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TRILINEAR COMPENSATED COMPACTNESS
AND BURNETT’S CONJECTURE
IN GENERAL RELATIVITY

BY CEciLE HUNEAU AND JoNATHAN LUK

ABSTRACT. — Consider a sequence of C* Lorentzian metrics {/,, };:‘;"{ on a manifold M satisfying
the Einstein vacuum equation Ric(k,) = 0. Suppose there exists a smooth Lorentzian metric h9 on M
such that i, — ho uniformly on compact sets. Assume also that on any compact set K C M, there is
a decreasing sequence of positive numbers A, — 0 such that

16% (hn — ho) | ooy S An " ol = 4.

It is well-known that k¢, which represents a “high-frequency limit,” is not necessarily a solution to the
Einstein vacuum equation. Nevertheless, Burnett conjectured that o must be isometric to a solution
to the Einstein-massless Vlasov system.

In this paper, we prove Burnett’s conjecture assuming that {/y }I;Xl’ and h¢ in addition admit a
U(1) symmetry and obey an elliptic gauge condition. The proof uses microlocal defect measures—
we identify an appropriately defined microlocal defect measure to be the Vlasov measure of the limit
spacetime. In order to show that this measure indeed obeys the Vlasov equation, we need some special
cancellations which rely on the precise structure of the Einstein equations. These cancellations are
related to a new “trilinear compensated compactness” phenomenon for solutions to (semilinear) elliptic
and (quasilinear) hyperbolic equations.

REsUME. — Dans cet article, nous considérons une suite de métriques lorentziennes {/, };:':“1’, de
classe C#, satisfaisant les équations d’Einstein dans le vide Ric(k,) = 0. Nous supposons qu’il existe
une métrique lorentzienne hg sur M, de classe C*°, telle que i, — ho uniformément sur tout compact.
Nous supposons aussi que sur tout compact K C M il existe une suite de nombres strictement positifs
An — 0 tels que

1% (hn = ho) ooy S n L ol = 4.
Il est bien connu que &g, qui représente une « limite haute-fréquence », n’est pas forcément solution
des équations d’Einstein dans le vide. Cependant, il a été conjecturé par Burnett que sg devait étre
isométrique a une solution des équations d’Einstein couplées a un champ de Vlasov sans masse. Dans
cet article, nous prouvons la conjecture de Burnett en supposant que {/, };f:o‘i et ho admettent en
plus une symétrie U(1) et satisfont une condition de jauge elliptique. La preuve utilise les mesures de
défaut microlocales — on identifie une mesure de défaut microlocale définie de maniére ad hoc comme
étant la mesure de Vlasov dans I’espace-temps limite. Afin de montrer que cette mesure satisfait bien
les équations de Vlasov, nous avons besoin d’annulations particuliéres qui reposent sur la structure
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386 C. HUNEAU AND J. LUK

précise des équations d’Einstein. Ces annulations sont liées a un nouveau phénomeéne de « compacité
par compensation trilinéaire » pour des solutions d’un systéme couplant des équations elliptiques semi-
linéaires a des équations hyperboliques quasilinéaires.

1. Introduction

It has been known in the context of classical general relativity that “backreaction of high
frequency gravitational waves mimics effective matter fields” (see for instance [2, 3, §, 9, 12,
13]). One way to describe this phenomenon mathematically (due to Burnett [2]) is to consider
a sequence of (sufficiently regular) Lorentzian metrics {hn}j;’ol on a smooth manifold M
satisfying the Einstein vacuum equations

(1.1) Ric(h,) =0

such that (in some coordinate system) the metric components admit some limit #y where
hy — hg uniformly on compact sets and dh, — dhy weakly. Assume moreover that for any
compact set K, there is some sequence of positive numbers A,, — 0 such that the following
holds on K:

(1.2) \hp —hol < Any |00 S 1, |0Fh,| S ATF ! fork = 2,3, 4.
n

Due to the nonlinearity of the Einstein equations, the limit %y does not necessarily
satisfy (1.1). Instead, in general it is possible for /¢ to satisfy

1
Ric(ho) = ShoR(ho) = T

(where R is the scalar curvature) for some non-trivial stress-energy-momentum tensor 7.
This tensor T that arises in the limit can be interpreted as an effective matter field.

A question arises as to what type of effective matter field can arise in such a limiting
process. In this direction, Burnett made the following conjecture (V:

CONJECTURE 1.1 (Burnett [2]). — Given (M, h,) and (M, hgy) above, the limit hy is
isometric to a solution to the Einstein-massless Vlasov system, i.e., the effective stress-energy-
momentum tensor corresponds to that of massless Vlasov matter.

We refer the reader to Sections 2.3-2.6 below for definitions concerning the Einstein-
massless Vlasov system. We remark that in Conjecture 1.1, “Einstein-massless Vlasov
system” has to be appropriately formulated to include measure-valued Vlasov fields since
there are known examples for which the limits are isometric to solutions to the Einstein—null
dust system. For further background on the Finstein—Vlasov system, see for instance [1, 15].

Conjecture 1.1 can be interpreted as stating that the effective matter field must be propa-
gating with the speed of light and that the matter propagating in different directions do not
directly interact, but only interact through their effect on the geometry; see [2].

Our main result is a proof of Conjecture 1.1 under two additional assumptions:

(I We remark that in the original [2], (1.2) is only required to hold up to k& = 2. We impose the slightly stronger
assumption that (1.2) holds up to k = 4 in view of the result that we prove in this paper.
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TRILINEAR COMPENSATED COMPACTNESS AND BURNETT’S CONJECTURE 387

1. (U(1) symmetry.) The sequence {/, ,J[;"{ and the limit /¢ all admit a U(1) symmetry
(without necessarily obeying a polarization condition).

2. (Elliptic gauge.) All the metrics can be put in an elliptic gauge and the bounds (1.2)
hold in this gauge.

The following is our main theorem; see Theorem 4.2 for a precise statement.
THEOREM 1.2. — Conjecture 1.1 is true under the above two additional assumptions.

Theorem 1.2 implies a fortiori that the effective stress-energy-momentum tensor is trace-
less, obeys the dominant energy condition (i.e., for every future-directed causal vector X,
the vector —T#, X" is also future-directed and causal), and is non-negative in the sense
that T(X, X) > 0 pointwise for every vector field X (not necessarily causal). In fact, we
show that these statements continue to hold even if we relax the convergence assumption to
be significantly weaker than (1.2). We give an informal statement here but refer the reader
to Theorem 4.1 for a precise statement.

THEOREM 1.3. — Assume that hy, ho all admit a U(1) symmetry and are put in an elliptic
gauge. Suppose (1.2) is replaced by the conditions that h, — ho uniformly on compact sets and
0hy — 0ho weakly in LY. for some po > %.

Then the effective stress-energy-momentum tensor is traceless, obeys the dominant energy

condition, and is non-negative.

Theorem 1.3 can be compared with the following theorem of Green—Wald [8], which to
our knowledge is so far the best result towards Conjecture 1.1:

THEOREM 1.4 (Green—Wald [8]). — Assume {h, },J[;"i and hg are such that (1.1) and (1.2)
hold. Then the effective stress-energy-momentum tensor is traceless and obeys the weak energy
condition (i.e., T(X, X) > 0 pointwise for every timelike X ).

Note that while its conclusion is weaker than Theorem 1.3, Theorem 1.4 is a general result
which does not require U(1) symmetry.

While our results are gauge-dependent, it should be mentioned that a large class of
non-trivial examples have been constructed under our gauge conditions. In our previous
paper [10], we have constructed sequences of solutions of Einstein vacuum equation with
polarized U(1) symmetry, which can be put in an elliptic gauge, such that (1.2) are satis-
fied and the limit is a solution to Einstein equations coupled to N null dusts. See further
discussions in Section 1.2.1.

We now briefly discuss the proof; for more details see Section 1.1. Under the U(1)
symmetry assumptions, the (3 + 1)-dimensional Einstein vacuum equations reduce to the
(2 + 1)-dimensional Einstein—wave map system. The rough strategy is the following:

— The first step of the proofis to show that only the two scalar fields corresponding to the
wave map part of the system are responsible for the failure of the limit to be vacuum.
This can already be viewed as a form of compensated compactness.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



388 C. HUNEAU AND J. LUK

— To capture and describe the defect of convergence given by the scalar fields, we rely on
microlocal defect measures (introduced by Tartar [17] and Gérard [7]). It is well-known
that microlocal defect measures arising from /inear wave equations satisfy a massless
Vlasov equation @ [5, 6, 17].

— We show that in our setting, despite the quasilinear nature of the problem, the
microlocal defect measure corresponding to the wave map part of the system still
satisfies the massless Vlasov equation.

The most difficult part of the argument is to justify the massless Vlasov equation for the
microlocal defect measure. That this holds relies on some remarkable structures and cancel-
lations of the system, which are related to what we call a trilinear compensated compactness
phenomenon.

The remainder of the introduction will be organized as follows: In Section 1.1, we explain
the ideas of the proof. In Section 1.2, we discuss some related problems. In Section 1.3, we
outline the remainder of the paper.

1.1. Ideas of the proof

1.1.1. Microlocal defect measures. — The microlocal defect measure (see Section 5 for further
details) is a measure on the cosphere bundle which identifies the “region in phase space” for
which strong convergence fails. One important property of microlocal defect measures, espe-
cially relevant for our problem, is that microlocal defect measures arising from (approximate)
solutions to hyperbolic equations themselves satisfy some transport equations.

Let u,, be a sequence of functions 2 — R, where 2  R¥ is open, which converges weakly
in L2(R2) to a function u. In general, after passing to a subsequence, |1, |?>—|u|? converges to a
non-zero measure. The failure of the convergence |u, |*> — |u|? can arise from concentrations
or oscillations. The microlocal defect measure is a tool which captures both the position and
the frequency of this failure of strong convergence.

For instance, if u,, = n% x(n(x — x0)) (with y € C) so that |u,|* concentrates to a delta
measure, then the corresponding microlocal defect measure is given by §x, ® v, where 8, is
the spatial delta measure and v is a uniform measure on the cotangent space. On the other
hand, suppose u,(x) = y(x)cos(n(x-w)) so that u, oscillates in a particular frequency
. Then the corresponding microlocal defect measure is |y|*?dx ® &j,), Where 8, is the
delta measure concentrated at the (equivalent class of the) frequency w. See [17] for further
discussions.

An important fact is that microlocal defect measures arising from solutions to linear wave
equations on (2, g) satisfy the massless Viasov equation on (2, g). Consider the special case
where @ = R4*! and d,¢, a sequence of functions such that d¢, — d¢o weakly in L2
In this case, there exists a non-negative Radon measure dv on S*R4*! — which is the
microlocal defect measure — so that

A3 [ = d0) (A0 — o)) dx a0 E%ap g,

S*R4+1 1§12
@ In [5, 6], a transport equation is derived only when the coefficients of the linear wave equation are time-

independent. The case of a general linear wave equation in fact follows in a similar manner, except for more
complicated algebraic manipulations.
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TRILINEAR COMPENSATED COMPACTNESS AND BURNETT’S CONJECTURE 389

If ¢, are approximate solutions to some wave equation, then dv is a (measure-valued) solu-
tion to the massless Vlasov equation (1.5) and (1.7). More precisely,

1. Suppose
(1.4) Ogtn = fo. Nful2@ S 1
Then dv is supported on the zero mass shell in the sense that for every f € C.(M),
dv
1.5 —1yap - =0.
(15) Joo TP by
2. If, instead of (1.4), we also have the stronger assumption
(1.6) Ogdn = fu, | fn— f0”L2(SZ) — 0.
Then for any C! function @ : T* M — R which is homogeneous of degree 1 in &,
1 dv
L. —1yep ad — — —1yab — = 0.
(17) [ (0T 5 O™ 830, 55 = 0

1.1.2. Standard (bilinear) compensated compactness. — We now explain how microlocal
defect measures can be applied to the Burnett conjecture. Recall that Einstein equation with
U(1) symmetry reduced to a 2 + 1 dimensional system (see Section 2.1)
Ogv + %e““#g_l(da),da)) =0,
(1.8) Ogw — 4g7 Y (dw,dy) = 0,
Ricep(g) = 200 0pY + Se™*V dywigw.
Assume that we have a sequence of solutions {(¥,, wy, gn)};l":"‘; which satisfy (1.8), with

g» in an elliptic gauge, which moreover attains C°-limit (Yo, wo, go) with the following
estimates:

(1.9) 105 (Y — Vo. ©n — @0, gn — g0)lL2nLo@2) SALTE, k=0,1,....4.
The first step is to show that

(1.10) Og, ¥n — OgoWo,  Og,0n — Ogyo;

(1.11) €, ' (dwy, dwy) = g5 (dwo, day), g, " (dwn, dYn) — g5 (dwo, dro);

(1.12) Ricep (gn) — Ricap(go)-

in the sense of distributions.

That (1.10) holds is due to the divergence structure of the terms. That (1.11) is true is
slightly more subtle but well-known, and is related to the standard compensated compact-
ness: g5 ' (dwy, dwy,) and gy (dwy, dyy) are null forms, so that when (1.9) holds and Cg,,
and Og, ¥, are bounded uniformly in L2 N L*, the convergence (1.11) holds.

Finally, (1.12) holds under our elliptic gauge condition. This is because

— the elliptic gauge gives strong compactness for spatial derivatives of the metric compo-
nents;

— in this gauge the nonlinear structure is such that there are no quadratic products of
time derivatives of the metric components.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



390 C. HUNEAU AND J. LUK

Given (1.10)—(1.12), it follows that to capture how much the limit (¥, wo, go) deviates
from solving (1.8), we just need to understand (for every vector field Y € C2°) then — 400
limit of
(1.13)

[ 20w + 3 oo dVoly, — [ v+ 3¢ Fon) Fon)) dVoly,
M M

The deviation of (1.13) from 0 is in particular captured by the microlocal defect measure.
More precisely, we define the non-negative Radon measure dv (cf. (1.3)) by

(1.14)
lim [ 200 (Y — V) (Adg (Y — Y0)) +
M

n—+oo

e~ 4o

5 (Oa(@n — @0))(Adg (@ — wo))} dVolg,

=/ a(x7§)éa$/3 dv
S*M HE ’
after passing to a subsequence (which we do not relabel). Then
dv
(1.15) lim (1.13):[ (Y, £)2 —.
n—>+o0 5*M He

In particular, the limit (¥, wg, go) obeys the following system:
(1.16)

Ogo Vo + 2e V0 g5 (dwp. dwy) = 0.

Dgoa)o - 4g61 (dwo, dlﬁo) =0,

S Ric(go)(¥, ¥) dVolgy = [, {2(Y0)* + 3¢ (Yeo)?} dVolgy + [ 0 (Y. €)* gz
where the final equation in (1.16) is to be understood as holding for every vector field Y € C2°.

(1.16) is exactly the form of the Einstein-massless Vlasov system, as long as the measure dv
is indeed a measure-valued (weak) solution to the massless Vlasov equation.

The main task of the paper is therefore to justify that in our quasilinear setting, dv still
solves the massless Vlasov equation, i.e., (analogs of) (1.5) and (1.7) still hold. Already in
Section 1.1.1, we saw that (1.5) only requires weaker assumptions (cf. (1.4) and (1.6)) and is
therefore relatively straightforward. However, as we discuss below, it is much harder to obtain
the transport equation (1.7).

1.1.3. Model problem. — As we argued above, the key difficulty is to justify the trans-
port equation for the microlocal defect measure. Observe already that in (1.6), one needs
that f, — fo in the L? norm in order to justify the transport equation. However, in our
setting, we only have weak convergence so that the derivation of the transport equation
must rely on some special compensation. Another issue is that the wave operator g, is now
dependent on n. It is relatively straightforward to show that if g, tends to its limit go in C!,
then the transport equation remains valid. However, again because of weak convergence, we
need compensation in the relevant terms.

To elucidate some of the difficulties and the techniques to tackle them, consider the
following simplified semilinear model problem with n-dependent metrics:

Dgn ¢n = g;l (d¢nv d¢n)1

(1.17) gn = —an(dl‘)z + (dx1)? + (dx?)2.

4¢ SERIE - TOME 57 — 2024 — N° 2



TRILINEAR COMPENSATED COMPACTNESS AND BURNETT’S CONJECTURE 391

Assume also, for simplicity in this exposition, that ¢, — 0 and N,, — 1 pointwise with the
following bounds:

(1.18) 185 Gull L2nroo @1y + 185 (N = Dllp2nzes@atny S Ay
and that the spatial derivatives of N, (denoted by V) obey stronger estimates:

(119) ||VN ||L20L00(R2+1) < A

(Note that the assumptions that ¢, — 0 and N,, — 1 are slight over-simplifications. On the
other hand, (1.19) is a reasonable assumption in view of the elliptic gauge. See Section 1.1.5.)

Define the microlocal defect measure dv according to (1.3). Our goal will be to show that
for any a(x, £) which is homogeneous of order +1 in £,

(1.20) 0= [ g0

We derive (1.20) usigg an energy identity. Let A be a pseudo-differential operator with
principal symbol a = S“—t A long (but unilluminating from the point of view of this discus-
sion) computation yields

td’n t¢n

(1.21) / & Dedn 01 A1 4 8 (N, A, B )
R2+1

(122) 4 A BTN 1. Al i) + [A4.0) N8 ]’f”ndx

) .  @N) (06
(1.23) 4 A @903 @ N A ;\Z —(&¢»8’%A%}dx
(1.24) +/ N {(aiqs,,)sifN,,A@fN’]’\)]M—(am)(a Ny )S’JA( ‘b")}

RZ 1 n
b N
(1.25) = [ A @ d0) + AN, 0 0}
r2+1 Ny
t¢n i j(bn . ]¢n

(1.26) _/Rz+1 N, —ESUL(NZ —1)9; A N, —8,A((N,,2—1)—Nn ) dx

(See Section 9 for details of a similar computation.)

By (1.3), (after passing to a subsequence if necessary and using that £2 = §¥§;&; on the
support of dv) asn — 400, (1.21)+(1.22) — 2 x RHS of (1.20). It therefore suffices to show
that the other lines all tend to 0 as n — +o00.

That (1.23) and (1.24) tend to 0 are relatively straightforward: these rely respectively on
the self-adjointness (up to error) of A and (1.19).

However, that (1.25) and (1.26) both tend to 0 is more subtle. This requires trilinear
compensated compactness. We now turn to that.

1.1.4. Trilinear compensated compactness. — There are two types of trilinear compensated
compactness that we use. The first kind relates to term (1.25). We call this trilinear compen-
sated compactness for three waves as it is a trilinear term in the derivatives of ¢,, and the
compensated compactness relies in particular on good bounds for Og, ¢p,. The second kind
of trilinear compensated compactness relates to the term (1.26). We call this elliptic-wave
trilinear compensated compactness since it relies on both ¢, satisfying wave estimates and N,

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



392 C. HUNEAU AND J. LUK

satisfying good spatial derivative estimate (1.19) (which in the actual problem is obtained via
elliptic estimates for N,).

Trilinear compensated compactness for three waves. — In fact each term in (1.25) tends to 0.
We discuss only a simpler statement, which captures already the main idea involved. We argue
that for ¢, satisfying (1.18),

(1.27) (0:0n) gy (A, dpy) — 0

in the sense of distributions.
To this end, first observe that by (1.17) and (1.18),

(1.28) I8¢, énllL1aLeo@2+t) S 1.

Then notice that we can write
_ 1
8n 1(d¢na deén) = EDgn (¢3) — ¢ (Dgn ®n)-

It follows that for y € C°(R>*1),
1
[ 10 @ Nadr =5 [ @90, (63 Ny
R2+1 2 Jr2+1

- f £ (0@ n)n g, () Ny dlx.
R2+1

The second term clearly — 0 by (1.18) and (1.28). After integrating by parts, the first term
can be written as a term taking the form of the second term plus O(A,) error, which then
implies (1.27).

Elliptic-wave trilinear compensated compactness. — We now turn to the term (1.26). Using
the estimates in (1.18), it follows that (1.26) has the same limit as

(1.29) [ 288 = 10,48, — 3, AL = D)2 u]) .

If N, — 1in C!, then (1.29) can be easily handled using the Calderén commutator
estimate (see Lemma 5.2.6), which gives

[(1.29)] S 19:¢nllL2@nt)IN; = Ulct @)1 dnl L2@2+1) = O
The main issue is therefore that while N, — 1 and V(&,, — 1) indeed converge uniformly, the
term d; N, only converges to 0 weakly. We therefore need the more precise structure in (1.29)
and argue in Fourier space.

To illustrate the idea, assume that A is simply a Fourier multiplier, i.e., its symbol
a(x, &) = m(§) is independent of x. This indeed captures the main difficulty. In this case,
since ¢, is real-valued, we can assume also that m is even.

Under these assumptions, we can rewrite (1.29) up to terms tending to 0.

(129~ [ 0ubu8HNE = DAG 8, — ALNE = DT g}

= V d:pn8Y A[0; (NZ — 1)(3;n)] dx
R2+1

S N8¢nll2n+ ) IVNG = Dllcoga+1yl19)bn 2 g2+1) = 0.
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TRILINEAR COMPENSATED COMPACTNESS AND BURNETT’S CONJECTURE 393

Then we compute (cf. Proposition 11.5)
(1.30)

/ | Budn8NE = 1A g — AINZ =~ D]}
]R2 1

= %/ Emil? + 1:l& P NZ = D0 = E)n(—)n (€)m(E) — m(m)) d& d,
R2+1 xR2+1
where we decomposed & and 7 into their time and spatial parts: £ = (&, &), n = (9, ;).

Roughly speaking (£,]n;|> + n:|&|?) corresponds to three derivatives, and hence
contributes roughly to O(A;?) in size (see (1.18)). This is just enough to show that the
(1.30) is bounded using the estimates (1.18). To deduce that (1.30) in fact tends to 0, observe

— our main enemy is when N? — 1 has high-frequency in ¢, i.e., |, — & is large (since we
have better estimates for spatial derivatives of Ny,; see (1.19));

— we can gain with factors of & — n; (corresponding to spatial derivatives of N2 — 1) or
£2 — |& % or n? — |n;|* (corresponding to (g, acting on ¢,).

Now the Fourier multiplier in (1.30) can be written as

Ecmil® + nel& 1 = &+ n)E — i) + P E + 00).

The first term contains a factor of (§; —#;) which as mentioned above corresponds to a spatial
derivative of N,, and behaves better. For the other term, we rewrite

25; 771 25; | |2 2|771|2 'lt 2 & +mi) - (& —ni)

| —|z| +|l|—+|l| .
& — & — e € — Mt & — e

When &, — 7, is large, we can make use of the gain in £ — |&|2, |n;|*> — n? or (§ — n;) to

conclude that this term behaves better than expected.

i |*(&: + 1) = |ni

1.1.5. Further issues. — We finally discuss a few additional issues that we encounter in the
proof, but are not captured by the simplified model problem above.

1. (Spacetime cutoff) Our solution is a priori only defined in a subset of R2T!, with
estimates that hold only locally. We therefore need to introduce and control appropriate
cutoff functions.

2. (Estimates for metric components) The estimates for the metric coefficients have to be
derived using the elliptic equations that they satisfy.

(a) To show that (1.19) holds for the metric components, we use the fact that the
metric components satisfy (semilinear) elliptic equations due to our gauge condi-
tion.

(b) There is in fact further structure for the estimates for the metric components:
while the spatial derivatives of a// metric components obey a better estimate of
the form (1.19), the d, derivative of the metric component of y (see (2.4)) also
obeys a better estimate due to the gauge condition. This fact is crucially used.

3. (Non-trivial limit for wave variables) In general ¢,, does not tend to 0, but instead tends
to a non-trivial limit ¢o (with estimates [|0%(¢n — ¢o) |l L2nr S ALK

~
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(a) The non-triviality of ¢ already means that (in addition to an analogue of (1.22)—
(1.26)) we need to derive an energy identity for the limit spacetime and take
difference appropriately.

