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ABSTRACT. The full Klein-Gordon-Zakharov system is considered in the space periodic con-
text. We construct cnoidal and snoidal type solutions for the fast scale component. It is shown
that in parts of the range, the waves are spectrally unstable with respect to co-periodic pertur-
bations.

The result relies on an instability index count for Hamiltonian systems, with self-adjoint
portion consisting of a non-standard matrix Hill operator. The spectral analysis of these ob-
jects, and in particular the Morse index calculations, is a largely unexplored subject. The
method, that we develop herein, might prove useful for other systems and/or second order
in time models.

1. INTRODUCTION

Consider the following Klein-Gordon-Zakharov (KGZ) system

(1)

{
ut t −uxx +u +uv +β|u|2u = 0,−T ≤ x ≤ T or x ∈ R
vt t − vxx = 1

2 (|u|2)xx .

The system (1) describes the interaction of a Langmuir wave and an ion acoustic waves in
plasma [2, 11, 12]. More precisely, β is a real parameter, u is complex valued functions repre-
senting the fast scale component of the electric field, while v is real valued function, measur-
ing the deviation of ion density from equilibrium.

Regarding well-posedness for the whole spaces problem, in [4], global well-posedness on
R was shown, without any small data assumptions. In [9, 3], the 3D version of the system
(1) was shown to be well-posed. More recently, using standard methods, we have shown in
our previous paper [6], that the Cauchy problem for (1) is locally well-posed for low regularity
initial data, both in the periodic and the whole line setting.

The existence and stability properties of standing wave is an important question both from
theoretical and practical point of view. in fact, understanding the dynamics around the soli-
tary waves gives an important perspective about the global dynamic properties of the evo-
lution problem at hand. Let us briefly review the literature on this topic. Orbital stability of
solitary waves for the KGZ system, posed on the whole line, was studied in [12]. The orbital
stability of periodic standing waves for system (1) in case β = 0 was considered in [6]. Using

Date: August 28, 2023.
2000 Mathematics Subject Classification. 35B35, 35B40, 35G30.
Key words and phrases. linear stability, periodic waves, Klein-Gordon-Zakharov system.
Stanislavova is partially supported by the NSF, under award # 2210867. Stefanov is partially supported by the

NSF, under award # 2204788.
1



2 SEVDZHAN HAKKAEV, MILENA STANISLAVOVA, AND ATANAS G. STEFANOV

the theory developed in [10] the stability of periodic traveling waves for system (1) is estab-
lished in [7] for the quadratic case, i.e. β = 0. Stability of periodic waves of dnoidal type for
system 1 was considered in [5].

Our aim of this paper is to stability of periodic standing waves of cnoidal and snoidal type.
This turns out to be a rich family of solitons, depending on three parameter1. Let us point out
that the methods needed for the spectral analysis here is much more sophisticated that the
ones presented on the whole line or in the periodic context, but with quadratic non-linearity,
i.e. β = 0. The reason is that, the corresponding matrix linearized operators support two or
even three negative eigenvalues, which in the end forces the instability of the waves.

1.1. Periodic solitary waves. We now construct the explicit solitons, which we later analyze
for stability. Let us mention that as these are Newton’s equations, and modulo some con-
stants, these are all periodic solutions that exists. We consider periodic waves of the form
u(t , x) = e iωtϕ(x), v(t , x) =ψ(x) for Klein-Gordon-Zakharov system (1). Inserting this ansatz
in the system (1), we obtain the following system of ordinary differential equations

(2)

{ −ϕ′′+ (1−ω2)ϕ+ϕψ+βϕ3 = 0, −T ≤ x ≤ T,
−ψ′′− 1

2 (ϕ2)′′ = 0.

Integrating twice in the second equation of (3), we obtain ψ = −1
2ϕ

2 + Ax +B . Taking into
account the required periodicity of the waves, it must be that A = 0. We then consider only
the case B = 0. Denote σ := 1−ω2, so that (2) takes the form

(3)

{ −ϕ′′+σϕ+ (
β− 1

2

)
ϕ3 = 0, −T ≤ x ≤ T,

ψ=−1
2ϕ

2.

Multiplying by ϕ and integrating once the ϕ equation above, we get after some algebraic ma-
nipulations

(4) ϕ′2 = 1−2β

4

(
−ϕ4 + 4

1−2β
σϕ2 + 4a

1−2β

)
=: U (ϕ),

where a is a constant of integration. This is clearly a particular case of the Newton’s equation.
We consider two cases.

1.1.1. Cnoidal solutions (outer case). Let 1−2β > 0 and σ > 0. In this case the non-linearity
U , can be written in the form

U (s) = 1−2β

4
(P 2 − s2)

(
4σ

2β−1
+P 2 + s2

)
and solution of (4) is given by

(5) ϕ(x) = Pcn(αx,κ),−T ≤ x ≤ T,

where

(6) κ2 = (2β−1)P 2

4σ+2(2β−1)P 2
, α2 =−2σ+ (2β−1)P 2

2
= σ

2κ2 −1
.

We can then formulate explicitly the conditions on the parameters in the following existence
results for cnoidal solutions.

1in addition to the usual translation and modulation parameters
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Proposition 1. Let σ > 0, i.e. σ ∈ (0,1) or ω ∈ (−1,1). Let also κ ∈
(

1p
2

,1
)
, β ∈ (−∞, 1

2 ). Then,

there exists a cnoidal solution ϕ of (4), in the form (5), with

(7) P 2 = 4σ

(1−2β)(2κ2 −1)
,T = 2K (k)

α
= 2K (k)

p
2κ2 −1p
σ

.

Remark: Note that the dependence of ϕ from the parameter β is only through the ampli-
tude P , in the particular way described in (7).

1.1.2. Snoidal solutions (truncated pendilum). Let 1−2β< 0 and σ< 0. Now, we write U (s) in
the form

(8) U (s) = 2β−1

4
(P 2 − s2)

(
4σ

1−2β
−P 2 − s2

)
.

The solution of (4) is given by

(9) ϕ(x) = Psn(αx,κ),−T ≤ x ≤ T,

where

(10) κ2 = (2β−1)P 2

−4σ− (2β−1)P 2
, α2 =−4σ− (1−2β)P 2

4
= −σ

1+κ2
.

Thus, we can formulate the existence result in the following proposition.

Proposition 2. Let κ ∈ (0,1), σ < 0, β > 1
2 . Then, there exists a snoidal solution of (8), in the

form (9), with

(11) P 2 = −4σk2

(2β−1)(1+κ2)
, T = 2K (κ)

α
= 2K (κ)

p
1+κ2

p−σ
.

Our next order of business is to derive the linearized about the solitary waves equations as
they are responsible for the stability of these solitons.

1.2. Linearized equations and setting up the eigenvalue problems. We take the perturba-
tion in the form

(12) u(t , x) = e iωt (ϕ(x)+p(t , x)), v(t , x) =ψ(x)+q(t , x),

where p(t , x) is complex valued function, q(t , x) is real valued function. Plugging in the sys-
tem (1), using (3), and ignoring all quadratic and higher order terms yields the following linear
equation for (p, q)

(13)

{
pt t +2iωpt +σp −pxx +ϕq + (−1

2 +β)ϕ2p +2βϕ2Rep = 0
qt t −qxx − 1

2 (ϕ2 +2ϕRep)xx = 0.

Introduce the new function h :
∫T
−T h(x)d x = 0, so that q(t , x) = hx(t , x). Then, we can rewrite

(13) as follows

(14)

{
pt t +2iωpt +σp −pxx +ϕhx + (−1

2 +β)ϕ2p +2βϕ2Rep = 0
ht t x −hxxx − 1

2 (ϕ2 +2ϕRep)xx = 0.
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Integrating by x in second equation and taking into account that h is a mean zero function,
we get

(15)

{
pt t +2iωpt +σp −pxx +ϕhx + (−1

2 +β)ϕ2p +2βϕ2Rep = 0
ht t −hxx −ϕ′Rep +ϕRepx = 0.

Spliting real and imaginary parts of complex valued function p and real valued function h as
p = F + iG and h = R, allows us to rewrite the linearized problem (15) as the following system

(16)


Ft t −2ωGt +σF −Fxx +ϕRx + (−1

2 +β)ϕ2F +2βϕ2F = 0
Gt t +2ωFt +σG −Gxx + (−1

2 +β)ϕ2G = 0
Rt t −Rxx −ϕ′F −ϕFx = 0.

