax: We expect exactly
one data element at instance Eq a a for each type a and no elements at any other instances.
However, the interpretation of the fixpoint representation of Eq a b has data elements at every
instance. These additional data elements can be obtained by reflecting back into syntax the ele-
ments mapEq (π1, π2) r ∈ Eq(A, B) resulting from applying the functorial action mapEq of Eq’s

interpretation Eq to π1, π2, and the interpretation r of Refl in Eq(A× B,A× B).

4.1 Functorial interpretations in Set are insufficient

We have now seen that even though the functorial completions of G and Eq give the smallest
extending functor interpreting GADTs, they must still introduce ghost elements. And since all
proper GADTs can be written in terms of Eq, the same is true for them. But why should a pro-
grammer accept elements in the interpretation of a proper GADT that are not reachable in syntax?
Forced to choose, a programmer would likely find the idea that a proper GADT contains data not
specified by its syntax more than a little disturbing. What, they might ask, should a data type con-
tain other than data that are constructed using its data constructors? That is, why should a proper
GADT’s interpretation contain ghost elements that are not specified by its syntax, and are only
accessible via applications of its interpretation’s functorial action?

From a semanticist’s point of view, on the other hand, functorial completions of GADTs
are entirely reasonable. Indeed, a semanticist would likely find the nonfunctorial nature of a
GADT’s syntax unnerving at best. After all, they would likely argue, if a GADT is supposed
to be a data type, then the data in it shouldn’t change or become ill-typed just because a
function is mapped over it. The fact that this happens to GADTs when regarded just as their
syntax actually highlights how GADTs do not generalize the essential, container-ish nature of
ADTs at all. A semanticist might therefore conclude that GADTs are, at the very least, seriously
misnamed.

Note, however, that even if we do accept ghost elements in the interpretation of GADTs, they
still don’t behave as expected. Indeed, as we show in Section 5, a language interpreting GADTs as
their functorial completions cannot have parametric models (Reynolds 1983), as we would expect
them to do. This means that languages with GADTs do not necessarily enjoy consequences of
parametricity such as representation independence (Ahmed et al. 2009; Dreyer et al. 2012), equiv-
alences between programs (Hur and Dreyer 2011), deep induction principles (Johann and Ghiorzi
2022; Johann and Polonsky 2020), and useful (“free”) theorems about programs derived from their
types alone (Wadler 1989).

5. Functorial Completion Does Not Support Parametric Semantics

Relational parametricity encodes a powerful notion of type uniformity, or representation inde-
pendence, for data types in functional languages. It formalizes the intuition that a polymorphic
program must act uniformly on all of its possible type instantiations by requiring that every such
program preserves all relations between pairs of types at which it is instantiated. Parametricity was
originally put forth by Reynolds (Reynolds 1983) for System F. It was later popularized asWadler’s
“theorems for free” (Wadler 1989), so called because it can deduce properties of programs solely
from their types, i.e., with no knowledge whatsoever of the text of the programs involved. Most of
Wadler’s free theorems are consequences of naturality for polymorphic list-processing functions.
However, parametricity can also derive results that go beyond just naturality, such as inhabitation
results. It can also be used to prove the equivalence of Church encodings and fixpoint representa-
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tions of ADTs and nested types by validating shortcut fusion and other program equivalences for
them (Johann 2002; Wadler 1989).

To show that interpreting GADTs as their functorial completions cannot lead to a parametric
semantics, and thus that the semantics they do lead to are unsatisfactory for reasoning about
programs involving GADTs, we will need to interpret data types not just in Set, but in a suitable
category of relations as well. The following definition is standard:

Definition 6. The category Rel has:

• objects: A relation is a triple (A, B, R), where R is a subset of A× B.

• morphisms: A morphism from (A, B, R) to (A′, B′, R′) is a pair (f :A→A′, g : B→ B′) of
functions in Set such that (fa, g b) ∈ R′ if (a, b) ∈ R.

• identities: The identity morphism on (A, B, R) is the pair (idA :A→A, idB : B→ B).

• composition: Composition is the componentwise composition in Set. That is, (g1, g2) ◦ (f1, f2)=
(g1 ◦ f1, g2 ◦ f2), where the composition being defined on the left-hand side is in Rel, and the two
componentwise compositions on the right-hand side are in Set.

We write R ∈ Rel (A, B) for (A, B, R) ∈ Rel. If R ∈ Rel (A, B) then we write π1R and π2R for the
domain A and codomain B of R, respectively. We write IA = (A,A, {(x, x) | x ∈A}) for the equality
relation on the set A.