(b) More seriously, we need an additional ingredient, which is not captured by
our model problem. In general, when the limit ¢ is not identically 0, the
corresponding trilinear compensated compactness statement gives (see Propo-
sition 12.3),

(3¢ dn)go ' (. ddn) — 2(0:pn)go ' (A, dpo) = —(3:¢h0) g ' (dpo. depo)

in the sense of distributions. In other words, in our model problem, if we assume
¢n — ¢o # 0 (but still assuming N,, — 1), we get

(1.31)
dbn
/R DPn g (N (A, dpn)) dx

241 Ny

d
=2 L Dyt [ B . dow)

+ / 3.0 A(gy " (ddo. do)) dx.
R2+1

which does not cancel off the corresponding term in the energy identity for ¢y.
The actual system, despite its complications, is in fact better in the sense that
all the terms involving the microlocal defect measure as in (1.31) cancel! This
cancellation is related to the Lagrangian structure of the wave map system.

4. (Freezing coefficients) Since the equation for ¢, is quasilinear, we can not take the
Fourier transform as in the model problems. To overcome this difficulty, we will intro-
duce a partition of our domains into a ball of radius A;° (with well-chosen &), and
show that in each of these balls the metric coefficients can be well-approximated (in
terms of A,) by constants so as to carry out our argument. See Sections 8.2 and 11.

Finally, let us emphasize that in all the above discussions we have relied very heavily on
the structure of the terms involved. Indeed it is easy to slightly modify the terms so that the
argument fails.

1.2. Discussions

1.2.1. The reverse Burnett conjecture. — Already in [2], Burnett suggested that a reverse
version of Conjecture 1.1 may also hold, in the sense that any sufficiently regular solution
to the Einstein-massless Vlasov system can be approximated weakly by a sequence of high
frequency vacuum spacetimes in the sense of (1.2).

Like Conjecture 1.1, in full generality the reverse Burnett conjecture remains open. On
the other hand, some results have been achieved in the U(1)-symmetric polarized case in our
previous [10]. More precisely, given a generic small and regular polarized U(1)-symmetric
solution to the Einstein—null dust system with a finite number of families of null dust which
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are angularly separated in an appropriate sense, we proved that it can arise as a weak limit @
of solutions to the Einstein vacuum system.

Note that the Einstein—null dust system is indeed a special case of the Einstein-massless
Vlasov system, where at each spacetime point the Vlasov measure is given as a finite sum
of delta measures in the cotangent space; see Section 2.6. In fact, since finite sums of delta
measures form a weak-* dense subset of finite Radon measures, one can even hope that the
results in [10] can be extended to a larger class of solutions to the Einstein-massless Vlasov
system.

1.2.2. Trilinear compensated compactness. — To the best of our knowledge, the phenomenon
of trilinear compensated compactness has previously only been studied in the classical work
[14]. The work considers three sequences of functions {¢1;};:%, {¢2,;};> and {¢3,} %
on R3, each of which has a weak-L? limit and moreover X;¢;; is bounded in L? uniformly
in i for some smooth vector fields X1, X, and X3. It is proven that under suitable assumptions
of X;, the product ¢, ;¢ ;¢3,; converges in the sense of distributions to the product of the
weak limits.

1.3. Outline of the paper

The remainder of the paper is structured as follows. In Section 2, we begin with an
introduction to various notions important for our setup, including the symmetry and gauge
conditions, and the notion of measure-valued solutions to the Einstein-massless Vlasov
system. In Section 3, we then introduce the notation used for the remainder of the paper.
In Section 4, we give the precise statements of the main results of the paper. In Section 5,
we recall some standard facts about pseudo-differential operators and microlocal defect
measures.

Starting in Section 6, we begin with the proof of the main results. In Section 6, we derive
some simple facts about the microlocal defect measures in our setting. In Section 7, we prove
our first main theorem, Theorem 4.1 (cf. Theorem 1.3).

In the remaining sections, we prove our other main theorem, Theorem 4.2 (cf. Theorem 1.2).
Section 8§ gives some preliminary observations. In Section 9, we derive the main energy iden-
tities (cf. (1.22)—(1.26)) which will be used to derive the transport equation of the microlocal
defect measures. In Section 10, we first handle the easier terms in deriving the transport
equation. In the next two sections we handle terms for which we need trilinear compensated
compactness: terms requiring elliptic-wave compensated compactness will be treated in
Section 11; and terms requiring three-waves compensated compactness will be treated in
Section 12. The proof is finally concluded in Section 13.
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(3 Note however that the convergence we obtained was slightly weaker than (1.2); see [10] for precise convergence
rates.
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2. Setup and preliminaries

2.1. U(1) symmetry

For the remainder of the paper, fix a T > 0 and take as our ambient (3 4 1)-dimensional
manifold M = M x R, where M = (0, T') x R2. Introduce coordinates (, x!, x2) on M
and (7, x', x2, x3) on ® M in the obvious manner.

Consider a Lorentzian metric g on ® M with a U(1) symmetry, i.e., g takes the form
(2.1) W = e 2Vg 4 o2V (dx® + Aydx®)?,

where g is a Lorentzian metric on M, i is a real-valued function on M and %, is a real-
valued 1-form on M.

Under these assumptions, it is well known that the Einstein vacuum equations for
(WM, ®g) reduce to the following (2 + 1)-dimensional Einstein-wave map system
for (M, g, ¥, w) (see for instance [4]),

g + %e_‘“/’g_l(da),da)) =0,
2.2) Hew — 4g*1(da), dy) =0,
Ricep(g) = 204V 0pY + 2 *V dqwipw,

where w is a real-valued function which relates to 2, via the relation
1 _ _
(2.3) ()ap = dap — IpUa = 5~ (g™ P eaprdo.

where €4, denotes the volume form corresponding to g.

2.2. Elliptic gauge

We will work in a particular elliptic gauge for the (2 + 1)-dimensional metric g on M
(cf. (2.1)). More precisely, we will assume that g takes the form

(2.4) g = —N2dt*> + ¥ 8;;(dx’ + B dt)(dx’ + pldt)

such that the following relation is satisfied

25) Dy — By — 306" =0,

where in (2.4) and (2.5) (and in the remainder of the paper), repeated lower case Latin indices

are summed over i, j = 1,2.

We remark that the condition (2.5) ensures that the constant-¢ hypersurfaces have zero
mean curvature and the condition (2.4) ensures that the metric on a constant-¢ hypersurface
induced by g is conformal to the flat metric.

Given the form of the metric in (2.4), the inverse metric g~! takes the form

1 . . ..
(2.6) ¢ = 50— B0 ® (0 — B0 +e V8, ® 0.

4¢ SERIE - TOME 57 — 2024 — N° 2



TRILINEAR COMPENSATED COMPACTNESS AND BURNETT’S CONJECTURE 397

Assuming that a metric g on M obeys (2.4) and (2.5), the metric components N, y and
B! satisfy the following elliptic equations; see [10, Appendix B]:
2y

2.7) 57K Hi; = —%Ricoj,
e |
(2.8) Ay = _FGOO — e |H|%,
1 e
(2.9) AN = Ne ¥ |H|? — EeZVNR + WGoo,
(210) (2,3)1/ = 2N€_2yHij,

where eg = 0; — B 0;, Ric,g is the Ricci tensor, R is the scalar curvature, Gog = Ricgg — %Rgaﬂ
is the Einstein tensor, and £ is the conformal Killing operator given by

2.11) (£B)ij 1= 8;09; B* + 8103, B° — ;9 B*.

Moreover, assuming (2.4) and (2.5), the spatial components of the Ricci tensor are given by
(see [10, Proposition B2])

1 1
(2.12) Ric;; =6;; (—Ay - WAN) — N(af — BXor) Hij — 27 H;*Hy,

1
+ N (ajﬁka,» + 3,‘,3ka]-)
1 1
_ N (8i8jN — ESUAN — <51k3j)/ + 311-{81')/ - (Sijgeka“/) akN) '

In the particular case where the vacuum equations (2.2) are satisfied, (2.7)—(2.9) take the
following form:

2.13)
2y

. 1
8o Hy; = —% (2(60%(3/ V) + 58_4'/' (eow)(ajw)) ,

1 e?Y 1 1
_ 2 —4y 2 2 —4y 2 -2 2
(2.14) Ay =—(Vy[|"+ yid Vol?) — ﬁ((eovf) + € (eow)”) — 3¢ VIH|%,

e2

Y 1
(2.15) AN = Ne ¥ |H]? + 7(2(90‘”)2 + Ee-‘“ﬂ(eow)z).

Combining (2.10) and (2.13), we also obtain the following second order elliptic equation
for B/ when (2.2) is satisfied

(2.16) ABY = 575740y (log(Ne™)) (LB)ic — 487 (e09) (9i)).
Moreover, (2.12) takes the following form when (2.2) is satisfied:
(2.17)

1 _ 1 1 _
20,9, + e Woiwdjw = §; (—Ay - WAN) -5 0= By Hij —2¢72V H; Hy
1 k k
+N(8,,B Hy; 4+ 0;8 ij)

1 1
— N (aiajN — §8ijAN — (é’fajy + 8]’?8,-)/ —8,780‘84)/) 3kN) .
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Finally, given a metric in the gauge (2.4), the wave operator takes the following form:
(2.18)

Dgf =

e

1 e2f . enN
e ((g™H)% /- det gd = 0L _ 2 -
detg ((g ) ct8 ﬂf) N ¢ i+ N3 “f +

J—dete N2
2.3. Measure solutions to the Einstein-massless Vlasov system

DEFINITION 2.1 (Measure solutions to Vlasov equation). — Let (M, g) be a C' Lorentzian
manifold. We say that a non-negative finite Radon measure dy on T* M with [\, € |du < 400
solves the massless Viasov equation if the following two conditions both hold:

1. dp is supported on the zero mass shell {(x,&) € T*M : (g7")*Pg, 65 = OL.
2. For every function a(x,§) € C°(T* M\ {0}), it holds that

-1\« 1 -1\«
(2.19) f (8™ 00 — ~ (9,8~ ") bupd, @) di = 0.
T* M\{0} 2

Definition 2.1 is indeed a generalization of the “usual” Vlasov equation, where du is
absolutely continuous with respect to the natural measure on the zero mass shell. More
precisely,

PROPOSITION 2.2. — Let (x°, x!,...,x™) be a system of local coordinates on U C M.
Introduce a local coordinate system (x°, X', ..., X", ,§1, o, é,,) =0 x!, .. X", E1,.... &)
on the zero mass shell restricted to U (which is a (2n + 1)-dimensional sub-manifold of
the cotangent bundle). Here, and in the proof, we use the bar in dz«, etc. to indicate that
the derivative is to be understood as the coordinate derivative with respect to the coordinate
system on the zero mass shell. On the zero mass shell, & will be understood as a function
of (x°,x1, ... X" E1,... &) defined implicitly by (g=")*P€,65 = 0. (Note that & is well-
defined locally. )

Suppose [ : {(x,§) € T*U : (g_l)"‘ﬂéaéﬁ =0,£#0} — [0,400) isa C' function
satisfying the equation

1
(2.20) (g7 kadzn f — S0z (67 Pbabipdy S = 0.

Then, for du = f dx” d’lc(lé;:‘li;“:(f;ill =& (2.19) holds for every a € C(T*U \ {0}).

Proof. — For the proof, we fix either & > 0 or & < 0. (The argument is identical in the
two cases.)
We first compute the transformation

10,0 (g7")PVERE, (g7 Peg
(221) a‘ot =8 a——_—a 5 8-A =3i—_—3 5
T g ymg, R TE TR T (g Toug, TR
where, here, and in the rest of the proof, Greek indices run through 0, 1,...,n and Latin
indices run through 1, ..., n.

It follows that

-1\« 1 -1\ -1\« 1 -1\«
(g7 Epdxa — S (ug™") P bakpde, = (g7 badze — S0 (67" P babpy,.
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Therefore, the LHS of (2.19) in the coordinate system we introduced reads

dx0dx?! ... dx™dg; --- d§,
(g~ HHog, '

1
(2.22) /R ) /U (a7 tudzsa — 505 (g™ )P Eabpdg a] f

Next, notice that by (2.21),

(g‘l)“’séa] _ 0u (g8 1(e7H)"0,i (87 Eby

(g=1HH0¢, (g7HHog, 2 [(g71)0rE,]?

()Y 05 (7)Y N 17" (g™ )" Eadyi (67 Eoky
[(g=1)10g,]? 2 [((g=1)01E,)?

8,0(8 )%  1(g7)™,0(g™) " kb

9:s [

T, 2 [ )OED
_ (g7)*%a0,0(87 )%y | 10,0(g7 ")V EsE(g71)*%a(g™)™
[(g=HKOg,]? 2 [(g=1)10&,]3
_ O (g7)"E  (g7)*Eadzi(g7)"%,
(g~ 1)Ho¢, [(g=1H)KOg,]?
1@ )"0, (g7 by N 1(g7)% (g™ )" tadyi (g7 Eby
2 [(g=1)0uE,]? 2 [(g=1)01E,]?
and
g [l e 6 e
261 (gThmog, (g~1)H0g, (=110,
n l(g_l)Oiaxi(g_l)“ﬂEaSﬂ (g™ e (g7 Peyp(g™)
2 [(g~1)KOE,]? 2 [(g=1)H0¢E,]3
Therefore,
—1\aB . 1 a)_cl_ —1\aB a
oo e |~ 7 [ ] =

Therefore, integrating by parts in (2.22) and using (2.20), we obtain that (2.22) = 0, as
desired. O

DEeFINITION 2.3 (Measure solutions to the Einstein-massless Vlasov system).

Let (M, g) be a C? Lorentzian manifold and dju a non-negative finite Radon measure
on T* M. We say that (M, g, du) is a measure solution fo the Einstein-massless Viasov system
if the following both hold:

1. For every smooth and compactly supported vector field Y,
f Ric(Y,Y)dVol, = f (£, Y)?dpu.
M T*M
2. du is a measure solution to the massless Viasov system in the sense of Definition 2.1.
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2.4. Radially-averaged measure solutions to the Einstein-massless Vlasov system

It will be convenient for us to define a notion of radially-averaged measure solution to
the Einstein-massless Vlasov system. Strictly speaking, this is related but is a distinct notion
from that of a measure solution in Definition 2.3. It is however easy to see that any measure
solution in the sense of Definition 2.3 naturally induces a radially-averaged measure solution.
Conversely, given a radially-averaged measure solution, one can construct a measure solution
in the sense of Definition 2.3; see Lemma 2.5. One reason for introducing this notion is that
this is the natural class of solutions that we construct using the microlocal defect measure.

Before we proceed to the definition of a radially-averaged measure solution, let us first
define the cosphere bundle

S*M:= | Sime= | ((TFm\{0})/~).
XEM XEM
where we have quotiented out by the equivalence relation & ~ 5 if £ = An for some A > 0.

A continuous function on S*M can be naturally identified with a continuous function
on T*M which is homogeneous of order 0 in &. Therefore a Radon measure on S*M
naturally acts on a continuous function on 7* M which is homogeneous of order O in &.

We are now ready to define radially-averaged measure solutions to the Einstein-massless
Vlasov system:

DerINITION 2.4 (Radially-averaged measure solutions to the Einstein-massless Vlasov
system).

Let (M, g) be a C? Lorentzian manifold and dv be a non-negative finite Radon measure
on S*M. We say that (M, g,dv) is a radially-averaged measure solution to the Einstein-
massless Viasov system if the following both hold:

1. For every smooth and compactly supported vector field Y,

. d
/ Ric(Y.Y)dVol, = / (£, Y) —,
M S*M |1
where |E|* = Y 0 _, £2.
2. dv is supported on the zero mass shell in the sense that for every f € C.(M),

_ dv
[ ety s =0,
5*M |1
3. For any C! function@ : T* M — R which is homogeneous of degree 1 in &,
e ~ 1 e dv
2.23) [ et 5 O™ e, 5 = 0.
S*M

The relation between a measure solution to the Einstein-massless Vlasov system (Defini-
tion 2.3) and a radially-averaged measure solution to the Einstein-massless Vlasov system
(Definition 2.4) is clarified in the following lemma:

LeEmMMA 2.5. — Given a measure solution (M, g,du) to the FEinstein-massless Vlasov
system, there exists a radially-averaged measure solution (M, g, dv) to the Einstein-massless
Viasov system (with the same (M, g)). This is also true conversely if (M, g) is globally
hyperbolic.
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Proof. — Forward direction. — This is the easier direction, and can in some sense be viewed
as taking average in the radial direction in £. More precisely, given ¢ € Co(S*M) (thought
of as a continuous function homogeneous of order 0 in v), definea map 7 : Co(S* M) - R
by

1= [ el

Since du is non-negative, I is a non-negative map. By the Riesz—Markov representation
theorem, it follows that there exists a non-negative dv such that

I(p) = /S oo

Since |£|2du is finite (by definition), it follows that dv is finite. The Einstein equation also
follows by definition.

Converse direction. — This is harder and there is some choice available in the construction.
Given a globally hyperbolic (M, g), pick a Cauchy hypersurface Xy and define the set
(with two connected components)

S:={(x.§)eT* M:xeZ [§7 =1 g ' ()& =0}

Define now the set S as the set of points in 7*M which lie in a geodesic starting
from S. Note that S is a co-dimensional 2 submanifold of 7* M \ {0}. Moreover, the vector
field (g71)*PEgaxa — 2 (0,87 ") Eakp g, is by definition tangential to S.

Given ¢ € Co(T*M), define p* € Cy(S*M) as the function such that ¢* [s= ¢ [g
which is homogeneous of order 0 in &. Define a map J : Co(T* M) — R by

J(p) := [ e*dv.
S*M

This is non-negative by the non-negativity of dv. Hence, by the Riesz—Markov representation
theorem, it follows that there exists a non-negative du such that

J(p) = /T*M @ |E7du.

Note that |£|2dp is finite since dv is finite. The Einstein equation also follows by definition.
To see that du is supported on the zero mass shell, it suffices to note that by definition, S,
on which by definition du is supported, is a subset of the zero mass shell by construction.
Finally we show that (2.19) holds. Take a(x,§) € C(T*M \ {0}). Define @ so that
d |s= a but such that @ is homogeneous of order 1. Therefore, using (2.23), we know that
(2.19) holds with @ in the place of a. However, since du is supported on S (by construction),
it follows that in fact (2.19) holds for a. O

REMARK 2.6 (dv can be chosen to be even). — In the ‘‘forward” direction of the above
proof, we could have instead defined

10)i= [ S0© + 060 ePau.

so that I is even, i.e., I(¢) = 0 for every odd function ¢. Consequently, dv is also even. In fact,
the measure solution to the Viasov equation that we will eventually construct is even.
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2.5. Restricted Einstein-massless Vlasov system in U(1) symmetry

The final notion that we introduce in this section is that of the restricted Einstein-massless
Vlasov system in U(1) symmetry. By “restricted,” we mean that we are not considering
general (3 + 1)-dimensional solutions to the Einstein-massless Vlasov system for which the
metric admits a U(1) symmetry, but instead we require that massless Vlasov measure to be
supported in the cotangent bundle corresponding to the (2 + 1)-dimensional (instead of the
(3 + 1)-dimensional) manifold.

Since we have already introduced and contrast both measure solutions and radially-
averaged measure solutions for the Einstein-massless Vlasov system (cf. Sections 2.3 and 2.4),
we will directly define the notion of radially-averaged measure solutions for the restricted
Einstein-massless Vlasov system in U(1) symmetry.

DeriNITION 2.7 (Radially-averaged measure solutions for the restricted Einstein-massless
Vlasov system in U(1) symmetry).

Let (DM, @ g) be a (4 + 1)-dimensional C? Lorentzian manifold which is U(1) symmetric
asin (2.1), i.e., the metric takes the form

Wg =Yg 4 o2V (dx> 4 Apdx®)?,

for g, v, U independent of x3. Let dv be a non-negative finite Radon measure on S* M.
We say that (WM, P g dv) is a radially-averaged measure solution for the restricted
Einstein-massless Viasov system in U(1) symmetry if

1. the following equations are satisfied:
(2.24)
Ogv + %e““”g_l(dw, dw) =0,
g —4g7 Y (dw,dy) = 0,
S Ric(@)(Y.Y)dVolg = [, [2(YY)* + 3¢ (Y)?] dVolg + [g. (£, Y)? gz
Jor every C vector field Y , where w relates to Uy via (2.3);
2. (2) and (3) in Definition 2.4 both hold.

2.6. Null dust and massless Vlasov

In this subsection, we show that a solution to the null dust system is a measure solution
to the massless Vlasov system. In particular, this shows that solutions to Einstein—null dust
system considered in [11] can indeed be viewed within the framework of this paper.

For simplicity, let us just consider the case where Fj is compactly supported.

LEMMA 2.8. — Let (M, g) be a C? Lorentzian manifold. Suppose for a finite set A,
{(Fa,uA)}aca is a compactly supported solution to the null dust system on (M, g), ie.,
Fa : M — Risacompactly supported C' function andua : M — Risa C? function satisfying

1. g ' (dua.dups) =0, dus #0forall A € A,
2. 2(g )% (dpua)do Fa + (Ogun) Fa = 0 for all A € A.
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Then the measure du on T* M defined by
(2.25) dp =" F28y—au,dVolg
AcA

is a measure solution to the massless Vlasov equation on (M, g) (cf- Definition 2.1).

Proof. — That du is supported on the zero mass shell follows immediately from (2.25) and
g Y(duy.duy) = 0. It remains therefore to verify the transport equation in Definition 2.1.

For this we need a preliminary calculation. First, since (g~1)®# dqudgu = 0, we have
B (g™H)™)daudpu +2(g™")* (Ipu) adou) = 0.

Therefore, given any a € C2°(T* M), viewing a(x, du(x)) as a function on M (and empha-
sizing this by calling the coordinates X), we have

(2.26)
(g1 (dpu)dze (a (¥, du(x))) = (g7 ") (dgu)dxea + (7)™ (dpu)(3g, @) (dadou)

= (&™) Fpr)iaea — 506 (5™ Baa0) pr) 3, ).

We now check the transport equation in Definition 2.1 using (2.26) and integrating by
parts:

1
[ ()% sp00a = 5 0ale™) %t 05, ) di
T*M

=% /M (™) @prniaca — 3 (90 (5™ arn) Dgrur) e, )) R dVoly

-y [M ()% () @) (£ (a (. dua(£0) ) F2(3) dVolg ()

AeA
= Z /M (2(g—1)“ﬂ (9puA)0q Fa + (DguA)FA>()_C)FA()_c)a()_c, dua (X)) dVolg (%) =0,
AeA

where in the last line we used the equation satisfied by F,. This concludes the proof. O

3. Notations and function spaces

Ambient space and coordinates. — In this paper, we will be working on the ambient mani-
fold M := (0,T) x R? (although often we only restrict to subsets Q C Q' C Q,
cf. Section 4.1); see Section 4. The space will be equipped with a system of coordi-
nates (7, x', x2). We often write x = (¢,x!, x2). We will use x? with the lower case Latin
index i, j = 1,2. We will also sometimes denote x’ = ¢.

Let T*M be the cotangent bundle. The standard coordinates on 7*M will be given
by (x,§) = (x', x',x%, &, 61, £2).

When there is no risk of confusion, we write d; = 9.
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Indices. — We will use the following conventions:

— Lower case Latin indices run through the spatial indices 1, 2, while lower case Greek
indices run through all ¢, 1, 2.

— Repeat indices are always summed over: where lower case Latin indices sum over the
spatial indices 1, 2 and lower case Greek indices sum over all indices ¢, 1, 2.
Metrics

— g and g¢ denote the metrics introduced in Section 4, which both take the form (2.4)
and (2.5).

— We denote by g, € {log Ny, BL,yn} and go € {log No, Bl, v} the metric coeflicients
of g, and g¢ respectively.

— §;; (and 8") denotes the Euclidean metric.

Norms for tensors and derivatives
— Given a rank-r covariant tensor 7, ..., , define
2. _ 2 2= o ]?
= e s Pi= Y e
Mo br =t,1,2 J1seesjr=12

(The second definition is a slight abuse of notation, by which we mean unless otherwise
stated, we will also implicitly take the sum. Similarly below.)

— The above notation is in particular used for (x, §) € T* M where we denote
67 = Y & &P =) IE
n=t,1,2 j=12
— Likewise, given a scalar function f : R?T! — R, we define
2 2
B P o= 10, f 1P+ D105 f120 180 f17 = 18,5 fI
i=1 j=1

— A similar notation will be used for higher coordinate derivatives (even though they are
not tensors), i.e.,

k 12 . k 2
= D e ST
1 seens b =E,1,2

Constants. — Conventions for constants will be discussed in the beginning of Section 8.

