ON THE SPECTRAL INSTABILITY OF SOME CNOIDAL AND SNOIDAL WAVES OF THE
FULL KLEIN-GORDON-ZAKHAROV SYSTEM

SEVDZHAN HAKKAEV, MILENA STANISLAVOVA, AND ATANAS G. STEFANOV

ABSTRACT. The full Klein-Gordon-Zakharov system is considered in the space periodic con-
text. We construct cnoidal and snoidal type solutions for the fast scale component. It is shown
that in parts of the range, the waves are spectrally unstable with respect to co-periodic pertur-
bations.

The result relies on an instability index count for Hamiltonian systems, with self-adjoint
portion consisting of a non-standard matrix Hill operator. The spectral analysis of these ob-
jects, and in particular the Morse index calculations, is a largely unexplored subject. The
method, that we develop herein, might prove useful for other systems and/or second order
in time models.

1. INTRODUCTION

Consider the following Klein-Gordon-Zakharov (KGZ) system

1)

{ Uy — Upy +U+uv+Plulu=0,-T<x<T or xeR
1
Ve — Vxx:§(|u|2)xx-

The system (1) describes the interaction of a Langmuir wave and an ion acoustic waves in
plasma [2, 11, 12]. More precisely, § is a real parameter, u is complex valued functions repre-
senting the fast scale component of the electric field, while v is real valued function, measur-
ing the deviation of ion density from equilibrium.

Regarding well-posedness for the whole spaces problem, in [4], global well-posedness on
R was shown, without any small data assumptions. In [9, 3], the 3D version of the system
(1) was shown to be well-posed. More recently, using standard methods, we have shown in
our previous paper [6], that the Cauchy problem for (1) is locally well-posed for low regularity
initial data, both in the periodic and the whole line setting.

The existence and stability properties of standing wave is an important question both from
theoretical and practical point of view. in fact, understanding the dynamics around the soli-
tary waves gives an important perspective about the global dynamic properties of the evo-
lution problem at hand. Let us briefly review the literature on this topic. Orbital stability of
solitary waves for the KGZ system, posed on the whole line, was studied in [12]. The orbital
stability of periodic standing waves for system (1) in case § = 0 was considered in [6]. Using
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the theory developed in [10] the stability of periodic traveling waves for system (1) is estab-
lished in [7] for the quadratic case, i.e. f = 0. Stability of periodic waves of dnoidal type for
system 1 was considered in [5].

Our aim of this paper is to stability of periodic standing waves of cnoidal and snoidal type.
This turns out to be a rich family of solitons, depending on three parameter’. Let us point out
that the methods needed for the spectral analysis here is much more sophisticated that the
ones presented on the whole line or in the periodic context, but with quadratic non-linearity,
i.e. f=0. The reason is that, the corresponding matrix linearized operators support two or
even three negative eigenvalues, which in the end forces the instability of the waves.

1.1. Periodic solitary waves. We now construct the explicit solitons, which we later analyze
for stability. Let us mention that as these are Newton’s equations, and modulo some con-

stants, these are all periodic solutions that exists. We consider periodic waves of the form
iwt

u(t,x) = e'“'p(x), v(t,x) = w(x) for Klein-Gordon-Zakharov system (1). Inserting this ansatz
in the system (1), we obtain the following system of ordinary differential equations
" +(1-wHe+oy+pPp3=0, -T<x<T,
2) _ u_l( AY/ AN
Y =377 =0.

Integrating twice in the second equation of (3), we obtain ¥ = —%(p2 + Ax + B. Taking into
account the required periodicity of the waves, it must be that A = 0. We then consider only
the case B = 0. Denote ¢ := 1 — w?, so that (2) takes the form

—¢"+op+(f-3)9>=0, —-T<x=<T,
3) __1.2

Y=—3¢"
Multiplying by ¢ and integrating once the ¢ equation above, we get after some algebraic ma-
nipulations

4) (p/z: I—Zﬁ (_(,04 4 2

+ ;2 )—'U()
4 1-287% T12p) T U

where a is a constant of integration. This is clearly a particular case of the Newton’s equation.
We consider two cases.

1.1.1. Cnoidal solutions (outer case). Let 1 —2 > 0 and o > 0. In this case the non-linearity
U, can be written in the form

1-2 4
U =1 =2Pp2_ (—U +P2+ s2)
2p-1
and solution of (4) is given by
5) @(x)=Pcn(ax,x),-T<x<T,
where
©) 2 (2B-1)P? , a2:_20+(2ﬁ—1)P2: o
40 +2(26-1)P? 2 2k2 -1

We can then formulate explicitly the conditions on the parameters in the following existence
results for cnoidal solutions.

lin addition to the usual translation and modulation parameters
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Proposition 1. Leto >0, i.e. o € (0,1) orw € (-1,1). Letalsox € (%, 1), B € (—00,3). Then,
there exists a cnoidal solution ¢ of (4), in the form (5), with

7 PZ _ 40 T— 2K (k) _ 2K(k)v 2x2 -1
C(1-2B@ex2-1)""  a NG '

Remark: Note that the dependence of ¢ from the parameter f is only through the ampli-
tude P, in the particular way described in (7).

1.1.2. Snoidal solutions (truncated pendilum). Let1-2 <0 and o < 0. Now, we write U(s) in
the form

®) U(s) = 2[1_—1(1)2_32)(%_1)2_82)_
The solution of (4) is given by

9) @x)=Psn(ax,x),-T<x<T,
where

Thus, we can formulate the existence result in the following proposition.

Proposition 2. Letx € (0,1),0 <0, > % Then, there exists a snoidal solution of (8), in the
form (9), with

_ —4ok? _2K(K) _ 2K(x)V1+x?

S @eB-DA+x% T a o

Our next order of business is to derive the linearized about the solitary waves equations as
they are responsible for the stability of these solitons.

11) P?

1.2. Linearized equations and setting up the eigenvalue problems. We take the perturba-
tion in the form

(12) u(t,x) = ei“((p(x) + p(t,x)), v(t,x)=w(x)+4q(t x),

where p(t, x) is complex valued function, g(t, x) is real valued function. Plugging in the sys-
tem (1), using (3), and ignoring all quadratic and higher order terms yields the following linear
equation for (p, q)

Pit+2i0p;+0p = prx +9q+ (=35 + P)@*p+2p¢p*Rep =0
(13) 1, 2 2
qir — Gxx — 3 (@ +2¢Rep) xx = 0.

Introduce the new function 4 : f_TT h(x)dx =0, so that q(t, x) = hx(t, x). Then, we can rewrite
(13) as follows

(14) { P+ 210+ 0P = prxt @hi+ (3 + Pg?p +2p¢ Rep =0
httx — Rxxx — 5(@° +2pRep) xx = 0.
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Integrating by x in second equation and taking into account that & is a mean zero function,
we get

(15) { P +2iwp; -I; Op—Pxx+@hy+ (—% +B)@?p +2B¢p’Rep =0
hit—hyxx—¢@ Rep+@Rep, =0.