The key idea underlying parametricity is to give each type G[a]7 with one free variable a a
set interpretation G0 taking sets to sets and a relational interpretation G1 taking relations R ∈

Rel (A, B) to relations G1 R ∈ Rel (G0 A,G0 B), and to interpret each term t (a, x) :: G[a] with one
free term variable x :: F[a] as a function t associating to each set A a morphism t A : F0 A→G0 A
in Set. Here, F0 is the set interpretation of F. These interpretations are given inductively on the
structures of G and t in such a way that they imply two fundamental theorems. The first is
an Identity Extension Lemma, which states that G1 IA = IG0A, and is the essential property that
makes a model relationally parametric rather than just induced by a logical relation. The second
is an Abstraction Theorem, which states that, for any R ∈ Rel (A, B), (t A, t B) is a morphism in
Rel from (F0 A, F0 B, F1 R) to (G0 A,G0 B,G1 R). The Identity Extension Lemma is similar to the
Abstraction Theorem except that it holds for all elements of a type’s interpretation, not just those
that interpret terms. Similar theorems are required for types and terms with any number of free
variables. In particular, if t is closed (i.e., has no free term variables) then t A ∈G0 A for all A ∈ Set,
and (t A, t B) ∈G1 R for all A, B ∈ Set and all R ∈ Rel(A, B).

Before showing that languages interpreting GADTs as their functorial completions cannot have
parametric models, we first show that languages interpreting them as the interpretations of their
Church encodings can. The Church encoding of an ADT or nested type (see, e.g., (Geuvers 2014;
Koopman et al. 2014; Pierce 2002)) represents that data type as a term in the higher-order poly-
morphic lambda calculus Fω (Barendregt 1984), an extension of System F whose type expressions
include functions from types to types (i.e., type constructors) and whose terms can abstract over
types of all kinds. In particular, expressions of any kind can be universally quantified over variables
of any kind. This makes it possible to give Church encodings of ADTs and nested types in Fω that
are similar to, e.g., the standard Church encoding of natural numbers in System F. For example,
the Church encoding of the type List a in Fω is

∀f.(∀b. f b) → (∀b. b → f b → f b) → f a

and that of PTree a is

∀f.(∀b. b → f b) → (∀b. f (b× b) → f b) → f a
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GADTs can be encoded in the same way. For instance, the Church encoding of the type Seq a is

∀f.(∀b. b → f b) → (∀c d. f c → f d → f (c × d)) → f a

while that of G a is

∀f. f 1→ f a

The fact that interpreting GADTs as the interpretations of their Church encodings does admit
parametric models (Atkey 2012), whereas interpreting them as their functorial completions does
not, means that these two interpretations of GADTs cannot possibly be equivalent. Taken together,
Examples 7 and 8 will show that they actually behave very differently with respect to parametricity.
This contrasts sharply with the fact that both ADTs and nested types have the same parametricity
properties regardless of whether they are interpreted as the interpretations of their Church encod-
ings or as their functorial completions. This is yet another way in which the functorial completion
semantics for GADTs is unsatisfactory: it specializes in the standard IAS for ADTs, but it doesn’t
share the same parametricity properties.

The existence of parametric models that interpret GADTs as the interpretations of their Church
encodings follows from, e.g., the existence of the parametric model of Fω constructed in (Atkey
2012). In that model, types are interpreted “in parallel” in (types corresponding to) Set and Rel
in the usual way, including the familiar “cutting down” of the interpretations of ∀-types to just
those elements that are “parametric” (Reynolds 1983; Wadler 1989) to ensure that the Identity
Extension Lemma holds. If the set interpretation of Eq is the function Eq and if the relational
interpretation of a closed type a with interpretation A is IA as intended, then the parametricity
property for a GADT is an inhabitation result saying that the set interpreting any instance of that
GADT contains exactly the interpretations of the data elements that can be formed using its data
constructors and whose type is that instance. The parametricity property for the Church encoding
of a GADT G gives that G a is inhabited iff data elements of the instance of G at a can be formed
using G’s data constructors. In particular, the parametricity property for the GADT G from (10)
gives thatG a contains a single data element if a is semantically equivalent to 1 and none otherwise.
Indeed, we have

Example 7. Let t be a closed term of type G a for the GADT G defined in (10), let G= (G0,G1) be
the interpretation of the Church encoding of G, let t be the interpretation of t, and let R ∈ Rel (A, B).
Then t A ∈G0 A and t B ∈G0 B and, by the Abstraction Theorem (Theorem 3) in (Atkey 2012), t A
and t Bmust be related in G1 R.However, under the semantics given in (Atkey 2012),which includes
the aforementioned interpretations of Eq and closed types, the relational interpretation G1 R of G is
itself IG01 when R is the relational interpretation I1 of 1, and the empty relation whenever R differs
from I1. Reflecting back into syntax we deduce that there can be no term in the type that is the Church
encoding of G a unless a is semantically equivalent to 1.

