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TRILINEAR COMPENSATED COMPACTNESS
AND BURNETT’S CONJECTURE

IN GENERAL RELATIVITY

by Cécile HUNEAU and Jonathan LUK

Abstract. – Consider a sequence of C 4 Lorentzian metrics fhngC1
nD1 on a manifold M satisfying

the Einstein vacuum equation Ric.hn/ D 0. Suppose there exists a smooth Lorentzian metric h0 onM
such that hn ! h0 uniformly on compact sets. Assume also that on any compact set K � M, there is
a decreasing sequence of positive numbers �n ! 0 such that

k@˛.hn � h0/kL1.K/ ≲ �
1�j˛j
n ; j˛j � 4:

It is well-known that h0, which represents a “high-frequency limit,” is not necessarily a solution to the
Einstein vacuum equation. Nevertheless, Burnett conjectured that h0 must be isometric to a solution
to the Einstein-massless Vlasov system.

In this paper, we prove Burnett’s conjecture assuming that fhngC1
nD1 and h0 in addition admit a

U.1/ symmetry and obey an elliptic gauge condition. The proof uses microlocal defect measures—
we identify an appropriately defined microlocal defect measure to be the Vlasov measure of the limit
spacetime. In order to show that this measure indeed obeys the Vlasov equation, we need some special
cancellations which rely on the precise structure of the Einstein equations. These cancellations are
related to a new “trilinear compensated compactness” phenomenon for solutions to (semilinear) elliptic
and (quasilinear) hyperbolic equations.

Résumé. – Dans cet article, nous considérons une suite de métriques lorentziennes fhng
C1
nD1, de

classe C 4, satisfaisant les équations d’Einstein dans le vide Ric.hn/ D 0. Nous supposons qu’il existe
une métrique lorentzienne h0 surM, de classeC1, telle que hn ! h0 uniformément sur tout compact.
Nous supposons aussi que sur tout compactK � M il existe une suite de nombres strictement positifs
�n ! 0 tels que

k@˛.hn � h0/kL1.K/ ≲ �
1�j˛j
n ; j˛j � 4:

Il est bien connu que h0, qui représente une « limite haute-fréquence », n’est pas forcément solution
des équations d’Einstein dans le vide. Cependant, il a été conjecturé par Burnett que h0 devait être
isométrique à une solution des équations d’Einstein couplées à un champ de Vlasov sans masse. Dans
cet article, nous prouvons la conjecture de Burnett en supposant que fhng

C1
nD1 et h0 admettent en

plus une symétrie U.1/ et satisfont une condition de jauge elliptique. La preuve utilise les mesures de
défaut microlocales – on identifie une mesure de défaut microlocale définie de manière ad hoc comme
étant la mesure de Vlasov dans l’espace-temps limite. Afin de montrer que cette mesure satisfait bien
les équations de Vlasov, nous avons besoin d’annulations particulières qui reposent sur la structure
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386 C. HUNEAU AND J. LUK

précise des équations d’Einstein. Ces annulations sont liées à un nouveau phénomène de « compacité
par compensation trilinéaire » pour des solutions d’un système couplant des équations elliptiques semi-
linéaires à des équations hyperboliques quasilinéaires.

1. Introduction

It has been known in the context of classical general relativity that “backreaction of high
frequency gravitational waves mimics effective matter fields” (see for instance [2, 3, 8, 9, 12,
13]). One way to describe this phenomenon mathematically (due to Burnett [2]) is to consider
a sequence of (sufficiently regular) Lorentzian metrics fhng

C1
nD1 on a smooth manifold M

satisfying the Einstein vacuum equations

(1.1) Ric.hn/ D 0

such that (in some coordinate system) the metric components admit some limit h0 where
hn ! h0 uniformly on compact sets and @hn ! @h0 weakly. Assume moreover that for any
compact set K, there is some sequence of positive numbers �n ! 0 such that the following
holds on K:

(1.2) jhn � h0j ≲ �n; j@hnj ≲ 1; j@khnj ≲ �
�kC1
n for k D 2; 3; 4:

Due to the nonlinearity of the Einstein equations, the limit h0 does not necessarily
satisfy (1.1). Instead, in general it is possible for h0 to satisfy

Ric.h0/ �
1

2
h0R.h0/ D T

(where R is the scalar curvature) for some non-trivial stress-energy-momentum tensor T .
This tensor T that arises in the limit can be interpreted as an effective matter field.

A question arises as to what type of effective matter field can arise in such a limiting
process. In this direction, Burnett made the following conjecture (1):

Conjecture 1.1 (Burnett [2]). – Given .M; hn/ and .M; h0/ above, the limit h0 is
isometric to a solution to the Einstein-massless Vlasov system, i.e., the effective stress-energy-
momentum tensor corresponds to that of massless Vlasov matter.

We refer the reader to Sections 2.3–2.6 below for definitions concerning the Einstein-
massless Vlasov system. We remark that in Conjecture 1.1, “Einstein-massless Vlasov
system” has to be appropriately formulated to include measure-valued Vlasov fields since
there are known examples for which the limits are isometric to solutions to the Einstein–null
dust system. For further background on the Einstein–Vlasov system, see for instance [1, 15].

Conjecture 1.1 can be interpreted as stating that the effective matter field must be propa-
gating with the speed of light and that the matter propagating in different directions do not
directly interact, but only interact through their effect on the geometry; see [2].

Our main result is a proof of Conjecture 1.1 under two additional assumptions:

(1) We remark that in the original [2], (1.2) is only required to hold up to k D 2. We impose the slightly stronger
assumption that (1.2) holds up to k D 4 in view of the result that we prove in this paper.
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TRILINEAR COMPENSATED COMPACTNESS AND BURNETT’S CONJECTURE 387

1. (U.1/ symmetry.) The sequence fhng
C1
nD1 and the limit h0 all admit a U.1/ symmetry

(without necessarily obeying a polarization condition).

2. (Elliptic gauge.) All the metrics can be put in an elliptic gauge and the bounds (1.2)
hold in this gauge.