Spliting real and imaginary parts of complex valued function p and real valued function £ as

p=F+iGand h = R, allows us to rewrite the linearized problem (15) as the following system

Fit—20G;+0F — Fxy + QR+ (-5 + P)p?F+ 2p? F= 0
(16) Git+20F;+0G =Gy + (-3 + f)9?G =0
R[t_Rxx_(p,F_(pr :0.

Now we can write the system (16) as linearized problem below

F
(17) Ui +20]U0;+ HU =0, U= (R)
G

00 -1 H A 0
J =1loo ol H=|A* H 0
10 0 0 0 Hs

where

1

H, = —a§+a+(3ﬁ—§)<p2, Hy =02,
1

H; = —a§+a+(/3—§)<p2,

A = @0y, A"=—@d,—¢ .

After passing to the eigenvalue ansatz U(t, x) — e U(x), the stability problem (17) becomes
a second order pencil

(18) A2U +2wJAU + HU = 0.
More specifically, instability occurs if (18) has a nontrivial solution (A, U ), with RA > 0, U #0.

F
Recall that here the function space is U = (R) , with
G

T
FGeH,, |-T,Tl, Re Hy[-T,T:= {fer,e,[—T,T]:f_Tf(x)dx:o}.

It is convenient to introduce a notation for the domain of H, namely

X:=D(H) = H,,, [-T,T1 x Hj[-T,T] x H,,,[-T, T1.

Note that H: D(H) — L%er [-T,T] x L% x [2 [-T,T],soin particular the second entry of 72U

per
is still mean value zero, whence the base Hilbert space may be conveniently taken in the form
Lf,er [-T,T] x L(Z) X L%er [-T, T]. We further rewrite the pencil (18) in the more familiar Hamil-

tonian formulation as follows. Upon introducing the operators

[ 03 I3 _(H 0
j'_(—lg —2(1)])’%'_( 0 13 )’
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note ¢* =— ¢,/ = 4, we can write an equivalent to (18) Hamiltonian eigenvalue prob-
lem, namely

(19) FAHV=AV, V= (g‘) €XxX.
2

A direct inspection confirms that _#.# maps the second and the fifth components of the six
entries into a mean value zero function, that is, an element of L(z)[— T,T]. Thus, the natural
base Hilbert space for the eigenvalue problem in (19) is (Lper[ T, T] x L3 x Lfm [—T, T))2. Due
to the bounded interval and periodic boundary conditions, it is easy to check that all spectrum
is in fact point spectrum, so (19) is a true eigenvalue problem. This prompts the following

definition for spectral stability.

Definition 1. We say that the soliton (¢,vy) (that is, the solution of (2)), is spectmlly stable, if
the eigenvalue problem (19) does not have solution (A, V) withRA >0 and V #0: VeXxX.

In the next section, we provide the basics of the Krein’s instability index theory, which often
yields good sufficient results for spectral stability/instability of waves.

1.3. Instability index counting theory. Suppose that we consider an eigenvalue problem of
the form

(20) FLf=Af,
where £* = £ is a self-adjoint operator, ¢ : ¢* = —_¢ is bounded, skew-symmetric and in-
vertible operator, so that both operators preserve the real subspace?. The eigenvalue problem
(20) enjoys the Hamiltonian structure, so in particular eigenvalues are symmetric with respect
to both the real and the imaginary axes. Let k, represents the number of positive real eigen-
values of (20), k. - the number of quadruplets of complex eigenvalues with non-zero real and
imaginary parts, while kl.SO is the number of pairs of purely imaginary eigenvalues of non-
positive Krein signature. More precisely, we say that A = i is of non-positive Krein signature,
ifv: #Zv=ipv (and consequently £ v =—-iuv), then (Zv,v)=<0.

Also of importance in this theory is a finite dimensional matrix &, which is obtained from
the adjoint eigenvectors for (20). More specifically, consider the generalized kernel of #.%Z

gKer( %) = spanl(Ker(££),1=1,2,...].

Assume that dim(gKer( %)) < oo (note that under minimal Fredholm assumptions on
Z, %, this is indeed the case). Select an orthonormal basis in gKer( %) e Ker(#%L) =
span(n;j,j=1,...,N]. Then 2 € My« is defined via

{@l]}l] 1- l]:<$771»77]>

Then, following [8], we have the following formula, relating the number of “instabilities” or
Hamiltonian index of the eigenvalue problem (20) and the Morse indices of the operators £
and 2

1) Ktiam = ky +2ke +2k:° = n(£) — n(@).

As an easy corollary, based on elementary parity considerations, we conclude that if kg, is
an odd number, there is at least one real unstable eigenmode for (20), while if kp4,, is even,

2some assumptions are added below, as we go over the requirements and the formulas
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one cannot conclude with certainty about instability. For example, as will be the case with
various statements below, k., = 2, one might have two real eigenvalues or a pair of complex
eigenvalues p + iv,u > 0 (i.e. modulational instability) or a pair of marginally stable eigen-
values +iv, with non-positive Krein signature. Clearly, the first two configurations present an
unstable scenarios, while the last one is stable.

1.4. Main results. We start with the instability of the cnoidal waves. Note that we have a
complete description of the unstable spectrum. We refer the reader to Section 1.3 below for
the definition of Krein signature of a neutral eigenvalue.

Theorem 1. (Instability of the cnoidal waves) Let x € (%, 1), B € (—oo, %), lw| < 1. Then, the

solitary wave solutions (e’ ¢, — %(pz) of the full KGZ system (1), described in Proposition 1, are
spectrally unstable. More specifically, let

E2(x) - 2(1 - x®)Ex)K (k) + (1 — k3 K?(x)

M(x) := > 0;
2xk2-1)Ex) + (1 -x3)K(x)

1 M®

Pox) = > KW
[E() - (1 -x2)K@)][1-26 - FE
wo(k,pf) = M
@2x2-1)(1- 2B)M(x) + [E(x) — (1 - x2)K)][1 - 20— W]
Then,
o If B < Bo(x), and |w| < wy(x, B), then (19) has kiam = 3, and thus it has at least one one
positive eigenvalue.

. If% > B> Bo(x), then the eigenvalue problem (19) has kgjgm = 2.
o IfB< Po(x), and 1 > |w| > wy(k, B), then (19) also has kram = 2.

Our next results concerns the snoidal waves produced in Proposition 2.
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Theorem 2. Letk € (0,1), f > 3 and|w| > 1. The solitary waves (e'' ¢, —$¢*) of the KGZ system,
where @ is as in Proposition 2 are spectrally unstable. Specifically, for p; = p1(x), w1(B,x) as
defined in Proposition 11 (see also Figure 2), we have

e For B < B1(x) and w1 (B, x) < |w|, the eigenvalue problem (19) has kjam = 3, and hence
at least one real unstable eigenvalue.

e For 5> B1(x) and all|w| > 1, the eigenvalue problem (19) has kyjgm = 2.

e For < B1(x) and w1 (B,x) > |w| > 1, the eigenvalue problem (19) has kgjgm = 2.