For functorial completion interpretations of GADTs, the story is completely different. If, as
intended, the set interpretation of LanK F is LanK F, where K is the set interpretation of K and F
is the set interpretation of F, then the exact same reasoning gives that the relational interpretation
of LanK F is LanK F, where K is the relational interpretation of K and F is the relational inter-
pretation of F. But under these interpretations, there can be no parametric model. The following
counterexample establishes this surprising result.

Example 8. In any parametric model, we must give both a set interpretation and a relational inter-
pretation for every type as described at the start of this section. In particular, for every GADT G
we must give an interpretation G= (G0,G1) such that, for every relation R ∈ Rel (A, B), we have
G1 R ∈ Rel (G0 A,G0 B). Intuitively, when G is viewed as a fixpoint, its data elements include those
given by its functorial completion. Since G1 is a functor, given any relation S ∈ Rel (C,D) and any
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morphism m : S→ R, G1 R must contain all elements of the form G1 m x for x ∈G1 S. But the two
components m1 : C →A and m2 :D→ B of m cannot be given independently of one another, since
Definition 6 entails that (m1 c,m2 d) must be in R whenever (c, d) is in S for (m1,m2) to be a
well-defined morphism of relations. The domain of G1 R thus depends on both A and B, rather
than simply on A. Likewise, the codomain of G1 R also depends on both A and B. The domain and
codomain therefore cannot simply be G0 A and G0 B, respectively. This suggests that GADTs might
fail to have relational interpretations, and thus might fail to have parametric models, as described in
the previous paragraph.

We can make this informal argument formal by providing a concrete counterexample. Consider
again the GADT G given by (10). The set functorial completion interpretation of G is Lanλu.1 λu.1,
i.e., is, by the reasoning of Example 4, the identity functor on Set. By the exact same reason-
ing, this time in Rel rather than in Set, the relational functorial completion interpretation of G is
Lanλu. I1 λu. I1, where λu. I1 is the constantly I1-valued functor from the category Rel 0 with a single
object to Rel. Indeed, this interpretation is still a left Kan extension, but now it is the left Kan exten-
sion determined by the functor interpreting λu.1 in Rel. For the Identity Extension Lemma to hold,
for every relation R ∈ Rel (A, B) we would need (Lanλu. I1 λu. I1) R to be a relation between the sets
(Lanλu.1 λu.1)A and (Lanλu.1 λu.1) B, i.e., between the sets A and B. However, this need not be the
case.

Consider the relation R= (1, 2, 1× 2),where 1× 2 relates the single element of 1 to both elements
of the two-element set 2.We expect (Lanλu. I1λu. I1) R to be a relation with domain 1. Since left Kan
extensions preserve projections (Riehl 2016), we can compute the domain as

π1

(

(Lanλu. I1λu. I1) R
)

= (Lanλu. I1λu. 1) R

(Note that the left Kan extension of λu. 1 along λu. I1 is a functor from Rel to Set.) By the same
reasoning as in Example 4, Proposition 7.1 of (Bush et al. 2003) gives that (Lanλu.I1λu.1) R can be
computed as

( ⋃

U:Rel0,m:(λu. I1)U→R

(λu.1)U
)

/ ≈ =
( ⋃

U:Rel0,m:I1→R

1
)

/ ≈

where U is the unique object of Rel0, ∗ is the unique element of the singleton set 1, and ≈ is the
smallest equivalence relation such that (U,m, ∗) and (U,m′, ∗) are related if

( u.I1)U u.I1)U

R

( u.I1) idU

m m

=

I1 I1

R

idI1

m

(

m

commutes, i.e., if m=m′. Since the relation generating ≈ is already an equivalence relation, we have
that (U,m, ∗)≈ (U,m′, ∗) iff m=m′. Thus, up to isomorphism, (Lanλu. I1λu. 1) R= {m : I1 → R}.
But this set is {(!, k0), (!, k1)}, where k0, k1 : 1→ 2 are the constantly 0-valued and 1-valued func-
tions in Set, respectively, and therefore π1

(

(Lanλu. I1λu. I1) R
)

is not 1, as would be needed for the
Identity Extension Lemma to hold. Since the Identity Extension Lemma does not hold for models
in which GADTs are interpreted by their functorial completions, such models cannot possibly be
parametric.

It is actually possible to construct a simpler counterexample to the Identity Extension Lemma
for functorial completion interpretations of GADTs using the relation R= (1, ∅, ∅). However, this
relation is somewhat artificial, in the sense that its domain is larger than is strictly necessary to
define an empty relation. Since it is also too degenerate to properly expose the mismatch between
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left Kan extensions at the level of sets and left Kan extensions at the level of relations, we give the
above example using the relation (1, 2, 1× 2) instead.