The following is our main theorem; see Theorem 4.2 for a precise statement.

Theorem 1.2. – Conjecture 1.1 is true under the above two additional assumptions.

Theorem 1.2 implies a fortiori that the effective stress-energy-momentum tensor is trace-
less, obeys the dominant energy condition (i.e., for every future-directed causal vector X ,
the vector �T ��X

� is also future-directed and causal), and is non-negative in the sense
that T .X;X/ � 0 pointwise for every vector field X (not necessarily causal). In fact, we
show that these statements continue to hold even if we relax the convergence assumption to
be significantly weaker than (1.2). We give an informal statement here but refer the reader
to Theorem 4.1 for a precise statement.

Theorem 1.3. – Assume that hn, h0 all admit a U.1/ symmetry and are put in an elliptic
gauge. Suppose (1.2) is replaced by the conditions that hn ! h0 uniformly on compact sets and
@hn * @h0 weakly in Lp0loc for some p0 > 8

3
.

Then the effective stress-energy-momentum tensor is traceless, obeys the dominant energy
condition, and is non-negative.

Theorem 1.3 can be compared with the following theorem of Green–Wald [8], which to
our knowledge is so far the best result towards Conjecture 1.1:

Theorem 1.4 (Green–Wald [8]). – Assume fhng
C1
nD1 and h0 are such that (1.1) and (1.2)

hold. Then the effective stress-energy-momentum tensor is traceless and obeys the weak energy
condition (i.e., T .X;X/ � 0 pointwise for every timelike X).

Note that while its conclusion is weaker than Theorem 1.3, Theorem 1.4 is a general result
which does not require U.1/ symmetry.

While our results are gauge-dependent, it should be mentioned that a large class of
non-trivial examples have been constructed under our gauge conditions. In our previous
paper [10], we have constructed sequences of solutions of Einstein vacuum equation with
polarized U.1/ symmetry, which can be put in an elliptic gauge, such that (1.2) are satis-
fied and the limit is a solution to Einstein equations coupled to N null dusts. See further
discussions in Section 1.2.1.

We now briefly discuss the proof; for more details see Section 1.1. Under the U.1/
symmetry assumptions, the .3 C 1/-dimensional Einstein vacuum equations reduce to the
.2C 1/-dimensional Einstein–wave map system. The rough strategy is the following:

— The first step of the proof is to show that only the two scalar fields corresponding to the
wave map part of the system are responsible for the failure of the limit to be vacuum.
This can already be viewed as a form of compensated compactness.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



388 C. HUNEAU AND J. LUK

— To capture and describe the defect of convergence given by the scalar fields, we rely on
microlocal defect measures (introduced by Tartar [17] and Gérard [7]). It is well-known
that microlocal defect measures arising from linear wave equations satisfy a massless
Vlasov equation (2) [5, 6, 17].

— We show that in our setting, despite the quasilinear nature of the problem, the
microlocal defect measure corresponding to the wave map part of the system still
satisfies the massless Vlasov equation.

The most difficult part of the argument is to justify the massless Vlasov equation for the
microlocal defect measure. That this holds relies on some remarkable structures and cancel-
lations of the system, which are related to what we call a trilinear compensated compactness
phenomenon.

The remainder of the introduction will be organized as follows: In Section 1.1, we explain
the ideas of the proof. In Section 1.2, we discuss some related problems. In Section 1.3, we
outline the remainder of the paper.

1.1. Ideas of the proof

1.1.1. Microlocal defect measures. – The microlocal defect measure (see Section 5 for further
details) is a measure on the cosphere bundle which identifies the “region in phase space” for
which strong convergence fails. One important property of microlocal defect measures, espe-
cially relevant for our problem, is that microlocal defect measures arising from (approximate)
solutions to hyperbolic equations themselves satisfy some transport equations.

Let un be a sequence of functions�! R, where� � Rd is open, which converges weakly
inL2.�/ to a functionu. In general, after passing to a subsequence, junj2�juj2 converges to a
non-zero measure. The failure of the convergence junj2 ! juj2 can arise from concentrations
or oscillations. The microlocal defect measure is a tool which captures both the position and
the frequency of this failure of strong convergence.

For instance, if un D n
d
2 �.n.x� x0// (with � 2 C1

c ) so that junj2 concentrates to a delta
measure, then the corresponding microlocal defect measure is given by ıx0 ˝ �, where ıx0 is
the spatial delta measure and � is a uniform measure on the cotangent space. On the other
hand, suppose un.x/ D �.x/ cos .n.x � !// so that un oscillates in a particular frequency
!. Then the corresponding microlocal defect measure is j�j2dx ˝ ıŒ!�, where ıŒ!� is the
delta measure concentrated at the (equivalent class of the) frequency !. See [17] for further
discussions.

An important fact is that microlocal defect measures arising from solutions to linear wave
equations on .�; g/ satisfy the massless Vlasov equation on .�; g/. Consider the special case
where � D RdC1 and @˛�n a sequence of functions such that @�n * @�0 weakly in L2.
In this case, there exists a non-negative Radon measure d� on S�RdC1 — which is the
microlocal defect measure — so that

(1.3)
Z
RdC1

@˛.�n � �0/.A@ˇ .�n � �0// dx !