Our arguments rely on a careful spectral analysis of various self-adjoint operators, both
scalar and matrix, as they arise in the eigenvalue problem (19). In order to facilitate our dis-
cussion, we introduce a few more notations. Denote

H A
Hy= .

Note that Hy is self-adjoint. Introduce also the second-order differential operator
1
(22) L:—a§+a—3(§—ﬁ)¢2,

which is the linearized operator naturally appearing in the linearization in the scalar problem
3).

A road map for the paper is as follows. In Section 2, we establish the required spectral prop-
erties of the matrix Hill operator Hy in the cnoidal case. This is done in several steps. First,
we relate the spectral properties of the scalar linearized operators L, Hs to the standard %,
which arise in the linearization close to the standard cnoidal waves for the cubic NLS. Next,
in Section 2.2, we demonstrate that Ker (Hy) is one-dimensional, except on a two dimensional
surface B = Bo(x) in the three dimensional configuration space, on which dim(Ker(Hp)) = 2.
Next, we calculate the Morse index of the operator Hy - we show that n(Hy) = 1 or n(Hp) =2,
depending on whether we are above or below the critical surface = y(x). Here, the crucial
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ingredients are the particular structure of Ker(Hp) (which confirms that an additional vec-
tor enters the kernel exactly at f = o(x)), while the main novelty is in Proposition 6, which
assures us that a negative eigenvalue of Hj actually crosses the zero and exits as a positive
one, as 3 ~ Po(x). In Section 3, we build up the spectral information necessary for the snoidal
solution. This is much simpler, and it implies that n(H) = 3, while Ker(Hy) is always one di-
mensional. In Section 4, we first introduce the Hamiltonian instability index theory, following
[8]. Then, in Section 4.1, we construct the eigenspace and the generalized eigenspace for the
cnoidal solutions, for the grand, six dimensional operators arising in the eigenvalue problem
(19). This culminates in the exact calculation of the Hamiltonian instability index kg4, in
Proposition 10. Similarly, in Section 4.2, we calculate the Hamiltonian instability index for
the snoidal problem, and its relation to the main result. Theorem 2 is covered in detail in
Proposition 11.

2. SPECTRAL THEORY FOR THE LINEARIZED OPERATORS IN THE CNOIDAL CASE

We start with the properties of the operators L and Hjs.

2.1. Spectral propertie of L and Hs. Using that sn?(y) + cn?(y) = 1 and (6), we get

L =-0%+0-3(f-3) P’cn*(ax,x)

= a®| =0} +6x7sn*(y,x) — (1 +4x7) |,

where y = ax.

It is well-known that the first four eigenvalues of A} = —6?, + 6k2sn2(y, k), with periodic
boundary conditions on [0,4K (k)] are simple. These eigenvalues and corresponding eigen-
functions are:

Vvo=2+2k2-2V1-k2+ k%, o) =1-(1+k*>—V1-k2+kYsn?(y, k),

vi=1+k?% d1(y) = en(y, k)dn(y, k) = sn'(y, k),
vy =1+4k?, ¢2(y) = sn(y, k)dn(y, k) = —cn'(y, k),
vy =4+ k2, ¢3(y) = sn(y, k)en(y, k) = —k~2dn’ (y, k).

It follows that the first five eigenvalues of the operator L, equipped with periodic boundary
condition on [0,4K (k)] are simple and zero is the third eigenvalue.
Similarly, for the operator Hz we have

Hs = a®[-0%, + 2k*sn®(y, k) - 11.

The first three eigenvalues and the corresponding eigenfunctions of the operator
Ay = —6?, + 2kzsn2(y, k) = 1+ a?Hs, with periodic boundary conditions on [0,4K (k)] are
simple and
eo=k%  Oo(y)=dn(y,k),
€1=1, 01(y) = cn(y, k),
e2=1+k? 02(y)=sn(yk).
It follows that zero is an eigenvalue of H3 and it is the second eigenvalue with corresponding
eigenfunction ¢(x). Thus, we have established the following proposition.
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Proposition 3. The self-adjoint Schrodinger operators L and H3 have only point spectrum.
Moreover, their Morse indices, that is the number of strictly negative eigenvalues, are n(L) = 2
and n(Hs) = 1.

Finally, Ker(Hs) = span([cn(ax,x)] and Ker(L) = span(cn'(ax,x)]. In particular, L is in-
vertible on the subspace {cn'}*.

Next, we now compute the Morse index of the matrix Schrédinger operator Hy as well as its
kernel. As is well-known in general, this is a much more difficult task.

2.2. The operator Hj: structure of Ker(H;). We start with a description of Ker(Hp), as this
will guide our arguments regarding the number of negative eigenvalues. Recall that

D(Hp) = H*[-T, Tl x H5[~T, T]
while the base Hilbert space is L*[—T, T] x L3[-T, T'.

Proposition 4. Letx € (é, 1), B< % and o > 0. Define

E2(x) - 2(1 - x> Ex)K () + (1 - k%) K?(x)

M) := >0
2x2-1)Ex) + (1 —x2)K(x)
1 M®
ho) = S R

Then, for all B # Bo(x), the self-adjoint operator Hy has an eigenvalue at zero, which is simple.
In addition, Ker(Hy) = span[i], where

(pl
1?1 = 2 T .
( —+ar [oretdx )

At B = By(x), there is the identity (L™ 1, @) + 2T = 0. A second eigenfunction exists, given by

w ( X )

Remark: Here, 6;1 [(pL‘l(p + 1] is the unique mean-zero anti-derivative of (the mean-zero
function) ¢ L™ !¢ + 1. Note that for § # Bo(x), ¢ L ¢ + 1 is not mean-zero, and so ¥, is not
well-defined.

Proof. Let (g ) be an eigenvector corresponding to a zero eigenvalue, that is Hy (]gc ) =0. In

other words,
1
—f"+0f+BF= )¢ f+¢g =0
(23) -g"-(fH) =o0.
Integrating the second equation implies that for some constant ¢y, we have

(24) g =-¢f+c
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whence the equation for f becomes

3
(25) —f"+0f+(3,3—§)(p2f+co(p:0.

Note that (25) is exactly in the form Lf = —cop. We will show that ¢y = 0 and then, in accor-
dance with the description of Ker (L) from Proposition 3, we conclude that f = d¢’ for some
constant d. Resolving (25) yields

(26) f=d¢ —cLl ',

since ¢ = cn L Ker(L) = span(cn']. Thus,

27 g =—dpg +colpL o +1).
Integrating the above equation, we get the necessary condition for cy,
(28) collL ™ p, @y +2T) = 0.