One way to read the result of this subsection is as in (Johann et al. 2021): if we interpret types
in Set and n-ary GADTs as functors from Setn to Set, then, as with software engineering’s iron
triangle, we can have any two of GADTs, functoriality, and parametricity we like, but we cannot
have all three.

6. Functorial Interpretations in PSet and Beyond

We have seen in Section 4.1 that interpreting GADTs as their functorial completions is unsatis-
factory. We note, however, that partiality is inherent in the syntax of GADTs. Indeed, one way
to understand Examples 1 and 2 is as showing that the map functions for Seq, as well as for Eq
(and thus those for all proper GADTs), do not map arbitrary functions over their elements. That
is, proper GADTs’ map functions are only partially defined (Johann and Cagne 2022; Johann and
Ghani 2008; Johann and Polonsky 2019). To interpret GADTs as functors without adding ghost
elements to their interpretations, the category in which we interpret themmust therefore account
for partial functions.

To find a semantics of GADTs that accounts for the partiality of their map functions, we need
to allow the functorial actions of GADTs’ interpretations to yield partial functions. However, the
interpretations of the functions that are representable in syntax and don’t involve mapping over
elements of GADTs should still be total. That is, we seek categories C that capture partiality in
the computationally relevant sense that once a computation diverges it does not become defined
again, and in which Set embeds in such a way that it can be considered the subcategory of “total
morphisms” of C for some reasonable notion of totality. Obviously, the category PSet of sets and
partial functions between them is such a category C since morphisms there propagate undefined-
ness. But rather than focusing on the specific category PSet, we present here an abstract framework
that encompasses much more. The advantage of introducing a framework is two-fold. First, our
main result (Theorem 18) holds in categories more general than PSet, including exotic categories
C in which Set embeds nicely as a subcategory of total morphisms. And secondly, the framework
does not require that the category of total morphisms is Set specifically. The latter entails that
Theorem 18 holds not just when the subcategory of total morphisms is Set, but when it is any
locally presentable category in which ADTs and nested types can be given their standard IAS.

The reader may wonder why we develop an abstract framework for our results about interpret-
ing GADTs as functors in PSet, but were content to restrict attention to the specific category Set
in the previous sections even though, as noted there, we could also have developed the results in
those sections for arbitrary locally presentable categories. The main reason is that how to move
from Set to locally presentable categories is well-known in the literature, so moving to the more
abstract setting in Sections 2 through 5 provides no additional insights that cannot be gleaned
from Set. On the other hand, how to move from PSet to more general categories C of the kind
we seek now has not previously been known, so the categorical framework for partiality that we
provide here is itself part of the contribution of this paper.

We now identify those categories capturing computationally relevant partiality. We then show
in Theorem 18 that any semantics in such a category is trivial if we insist that the interpretations
of GADTs in them must extend to functors. Given a category C, we write Mor (C) for its (pos-
sibily large) set of morphisms. We begin by recalling two classic definitions, the first of which
“categorifies” the notion of an ideal in monoids.

Definition 9. A cosieve in a category C is a (possibly large) subset S⊆Mor (C) such that for all
morphisms f :A→ B and g : B→ C in C, if f ∈ S then gf ∈ S.

https://doi.org/10.1017/S0960129524000161 Published online by Cambridge University Press



Mathematical Structures in Computer Science 17

Definition 10. A wide subcategory of a category C is a subcategory of C that contains all objects of
C.

If D is any subcategory of C, we write D for the complement of D, i.e., for the (possibly large) set
Mor (C) \Mor (D). We can then introduce the following new definition:

Definition 11. A structure of computational partiality on a category C is a wide subcategory D of

C such that D is a cosieve.

In a category C equipped with a structure of computational partiality D, we call the morphisms

of D total and those of D properly partial. Morphisms of C might be referred to simply as par-
tial. It is not hard to see that Set is a structure of computational partiality on PSet and that the
terminology introduced in this paragraph accords with what is used there. Indeed, the intuition

behind Definition 11 is that D is the collection of computations that are actually undefined on a
non-empty set of objects of C (equivalently, of D). Following that intuition, both identities and
compositions of total functions must be total functions, and when a function yields an error on
an input there is no way to come back from the error by postcomposing with another function.
Other categorical frameworks capturing partiality include p-categories (Robinson and Rosolini
1988), (bi)categories of partial maps (Carboni 1987), categories of partial morphisms (Curien
and Obtułowicz 1989), and restriction categories (Cockett and Lack 2002). These all give rise to
structures of computational partiality.

Recall that a split monomorphism s :A→ B in a category C is a monomorphism in C for which
there exists a morphism r : B→A such that rs= idA. We have the following basic fact about split
monomorphisms in a category equipped with a structure of computational partiality:

Lemma 12. In a category equipped with a structure of computational partiality, split monomor-
phisms are always total.