Z
S�RdC1

a.x; �/�˛�ˇ

j�j2
d�;

(2) In [5, 6], a transport equation is derived only when the coefficients of the linear wave equation are time-
independent. The case of a general linear wave equation in fact follows in a similar manner, except for more
complicated algebraic manipulations.
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TRILINEAR COMPENSATED COMPACTNESS AND BURNETT’S CONJECTURE 389

If �n are approximate solutions to some wave equation, then d� is a (measure-valued) solu-
tion to the massless Vlasov equation (1.5) and (1.7). More precisely,

1. Suppose

(1.4) □g�n D fn; kfnkL2.�/ ≲ 1:

Then d� is supported on the zero mass shell in the sense that for every f 2 Cc.M/,

(1.5)
Z
S�R2C1

f .x/.g�1/˛ˇ �˛�ˇ
d�
j�j2

D 0:

2. If, instead of (1.4), we also have the stronger assumption

(1.6) □g�n D fn; kfn � f0kL2.�/ ! 0:

Then for any C 1 functionea W T �M ! R which is homogeneous of degree 1 in �,

(1.7)
Z
S�R2C1

..g�1/˛ˇ �ˇ@x˛ea � 1

2
.@�g

�1/˛ˇ �˛�ˇ@��ea/ d�
j�j2

D 0:

1.1.2. Standard (bilinear) compensated compactness. – We now explain how microlocal
defect measures can be applied to the Burnett conjecture. Recall that Einstein equation with
U.1/ symmetry reduced to a 2C 1 dimensional system (see Section 2.1)

(1.8)

8̂̂<̂
:̂
□g C

1
2
e�4 g�1.d!; d!/ D 0;

□g! � 4g�1.d!; d / D 0;

Ric˛ˇ .g/ D 2@˛ @ˇ C
1
2
e�4 @˛!@ˇ!:

Assume that we have a sequence of solutions f. n; !n; gn/gC1
nD1 which satisfy (1.8), with

gn in an elliptic gauge, which moreover attains C 0-limit . 0; !0; g0/ with the following
estimates:

(1.9) k@k. n �  0; !n � !0; gn � g0/kL2\L1.R2/ ≲ �
1�k
n ; k D 0; 1; : : : ; 4:

The first step is to show that

(1.10) □gn n * □g0 0; □gn!n * □g0!0I

(1.11) g�1n .d!n; d!n/ * g�10 .d!0; d!0/; g�1n .d!n; d n/ * g�10 .d!0; d 0/I

(1.12) Ric˛ˇ .gn/ * Ric˛ˇ .g0/:

in the sense of distributions.
That (1.10) holds is due to the divergence structure of the terms. That (1.11) is true is

slightly more subtle but well-known, and is related to the standard compensated compact-
ness: g�10 .d!n; d!n/ and g�10 .d!n; d n/ are null forms, so that when (1.9) holds and □g0!n
and □g0 n are bounded uniformly in L2 \ L1, the convergence (1.11) holds.

Finally, (1.12) holds under our elliptic gauge condition. This is because

— the elliptic gauge gives strong compactness for spatial derivatives of the metric compo-
nents;

— in this gauge the nonlinear structure is such that there are no quadratic products of
time derivatives of the metric components.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



390 C. HUNEAU AND J. LUK

Given (1.10)–(1.12), it follows that to capture how much the limit . 0; !0; g0/ deviates
from solving (1.8), we just need to understand (for every vector field Y 2 C1

c ) the n! C1

limit of
(1.13)Z
M
f2.Y n/.Y n/C

1

2
e�4 n.Y!n/.Y!n/g dVolgn �

Z
M
f2.Y 0/.Y 0/C

1

2
e�4 0.Y!0/.Y!0/g dVolg0 :

The deviation of (1.13) from 0 is in particular captured by the microlocal defect measure.
More precisely, we define the non-negative Radon measure d� (cf. (1.3)) by

lim
n!C1

Z
M
f2.@˛. n �  0//.A@ˇ . n �  0//C

e�4 0

2
.@˛.!n � !0//.A@ˇ .!n � !0//g dVolg0

D

Z
S�M

a.x; �/ �˛�ˇ d�
j�j2

;

(1.14)

after passing to a subsequence (which we do not relabel). Then

(1.15) lim
n!C1

(1.13) D
Z
S�M

hY; �i2
d�
j�j2

:

In particular, the limit . 0; !0; g0/ obeys the following system:
(1.16)8̂̂<̂
:̂
□g0 0 C

1
2
e�4 0g�10 .d!0; d!0/ D 0;

□g0!0 � 4g
�1
0 .d!0; d 0/ D 0;R

M Ric.g0/.Y; Y / dVolg0 D
R
Mf2.Y 0/

2 C
1
2
e�4 0.Y!0/

2g dVolg0 C
R
S�MhY; �i2 d�

j�j2
;

where the final equation in (1.16) is to be understood as holding for every vector fieldY 2 C1
c .

(1.16) is exactly the form of the Einstein-massless Vlasov system, as long as the measure d�
is indeed a measure-valued (weak) solution to the massless Vlasov equation.

The main task of the paper is therefore to justify that in our quasilinear setting, d� still
solves the massless Vlasov equation, i.e., (analogs of) (1.5) and (1.7) still hold. Already in
Section 1.1.1, we saw that (1.5) only requires weaker assumptions (cf. (1.4) and (1.6)) and is
therefore relatively straightforward. However, as we discuss below, it is much harder to obtain
the transport equation (1.7).

1.1.3. Model problem. – As we argued above, the key difficulty is to justify the trans-
port equation for the microlocal defect measure. Observe already that in (1.6), one needs
that fn ! f0 in the L2 norm in order to justify the transport equation. However, in our
setting, we only have weak convergence so that the derivation of the transport equation
must rely on some special compensation. Another issue is that the wave operator□gn is now
dependent on n. It is relatively straightforward to show that if gn tends to its limit g0 in C 1,
then the transport equation remains valid. However, again because of weak convergence, we
need compensation in the relevant terms.

To elucidate some of the difficulties and the techniques to tackle them, consider the
following simplified semilinear model problem with n-dependent metrics:

(1.17)

(
□gn�n D g�1n .d�n; d�n/;

gn D �N 2
n .dt/

2 C .dx1/2 C .dx2/2:
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TRILINEAR COMPENSATED COMPACTNESS AND BURNETT’S CONJECTURE 391

Assume also, for simplicity in this exposition, that �n ! 0 and Nn ! 1 pointwise with the
following bounds:

(1.18) k@k�nkL2\L1.R2C1/ C k@k.Nn � 1/kL2\L1.R2C1/ ≲ �
1�k
n ;

and that the spatial derivatives of Nn (denoted by r) obey stronger estimates:

(1.19) krNnkL2\L1.R2C1/ ≲ �
1
2
n :

(Note that the assumptions that �n ! 0 and Nn ! 1 are slight over-simplifications. On the
other hand, (1.19) is a reasonable assumption in view of the elliptic gauge. See Section 1.1.5.)