Differential operators

— A denotes the spatial Laplacian on R? with respect to the spatial Euclidean metric, i.e.,
2
Au = Z ?u.
i=1

— g, and g, denote the Laplace—Beltrami operators with respect to go and g, respec-
tively. (see also (9.1) and (9.2)).

— Ogy,4 and Og,, 4 are operators to be defined respectively in (9.3) and (9.4).
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— (e0)o and (eg), denote the vector fields (eg)o = d; — Bid,i and (eo)n = 3, — PL0,i
respectively (where 8, and B¢ will be introduced in (2.4)).

— £ denotes the Euclidean conformal Killing operator acting on vectors on R? to give a
symmetric traceless (with respect to the Euclidean metric §) covariant 2-tensor, i.e.,

(£n)ij = 8;08in" + 810d;n* — 8.

Fourier transforms. — We will denote spacetime Fourier transform by ~ and spatial Fourier
transform by Fp,. We will take the following normalizations:

- 1 .
Fe)=— / e £ () d,
@n)3 Jr2+

1 ke .
Faoa (/)08 = 5 /R ) d e,

Fourier multipliers will be denoted as follows for m : R2T! — R:

1 1 (xM—yH
mGINE) = G55 /R L, T M@ £ () dy.

Functions spaces. — Unless otherwise stated, all function spaces will be understood on R2*1,
Define the following norms for a scalar function f : R?*! — R:

e i= ([ 11701805, pelliboon 1l i= esssupeeszn 106,

I llwmp =" 110% fllLr. meNU{O} p €[l +00).

loa|<m
Define also the corresponding function spaces in the obvious way. We will denote H™ := W™?2,
Define also the norm

= (/Rzﬂ(l + )71 @) dé)%

and the corresponding function space.
We will also use the above function spaces for tensors on R?*!, where the norms in the
case of tensors are understood componentwise (with respect to the (¢, x!, x2) coordinates).

4. Main results

Let M := (0,T) x R2. Suppose {(V,, wp. gn)};r:“{ is a sequence such that ¥, w, are
C* real-valued functions on M and g, is a C* Lorentzian metric on M satisfying the
following four conditions:

1. (Solving the equations) (Y, w,, g, ) satisfies (2.2) for alln € N.

2. (Gauge condition) The metric g, is put into a form satisfying (2.4) and (2.5) for all
n e N,

3. (Local uniform convergence) There exists a limit (¥, wg, go) Which is smooth and
go satisfies (2.4) and (2.5). Assume that the following convergences hold:

(@) ¥, — Yo, Wy — we uniformly on (spacetime) compact sets.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



406 C. HUNEAU AND J. LUK

(b) For g € {logN, B%, y} (being the metric components; cf. (2.4)), g. — go
uniformly on compact sets.

4. (Weak convergence of the derivatives) Let py € (%, +00). With (Y9, wg, go) as above,
the following convergences hold:

(a) 0y, — Vo, dw, — dwo weakly in LF°

loc*

(b) For g € {logN, B, y}, dg, — dgo weakly in LF°

loc*

THEOREM 4.1. — Given {({¥,, wy, g,,)}:;"i and (Yo, wg, go) such that the conditions (1)—(4)
above hold, there exists anon-negative Radon measure dv on S* M such that (M, ¥g, wg, go, dv)
satisfies the following conditions:

1. dv is supported on {(x,&) € S*M : gg1(£,€) = 0};
2. the following system of equations holds:
4.1
Ogo Vo + 3¢~ *¥0 g5 (dwo. dwo) = 0,
Ogowo — 4g5 ' (dwo, dyg) = 0,
fM Ric(go)(Y.Y) dVolg, = fM [2(Yw0)2 + %3—41#0 (YwO)Z] dVolg, + fS*M(E» Y>2 #7
for every CX vector field Y .

In particular, the effective stress-energy-momentum tensor Ty, is traceless, non-negative and
obeys the dominant energy condition.

The above theorem has the advantage that the assumptions are very weak. On the other
hand, we also do not get the full Burnett’s conjecture in that we do not show that the limit is
isometric to a solution to the Einstein-massless Vlasov system. In order to obtain the stronger
result, we impose the following additional assumption:

5. (Estimates) For every compact subset K C M, there exists a sequence {1,}5>; C (0, 1]
(depending on K) with lim,,_, y oo A, = 0 such that for g € {log N, B, y},

4.2) sup A, | (¥n — Yo, @n — @0, 8n — 80) || Lo (k) < +00,
n
4.3) sup || (0, 0wn, 0gn) || Loo (k) < +00.
n

(4.4) sup AKH|(@F gy, 3 wp, 35 gn) Loy < +o0, fork = 2,3,4.
n

THEOREM 4.2. — Given {({¥,, wy, g,,)}:;“i and (Yo, wg, go) such that the conditions (1)—(5)
above hold, there exists anon-negative Radon measure dv on S* M such that (M, ¥g, wo, go, dv)
is a radially-averaged measure solution to the restricted Einstein-massless Vlasov equations
in U(1) symmetry in the sense of Definition 2.7.

REMARK 4.3. — Even though it is most convenient for the proof to formulate Theorem 4.2
so that the Einstein part of the system is satisfied in the weak sense (see (2.24)), it follows a
posteriori that the Einstein part of the system is also satisfied classically for an appropriately
defined stress-energy-momentum tensor.
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This can be formulated as follows. Let w : S*M — M be the natural projection map. It
follows from Theorem 4.2 that after defining

.. 3 Easﬂ
Ty (p) := liminf / dv
“ =0 473 Jo 3oy 6P

(where B(p,r) is the coordinate ball), Tog is continuous and that the Einstein equation

1
Ricyp(g) = 204 Y3y + 5e—‘“ﬂao,wa,gw + Tap

holds classically.

4.1. Reduction to compact sets

It will be technically convenient to reduce our theorems to corresponding cut-off versions.
Fix an open and precompact 2 C M. Let Q" C M be an open and precompact set
containing €2, the closure of Q2. Let y be a non-negative function in C2° such that

4.5) yx=1lonQ, supp(y) C Q.
We will show that (cf. Section 6.1 below) for every such 2, Q' and y, there exists a

non-negative Radon measure dv on S*R?*! such that for some subsequence ny, the
following holds for any 0-th order pseudo-differential operator A with principal symbol a
(cf. Section 5):
fim 2 [ (W, = V)[40 G — YD) Vol

R2+1

k—+o00

. 1 _
(4.6) + kgrfoo b Az-&—l e~*vo o (X(wnk - wo)) [Aaﬂ (X (@n; — wO))] dVOlgnk

dv
= abuép—.
/S*Rw Sl iz

We now claim that in order to prove Theorems 4.1 and 4.2, it suffices to show that for
every 2, Q' and y as above, (2, ¥, wg, go,dv [gq) verifies the conclusion of Theorems 4.1
and 4.2. More precisely,

ProrosSITION 4.4. — Let (2, Y0, wo, go, dv) be as defined above.

1. Suppose that under the assumptions of Theorem 4.1, for every Q, Q' and y above, dv is
supported in {(x,§) € S*M : gy (§,§) = 0} and (4.1) holds in Q withany Y € C2°(Q).
Then Theorem 4.1 holds.

2. Suppose that under the assumptions of Theorem 4.2, for every Q, Q' and y above,
(2, Yo, wo, go, dv [@) is a radially-averaged measure solution to the restricted Einstein-
massless Viasov equations in U(l) symmetry in the sense of Definition 2.7. Then
Theorem 4.2 holds.

Proof. — We will define a Radon measure on all of M under the assumptions.

Let {Qi};;"f be an exhaustion of M, i.e., Q; C Q;4+; and U,~+=°f Q; = M. Define y; by
(4.5) with Q@ = Q; and Q' = Q4.

We now proceed inductively in i. First, define dv; as a Radon measure on 27 as in
the assumption of the proposition. Now, for every i > 1, suppose we are given a Radon
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measure dv; on ; so that the convergence in (4.6) holds and the properties as in the state-
ment of the proposition are satisfied. We can then define a Radon measure dv; 1 on ;4
by considering a further subsequence of (Y, , @, , &n, ) as in the assumption of the propo-
sition. Notice that by definition dv; 11 [q,= dv; for alli € N. By considering a diagonal
subsequence, we therefore obtain that there is a fixed subsequence ny such that the following
holds for every i € N:

tim 2 [ 90t Oy~ V)[40 (1, — Y] Vol

k—+o00

] _
+ kEToo 5 /1;'*1 e Vo 0o (Xi (Wny — C00)) [Aaﬁ (xi(wn, — wO))] dVOlgnk
dv,'

= /S*RZHaSO{SﬂW.

Define dv, as follows. Let ¢ € C.(S*M). Then there exists Q; such that suppy C S*Q;.
Define

dveo (@) := dvi(e).
Note that this is well-defined (and independent of the particular choice of 7).
In each of the cases (1) and (2), it is then easy to verify that (M, ¥, wg, g0, dveo) Obeys
the desired conclusion. O

In view of the above proposition, from now on we fix Q, Q' and y as above. It will suffice
to prove that the conditions in Proposition 4.4 hold.

It will be convenient to fix also two open, precompact sets Q” C Q" C M such that
Q' Cc Q" and Q" c Q" Define

4.7) Y=10onQ", supp(y) c Q".

5. Preliminaries on pseudo-differential operators and microlocal defect measures

In this section, we recall useful notions on pseudo-differential operators and microlocal
defect measures. Everything in this section is standard and is mainly included to fix notations.

For the remainder of this section, fix k € N (which will be taken as 3 = 2 + 1 in later
sections). Denote by T*R¥ the cotangent bundle of R* with coordinates (x, £) € R* x R¥.

DEerINITION 5.1. — 1. For m € Z, define the symbol class
S™:={a:T*RF > C:a e C® Vo.B.3Cop > 0. (020 a(x. )| < Cap(l + |E)" A1},
2. Given a symbol a € 8™, define the operator Op(a) : S(RF) — S(RF) by
1 i (x—)-
Op@u () = o [ [ O o) dv e
Q2m)* Jre Jri

For A = Op(a) as above, we say that A is a pseudo-differential operator of order m with
symbol a. If moreover a(x,§) = dprin(x, §) X (§) + derror, Where aprin (x, A8) = A™a(x, §)
forall A > 0, x(§) is a cutoff = 1 for large |§| and = 0 near 0, and aerror € S™ 1, we say
that apein is the principal symbol of A.

We record for convenience some standard facts.
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LEMMA 5.2. — 1. ([16, Theorem 2, p237)) Let a1 € S™, a» € S™. Then
Je e S™+m2 ych that Op(a;) o Op(as) = Op(c), where

c(x.§) —ai(x,§)az(x.§) € S™M L

2. ([16, Theorem 2, p.237]) Let a; € S™', ay € S™. Then Ic € S™ ™2~ such
that Op(ay) o Op(az) — Op(az) o Op(a;) = Op(c), where

c(x, &) +ifar,ar} € S™MTM272 Lgy a4y} = g, a10xuaz — dxnaydg, as.
3. ([16, Proposition, p.259]) Leta € S™. Then Op(a)* (the L?-adjoint of Op(a) ) satisfies
Op(a)* —Op(a) € S™ 1.

4. (Calderén—Zygmund theorem [16, Proposition 5, p.251]) A pseudo-differential oper-
ator A of order m extends to a bounded map W"T™P(RF) — WP (RK), Vn € NU {0},
VmeZ,Vp € (1,4+00).

5. (Rellich—Kondrachov theorem) A pseudo-differential operator A of order —1 extends to
a compact map : L2(R¥) — L2 (R¥).

loc
6. (Calderon commutator theorem [16, Corollary, p.309]) Let u : R* — R be a Lipschitz
function for which there exists M > 0 5o that |lu(x)—u(y)| < M|x—y|forallx, y € R".
Let T be a pseudo-differential operator of order 1. Then [T,u] € B(L?*(R"), L2(R")),
i.e., that it is a bounded linear map on L*(R™). In addition ™, for every f € S(R"),

.1 IT@f) —u(TH)lL2@ny S MIS 2 @ny-

where the implicit constant depends only on T .

We now turn to the discussion of microlocal defect measures, following [7] (see also [17]).
We first need some preliminary definitions.

Let S*RF be the cosphere bundle given by S*RF := (T*R¥\{0})/ ~, where (x, &) ~ (y, 1)
ifand only if x = y and & = An for some A > 0. From now on, we identify a function
on S*R¥ with a function on 7*R¥ \ {0} which is homogeneous of order 0in £, i.e., a(x, A§) =
a(x,£),YA > 0.

DEFINITION 5.3. — We say that du is a non-negative (N x N)-complex-matrix-valued
Radon measure on S*RF if dyu is a map dp : Co(S*RF) — CN*N

1. obeying the estimate ||du(p)| < Ckl¢llc) for every compact set K C S*RF (for
some Cx > 0 depending on K ), and

@ The precise statement in [16] only asserts that [T, u] € B(L2(R"), L2(R")) (without explicitly saying that the
operator norm is proportional to M). Nevertheless, (5.1) follows from the closed graph theorem. Let (Lip, || - [ILip)
be the Banach space of equivalence classes of Lipschitz functions, where two functions are equivalent if they differ
by a constant, and ||u|Lip = supy,z, % The corollary on p.309 in [16] implies that there is a map
® : Lip — B(L2(R"), L2(R™)) given by [u] ~ [T, u]. By the closed graph theorem, in order to obtain (5.1),
it suffices to show that if lim; 4 oo [[#;]llLip = 0 and lim; 4 oo [T, %;] — SlsL2@®n). L2@n)) = O for
some S € B(L?(R"), L?>(R")), then S = 0. To show this, pick a representative u; such that u; (0) = 0. In
particular it follows that |||x|~'u; || Lcc — 0as j — +o00. Now forany ¢ € L2(R"), T'(u; ¢) and u; T (¢) both
tend to O in the sense of distributions as j — +o00. Therefore, S = 0 as required.
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2. satisfying du (@) is a positive semi-definite Hermitian matrix whenever ¢ is a non-negative
function.

DEFINITION 5.4. — Let du be a non-negative (N x N)-complex-matrix-valued Radon
measure on S*R¥ and a : S*RF — CN*N g continuous matrix-valued function on S*RK.

Define tr (a(x, €) dp) to be the (scalar-valued) Radon measure on S*R¥ given by
(tr(a(x,§)dp)(p) := trla(x,§) - (du(p))].

THEOREM 5.5 (Existence of microlocal defect measures, Theorem 1(® in [7]).

Suppose {un};f:ool e L%(RF;CV) is a bounded sequence such that u, — 0 weakly
in L2(Rk; CV).
Then there exist a subsequence {uy, },j;"; and a non-negative (N x N)-complex-matrix-

valued Radon measure dp on S*RF such that for every CN*N -yalued pseudo-differential
operator A of order 0 with principal symbol a € C,(S*RF; CN*N),

lim (Aup, ,up, )on dx = / tr(a(x,&)dp).
S*RK

k—+o00 JRk

The measure du in Theorem 5.5 is called a microlocal defect measure. Following [7], if
the conclusion of Theorem 5.5 holds for {un};l":"‘; (without passing to a subsequence), we say
that {u,} 123 is a pure sequence.

THEOREM 5.6 (Localization of microlocal defect measures, Corollary 2.2 in [7]).

Let {uy} be a pure sequence of L2(R¥,CN), of microlocal defect measure du. Let P be an
m-th order differential operator with principal symbol p = 3, _,, aa(i&)* for some smooth
(N x N)-matrices ag. If { Pupjn=1 is relatively compact in H ™" Rk, CN), then pdu = 0.

6. Microlocal defect measures for y and @
We begin to prove Theorem 4.1 by studying the properties of the microlocal defect
measures. For the remainder of this section, we work under the assumption of Theorem 4.1.

6.1. Existence of the microlocal defect measures

Consider now the sequence of functions y (v, — ¥o) and y(w, — wp) (cf. (4.5)). We are
now in a setting to apply the existence theorem (Theorem 5.5) to obtain microlocal defect
measures.

(© Note that this is a specialization of the original theorem of Gérard. In the original paper, the domain is any open
set in RX and u,, may take value in any separable Hilbert space, instead of CV .
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ProposITION 6.1 (Existence of microlocal defect measures). — There  exist  Radon
measures dogﬂ, da;”ﬁ and dagg’ss on S*R>T such that for any zeroth order (scalar) pseudo-

differential operators { A% Ya,8=1,1,2 With principal symbols {a®P Ya,8=t,1,2, the following holds
up to a subsequence (which we do not relabel) :

lim da (X (Wn — V0)) AP 3 (x (Y — o)) dVolg, = / a*? dajy.
! S*R2+1

n—00 Jp2+

lim 3o (Y (wn — @0)) A% 35 (y(wn — wp)) dVolg, = f a* dogy.
+1 S*R2+1

n—o0 R2

lim [ 0u (W — $0) AP0 (x(n — wp)) dVol, = / 0 dosios,
+1 S*R2+1

n—>00 Jp2

lim O (X (@n — 00)) AP D (X (Y — o)) dVol g, = / a®® (Ao,
n—oo R2+1 S*R2+1

where * denotes the Hermitian conjugate.

Moreover, dao'zg and dog’ﬂ are non-negative in the sense of Definition 5.3.

Proof. — Applying Theorem 5.5 with

[0 (x(Wn — Vo)) |
A1 (X(Yn — ¥0))
o | Dot —von |
9t (x(@n — wo))
dx1 (x(@n — o))

L 92 (x(wn — o)) _

we obtain a non-negative (6 x 6)-complex-matrix-valued Radon measure du. Since du is
Hermitian by Theorem 5.5, du takes a block diagonal form as follows

|: do¥ ‘dacross i|
du = .

(do_CYOSS)* do_a)

Cross

It is then easy to check that the components dagﬂ, dog’ﬂ and do, 5
measures have the properties as claimed.

(Note that we have in particular used 0y (¥ (¥, — ¥0)) = da(x(¥n — Vo)), etc. in the
expressions in the proposition.) O

of the corresponding

Without loss of generality (by passing to a subsequence if necessary), we will assume from
now on that the sequence is pure.

6.2. First properties of the microlocal defect measures

In this subsection, we prove some properties of the microlocal defect measures.
PROPOSITION 6.2. — The measure dogg’ss is symmetric, i.e.,
Cross __ Cross
do = doﬂ o

af
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Proof. — This amounts to

lim o (Y (Y — ¥0)) A% 35 (x(wn — wo)) dVolyg,
n—>+o00 Jp2+1
T _ ap _
= im | 3G = vo) A% B (r(n — w0)) dVolg,.

This can be seen by noting that [4%8,9,] : L? — L} is bounded by Lemma 5.2.2 (and that

the corresponding contribution — 0 since w, — o in L?), integrating by parts and using
assumptions (3) and (4) of Theorem 4.1. O

PROPOSITION 6.3 (Microlocal defect measures are effectively given by dv¥ and dv®).

There exist non-negative Radon measures dv¥, dv® on S*R2H! such that

¥ Socéj_ﬂ ) Eotgﬁ
dogp = ez 7> 90 = Y v

where |£|? 1= Zi:o [

Proof. — We will focus on dv¥ in the exposition. dv® can be treated similarly.

Step 1: Defining an auxiliary measure dpg’. — Using the identity 0,0, %, = 0,0.¥» and
Theorem 5.6, it follows that for every 3,

u v — Sa g
I%'I IE

This implies that

1. dgzﬂ (to be understood without summing repeated indices) is a well-defined Radon

measure for every B. (To see this, note that at each point in 7* M \ {0}, some compo-

nent & # 0.)
do? da¥,
2. Dab — 0B for every a, .
Ecx ‘fo/
d
With the above observations, we can thus define the measure d,o I _ & E:

Step 2: Defining dv¥. — Since da;pﬁ is Hermitian (by Proposition 6.1), for dpg defined as in
Step 1,

(6.1) Eadpl = Epdpy.
Arguing as in Step 1 above, we know that %‘\"0 is well-defined. We define

|€|dpy

dv¥ =
I
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Step 3: Non-negativity of dv¥. — Finally, using Proposition 6.1, one sees that dv¥ is non-
negative. O

We record the following result, which follows from Propositions 6.1, 6.3 and simple alge-
braic manipulations.

COROLLARY 6.4. — For dv¥, dv® as in Proposition 6.3, it holds that for every zeroth
pseudo-differential operator A with principal symbol a which is homogeneous of order 0, and
supported in S*Q2,

62 [ 0l A@s ) aVolg, — [ duGr) (4G5 Gri)) dVoly,
dv¥
[ ks

63 [, 2o (A0s o) dVolg, — [ i Gron) (A (o)) dVoly,

dv®
+ a —_—.
(Y
Moreover,

64 [ 0Grim) A5 Gron) Volg, — [ ) A5 Gron) dVol,

+ a docross ,
S*R2+1 B

and

65 [, Wl A@ ) Vol = [ | duron) (40 (cvo)) dVol,

a (doCross)*
+/S*R2+l ( )aﬂ

6.3. Microlocal defect measures are supported on the light cones

Our goal in this subsection is to use Theorem 5.6 to show that the microlocal defect
measures are supported on the light cones.

LEMMA 6.5. — Og, (x(¥n — Vo)) and Og, (x(wn — wo)) admit the following decomposition:

Oeo (X Wn — ¥0)) = da(E)* + 0, Ogy (x(@n — w0)) = da(EX)™ + 0,

12 E,(,w) are vector fields compactly supported in Q' (recall the definition of Q' in

where S,(,
Section 4.1) which converges to 0 in the L? norm; and nf,‘/'), nf,“’) are functions compactly

supported in Q' which are uniformly bounded in L? (for po as in assumption (4) of
Theorem 4.1).

Proof. — We will prove the decomposition for Og, (x (¥ — ¥0)); Og, (x(wn — o)) can be
treated similarly.
First we write

(6.6) Ueo (X (Y — ¥0)) = (Ugo — Ug, ) (X ¥n) + Ug, (x¥n) —Ugo (x Vo) -
=1, \?ITH_-/ =111,
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Clearly each term is compactly supported in Q.
Term I,, can be computed further as follows:

L = (g0 ) — (g,)?)05 (x¥n) —(3a((g5 ) — (g,)2))05 (xVn)

=a.n =1pn

1
————0a((gg ) V/~d - a g )P /= det g,))dp (x¥n)

=i¢n

Under the assumptions of Theorem 4.1, I, , and I , are both uniformly bounded in L 2,

For term I, ,, note that by assumptions (3) and (4) of Theorem 4.1 (and Holder’s
inequality), (g5 )% — (g, )*?)35(x¥») — 0in the L2 norm.

For the term II,, in (6.6), we note that by (2.2), assumptions (3), (4) of Theorem 4.1 and
Holder’s inequality, it follows that II,, is uniformly bounded in L7,

Finally, the term III, in (6.6) is smooth and independent of n. It is therefore uniformly
bounded in L.

Combining the above results and letting

EWN" = (o)™ = (g, )P)ap (xvn), 1Y := Ogo (X (W — Vo)) — du (E)”,

we obtain the desired result. O

PROPOSITION 6.6 (Support of microlocal defect measures). — Let dv¥, dv® be as in
Proposition 6.3. Then

(g()l) ﬂsa‘i"ﬂ dv¥ = (gol)aﬁgasﬁ dv®.
1§12 a €12

Proof. — We will only prove the equality for dv¥. The equality for dv® can be treated in
the same manner.

Step 1: Compactness of Ogo(x(Yn — Vo)) in H . — We use the decomposition

loc*

Ogo (X (¥rn — ¥0)) = 0q (E,S‘//))“ + r],(f/’) given by Lemma 6.5.

Since (S,(,'/’))“ — 0 in the L? norm, 80,(5,(,1/'))“ converges to 0 in ngg (and hence is
compact).

On the other hand, we know that n(’/’) is uniformly bounded in L? , where pg € (%, +00)

. 4 2o .
(cf. assumption (4)). In (2 + 1) dimensions, since % > 2, L2 embeds compactly into Hlocl

(This can be proven by a duality argument after recalling that H ! is the dual of H'.) It

follows that {n(W) +°° is compact in Hlocl

Putting all the above considerations together, it follows that g, (y (¥ — %)) is compact
in H!

loc*
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Step 2: Application of Theorem 5.6. — By Theorem 5.6 and the compactness obtained in
Step 1, we obtain that, for any index 3,

(861 , 4
————do , =0.
&1 o
This implies, via Proposition 6.3, that for any index f,

(&6 l)agéogcxgﬁ dv¥ =
§1°

Forevery (x, &) € S*R?*T1, &g # 0 for some B. Hence, we obtain the desired conclusion. [

7. The proof of Theorem 4.1

In this section, we prove Theorem 4.1. We continue to work under the assumptions of
Theorem 4.1. As discussed in Section 4.1, with dv = 2dv¥ + %e““/’odv“’, it suffices to show
that (2, go, Vo, wo, dv) obeys the conclusion of Theorem 4.1.