Proof. Let s :A→ B be a split monomorphism in a category C, and suppose r : B→A is such that
rs= idA. If s was properly partial in a structure of computational partiality on C, then rs, and thus
idA, would be properly partial as well. But idA is total by definition, so it cannot be. Thus, s must
be total. �

Our aim is to consider interpretations of (languages supporting) GADTs in a category C

equipped with a structure of computational partiality D. However, to do so we require a bit more
structure. Specifically, D must have finite products, and those products in D must extend to C in
the sense introduced and justified below.

Definition 13. Let C be a category equipped with a structure of computational partiality D, and
write ι : D → C for the inclusion functor from D to C. Suppose further that D has finite products,

and write
∏

D

n : Dn → D for the n-ary product functor fromDn toD. Then the products of D extend

to C if, for each n≥ 0, there exists a functor
⊗

C

n : Cn → C such that the following square commutes:

Dn D

C n C

D
n

n

C
n
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We write ×D and ⊗C infix rather than 
D
2 and

⊗
C

2 prefix when n= 2. Crucially, even when C

has products, the object
⊗

C

n Ai need not be a product of A1,. . ., An in C. The following examples
help clarify this observation.

Example 14. For any category C, C itself is (trivially) a structure of computational partiality on C.

Moreover, if C has finite products, then they extend (trivially) to C. For each n,
⊗

C

n is simply the

actual n-ary product functor
∏

C

n .

Example 15. The category Set is a structure of computational partiality on the category PSet whose
products extend to PSet. We consider the case for n= 2 explicitly; those for other values of n are
analogous.

Define the functor _⊗ _ : PSet2 → PSet whose action on objects is given by A1 ⊗A2 =A1 ×A2,
where _× _ denotes the usual cartesian product in Set, andwhose action onmorphisms sends partial
functions f1 :A1 → B1 and f2 :A2 → B2 to the partial function f1 ⊗ f2 :A1 ×A2 → B1 × B2 given
by

(f1 ⊗ f2)(a1, a2)=

§

¨

©

(f1(a1), f2(a2)) if both f1(a1) and f2(a2) are defined

undefined otherwise

Then if f1 and f2 are total functions, f1 ⊗ f2 is total as well and actually coincides with the cartesian
product of f1 and f2 in Set. That is, for the inclusion ι : Set → PSet, we have ι(_)⊗ ι(_)= ι(_× _).

Notice, however, that f1 ⊗ f2 is not the product of f1 and f2 in PSet. Indeed, the product of two
objects A1 and A2 in PSet is the disjoint union A1 + (A1 ×A2)+A2.Writing i, j, and k for the three
canonical injections into this disjoint union, the product f1 × f2 in PSet is the partial function from
A1 + (A1 ×A2)+A2 to B1 + (B1 × B2)+ B2 defined by

(f1 × f2)(i(a1)) = i(f1(a1)) if f1(a1) defined

(f1 × f2)(j(a1, a2))= j(f1(a1), f2(a2))) if f1(a1) and f2(a2) both defined

(f1 × f2)(j(a1, a2))= i(f1(a1)) if f1(a1) defined and f2(a2) undefined

(f1 × f2)(j(a1, a2))= k(f2(a2)) if f1(a1) undefined and f2(a2) defined

(f1 × f2)(k(a2)) = k(f2(a2)) if f2(a2) defined

(f1 × f2)(x) = undefined otherwise

The square

A1 × A2 B1 × B2

A1 + (A1 × A2) + A2 B1 + (B1 × B2) + B2

f1 f2

j j

f1× f2

thus need not commute in PSet.

Example 16. Consider the category ωpCPO of complete partial orders with bottom elements and
strict Scott-continuous functions between them. Write ωpCPOt for the wide subcategory contain-
ing only those morphisms f :D→D′ such that f−1(⊥

D′)= {⊥D}, where ⊥D is the bottom element

of D and ⊥
D′ is the bottom element of D′. The product

∏ωpCPOt
n Di of objects D1, . . . ,Dn in

ωpCPOt is the subset of the cartesian product in Set of the sets underlying the Dis comprising those

tuples (x1, . . . , xn) such that either xi = ⊥Di for all i or xi �= ⊥Di for all i. The product
∏ωpCPOt

n fi
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of morphims f1 :D1 →D′
1, . . . , fn :Dn →D′

n in ωpCPOt maps (x1, . . . , xn) to (⊥D′
1
, . . . ,⊥D′

n
)

if xi = ⊥Di for some i, and maps (x1, . . . , xn) to (f1(x1), . . . , fn(xn)) otherwise. The category
ωpCPOt is thus a structure of computational partiality on ωpCPO whose products extend to
ωpCPO. Indeed, if fi :Di →D′