Clearly, if (L‘lcp, @) +2T # 0, then ¢y = 0, so we recover the unique (up to a multiplicative

2
Otherwise, if (L‘lqo, @) +2T =0, then we clearly have another eigenvector in the form v/, as

described in the statement. So, it remains to determine, where it does happen that (L™ ¢, @) +
2T = 0. To this end, we need to compute (L™ '¢, ). We will do it by constructing the Green
function for the operator L. We already have ¢’ € Ker(L). The classical approach is to consider
the function

!/
constant) eigenvector (Z‘; ) = ( (epz).

1 !
(P” V-4

X
o
y(x) =@ (x) fo o7 o
which is also solution of Ly = 0. However, since ¢’ has zeros, the integral above is not well-
defined. Instead, using the identities
1 3 1 0 cn(x,x)
sn2(y,x)  dn(y,%) a_y sn(y,x)

ds,
(s)

and integrating by parts, we get the equivalent formula

X1+ cn?(as,x)
dn?(as,x)

cn(ax) — akzsn(ax, K)dn(ax, K)f
0

1
vx)=—=

a’p

Thus, we may take the Green function in the form

L‘1f=<P’f0 1//(s)f(s)ds—w(s)f0 @' () f(s)s+ Cry(x),

where Cy is chosen such that L™ f is periodic with same period as ¢(x). After integrating by
parts, we get
¢*(T) + p(0)*

(29) (L7 p,0) = (@ w) + >

(@, )+ Cplp, V).
Similarly as in [1], integrating by parts yields

", @y =29 (T p(T) +(y,o").
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Using that Ly = —(1 —28)¢>, we get
W29 = ————y (Dp(D).
1-28
Now, integrating by parts and using the above relations, we get

(@) = e EK)

(30)

__ 9"
C(P

2 2
¢~ (1)—¢~(0)
- _ZW’(T) <(P;1//>+ 2 .

With this, we obtain
4 E2(x) = 2(1 - x> Ex)K(x) + (1 - k%) K?(x)

31 L, ) = - 0.
GD L9 =0 2p 2k~ DE®) + (1 - xB)K(K) =
Using (9) and the definition of M(x), we get
_ 4 M(x) 4K (x) M(x)
32 L7 g, @) +2T = — |K(x) - = 1-26-——|.
(32) (L™ @, ) + - |K®) 12| " ai-2p) p K00
So, if B # PBo(x), then the right side of the above equality is not zero, whence ¢y =0 and f =
dy'. O

We now turn our attention to the Morse index of Hy. Due to its matrix structure, determin-
ing the number of negative eigenvalues is generally a hard task. Nevertheless, we succeed in
determining their exact number for all values of the parameters. Some words on the strat-
egy. We use continuity arguments. One important clue provided by our analysis of Ker(Hp)
in Proposition 4 is that, if we use f as a bifurcation parameter’, where f3 € (—oo, %), the kernel
is generically one dimensional, unless 8 = (k) < % Then, there is an additional element ¥/,
popping up in Ker(L). For the remainder of this section, we consider o,k fixed parameters
and B moves in (—oo, %) as a free parameter.

Our best guess in such circumstances is that there is a crossing of an eigenvalue at the value
of Bo(x). That is, we expect that the smallest positive eigenvalue for Hy, when f € (¢ (x), %)
crosses the zero at § = ffy(x) and becomes a negative one, or vice versa, the largest negative
eigenvalue of Hj crosses at f = fo(x) and becomes positive one for § < By (k). This is however
not guaranteed, as it is possible that a positive eigenvalue decreases to zero, touches it and
then bounces back as a positive one.

We need to analyze the problem at hand carefully.

2.3. The operator Hj: Calculation of the Morse index. The next Proposition provides some
good starting point in our analysis.

1

7 1) ,0 > 0. Then, the Morse index satisfies

Proposition 5. Letk € (
1 < n(Hy) <2.

Moreover, under the condition
1 2m%K?

(33) P T K+ Ew — (1= DKm)

3Note that all eigenfunctions, eigenvalues etc. depend in a smooth way on all parameters, in particular on f
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we have that Hy has exactly two negative eigenvalues. That is n(Hy) = 2.

Before we proceed with the proof of Proposition 5, let us derive an useful corollary. More
specifically, and as we shall see below, the condition (33) is not sharp in identifying the set of
all B for which n(Hp) = 2. On the other hand, it can be checked that

2m%x?
< )

[(1+x?)Ex) — (1 -x2)K(x)]
which guarantees that all § satisfying (33) also satisfy < Bo(x).

As an easy corollary of this observation, by Proposition 4 and taking into account the con-
tinuous dependence of the eigenvalues on all parameters (and f in particular), we may con-
clude that n(Hy) = 2 for all § € (—oo, Bo(x)). Indeed, we have two negative eigenvalues for Hy
for all large negative values of f, according to (33). In order for this to change, an eigenvalue
must cross zero (either a positive eigenvalue becomes negative, in which case n(Hp) = 3 or
else a negative eigenvalue becomes positive, in which case n(Hp) = 1. Since zero crossing
does not occur till § = By (x), see Proposition 4, we have that n(Hp) = 2 for all § < By (k).

M(x)

Corollary 1. Letx € (%, 1) ,0>0and f < Bo(x). Then, n(Hy) = 2.

Proof. (Proposition 5) By direct inspection, one sees the important relation

y T
)( )) =(Lu, u)+f (' +pu)’dx.
v -T

Let Ay and A, are the negative eigenvalues of L and ¢y and ¢, with [|[@gll = ll¢1]l = 1, are the
corresponding eigenfunctions. We have

Mo =a?(vo—1-4x%) = - 4= (2k* +2V1-xk2 +x4-1) <0

u

(34) (Ho ( y

A1 :az(v1—1—41<2):—%<0

and
Po(x) = —H(bo({mncpo(ax) = —H%(lax)n [1-(1+%x%2=V1-x2+xY)sn(ax,x),

1(x) = m%mm = ||qbl(ﬁmcn(ax, K)dn(axx).

From the representation (34), we have that

inf <H0(“),(“)>z inf (Lu,uy=0.
(PO (Pl v v ulgo,p1
o | o

By the Rayleigh-Ritz formulas, it follows that the third smallest eigenvalue of Hj is non-negative.
Equivalently, n(Hy) < 2.

Next, we show that there is at least one negative eigenvalue, that is n(Hp) = 1, for all values
of B. To this end, take uy = ¢y. Observe that since fO4K cn(y)dy =0and f04K sn?(y)en(y)dy =0,
we have (@, ¢o) = 0. Then, take vy : v(’, = —@y. Such a periodic v exists, because (@, @) = 0.
We obtain

u
v

1

Up
Vo

(Ho( )( o )>=(L<P0,(P0>=/10<0-
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Thus, n(Hy) = 1.