We have already proven that dv is supported on the null cones by Proposition 6.6. We
therefore only need to prove (4.1). The two wave equations will be proven in Section 7.1;
the equation for the geometry will be proven in Section 7.2. These results can be viewed
as consequences of (bilinear) compensated compactness. We then put all these together in
Section 7.3.

7.1. Wave equations for the limits ¥y and wq

We begin with a simple (bilinear) compensated compactness type result related to the null
forms.

LEmMA 7.1. — Let {q&,(,l)};r and {¢(2)} be two sequences of real-valued smooth func-
tions on M = (0, T) x R3. Assume that there exzst smooth functions ¢((,1) and ¢(()2) on M such
that the following hold for some pg € (%, +00).

1. For any (spacetime) compact subset K of M,

i) @) 0
||¢n ¢)O || max{2 70 _2}(K) — U.

2. For any (spacetime) compact subset K of M,

max sup 106112y < +o00.
n

3. Dgo D admits a decomposition Oeo D = 9o () + 0D for some vector field (£8)*

and some function 77( D such that for any (spacetime) compact subset K of M, (E,(,i))"‘ -0

in the L*(K) norm and n,(f) is uniformly bounded in the L? (K) norm.

Then asn — +0o0,

25 (doV, dpP) —~ g0 1(d(]b(l) ¢(2)) in the sense of distributions.
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Proof. — Let ¥ € C°(M). We want to show that

(71) /1;2+1 l?gal(d¢(l) d¢(2)) dx — / ﬂgal(dd)(l) (2)) dx.
We write
_ 1 1 1
g0 (@9S" . d¢?) = S0 @ 9) =3 Oeo )8 — 345" O )
=:1 =:11 =111

(and similarly for g, 1(d¢>(1) (2))) We handle each of these terms below.

Step 1: Term 1. — To handle the term I, simply note that the assumptions and Holder’s
inequality imply that ¢n1)¢(2) <]§(()1)¢(2) strongly in L! (on any compact set). Since [y,
is a smooth differential operator, it follows that 1 7Ug0 (¢,(,1)¢,(l )) converges to 1D 0(qﬁ((,l)¢(2))
as distributions.

Step 2: Terms 11 and 111. — We then consider the term II; the term II1 is clearly similar.

Step 2(a): Contribution from %80, (5,(,1))"‘ ,52). — Using the L? norm convergence of (S,Sl))“
and the L? norm boundedness of 8¢> , a simple integration by parts and Holder’s inequality
imply that 1 504 (E,,l))“q&(z) — 0 in the sense of distributions.

Step 2(b): Contribution from 5,1)45(2). Since go is smooth, Uy, ,(,1) — O, qb(l) in the

sense of distributions. The assumptlons then 1mply that p" — Dg(,% in the sense of

distributions. Using now the L % boundedness of nn ) and the norm convergence of ¢,§") —<],’>((,i)

P
in LTQZ, it follows that for any ¢ € C>°(M),

/ 1977’(11)(]5(2) dx — / ﬁ(DgO(‘bél))(p@) dx.
R2+1
Combining Steps 1 and 2, we have proven (7.1). O
Using Lemma 7.1, we obtain the following equation for yy and ywy.
PROPOSITION 7.2. — yyq obeys (classically) the wave equation
_ 1 _ _
(72) Ogy(xvo) =285 (dx, dvo) = Yolgo 1 + 5™ gg " (deo, deo) = 0.
ywo obeys (classically) the wave equation
(7.3) Ogo (xwo) — 285 ' (dy. dwo) — wolgy x — 4185 ' (dwo, di) = 0.

Proof. — We will focus the exposition on (7.2). (7.3) can be treated similarly.
Since y g is smooth, it suffices to show that (7.2) holds in the sense of distributions, i.e., we
want to show that for any n € C2°(R?**1),

1
[ Ceomtoy=detgods+ 3 [ | nze g5 don. don) Y= detgo d
R R2+
=:1 =:11I
+ /RZH n (—Zgal(d)(, dvrg) — WODgoX) v —detgogdx =0.

=111

(7.4)
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We note that by assumption (4) of Theorem 4.1, 0y, and dg,, converge respectively to vy
and dgy weakly in Lf;‘; Therefore, using also the locally uniform convergence of v, and g,

(in assumption (3) of Theorem 4.1), we obtain

(7.5) T+d= lim | (Cgmxdn = 2ng, " (dx, dyn) — 0Oy, x) v/—det g, dx.
For the term II in (7.4), we compute using the uniform convergence of v, and g, (on
compact sets) and Lemma 7.1. Note that Lemma 7.1 indeed applied to gg!(dwn, dwy)
since by assumptions (3), (4) of Theorem 4.1 and Lemma 6.5, w, obeys the assumptions of
Lemma 7.1. Hence, we obtain

1
11 = ETOQ ]R2+1 40 g1 (dwy, dwy) /— det go dx
(7.6)
1
=— lim gl (dwy, doy) /— det g, dix.

2 n—+oo ]R2+1

Combining (7.5) and (7.6), we obtain

(7.7
[+ 1= Tim | (O, mxvn = 2ng, ' (dx. d¥n) — N0y, 1) v/— det g, dx
- R
1
+ — lim nye 4¥n gn_1 (dwy, dwy)/—det g, dx =0,

2 n—>+o00 Jp2+1

where in the last line we have used the fact that for every n € N, the wave equation

_ I _ _
Og, (x¥n) — 2g, l(dX,de) — YulOg, x + EXe 4\//ngn l(dwnvdwn) =0

holds. We have thus proven (7.4). O

7.2. The limiting stress-energy-momentum tensor

PROPOSITION 7.3. — Thereis a subsequence ny such that for every vector fieldY € C2°(2),

8ny -

/ Ric(go)(Y,Y)dVolg, = hm R2(Y ¥, )* + —‘Wnk (Ywn, )] dVol
R2+!1 R2+!1

Step 1: 0;yn and (Hy)i; have strong subsequential leoc limits. — In this step, we show that
on any fixed compact set, after choosing a subsequence ng, 9;y,, and (Hpy, );; have strong

2o
L? limits. Since pg € (3, +00), W1 2 embeds compactly into L loc (in (2 + 1) dimensions).
Therefore, it sufﬁces to show that for any fixed compact set, d;y, and (H,);; are uniformly
bounded in W1 2 . By assumptions, we already know that d;y, and (H,);; are uniformly

bounded in L3 (in fact also LP0) on any compact set; we therefore need to show that the
same holds true for all first derivatives of 0;y, and (H,);;. By (2.13), (2.14) and (2.15), Ayp,
AN and §%9; (H,);; are all uniformly bounded in L7 in any fixed compact set. Standard
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L7 elliptic theory () (applied for each fixed ) implies that
312] VYn» a,'sz, 8k (Hn)ij

are all uniformly bounded in L 2 on any fixed compact set. Using the above, and also (2.17),
the assumptions of Theorem 4.1 and Hélder’s inequality, we also obtain that

0:(Hp)ij

is uniformly bounded in L% on any fixed compact set. It remains to bound 9,9;y,. For
this, first note that by (2.16), the assumptions of Theorem 4.1 and the above bounds, we see
that A8}, is uniformly bounded in L 7 on any fixed compact set. Elliptic theory then implies
that

82 ’Bi

jkFn

is uniformly bounded in L% on any fixed compact set. Now we use (2.5), take a spatial
derivative, and apply the above estimates. We see that

atai)/n

is uniformly bounded in L7 on any fixed compact set. The above discussions imply that
indeed 0; y, and (H,);; have strong subsequential leoc limits. We now turn to the expressions
for the Ricci tensor as given in (2.7), (2.8), (2.9) and (2.12). Notice that in each of the terms
which is quadratic in the first derivative of metric, there is at least one factor of 9;y,, or
(Hp, )ij. By Step 1 and the Cauchy—Schwarz inequality, it follows that Ric(g,, ) converges
to Ric(gop) in the sense of distributions (where nj is the subsequence as in Step 1). By Step 2
and assumption (3) of Theorem 4.1, it follows that for any smooth vector field Y supported

in Q2,ask — +o0,

/ Ric(gn, )(Y.Y) dVolg, — / Ric(go)(Y.Y) dVolg,.
R2+1 R2+1

On the other hand, since (Y, w,, g») satisfies (2.2) for all n € N, we know that for every n; € N,

1
: 2 —4vy 2
/2 lRlc(gnk)(Y, Y)dVolgnk = /2 l[2(Y1p,,k) + 2e k (Yown,) ]dVolgnk.

The conclusion follows. O
Proof. —  PROPOSITION 7.4. — Let
1
(7.8) dv:=2dv¥ + Ee—‘“/fo dv®.

Then the limiting metric gy satisfies

1
/ Ric(go)(Y,Y) dVolg, = / (2(Y¢0)2 + e—‘“/’O(YwO)Z) dVolg, + / (Y¥&,)% dv
R2+1 R2+1 2 S*R2+1

(M Note that Hj, is traceless. In two (spatial) dimensions, this implies that a bound on the divergence of H,, also
gives a bound on the curl of H;,. Hence, we indeed have an elliptic estimate of the type

A (Hn)ij <N 118750k (Hp) i + H,)ij
,-_,Z,k” K ( n)l,nL%UI)NJZn k(Hijll o ;n( il 2o

for U; C Up C R2, each set being an open and precompact subset of the next set.
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for every vector field Y € C2°(RQ).

Proof. — Since Y and gp converge uniformly on compact sets, they in particular
converge uniformly on Q. Therefore, taking nj as the subsequence in Proposition 7.3,

. 1 _
T foai O™ 570 o Yl Vol
. 1 _
= ETOO Rz+1[2(w"")2+ 3¢ V0 (Yawp, )?] dVolg,.

Now using the fact that y = 1 on the support of Y and Corollary 6.4, we obtain

. 1
 Jim R2+1[2(Y1/fnk)2+ 3¢ V0 (Yen,)?] dVolg,

= [ RO S o dvoly, +

S*R2

(Y¥E) dv.
+1

The desired conclusion therefore follows from Proposition 7.3. O

7.3. Conclusion of the proof of Theorem 4.1

We now conclude the proof of Theorem 4.1:

Proof of Theorem 4.1. — First, dv is supported on {(x,§) € S*M : g;'(£,6) = 0} in
view of Proposition 6.6.

To check that the three equations in (4.1) are verified, note that the first two equations
are verified due to Proposition 7.2 (and the fact that y = 1 on 2), while the last equation is
verified thanks to Proposition 7.4.

Finally, using Proposition 4.4, we have completed the proof of Theorem 4.1. O

8. Beginning of the proof of Theorem 4.2

From now on and for the remainder of the paper, we prove Theorem 4.2. We will there-
fore work under the assumptions of Theorem 4.2. The main goal from now on will be to
show that with the additional assumption (5) of Theorem 4.2, we can show moreover that the
measure dv satisfies a transport equation on 2 (where we have used the reduction in Propo-
sition 4.4).

From now on, unless otherwise stated, let A be a zeroth order pseudo-differential operator
with real symbol a(x, §). Assume moreover that a(x, §) is supported in S*Q.

We introduce now conventions that we will use for the remainder of the paper. We use the
convention that A, refers to the sequence of constants in assumption (5) of Theorem 4.2 with
K = Q" (cf. Section 4.1).
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From now on, we use the convention that for two non-negative quantities B; and B,
B1 < B, means there exists C > 0 depending potentially on T, ¥¢, wy, go, 2, Q, Q”, Q"
and A, but independent of n, such that

B < CB,.

We will also use the big-O and small-o conventions, i.e., for a non-negative quantity B
(depending on n) and a positive function f(n) of n, B = O(f(n)) means B < C - f(n),
while B = o(f(n)) means % — 0and n — +o0.

In this section, we carry out various preliminary steps. In Section 8.1, we begin with
some convergence estimates for the derivatives of the metric which follow from the elliptic
equations (and are stronger than (4.3)). In Section 8.2, we discuss the freezing of coefficients,
which will be used in various places later. Finally, in Section 8.3, we discuss a reduction
allowing us to consider only a subclass of pseudo-differential operators A later.

8.1. Convergence of the derivatives of the metric components

PROPOSITION 8.1. — Let ¥ be as in (4.7).

18: (T(vn = oD oo + 19: (F(B; — B Loe + 118: T(Nn = No))llzoo S A2

Proof. — Inview of the elliptic equations (2.14), (2.15) and (2.16) satisfied by y, N and 8/,
it suffices to show that for smooth u,,, ug : R3*! — R (n € N) such that

(8.1) X (un — uo)llLe S An
and
(8.2) IAG(un —uo))llLe S 1.

1
we have [|0; (f(un — uo))|lLee < A7. This is a standard interpolation estimates; we include
below a proof for completeness.

Let ® : [0, +00) — R be a non-negative smooth cutoff function such that

®>0, Ok)=I1forxel0,1], O(x)=0forx>2.

For every fixed ® ¢ € R, we take the spatial Fourier transform F,, and then decompose into
a low-spatial-frequency part and a high-spatial-frequency part as follows:

Tt — ) (1, &) = F O |61]) Fapa (Flttn — 10)) (1, &)
=1

+ F2L (1= O 1) Fapa (Tttn — 10)) (1. E1)

=:1I

(8.3)

(® Note that in fact for ¢ ¢ [0, T'], the term (8.3) vanishes.
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For the term I, we apply Bernstein’s inequality and (8.1) to obtain

81-( -l (@(A 161) Fapa (Tt — uo»(r,s,-))) (1) < A 2170t — o) lzoo () S Ay A = A7

L%®

Taking supremum over ¢ implies the desired estimate for this term.

For the term II, define first Py, x the spatial standard Littlewood—Paley projection to
spatial frequency |&| ~ 2. Denote the corresponding Fourier multiplier by mz p (27%&;)
where mp p is a radial smooth spatial function supported in an annulus.

Now note that for each fixed r € R and for each Littlewood—Paley piece,

3y (Fi (1= O 60 gn P Tt ~ w0180 ) G
‘ P (1551 = OGA & DmLp 76 Fap (Tt = o) 1.8 G
‘ P (g e) ,, I w0
+md (et N (04150 (AT o)) 080 L

P (1 +IF00 6D ) 1A = o))l (1) S 27 A un = uo)) e (S 275,

where in the last estimate we used (8.2).

Now, summing up all the Littlewood—Paley pieces with 2% > A,
fixed r € R,

a,-( -1 ((1—®<A 160D) Fapa (Tt — 10)) . &)))

1
2, we obtain that for every

1

O Y 2F5A
LS _1
ki2k>), 2

Taking supremum over ¢ then implies the desired estimate. O

PROPOSITION 8.2. — Let ¥ be as in (4.7).

1
10: (yn — o) lliLee < An -

Proof. — This is an immediate consequence of (2.5) and the estimates in (4.2) and Propo-
sition 8.1. O

8.2. Freezing coefficients

One trick that we will repeatedly use is to to freeze coeflicients. This will be used in
Section 8.3, but will again be useful when we capture some trilinear cancellations; see already
Section 11. In this subsection, we will introduce some relevant notations and prove some
basic estimates.

Fixsomeegqy € (6 , 2) (for the remainder of the paper). For eachn € N, choose finitely many
(spacetime) balls of radius A;° (with respect to the (¢, x!, x?) coordinates), labeled by { By !¢
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so that Q" C [, Ba C Uy Ba C 2" (cf. Section 4.1). Note that this gives O(1A;, %) balls,
each with volume O(1}%°). Introduce a partition of unity {{3}, adapted to these balls so

that supp(¢y) C By and
Z@g =1 onQ
o

Due to the choice of By, ¢, can be chosen so that for every r € [1, 2],
(8.4) 19K oo < ATKRO k= 0.1,2,3.

The following is an immediate consequence of mean value theorem:

PROPOSITION 8.3. — Let b : Q" — R be a C! function. Then for every fixed n € N and
fixed o as above, there exist constants b, o (depending on o) such that (with implicit constants
depending on the C' norm of b but independent of n or o)

b= beallLoo(Byy S A
Moreover, the constants satisfy

sup |be ol S 1.
o

In particular, for every o, there exist uniformly bounded constants N o, f
(depending on o) such that

and y¢ g

i
c,a

Il log No —log Ne.allzoe (Bo) + 185 = Be.allLoo(Ba) + 10 = VeallLooBa) S A5°-

PROPOSITION 8.4. — For every o, every r € [1,2] and every p € [1, +o9],

(8.5) 185 x(Ym — VoD ILr < /lrlz_k_i_%, ko123
(8.6) ||3;L(§(;X(‘/fn —¥0)) — ééau()((lpn —Yo)ler < Arll+so(—1+;)’
BT 1t — Vo)) — Lo (rWn — YD S 27,

Similarly, for every a, every r € [1,2] and every p € [1, +00],

1—k+ 220
1%L x(@n —wo))lLr SAn 7, k=0,1,2,3,

1+eo(—1+2)
19,0 (&L (@n — @0)) — o8 (f(@n — @D lee S A o 77,

r r (_H';)
192, (85 x(@n — 0)) — E402, (x(@n —w)llLe S An 7.

Proof. — We will only discuss (8.5)—(8.7); the remaining bounds can be derived in an
identical manner.
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Step 1: Proof of (8.5). — By (4.2), (4.3), (4.4) and (8.4), and using gy < %, we have, for k =
0,1,2,3,

18 (g x(@n — 00Dl S 4,75,
Now since supp(9¥ (Z2 x (¥n —¥0))) C By, and By has volume O(A2¥°), we obtain the desired
conclusion for all p € [1, +o0].

Step 2: Proof of (8.6) and (8.7). — The proof of (8.6) and (8.7) is similar to that of (8.5) except
in this case we are computing the commutator so at least one derivative hits on ¢},. This results
in the better bounds. O

PROPOSITION 8.5. — For every a, for p € [1, 4+00] and for g € {log N, B/, y},

1420 30 ) —14+30
Ila(@n—g0)llLr SAn 7. 10Ca(@n—g0)lLr S An” . 110°Ca(@n—g0)lr SAn 7.

1 3e0 30

7+ it ¥ 3
19: (Ca(gn —gDlle Stz 7, 1ACa(8n — 80D Lr S An”

Proof. — The estimates for 3% (¢4 (g, —g0)) (k = 0, 1,2) are similar to Proposition 8.4; we
omit the details.

The last two estimates assert that there is an improvement associated to spatial derivative.
First, using Proposition 8.1 (which is applicable since supp(¢,) C ), (8.4), (4.2) and
g0 < %, we obtain

1 1
10 (Za(gn — 80))lloe < max{A) 0 A2} S AZ.

(Here, the /X,l,_so error arises when the derivative acts on ¢,, while the )&,% error arises when
the derivatives acts on g, — go.) Taking the L? norm over By yields the desired claim for all
p € [l,4o0].

Finally, using the equations (2.14)—(2.16) (which together with (4.2) and (4.3) give an L*°
bound for Ay,, Alog N, and A,B,{), the estimates in (4.2), (4.3), Proposition 8.1, (8.4) and
g0 < L, we obtain

1_
A (gn — o)) llLoe < max{Al2e0 427 1} < 1.

As before, taking the L? norm over B, yields the desired claim for all p € [1, +o¢]. O

One important consequence of freezing the coefficients is that in every B, the Ug, oper-
ator is comparable to a constant coefficient operator:

PROPOSITION 8.6. — For every «, let ﬁc,a be the constant coefficient second order differen-
tial operator defined by

~ 1 . ; _
De.a 1= =73~ (B = Biadi) (00 = BLody) + €278 0,
c,o

where the constants N q, ﬂé’a and yc o are defined in Proposition 8.3 (cf. (2.18)).
Then, for every a, for every n € N and for every p € [1, +o0],

~ 3eg
10500 CaxWn — Yo)llLr S A TFF 2,70 k=012
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Similarly, for every o, for every n € N and for every p € [1, +o0],

3eg

10%Ce.0 Cax(@n — @o))lLr S A FP0 0,7 k=0,1,2.

Proof. — We will only prove the estimates for v, —¢; the estimates for w,, —y are similar
and will be omitted.

First, notice that after using the first equation in (2.2) and the bounds (4.2)-(4.4) in a
similar (but easier) argument as in the proof of Lemma 6.5, we obtain

(8.8) 19*Tgo (X (W = Yo llLoe S A%, k=0,1,2.

Next, we compute

(8.9
|:lg() - DC,(X

=— (]\;0 cha)az + 2(1’:3]02 le )afl [(efzy e rea)gii ﬁ;fo B éﬁgjﬂ)]az

+ \/%tg[ 1 (8o O™ v/ —detgo)]
- 0

Therefore, it follows that by (8.8), Propositions 8.3 and 8.4 and (4.2)—(4.4), we have

||§ot8kﬁc,a()((‘/fn —¥o)llLr
(8.10) S 18 Do (X (Wn — Yo ILr + 180 [(Ogo — Do) X (W — Yo))lllLr

3eg REN) k1N
—k D —k—1+¢9 P < y—k—1+eoy P _
<A XA + A7 X An” <A A7, k=0,1,2.

3¢
Here, A,,TO comes from the volume of the support of ¢,. For the 9% Ogo (x(Yn — ¥o)) term,
we applied (8.8). For the main Bk[(DgO - ﬁc,a)( x(Un — ¥o))] term, when there are k + 2
derivatives (which is the maximum possible) hitting on ¥, — ¥, we use the expression (8.9)
together with the bounds in Propositions 8.3 and 8.4; when fewer derivatives hit on ¥,, — ¥,
this is slightly easier.

Finally, since g9 < 1, when k = 0, 1, 2, the following commutator can be estimated above
by

8.11)
IIFJ,’Z“ILZM,(+2 Cax(W¥n — Vo)) — ;aaﬁTZMkJrz(X(wn —Vo)llLr

k+1 k+1 £ 3¢
<ZMW*%m%wlwmm<21wﬂwvﬁp<x“%%
£=0 =0

Therefore, by (8.10) and (8.11), we obtain that fork =0, 1,2,

3gg 3eq

8% 0.0 Carx (Yn — wmmp<ak“ﬂxp+xk%x”<x*1“%p

where in the last estimate we used g9 < % O
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8.3. Main preliminary reduction

ProPOSITION 8.7. — Let a(x,§) = b(x)m(§). Suppose m(§) is homogeneous of order 0
and is odd, i.e., m(§) = —m(—£) for all € € R3. Then

—1\ap (& ﬂogl)a 1\apB (& —/36&)61 dv¥ _
/S*R2+1 ((g )P Epox (—) (Bugo )P EaEp 0, ( e )) T

and

—ayo ([ —1\aB (6 — Bo&i)a op (& — Bhki)a %_
[ 0 (6 gt (F 080 — 20,551 e, () T =

Proof. — We will only prove the first equality as the second one can be achieved in an
identical manner.

: — (& —BYi — —Bhki
Itiseasy to .check that # (8o )P Ep0xa (%‘8““) ar.ld # (0u8s 1.)"‘/3 4680, (W)
are both odd in &. In particular, these terms can be written as a finite sum of terms of the
form f(x, &) = b(x)m(€), where m(£) is homogeneous of degree 0 and odd.

It therefore suffices to show that for every such f(x, &) = b(x)m(§),
/ fx,&)dv¥ = 0.
S*R2+1

Equivalently, since & — B5& # 0 on the support of dv¥ (by Proposition 6.6 and the form of
the metric), it suffices to show that for f(x, &) = b(x)m(§) as above,

(& —BoE) | 4
(8.12) /S*RHI f(x,§)—|s|2 dv¥ =0.

To proceed, given b as above, we freeze the coefficients as in Proposition 8.3 and find
constants {b. 4 }o adapted to the partition of unity introduced in Section 8.2 so that the
conclusion of Proposition 8.3 holds.