i, i= 1, . . . , n, are strict Scott-continuous functions, then there is

a strict Scott-continuous function
⊗ωpCPO

n fi :
∏ωpCPOt

n Di →
∏ωpCPOt

n D′
i that maps (x1, . . . , xn)

to (⊥D′
1
, . . . ,⊥D′

n
) if fi(xi)= ⊥D′

i
for some i, and maps (x1, . . . , xn) to (f1(x1), . . . , fn(xn)) other-

wise. Note that if each fi is in ωpCPOt then
⊗ωpCPO

n fi is as well and actually coincides with the
product of the fis in ωpCPOt .Moreover, the construction above is clearly functorial in the fis. Thus,

for the inclusion ι : ωpCPOt → ωpCPO, we have
⊗ωpCPO

n ◦ ιn = ι ◦
∏ωpCPOt

n .

Note, however, that
⊗ωpCPO

n fi is not the product of f1, . . . , fn in ωpCPO. The product



ωpCPO
n Di of D1, . . . ,Dn in ωpCPO is the cartesian product of the sets underlying the Dis, ordered

componentwise, and the product 

ωpCPO
n fi :

∏ωpCPO
n Di →

∏ωpCPO
n D′

i in ωpCPO of morphisms
fi :Di →D′

i is the morphism mapping (x1, . . . , xn) to (f1(x1), . . . , fn(xn)). Writing jX1,...,Xn for the

canonical inclusion of
∏ωpCPOt

n Xi into
∏ωpCPO

n Xi, we thus see that the square

pCPOt
n Di

pCPOt
n D′

i

pCPO
n Di

pCPO
n D′

i

pCPO
n fi

jD1,...,Dn
j
D′

1
,...,D′

n

pCPO
n fi

need not commute in ωpCPO.

Now fix a category C equipped with a structure of computational partiality D. Suppose that D

has finite products and that they extend to C. We want to define a good notion of an interpretation
of (a language supporting) GADTs in (C,D). Although we want to remain as language-agnostic as
possible, so that our result can be replayed in as many different settings as possible, we must still
make some reasonable assumptions about the type theory underlying the ambient language. Such
a type theory necessarily describes how to construct types from a given context of type variables,
and how to construct typed terms from a given context of typed term variables. It should also
come with a mechanism (such as an operational semantics) that verifies that a term is terminat-
ing. Non-terminating terms represent those programs that loop infinitely or are undefined on
certain inputs. Terminating terms represent those programs that compute actual values in finite
time.

The key idea guiding Definition 17 below is to interpret contexts (and thus types) by objects
of C and to interpret terms by morphisms of C in such a way that the interpretations of termi-
nating terms are actually in D. With this in mind, we are led to interpret a context � comprising

variables of types a1, . . . , an as the product 
D
n [[ai]] in D of the interpretations [[ai]] of ai for

i= 1, . . . , n. Now, in any context �, we can always define the term that picks out the ith variable:

it is a terminating term (it represents the program that takes n inputs and simply returns the ith),
so its interpretation must be a morphism πi : [[�]]→ [[ai]] in D. To see that [[�]], together with
the πis, actually constitute a product in D, we have to turn to the rules that govern the produc-
tion of morphisms of contexts in the underlying type theory. A morphism from a context � to a
context � is given by a term of type a in context � for each type a appearing in �. Such a mor-
phism of contexts is considered terminating only if each of the terms defining it is terminating;
this corresponds to the intuitive expectation that the simultaneous run of the programs repre-
sented by the terms terminates successfully if and only if each of the runs terminates individually.
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This programming language feature can be expressed in the semantics by requiring that [[�]] has
the following property: for any object C of C, every tuple of morphisms fi : C → [[ai]] in C defines
a morphism f : C → [[�]] in C. Moreover, f is in D whenever all the fis are, in which case fi = πif
for i= 1, . . . , n, and f is uniquely determined by the fis. In other words, [[�]], together with the
πis, is a product of the [[ai]]s in D.

Now that we have established that it is natural to interpret each context � as the product
∏

D

n [[ai]] in D of the types ai, i= 1, . . . , n, it comprises, we explain why it is equally natural to
expect the products of D to extend to C. We focus on the case n= 2 for illustrational purposes.
Suppose we are given terms t1 of type b1 and t2 of type b2 in context �, and suppose t1 and t2
are interpreted by morphisms [[t1]] : [[�]]→ [[b1]] and [[t2]] : [[�]]→ [[b2]] in C, respectively. Write
�′ for the context containing only a variable of type b1 and a variable of type b2. We need to
be able to construct the interpretation of the morphism of contexts from � to �′ given by the
pair (t1, t2). That is, we want to construct from [[t1]] and [[t2]] a morphism [[(t1, t2)]] : [[�]]→

[[b1]]×
D [[b2]] in C. Moreover, when t1 and t2 are terminating terms, their interpretations are

morphisms of D and we want [[(t1, t2)]] to be in D as well. In addition, in that case we want
to recover the usual interpretation of morphisms of contexts, i.e., we want [[(t1, t2)]] to be the
morphism

×
D

b1 ×
D

b2
diag t1 ×

D
t2

in D. (Note that diag is a morphism in D.) When [[t1]] and [[t2]] are not total, this construction

cannot be done unless the product _×D _ of D extends to C as a functor _⊗ _. In this case, we
can define [[(t1, t2)]] to be the morphism

×
D

b1 ×
D

b2
diag t1 ⊗ t2

in C.