Define the microlocal defect measure d� according to (1.3). Our goal will be to show that
for anyea.x; �/ which is homogeneous of order C1 in �,

0 D

Z
S�R2C1

.��t@t C �i@i /ea d�
j�j2

:(1.20)

We derive (1.20) using an energy identity. Let A be a pseudo-differential operator with
principal symbol a D

ea
�t

. A long (but unilluminating from the point of view of this discus-
sion) computation yieldsZ

R2C1
f
@t�n

Nn
Œ@t ; A�

@t�n

Nn
C ıij .Nn@j�n/ŒA; @i �.

@t�n

Nn
/g dx(1.21)

C

Z
R2C1

fıij .Nn@j�n/Œ@t ; A�.
1

Nn
@i�n/C ŒA; @j �.Nn@i�n/ı

ij .
@t�n

Nn
/gdx(1.22)

C

Z
R2C1

f.@i�n/ı
ij .@tNn/A

@j�n

Nn
� .@i�n/ı

ijNnA
.@tNn/.@j�n/

N 2
n

g dx(1.23)

C

Z
R2C1

f.@i�n/ı
ijNnA

.@jNn/.@t�n/

N 2
n

� .@t�n/.@jNn/ı
ijA

.@i�n/

Nn
g dx(1.24)

D

Z
R2C1

f
@t�n

Nn
A.Nng

�1
n .d�n; d�n//C A.

@t�n

Nn
/Nng

�1
n .d�n; d�n/g dx(1.25)

�

Z
R2C1

@t�n

Nn
ıij f.N 2

n � 1/@iA
@j�n

Nn
� @iA..N

2
n � 1/

@j�n

Nn
/g dx:(1.26)

(See Section 9 for details of a similar computation.)

By (1.3), (after passing to a subsequence if necessary and using that �2t D ıij �i�j on the
support of d�) as n! C1, (1.21)C(1.22) ! 2�RHS of (1.20). It therefore suffices to show
that the other lines all tend to 0 as n! C1.

That (1.23) and (1.24) tend to 0 are relatively straightforward: these rely respectively on
the self-adjointness (up to error) of A and (1.19).

However, that (1.25) and (1.26) both tend to 0 is more subtle. This requires trilinear
compensated compactness. We now turn to that.

1.1.4. Trilinear compensated compactness. – There are two types of trilinear compensated
compactness that we use. The first kind relates to term (1.25). We call this trilinear compen-
sated compactness for three waves as it is a trilinear term in the derivatives of �n, and the
compensated compactness relies in particular on good bounds for □gn�n. The second kind
of trilinear compensated compactness relates to the term (1.26). We call this elliptic-wave
trilinear compensated compactness since it relies on both �n satisfying wave estimates andNn
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392 C. HUNEAU AND J. LUK

satisfying good spatial derivative estimate (1.19) (which in the actual problem is obtained via
elliptic estimates for Nn).

Trilinear compensated compactness for three waves. – In fact each term in (1.25) tends to 0.
We discuss only a simpler statement, which captures already the main idea involved. We argue
that for �n satisfying (1.18),

(1.27) .@t�n/g
�1
n .d�n; d�n/ * 0

in the sense of distributions.
To this end, first observe that by (1.17) and (1.18),

(1.28) k□gn�nkL1\L1.R2C1/ ≲ 1:

Then notice that we can write

g�1n .d�n; d�n/ D
1

2
□gn.�

2
n/ � �n.□gn�n/:

It follows that for � 2 C1
c .R2C1/,Z

R2C1
�.@t�n/g

�1
n .d�n; d�n/Nn dx D

1

2

Z
R2C1

�.x/.@t�n/□gn.�
2
n/Nn dx

�

Z
R2C1

�.x/.@t�n/�n□gn.�n/Nn dx:

The second term clearly ! 0 by (1.18) and (1.28). After integrating by parts, the first term
can be written as a term taking the form of the second term plus O.�n/ error, which then
implies (1.27).

Elliptic-wave trilinear compensated compactness. – We now turn to the term (1.26). Using
the estimates in (1.18), it follows that (1.26) has the same limit as

(1.29)
Z
R2C1

@t�nı
ij
f.N 2

n � 1/@iA@j�n � @iAŒ.N
2
n � 1/@j�n�g dx:

If Nn ! 1 in C 1, then (1.29) can be easily handled using the Calderón commutator
estimate (see Lemma 5.2.6), which gives

j(1.29)j ≲ k@t�nkL2.RnC1/kN
2
n � 1kC1.R2C1/k@j�nkL2.R2C1/ ! 0:

The main issue is therefore that while Nn � 1 and r.Nn � 1/ indeed converge uniformly, the
term @tNn only converges to 0 weakly. We therefore need the more precise structure in (1.29)
and argue in Fourier space.

To illustrate the idea, assume that A is simply a Fourier multiplier, i.e., its symbol
a.x; �/ D m.�/ is independent of x. This indeed captures the main difficulty. In this case,
since �n is real-valued, we can assume also that m is even.

Under these assumptions, we can rewrite (1.29) up to terms tending to 0.ˇ̌̌̌
(1.29) �

Z
R2C1

@t�nı
ij
f.N 2

n � 1/A@2ij�n � AŒ.N
2
n � 1/@2ij�n�g dx

ˇ̌̌̌
D

ˇ̌̌̌Z
R2C1

@t�nı
ijAŒ@i .N

2
n � 1/.@j�n/� dx

ˇ̌̌̌
≲ k@t�nkL2.RnC1/kr.N

2
n � 1/kC0.R2C1/k@j�nkL2.R2C1/ ! 0:
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Then we compute (cf. Proposition 11.5)

Z
R2C1

@t�nı
ij
f.N 2

n � 1/A@2ij�n � AŒ.N
2
n � 1/@2ij�n�g dx

D
i

2

Z
R2C1�R2C1

.�t j�i j
2
C �t j�i j

2/ ̂.N 2
n � 1/.� � �/b�n.��/b�n.�/.m.�/ �m.�// d� d�;

(1.30)

where we decomposed � and � into their time and spatial parts: � D .�t ; �i /; � D .�t ; �i /.