Now we can write the system (16) as linearized problem below

~Ut t +2ωJ ~Ut +H~U = 0, ~U =
F

R
G

(17)

where

J =
0 0 −1

0 0 0
1 0 0

 , H =
H1 A 0

A∗ H2 0
0 0 H3


H1 = −∂2

x +σ+ (3β− 1

2
)ϕ2, H2 =−∂2

x ,

H3 = −∂2
x +σ+ (β− 1

2
)ϕ2,

A = ϕ∂x , A∗ =−ϕ∂x −ϕ′.

After passing to the eigenvalue ansatz ~U (t , x) → eλt ~U (x), the stability problem (17) becomes
a second order pencil

(18) λ2~U +2ωJλ~U +H~U = 0.

More specifically, instability occurs if (18) has a nontrivial solution (λ, ~U ), with ℜλ> 0, ~U 6= 0.

Recall that here the function space is ~U =
F

R
G

 , with

F,G ∈ H 2
per [−T,T ], R ∈ H 2

0 [−T,T ] :=
{

f ∈ H 2
per [−T,T ] :

∫T

−T
f (x)d x = 0

}
.

It is convenient to introduce a notation for the domain of H , namely

X := D(H) = H 2
per [−T,T ]×H 2

0 [−T,T ]×H 2
per [−T,T ].

Note that H : D(H) → L2
per [−T,T ]×L2

0 ×L2
per [−T,T ], so in particular the second entry of H ~U

is still mean value zero, whence the base Hilbert space may be conveniently taken in the form
L2

per [−T,T ]×L2
0 ×L2

per [−T,T ]. We further rewrite the pencil (18) in the more familiar Hamil-
tonian formulation as follows. Upon introducing the operators

J :=
(

03 I3

−I3 −2ωJ

)
, H :=

(
H 0
0 I3

)
,
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note J ∗ = −J ,H ∗ = H , we can write an equivalent to (18) Hamiltonian eigenvalue prob-
lem, namely

(19) JH ~V =λ~V , ~V =
(
~U1
~U2

)
∈ X ×X .

A direct inspection confirms that JH maps the second and the fifth components of the six
entries into a mean value zero function, that is, an element of L2

0[−T,T ]. Thus, the natural
base Hilbert space for the eigenvalue problem in (19) is (L2

per [−T,T ]×L2
0×L2

per [−T,T ])2. Due
to the bounded interval and periodic boundary conditions, it is easy to check that all spectrum
is in fact point spectrum, so (19) is a true eigenvalue problem. This prompts the following
definition for spectral stability.

Definition 1. We say that the soliton (ϕ,ψ) (that is, the solution of (2)), is spectrally stable, if
the eigenvalue problem (19) does not have solution (λ,~V ) with ℜλ> 0 and ~V 6= 0 : ~V ∈ X ×X .

In the next section, we provide the basics of the Krein’s instability index theory, which often
yields good sufficient results for spectral stability/instability of waves.

1.3. Instability index counting theory. Suppose that we consider an eigenvalue problem of
the form

(20) JL f =λ f ,

where L ∗ =L is a self-adjoint operator, J : J ∗ =−J is bounded, skew-symmetric and in-
vertible operator, so that both operators preserve the real subspace2. The eigenvalue problem
(20) enjoys the Hamiltonian structure, so in particular eigenvalues are symmetric with respect
to both the real and the imaginary axes. Let kr represents the number of positive real eigen-
values of (20), kc - the number of quadruplets of complex eigenvalues with non-zero real and
imaginary parts, while k≤0

i is the number of pairs of purely imaginary eigenvalues of non-
positive Krein signature. More precisely, we say that λ= iµ is of non-positive Krein signature,
if v : JL v = iµv (and consequently JL v̄ =−iµv̄), then 〈L v, v〉 ≤ 0.

Also of importance in this theory is a finite dimensional matrix D, which is obtained from
the adjoint eigenvectors for (20). More specifically, consider the generalized kernel of JL

g K er (JL ) = span[(K er (JL ))l , l = 1,2, . . .].

Assume that di m(g K er (JL )) < ∞ (note that under minimal Fredholm assumptions on
J ,L , this is indeed the case). Select an orthonormal basis in g K er (JL ) ª K er (JL ) =
span[η j , j = 1, . . . , N ]. Then D ∈ MN×N is defined via

D := {Di j }N
i , j=1 : Di j = 〈L ηi ,η j 〉.

Then, following [8], we have the following formula, relating the number of “instabilities” or
Hamiltonian index of the eigenvalue problem (20) and the Morse indices of the operators L

and D

(21) kH am := kr +2kc +2k≤0
i = n(L )−n(D).

As an easy corollary, based on elementary parity considerations, we conclude that if kH am is
an odd number, there is at least one real unstable eigenmode for (20), while if kH am is even,

2some assumptions are added below, as we go over the requirements and the formulas



6 SEVDZHAN HAKKAEV, MILENA STANISLAVOVA, AND ATANAS G. STEFANOV

0.75 0.80 0.85 0.90 0.95 1.00

0.05

0.10

0.15

0.20

FIGURE 1. Graph of β0(κ)

one cannot conclude with certainty about instability. For example, as will be the case with
various statements below, kH am = 2, one might have two real eigenvalues or a pair of complex
eigenvalues µ± iν,µ > 0 (i.e. modulational instability) or a pair of marginally stable eigen-
values ±iν, with non-positive Krein signature. Clearly, the first two configurations present an
unstable scenarios, while the last one is stable.

1.4. Main results. We start with the instability of the cnoidal waves. Note that we have a
complete description of the unstable spectrum. We refer the reader to Section 1.3 below for
the definition of Krein signature of a neutral eigenvalue.

Theorem 1. (Instability of the cnoidal waves) Let κ ∈ ( 1p
2

,1), β ∈ (−∞, 1
2 ), |ω| < 1. Then, the

solitary wave solutions (e iωtϕ,−1
2ϕ

2) of the full KGZ system (1), described in Proposition 1, are
spectrally unstable. More specifically, let

M(κ) := E 2(κ)−2(1−κ2)E(κ)K (κ)+ (1−κ2)K 2(κ)

(2κ2 −1)E(κ)+ (1−κ2)K (κ)
> 0;

β0(κ) := 1

2
− M(κ)

K (κ)
,

ω0(κ,β) :=
√√√√ [E(κ)− (1−κ2)K (κ)][1−2β− M(κ)

K (κ) ]

(2κ2 −1)(1−2β)M(κ)+ [E(κ)− (1−κ2)K (κ)][1−2β− M(κ)
K (κ) ]

.

Then,

• If β<β0(κ), and |ω| <ω0(κ,β), then (19) has kH am = 3, and thus it has at least one one
positive eigenvalue.

• If 1
2 >β>β0(κ), then the eigenvalue problem (19) has kH am = 2.

• If β<β0(κ), and 1 > |ω| >ω0(κ,β), then (19) also has kH am = 2.

Our next results concerns the snoidal waves produced in Proposition 2.
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Theorem 2. Let κ ∈ (0,1), β> 1
2 and |ω| > 1. The solitary waves (e iωtϕ,−1

2ϕ
2) of the KGZ system,

where ϕ is as in Proposition 2 are spectrally unstable. Specifically, for β1 = β1(κ), ω1(β,κ) as
defined in Proposition 11 (see also Figure 2), we have

• For β< β1(κ) and ω1(β,κ) < |ω|, the eigenvalue problem (19) has kH am = 3, and hence
at least one real unstable eigenvalue.

• For β>β1(κ) and all |ω| > 1, the eigenvalue problem (19) has kH am = 2.
• For β<β1(κ) and ω1(β,κ) > |ω| > 1, the eigenvalue problem (19) has kH am = 2.

Our arguments rely on a careful spectral analysis of various self-adjoint operators, both
scalar and matrix, as they arise in the eigenvalue problem (19). In order to facilitate our dis-
cussion, we introduce a few more notations. Denote

H0 =
(

H1 A
A∗ H2

)
.

Note that H0 is self-adjoint. Introduce also the second-order differential operator

(22) L =−∂2
x +σ−3

(
1

2
−β

)
ϕ2,

which is the linearized operator naturally appearing in the linearization in the scalar problem
(3).