Then, using Corollary 6.4, ), {3 = 1, Propositions 8.3, 8.4, (4.2) and (4.3), the LHS of
(8.12) can be expressed as follows:

(8.13)
. 1 .
LHS of (8.12) = lim (0 — Bod:) (X (Yn — V0))b M(;V)(at = B60) (X (Yn — Vo)) dx

n—>+00 Jp2+1

= 30 tim [ £ = B0 = Vo) 9)0: = B0 x (v b

. 3 1 . 3
= Ybea tim [ 0= B 1 = v )G~ BiROEE 1n — ) .

Taking Fourier transform and using that m, {,, (¥, — ¥) are real, we obtain
(8.14)

RHSof (.13 = 3 bea lim_ [ (6~ B8 K~ UM 1 — Vo)E)

=Y ey lim (& — o)’ @ X(l/fn Yo)) (=6 I 1 — Vo)) E) .

n—>+00 Jp2+1
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Since m is odd, a simple change of variable £ — —& shows that the last line in (8.14) also
equals

. 3 T 3
—> beq lim (& — Bo&i)* (G Xx(Wn — Yo)) (=E)m(E) (g x(¥n — Y0))(§) dE.
p n—>+00 Jp2+1
This then implies that the term is identically zero as desired. O

PROPOSITION 8.8. — Let dv = 2dv¥ + Je~*V0 dv®. Suppose the following holds for all
a(x,&) = b(x)m(§&) with b, m smooth, real, m homogeneous of order 0 and m even:

(8.15) _
(§: — Bokida
0

“1\aB (& — Bhia
[ (g S o o

No

dv

VieE =

1 _
) = 508 NPy g, (
Then in fact (8.15) holds for all smooth real a(x, §) which are homogeneous of order 0.

Proof. — By a standard density argument using the Stone—Weierstrass theorem we can
reduce to the case where a(x, §) takes the form a(x,§) = D q.ie Ok ()M (§). It therefore
suffices to consider a(x, §) = b(x)m(&). Decompose m into its odd and even parts. Propo-
sition 8.7 shows that the odd part must give a zero contribution to (8.15). The conclusion
follows. O

From now on we assume that a(x,&) = b(x)m(§) and that b(x) is real and m(§) is
real and even. Moreover, we will take A to be a 0-th order pseudo-differential operator
A= b(x)fn'(llV), where 7(§) is a smooth real-valued even function such that 7 (§) = m(§)
for |§] > 1.

One consequence of the evenness assumption is the following.

PROPOSITION 8.9. — Let A = b(x)n'?(%V), where b(x) is real, m(§) is real and even
and agrees with a real, even, homogeneous of order 0 m(€) for |&| = 1. Then for any real
function ¢ € L?, we have Ap € L? and A*¢ € L? are both real (where A* = mi(+V)b(x)
denotes the L?-adjoint of A).

Proof. — 1t suffices to show that n?’(%V)qb is real. First, since ¢ is real, we have
$(§) = $(—§). Hence,

p—— —

[7GV18)6) = OPE) = FEFE) = -0 = [ V)0](-).
This implies that 71 (} V)¢ is real. O
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9. Energy identities

We continue to work under the assumptions of Theorem 4.2 and the reductions
in Sections 4.1 and 8.3. Let A be a 0-th order pseudo-differential operator given by
A= b(x)n?’(llvV), where the principal symbol a(x,&) = b(x)m(§) (with m(§) = m(§)
for |§] > 1) is real and supported in T*2, m(§) is homogeneous of order 0, and m and m
are both even.

In this section, we derive the main energy identities that will be used to prove the transport
equation for the microlocal defect measure. We first introduce some notations in Section 9.1.
In Section 9.2 and Section 9.3, we will then derive respectively energy identities using the
equations satisfied by (o, wg) and (Y, wy).

9.1. Definitions of g, 4 and g, 4

Using (2.18) for the metric g¢, we obtain

e—2)fo e2vo —21/0 ,Bl 2y0 e~ 2vo ..
9.1) Ogo¢ = — N ( ) ( (60)0¢) 84 0; (N03J¢)
0 No No
Similarly,
e_zyn e2V11 _2)’11 ﬂl 2yn —2yn .
92) Og,d = === (G~ eohnd) + — =8 (Fy—(cond) + ——870:(Nud;9).
Define the operator Ug, 4 by
9.3)
—2y0
Tt =~ e A D) S e a O] g g a L)
N() NO 0
Similarly, for every n € N, define the operator (g, 4 by
9.4)
—2Yn —2yn —2Yn
Dgn,A¢ = _eN ; [ 21,”14((80)” )] + Ta [ i o2vn ((60)n¢)] + m zja [N A( ¢)]

9.2. Energy identities for (¢, wo)

We first derive some energy identities by directly integrating by parts. One can view these
as analogues of the standard energy identities for the wave map system for (¢, w) with
multiplier £ though now we also need to take into account the contribution of the pseudo-
dlfferentlal operator A.
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ProPOSITION 9.1. — The following identities hold:

9.5)

/ (60)(;\(,)(%) Clgy.4 (2¥70) dVoly, +/ A((eo)o(Xwo))DgO(X%) dVol,
R2+1 0 R2+1

=_/ (eo)o()(%) 0, 2VO)A<(60)0(X1/f0))dx+/ (eo)O(X‘/fO) @, 2y0))A((eo)o(X¢o))d
R2+1 R2+1

=

0j (X‘/fo)) dr

+ [ o (wow”{[Aa]((e")"(”“))}dw [ ()(‘/fo)](S”No{(eo)o Al
R2+

- [ stevons @ 4P a4 [ osols? ool 4 ’W"))] dx

i ((e0)o(x¥0))(0; No) (0; BE )0k (X¥o) ((eo)oNo)a (xv¥o)
+ [ Lo ot hol ))d

=

3 (X‘/fo)) d

i

+ /R » (a,-ﬂ’gnak(m)wf'zvo[A(%;“))] dx + / ol N [ Al

and

O. 6)
el L[ e g C0dolx0)
./Rz+1 oS Dgo.4(xeo) dVolg, + 4 /]RZ+1 ¢ 4%A(%00)Dgo (x@o) dVolg,

1
i/ —4% (60)0()(600) (0)olx@) eZyO)A((eO)(])\ngO)) N (60)0()(0)0) @B 2y0))A((€0)0(Xw0))}

R2+1
% /R e Noa ()(a)o)é”{[A a](( 0)‘;\2{ 20) )} + [9; ()(wo)]S”No{(eo)o a(XwO) }
1 Lo o ls? @ BNl LD+ 3 ol ewa NollA( ’(X‘”")ﬂ} dx
_%/R 013, (0)5 No I:A(((eO)O(X;OZ))(ajNO) N (9; ﬂo)jil(:()(wo) ((é’o)oNo)a (Xwo) ]dx
i %/R e=0 8, BE) 01 Gre )8 NolA( ’(XO "))+ Lieohoonl @i No)s” [A¢ ’(X‘”"))l} dx

0,20 (6’0)0()(600) (e0)o(xwo)

- [ e e A(f ) g
s [ s N l/fo)[(eo)o(Xwo)][A(a o)) g

R2+1

= [ gl ron s N[ 4L o), )] dx
+ f e~V (8;Y10) [0 (xwo)15" NoA <(80)0(Xw0))d

Here, we recall the definition of Ug, 4 in (9.3).
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Proof. — We first prove (9.5). Consider each term in (9.3) and integrate by parts to obtain

the following three identities.

©.

7)

_/ (80)0()(%) ( 2y0A((€o)0(X1/f0))) dx
R2+1 No No

No No No

(e0)o(x¥0) 2y, (e0)o(x o) (e0)o(x Vo) o 4( (€0)o(X Vo)
:_/RM 210 (A % ] dx—/]R2+1 (210> A( ) dx

:/Rz+1 9, (ezyo (eo)(;\(]())(lﬁo))[A((eo)o()(lﬁo))] dr — /RZH M(a,eWO)A((eO)O(WO)) i

.

:/ (60)0()(1”0)
R2+1

©.

N() NO NO

8)
/ (e0)o(X Vo) 5, (ﬁéezyOA((eo)o(X%))) d
]R2+1

No
(eo)o()(%) (eo)o()(‘ﬁo) (e0)o(x¥0)
Wort [, )

e[ (4( G (B ) A (o

_/RZH [8 (Bie 27 ( o()(l”o))} [A((eO)(;\(/f%))] dx+/Rz+1 (60)3\(/:%)( (e <(e0)(;\(’;(¢0)>dx

9)
/ (eo)o()(%)g,-jai [NOZA(BJ-(X%))] d
R2+1

No
j(X‘/fO)

- [ . eontuGponts N[ 2L [ ax i [ auplon v va[ 4L

+ [ eonbvol@:Nos” [A(M)] ax
9; (x¥o) )} dac
N

0

a9 .
[ esGrone eooNol 4CEEEN x4 [ 1 Grvls” e Al

d;
~ [ G @B N[ ACH LY |

(e0)o(x¥0) N ((e0)o(x¥0))(8; No) N (8;85)9 (x¥0) _ ((€0)oNo)?; (X%))}d
No N2 No N2

Ui 0
+ [ e M4 gk [ ot [4CE A g
R2+ 2+
(e 0)0()(1/’0))] d

[ vl No[ 4,

— [, 5N G [
]R2+
(30)0()(%)

ot [ 0Ol ol ALY
B,

+ [, Mo G {1, )

0;
- [ v gl ac (X"’°))]dx+ [ stvons el [

((e0)o(x¥0))(9; No) N (0; ﬂo)ak(Xl/fo) ((e0)oNo)9; (Xl/fo))]
N2 Ny N2

+ [, B Gevols o Ac

9 J
+ [ oo N[ 4 E D s [ wnntevneims a0 s,
R2+ 2+
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Combining (9.7)—(9.9), and recalling (9.1) and (9.3), we obtain (9.5).

Now the proof of (9.6) is similar, except that since there is an e#¥° weight, we need to
handle the extra (four) terms arising from differentiating e=#¥0. We omit the details. O

Using the equations derived in Proposition 7.2, we obtain the following energy identities,
which give different ways of expressing (9.5) and (9.6).

PROPOSITION 9.2. — Let

- |
Fy = 25" (A do) + Yoo x — 5 xe ™" g5 (dwo. davy).

Then
(9.10)
[ 0 s aVoly, + [ a0, G avely,
_ (e0)o(x Vo) 1
= [ CORE Py~ AV AT o) Vol

N

+/ MA(%F(MH/ A(M)Fo‘” V—detgodx.
R2+1 0 R2+1 No

Similarly, let
Fy = 2g5 " (dy, dwo) + wo0ge x + 425" (dwo, d¥ho).

Then
(9.11)
1 _ay (€0)o(xwo)
4 A2+1 et TDgO,A (xwo) dVolg,
! —ayo 4 (€0)o(x®0)
" 4 /]1;2+1 ¢ A(T>Dgo()(wo) dVol,,

_! *4W0M L
=3 /Rz+1 e Ny (Dgo,A(){wO) %A(WD%(X@O))> dVolg,

1
+ - /RZ+1 e~4vo _(60)‘;\5_5‘”0)A(\/T%F3’) dx

4
1

L1 [ =470 A(M)Fow /~detgg dx.
4 Jr2+1 No

Proof. — This is an obvious consequence of g, (x¥0) = FOW and Og,(ywo) = F§
(which holds by Proposition 7.2).

9.3. Energy identities of (v, ®,)

We now derive analogues of Propositions 9.1 and 9.2 with (g, wg) replaced by (¥, w,).
The results are given in Proposition 9.3 and 9.4 below. Since the proofs are essentially the
same as those for Propositions 9.1 and 9.2, they are omitted.
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ProrosITION 9.3. — We have

[Rz+1 MD&« A(x¥n) dVolg,

4 [, Al ) avor,,
_ _/ (eO)n(XWn) (atezyn)A((eO)n(XWn)
R2+1 Ny, Ny,
=:easy|
(€0)n(XxV¥n) ai 2yn (€0)n(xVn)
b [ I (Bl AR g

=:easy

)dx

+ /R2+l Nnai(XWn)(Sij{[A,aj](w)}dx

=:easy3

’ —
i /Rzﬂ [0: x¥m)18” Nuil(eo)n. A](%:/f)

)} dx

=:hard

3 3: (U
- / 13: G167 (@ B N (AL LY ) 4
R2+1 N,

9.12) ——_
ij 9 (x¥n)
+ [ B e ML

n

=:medium

i g €0 G @ N)
+ [ Gl N, AL

) dx

=leasys

(3, B3) 0k (X ¥n)

N, )dx

4 / [9: )18 Ny A
R2+1

=:easyg

. ij ((eO)nNn)aj(XWn)
= [ B N A

N2 )dx

=:medium,

+/ (@: B3) [0k (X Yn)18" Ny [A(a (an)
R2+

)] dx

=:easyy

+/ [(e0)n (X V¥n)](0; Nn)Sll (AL J(X‘/fn)
R2+

)] dx,

=:easyg
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and

1 —ayy (€0)n (x@n)
4 Az-ﬂ etV r]lv—nano,A (xwn) dVolg,

1 n n
4= / e““”oA(M)Dgn (xon) dVolg,
4 Jr2+1 Ny

1 —4vg (e0)n (Xwn) " (€0)n(xwn)
= f R e AR
4 (e0)n (x@n) (€0)n (Xa)n)

i 2vyn
N u(Be ) AC

)i dx

! %/}M e VO N, B (wn) 8V {[A, aﬂ(%)}

3 3: (xn
13 ol Nutl(eo)n. A](M)}}dx
8 (Xwn)

n

1
=3 L L G @B Ny LA
+ il o) Nl AL ”))1}d
((eO)n(Xwn))(aan)
N2
)] dx

d; (Xwn)

)]

1
+q e—%[ai(an)]wzvn[fl(
R2+1

9.13) N (0 B5)k(xwn)  ((€0)nNn)?; (xn)
N, N?

g [ B B mls? Ny LA

)]

+ Lleodn Gron 13N 14 LA

(€0)n (xwn) A( (€0)n (xwn)

_ —4v0 ,2Vn
/]Rerle e ((eo)nyro) —- N,

)dx

=:extra]

+ / e85 N, Do) (eo)o rom A2 ”)>1
R2+1
3; (xwn
/R ™0 ((e0)n0) [0i (xwn)18 Ny [A(ZE2 (X‘” ))1
_41/,0 i (@0),1 (Xwn)
o %)a(an)]aanA(—Nn )dx

PROPOSITION 9.4. — Let

_ 1 _ _
Fn‘// = 2gn l(dx,dl//n) + wannX — Exe 41/fngn l(da),,,da)n).
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Then
9.14)

(€0)n(XYn) (€0)n (X ¥n)
[, SO, 4G dVoly, + /R o AN, ) avol,

_ (€0)n(XYn)
N /1;2+1 \/T‘[,,A( v —det gy, (x 1/fn))) dVolg,

N,
=:!maincommutator

+/ (eO)n(Xl//n)A(\/Ttgnan)dx+/ (("0)”(“”” )F‘”\/ det g, dx.
R2+1 R2+1

N

=:trilinear =:trilinear,

(T a Gevn) -

Similarly, let
FP =2g, (dy,dwn) + onOg, x + 418, (dwn. dyra).

Then
9.15)
1
4 /1;2+1 e Vo (e());vﬂmgnﬂ (xwn) dVolg,
! —ayo 4 ( (€0)n(x@n)
T3 AZH ¢ A(T)Dgn (xon) dVolg,
1 —ay (€0)n (Y@n)
= — _— I:l n A d t n|:| " dV 1
4 /]R”‘ ’ Ny ( n.A(20n) = \/T (v—det g, 0, (xo ))) olg,
1 " .
e g [ e I A= ) ds
4 Jr2+1 N,
=:trilinears
1
+ Z/ e—4woA<M)F;) V/—detg, dx.
R2+1 N,
=:trilinearyq

Our goal now is to compute the limit of the RHS of (9.12), (9.13), (9.14) and (9.15)
as n — oo (allowing possibly passing to a subsequence). We then compare the resulting
expression with the RHS of (9.5), (9.6), (9.10) and (9.11) to derive an equation for dv. This
task will be the goal of Sections 10-13 below.

10. Terms in Proposition 9.3

We continue to work under the assumptions of Theorem 4.2 and the reductions in
Sections 4.1 and 8.3. As above, let A be a 0-th order pseudo-differential operator given
by A = b(x)ﬁi(llV), where the principal symbol a(x,£) = b(x)m(§) (with m(§) = m(§)
for |£] > 1) is real and supported in 7*Q, m(§) is homogeneous of order 0, and m and m
are both even.

Our goal in this section is to compute the limit (as # — 400) of the terms on the RHSs of
(9.12) and (9.13) in Proposition 9.3. We will focus mainly on (9.12). The terms in (9.13) can be
treated mostly in a similar manner; we will explain the additional details in Proposition 10.5.
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The terms on the RHS of (9.12) labeled as “easy” will be treated in Section 10.1. The terms
on RHS of (9.12) labeled as “medium” will then be treated in Section 10.2. Note that the
“hard” terms will not be dealt with but need to be combined with other terms later. We then
conclude the section in Section 10.3.

10.1. The easier terms

ProPOSITION 10.1. — Asn — +o0, for easy; being the terms in (9.12),

Z easy; — corresponding terms on the RHS of (9.5)
i=1
dv¥

1
— 2/5*]R2+1 <(g31)“ﬂ(3ﬁXy)$a§y _ EXuaﬂ(gal)aySagy)a W

N =20 Jy¥
_siig (g — Bk A L A
[ [ = e S

where X = NLo(a, — ,363,-).

Proof. — Step 1: Taking limits for the metric quantities. —In all the “easy;” terms fori # 3,
note that we have the appearance of the metric components yy, log Ny, B, and the following
derivatives 9;yy, 0; log Ny, 0; 87 and 0;y,. In other words, there are no appearances of 9, 3;
and d; log N,,.

Therefore, by the estimates in (4.2) and (4.3) and the convergence statements for 9; yy,
0; log N, 9; 85 and d,y, in Propositions 8.1 and 8.2, all the easy; terms have the same limit
(asn — +o0) if we replace all the (y,,log N, ,3,,) by (yo, log Ny, ﬂo) (Notice that we can
apply Propositions 8.1 and 8.2 here disregarding the factors ¥ because ¥ = 1 on supp(y).)
For instance,

_/ . (e0)n(X¥n) 0 ezyn)A((eO)n(Xl/fn))dx
R2+1

Ny ' Ny
(€0)o(XV¥n)
+ /Rz+1 No

(a,eZVO)A(—(eO)‘;\(IX Yy dx - 0.
0

Similarly for other “easy;” terms with i # 3.

The i = 3 term is also similar. We only need to note additionally by Lemmas 5.2.2 and
5.2.4[A, ;] is a bounded L? — L? operator independent of n. Hence,

[ e Gopns 1, ) (2T

-[ Noai(mw'f{[A,aﬂ(“’)‘}vﬂ)}dx o0
R2+1 0

Step 2: Using the microlocal defect measures. — After the reduction in Step 1, we now use
Corollary 6.4 to take the n — +oo limits. We treat the i # 3 (Step 2(a)) and i = 3 cases
(Step 2(b)) separately.
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Step 2(a): All terms except for easy;. — Consider now the sum ) j<;<geasy;. Using

i#3
Step 1, Corollary 6.4, and recalling that dx = ﬁ dVolg, = % dVol,, we see
that ) ;<i<seasy; converges to the corresponding terms on the RHS of (9.5) plus the
i#3
following:

(10.1)
ks 2 O(@€27) + 0,(Bie?)] dv¥ gie o CO@BE v
/S*Rw@’ Potie) NG ‘TR /S*Rw A A
e e | ak e2Y0(d; No) . dv¥ e e~ 203, 85y dv¥
+/S*R2+lafs,(st Bl |E|2+/S*Rz+lmsk N

3 e=2v0(3; %) dv¥ g e7209; Ny dv¥
n SUE. iPo +/ SV E. _ Rk i )
[ B R e [ a0 e

We now use the fact that NL(%(E, — BkE)? = e 20§ EE; on the support of dv¥ (by

Proposition 6.6) to derive

_ _ pk 2‘3_2y0(8t - 13631')621/0 dv¥
(10.1) = /S*RZH(& Bo&e) N3 “ T
e e pk e 270(3;No) dv¥
(10.2) + 2/5*R2+1 8Y & (& Bo &x) N02 a e

. e—Zyo(a.lgk) dv¥
2 SYE; 170 )
w2 f s

For X = NLO(E), - /368,-), let us also compute (using (2.6)) that

1 j 1

(80 )" 08X by = =33 (B = By ) ()6 (s — B )
1 oy B

+ a0 = Bl ()& G = B

k
+ e 2vo8ii 31.(L)gjg, — e 2vogl 3;‘('8—0)51&
(10.3) | o "
= 7 (O = B No) 6 — i’

1 . .
+ 573 (0 = Bg9,)Bo)éi (& — Boé)

0

- NLOZE_Z”OS"" (3 No)&; (& — Bo&x) — Nloe_z”OSij(f’iﬁg)Sjék,
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and
%X“Mgalwsasy
= 5 = BT + (G- B R
+ 3o (0 = B30 e — 5 (00— B (L °’3 )kt
(104) = o~ N0 & — B3 + 5 (0 — B 0BG~ i

0 0

11 B N
+ 3, (@ = Bode™)8 i

= F«at — BEI)No) (& — BEE)? + (= BEBBY)(E — BLENE:
0
140 ka ,2¥0\ i
— 5 g (0 = B0 )8 iy

Subtracting (10.4) from (10.3), it follows that

1
(80" (0p X" bady = 5X"0,(20" ) buy

| |
=~ §2¢ 200817 (3; No) & (& — Pl ex) — Vol 200817 (3; B E; Ex
l e_4

((3z B dk)e*70)8" &i;.

By inspection, we have proven that
dv¥
&2

Step 2(b): The term easy;. — By Lemma 5.2.2, [4, 9;] is a O-th order pseudo-differential
symbol with principal symbol

1
102)==2 [ (65" Op Xty = 3 X 00l ) by Ja

—i{a,i§j} = —0,,a
Therefore, using Corollary 6.4,

[ i Gns? {1, 2,1

= [ Ny (14,3, E  a

y e~ 2vo Jy¥
[ [ = i) S

Together with Step 1, this gives the desired limit. O
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10.2. The not-so-easy terms

PROPOSITION 10.2. — The following holds after passing to a subsequence (which we do not
relabel) :

(10.5)
ij 9 (X¥n) i ((e0)nNn)0; (x¥n)
[ v eon NallACTRE = [l Noa(HERA 0TI g
i By ch) i 4 (€0oMoy )
_/RZH[31'()(%)]5][(@0)01\’0][14( ! ])\(]0 )] dx +Az+l[ai(an)]51NoA( colo ;/02’ X )dx 0.

Proof. — Using (4.2) and (4.3), it is easy to see that the first two terms in (10.5) have the
same limit as

((0)oNn)9; (X%))

. 0, () 4
[ v eon 4D Jax [ Gevlo? Noa( Nz

It therefore suffices to show that

B G
[ s wmls oo, — Noj[4CEE
R2+1

((e0)o(Nn — Np))o; (X%)) d
N2

(10.6)
— 0.

~ [ oG o (

To prove (10.6), we need to rely further on the structure of the terms. We begin with the
following algebraic manipulation.

(8,- (X (Y — 1//0)))] dx

LHS of (10.6) = [ | (31Grim 1o eaho (N — Nol[ AL

=1

— [ 3G = w8 M
R2+1

((e0)o(Nn — Np))9; (X%”n)) dac
N2

=:1I
+ [ B0 = a8 oo N, — Vo] AL
R2+1

=111

((e0)o(Np — No)) 0 (x(Yrn — IPo))) dc
Ng

— [, Gt Noa

=:1V
+ [ B eao(, — Nol[ 4L EE)
R2+1
=V

((e0)o(Nn — No))9; (XWO))
N2

dj (XWO) )]

= [ v Noa(
R2+1

=:VI
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We first consider I 4+ II. Note that by Proposition 8.9, A*([0; (x(¥» — ¥o))]No) is real.
Therefore,

I+1I
g 9 -
= [ Omls ooV, — N[ a L= Y00, 1,
RrR2+1 0
* ij ( ((e0)o(Nn — No))d; (xV¥n)
[, A0 = v wp ) ax

3 (x (¥ —
- —/ {(A* — A)([8: (X (¥n — Y0))INo) + [A,Noz](w)}
R2+1 :

* 5ij(((e°)°(N" — o)), ()u/fn)) dx.