Definition 17. Let C be a category equipped with a structure of computational partialityD. Suppose
further that D has finite products, and that these extend to C. An interpretation [[_]] of (a language
supporting) GADTs in (C,D) associates to each closed type a an object [[a]] of C, and to each term

t of type a in context � comprising variables of types a1, . . . , an, a morphism [[t]] :
∏

D

n [[ai]]→ [[a]]
in C such that [[t]] is in D when t is terminating. We require that [[_]] maps the unit type � to 1
and term-substitution to composition in C. Given a n-ary GADT G, a functor [[G]] : Cn → C is said
to manifest G relative to [[_]] if the action of [[G]] on every object of the form ([[a1]], . . . , [[an]]) is
precisely [[G a1 . . . an]].

When C is Set (or any other locally presentable category), Definition 17 recovers the functorial
semantics for GADTs in Set (or, more generally, in C) used in Sections 2 through 5 by taking
D to be C as in Example 14. This perfectly captures the fact that all morphisms are total in that
semantics.

We can now prove that, like functorial interpretations of GADTs in Set, functorial interpreta-
tions of GADTs in more general categories equipped with structures of computational partiality
are also insufficient.
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Theorem 18. Let C be a category equipped with structure of computational partiality D. Suppose
[[_]] is an interpretation of GADTs in (C,D) relative to which each GADT is manifested by a functor.
Then [[a]]
 1 for all closed types a containing terminating terms.

Proof. Among the GADTs in our language is the GADT Eq defined in (8). In addition to the func-
tion eqElim in Example 2, we can also use the recursion rule for GADTs to define its companion
function

eqElim−1 :: Eq a b→ a→ b

eqElim−1 Refl y= y

Instantiating a and b to the closed types a1 and a2, respectively, the anonymous function

λy→ eqElim Refl (eqElim−1 Refl y)

reduces to the identity function on type a1. By the uniqueness property of functions defined over
GADTs given in (7),

λp y→ eqElim p (eqElim−1 p y)

reduces to the identity function on type a1 for any input p. Semantically this entails that, if ϕa is
the canonical isomorphism a
 1× a, and if p : 1→ [[Eq a1a2]] is any total function, then

[[eqElim]] ◦ (p× id[[a2]]) ◦ ϕ[[a2]] ◦ [[eqElim
−1]] ◦ (p× id[[a1]]) ◦ ϕ[[a1]] = id[[a1]]

Now, let a be a closed type and let t be a terminating closed term of type a. We abuse notation
and write [[t]] : 1→ [[a]] for the total morphism [[λ_→ t]]. Since every morphism with domain
1 in D is a split monomorphism, so is [[t]]. Thus, ([[t]], id1) is a split monomorphism as well.
Moreover, since there is a functor [[Eq]] : C2 → C that manifests Eq relative to [[_]], and since
split monomorphisms are preserved by all functors, [[Eq]]([[t]], id1) must also be a split monomor-
phism. By Lemma 12, [[Eq]]([[t]], id1) is a total morphism from [[Eq 1 1]] to [[Eq a 1]]. Consider the
following morphisms:

s= [[eqElim]] ◦ (p× id1) ◦ ϕ1 : 1→ [[a]]

r = [[eqElim−1]] ◦ (p× id[[a]]) ◦ ϕ[[a]] : [[a]]→ 1

The observation at the end of the previous paragraph instantiated with a1 = a, a2 = 1, and p being
the total morphism [[Eq]]([[t]], id1) ◦ [[Refl]] shows that sr = id[[a]]. The composition rs is necessar-
ily id1 because it is total and 1 is terminal in D. This explicitly gives that [[a]]
 1, as announced in
the statement of the theorem. �

7. Conclusion and Related Work

The first part of this paper shows that GADTs do not have satisfactory IAS as functors on Set: the
functorial completion semantics, which would give the smallest functorial IAS for them, do not
have the expected parametricity properties so no others do either. Recognizing that the underly-
ing reason for this is that GADTs’ map functions are inherently partial naturally led us to consider
analogous semantics on PSet. But we have shown in the second part of the paper that, unfortu-
nately, GADTs do not have IAS interpretations as functors on PSet either. These results show that
if we hope to find IAS interpretations for GADTs as functors on some category, and if we hope
that the resulting IAS will specialize to the standard one for ADTs and nested types, then we will
have to look in categories far more esoteric than Set and PSet.