Finally, we need to show that for all sufficiently small values of 8, we have that n(Hp) =
2. We will show that under (33), we have indeed n(H,) = 2. In order to establish this, we
need to construct a second vector ( 4 ) 1 ( Ho ), so that (Ho( “ ),( “ )) < 0. This will

U1 Vo 4] U1
suffice, by Rayleigh-Ritz minmax formulas, to claim that the second smallest eigenvalue of
H, is negative, whence n(Hp) = 2.

We take the vector in the form u; = ¢; + agy, with a to be determined from the orthogonal-

ity condition. Then, select v; as follows

(@, ur) (@, p1)
(35) v =—pup+ ¥ th = —@(p1 + apg) + (pzil )

Note that such periodic v, exists, since the function on the right-hand side of (35) has zero
mean, by construction. Note that

_ (p,p1)
vy = avg+ by, 01 = - + ——.
1 0o+ U1, U1 PP1 oT
The orthogonality condition ( zl ) 1 ( 50 ) is then equivalent to
1 0

0 = (uy, ug) + (1, vo) = a(l + | voll*) + (v, i),

which has the solution
- _ (UO, ﬁl)
I+ lvoll®

This is our choice for a, which guarantees ( vl ) 1 ( UO )
1 0

It remains to calculate (H, ( l;l ) , ( 1;1 )). We have
1 1

< ) >2 < , >2
(Ho( ;‘1 ),( u )) = (L((P1+a(po),(p1+a(p0)+u = P+ AL+ ®, 1 '
1 " 2T
Since a2 < 0, it will suffice to check that
2
(36) A+ M <0.
2T
Using that

S5 sn?(y)dy = ZK(K) - E®)]
JK snt(y10dy = 22 + k2K ) —2(1 + k2 E(K))

JE en? (y,00dn?(y, 1) dy = 2511 + 1) E(x) - (1 - k3K (K)],
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we get

lpo(@)|l> = $14Kx) -4 +x* = V1-x2 + kD) Z[KK) - E®)]+
+(1+x* = VI-x2 +xH? 512+ 1P K(K) - 2(1 + k3 E®)]]

lp1(a, )|l = =251 +x2)Ex) — (1 -x2) k).

3ax?

Now we will compute the quantity in (36). Using that f04K cn?(y)dn(y)dy = m and that 2T =
4K ()

— o we get
(@, 1)? 3 3n2P%x?
2T  K@)[(1+x2)EK) —(1-x2)Kx)]
Combining this with
1= 30k* 5, 4ox?
Tkt T 1-2p8ek2-1)’
we get
(37) JORCCU IV i P A .
2T 2x%—1 2B-1DKx)[(1+x2)E[x)— (1 —-x2)K (k)]
Since 2xk?—1>0andforall :2<1— K(K)[(1+K2)é'7([12<;(f(1—K2)K(K)] , we have that the right side of
(37) is negative. 0

Our next proposition completes the analysis for the Morse index of Hy. As such, it incorpo-
rates and extends the earlier results in this section. On the other hand, they were necessary
preliminary steps for it.

Proposition 6. Letk € (%, 1) ,a>0. Then,

e n(Hp) =2, if B < Po(x),
o n(Hp) =1, iffo(x) <f<3.

Remark: Before we continue with the proof, we would like to interpret the result in a slightly
different form, which will be useful in the sequel. Note that the condition 8 < (k) is equiva-
lent, due to the formula (32), to 2T + (L™ !¢, ¢) > 0. Thus

2 if 2T+(L7'p,0)>0

(38) n(Ho) :{ 1 if 2T+ (L 1, ) <0.

Proof. Due to Corollary 1 and our analysis in Propositions 4 and 5, we have already estab-
lished most of the claims. We claim that it remains to establish that the second smallest (still
negative) eigenvalue of Hj indeed crosses the zero for f = fy(x), to become a positive one,
whence the Morse index drops to n(Hp) = 1. Indeed, the other alternative, i.e. a positive one
crossing zero to become negative cannot happen, since then we would have n(Hy) = 3, which
cannot be, see Proposition 5. But, we still need to check that crossing of zero (instead of just
bouncing of it) does happen.

To this end, we trace the eigenfunction 11, corresponding to the zero eigenvalue, described
in Proposition 4. By the continuous dependence on S, such eigenfunction will serve as eigen-
function of eigenvalues close to zero, for values of f close to (k). It will suffice to show that
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such eigenvalues change sign at § = fo(x), which will indicate that zero crossing has indeed
happened.

Given the particular dependence on £ in (7), introduce a new variable, m = so that

1
1-2p’
the amplitude is now in the form

40
k2 -1
With this variable, the wave ¢ may be written in the form

4
p(x) =my/ %cn(ax,x) =:m¥(x;0,x).

Note that the ¥ = ¥ (0, x) and it is independent on m. Note that the operator L is independent
on f and subsequently on m.

We now track the eigenvalue, corresponding to an eigenfunction 17;. We can do this via the
implicit function theorem. Instead, and equivalently, it suffices to determine the quantities

(39) P=m

gm) = —-L'o+(m-myge H*[-T,TI,
him) = 0;'[pL '@ +1+(m—mg)hle€ HZ[-T,T]
y(m) = y(m—mg)+O0(m—mp)?*)

in a neighborhood of m = More specifically, we need to solve the system

1
1-2fo(x)
~L7 g+ (m—mo)g .

_ _ _ 2
(40)  Ho(m) (6;1(<pL‘1<p+1+(m—mo)h)) =vy(m—myg) (a;l(wL—1<p+1))+O((m mp)©),

in a small neighborhood of my. We have

L+ m?¥? m¥a, )

Ho(m) = ( -m¥o,-m¥' -2

However, note that*
L+ m?*W? = L+m3¥? +2mo(m — mo) ¥? + O((m — mp)?).