Ng

Now both A*— A and [A, NZ] are pseudo-differential operators of order —1 by Lemmas 5.2.2
and 5.2.3 (and the fact that a is real). Lemma 5.2.5 then implies that after passing to a
subsequence, both (A*—A)([9; (x (¥n—¥0))] No) and [4, N&](%{W))) converge strongly
in the L? norm. Since the strong limit must coincide with the weak limit, the L? limit is in
fact = 0. The Cauchy—Schwartz inequality then implies that (up to passing to a subsequence)
I+11—0.

For the terms III and IV, we show that they separately tend to 0. To show each of
these convergences, it suffices to show that ((eg)o(N, — No))9; (x(¥n — o)) converges
to 0 weakly in L2, i.e., the weak limit of the product coincides with the product of the
weak limits. This can be viewed as a compensated compactness result: the key is that even
though (eg)o(N, — No) does not have a strong limit, we can integrate by parts to take
advantage of the fact that d; (V, — Ny) converges locally uniformly to 0. More precisely, take
¥ € C2(R?*1!) (which we can do by a density argument). We then compute

[P Cearo = o) s — ) v
= [Rz+1 9 (Nn = No)(€0)od; (X (¥n — Vo)) dx
+ /RH] [—(e0)o® + 3 (3; Bo)I (N — No)d; (x(¥n — Y0)) dx
= /R . [(3;9)(Nn — No) + 99, (Nn — No)l(e0)o(x(¥n — ¥o)) dx
- /R2+l 9 (N — No)(; B0)3: (X (¥n — Y0)) dx
+ /Rz+1 [—(e0)o® + B (3; BYI(Nn — No)d; (x(¥n — Vo)) dx.

By virtue of (4.2), (4.3) and Proposition 8.1, this — 0.

Finally, V and VI both — 0 by virtue of the fact that ((eg)o (N, — Ng)) converges weakly
in L? to 0. We thus conclude the proof of (10.6). O
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ProrosiTION 10.3. — We have

[ sumls o o [ 4ZE
R2+

((eo)nzv],,v);, () 4,

~ [ G o (

3 9.
= [ Bl ool 4L
R2+1 0

ij ((e0)oNo)d; (x¥o)
_/Rz+l[3i()(1ﬂ0)]5’NoA< €o)o 1(1/21 1¥o )dx

0

Proof. — By Corollary 6.4,

( %)
= [ B oo Nl a2 o
i ((é’o)oNo)a; (x¥n)
. ij :
+ [ B8 Noa( z ) dx
—2¥0
o e ((e;))ONO) ij El E] s
S*R2H Ny IE |
—2y0 N,
+ / e ((83)0 0) 81] El Ej 5 —
S*R2+H! Ny IE |
The result therefore follows from Proposition 10.2. O
10.3. Putting everything together
We summarize what we have obtained in this section.
ProrosiTION 10.4. — Suppose A = b(x)n”i(%V), where the principal symbol is real

and supported in T*QQ, and m(§) is homogeneous of order 0 and is even. After passing to a
subsequence (which we do not relabel),

3 3 (X Vn
RS of 012~ [ | 3:Grm s No{lteohn. AL L
> RHS of 05~ [ | (:(rv0)" No{ (oo A](%(‘f‘”)} ax

1
2 [ (PRt X" ) O

i e~ 2vo Jy¥
Lo o] T

where X = NLO(at — ,Bf)ai).
We have a similar result regarding the limit of the RHS of (9.13).
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ProrosiTION 10.5. — Suppose A = b(x)m(llV), where the principal symbol is real

and supported in T*QQ, and m(§) is homogeneous of order 0 and is even. After passing to a
subsequence (which we do not relabel),

RHS of (9.13) — %/Rw e VO[3, (Ywn)]8V Nn{[(EO)n, A (X“’”))} dx

— RHS of (9.6)—‘—1‘ /R €l o)l ”No{[(eo)o,A]( ](X:)O))}dx

3 [ (s 0 X ), — XD Y T
2 Jgepat1 @y g M0 x>y
1
Z

&2
. —2v0 gy
—4Yo| _ sijg. (g, _ BK 1€
/S*RZ-I—I e [ 8 Sl (st IBOSk)ax/ a] NO |§.|2

e—4vo C1ap
+2/S*R2+1 No )7 BaVo)ép (6 — Boke)a |S|2’
where X = NLO(at — BLd;).

Proof. — Except for the terms labeled “extra, ”—“extra,,” all the other terms in (9.13) have
their obvious analogues in (9.12). We thus only focus on the terms “extra;”—*

Using (4.2) and Corollary 6.4, it immediately follows that
(10.7)
4

extras”.

Z extra; — corresponding terms on RHS of (9.6)
i=1
v(l)

B s ((80)0%) ke 2, € 7((e0)oVo)
[ e [FR  — b +—0 T

_ (@i o) v
v2f e [— 6 - B0t Ja R

5768 Ja

Note that by Proposition 6.6, on the support of dv®,

(108) a6 = B = s
0

Hence, a direct computation shows that on the support of dv®,
(10.9)

—<g01>“ﬂ(a Vo)kp (& — ﬂésk)

Z_F((Eo)olﬂo)@z ﬁogk)2 511(3 Vo) (§r — /3]5&)51'
0

s (€0oyo) & — B -
0

.. —2yo .
o " ((eolo¥o)d &y + 2 Gio) &~ BG

Therefore, using the computations leading to Proposition 10.4 and also (10.7) and (10.9),
we obtain the desired conclusion. O
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Let us again emphasize that we have not handled the terms

3 9 (v
[ 0008 Natleon AL
R2+1 n

and 9, (ron)
1 _ - i (yow
3 o TGI8 Nl AL
4 Jr2+1 N,
They are considerably more difficult: not only do we need to use a version of trilinear
compensated compactness, but we will also need to combine this with appropriate terms on

the RHS of (9.14) and (9.15) to obtain extra cancellations.

)} dx.

11. The main commutator terms in Proposition 9.4
and the elliptic-wave trilinear compensated compactness

We continue to work under the assumptions of Theorem 4.2 and the reductions in
Sections 4.1 and 8.3. As above, let A be a 0-th order pseudo-differential operator given
by A = b(x)ﬁi(%V), where the principal symbol a(x, &) = b(x)m(§) (with m(§) = m(§)
for |£] > 1) is real and supported in 7*Q, m(§) is homogeneous of order 0, and m and m
are both even.

Our goal in this section is to compute the limit of the term labeled “maincommutator” in
(9.14) (and the corresponding term in (9.15)). To handle this term, we will in particular need
various forms of trilinear compensated compactness for special combinations of functions
satisfying nonlinear elliptic and wave equations.

To proceed, let us compute using (9.2) and (9.4) that

1
(1L.1) V—detgy, (Dgn,A(Xl/fn) - \/TTgA(V —det g,0g, (Xl/fn)))

(11.2) - _3t[ezyn A((e")'}\(]f‘”"))] N Aat[ezyn((eo)r;\gj(‘ﬂn))]
. 9 . g
s o N2 )]
(14 [ petr A OII | i, [ (ORI

We will consider the contribution to the “maincommutator” term from (11.2), (11.3) and
(11.4) in Section 11.1, Section 11.2 and Section 11.3 respectively. We then put together the
computations and obtain our conclusion in Section 11.4 and Section 11.5.

11.1. The term (11.2)

ProrosiTioN 11.1. — We have

/ ) (eo)n(an){8t[e2y,,A((eo)n(Nn))]_Aat[ezy,,((eo)n(m))]}dx
R2+1

N N N

(€0)o(x¥n) o 40 €0)o(x¥n) o (€)o(x¥n) N
_Az+l TNy {3t[€2y A(T)] — Ad,[e? (—No )]}dx 0.

A similar statement holds after replacing Y, ~~ wn, Yo ~> wp and dx ~ %6‘74%0(1)6.
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Proof. — We first note that

(EO)r;\Efl/fn) {a,[em y ((eO)r;\Ei(Wn))] 49,2 ((eo)r;\gfl/fn))]}
B (eO)(;é:wn) {8t[62y0A((eO)(;\(]ifl/fn))] 3 Aat[ezyo((eo)(;\(]fl/fn))]}
(11.5) = ((eo):;é')l(l/fn) 3 (30)(;\(]())(Wn)){8t[ezynA((€0)r;\§:(Wn))] B Aat[ezy,,((eO)r;\E:(Wn))]}
(16 + (eO)(;\(]())(Wn){at[ezy,,A((EO)r;\gr)l(Wn))]_Aat[ezyn((EO)r;éan))]}
a7 - (90)(;5;(1/%){8t[ezy0A((60)(;\(]i(1/fn))] _Aat[ezyo((eO)(;\(]i“/fn))]}'

Step 1: Estimating (11.5). — We bound (11.5) in L. First, it is easy to check using (4.2) and
Holder’s inequality that

(€0)n(XV¥n) _ (€0)o(x¥n)

jLeuknl o)y,
i i 0; n 1 1
S 185 = Bllel o - feoavmlial - — - laoe S Ao
On the other hand,
nfem ALYy gy oo (1Y),
= o2 (a,b)%(llV)((e")’;VM)
=:I;
+ beZyn 8tn7(llv)((60)r;\(lan)) _ b%(;v)at[ezyn((eo)i;\EXWn))]
=:I>
+ (ateZyn)[A((eO)n(XWn))],

Ny

=13

where we have used that m (ll. V) commutes with d; and 9;. Each of I, I, and I3 can easily be
seen to be bounded in L2 uniformly in n. For I;, this simply follows from the assumptions
(4.2) and (4.3) and the fact that i (%V) is bounded on L2. For I, this is a consequence of
the Calderon commutator theorem (Lemma 5.2.6) and (4.2) and (4.3). Finally, for I3, this is
an immediate consequence of (4.2) and (4.3).

Therefore, by the Cauchy—Schwarz inequality,

(11.8) I(LL5) |1 < An — O.
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Step 2: Estimating (11.6) and (11.7). — The term ((11.6) 4 (11.7)) is more subtle. First,

et (O g o (O g o g (0TI g o (D0
(11.9)
= e — o, V) (ORI o e — ey (ORI
(11.10)

iy L)Yy Ly ) _conlat),
(1.11)

i — D gy k) _ (b
(11.12)

+<atb){(62vn_ezyoﬂmllv)(%)] o) V)((eo»;v(jwn)_(eo)(;éfwn))]}.

By the Calder6én commutation theorem (Lemma 5.2.6), the fact that m (%V) is bounded
on L? (Lemma 5.2.4), and the estimates in (4.2), (4.3) and Proposition 8.1 and 8.2,

(11.13)
[(11.9) + (11.10)]| .

~ (€0)n(X¥n) ~ (eo)n(x¥n)  (e0)o(xVn) 1
ST = 20) ool — 12 + 17> oo | —— — e S AR
Nn Nn NO

Using again the fact that ?n'(%V) is bounded on L2, and the estimates in (4.2), (4.3) and
Proposition 8.1 and 8.2, the remaining terms can be bounded directly as follows:

(11.14)
[(11.11) + (11.12)]| .

ST =) i |

(€0)n(X¥n)
Ny

~ e 14 1
o + ||)(€2y0||W1.oo||( 0)n(X¥n) _ (e0)o(x¥n) 2 S AZ.
Nn NO

Using (11.13), (11.14) and also (4.2) and (4.3), and the Cauchy-Schwarz inequality, we
thus obtain
(11.15)

(11.6) + 11.7)||;1 S |—————= O)O(Xwn

Iz2(I(A1.9) + AL10) 2 + [ALID + (11.12)[|2) S A

Combining (11.8) and (11.15) yields the conclusion. O

11.2. The term (11.3)

We first argue as in Section 11.1 to control most of the terms. We will identify, however, in
Proposition 11.2 that there is one difficult term that cannot be handled just with techniques
in Section 11.2. In the rest of this subsection, we will then handle the difficult term that is
identified in this proposition.
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ProrosiTION 11.2. — We have

/ (€0)n(X¥n) 3 (XWn)
R2+]

ij 2
N 89 {0 [N2A (A

)] = A0i[Nndj (x¥n)]} dx
_ AZJFI (EO)O(Xwn)SU{al[NO A(M)] _ Aaz[N03j()(¢n)]}dx

No
92 52
R2+!1 No

ij 2
No 8Yb{(N, No)(V)(

=:1
— 0.

Proof. — The idea is to argue as in the proof of Proposition 11.1 until we face a term that
does not obviously — 0.

In analogy with (11.5)—(11.7), we have

(EO)r;éXWn)Su{a [NZA( ](XWn )] —A8 [N 3 (Xwn)]}
(60)(;\(]X1/fn) ’J{ai[NOA(%wn))] _ Aai[Noaj(Xl,/fn)]}
0

(11.16) _ ((eo)r;\g)(%) B (60)(;\(])(1%))51'/'{31. [anA(W)] — A3 [Nu0j (xvm)]}

n 0 n
1117 4 (ooltvn) gi; ({ai V2 ALY\ a3 TNy g

No Ny

A (X Vn

(11.18) —{3;[N2A(- (W ))] — A9;[No9; (an)]})

First, note that (11.16) can be handled completely analogously as in Step 1 in the proof
of Proposition 11.1 using that || (‘30)” (X’/’”) - (80)(1’\53“1’”) |2 — 0 and that

j(XWn)

119: [N A

)] = Adi[Nndj (x )]l 2

is uniformly bounded.

To control (11.17) 4 (11.18), we first compute as in Step 2 in the proof of Proposition 11.1.

(0,92 ALY ) i, 05 G — (00N AR — oy Gy
(11.19)
=bai[N,,2n7(llV)(a"(])\f’;/’")_af(])\(,;/’"))] bo, ( vz (X;//n) 8j(])é;/’n))]
(11.20)
+ et N V)LL) - SO, (a2 - Ny (LA,
(11.21)
+ B3V = NI VL) b (i - Ny L)
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(11.22)
QN b)) Ly — gy N ack)

(N~ NG )

(11.23)

U(Xl/fn)

+ b(N2 — N2y ( V(=) — b Loz - Nz

U(Xl/fn)]
0

Using the Calderén commutator theorem (Lemma 5.2.6), L? boundedness of ﬁi(llV)
(Lemma 5.2.4), Holder’s inequality, and the estimates in (4.2), (4.3) and Proposition 8.1, we
obtain (in a similar manner as (11.13) and (11.14))

I(AT19)][ L2 + [I(11.20)[| 2 + [(A1.2D)][ 2 + [|(11.22)]] .2

~ 0 d; _ 9,
S N L ||x(N3—N3)||Lm||%;”")||Lz
dj (X‘//n)

+19; RN = N lzee | == ll> < A%

Therefore, the contribution of (11.19)—(11.22) to (11.17) + (11.18) — 0 in analogy with
(11.15).

However, in contrast to Proposition 11.1, it is not clear whether the term (11.23) converges
to 0 in L2. This therefore gives rise to the additional term I in the statement of the proposi-
tion. O

The remaining task of this subsection is therefore to show that I in Proposition 11.2 — 0
as n — 4o0. (This requires a use of the full trilinear structure.) We first perform a series of
reductions; see Propositions 11.3 and 11.4 below.

Our first reduction is to show that I in Proposition 11.2 has the same limit after the
replacement v, ~~ ¥, — Y.

ProrosITION 11.3. — We have

/ (€0)o(xV¥n)
R2+1 Ny

_/ (e0)o(X(¥n — Vo))
R2+1 No

) 92 (¥)
5TbI(NZ — Ny ( vy (Lt ’”f )7 Loy — w2y )

32 (x(wn ¥0))
0

5 (N7~ NV

2 (Yn — I/fo))]} dy 5 0.

;- g

Proof. — Tt clearly suffices to prove the following three convergences as n — +0c0:
(11.24)

R2+1 0 l No

(11.25)

/ (e°)°(Xw")8"fb{(an ) ( v)( ,](Xlﬂo)) %(lv)[(Nz Noz) ,,(Xwo)]} X0,
R2+1 No i No
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and

(11.26)

[, iy iz g o 0 oo - v B gy o
ot A i No

We will in fact not need to take advantage of the commutator [(N;? — N2), m (%V)] in the
expressions above. We will simply control the first term in each of (11.24)—(11.26); the second
term in each line can be handled in exactly the same way.

Step 1: Proof of (11.24) and (11.25). — The terms (11.24) and (11.25) are easier because ¥
is smooth and we can directly bound its second derivatives. More precisely, using Holder’s
inequality, the boundedness of (%V) on L2, and the estimate (4.2), we obtain

|First term in (11.24)] < [[(€0)o(x¥o) 2 I TN, = N) 2o 18705 (xvo)llz2 S 1-An -1 S An = 0.
Similarly, but using in addition (4.3), we obtain
[First term in (11.25)] < [[(0)o (x¥m) 2 17Ny = Ng)zow 187 95 o2 S 1+ An - 1S A = 0.

Step 2: Proof of (11.26). — The key is an integration by parts to throw the derivatives on the
smooth ¥¢. More precisely, after integrating by parts, applying Holder’s inequality and the
boundedness of (%V) in L2, and using the estimates in (4.2), (4.3) and Proposition 8.1, we
obtain

. . '(EO)O(XWO) n2 A2\ l 3 (X¥n)
|First term in (11.26)] < '/Rz+1 0; N, §Y (N7 — N, )m(i V)—NO dx‘
n /l;izﬂ (80)(;\5())(\”0)81‘]‘81_(1\73 B Noz)n"{(lV) aj(prl) dx‘
n /RHI (60)(;\(]())(\”0)5;';(1\,2 N)i ( V)(a No)j\aﬂ()(l/fn) x‘

S 10 (e0)o (XYl 2 IN; — N llzee 13 Grvvm) |l 2
+1(e0)o (X W)l 2(13: (N = N§)llzoe + [N = Ngllzee)[13; (xvrm)ll 2
A2 SAZ 0. O
Our next reduction is to freeze the coefficients (cf. Section 8.2). We show that the difficult
term is essentially the same as a “frozen coefficient” version up to error terms which are o(1).

ProrosITION 11.4. — Let bey, Neg, ,Béa be as in Proposition 8.3. Denote moreover
(e0)c,a i= 0 — ﬂc’aa . Then

/ (€0)o(Xx(Yn — Vo))
R2+1 No

02 (1 (¥ — V)

ij 2
87 b{(N, — Ng)irt ( VX( No

92 (1 (¥n — V)

No

/ (€0)e.a(CaX (Vn — ¥0))8Y {La (N, — Noz)m( V)@ (G x (W — ¥0)))

)

_,le)[(Nz Ng) J}dx

—ﬁ(;V)[Ea(N,% NG)OZ; (G x (Wn = Yo))]} dx — 0.
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Proof. — Wewrite 1 = )", £3. Then for every &, we apply the estimates in Proposition 8.3
and 8.4 together with Holder’s inequality and the L? boundedness of 7 (%V) to obtain the
desired result. O

After the series of reductions above, we now finally estimate the term with frozen coeffi-
cients. As we have indicated earlier, the frozen coefficients allow us to employ Fourier tech-
niques and exploit crucial cancellations.

PROPOSITION 11.5. — Let bc o, Ne o, ﬂi,a and (eo)c,o be as in Proposition 11.4. Then

bea . ~ 1
2N [ CeodeaCan = )87 (5 N7 = NV Gt = )

~ V)G (N7 = NI (Cax (Y — YD} dx .

Proof. — We will bound each term in the sum. Since there are O(1}, %) terms in the sum
(cf. beginning of Section 8.2), it suffices to show that each term is 0()&,3180). This is what we
will show.

From now on fix «.

Step 1: Frequency space decomposition. — Decompose {u(N2 — NE) into three pieces in
frequency space. For this purpose, define a smooth cutoff function ® : [0, +00) — R such
that

(11.27) ©>0, O()=1lforxe[0,1], O)=0forx>2
Define now the decomposition of ¢y (N — N¢) as follows

{a(N? — N@) = (Naim)n.1 + (Nain.2 + (Nai)n.3»

where

1128 (Namna(® = OGS IE) (N2E) ~ LNg®)).

(1129)  (Namna(®) = (1- OGS 1ED)(1 - @(l';’é D (@N2© - N3 ©).
(1130)  (Namna®) = 1 - OGS |s|))®(|';"§') (CV2® - 2N ®)).

(We recall here our convention from Section 3 that |&; | denote only the spatial part.)

Step 2: Handling (Ngif)n,1- — We first deal with the terms involving (Ngif)n,1-
By Bernstein’s inequality and Proposition 8.5,

—3 1
(11.31) I(Naitn,1llwroo S An © 18a(Ng = Ng)llzee S As

~

On the other hand, notice that for all sufficiently regular functions u and f, we have the
commutator estimate
(11.32)

1 1
Ilw%’(lfv)a,-zjf - ﬁi(lfv)(ua,-zjf)lle

~ 1 ~ 1 1
S ||um(lTV)3,-2,-f —m(=V)3; d; )2 + M 10:)9; Pl < lullwi.eoll9) /22,
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where we have used the Calderén commutator theorem (Lemma 5.2.6) for the first term, and
the L2-boundedness of 77 (%V) (by Lemma 5.2.4) for the second term.

Using (11.32) with u = (Ngif)n,1 and f = Lo x(¥n — Yo), and applying the Cauchy—
Schwartz inequality, (11.31) and Proposition 8.4, we have

bC o 7 ~
[ CodeaCGaxChn = YoDB (Nawn V)@ (Gt (W — )

N2, Jro+

) N1 7 G — YD) dx
<1901~ oD 2 Nl L o 19— YD

320 1 3¢0 1
2 6 2 _ 36 _ 2
f/kn A Ant = A —O(An 0)7

as desired.

Step 3: Handling (N4ig)n,2. — For this, we make use of the large spatial frequency to obtain
s
a good L? bound. More precisely, since on the support of (1 — O(AS[£]))(1 — @(%)),
3K

_2s
&% > |& |% > An 2*, by the Plancherel theorem and Proposition 8.5,

_ 25 254 3%0
(11.33)  [|(Naimn2llz2 S IAT AWNGimn2l2 S Aat 1ACa(NZ = NIz SAZT 2.

By Lemma 5.2.4, m (ll V) is a bounded operator in L*. Therefore, using Holder’s inequality
and the estimates in (11.33) and in Proposition 8.4, we obtain

(11.34)

bC o i7 ~
[ 0= BB Gax W = Vo) (N 21 V)02 G — V)

ch,a R2+

be 1
[ O BB Gt W = VOISV (Nain)n 20 G — Vo)

N2y Je2
<@ — BE 431 Cax W — Vo))l 4167 07 Cax (Wn — o)l 4l (Nai)n 212

3e0 3¢9 25, 329 1
20+ B0 21 +3¢0
Shat A TE AT S a3 Z o),

+

as desired.

Step 4: Handling (Ngig)n,3. — To handle (Ngig)n,3, we need to compute in Fourier space.
Here, we take full advantage of having frozen the coefficients. In order to simplify the
formulae, we will denote (Vai)n := Lo x(¥n — Vo).
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(11.35)

bca
o / (91 — B 90 Vi Nt 577 V)03 (i)

—M( V)[(Naift)n,305; (Waigr)a]} dx

lbcoz

= f (& — BE JE)ming 8 Vaim)n () Naim)n 3 (6 — 1) e (D7 () — 71()] dy &
lbc o

/ (& — B oEx)min; 87 (Vai)n (€) (N 3(n — &) P (~0) [ (n) — 77(€)] d d.

Exchangmg & and 1,(11.35) can be given equivalently as
(11.36)

bca
(11.35) = = /(m BE 116856 (Wit (1) (Naimhn 36 — 1) (P (€)1 (8) — A7) dn .

Changing Varlables & — —¢ and n — —n, and using the evenness of m,
(11.37)

— B &8 (aitn (€) (Naithn,3 (1 — €) (ait)n (=) [7E(y) — 77(8)] d .