A road map for the paper is as follows. In Section 2, we establish the required spectral prop-
erties of the matrix Hill operator H0 in the cnoidal case. This is done in several steps. First,
we relate the spectral properties of the scalar linearized operators L, H3 to the standard L±,
which arise in the linearization close to the standard cnoidal waves for the cubic NLS. Next,
in Section 2.2, we demonstrate that K er (H0) is one-dimensional, except on a two dimensional
surface β = β0(κ) in the three dimensional configuration space, on which di m(K er (H0)) = 2.
Next, we calculate the Morse index of the operator H0 - we show that n(H0) = 1 or n(H0) = 2,
depending on whether we are above or below the critical surface β= β0(κ). Here, the crucial
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ingredients are the particular structure of K er (H0) (which confirms that an additional vec-
tor enters the kernel exactly at β = β0(κ)), while the main novelty is in Proposition 6, which
assures us that a negative eigenvalue of H0 actually crosses the zero and exits as a positive
one, as β∼β0(κ). In Section 3, we build up the spectral information necessary for the snoidal
solution. This is much simpler, and it implies that n(H) = 3, while K er (H0) is always one di-
mensional. In Section 4, we first introduce the Hamiltonian instability index theory, following
[8]. Then, in Section 4.1, we construct the eigenspace and the generalized eigenspace for the
cnoidal solutions, for the grand, six dimensional operators arising in the eigenvalue problem
(19). This culminates in the exact calculation of the Hamiltonian instability index kH am. in
Proposition 10. Similarly, in Section 4.2, we calculate the Hamiltonian instability index for
the snoidal problem, and its relation to the main result. Theorem 2 is covered in detail in
Proposition 11.

2. SPECTRAL THEORY FOR THE LINEARIZED OPERATORS IN THE CNOIDAL CASE

We start with the properties of the operators L and H3.

2.1. Spectral propertie of L and H3. Using that sn2(y)+ cn2(y) = 1 and (6), we get

L =−∂2
x +σ−3(β− 1

2 )P 2cn2(αx,κ)

=α2
[
−∂2

y +6κ2sn2(y,κ)− (1+4κ2)
]

,

where y =αx.
It is well-known that the first four eigenvalues of Λ1 = −∂2

y + 6k2sn2(y,k), with periodic
boundary conditions on [0,4K (k)] are simple. These eigenvalues and corresponding eigen-
functions are:

ν0 = 2+2k2 −2
p

1−k2 +k4, φ0(y) = 1− (1+k2 −
p

1−k2 +k4)sn2(y,k),

ν1 = 1+k2, φ1(y) = cn(y,k)dn(y,k) = sn′(y,k),

ν2 = 1+4k2, φ2(y) = sn(y,k)dn(y,k) =−cn′(y,k),

ν3 = 4+k2, φ3(y) = sn(y,k)cn(y,k) =−k−2dn′(y,k).

It follows that the first five eigenvalues of the operator L, equipped with periodic boundary
condition on [0,4K (k)] are simple and zero is the third eigenvalue.

Similarly, for the operator H3 we have

H3 =α2[−∂2
y +2k2sn2(y,k)−1].

The first three eigenvalues and the corresponding eigenfunctions of the operator
Λ2 := −∂2

y + 2k2sn2(y,k) = 1 +α−2H3, with periodic boundary conditions on [0,4K (k)] are
simple and 

ε0 = k2, θ0(y) = dn(y,k),

ε1 = 1, θ1(y) = cn(y,k),

ε2 = 1+k2, θ2(y) = sn(y,k).

It follows that zero is an eigenvalue of H3 and it is the second eigenvalue with corresponding
eigenfunction ϕ(x). Thus, we have established the following proposition.
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Proposition 3. The self-adjoint Schrödinger operators L and H3 have only point spectrum.
Moreover, their Morse indices, that is the number of strictly negative eigenvalues, are n(L) = 2
and n(H3) = 1.

Finally, K er (H3) = span[cn(αx,κ)] and K er (L) = span[cn′(αx,κ)]. In particular, L is in-
vertible on the subspace {cn′}⊥.

Next, we now compute the Morse index of the matrix Schrödinger operator H0 as well as its
kernel. As is well-known in general, this is a much more difficult task.

2.2. The operator H0: structure of K er (H0). We start with a description of K er (H0), as this
will guide our arguments regarding the number of negative eigenvalues. Recall that

D(H0) = H 2[−T,T ]×H 2
0 [−T,T ]

while the base Hilbert space is L2[−T,T ]×L2
0[−T,T ].

Proposition 4. Let κ ∈
(

1p
2

,1
)
, β< 1

2 and σ> 0. Define

M(κ) := E 2(κ)−2(1−κ2)E(κ)K (κ)+ (1−κ2)K 2(κ)

(2κ2 −1)E(κ)+ (1−κ2)K (κ)
> 0

β0(κ) := 1

2
− M(κ)

K (κ)
.

Then, for all β 6=β0(κ), the self-adjoint operator H0 has an eigenvalue at zero, which is simple.
In addition, K er (H0) = span[~ψ1], where

~ψ1 =
(

ϕ′

−ϕ2

2 + 1
4T

∫T
−T ϕ2d x

)
.

At β=β0(κ), there is the identity 〈L−1ϕ,ϕ〉+2T = 0. A second eigenfunction exists, given by

~ψ2 =
( −L−1ϕ

∂−1
x [ϕL−1ϕ+1]

)
.

so that K er [H0] = span[~ψ1,~ψ2].

Remark: Here, ∂−1
x [ϕL−1ϕ+1] is the unique mean-zero anti-derivative of (the mean-zero

function) ϕL−1ϕ+ 1. Note that for β 6= β0(κ), ϕL−1ϕ+ 1 is not mean-zero, and so ~ψ2 is not
well-defined.

Proof. Let

(
f
g

)
be an eigenvector corresponding to a zero eigenvalue, that is H0

(
f
g

)
= 0. In

other words,

− f ′′+σ f + (3β− 1

2
)ϕ2 f +ϕg ′ = 0

−g ′′− (ϕ f )′ = 0.(23)

Integrating the second equation implies that for some constant c0, we have

(24) g ′ =−ϕ f + c0
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whence the equation for f becomes

(25) − f ′′+σ f + (3β− 3

2
)ϕ2 f + c0ϕ= 0.

Note that (25) is exactly in the form L f = −c0ϕ. We will show that c0 = 0 and then, in accor-
dance with the description of K er (L) from Proposition 3, we conclude that f = dϕ′ for some
constant d . Resolving (25) yields

(26) f = dϕ′− c0L−1ϕ,

since ϕ= cn ⊥ K er (L) = span[cn′]. Thus,

(27) g ′ =−dϕϕ′+ c0(ϕL−1ϕ+1).

Integrating the above equation, we get the necessary condition for c0,

(28) c0(〈L−1ϕ,ϕ〉+2T ) = 0.

Clearly, if 〈L−1ϕ,ϕ〉 + 2T 6= 0, then c0 = 0, so we recover the unique (up to a multiplicative

constant) eigenvector

(
f
g

)
=

(
ϕ′

−ϕ2

2

)
.

Otherwise, if 〈L−1ϕ,ϕ〉+2T = 0, then we clearly have another eigenvector in the form ~ψ2, as
described in the statement. So, it remains to determine, where it does happen that 〈L−1ϕ,ϕ〉+
2T = 0. To this end, we need to compute 〈L−1ϕ,ϕ〉. We will do it by constructing the Green
function for the operator L. We already have ϕ′ ∈ K er (L). The classical approach is to consider
the function

ψ(x) =ϕ′(x)
∫x

0

1

ϕ′2(s)
d s,

∣∣∣∣ ϕ′ ψ

ϕ′′ ψ′
∣∣∣∣= 1

which is also solution of Lψ = 0. However, since ϕ′ has zeros, the integral above is not well-
defined. Instead, using the identities

1

sn2(y,κ)
=− 1

dn(y,κ)

∂

∂y

cn(x,κ)

sn(y,κ)

and integrating by parts, we get the equivalent formula

ψ(x) = 1

α2P

[
cn(αx)−ακ2sn(αx,κ)dn(αx,κ)

∫x

0

1+ cn2(αs,κ)

dn2(αs,κ)
d s

]
.