Roughly speaking .�t j�i j
2 C �t j�i j

2/ corresponds to three derivatives, and hence
contributes roughly to O.��3n / in size (see (1.18)). This is just enough to show that the
(1.30) is bounded using the estimates (1.18). To deduce that (1.30) in fact tends to 0, observe

— our main enemy is whenN 2
n � 1 has high-frequency in t , i.e., j�t � �t j is large (since we

have better estimates for spatial derivatives of Nn; see (1.19));

— we can gain with factors of �i � �i (corresponding to spatial derivatives of N 2
n � 1) or

�2t � j�i j
2 or �2t � j�i j

2 (corresponding to □g0 acting on �n).

Now the Fourier multiplier in (1.30) can be written as

�t j�i j
2
C �t j�i j

2
D �t .�i C �i /.�i � �i /C j�i j

2.�t C �t /:

The first term contains a factor of .�i��i /which as mentioned above corresponds to a spatial
derivative of Nn and behaves better. For the other term, we rewrite

j�i j
2.�t C�t / D j�i j

2 �
2
t � �

2
t

�t � �t
D j�i j

2 �
2
t � j�i j

2

�t � �t
Cj�i j

2 j�i j
2 � �2t

�t � �t
Cj�i j

2 .�i C �i / � .�i � �i /

�t � �t
:

When �t � �t is large, we can make use of the gain in �2t � j�i j
2, j�i j2 � �2t or .�i � �i / to

conclude that this term behaves better than expected.

1.1.5. Further issues. – We finally discuss a few additional issues that we encounter in the
proof, but are not captured by the simplified model problem above.

1. (Spacetime cutoff) Our solution is a priori only defined in a subset of R2C1, with
estimates that hold only locally. We therefore need to introduce and control appropriate
cutoff functions.

2. (Estimates for metric components) The estimates for the metric coefficients have to be
derived using the elliptic equations that they satisfy.

(a) To show that (1.19) holds for the metric components, we use the fact that the
metric components satisfy (semilinear) elliptic equations due to our gauge condi-
tion.

(b) There is in fact further structure for the estimates for the metric components:
while the spatial derivatives of all metric components obey a better estimate of
the form (1.19), the @t derivative of the metric component of 
 (see (2.4)) also
obeys a better estimate due to the gauge condition. This fact is crucially used.

3. (Non-trivial limit for wave variables) In general �n does not tend to 0, but instead tends
to a non-trivial limit �0 (with estimates k@k.�n � �0/kL2\L1 ≲ �1�kn .)
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(a) The non-triviality of �0 already means that (in addition to an analogue of (1.22)–
(1.26)) we need to derive an energy identity for the limit spacetime and take
difference appropriately.

(b) More seriously, we need an additional ingredient, which is not captured by
our model problem. In general, when the limit �0 is not identically 0, the
corresponding trilinear compensated compactness statement gives (see Propo-
sition 12.3),

.@t�n/g
�1
0 .d�n; d�n/ � 2.@t�n/g�10 .d�n; d�0/ * �.@t�0/g

�1
0 .d�0; d�0/

in the sense of distributions. In other words, in our model problem, if we assume
�n ! �0 6� 0 (but still assuming Nn ! 1), we get

Z
R2C1

@t�n

Nn
A.Nng

�1
n .d�n; d�n// dx

! 2

Z
S�R2C1

a.x; �/.g�10 /˛ˇ �t�˛.@ˇ�0/
d�
j�j2

C

Z
R2C1

@t�0A.g
�1
0 .d�0; d�0// dx

¤

Z
R2C1

@t�0A.g
�1
0 .d�0; d�0// dx;

(1.31)

which does not cancel off the corresponding term in the energy identity for �0.

The actual system, despite its complications, is in fact better in the sense that
all the terms involving the microlocal defect measure as in (1.31) cancel! This
cancellation is related to the Lagrangian structure of the wave map system.

4. (Freezing coefficients) Since the equation for �n is quasilinear, we can not take the
Fourier transform as in the model problems. To overcome this difficulty, we will intro-
duce a partition of our domains into a ball of radius �"0n (with well-chosen "0), and
show that in each of these balls the metric coefficients can be well-approximated (in
terms of �n) by constants so as to carry out our argument. See Sections 8.2 and 11.

Finally, let us emphasize that in all the above discussions we have relied very heavily on
the structure of the terms involved. Indeed it is easy to slightly modify the terms so that the
argument fails.

1.2. Discussions

1.2.1. The reverse Burnett conjecture. – Already in [2], Burnett suggested that a reverse
version of Conjecture 1.1 may also hold, in the sense that any sufficiently regular solution
to the Einstein-massless Vlasov system can be approximated weakly by a sequence of high
frequency vacuum spacetimes in the sense of (1.2).

Like Conjecture 1.1, in full generality the reverse Burnett conjecture remains open. On
the other hand, some results have been achieved in the U.1/-symmetric polarized case in our
previous [10]. More precisely, given a generic small and regular polarized U.1/-symmetric
solution to the Einstein–null dust system with a finite number of families of null dust which
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are angularly separated in an appropriate sense, we proved that it can arise as a weak limit (3)

of solutions to the Einstein vacuum system.

Note that the Einstein–null dust system is indeed a special case of the Einstein-massless
Vlasov system, where at each spacetime point the Vlasov measure is given as a finite sum
of delta measures in the cotangent space; see Section 2.6. In fact, since finite sums of delta
measures form a weak-* dense subset of finite Radon measures, one can even hope that the
results in [10] can be extended to a larger class of solutions to the Einstein-massless Vlasov
system.