Thus, after expanding up to first order in m — my, we see that the zero order term is satisfied
due to the fact that Hy/» = 0. The first order term in m — my is then the system that we need
to solve. Namely,

L+ m3¥? my Vo, g N 2me¥? o, ~L7 1o B
—mo(Po,+¥) -2 o;lh ~¥o, -V -02 J\0; L tp+1]1)
_L_l(p
= Y(6;1(¢L‘1¢+1))+O((m_m0))'
Observe that the first matrix operator is self-adjoint and in fact, it is exactly

L+m3¥v? moWa, )

Ho(mo) = ( —mo(Po,+¥) -0

4recalling that L is independent on m
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We now need a solvability condition for this system, which guarantees that y # 0. Since itis in
the form

-1 (p 2mo¥? WO, ~L g
1) Holmo) ( h) ( 0 (L g+ 1)) ( ~Wo, -V —02 |05 pL g +1])
the solvability condition is that the right-hand side is orthogonal to Ker[Hy] = span[y,1].
Due to parity considerations, the orthogonality to v/, is automatic, since the right-hand side

of (411) belongs to 12 ,, x Li 40 While vr1 € Li dd > I2,,,. Thus, the solvability condition is
exactly

42 | -L¢ ) 2me¥* Wi, —-L'p —-L'g y=0
Moyt pLto+1) | —wa, - -2 J|o oL o +11) |05 L o +11) =

which determines y in a unique way, provided (42) has an unique, non-zero solution for y.
We aim at verifying that for the remainder of the proof. We can rewrite (42) as

2 w- mO\PZL Ly —moL™'W N
~ Mmoo —md)a (YL W) 0 (ma WL 'Y +1)

_L—
o () (p+ 1)
2

Note however that > [|L > > 0, while

_L_(p
0 L (L lp+1)
Y- miviLly —moL~ ¥
I = 2 -1 Aa-17,2q7 -1 )=
(mo— m3)0x (WL ') )"\ 07 (m2 WL 1Y +1)

2

= (2m8—mé)f‘Pz(L‘l\P)zdx—m(z)(L_l‘I’,‘I’) = (;—1)||<pL‘1<p||2—<L‘1<p,<p>.
0

Recall however that we evaluate this quantity at 8 = (k). On this set, (L"1¢,¢) + 2T = 0. So,

we obtain
_ 2 - _ -1, 2
I_(H—I)IWL ol +2T_(2,/1—2ﬁo(1<)—1)||<pL @|”+2T.

0

However, we have plotted the function 21/1 —-2f,(x) — 1 and realized that it is positive, see
Figure 3. In short, we conclude

I= (2\/1 —2B0(K) - 1) loL ™ )12 +2T > 0.

Thus, y > 0. Thus, the zero eigenvalue at f = (x) (which initially, for < B (x) is the second
smallest eigenvalue for Hy) has the asymptotic

A1 (Hp) = y(m — mg) + O((m — mg)?),

for m ~ my or equivalently 8 ~ By (x). This shows that for § < By (x), A1 (Hp) <0, A1 (Hp) = 0 for
B = Po(x), while 1, (Hp) > 0 for 8> By (x). This finishes the proof. U

3. SPECTRAL THEORY FOR THE LINEARIZED OPERATORS ABOUT THE SNOIDAL SOLUTIONS

In this section, we lay out the spectral theory necessary for the stability analysis for the
snoidal waves framework. Most of the considerations herein are pretty similar or simpler to
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FIGURE 3. Graph of k —2/1-2f(x) -1, x € (1/3,1)

the ones introduced in Section 2. We start with the operator L. We have

1
L = —6§+0—3(,6—5)P23n2(ax,1<):

= o —6§,+6K23n2(y,1<)—(1+1<2) =

= &’[A; -1 +xD)].

where y = ax, and the operator A, along with its first few eigenvalues and eigenfunctions was
introduced in Section 2. It follows that L has simple negative eigenvalue with corresponding
eigenfunction ¢y (ax) and zero is the second eigenvalue of L with corresponding eigenfunc-
tion ¢’. For the operator Hs we have

Hs = a®[-0), + 2k*sn® (y, k) — (1 +x%)] = a’[Az — (A +x)],

where again the eigenvalues and the first few eigenvalues and eigenvectors were described in
detail in Section 2. It follows that zero is an eigenvalue of Hs and it is the third eigenvalue with
corresponding eigenfunction ¢(x). Thus, n(L) = 1 and n(Hs) = 2. We summarize the results
in the following proposition.

Proposition 7. The self-adjoint operator Hs, L, have Morse indices n(Hs) = 2, n(L) = 1 respec-
tively. Moreover, Ker (Hs) = span[¢g)], whereas Ker (L) = span[¢'].

Now we turn our attention to determining the Morse index of H. We have the following
result.

Proposition 8. For all values of the parameters, n(H) = 3.

Proof. By the block structure of H, see (17), we know that n(H) = n(Hs) + n(Hp). We have just
established, see Proposition 7, that n(Hs) = 2, so it remains to prove that n(Hy) = 1. To this
end, observe that the formula (34) is still valid. From it, and the fact that L| spanigoa)]t = 0, it
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is clear that

T
inf <H0( “ )( “ )) = inf (Lu, u)+f W +owdx| =
uy, <Po(06-)) v v ), <P0(a-)) -T
v 0 v 0
> inf (Lu,u)=0.
ulepo(a-)

Thus, from the min-max principle, n(Hy) < 1.
On the other hand, notice that ¢ (ax) L ¢(x), since ¢g(ax) € span|l, sn?(ax,x)] L sn(ax,«).
Thus, one can take vy : vy = —@p¢o(a-). By (34),

i P07 ). P07 ) = wgota, gotan <o.
Vo Vo

It follows that n(Hp) = 1. OJ
Next, we need to analyze the kernel of H. We have the following proposition.

Proposition 9. Letk € (0,1), > % and o < 0. Then, the self-adjoint operator Hy has an eigen-
value at zero, which is simple. In addition, Ker(Hy) = span[y/,], where

(pl
Y1 = ( > T )
_% + ﬁ -T p*dx
Proof. The proof of this proposition is completely analogous to the proof of Proposition 4, in
fact the arguments there apply here as well, which is how the vector v/, is identified. The only
point of difference is at (28), where one needs to decide whether or not there is an additional
element of Ker(Hp). This depends on whether the quantity (L‘l(p, @) +2T = 0. This turns
out to be impossible here, since ¢ L span{dg(a-), '}, whence, according to Proposition 7, we
have (L™ 1¢, ) > 0(and hence (L™'¢, @) +2T > 2T > 0). O

4. STABILITY ANALYSIS FOR THE WAVES

We start with an analysis of the cnoidal waves.

4.1. Stability analysis of the cnoidal waves. We apply the instability index count (21) to the
eigenvalue problem (19). First of all, observe that _¢ is invertible and in fact
1 [ 2w] I3
S = ( I; 03 )
Consequently, Ker(_¢ #) = Ker (), which was described in Proposition 4. As a result, the
following two vectors span Ker (A)

/

®

T
2

4 1 2
_7+ﬁj]l_'(p dx

PO
Il
cocoos oo

0
0
0
0
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We now proceed to find the generalized kernel, i.e. the adjoint eigenvectors.

4.1.1. Generalized kernel of ¢ 7¢. Recall that we are only interested in those outside Ker (A).
A direct computation yields

0 0
0 0
—2wq’ —2wH; ¢
o= A g =27 @' = ¢’ :
2 T 2 T
-+ 4 fT(pzdx -+ 4 fT(pzdx
0 0

since #7!: Ker (#)* — Ker(#)*.