Thus, we may take the Green function in the form

L−1 f =ϕ′
∫x

0
ψ(s) f (s)d s −ψ(s)

∫x

0
ϕ′(s) f (s)s +C f ψ(x),

where C f is chosen such that L−1 f is periodic with same period as ϕ(x). After integrating by
parts, we get

(29) 〈L−1ϕ,ϕ〉 =−〈ϕ3,ψ〉+ ϕ2(T )+ϕ(0)2

2
〈ϕ,ψ〉+Cϕ〈ϕ,ψ〉.

Similarly as in [1], integrating by parts yields

〈ψ′′,ϕ〉 = 2ψ′(T )ϕ(T )+〈ψ,ϕ′′〉.
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Using that Lϕ=−(1−2β)ϕ3, we get

〈ψ,ϕ3〉 =− 2

1−2β
ψ′(T )ϕ(T ).

Now, integrating by parts and using the above relations, we get

(30)

〈ϕ,ψ〉 = 2
α3(1−κ2)

E(κ)

Cϕ =− ϕ′′(T )
2ψ′(T )〈ϕ,ψ〉+ ϕ2(T )−ϕ2(0)

2 .

With this, we obtain

(31) 〈L−1ϕ,ϕ〉 =− 4

α(1−2β)

E 2(κ)−2(1−κ2)E(κ)K (κ)+ (1−κ2)K 2(κ)

(2κ2 −1)E(κ)+ (1−κ2)K (κ)
< 0.

Using (9) and the definition of M(κ), we get

(32) 〈L−1ϕ,ϕ〉+2T = 4

α

[
K (κ)− M(κ)

1−2β

]
= 4K (κ)

α(1−2β)

[
1−2β− M(κ)

K (κ)

]
.

So, if β 6= β0(κ), then the right side of the above equality is not zero, whence c0 = 0 and f =
dϕ′. �

We now turn our attention to the Morse index of H0. Due to its matrix structure, determin-
ing the number of negative eigenvalues is generally a hard task. Nevertheless, we succeed in
determining their exact number for all values of the parameters. Some words on the strat-
egy. We use continuity arguments. One important clue provided by our analysis of K er (H0)
in Proposition 4 is that, if we use β as a bifurcation parameter3, where β ∈ (−∞, 1

2 ), the kernel
is generically one dimensional, unless β=β0(κ) < 1

2 . Then, there is an additional element ~ψ2

popping up in K er (L). For the remainder of this section, we consider σ,κ fixed parameters
and β moves in (−∞, 1

2 ) as a free parameter.
Our best guess in such circumstances is that there is a crossing of an eigenvalue at the value

of β0(κ). That is, we expect that the smallest positive eigenvalue for H0, when β ∈ (β0(κ), 1
2 )

crosses the zero at β = β0(κ) and becomes a negative one, or vice versa, the largest negative
eigenvalue of H0 crosses at β=β0(κ) and becomes positive one for β<β0(κ). This is however
not guaranteed, as it is possible that a positive eigenvalue decreases to zero, touches it and
then bounces back as a positive one.

We need to analyze the problem at hand carefully.

2.3. The operator H0: Calculation of the Morse index. The next Proposition provides some
good starting point in our analysis.

Proposition 5. Let κ ∈
(

1p
2

,1
)

,σ> 0. Then, the Morse index satisfies

1 ≤ n(H0) ≤ 2.

Moreover, under the condition

(33) β< 1

2
− 2π2κ2

K (κ)[(1+κ2)E(κ)− (1−κ2)K (κ)]
,

3Note that all eigenfunctions, eigenvalues etc. depend in a smooth way on all parameters, in particular on β
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we have that H0 has exactly two negative eigenvalues. That is n(H0) = 2.

Before we proceed with the proof of Proposition 5, let us derive an useful corollary. More
specifically, and as we shall see below, the condition (33) is not sharp in identifying the set of
all β for which n(H0) = 2. On the other hand, it can be checked that

M(κ) < 2π2κ2

[(1+κ2)E(κ)− (1−κ2)K (κ)]
,

which guarantees that all β satisfying (33) also satisfy β<β0(κ).
As an easy corollary of this observation, by Proposition 4 and taking into account the con-

tinuous dependence of the eigenvalues on all parameters (and β in particular), we may con-
clude that n(H0) = 2 for all β ∈ (−∞,β0(κ)). Indeed, we have two negative eigenvalues for H0

for all large negative values of β, according to (33). In order for this to change, an eigenvalue
must cross zero (either a positive eigenvalue becomes negative, in which case n(H0) = 3 or
else a negative eigenvalue becomes positive, in which case n(H0) = 1. Since zero crossing
does not occur till β=β0(κ), see Proposition 4, we have that n(H0) = 2 for all β<β0(κ).

Corollary 1. Let κ ∈
(

1p
2

,1
)

,σ> 0 and β<β0(κ). Then, n(H0) = 2.

Proof. (Proposition 5) By direct inspection, one sees the important relation

(34) 〈H0

(
u
v

)
,

(
u
v

)
〉 = 〈Lu,u〉+

∫T

−T
(v ′+ϕu)2d x.

Let λ0 and λ1 are the negative eigenvalues of L and ϕ0 and ϕ1, with ‖ϕ0‖ = ‖ϕ1‖ = 1, are the
corresponding eigenfunctions. We have

λ0 =α2(ν0 −1−4κ2) =− σ
2κ2−1

(2κ2 +2
p

1−κ2 +κ4 −1) < 0

λ1 =α2(ν1 −1−4κ2) =− 3σκ2

2κ2−1
< 0

and
ϕ0(x) = 1

||φ0(αx)||φ0(αx) = 1
||φ0(αx)|| [1− (1+κ2 −

p
1−κ2 +κ4)sn2(αx,κ)],

ϕ1(x) = 1
||φ1(αx)||φ1(αx) = 1

||φ1(αx)||cn(αx,κ)dn(αxκ).

From the representation (34), we have that

inf(
u
v

)
⊥

(
ϕ0

0

)
,

(
ϕ1

0

)〈H0

(
u
v

)
,

(
u
v

)
〉 ≥ inf

u⊥ϕ0,ϕ1
〈Lu,u〉 ≥ 0.

By the Rayleigh-Ritz formulas, it follows that the third smallest eigenvalue of H0 is non-negative.
Equivalently, n(H0) ≤ 2.

Next, we show that there is at least one negative eigenvalue, that is n(H0) ≥ 1, for all values
of β. To this end, take u0 =ϕ0. Observe that since

∫4K
0 cn(y)d y = 0 and

∫4K
0 sn2(y)cn(y)d y = 0,

we have 〈ϕ,ϕ0〉 = 0. Then, take v0 : v ′
0 =−ϕϕ0. Such a periodic v0 exists, because 〈ϕ,ϕ0〉 = 0.

We obtain

〈H0

(
u0

v0

)
,

(
u0

v0

)
〉 = 〈Lϕ0,ϕ0〉 =λ0 < 0.
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Thus, n(H0) ≥ 1.
Finally, we need to show that for all sufficiently small values of β, we have that n(H0) =

2. We will show that under (33), we have indeed n(H0) = 2. In order to establish this, we

need to construct a second vector

(
u1

v1

)
⊥

(
u0

v0

)
, so that 〈H0

(
u1

v1

)
,

(
u1

v1

)
〉 < 0. This will

suffice, by Rayleigh-Ritz minmax formulas, to claim that the second smallest eigenvalue of
H0 is negative, whence n(H0) = 2.

We take the vector in the form u1 =ϕ1+aϕ0, with a to be determined from the orthogonal-
ity condition. Then, select v1 as follows

(35) v ′
1 =−ϕu1 + 〈ϕ,u1〉

2T
=−ϕ(ϕ1 +aϕ0)+ 〈ϕ,ϕ1〉

2T
.

Note that such periodic v1 exists, since the function on the right-hand side of (35) has zero
mean, by construction. Note that

v1 = av0 + ṽ1, ṽ1
′ =−ϕϕ1 + 〈ϕ,ϕ1〉

2T
.

The orthogonality condition

(
u1

v1

)
⊥

(
u0

v0

)
is then equivalent to

0 = 〈u1,u0〉+〈v1, v0〉 = a(1+‖v0‖2)+〈v0, ṽ1〉,
which has the solution

a =− 〈v0, ṽ1〉
(1+‖v0‖2)

.

This is our choice for a, which guarantees

(
u1

v1

)
⊥

(
u0

v0

)
.