—ib
(1136) = —==
NC o
Therefore, averaging between (11.35) and (11.37), we obtain

N L, 0= PP G N )05 )

—m( V)[(Naifr)n,305; (Vaim)al}y dx

- 2?550‘ ] (€ =B + o = Banoiel)

% (Yaim)n (€) (Naim)n 37 — &) Wain (~n) [ (1) — 7 (§)] dp d.
Step 4(a): Some manipulation of the Fourier multiplier. — Note that on the support of
(1- 06l ~nh)e (l‘j_m;') we easily have [& — n,| > |6 —nl — & — ;] 2 1§ —nl.
It follows that

(1139) (& =10 = Lot —np)|(1 - OGS 1~ nl))© (:i’_ ,7"(8') 2t

In particular, (¢, — n;) — ﬂg’a (& — nj) is bounded away from 0. Therefore, we can divide

(11.38)

by (&, — n¢) — BLa(&§; — n;) and a direct computation shows that
(10 = BLani) + (& = BLoE)
(= Blan)? — e NZ i (E = Blaky)? — e N2 6P
(1400 (g — Blany) — G — Blaty) (1 — Blanj) — (& — BLat))
e e N2, (Ini|* — &)
Ne — Blany) — (& — Blak))
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Using (11.40), we can therefore write the Fourier multiplier in (11.38) as follows:

(16200 = BLany) + i (6 — BLa80) (1 - 0 f 16 - n|))®(:§"_‘n”|g)
(114D = (8P = ) 0 = BLany)

Il (0 = BLan) + (& — BLa8)) (1 - 0016 - nl))®(:§i__:|%|)
(1142 = 8% — )+ ) — Bl (1 - OGA1E - n|>)®(:§"__;|g)

(77t /3cot771)2_e Zvea N 2 |ni|2 2 |€z _77i|
(11.43) + |ni? 1-0@E—n))O(—=
(e — Blamy) — (6 — Blak)) ( ) <|s—|

(St ,Bcag])z_e_zy('achaEil 2 |§z 771|
2 B (1 - O & 1)

(1 — Blani) — i — Plak)) ( h)e (|s—n|s)
“2rea N2 8% (g — &) (e + E0) 5 |& — n;i
2< c : 1—OMLIE—1))® ).

ne — BLanj) — (& — BLakj) ( ! ) (lé—ﬂlg)

N—

(11.44) — |ni

(11.45) + |n

Step 4(b): Estimating each term. — Define now the terms I, 11, III and IV respectively by
inserting (11.42), (11.43), (11.44) and (11.45) into (*) below

(11.46)

Zjvz [ ) @i @z = &) = i (- lCr) — ] .

For the term I, by first applying Fourier inversion and then Hélder’s inequality, we obtain
IS (nzax(wn VNG )01 0 — B ) Cax n = Vo)
10k Cax G — VO LI V)@~ B CarUn — YD) s
(11.47) G 9 Gt n — VoD | — B0 Carn — VoD
I V) o — Vo511 (s — BLud) Gax Y~ wo»nu)

s Vi
< 11 = O IV )O |'V| ' )0i (Cal N2 — N2 2.

With the estimates in (4.2), (4.3) and Proposition 8.5, Plancherel’s theorem and Hélder’s
inequality, we obtain

Vi
)i (Ca(N = N2

\E

(IL48) <19 (Ca(Na = NoD) 2| N + Nollzoo + [15a(Nn = No)ll211; (N + No)l oo

11— O ADEL

1, 380 REN) 1, 380

14230 14250 1+50

2 2 2 2 2
S Aq + An S Aq .
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Plugging (11.48) into (11.47) and using the estimates in Proposition 8.4 together with
Lemma 5.2.4, we obtain
30 360 1, 3% 1
(11.49) 1| < (AH . 1 F At At A T2 = 2270 = p(A3%0),
To handle the term II, we likewise apply the inverse Fourier transform and then use
Holder’s inequality to obtain

1 ~
MBS (IW(;V)G?DC,a(CaX(% = Vo)L I8eax (Vn — Vo)l L4

~ 1
(11.50) +1197Ce o (Gax (Wn — Yo)) 4 II%(fV)(EaX(llfn - 1/fo))llm)

3 Vi
x| -ea; oo )W(cawz

By Plancherel’s theorem, (11.39), Holder’s inequality, (4.3) and Proposition 8.5, we obtain

2 [Vil i
[0 -00 ey 7

(a(Ny = Ng

(11.51)

3¢9

El 11,4 220
< A 5Ny = N2 < A% (N, — No)ll 2l N + Nollzoe S A "2

Plugging (11.51) into (11.50) and using the estimates in Propositions 8.4 and 8.6 together
with Lemma 5.2.4, we obtain

11, 3¢€0

’%50 11 3€0 1
(11.52) |H| <A, 3+80+ 4 -/\H_ 'An6 += _ )Ln6+480 _ 0()&,3,80),

since g9 > # (cf. Section 8.2).
III can be controlled in an entirely analogous manner as II; we omit the details:

_1
(11.53) I < A, 540 = o(A3%0).

Finally, we handle the term I'V. As before, we apply the inverse Fourier transform and then
use Holder’s inequality. We then obtain

V1 5 (I V)08 G~ VoD s = Vo)l

(1159 V) W — V) 0 G wo>)||L4)

: Vil
x| -ea DO g7y, eV = NG

By Plancherel’s theorem, (11.39), Holder’s inequality, (4.3) and Proposition 8.5, we obtain
(11.55)
Vi

)((1—®(A6|V|))®(| |5)aV g7y, eV = NG

< Ja-eadienec et @z e

3¢9

GDED e (y2 - N2 s f+
S An e (N = No)lliz2 S An® 18a(Nn = No)ll 2| Nn + Nollzoo < An :
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Plugging (11.55) into (11.54) and using the estimates in Propositions 8.4 together with
Lemma 5.2.4, we obtain

21 S
(11.56) IV < A2 L R e _ ),

By (11.49), (11.52), (11.53) and (11.56), we have thus shown that each of the terms obey
the desired estimate. This concludes the proof. O

Let us summarize what we have achieved in this subsection. At this point, let us also note
that while the computations in this subsection concern the commutator term involving v,
they apply in an identical manner to the commutator term involving w,,.

ProPOSITION 11.6. — We have

/ %y’j{aiwjﬂwﬂ —Aa,-[Nna,-(m)]}dx
R2+1 n

_ f Cololiyn) i (o, g ¢ ’(”’")H = A3 [No; Gl dv 0.
R2+1 No

A similar statement holds after replacing ¥, ~ wy, Yo ~ wo and dx ~~ %e““”odx,

11.3. The term (11.4)

We now look at the term (11.4). Unlike the terms (11.2) and (11.3) (cf. Sections 11.1 and
11.2), we will not be able to just compute the limit of (11.4). Instead we will need to combine
this term with the “hard” term in (9.12).

For this reason, we first consider some reduction of (11.4) and the “hard” termin (9.12) in
Section 11.3.1 and Section 11.3.2 respectively. We then consider the limit of the combination
in Section 11.3.3.

11.3.1. Reduction for the term (11.4). — We first argue as in Proposition 11.2 and identify the
main term in the limit. The proof is essentially the same as Proposition 11.2 and is omitted.

ProrosiTION 11.7. — We have

/ (eo)n(XWn) {ak [ezyn Igy]fA((eO)n (XWn))] —Ad, [ez”"/g’ ((eo)n(an))]}
R2+1 Ny

Ny N,
(e0)o(X¥n) 0 (e0)o(XVn) o ak (€0)o(X¥n)
= L, T e ARG — A gl COREE
_/ (eO)O(Xw")b{(ezy”ﬁﬁ 2”0;9 )i ( V)(Bk(eo)o()(%))
R2+1 No No
_ ,’ﬁ(;v)[(e%/n 135 2)’()/3 )(ak(eo)o()(‘/fn )]} dx — 0.
No
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ProrosiTION 11.8. — We have

/ (eo)o(Xl//n)b{(ezynﬁ'I: 2o ki ( v)(ak(eo)o(XWn))
R2+1 No No

_nA’f(llV)[(ezynﬁ": 270/3 )(ak(eO)O(XWn))]}

_/ (60)3\(7)“'//”)19{(32”0(,35 _ by 2l V)(ak(ffo)o()(%))
R2+1 0

: :
V)T - ﬂ@(wn}

Proof. — In view of
e2vn 135 _ EZVOﬂg — 8270(,3’/: _ 1315) + 13/;(82)/" — 210y,
it suffices to show that

f (eO)O(XW")b{ﬂ,’f(ezy”— £210)75 ( V)(ak(eo)o()(%)
R2+1 No

No )

(11.57)
AV e2V0)<—ak(e°330(X I dr o
We compute
(11.58)
Bl (2 — e?0)iii(~ V)(ML(W")) —rﬁ(%V)[ﬁs(eZVn _ 2y0)(ak(€0)00()(1/fn))]
= B — ey hvya (LTI L)y [k e — o2y okl
l No i No
(11.59)
e iy (U @No)
1 NO
k(,2¥n _ »2Y0
L)oo (rpmya e =)
i No

(11.58) can be controlled using Calderén’s commutator theorem (Lemma 5.2.6) with
T = %(%V) dr and using the estimates in (4.2), (4.3), Propositions 8.1 and 8.2, we obtain

1
<Az

L2
On the other hand, (11.59) can be bounded using estimates in (4.2), (4.3) and Proposition 8.1
as follows:

[(11.59) .2 S 1785 = ) oo

I(11.58) ]2 < [1TBE (€27 — e*7) e H(e())ozé—w)
0

((e0)o(x¥n)) (9 No)
NZ
ng 2¥n — 2v0)
No

+ [[(e0)o(xVn)ll L2

It therefore follows that as n — +o0,

Ak (e0)o(XV¥n)
No

A0k

£ — Py

)= VB — ) o0,

L2

)]

Ik (e0)o(XV¥n)
No
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Hence, our goal (11.57) follows from the Cauchy—Schwarz inequality and the estimates
in (4.3). O

We now take the main term in Proposition 11.8 (i.e., the term on the last two lines) and
show that the limit remains the same after (1) replacing ¥, — V¥, — ¥ and (2) freezing the
coefficients. The proof is entirely analogous to Propositions 11.3 and 11.4 and is omitted.

ProrosITION 11.9. — Let by, Neo, Ye,o and ,Bi be as in Proposition 8.3. Then
/ (eo)O(XV’n)b{ezyO(’Bk Bt ( v)(ak(eo)o()(wn))
R2+1 Ny No
GV (B - %)(M)}}w
2yc,a
D P [ 0= B0 Gy = )

{8r - ﬂé)ﬁi(;vxak(az — By Bn) Gt (Y = o))
A VIBE ~ BP0~ Bl) Car (U — Vo)) dx .

11.3.2. Reduction for the “hard” term in (9.12). — Note that

3 (XWn) 8 (XWn) 8 (Xl/fn 3 (XWn)

[(e0)n, AJ(F=S2) = =R A(ST2) + A[BE O (FE55)] + [0, AN ().

Hence, the “hard” term in (9.12) has a 51m11ar form as the previous commutator terms, can
also be treated in a similar manner.

First, we identify one main term for which the limit is difficult to compute. This is similar
to Proposition 11.7; we omit the details.

ProrosiTiON 11.10. — We have

y 3 (1
= [ N {eon, Ay 2
RZ‘H Nn

) 3 (U
o [ 008 oo, A LAY

) )312-;(()(%)
No

) Bt
= [ 3 vls Nob {8t — B DI -8 - B I} dx - 0.
R2+1 i No i

Next, we show that the limit remains unchanged after replacing ¥, — ¥, — ¥ and
freezing the coefficients. This is similar to Proposition 11.9.

PRrOPOSITION 11.11. — Let b o be as in Proposition 8.3. Then

2, (rvm 2, (rvm
( ,kxu/f ) : ,kxfw )]}dx
0 0

[ i Cew e Nob (85 — V) )= ACVIBE - B
- Z bea A o 00 — o187 { (B ﬂé)ﬁi(;vxaﬁ (G (Yn = V0))
~ A VIBE ~ B Gt (Un — Yol dx .
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11.3.3. Computation of the limit. — We now combine the terms in Propositions 11.9 and
11.11 and compute the limit.

ProrosITION 11.12. — Let be o, Ne o, Ye,o and ﬂéa be as in Proposition 8.3. Then

bc [ e ~
5P [ 0= B0 G = v (B — BT V(B0 — B ) Gt )

—~ N2, Jeen
1
— A= V)I(BY = BE) k(0 — BLladm) Gt (Y — Yo dx
y 1
+ bea /R o 01t — o187 (B = B V)P Cax (W = Y0)))

AV — B Car (i — Yol dx — 0.

Proof. — Step 1: Fourier decomposition. — Let ® be as in (11.27). Define now the decom-
position of B., — B as follows (compare (11.28)—(11.30)):

ta(Bl — BY) = (Bain)y 1 + (Bait)h o + (Baier)l 3.
where
(Bl 1(6) = O 16D (Zui6) — Lubp©))
(Baiy »(6) = (1~ O ED)(1 ~ @(E"' ) (Gabh®) ~ CaBy©)).

(Bay (6 = (1= O(f |s|))®(|'§i'

5
8

) (Chi® ~ LuBy(®)

We need to estimate the contributions from (Baif)}, ;. (Bain);, , and (Baifr)}, 3- The contri-
butions from the terms (ﬁdiﬁ‘)fl’l and (IBdiff)il,z can be handled as in Steps 2 and 3 in the proof
of Proposition 11.5, where analogous terms were estimated. We note in particular that in
Steps 2 and 3 in the proof of Proposition 11.5, the argument relies only on the frequency
support of the corresponding terms and we did not use the precise structure of the nonlin-
earity. We therefore omit the details about bounding these terms.

On the other hand, the contribution from (/deﬁ‘);’:; requires a more careful treatment.
(This is analogous to the term in Step 4 in the proof of Proposition 11.5, where we fully
exploit the precise structure of the term.) We will thus focus on this term in the remainder of
the proof.

Step 2: Estimating the main term. — Denote (Vair)n = Co X (¥n — ¥o). We compute

(11.60)
’?Ne_y [ 0= B0 G B G DI = B V)] b
_ % [ 11 00 = B0 i Bl (01 = B i)
_ e ben ezz” [ 1 6= BL&) 01— Bt (B Ba o6 — 1)
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(Vam)a (DI () — ()] dn d
_ _l'€21/c‘ot bc,ot j . m /\ /\k
= R [ 6 L 0 = B i €) B0 )

(Vaim)n (—m) [ () — 7(E)] dn dE.

Similarly,
(11.61)
. 1 ~
bea |, 0 (Waim)ad” {(Bain)y 5715 V)37, (Vaim)n)] = m(}V)[(ﬁdiﬁ)’;,B(aik (Vaim)n))]} dx

= —ibea [ 8 Emme W ©)(Bahs (1 — ) (Fama (-IH() ~ AE)] dn,

We now analyze the Fourier multiplier corresponding to (11.60)+(11.61). First, we compute

e2ve.a . ..
N2 (&r — BLo&) (e — B g m)ni + 8 Eimjnie
2Yc.a . . ..
(11.62) = eN2 (&e — BL o) ((Ee — BLo&)) + (ne — BeanmDnk + 8V Ei(nj — &)k
ezyc.a j 5 ij
R B + g e

From (11.62) and (11.40) it follows that

2yc,a . . El i — i
<eN2 (& = BLa&)) 00 — Bl mic + 87 n,-nk) (1-onE- n|))®(ﬁ)
(11.63)
e2Yea ; (e — 55,11711')2 - e_zyc'achamilz 2 |§i — mil
=+ Blub) . e (1- 00 g - )e(
NZ, S = Blany) — € — Blaty) ( ") <|s—n|s)
(11.64)
e2ea : (& — Blakj)? — e e N2, JEi s & — mi|
o~ BLaE) . 0 (1- 0G4 1E — ) :
NZ, S e = Blan) — G — Blaty) ( ") <|S—nl8)
(11.65)
e2ea - e 2rea N2 8K (me — &) (e + &0) 5 & — nil
+E e~ Lok : . - 0G5 E— 1)) :
NZ, = Blany) — & — Blat) ( ") (|s—n|s>
(11.66)
4898y — &me (1 - OGF g - n|>)@(:§"__n”|"§')
(11.67)
2Yc.a . .. 5 i — N
6~ Bt + 5 (1 - 0Ll - nl))G(%).
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Define now the terms I, IT, III, IV and V respectively by inserting (11.63), (11.64), (11.65),
(11.66) and (11.67) into (*) below

(11.68) —ibeq // () (amn €) CaPE — LaPE) (1 — &) Gamn (—) () — 7(£)) dn d.

We note that the terms I and II here can be handled in a similar way as the terms II and
III in Step 4(b) of the proof of Proposition 11.5. Also, the term III here can be handled in
a similar way as the term IV in Step 4(b) of the proof of Proposition 11.5. In particular, we
have

(11.69) 1| + |II] + [IIT] = o(13).

Inverting the Fourier transform, using Holder’s inequality, Lemma 5.2.4, and applying the
estimates in Propositions 8.4 and 8.5, we obtain

VIS (”ai (Cax(Yn — WO))IIMIW(%V)ak(éM(% - Iﬂo))llu)

5 v/
(11.70) < (1 - Of |V|>)®(#)a,- (GalBn — o)1
8
3.0 3¢9 1,320 1
Skt At AT =0T =03,
Inverting the Fourier transform, using Holder’s inequality, Lemma 5.2.4, and applying the
estimates in Propositions 8.4, 8.5 and 8.6, we obtain

~ 1=
V1S (195G = VoDl 9B G = s

~ 1
Bt = VO LTV G = )

(11.71) i o
< (1 —O(8 |V|))®(||V|l§| Ve (B — Bo)llL2

S At AR E LA,A,7 = Akeo = p(A360),

Noticing that the sum ), has 0(1;380) terms (cf. beginning of Section 8.2), it follows
from (11.60), (11.61), (11.63), (11.64), (11.65), (11.66), (11.67), (11.68), (11.69), (11.70) and
(11.71) that

beae?c 3, — BL 3 (W OV, — B 8,0k (Waie))] d
;T%a42+1( t_:Bc,a e)(Wdlﬁ)n(/gdlﬁ)n,3[m(? )((9r — c,o m) k(l//dlﬁ")n)] X

. 1
# Db [, WPan (B sl )G o)
1
= (= V)[(Baim)y 3 (05 Waim)))]} dx = 0.
Combining this with the discussions in Step 1, this concludes the proof. O

We summarize below what we have obtained in this subsection. As in Proposition 11.6, we
note that the computation for the commutator applies equally well to the term involving w,.
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ProrosiTION 11.13. — We have

/1;2“ (eo)r;\g:(‘ﬁn) {31‘ [eZynﬂ;'lA(W)] — Ad; [ezynﬁ;(w)]} dx

ij 9j (XV¥n)

= [ Gl N, AN ax
(e0)o(x¥n) o @i (eo)o()(l//n)
a(m)

(€0)o(x¥n)

)] = A3 By (=12

)1} d

[ G Nofteono, A ax o,

A similar statement holds after replacing Y, ~~ wn, Yo ~> wo and dx ~ %e“"”"dx.

11.4. Taking limits using the microlocal defect measures

Let us summarize what we have obtained so far. The following is an immediate conse-
quence of Propositions 11.1, 11.6 and 11.13:

ProrosiTION 11.14. — We have

(e0)n(x¥n)
/Rz+1 T(Dgn,A(Xlﬂn)

\/TA(‘/ det guClg, (x¥))) dVol,

3 3 (X n

= [ B Gls N i, AL
R2+1

_/ (€0)o(XV¥n)
R2+1

S A(v/=det goTgy (x¥)) ) dVolg,
0

1
O n) — ——
( g0.A(X¥n) ~det 2o

. 9. ,
- /1;<2+1 [0: (x¥rm)18” NO{[(é’o)o, A](%;/f))} dx — 0.

A similar statement holds after replacing ¥ ~~ w and dx ~~ %8_4‘”0 dx.

In other words, we have reduced the computation of the limit of the first two lines to that
of the limit of the last two lines. To proceed, we use Corollary 6.4 to compute the limit of the
last two lines on the LHS as n — +oc. This will be achieved in the next two propositions.

ProrosITION 11.15. — We have

[ [0 (Xlﬁn)](sijNo{[(@o)o» A]
R2+1

(YY) N )}dx

. 0;
- / [0; (x¥0)]8Y NO{[(eO)O’ A](M)} dx
R2+1 Ny
. .. =2v0 Jy¥
81 £ (0pea — PED 81 £:8; (0,88 & D 0 | —
+/S*Rz+1 [ i (0xra = Podyna) + 876165 (9o)ék g“a] No [§]?
A similar statement holds after changing W ~~ @ and dv¥ ~ e=4¥0 dv®.

Proof. — By Lemma 5.2.2, [(eg)o, 4] is a 0-th order pseudo-differential symbol with prin-
cipal symbol

~i{i (6 — Bo&k).a} = dyra — Bydka + (3.5)Ekdg,a.
The conclusion therefore follows from Corollary 6.4 and that /—detgy = e?*N
(by (2.4)). O
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ProrosITION 11.16. — We have

(e0)o(XV¥n)
[Rz+l —N() (Dgo,A(XWn) - \/Ttofl(\/ —det golg, (Xlﬂn))) dVolg,

1
— /l;erl (30)(;\(7wa) (DgO,A(XwO) - \/TA(V —det gngO (XWQ))) dVOlgO

+ /S - ﬁosk)[(galwsu(axva)—aﬂ(gal)“ﬂsasﬂ(agm] |§|2

xr2+1 No

@B 0,0
o R

A similar statement holds after changing W ~ @ and dv¥ ~ e=*¥0 dvw.

Proof. — Step 1: Computing the limit using Corollary 6.4. — We compare each of the terms
in Og, 4 and Oy, (cf. definitions in Section 9.1).
By Lemma 5.2.2, [—3,¢270, A] (to be understood as
[—0:e270, Al := —0;(e*"° Ah) + Ad;(e*"°h),

similarly below) is a 0-th order pseudo-differential symbol with principal symbol
—i{—i£e®0, a} = —e®"°0 1a + £ (9xue®?0) (3¢, a).

It follows from Corollary 6.4 (and that \/—det go = 2’ N) that

(e0)o(x¥n) o 4, €0)o(XV¥n) 0 (o)o(Xl/fn)
[ O e a(COSTI oo (LI

No
(e0)o(x¥0) o 4, €0)o(xVo) 0 (0)0()(1//0)
= [ O e a ORI Aaz[e” (LT

—2y0

1 k e .
+/S*]R2+l I:_Nig,(ét _ﬂogk)z(axfa)+N73£:z(éz ﬂoék} (8xu€2y )(8;Ma)] |é|2

=:1I

=1
By Lemma 5.2.2, [0; N2, A] is a 0-th order pseudo-differential symbol with principal

symbol
—i{i&;Ng.a} = N30 ia — & (dxu N§)(0g, a).