The fundamental obstruction we have exposed in Section 6 is that GADTs’ map functions are
partial in ways that are not compatible with composition. Indeed, as Theorem 18 shows, inconsis-
tencies arise when a composition can be mapped over an element of a GADT even though the first
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function in the composition cannot. These kinds of pitfalls can be avoided either (i) by abandon-
ing the partiality modeled by categories equipped with structures of computational partiality, or
(ii) by abandoning the classical notion of functoriality. But (i) seems neither feasible nor desirable,
since categories equipped with structures of computational partiality appear to capture exactly the
computationally relevant notion of partiality it needs to. On the other hand, (ii) involves changing
the notion of compositionality for GADTs’ map functions so that, in Theorem 18, a GADT’s inter-
pretation needn’t send the composition of t1 and t2 to the composition of their images under that
interpretation. The challenge here is that if G is an n-ary GADT then the interpretation of G can-
not simply be a functor. It must still have actions on objects and morphisms of Cn like functors
do, and must still send identities to identities, but it need not respect composition. Instead, the
image of the composition of t1 and t2 under G’s interpretation must only be “more defined” than
the composition of the images of t1 and t2 under that interpretation. We will therefore consider,
in future work, semantics in categories equipped with an ordering on morphisms and such that
the interpretations of GADTs are normal lax functors instead of functors. Jay (Jay 1991) lays out
the basic theory of such categories and lax functors that we plan to exploit to define the kind of
semantics for GADTs we seek.

There are treatments of GADTs beyond those discussed in the main body of this paper.
Atkey’s parametric model for Fω from (Atkey 2012) represents data types – including GADTs –
as Church encodings. It requires the user to supply a map function for the (higher-order) type
constructor whose fixpoint characterizes the data type. But, importantly, functoriality of an under-
lying type constructor does not imply functoriality of its fixpoint, so the data type itself still need
not necessarily support a map function in Atkey’s model. Similarly, (Vytiniotis andWeirich 2010)
present a parametric model for an extension of Fω that supports type equality and thus can encode
GADTs, but this model still does not guarantee functoriality; accordingly, the parametric prop-
erties of GADTs described in the precursor work (Vytiniotis and Weirich 2006) to (Vytiniotis
and Weirich 2010) are all inhabitation results rather than naturality results. In (Mandelbaum and
Stump 2009) GADTs are represented as Scott encodings rather than Church encodings but, again,
only inhabitation results are cited for them. GADTs are treated explicitly as fixpoints of discrete
functors in (Johann and Ghani 2008), as initial algebras of dependent polynomial functors in
(Gambino and Hyland 2004; Hamana and Fiore 2011), and as indexed containers in (Morris and
Altenkirch 2009). The latter two treatments move toward seeing GADTs as data types in a depen-
dent type theory. A categorical parametric model of dependent types has been given by (Atkey
et al. 2014), but, as with the models mentioned above, this model also does not guarantee that
GADTs have functorial semantics.

Acknowledgment. This work was supported by National Science Foundation awards 1713389 and 2203217.

Notes

1 The issue here is not a meta-theoretic one (like the size issue in Reynolds’ failed model in Set for System F (Reynolds 1983)),

but is more fundamental: even when the host language without GADTs admits a parametric model in Set, the very presence

of GADTs still breaks parametricity.

2 Although our development applies to any language, we will use Haskell-like syntax for the code in this paper.

3 WewritemapT or simplymapwhen T is clear from context, for the function fmap :: (a→ b)→ (T a→ T b)witnessing that

a type constructor T is an instance of Haskell’s Functor class. With this convention, mapList coincides exactly with Haskell’s

built-in functionmap for lists. We emphasize that map functions in Haskell are intended to satisfy syntactic reflections of the
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functor laws – i.e., preservation of identity functions and composition of functions – even though this is not enforced by the

compiler and is instead left to the good intentions of the programmer.

4 In the rest of the paper, we will refer to the least fixpoints of endofunctors simply as fixpoints. Other fixpoints are of no

interest to us because they are not carriers of initial algebras.

5 Throughout this paper, we use sans serif font for program text andmath italic font for semantic objects.

6 The map function for H is intended to satisfy syntactic reflections of the functor laws in SetSet – i.e., preservation of identity

natural transformations and composition of natural transformations – and the map function for H F is intended to satisfy

syntactic reflections of the functor laws in Set, even though there is no mechanism in Haskell for enforcing this.

7 The notation G[a] indicates that G is a type with one hole which has been filled with the type a.
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