It remains to calculate 〈H0

(
u1

v1

)
,

(
u1

v1

)
〉. We have

〈H0

(
u1

v1

)
,

(
u1

v1

)
〉 = 〈L(ϕ1 +aϕ0),ϕ1 +aϕ0〉+ 〈ϕ,ϕ1〉2

2T
= a2λ0 +λ1 + 〈ϕ,ϕ1〉2

2T
.

Since a2λ0 < 0, it will suffice to check that

(36) λ1 + 〈ϕ,ϕ1〉2

2T
< 0.

Using that ∫2K
0 sn2(y,κ)d y = 2

κ2 [K (κ)−E(κ)]

∫2K
0 sn4(y,κ)d y = 2

3κ4 [(2+κ2)K (κ)−2(1+κ2)E(κ)]

∫2K
0 cn2(y,κ)dn2(y,κ)d y = 2

3κ2 [(1+κ2)E(κ)− (1−κ2)K (κ)],
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we get

||φ0(αx)||2 = 1
α

[4K (κ)−4(1+κ2 −
p

1−κ2 +κ4) 2
κ2 [K (κ)−E(κ)]+

+(1+κ2 −
p

1−κ2 +κ4)2 4
3κ4 [(2+κ2)K (κ)−2(1+κ2)E(κ)]]

||φ1(α,κ)|| = 4
3ακ2 [(1+κ2)E(κ)− (1−κ2)k(κ)].

Now we will compute the quantity in (36). Using that
∫4K

0 cn2(y)dn(y)d y = π and that 2T =
4K (κ)

α , we get
〈ϕ,ϕ1〉2

2T
= 3π2P 2κ2

K (κ)[(1+κ2)E(κ)− (1−κ2)K (κ)]
.

Combining this with

λ1 = 3σκ2

1−2κ2
, P 2 = 4σκ2

(1−2β)(2κ2 −1)
,

we get

(37) λ1 + 〈ϕ,ϕ1〉
2T

=− 3σκ2

2κ2 −1

[
1+ 4π2κ2

(2β−1)K (κ)[(1+κ2)E(κ)− (1−κ2)K (κ)]

]
.

Since 2κ2 −1 > 0 and for all β : 2β< 1− 4π2κ2

K (κ)[(1+κ2)E(κ)−(1−κ2)K (κ)]
, we have that the right side of

(37) is negative. �

Our next proposition completes the analysis for the Morse index of H0. As such, it incorpo-
rates and extends the earlier results in this section. On the other hand, they were necessary
preliminary steps for it.

Proposition 6. Let κ ∈
(

1p
2

,1
)

,σ> 0. Then,

• n(H0) = 2, if β<β0(κ),
• n(H0) = 1, if β0(κ) <β< 1

2 .

Remark: Before we continue with the proof, we would like to interpret the result in a slightly
different form, which will be useful in the sequel. Note that the condition β<β0(κ) is equiva-
lent, due to the formula (32), to 2T +〈L−1ϕ,ϕ〉 > 0. Thus

(38) n(H0) =
{

2 if 2T +〈L−1ϕ,ϕ〉 > 0
1 if 2T +〈L−1ϕ,ϕ〉 < 0.

Proof. Due to Corollary 1 and our analysis in Propositions 4 and 5, we have already estab-
lished most of the claims. We claim that it remains to establish that the second smallest (still
negative) eigenvalue of H0 indeed crosses the zero for β = β0(κ), to become a positive one,
whence the Morse index drops to n(H0) = 1. Indeed, the other alternative, i.e. a positive one
crossing zero to become negative cannot happen, since then we would have n(H0) = 3, which
cannot be, see Proposition 5. But, we still need to check that crossing of zero (instead of just
bouncing of it) does happen.

To this end, we trace the eigenfunction ~ψ1, corresponding to the zero eigenvalue, described
in Proposition 4. By the continuous dependence on β, such eigenfunction will serve as eigen-
function of eigenvalues close to zero, for values of β close to β0(κ). It will suffice to show that
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such eigenvalues change sign at β = β0(κ), which will indicate that zero crossing has indeed
happened.

Given the particular dependence on β in (7), introduce a new variable, m =
√

1
1−2β , so that

the amplitude is now in the form

(39) P = m

√
4σ

2κ2 −1
.

With this variable, the wave ϕ may be written in the form

ϕ(x) = m

√
4σ

2κ2 −1
cn(αx,κ) =: mΨ(x;σ,κ).

Note that the Ψ=Ψ(σ,κ) and it is independent on m. Note that the operator L is independent
on β and subsequently on m.

We now track the eigenvalue, corresponding to an eigenfunction ~ψ1. We can do this via the
implicit function theorem. Instead, and equivalently, it suffices to determine the quantities

g (m) = −L−1ϕ+ (m −m0)g ∈ H 2[−T,T ],

h(m) = ∂−1
x [ϕL−1ϕ+1+ (m −m0)h] ∈ H 2

0 [−T,T ]

γ(m) = γ(m −m0)+O((m −m0)2)

in a neighborhood of m0 =
√

1
1−2β0(κ) . More specifically, we need to solve the system

(40) H0(m)

( −L−1ϕ+ (m −m0)g
∂−1

x (ϕL−1ϕ+1+ (m −m0)h)

)
= γ(m −m0)

( −L−1ϕ

∂−1
x (ϕL−1ϕ+1)

)
+O((m −m0)2),

in a small neighborhood of m0. We have

H0(m) =
(

L+m2Ψ2 mΨ∂x

−mΨ∂x −mΨ′ −∂2
x

)
.

However, note that4

L+m2Ψ2 = L+m2
0Ψ

2 +2m0(m −m0)Ψ2 +O((m −m0)2).

Thus, after expanding up to first order in m −m0, we see that the zero order term is satisfied
due to the fact that H0~ψ2 = 0. The first order term in m −m0 is then the system that we need
to solve. Namely,(

L+m2
0Ψ

2 m0Ψ∂x

−m0(Ψ∂x +Ψ′) −∂2
x

)(
g

∂−1
x h

)
+

(
2m0Ψ

2 Ψ∂x

−Ψ∂x −Ψ′ −∂2
x

)( −L−1ϕ

∂−1
x [ϕL−1ϕ+1]

)
=

= γ

( −L−1ϕ

∂−1
x (ϕL−1ϕ+1)

)
+O((m −m0)).

Observe that the first matrix operator is self-adjoint and in fact, it is exactly

H0(m0) =
(

L+m2
0Ψ

2 m0Ψ∂x

−m0(Ψ∂x +Ψ′) −∂2
x

)
.

4recalling that L is independent on m
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We now need a solvability condition for this system, which guarantees that γ 6= 0. Since it is in
the form

(41) H0(m0)

(
g

∂−1
x h

)
= γ

( −L−1ϕ

∂−1
x (ϕL−1ϕ+1)

)
−

(
2m0Ψ

2 Ψ∂x

−Ψ∂x −Ψ′ −∂2
x

)( −L−1ϕ

∂−1
x [ϕL−1ϕ+1]

)
,

the solvability condition is that the right-hand side is orthogonal to K er [H0] = span[~ψ1,~ψ2].
Due to parity considerations, the orthogonality to ~ψ1 is automatic, since the right-hand side
of (41) belongs to L2

even × L2
odd , while ~ψ1 ∈ L2

odd × L2
even . Thus, the solvability condition is

exactly

(42) 〈γ
( −L−1ϕ

∂−1
x (ϕL−1ϕ+1)

)
−

(
2m0Ψ

2 Ψ∂x

−Ψ∂x −Ψ′ −∂2
x

)( −L−1ϕ

∂−1
x [ϕL−1ϕ+1]

)
,

( −L−1ϕ

∂−1
x [ϕL−1ϕ+1]

)
〉 = 0,

which determines γ in a unique way, provided (42) has an unique, non-zero solution for γ.
We aim at verifying that for the remainder of the proof. We can rewrite (42) as

γ

∥∥∥∥( −L−1ϕ

∂−1
x (ϕL−1ϕ+1)

)∥∥∥∥2

= 〈
(

Ψ−m2
0Ψ

2L−1Ψ

(m0 −m2
0)∂x(ΨL−1Ψ)

)
,

( −m0L−1Ψ

∂−1
x (m2

0ΨL−1Ψ+1)

)
〉.