It follows from Corollary 6.4 that
/ . (€0)o(x¥n) i {8 [NOA(a (XI’//"))]—Aa [Nod); ()(I/fn)]} dac
R2+1

No
(e0)o(x¥0) ¢ij (. ()(1//0)
-~ /Rz+1 No 5’{3,[N0 — & )] — Ad:i[Nod; (Xl//o)]}
~2ro0 _2 .. d W
+/S*R2+1 [e 87 (& - ﬂggk)gj(axia)— N 89 (&, —ﬂgfk)&éj(axuNoz)(agua)] l;)?
=1v

=:11II
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Finally, by Lemma 5.2.2, [0;e270 B}, A] is a 0-th order pseudo-differential symbol with
principal symbol

—i{i&e?" By, a} = ¥ Bi(3,ia) — & (D (€770 By)) (3, @)
= €70 B4(D4ia) — £ ((9xue®0) By + €270 (01 B)) (3, @).
Therefore, by Corollary 6.4,

/ ©0oltVin) g5 1020 gi 40TV 3y 4510290 61 (000 ()]
R2+1 Ny No
S %ﬁm(e")"(” P00)) — e oo vl dn

+/ 2D (6= B 2(0,00) e — B P (D) + €70 (B By B, )] S
o N3t 0S5k xi 3 t — Posk) sill0x 0 xHPo £,d |§‘2

=V =:VI

Step 2: Computing (g5 )" &,(0xva)

- 1 i —2y0 gij
(11.72) (o)™ Eu(dyva) = _m(g, — BRE ) (0gia — Bidia) + 208U £ s a.
0
Therefore,

6~ B8O (6 80, @)
0

: 2y p
—%(st — B8 v — B ) + o 6 BB (0,00) = L4 T+ V.
0 0

Step 3: Computing 3,,(g5")*P £aép (0g,,a)

(11.73)
(g0 NP Eatp (g, a)

_ (—au%)stst 29, ﬁ—‘ps,a t (e rosi P 0’3 Pobo . sj) (9, a)
(@ Mﬂ())

9 N2 3
( mNo e gy 12 0nbo) e, ﬁ’gsws,-+<aue—2m>8”sl-s,-)(agua>

(9 uﬁo)

= (" - s+ 2% e~ g - @ ) G0

Recall that on the support of dv¥, (10.8) holds. Hence, by (11.73) and (10.8), on the support
of dv¥,

L~ Bl (g5 )Ptk (0, )

No
(%ﬂo) e=40(9,,e%70)

No

9 N2 3
( 1o e gy 12 0nP0) ¢ gre e (s,—ﬂﬁ.‘sk)wsisj)<agua>
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e=20(3, N2 i 210(9,,€10)
= (3“)@ — L&V +2 ’“‘ﬁ (& - BoEr) 6 — (i’;‘ (& - Bte) ) (0g, a)
N; Ny
0
= oty ovis o) ﬂ'&Sk)ZEi (0,a)
*270 ..
CH-IV-VI+ %8'1 6ut 60 (0, 0).
0
Combining Steps 1,2 and 3 yields the conclusion. O

11.5. Putting everything together

We summarize what we have obtained so far. Combining Propositions 11.14, 11.15 and

11.16, and noting that the two terms of fs*n2+l MS” &§&; £ du IEIZ cancel, we imme-
diately obtain

ProrosiTION 11.17. — Suppose A = b(x)ﬁi(llV), where the principal symbol a(x,§) =
b(x)m(§) (withm(&) = mi(§) for |E| > 1) is real and supported in T*Q2, m(§) is homogeneous
of order 0, and m and mi are both even. Then

(€0)n(XYn) _ 1
/]RZ+1 —Nn (Dgn,A (Xl/fn) \/Ttn

A(y —det g,0g, (x¥n))) dVolg,

3 (X¥n
[ B N A
1
- +Az+l (%)(;é())(‘/fo)(DgO,A(XI/fo) - —\/TtgoA( — det gog, (x¥0))) dVoly,
9
~ [ G Notlleopo. 412
ij _2”0 dv¥
_/S*]R2+1 SJSiSj(axta '30 dyka) —— No |s|2
dv¥
+/;*R2+1 F(Et ﬂoék)[(gal)ﬂvéu(axua)—au(gal)aﬁgagﬂ(agu )] e

A similar statement holds after replacing ¥ ~ ® and dx ~ 3e~*V0dx.

12. The wave equation terms in Proposition 9.4
and trilinear compensated compactness for three waves

We continue to work under the assumptions of Theorem 4.2 and the reductions in
Sections 4.1 and 8.3. As above, let A be a 0-th order pseudo-differential operator given
by A = b(x)%(llV), where the principal symbol a(x, &) = b(x)m(§) (with m(§) = m(§)
for |£] > 1) is real and supported in T*2, m(§) is homogeneous of order 0, and m and m
are both even.

In this section, we handle the terms trilinear; and trilinear, in (9.14) (and the analo-
gous terms in (9.15)). There are two types of terms coming from two types of contribution
from an and F. First, there are terms which are linear in the wave variables ¥, and @, —
these terms are easier and will be handled in Section 12.1. The remaining terms are nonlinear
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and will be treated in Section 12.3. In order to deal with the nonlinear terms, we will need
a trilinear compensated compactness result for three waves, which will be established in
Section 12.2.

12.1. The linear terms in the wave equation

PROPOSITION 12.1. — The following holds after passing to a subsequence (which we do not
relabel) :

_/Rm M{AW det gn(2g, " (dx. d¥n) + Ynlg, )]} dx

- /Rw AT ot (4. dy) + YD, 1) VO,

Ny
- %/ 4“%{&%(2@;1)“”8 x0pn + onLg, 1)1} dx
]R2+1
1 n n N
-3 /th e“‘"’u(%ngn H(dy. den) + nUg, 7) dVolg,
> f %{A[\/— det g0(2g5 " (dx, do) + YoTge )]} dx
- / A(%ﬂ)(z&;l(dl, dye) + Yolg, 2) dVolg,
R2+1 0
=g L et ) g Getga(agy (. o) + onDy 0l
R2+1 No
1

-4 /R N e*“WOA(%)(zggl(dx, dwo) + wollgy ) dVolg,.

Proof. — We will only indicate how to obtain the limit of the terms on the first line; all the
other terms can be treated similarly.

Step 1. First term on first line. — Since a (the symbol of A) and dg x have disjoint support,
by Lemma 5.2, Adgy : L? — leoc is compact. Therefore, using (4.2) and (4.3), we see that
after passing to a subsequence (not relabeled)

14Lgy ' (dx. dym) v/~ det ga] — Algg ' (dy. dVro) v — det go]ll2(ar) — O-

On the other hand, by (4.2) and (4.3), we know that (60)’}\;”; V) (60)‘}\% Y0) weakly in L2.
Therefore,

_/ (80)';\5)(% Aly/—=det g,g; (dy. dy,)] dx
R2+1

o (eo)o(XlﬁO)A[\/TgO o (dy. dyo)] dux.

R2+1

Step 2: Second term on first line. — By (4.2) and (4.3), \/—det g,¥,Ug, x — +/—det go¥olle, x
in the L2 norm. The fact that 4 is a 0-th order operator then implies that

Aly _detganDan] — Aly _dethWODgoX]
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in the L2 norm. Using also that (60)’1’\5’)1“/’”) — (20)‘1’\;(’)“/’0) weakly in L? (by (4.2) and (4.3)), it
thus follows that

[ ) g,y [ g
ot : R2+1 0

The other terms can be treated similarly; we omit the details. O

12.2. A general trilinear compensated compactness result

PROPOSITION 12.2. — Let {¢,§1)}:§‘i, {¢,§2)}:'=°‘i and {45,53)}::“; be three sequences of

smooth functions with ¢,$i) o R*T1 — R Assume that for any (spacetime) compact
set K C R**1,

L. max; sup, (13¢5 3 x) + Dgotn lL3a)) < 00,
2. max; ||¢,Si)||L3(K) —0asn — +o0.
Then for any smooth vector field X,
(X¢3)go " (A dg?) — 0
in the sense of distributions.

Proof. — We write

- 1 1 1
g0 (A, dg;?) = S0 @ 8:”) = 5 o)1 = 5837 O ) -

=1 =11 =111

By assumptions of the proposition and Hoélder’s inequality, IT and III both converge to 0

in the L3 norm asn — +oo. Together with the assumed uniform L3-boundedness of X qb,(,l),

Holder’s inequality implies that X ¢,§” (IT + IIT) in fact converges to 0 in the L' norm on any
compact set.

It therefore remains to check the contribution from the term I. Let ¢ € C2®(R**!) be a
smooth function with support K. We then compute

/RH, F(Xy) g, (¢57 1Y) dVolg,

= [ IO + DX D) + 9O XIP)
+2(251) (0a9) (0 X)) P p> dVolg,
=T, + I + I + 4.

To control I, we note that ¢ is smooth and thus Og, ¢ is pointwise bounded on K. Thus
using Hoélder’s inequality and the bounds in the assumptions of the proposition, we obtain

Tl S I1XP N L3 1082 L3 i 108 L3 k) — O

For Iy, we integrate by parts to obtain

o = [ FOON O 008 = 0 Oyt X008

- / 9 (D0 ™)@ (X&) + 9 (divgy X ) (Cgo )P ] dVol
K
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Since go, X and ¢ are smooth, by Holder’s inequality and the bounds in the assumptions of
the proposition, we obtain

Tl < 1060 130y U2 L3 ) 1682 1 L3
+ 1 X6P 3o 1o L3 k) + 1621130 1 X682 13 (k)

— 0.

Note that [(g,, X] is a smooth second order differential operator that can be written as a
finite sum }°; ¥; Z; for some smooth vector fields ¥; and Z;. Therefore we can treat I and
I4 simultaneously by bounding a term of the form

/K c(YZg )@ dVolg,

for some smooth function ¢ and smooth vector fields ¥ and Z. We integrate by parts and
then use Holder’s inequality and the smoothness of ¢ and Y to show that

SHZP Lo 82 3o 168 | L3

+ Y8230 18230k + 102 L3y 1Y 113) — .

‘ /K s(YZp{D)p{P ¢ dVolg,

This shows that I, I4 — 0 and finishes the proof. O]

We next compute the limits in a similar setting but instead with ¢,(,i) converging to a

potentially non-zero ¢(()i).

PROPOSITION 12.3. — Let {¢,(,1)}+°° {¢,§2’};:°<; and {¢,(13)};f;x; be three sequences of

n=1’
smooth functions. Assume that there exist smooth qb(()’) : R?T1 — R so that for every compact
subset K C R**1,

1. max; sup, (135 — o) L3 ) + 1060 @S — ¢S L3 k) < +00.

2. max; ||¢r(tl) - ¢(()i)||L3(K) — 0asn — +oo.
Let ¥ € CCOO(RZ'H). Then
[ 2005 @02, a9l avol,
R2+1
- / (X gy (g, dpP) dVolg,
R2+1
- /R G Mgy (dp2, dgsY) dVolg,

o /;ml D(Xg5")g5 " (dgg”. deg”) dVol.
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Proof. — Using Proposition 12.2 (with ¢\ — ¢ in place of ¢\) and then expanding the
terms,

0= Az+l l?(X(qj'(ll) _¢(()1)))g(;l(d(¢,(,2) (2)) d(¢(3) _¢(()3))) dVO]gO
= Az+1 19(X¢r(ll))gal(d¢’52)7d¢,(l3)) dVOlgO _ /RZ ﬂ(qu(()l))gal(dd)(z) d¢(()3)) dVOlgO
+ /RZ 19(X¢,(ll))gal(d¢(2) d¢(()3)) dVOlgO —+ /Rz+l ﬁ(qu(gl))gal(dgbr(LZ)’dgb(()?’)) dVOlgO
=1 =1
+/Rz+ (Xp5)go  (dgS?. d¢,r(13))dvolgo_/]R2+ (XM ga ! (dp@. dp) dVolg,

=:11II =1V

— f (X gy (da . dpf>) dVolg, — / F(X$\D) gy [dp . dps”) dVolg,.
R2+1 R2+1

Note that each of I, I and III has at most one factor depending on 7. Since our assump-
tions easily imply that g\ converges weakly to d¢S in L3 (for each i), we have

I+11+ 11— 3 / 9 (XS g5 (dep$?, dpP) dVolg,.
R2+1

Next, we apply Lemma 7.1 with po = 3. Noting that since L*(K) C L?(K) and
L*(K) C L2(K) (for any compact set K), by Lemma 7.1, g5 1(d¢(2) dq&,(f)) converges
to g, 1(d¢(2) ¢>(3)) in the sense of distributions. Hence,

V- — / 9 (XpS) g5 (dp?. dg$?) dVol,.
Finally, rearranging yields the conclusion. O

12.3. Computation of the remaining terms using trilinear compensated compactness

We now look at the contributions in F,Y and F? which are nonlinear in the derivatives
of ¥, and w,. There are four relevant terms. For these terms, we need the trilinear compen-
sated compactness in Section 12.2.

PRrROPOSITION 12.4. — The following holds after passing to a subsequence (which we do not
relabel):

1 n n —_ —
- [ A((eO) (XW ))Xe 41ﬁngn l(d(,()n, da)n) dVOlgn
R2+1

2 Nn
_/ e_‘“poA(M)X » | (dop, dy,) dVolg,
R2+1 Nn
1 n n - =
+ _/ Colmlt¥n) 41 /= Get gy ge=*¥ g7 (deon, deoy)] dx
2 Jr2+1 Nn

B /2+1 e74%(€0)’;\IMA[ V —detgn)(g;l(dwn’ dy,)] dx
R

n

— corresponding terms on the RHS of (9.10) and (9.11)
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dv®
&2

Proof. — We will compute the limit of each term. Since the computation is largely similar,
we will give the details for the first term (Step 1) and only give the results for the remaining
terms (Step 2).

4y (8o D (05 ¥0)
_ 4y 00 J AP YOS _ pk
2 /S o e A (¢: — Boéi)Eaa

Step 1: Detailed computation for the first term. — Notice that on the support ofa, y = 1. In
particular, by Lemma 5.2, A(1— x)(1 + x) and (1 — y)(1 + y)A are both pseudo-differential
operators of order —1 and hence compact on L2. We write 1 = (1 — x)(1 + x) + x? and
compute each contribution.

1 (€)n(XVn)\ 4y, —
2 /Rz+1A(#)Xe 4wngn1(dwnvdwn)d\/01gn

—l (€0)n(x¥n) _ —ay, —1
_ z/Rw ACEEEE (1= 1)1+ )% g5 (Ao day) Vo,

(12.1)
=1

1 (e)n(X¥n)\ 3 _ay, -
+ E /Rz+1 A(#))ﬁe v 8n l(dwn»dwn) dVOlgn .

=:1I
To handle I, we use the following two facts:

— (=0 + X)A(%) converges in the L2 norm to (1 — y)(1 + X)A(%)
after passing to a subsequence (by Lemmas 5.2.1 and 5.2.5).

— By the pointwise convergence in (4.2), the bound in (4.3) and Lemma 7.1,
xe *Vng 1 (dwy,, dwy,) converges to ye *¥ogy1(dwy, dwy) in the sense of distribu-
tions. Using (4.2) and (4.3) again then implies that the said convergence holds weakly
in L2

Then, we obtain that, up to a subsequence (which we do not relabel),

(12.2) I— %/RHI A(%)(l — 01+ ) xe *¥0 gy (dwg, dwg) dVolg,.

For II, we further compute

(12.3)
_l (€0)n (X ¥n) —4y, —1
= 2 /IRZ+] A( N, )Xe 8n (d(X(l)n),d()(a)n)) dVOlgn
=114
+ % / AN ) =01, 0 (4 d(xon)) + 75" (A dam)] dVol,
R2+1 N,

=:1Ip
First, using the fact that g, and v, converge in C° to their limits (see (4.2)), II, has the
same limit as
4 (e0)o(XV¥n)

/ 1 — —
(12.4) I, := 3 /R . (T))(e o g (d(ywn), d(ywn)) dVolg,.
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We now apply the result on trilinear compensated compactness (Proposition 12.3).

(12.5)

1 A . _ B
I, =3 fﬂw W%e 0 g0 (d(xwn), d(x@n)) dVolg,
=:H/a,l
! n AU - ar
-3 [R 2+1[A((€0)(;\([i(1/f ) (eo)o(N(()Xl/’ D e 405 @(zem). d(zan)) dVols.

=1} ,

Note that by Lemmas 5.2.2 and 5.2.4, A, [0y, A] are both bounded : L3 — L3 and [[,,, 4]
isbounded : W13 — L3. Therefore, ¢\ = A(x¥m), ¢52 = ¢t = yw, satisfy the estimates
of Proposition 12.3. Hence, by Proposition 12.3, Corollary 6.4 and the fact that y = 1 on
the support of a,

1, 5 [ IO ot o). o) aVol,
(12.6) 2 0

—4Yrg (gO 1) (aﬁwo) Crossy * k Cross\ *
+ / . e — N —dad ((do )at - /30 (do )Clk)
FOr Ila’z, we note the 10110Wing:

— By Lemma 5.2, [A4, NLO] :L? — L% and [A, (eo)o] : H' — L} are compact so that

(after passing to a subsequence) [A( (60)%(’)( ¥u)y_ (eodo (1/\1,(())( Vn

D converges in the L2 norm

A
to [A((eo)%giﬂo)) _ (eO)O(NéXWO))]'

— By Lemma 7.1, (4.2) and (4.3), g5'(d(xwn).d(y®,)) converges weakly in L? to
o' (d(xwo), d(xwo)).

It follows that
(12.7)
i, - o [ padetdoly (€oElol), —avo it @), diro) dVols,.
R2+1 0 0

We now return to the term Il in (12.3). Notice now that dy and a have disjoint support.
Therefore by Lemmas 5.2.1 and 5.2.5, yA : L? — L? is compact. As a result, using also
(4.2) and (4.3), we obtain

(12.8)
1, - + A((é’o)o()(l/fo)

2 oo N Yxe Vowolgy ! (dx, d(xwo)) + xgo ' (dx. dwp)] dVolg,.

Combining (12.3)—(12.8), we obtain

1
) / 400UV 3490 41 (4, devg) d Vol
(12.9) 2 Jr2+1 No

— (g—l)aﬂ (8 a)O) rOSS * TOSS \ *
+ /;;*R2+1 ¢ 411/0%61 ((do—c )at a ﬂg (do—c )ak)
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Combining (12.1), (12.2) and (12.9), we obtain

1 (€0)n(XxVn)
2 /Ilgz+1 A

3 N Yy 4Vm o Y(dw,, dwy,) dVolg,
n

1
(12.10) N / 4({€0V0) ) =40 41 (dary, devg) Vol
2 Jr2+1 No

— (g_l)aﬂ (8 a)O) Crossy * Crossy *
+ /S o € TR (A0 — B 40O

Step 2. Computing the second to fourth terms. — Arguing as in the derivation of (12.10) in
Step 1, we obtain

- / o400 (IO 0 =1 Gy, ) dVOL,
R2+] Nn

4 0]
- — - 6_4'/’°A(%)xgol(dwo,d%) dVol,,
12.11 ) .
( : —[ e**ﬂOM(g ,3 Ek)é
S*R2+1 No 0 ad |%_|2
—1\aB 9
- —4¥o M cross cross
[S’*R2+l ¢ No a (dog?™ — By dog’™).

Similarly, we also obtain

1 n n - =
L) e o don s
R2+1

2 Ny
1
(12.12) — 3 /2+1 (eO)(;VMA[ —detgo)(e_‘wogal(da)o,da)o)] dx
R 0
—1\ap 9
+/ e—4lﬁ0 (gO ) (“a)O) (d cross ﬁOdO_CI'OSS)
S*R2+1 No
and
_ e )
S Y Nar e Pl O
_ e )
o [ ) A et gy o o) dx
12.13
o - o~av0 BTV (o g e g I
S*R2+1 No 0 Ié &P
—1\aB
—4y (g() ) (aaa)o) crossy * k Crossy *
_/S*R2+l e~ #vo R0 S BT (o) — B (do ™)),
Step 3: Putting everything together. — Adding (12.10), (12.11), (12.12) and (12.13), and
noticing a cancellation using Proposition 6.2, we finish the proof. O

12.4. Putting everything together

We now combine the results in Section 11 and this section. More precisely, subtracting
the expression in Proposition 12.4 from the sum of the expressions for ¥ and w in Proposi-
tion 11.17, we obtain the following:
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ProPOSITION 12.5. — Let dv be defined as in (7.8). Suppose A = b(x)?n'(%V), where the
principal symbol a(x,€) = b(x)m(§) (with m(§) = m(§) for |&| > 1) is real and supported
in T*Q2, m(§) is homogeneous of order 0, and m and m are both even. Then, after passing to a
subsequence (which we do not relabel),

(RHS of (9.14)) + (RHS of (9.15))

3 9 (U
[ Gl M e, A HEE
R2+1 f

9j (xwn
- i/ e MV01d; (xwn)18 Nail(eo)n, A) (= (Xw ))}
R2+1

— (RHS of (9.10)) + (RHS of (9.11))

0;
= [ B Cv0l8 Mo Tieoho AL

- i / =03, (30)157 No{[(eo)o. A](—’ (20 )1 4.
R2+1 No
1

iy e 2v0 dy
— e &, : i
[ B = a0 2
1 . .
+3 /S . F(St B e85V 0 (00 a) — 3,85 Euti (Dg, )] o &
—41#0M _ Bk dv_w
+2/S*R2+1 ¢ No (Et ﬁosk)éaa |§|2 s

where X = NLO(E)t — ,868,-).

13. Transport equation for the microlocal defect measure
and conclusion of the proof of Theorem 4.2

Our goal in this section is to combine Propositions 10.4, 10.5 and 12.5 to prove that the
measure dv indeed satisfies a transport equation as in (2.23). This will allow us to conclude
the proof of Theorem 4.2.

ProrosITION 13.1. — Let dv be defined as in (7.8).

Suppose a : T*R*T1 — R is a smooth function which is homogeneous of order 0 in & and is
supported in T*QQ. Then

(& — BoEr)a

dv
o) 25 =0,

1§12

Proof. — By Proposition 8.8, it suffices to consider the case where a(x, ) = b(x)m(§),
where m is homogeneous of order 0 and evenn. We make this assumption for the remainder of
the proof (so that we can apply results in earlier sections).

Note that RHS of (9.12) = RHS of (9.14), RHS of (9.13) = RHS of (9.15),
RHS of (9.5) = RHS of (9.10) and RHS of (9.6) = RHS of (9.11) (because the LHSs

_ Rk
(&IVM) — (8M(gal)aﬁ)§agﬂ BSM(
0

/ (255 Ead s (
S*R2+1
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all agree). Therefore, combining Propositions 10.4, 10.5 and 12.5, we obtain

dv
0= ‘/S* . (& 1)“ﬂ(aﬁxy)sasy—3Xﬂ8u<gal>“ Suby)a T

HE
1 ij e2v0 gy
+ E/S*RHI[_S TE (& — ﬁOSk)ax,a] A |§|2
(13.1) : ) .
+ 2 /S*]R2+1 69§18 (xra — ﬂO xka) No |£_-|2
1 L »
- /S - F(st BEE (g5 ) EaBea) — By (g5 )P Eats (3e, )] |s|2’

where X = NL(E), — ﬂ(’)a-) as before.

(Note that the two terms of2fs*R2+1 No (g0 1yeB (9, Yo)ép (& — /30 £r)a i 2 cancel. )

Since N—g(ét — BEE)? = e72708U ;£ on the support of dv (by Proposition 6.6),

(13.2)

1 e
EA*RHI[_S]EZ(& ﬁofk)(')x,a]

2)’0 dv

No |§|2
e2v0 dy
No [E]?
e~ dy
No Iél2
1

1

5 [ 385 Oa = Bda)

1 i
ZE/S*RHI[_‘W&(& :Bogk)axf al ——
+ l/ (& _ﬂi§~)2(8 ta— /3 kA)—5

gegatr oL DOS o

2 Ny IEI2
—l _ pk  —2y0%ijeq . (Et—ﬁo&-) _ 1 dv
N 2[9*R2+1(§t Potillme 08760, a + =15 NO2 (O '30 x )]N |§|2
By (11.72), it then follows that
_ _l —1\aB 1 dv
(133) 132)= =3 [ 6= A0 ) taltp) e

Plugging (13.3) into (13.1), we then obtain
(13.4)

0,8 ,
0=- / (—(ga hes Lﬂoéjéa + (& — By (g™ (0p 7)505 - ((eo)o(go I)W)Saéy)a)
S*R2+]

&1
_/S*RH‘ F(Et ﬁogk)[(gal)aﬂga(axﬁa) - —Bu(gal)rxﬂ%ﬂagﬂ(agu )] |€|2
_ —1\ap (& — Bska, 1 “1\08 (6 — BE&r)a
= /S*RHI[(gO )P alon (T =) z(au(go ) )gagﬁagu(—No )] |$|2
as desired. 0

ProrosSITION 13.2. — Let dv be defined as in (7.8).
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Suppose @ : T*R?>T1 — R is a smooth function which is homogeneous of order 1 in & and is
supported in T*Q2. Then

~ —_ d
/ (285 £ad 6T — (025" ) 6abp 5, @) 5 = .
S*R2+1 |€:|

Proof. — Suppose @ is homogeneous of order +1 in & with support in $*€. Since dv is

supported on {(x, &) : g5 ' (£,6) = 0}, & — ﬂ’gék # 0 on the support of dv. It follows that we

E—BlE)a _ ~.
No

can define a to be homogeneous of order 0 in & supported in $*Q so that =4din

a neighborhood of the support of dv. Applying Proposition 13.1 to this a then yields

_ ~ _ dv
[ TP 00T — @526,
S*R2+1 €]
which is what we want to prove. O

Proof of Theorem 4.2. — In view of Theorem 4.1 and Proposition 4.4, it suffices to prove
that under the additional assumption of Theorem 4.2, the transport equation (2.23) holds
in Q. This is exactly provided by Proposition 13.2. O
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