As we are looking to exhaust the set of possible generalized eigenvectors, we need to look
further at a second order adjoints, that is solutions of #.7#°n = 1j;. Equivalently, we need to
solve #7 = _#'7j1. A necessary condition for the solvability of this last problem is _#~'7; L

E 1. But this condition is violated® due to the following calculation
—4w*H; 'l -

o
- T -
k= - %fT dx |8 = - H 9 o))+l 1P+ fwzdxu )<,

2 4T

since (Hj Lo’ ¢'y > 0. Indeed, a direct check shows that ¢’ L {¢,0(ax)} (here Oy(ax) is the
eigenfunction corresponding negative eigenvalue of Hs, while Ker(H3) = spanl¢]), whence
Hy i gotanyt > 0-

Next, we find the generalized eigenvectors associated to ¢». Note that the existence of 17, is
not guaranteed, unless some solvability conditions are met! To begin with, we have

2w¢ ¢ -1 ¥
0 20H| 0 2w Hy ( 0
=yl g-1r _ 1| 0| 0 _ 0
0 0 0
@ @ ¢
Clearly, for the existence of 7},, we need that ( (g ) 1 Ker(Hyp). According to Proposition 4, we

have that ( (g ) 1 971, but for the case = fy(x), it is clearly not orthogonal to ¥/,. Thus, we

are working exclusively on 8 # By (k).

Denote ( g 2 ) = Hj 1( (g ) We shall need to determine f>, g» in our further analysis, but
2

for now we take them in this abstract form. Looking for a further adjoint vectors, we need
to solve ¢ #1 = 1),. This as before leads to the necessary (and in fact sufficient) condition

Sand hence 7)1 is the only generalized eigenvector associated to &
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F1H, L &, - note that the other necessary condition ¢ 17, L &, is satisfied. In any case, we
obtain

(7 2,E2) = —40*(fo, @) — ll@ll%.

So, under the condition

(43) 40°(fo, ) + lpll” #0,

we have no further elements of gKer(_¢ #°) © Ker (#°) and indeed,
gKer( ¢.7) e Ker(F) = spanln,12l.

Remark: Note however, that if (43) is violated, that is if 4w?( fo ) + ||qo||2 = 0, we have an
additional generalized eigenvector above 7j,. In other words, we have a zero crossing at the
points in the parameter space, where 4w?( fo,0) + ||(p||2 = 0. By the Hamiltonian structure
of the spectrum of # .7, there are exactly two additional generalized eigenvectors at these
points.

4.1.2. Calculation of the instability index for the cnoidal waves. We will now need to calculate
the elements of the matrix 2 € M. Let us first show that the off-diagonal element are zero.
We have

1 oo / =
D12 =Do1 = (A N1,72) =( % ,12) =0.
12 21 TR n1,72 ) N2

0 0
0 0
—2w¢’ —2wH; ¢']
(FM,m) = ( @' , @' )=
@ 1 F o @ 1 F o
—7+ﬁfT(p dx —7+ﬁfT(ﬂdx
0 0
(pl
= 40*(H ¢, @y +| 2 T I#>0,
3 9,9 _%Jrﬁ fT(Pzdx

by recalling that (Hgl(p’, ¢y >0.
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Finally, we discuss (#71),,1)2). We have

2w(p 2wf2
0 ngz
. 0 0 2 2
2 ={ o [ o [ e)+lel”
0 0
¢ @

Observe that this the condition (43) is exactly equivalent to 2, # 0. Recall that this was nec-
essary for the non-existence of an additional generalized eigenvector associated to ¢,. It re-
mains to compute the sign of this expression.

H1f2 +Ag2 =@
A*fz + Hzgg =0.

Obviously, we need to find only f> in order to find D,,. From the first and second equations
of the above system, we have

—fy+ofat(—3+3P) P fr+ g, =¢

—8 —(@f2)' =0.
Integrating in the second equation, we get g, = —¢ f> + ¢2. Hence for f>, we get the equation
Lfz=010-c)o,
which is
(44) fo=1-c)L o

Now, we have
g =—(-c)pL g+
and integrating, we get®

oo (L™, @)
2T 2T +(L 1, )
whence
40? 2T(L7 ¢, @)
45 FTi2,T2) = 40* () + lol? = lol? |1 + ! .
(45) (A02,12) =40 {fo, ) + @l =l ol 1o 2T+ (L, )
Using that

4p? 160

2 _ 3 1.2 _ (1 a2
lpll™ = —7 [EG) — 1 —x) K] a(1—2ﬁ)(21<2—1)[E(K) (1-x)Kx)],

we get, recalling that o = 1 - ?,
w?(2x? - 1)(1 - 2B)M (k)

(1-w?)[Ex) - (1-x3)Kx)][1-28- ]I\g((:))

For the calculation of the index, both formulas (45) and (46) will be useful. Indeed, we
have already confirmed that (L‘l(p,(p) < 0, see (31). Note that the points in the parameter
range for which 2T + (L™ 1¢,¢) = 0 represent a vertical asymptote for the function (x, 8) —

(46) (F7T2,12) = llpll* |1 -

bnote the solvability condition 2T + (L™ ¢, ¢) # 0, appearing naturally in the process of determining c,!
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(AN2,12). How do we explain that? Recall that at 2T + (L‘l(p, ¢) =0, an additional element
appears in Ker(#). This is why the quantity (#7,,Tj2) = ( £~ 1&, #71_#71&,) is no longer
well-defined, which is a consequence of the fact that 7! 57 ~1&, no longer makes sense (due
to the appearance of an additional element in the generalized kernel).

For values of B: B > Bo(x), we have that 2T + (L™ ¢, ¢) < 0 and hence, (#7»,7j») > 0 for all
values of w, from the formula (45). Hence, n(2) = 0. Incidentally, in the same range, according
to Proposition 6, we have that n(Hy) = 1, and hence n(#°) = 2. It follows from (21) that k7 4m. =
2.

For values of §: B < Bo(x), we have that 2T + (L‘l(p, @) > 0. Recall that in this range, by
Proposition 6, we have that n(#°) = n(Hy) + n(Hs) = 2+ 1 = 3. But, looking at the formula (46),
we see that (#1),,1)2) could be positive or negative. More precisely, if

0?(2x%? - 1)(1 - 2B)M(x)

(47) 1-

we conclude that (#7,,72) < 0, whence n(2) = 1, whence kg, =3 —1 = 2. If however, the
opposite inequality to (47) holds, we have that n(2) =0, whence kg, = 3.

Thus, we are ready to formulate the definite result for the value of k., where we provide
the explicit solutions of (47), in terms of w.

Proposition 10. Letk € (%, 1), < % and|w| < 1. Then,

o If B> Bo(x), then kygm = 2.
o IfB < Bo(x) and

[E() — (1 - k) K ()] [1 -2 — M)
(48) 1>|w|> M
(2k2 = 1)(1 - 2B) M) + [E() - (1 - kK x)][1 - 28 - 28
then, kgam = 2.
o IfB < Bo(x) and
g (G0 — (1 -2 K@) [1 -2 — M)
w| <
(2x2 - D1 -2 M) + [E() — (1 - x2) K(x)][1 - 26 — 2]

Remark: The inequality in (48) always has solutions w as the expression on the right is less
than one, as long as § < fo(x).