Note however that

∥∥∥∥( −L−1ϕ

∂−1
x (ϕL−1ϕ+1)

)∥∥∥∥2

> ‖L−1ϕ‖2 > 0, while

I := 〈
(

Ψ−m2
0Ψ

2L−1Ψ

(m0 −m2
0)∂x(ΨL−1Ψ)

)
,

( −m0L−1Ψ

∂−1
x (m2

0ΨL−1Ψ+1)

)
〉 =

= (2m3
0 −m4

0)
∫

Ψ2(L−1Ψ)2d x −m2
0〈L−1Ψ,Ψ〉 =

(
2

m0
−1

)
‖ϕL−1ϕ‖2 −〈L−1ϕ,ϕ〉.

Recall however that we evaluate this quantity at β=β0(κ). On this set, 〈L−1ϕ,ϕ〉+2T = 0. So,
we obtain

I =
(

2

m0
−1

)
‖ϕL−1ϕ‖2 +2T =

(
2
√

1−2β0(κ)−1
)
‖ϕL−1ϕ‖2 +2T.

However, we have plotted the function 2
√

1−2β0(κ)− 1 and realized that it is positive, see
Figure 3. In short, we conclude

I =
(
2
√

1−2β0(κ)−1
)
‖ϕL−1ϕ‖2 +2T > 0.

Thus, γ> 0. Thus, the zero eigenvalue at β=β0(κ) (which initially, for β<β0(κ) is the second
smallest eigenvalue for H0) has the asymptotic

λ1(H0) = γ(m −m0)+O((m −m0)2),

for m ∼ m0 or equivalently β∼β0(κ). This shows that for β<β0(κ), λ1(H0) < 0, λ1(H0) = 0 for
β=β0(κ), while λ1(H0) > 0 for β>β0(κ). This finishes the proof. �

3. SPECTRAL THEORY FOR THE LINEARIZED OPERATORS ABOUT THE SNOIDAL SOLUTIONS

In this section, we lay out the spectral theory necessary for the stability analysis for the
snoidal waves framework. Most of the considerations herein are pretty similar or simpler to
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the ones introduced in Section 2. We start with the operator L. We have

L = −∂2
x +σ−3(β− 1

2
)P 2sn2(αx,κ) =

= α2
[
−∂2

y +6κ2sn2(y,κ)− (1+κ2)
]
=

= α2[Λ1 − (1+κ2)].

where y =αx, and the operator Λ1, along with its first few eigenvalues and eigenfunctions was
introduced in Section 2. It follows that L has simple negative eigenvalue with corresponding
eigenfunction φ0(αx) and zero is the second eigenvalue of L with corresponding eigenfunc-
tion ϕ′. For the operator H3 we have

H3 =α2[−∂2
y +2k2sn2(y,k)− (1+κ2)] =α2[Λ2 − (1+κ2)],

where again the eigenvalues and the first few eigenvalues and eigenvectors were described in
detail in Section 2. It follows that zero is an eigenvalue of H3 and it is the third eigenvalue with
corresponding eigenfunction ϕ(x). Thus, n(L) = 1 and n(H3) = 2. We summarize the results
in the following proposition.

Proposition 7. The self-adjoint operator H3,L, have Morse indices n(H3) = 2, n(L) = 1 respec-
tively. Moreover, K er (H3) = span[ϕ], whereas K er (L) = span[ϕ′].

Now we turn our attention to determining the Morse index of H . We have the following
result.

Proposition 8. For all values of the parameters, n(H) = 3.

Proof. By the block structure of H , see (17), we know that n(H) = n(H3)+n(H0). We have just
established, see Proposition 7, that n(H3) = 2, so it remains to prove that n(H0) = 1. To this
end, observe that the formula (34) is still valid. From it, and the fact that L|span[φ0(α·)]⊥ ≥ 0, it
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is clear that

inf(
u
v

)
⊥

(
φ0(α·)

0

)〈H0

(
u
v

)
,

(
u
v

)
〉 = inf(

u
v

)
⊥

(
φ0(α·)

0

)
[
〈Lu,u〉+

∫T

−T
(v ′+ϕu)2d x

]
≥

≥ inf
u⊥φ0(α·)

〈Lu,u〉 ≥ 0.

Thus, from the min-max principle, n(H0) ≤ 1.
On the other hand, notice that φ0(αx) ⊥ϕ(x), since φ0(αx) ∈ span[1, sn2(αx,κ)] ⊥ sn(αx,κ).

Thus, one can take v0 : v ′
0 =−ϕφ0(α·). By (34),

〈H0

(
φ0(α·)

v0

)
,

(
φ0(α·)

v0

)
〉 = 〈Lφ0(α·),φ0(α·)〉 < 0.

It follows that n(H0) = 1. �

Next, we need to analyze the kernel of H . We have the following proposition.

Proposition 9. Let κ ∈ (0,1), β> 1
2 and σ< 0. Then, the self-adjoint operator H0 has an eigen-

value at zero, which is simple. In addition, K er (H0) = span[~ψ1], where

~ψ1 =
(

ϕ′

−ϕ2

2 + 1
4T

∫T
−T ϕ2d x

)
.

Proof. The proof of this proposition is completely analogous to the proof of Proposition 4, in
fact the arguments there apply here as well, which is how the vector ~ψ1 is identified. The only
point of difference is at (28), where one needs to decide whether or not there is an additional
element of K er (H0). This depends on whether the quantity 〈L−1ϕ,ϕ〉 + 2T = 0. This turns
out to be impossible here, since ϕ⊥ span{φ0(α·),ϕ′}, whence, according to Proposition 7, we
have 〈L−1ϕ,ϕ〉 > 0(and hence 〈L−1ϕ,ϕ〉+2T > 2T > 0). �

4. STABILITY ANALYSIS FOR THE WAVES

We start with an analysis of the cnoidal waves.

4.1. Stability analysis of the cnoidal waves. We apply the instability index count (21) to the
eigenvalue problem (19). First of all, observe that J is invertible and in fact

J−1 =
( −2ωJ −I3

I3 03

)
.

Consequently, K er (JH ) = K er (H ), which was described in Proposition 4. As a result, the
following two vectors span K er (H )

~ξ1 =



ϕ′

−ϕ2

2 + 1
4T

T∫
−T

ϕ2d x

0
0
0
0


, ~ξ2 =


0
0
ϕ

0
0
0

 .
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We now proceed to find the generalized kernel, i.e. the adjoint eigenvectors.

4.1.1. Generalized kernel of JH . Recall that we are only interested in those outside K er (H ).
A direct computation yields

~η1 = H −1J−1ξ1 =H −1



0
0

−2ωϕ′
ϕ′

−ϕ2

2 + 1
4T

T∫
−T

ϕ2d x

0


=



0
0

−2ωH−1
3 ϕ′

ϕ′

−ϕ2

2 + 1
4T

T∫
−T

ϕ2d x

0


,

since H −1 : K er (H )⊥ → K er (H )⊥.
As we are looking to exhaust the set of possible generalized eigenvectors, we need to look

further at a second order adjoints, that is solutions of JH~η =~η1. Equivalently, we need to
solve H~η= J−1~η1. A necessary condition for the solvability of this last problem is J−1~η1 ⊥
~ξ1. But this condition is violated5 due to the following calculation

〈J−1~η1,~ξ1〉 = 〈


−4ω2H−1

3 [ϕ′]−ϕ′

ϕ2

2 − 1
4T

T∫
−T

ϕ2d x

∗

 ,~ξ1〉 =−(4ω2〈H−1
3 ϕ′,ϕ′〉+‖ϕ′‖2+‖ϕ

2

2
− 1

4T

T∫
−T

ϕ2d x‖2) < 0,

since 〈H−1
3 ϕ′,ϕ′〉 > 0. Indeed, a direct check shows that ϕ′ ⊥ {ϕ,θ0(αx)} (here θ0(αx) is the

eigenfunction corresponding negative eigenvalue of H3, while K er (H3) = span[ϕ]), whence
H−1

3 |{ϕ,θ0(αx)}⊥ > 0.

Next, we find the generalized eigenvectors associated to~ξ2. Note that the existence of η2 is
not guaranteed, unless some solvability conditions are met! To begin with, we have

~η2 = H −1J−1ξ2 =H −1


2ωϕ

0
0
0
0
ϕ

=


2ωH−1

 ϕ

0
0


0
0
ϕ

=


2ωH−1

0

(
ϕ

0

)
0
0
0
ϕ

 .

Clearly, for the existence of~η2, we need that

(
ϕ

0

)
⊥ K er (H0). According to Proposition 4, we

have that

(
ϕ

0

)
⊥ ~ψ1, but for the case β = β0(κ), it is clearly not orthogonal to ~ψ2. Thus, we

are working exclusively on β 6=β0(κ).

Denote

(
f2

g2

)
= H−1

0

(
ϕ

0

)
. We shall need to determine f2, g2 in our further analysis, but

for now we take them in this abstract form. Looking for a further adjoint vectors, we need
to solve JH~η =~η2. This as before leads to the necessary (and in fact sufficient) condition

5and hence~η1 is the only generalized eigenvector associated to~ξ1
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J−1~η2 ⊥~ξ2 - note that the other necessary condition J−1~η2 ⊥~ξ1 is satisfied. In any case, we
obtain

〈J−1~η2,~ξ2〉 =−4ω2〈 f2,ϕ〉−‖ϕ‖2.

So, under the condition

(43) 4ω2〈 f2,ϕ〉+‖ϕ‖2 6= 0,

we have no further elements of g K er (JH )ªK er (H ) and indeed,

g K er (JH )ªK er (H ) = span[~η1,~η2].

Remark: Note however, that if (43) is violated, that is if 4ω2〈 f2,ϕ〉 + ‖ϕ‖2 = 0, we have an
additional generalized eigenvector above~η2. In other words, we have a zero crossing at the
points in the parameter space, where 4ω2〈 f2,ϕ〉 + ‖ϕ‖2 = 0. By the Hamiltonian structure
of the spectrum of JH , there are exactly two additional generalized eigenvectors at these
points.

4.1.2. Calculation of the instability index for the cnoidal waves. We will now need to calculate
the elements of the matrix D ∈ M2×2. Let us first show that the off-diagonal element are zero.
We have

D12 =D21 = 1

‖~η1‖‖~η2‖
〈H~η1,~η2〉 = 〈



0
0

−2ωϕ′
ϕ′

−ϕ2

2 + 1
4T

T∫
−T

ϕ2d x

0


,~η2〉 = 0.

So, D is a diagonal matrix. It follows that n(D) = n(D11)+n(D22) = n(〈H~η1,~η1〉)+n(〈H~η2,~η2〉).

〈H~η1,~η1〉 = 〈



0
0

−2ωϕ′
ϕ′

−ϕ2

2 + 1
4T

T∫
−T

ϕ2d x

0


,



0
0

−2ωH−1
3 [ϕ′]

ϕ′

−ϕ2

2 + 1
4T

T∫
−T

ϕ2d x

0


〉 =

= 4ω2〈H−1
3 ϕ′,ϕ′〉+‖

 ϕ′

−ϕ2

2 + 1
4T

T∫
−T

ϕ2d x

‖2 > 0,

by recalling that 〈H−1
3 ϕ′,ϕ′〉 > 0.
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Finally, we discuss 〈H~η2,~η2〉. We have

〈H~η2,~η2〉 = 〈


2ωϕ

0
0
0
0
ϕ

 ,


2ω f2

2ωg2

0
0
0
ϕ

〉 = 4ω2〈 f2,ϕ〉+‖ϕ‖2.

Observe that this the condition (43) is exactly equivalent to D22 6= 0. Recall that this was nec-
essary for the non-existence of an additional generalized eigenvector associated to ~ξ2. It re-
mains to compute the sign of this expression.∣∣∣∣ H1 f2 + Ag2 =ϕ

A∗ f2 +H2g2 = 0.

Obviously, we need to find only f2 in order to find D22. From the first and second equations
of the above system, we have∣∣∣∣ − f ′′

2 +σ f2 + (−1
2 +3β)ϕ2 f2 +ϕg ′

2 =ϕ

−g ′′
2 − (ϕ f2)′ = 0.

Integrating in the second equation, we get g ′
2 =−ϕ f2 + c2. Hence for f2, we get the equation

L f2 = (1− c2)ϕ,

which is

(44) f2 = (1− c2)L−1ϕ.

Now, we have
g ′

2 =−(1− c2)ϕL−1ϕ+ c2

and integrating, we get6

c2 = 〈L−1ϕ,ϕ〉
2T +〈L−1ϕ,ϕ〉 .

whence

(45) 〈H~η2,~η2〉 = 4ω2〈 f2,ϕ〉+‖ϕ‖2 = ‖ϕ‖2
[

1+ 4ω2

‖ϕ‖2

2T 〈L−1ϕ,ϕ〉
2T +〈L−1ϕ,ϕ〉

]
.

Using that

‖ϕ‖2 = 4P 2

ακ2
[E(κ)− (1−κ2)K (κ)] = 16σ

α(1−2β)(2κ2 −1)
[E(κ)− (1−κ2)K (κ)],

we get, recalling that σ= 1−ω2,

(46) 〈H~η2,~η2〉 = ‖ϕ‖2

[
1− ω2(2κ2 −1)(1−2β)M(κ)

(1−ω2)[E(κ)− (1−κ2)K (κ)][1−2β− M(κ)
K (κ) ]

]
.

For the calculation of the index, both formulas (45) and (46) will be useful. Indeed, we
have already confirmed that 〈L−1ϕ,ϕ〉 < 0, see (31). Note that the points in the parameter
range for which 2T + 〈L−1ϕ,ϕ〉 = 0 represent a vertical asymptote for the function (κ,β) →

6note the solvability condition 2T +〈L−1ϕ,ϕ〉 6= 0, appearing naturally in the process of determining c2!
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〈H~η2,~η2〉. How do we explain that? Recall that at 2T +〈L−1ϕ,ϕ〉 = 0, an additional element
appears in K er (H ). This is why the quantity 〈H~η2,~η2〉 = 〈J−1ξ2,H −1J−1ξ2〉 is no longer
well-defined, which is a consequence of the fact that H −1J−1ξ2 no longer makes sense (due
to the appearance of an additional element in the generalized kernel).

For values of β : β> β0(κ), we have that 2T +〈L−1ϕ,ϕ〉 < 0 and hence, 〈H~η2,~η2〉 > 0 for all
values of ω, from the formula (45). Hence, n(D) = 0. Incidentally, in the same range, according
to Proposition 6, we have that n(H0) = 1, and hence n(H ) = 2. It follows from (21) that kH am. =
2.

For values of β : β < β0(κ), we have that 2T + 〈L−1ϕ,ϕ〉 > 0. Recall that in this range, by
Proposition 6, we have that n(H ) = n(H0)+n(H3) = 2+1 = 3. But, looking at the formula (46),
we see that 〈H~η2,~η2〉 could be positive or negative. More precisely, if

(47) 1− ω2(2κ2 −1)(1−2β)M(κ)

(1−ω2)[E(κ)− (1−κ2)K (κ)][1−2β− M(κ)
K (κ) ]

< 0,

we conclude that 〈H~η2,~η2〉 < 0, whence n(D) = 1, whence kH am = 3−1 = 2. If however, the
opposite inequality to (47) holds, we have that n(D) = 0, whence kH am = 3.

Thus, we are ready to formulate the definite result for the value of kH am , where we provide
the explicit solutions of (47), in terms of ω.

Proposition 10. Let κ ∈ ( 1p
2

,1), β< 1
2 and |ω| < 1. Then,

• If β>β0(κ), then kH am = 2.
• If β<β0(κ) and

(48) 1 > |ω| >
√√√√ [E(κ)− (1−κ2)K (κ)][1−2β− M(κ)

K (κ) ]

(2κ2 −1)(1−2β)M(κ)+ [E(κ)− (1−κ2)K (κ)][1−2β− M(κ)
K (κ) ]

then, kH am = 2.
• If β<β0(κ) and

|ω| <
√√√√ [E(κ)− (1−κ2)K (κ)][1−2β− M(κ)

K (κ) ]

(2κ2 −1)(1−2β)M(κ)+ [E(κ)− (1−κ2)K (κ)][1−2β− M(κ)
K (κ) ]

then, kH am = 3.

Remark: The inequality in (48) always has solutions ω as the expression on the right is less
than one, as long as β<β0(κ).

4.2. Stability analysis for the snoidal waves. This section is also very reminiscent of the pre-
vious one. Namely, due to Proposition 7 and Proposition 9, we have exactly two generating
vectors in K er (H ), namely~ξ1.~ξ2 as described in Section 4.1. We now proceed to identify an
orthonormal basis for g K er (JH )ªK er (JH ).