4.2. Stability analysis for the snoidal waves. This section is also very reminiscent of the pre-
vious one. Namely, due to Proposition 7 and Proposition 9, we have exactly two generating
vectors in Ker(/), namely g? 1.5 2 as described in Section 4.1. We now proceed to identify an
orthonormal basis for gKer (¢ #) e Ker (¢ 7).

4.2.1. Generalized kernel of ¢ #. This is of course again very similar to Section 4.1, but there
are different relationships between the concrete quantities. Let us start with 7j,, the associated
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vector to E ». We have calculated it to be, in Section 4.1 (and this is still valid)

-1 @ 2wf>
20t ( 0 ) 208>
o 0 0
2= 0 = 0 )
0 0
Y ¥
where by (44), recall that for the snoidal waves 2T + (L™ ¢, ) > 2T >0,
2T -1

f=0-c)L = .

_— L
2T+ (L 1, p)

23

Thus, the necessary condition for non-existence of a further adjoint vectors, (43), is verified

since

2T(L ' ¢, )

2
_—+ > 0.
el ]

(49) 40*(fo,0) + l@)* =

We now find the adjoint vectors associated to &1. We can proceed, with an identical argument

to Section 4.1 to find 7j;, which is given by

=
Il
hS)

The necessary and sufficient condition’ is given by, identically to the Section 4.1 as

T
2
(50) 40*(H; ', @'y + 1 1? + ||% ~ 17 f p*dx|* #0.
-T

This is not so easy to be dismissed now (as in Section 4.1), since it is possible that (H; 1(p’ @'y <
0. So, it is conceivable that (50) is violated for some points in the parameter space. Neverthe-

less, let us assume (50) and we proceed. We have that

gKer( g A)e Ker(¢5) = span(i,12].

4.2.2. Calculating the instability index for the snoidal waves. As in Section 4.1, we see that
D12 = Do1 = 0. Thus, n(D) = n((HAn1,101)) + n({(H12,72)). First, with the same computation

as in Section 4.1,
(F712,112) = 40%( fo, ) + l@lI* >0,
as already seen, (49).

"There is another condition, which is satisfied automatically, so (50) remains as a necessary and sufficient for

npn-solvability for the non-existence of further adjoints
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Regarding (#1)1,71), we have, as in Section 4.1,

T, ) = 402 )+ 1+ 12 f<p dx|?,

which is exactly the what appears in (50) as well. So, we need to compute the last quantity.
We have Hyp =0and ¢ = ¢ [* #ds is also solution of Hsy = 0. Using the identities

1 _ 1 icn(x,K)
sn2(y,x)  adn(y,x) 0y sn(y,x)

and integrating by parts we get

1 [cn(ax)
aP [dn(ax)
Using that ¢ is odd function and v is even function, we get

) fx cn?(as,«) }
Y(x)=- —axk“sn(ax,x)

o dn?(as,x)

1 T T
(Hy'g', @'y = —gf_T<p2<p’1//dx+C¢rf_T<p’wdx

) ¢(T)f
Co = =29 ) PV

and

Hence
2

. ~ ()UT )
(Hy ¢',9") = f(pww "2 D) "wdx| .

By direct computations, we have

T 2K T
[oro'wdx=-1 [Zfo cnz(x)dx+K2f_T%c(’;)mdx]

o' (T) _ aP?
2y'(T) — 4[K(K)—-Ex)]

I (pwdx———[z sn?(x)cn?(x)dx+ % OZK%WCZX]

2 —40x? 2_ -0
P* =G hama & = e

Putting all this together, we get

2 2K 2 (2K o 2
P— g[ sn?(x)cn®(x)dx + %f de] -
0

H—l /’ ! —
s 99 a |3Jo dn2(x)

2

2 2K 2K 2 2 2
1 (2 f cn?(x)dx +x2 f e (x) dx) = P—R( ).
a 4[K(x)—Emx)]\ Jo 0 dn?(x)

Using Mathematica, we have computed this expression
(=5k%+ 16k —8)K (k) + 9((k? — 4k +2)K (k) + 2(k - 1) E(k))? + (k?* — 4k — 8) E(k)
9k2(E(k) — K(k)) '

R(x) =
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FIGURE 4. Graph of R(x)

One can also see, by plotting the above function in terms of «, that (H; '¢’,¢") = %ZR(K) <0,
for all values of «, see the Figure 4 below. Next, we have that (by using Mathematica for the
integrals)

T 2K
f ¢0%dx 2aP2f cn®(x)dn?(x)dx =
-T 0

2aP? 2((k=1K(k)+ (k+1E(k))
3k

=: 2aP2Q(1<)

and (again, with the help of Mathematica)

2onLor - (-4
2 4T J-1 2 1Jo T \Jo

4 2K 2K
P %f snt(x)dx - ; (f snz(x)dx)
0

a 4K (K)

_ PHk-DKA(R) +22 - WDKK EK) —3E* (k) _ P_42()
o« 3k2K (k) - '

2

2

Putting all of these formula together, we see that (#71,7;) <0 exactly when

R 2a2Q(x) + P> Z(x) e 1)2Q(1<) + (2;; 1) 2p-n < ®)
—4R(x) —-4(1+x2)R(x)

Solving in terms of w, we obtain that (#7),,7) <0 if and only if

20Q(x) + (2ﬁ 1)Z(K) 20Q(x) + (2/5 l)Z(K) +4(1 +x3)Rx)
A1+ KDRK) < 41+ KR

(51)



26 SEVDZHAN HAKKAEV, MILENA STANISLAVOVA, AND ATANAS G. STEFANOV

Knowing that R(x) < 0 for all ¥ and in fact, by plotting with Mathematica one could see that
2Q(x) +4(1 +x?)R(x) < 0, we have that if < < 1 (x), where

52) Bk = 1 B 227 (x)
P70 72000 +40 +x2)R()

then (51) will have a solution, recall that we are in the regime 0 >0 =1 — w?,

(53)

> |w| > 1.

22-1)Q(x) +4x2 7 (k)
w1 (B,x) =
226-1)QKx) +4x2 7 (k) +42-1)(1+ x2)M (x)

If § > B1(x), we have that the right-hand side of (51) is negative, hence it will be satisfied for
all allowable values of w : |w| > 1. Thus, we have established the following proposition.

Proposition 11. Letk € (0,1). Then, there exist functions B, (x), w1 (B,x), introduced in (52) and
(53) respectively, so that the Hamiltonian index is computed according to the following law

2 B> B1x) &lwl>1
(54) kipam =13 2 PB<pi(x) &wi(B,x)>|w|>1
3 B<pBix)&wi(BK)<|wl|.
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