4.2.1. Generalized kernel of JH . This is of course again very similar to Section 4.1, but there
are different relationships between the concrete quantities. Let us start with~η2, the associated
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vector to~ξ2. We have calculated it to be, in Section 4.1 (and this is still valid)

~η2 =


2ωH−1

0

(
ϕ

0

)
0
0
0
ϕ

=


2ω f2

2ωg2

0
0
0
ϕ

 ,

where by (44), recall that for the snoidal waves 2T +〈L−1ϕ,ϕ〉 > 2T > 0,

f2 = (1− c2)L−1ϕ= 2T

2T +〈L−1ϕ,ϕ〉L−1ϕ.

Thus, the necessary condition for non-existence of a further adjoint vectors, (43), is verified
since

(49) 4ω2〈 f2,ϕ〉+‖ϕ‖2 = 2T 〈L−1ϕ,ϕ〉
2T +〈L−1ϕ,ϕ〉 +‖ϕ‖2 > 0.

We now find the adjoint vectors associated to~ξ1. We can proceed, with an identical argument
to Section 4.1 to find~η1, which is given by

~η1 =



0
0

−2ωH−1
3 ϕ′

ϕ′

−ϕ2

2 + 1
4T

T∫
−T

ϕ2d x

0


.

The necessary and sufficient condition7 is given by, identically to the Section 4.1 as

(50) 4ω2〈H−1
3 ϕ′,ϕ′〉+‖ϕ′‖2 +‖ϕ

2

2
− 1

4T

T∫
−T

ϕ2d x‖2 6= 0.

This is not so easy to be dismissed now (as in Section 4.1), since it is possible that 〈H−1
3 ϕ′,ϕ′〉 <

0. So, it is conceivable that (50) is violated for some points in the parameter space. Neverthe-
less, let us assume (50) and we proceed. We have that

g K er (JH )ªK er (JH ) = span[~η1,~η2].

4.2.2. Calculating the instability index for the snoidal waves. As in Section 4.1, we see that
D12 = D21 = 0. Thus, n(D) = n(〈H~η1,~η1〉)+n(〈H~η2,~η2〉). First, with the same computation
as in Section 4.1,

〈H~η2,~η2〉 = 4ω2〈 f2,ϕ〉+‖ϕ‖2 > 0,

as already seen, (49).

7There is another condition, which is satisfied automatically, so (50) remains as a necessary and sufficient for
npn-solvability for the non-existence of further adjoints
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Regarding 〈H~η1,~η1〉, we have, as in Section 4.1,

〈H~η1,~η1〉 = 4ω2〈H−1
3 ϕ′,ϕ′〉+‖ϕ′‖2 +‖ϕ

2

2
− 1

4T

T∫
−T

ϕ2d x‖2,

which is exactly the what appears in (50) as well. So, we need to compute the last quantity.
We have H3ϕ= 0 and ψ=ϕ

∫x 1
ϕ2 d s is also solution of H3ψ= 0. Using the identities

1

sn2(y,κ)
=− 1

αdn(y,κ)

∂

∂y

cn(x,κ)

sn(y,κ)

and integrating by parts we get

ψ(x) =− 1

αP

[
cn(αx)

dn(αx)
−ακ2sn(αx,κ)

∫x

0

cn2(αs,κ)

dn2(αs,κ)
d s

]
.

Using that ϕ is odd function and ψ is even function, we get

〈H−1
3 ϕ′,ϕ′〉 =−1

3

∫T

−T
ϕ2ϕ′ψd x +Cϕ′

∫T

−T
ϕ′ψd x

and

Cϕ′ =− ϕ′(T )

2ψ′(T )

∫T

−T
ϕ′ψd x.

Hence

〈H−1
3 ϕ′,ϕ′〉 =−1

3

∫T

−T
ϕ2ϕ′ψd x − ϕ′(T )

2ψ′(T )

(∫T

−T
ϕ′ψd x

)2

.

By direct computations, we have

∫T
−T ϕ′ψd x =− 1

α

[
2
∫2K

0 cn2(x)d x +κ2
∫T
−T

sn2(x)cn2(x)
dn2(x)

d x
]

ϕ′(T )
2ψ′(T ) = αP 2

4[K (κ)−E(κ)]∫T
−T ϕ2ϕ′ψd x =−P 2

α

[
2
∫2K

0 sn2(x)cn2(x)d x + κ2

2

∫2K
0

sn4(x)cn2(x)
dn2(x)

d x
]

P 2 = −4σκ2

(2β−1)(1+κ2)
, α2 = −σ

1+κ2 .

Putting all this together, we get

〈H−1
3 ϕ′,ϕ′〉 = P 2

α

[
2

3

∫2K

0
sn2(x)cn2(x)d x + κ2

6

∫2K

0

sn4(x)cn2(x)

dn2(x)
d x

]
−

− P 2

α

1

4[K (κ)−E(κ)]

(
2
∫2K

0
cn2(x)d x +κ2

∫2K

0

sn2(x)cn2(x)

dn2(x)
d x

)2

=:
P 2

α
R(κ).

Using Mathematica, we have computed this expression

R(κ) = (−5k2 +16k −8)K (k)+9((k2 −4k +2)K (k)+2(k −1)E(k))2 + (k2 −4k −8)E(k)

9k2(E(k)−K (k))
.
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FIGURE 4. Graph of R(κ)

One can also see, by plotting the above function in terms of κ, that 〈H−1
3 ϕ′,ϕ′〉 = P 2

α
R(κ) < 0,

for all values of κ, see the Figure 4 below. Next, we have that (by using Mathematica for the
integrals) ∫T

−T
ϕ′2d x = 2αP 2

∫2K

0
cn2(x)dn2(x)d x =

= 2αP 2 2((k −1)K (k)+ (k +1)E(k))

3k
=: 2αP 2Q(κ)

and (again, with the help of Mathematica)

‖ϕ
2

2
− 1

4T

∫T

−T
ϕ2‖2 = 1

2

[∫T

0
ϕ4 − 1

T

(∫T

0
ϕ2

)2
]
=

= P 4

α

[
1

2

∫2K

0
sn4(x)d x − 1

4K (κ)

(∫2K

0
sn2(x)d x

)2
]
=

= P 4

α

(k −1)K 2(k)+2(2−k)K (k)E(k)−3E 2(k)

3k2K (k)
=:

P 4

α
Z (κ).

Putting all of these formula together, we see that 〈H~η1,~η1〉 < 0 exactly when

ω2 > 2α2Q(κ)+P 2Z (κ)

−4R(κ)
= (ω2 −1)

2Q(κ)+ 4κ2

(2β−1) Z (κ)

−4(1+κ2)R(κ)
.

Solving in terms of ω, we obtain that 〈H~η1,~η1〉 < 0 if and only if

(51)
2Q(κ)+ 4κ2

(2β−1) Z (κ)

−4(1+κ2)R(κ)
>ω2

2Q(κ)+ 4κ2

(2β−1) Z (κ)+4(1+κ2)R(κ)

−4(1+κ2)R(κ)

 .
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Knowing that R(κ) < 0 for all κ and in fact, by plotting with Mathematica one could see that
2Q(κ)+4(1+κ2)R(κ) < 0, we have that if 1

2 <β<β1(κ), where

(52) β1(κ) := 1

2
− 2κ2Z (κ)

2Q(κ)+4(1+κ2)R(κ)

then (51) will have a solution, recall that we are in the regime 0 >σ= 1−ω2,

(53) ω1(β,κ) =
√

2(2β−1)Q(κ)+4κ2Z (κ)

2(2β−1)Q(κ)+4κ2Z (κ)+4(2β−1)(1+κ2)M(κ)
> |ω| > 1.

If β > β1(κ), we have that the right-hand side of (51) is negative, hence it will be satisfied for
all allowable values of ω : |ω| > 1. Thus, we have established the following proposition.

Proposition 11. Let κ ∈ (0,1). Then, there exist functions β1(κ),ω1(β,κ), introduced in (52) and
(53) respectively, so that the Hamiltonian index is computed according to the following law

(54) kH am =


2 β>β1(κ) & |ω| > 1
2 β<β1(κ) & ω1(β,κ) > |ω| > 1
3 β<β1(κ) & ω1(β,κ) < |ω|.
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