1.2.2. Trilinear compensated compactness. – To the best of our knowledge, the phenomenon
of trilinear compensated compactness has previously only been studied in the classical work
[14]. The work considers three sequences of functions f�1;ig

C1

iD1 , f�2;igC1

iD1 and f�3;ig
C1

iD1

on R3, each of which has a weak-L2 limit and moreover Xj�j;i is bounded in L2 uniformly
in i for some smooth vector fieldsX1,X2 andX3. It is proven that under suitable assumptions
of Xj , the product �1;i�2;i�3;i converges in the sense of distributions to the product of the
weak limits.

1.3. Outline of the paper

The remainder of the paper is structured as follows. In Section 2, we begin with an
introduction to various notions important for our setup, including the symmetry and gauge
conditions, and the notion of measure-valued solutions to the Einstein-massless Vlasov
system. In Section 3, we then introduce the notation used for the remainder of the paper.
In Section 4, we give the precise statements of the main results of the paper. In Section 5,
we recall some standard facts about pseudo-differential operators and microlocal defect
measures.

Starting in Section 6, we begin with the proof of the main results. In Section 6, we derive
some simple facts about the microlocal defect measures in our setting. In Section 7, we prove
our first main theorem, Theorem 4.1 (cf. Theorem 1.3).

In the remaining sections, we prove our other main theorem, Theorem 4.2 (cf. Theorem 1.2).
Section 8 gives some preliminary observations. In Section 9, we derive the main energy iden-
tities (cf. (1.22)–(1.26)) which will be used to derive the transport equation of the microlocal
defect measures. In Section 10, we first handle the easier terms in deriving the transport
equation. In the next two sections we handle terms for which we need trilinear compensated
compactness: terms requiring elliptic-wave compensated compactness will be treated in
Section 11; and terms requiring three-waves compensated compactness will be treated in
Section 12. The proof is finally concluded in Section 13.
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(3) Note however that the convergence we obtained was slightly weaker than (1.2); see [10] for precise convergence
rates.
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2. Setup and preliminaries

2.1. U.1/ symmetry

For the remainder of the paper, fix a T > 0 and take as our ambient .3C 1/-dimensional
manifold .4/M D M � R, where M D .0; T / � R2. Introduce coordinates .t; x1; x2/ on M
and .t; x1; x2; x3/ on .4/M in the obvious manner.

Consider a Lorentzian metric .4/g on .4/M with a U.1/ symmetry, i.e., .4/g takes the form

(2.1) .4/g D e�2 g C e2 .dx3 C A˛dx˛/2;

where g is a Lorentzian metric on M,  is a real-valued function on M and A˛ is a real-
valued 1-form on M.

Under these assumptions, it is well known that the Einstein vacuum equations for
..4/M; .4/g/ reduce to the following .2 C 1/-dimensional Einstein–wave map system
for .M; g;  ; !/ (see for instance [4]),

(2.2)

8̂̂<̂
:̂
□g C

1
2
e�4 g�1.d!; d!/ D 0;

□g! � 4g�1.d!; d / D 0;

Ric˛ˇ .g/ D 2@˛ @ˇ C
1
2
e�4 @˛!@ˇ!;

where ! is a real-valued function which relates to A˛ via the relation

(2.3) .dA/˛ˇ D @˛Aˇ � @ˇA˛ D
1

2
e�4 .g�1/�ı�˛ˇ�@ı!;

where �˛ˇ� denotes the volume form corresponding to g.

2.2. Elliptic gauge

We will work in a particular elliptic gauge for the .2 C 1/-dimensional metric g on M
(cf. (2.1)). More precisely, we will assume that g takes the form

(2.4) g D �N 2dt2 C e2
ıij .dx
i
C ˇidt/.dxj C ˇjdt/

such that the following relation is satisfied

(2.5) @t
 � ˇi@i
 �
1

2
@iˇ

i
D 0;

where in (2.4) and (2.5) (and in the remainder of the paper), repeated lower case Latin indices
are summed over i; j D 1; 2.

We remark that the condition (2.5) ensures that the constant-t hypersurfaces have zero
mean curvature and the condition (2.4) ensures that the metric on a constant-t hypersurface
induced by g is conformal to the flat metric.

Given the form of the metric in (2.4), the inverse metric g�1 takes the form

(2.6) g�1 D �
1

N 2
.@t � ˇ

i@i /˝ .@t � ˇ
j @j /C e�2
ıij @i ˝ @j :
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Assuming that a metric g on M obeys (2.4) and (2.5), the metric components N , 
 and
ˇi satisfy the following elliptic equations; see [10, Appendix B]:

ıik@kHij D �
e2


N
Ric0j ;(2.7)

�
 D �
e2


N 2
G00 �

1

2
e�2
 jH j

2;(2.8)

�N D Ne�2
 jH j
2
�
1

2
e2
NRC

e2


N
G00;(2.9)

.Lˇ/ij D 2Ne�2
Hij ;(2.10)

where e0 D @t � ˇ
i@i , Ric˛ˇ is the Ricci tensor, R is the scalar curvature, G˛ˇ D Ric˛ˇ �

1
2
Rg˛ˇ

is the Einstein tensor, and L is the conformal Killing operator given by

(2.11) .Lˇ/ij WD ıj`@iˇ
`
C ıi`@jˇ

`
� ıij @kˇ

k :

Moreover, assuming (2.4) and (2.5), the spatial components of the Ricci tensor are given by
(see [10, Proposition B2])

Ricij Dıij

�
��
 �

1

2N
�N

�
�
1

N
.@t � ˇ

k@k/Hij � 2e
�2
Hi

`Hj`(2.12)

C
1

N

�
@jˇ

kHki C @iˇ
kHkj

�
�
1

N

�
@i@jN �

1

2
ıij�N �

�
ıki @j 
 C ıkj @i
 � ıij ı

`k@`

�
@kN

�
:

In the particular case where the vacuum equations (2.2) are satisfied, (2.7)–(2.9) take the
following form:

ıik@kHij D �
e2


N

�
2.e0 /.@j /C

1

2
e�4 .e0!/.@j!/

�
;

(2.13)

�
 D �.jr j2 C
1

4
e�4 jr!j2/ �

e2


N 2
..e0 /

2
C
1

4
e�4 .e0!/

2/ �
1

2
e�2
 jH j

2;(2.14)

�N D Ne�2
 jH j
2
C
e2


N
.2.e0 /

2
C
1

2
e�4 .e0!/

2/:(2.15)

Combining (2.10) and (2.13), we also obtain the following second order elliptic equation
for ˇj when (2.2) is satisfied

(2.16) �ˇj D ıikıj`@k
�
log.Ne�2
 /

�
.Lˇ/i` � 4ı

ij .e0�/.@i�/:

Moreover, (2.12) takes the following form when (2.2) is satisfied:

2@i @j C
1

2
e�4 @i!@j! D ıij

�
��
 �

1

2N
�N

�
�
1

N
.@t � ˇ

k@k/Hij � 2e
�2
Hi

`Hj`

C
1

N

�
@jˇ

kHki C @iˇ
kHkj

�
�
1

N

�
@i@jN �

1

2
ıij�N �

�
ıki @j 
 C ıkj @i
 � ıij ı

`k@`

�
@kN

�
:

(2.17)
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Finally, given a metric in the gauge (2.4), the wave operator takes the following form:
(2.18)

□gf D
1p

� detg
@˛

�
.g�1/˛ˇ

p
� detg@ˇf

�
D �

e20f

N 2
� e�2
ıij @2ijf C

enN

N 3
e0f C

e�2


N
ıij @iN@jf:

2.3. Measure solutions to the Einstein-massless Vlasov system

Definition 2.1 (Measure solutions to Vlasov equation). – Let .M; g/ be a C 1 Lorentzian
manifold. We say that a non-negative finite Radon measure d� on T �M with

R
T �M j�j2 d� < C1

solves the massless Vlasov equation if the following two conditions both hold:

1. d� is supported on the zero mass shell f.x; �/ 2 T �M W .g�1/˛ˇ �˛�ˇ D 0g.

2. For every function a.x; �/ 2 C1
c .T

�M n f0g/, it holds thatZ
T �Mnf0g

..g�1/˛ˇ �ˇ@x˛a �
1

2
.@�g

�1/˛ˇ �˛�ˇ@��a/ d� D 0:(2.19)

Definition 2.1 is indeed a generalization of the “usual” Vlasov equation, where d� is
absolutely continuous with respect to the natural measure on the zero mass shell. More
precisely,

Proposition 2.2. – Let .x0; x1; : : : ; xn/ be a system of local coordinates on U � M.
Introduce a local coordinate system . Nx0; Nx1; : : : ; Nxn; N�1; : : : ; N�n/ WD .x0; x1; : : : ; xn; �1; : : : ; �n/

on the zero mass shell restricted to U (which is a .2n C 1/-dimensional sub-manifold of
the cotangent bundle). Here, and in the proof, we use the bar in @ Nx˛ , etc. to indicate that
the derivative is to be understood as the coordinate derivative with respect to the coordinate
system on the zero mass shell. On the zero mass shell, �0 will be understood as a function
of .x0; x1; : : : ; xn; �1; : : : ; �n/ defined implicitly by .g�1/˛ˇ �˛�ˇ D 0. (Note that �0 is well-
defined locally.)

Suppose f W f.x; �/ 2 T �U W .g�1/˛ˇ �˛�ˇ D 0; � ¤ 0g ! Œ0;C1/ is a C 1 function
satisfying the equation

(2.20) .g�1/˛ˇ �˛@ Nxˇf �
1

2
@ Nxi .g

�1/˛ˇ �˛�ˇ@ N�i
f D 0:

Then, for d� WD f dx0 dx1 ���dxn d�1 ���d�n
j.g�1/˛0�˛ j

, (2.19) holds for every a 2 C1
c .T

�U n f0g/.

Proof. – For the proof, we fix either �0 > 0 or �0 < 0. (The argument is identical in the
two cases.)

We first compute the transformation

(2.21) @ Nx˛ D @x˛ �
1

2

@x˛ .g
�1/ˇ��ˇ ��

.g�1/0���
@�0 ; @ N�i

D @�i �
.g�1/iˇ �ˇ

.g�1/0���
@�0 ;

where, here, and in the rest of the proof, Greek indices run through 0; 1; : : : ; n and Latin
indices run through 1; : : : ; n.

It follows that

.g�1/˛ˇ �ˇ@x˛ �
1

2
.@�g

�1/˛ˇ �˛�ˇ@�� D .g�1/˛ˇ �˛@ Nxˇ �
1

2
@ Nxi .g

�1/˛ˇ �˛�ˇ@ N�i
:
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Therefore, the LHS of (2.19) in the coordinate system we introduced reads

(2.22)
Z
Rn

Z
U

Œ.g�1/˛ˇ �˛@ Nxˇa �
1

2
@ Nxi .g

�1/˛ˇ �˛�ˇ@ N�i
a� f

dx0 dx1 � � � dxn d�1 � � � d�n
.g�1/�0��

:

Next, notice that by (2.21),

@ Nxˇ

h .g�1/˛ˇ �˛
.g�1/�0��

i
D
@ Nxi .g

�1/˛i�˛

.g�1/�0��
�
1

2

.g�1/0i@xi .g
�1/������

Œ.g�1/0����2

�
.g�1/˛i�˛@ Nxi .g

�1/�0��

Œ.g�1/�0���2
C
1

2

.g�1/00.g�1/˛i�˛@xi .g
�1/������

Œ.g�1/0����2

C
@x0.g

�1/˛0�˛

.g�1/�0��
�
1

2

.g�1/00@x0.g
�1/˛��˛��

Œ.g�1/0����2

�
.g�1/˛0�˛@x0.g

�1/�0��

Œ.g�1/�0���2
C
1

2

@x0.g
�1/������.g

�1/˛0�˛.g
�1/00

Œ.g�1/�0���3

D
@ Nxi .g

�1/˛i�˛

.g�1/�0��
�
.g�1/˛i�˛@ Nxi .g

�1/�0��

Œ.g�1/�0���2

�
1

2

.g�1/0i@xi .g
�1/������

Œ.g�1/0����2
C
1

2

.g�1/00.g�1/˛i�˛@xi .g
�1/������

Œ.g�1/0����2

and

�
1

2
@ N�i

h@ Nxi .g
�1/˛ˇ �˛�ˇ

.g�1/�0��

i
D �

@ Nxi .g
�1/˛i�˛

.g�1/�0��
C
.g�1/iˇ �ˇ@ Nxi .g

�1/˛0�˛

Œ.g�1/�0���2

C
1

2

.g�1/0i@ Nxi .g
�1/˛ˇ �˛�ˇ

Œ.g�1/�0���2
�
1

2

.g�1/i���@ Nxi .g
�1/˛ˇ �˛�ˇ .g

�1/00

Œ.g�1/�0���3
:

Therefore,

@ Nxˇ

h .g�1/˛ˇ �˛
.g�1/�0��

i
�
1

2
@ N�i

h@ Nxi .g
�1/˛ˇ �˛�ˇ

.g�1/�0��

i
D 0:

Therefore, integrating by parts in (2.22) and using (2.20), we obtain that (2.22) D 0; as
desired.

Definition 2.3 (Measure solutions to the Einstein-massless Vlasov system).

Let .M; g/ be a C 2 Lorentzian manifold and d� a non-negative finite Radon measure
on T �M. We say that .M; g; d�/ is a measure solution to the Einstein-massless Vlasov system
if the following both hold:

1. For every smooth and compactly supported vector field Y ,Z
M

Ric.Y; Y / dVolg D

Z
T �M

h�; Y i2 d�:

2. d� is a measure solution to the massless Vlasov system in the sense of Definition 2.1.
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2.4. Radially-averaged measure solutions to the Einstein-massless Vlasov system

It will be convenient for us to define a notion of radially-averaged measure solution to
the Einstein-massless Vlasov system. Strictly speaking, this is related but is a distinct notion
from that of a measure solution in Definition 2.3. It is however easy to see that any measure
solution in the sense of Definition 2.3 naturally induces a radially-averaged measure solution.
Conversely, given a radially-averaged measure solution, one can construct a measure solution
in the sense of Definition 2.3; see Lemma 2.5. One reason for introducing this notion is that
this is the natural class of solutions that we construct using the microlocal defect measure.

Before we proceed to the definition of a radially-averaged measure solution, let us first
define the cosphere bundle

S�M WD

[
x2M

S�
xM WD

[
x2M

�
.T �
xM n f0g/=�

�
;

where we have quotiented out by the equivalence relation � � � if � D �� for some � > 0.
A continuous function on S�M can be naturally identified with a continuous function

on T �M which is homogeneous of order 0 in �. Therefore a Radon measure on S�M
naturally acts on a continuous function on T �M which is homogeneous of order 0 in �.

We are now ready to define radially-averaged measure solutions to the Einstein-massless
Vlasov system:

Definition 2.4 (Radially-averaged measure solutions to the Einstein-massless Vlasov
system).

Let .M; g/ be a C 2 Lorentzian manifold and d� be a non-negative finite Radon measure
on S�M. We say that .M; g; d�/ is a radially-averaged measure solution to the Einstein-
massless Vlasov system if the following both hold:

1. For every smooth and compactly supported vector field Y ,Z
M

Ric.Y; Y / dVolg D

Z
S�M

h�; Y i2
d�
j�j2

;

where j�j2 D
Pn
˛D0 �

2
˛ .

2. d� is supported on the zero mass shell in the sense that for every f 2 Cc.M/,Z
S�M

f .x/.g�1/˛ˇ �˛�ˇ
d�
j�j2

D 0:

3. For any C 1 functionea W T �M ! R which is homogeneous of degree 1 in �,

(2.23)
Z
S�M

..g�1/˛ˇ �ˇ@x˛ea � 1

2
.@�g

�1/˛ˇ �˛�ˇ@��ea/ d�
j�j2

D 0:

The relation between a measure solution to the Einstein-massless Vlasov system (Defini-
tion 2.3) and a radially-averaged measure solution to the Einstein-massless Vlasov system
(Definition 2.4) is clarified in the following lemma:

Lemma 2.5. – Given a measure solution .M; g; d�/ to the Einstein-massless Vlasov
system, there exists a radially-averaged measure solution .M; g; d�/ to the Einstein-massless
Vlasov system (with the same .M; g/). This is also true conversely if .M; g/ is globally
hyperbolic.
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Proof. – Forward direction. – This is the easier direction, and can in some sense be viewed
as taking average in the radial direction in �. More precisely, given ' 2 C0.S

�M/ (thought
of as a continuous function homogeneous of order 0 in v), define a map I W C0.S

�M/! R
by

I.'/ WD

Z
T �M

' j�j2d�:

Since d� is non-negative, I is a non-negative map. By the Riesz–Markov representation
theorem, it follows that there exists a non-negative d� such that

I.'/ D

Z
S�M

' d�:

Since j�j2d� is finite (by definition), it follows that d� is finite. The Einstein equation also
follows by definition.

Converse direction. – This is harder and there is some choice available in the construction.

Given a globally hyperbolic .M; g/, pick a Cauchy hypersurface †0 and define the set
(with two connected components)

S WD f.x; �/ 2 T �M W x 2 †0; j�j
2
D 1; g�1.x/.�; �/ D 0g:

Define now the set S as the set of points in T �M which lie in a geodesic starting
from S. Note that S is a co-dimensional 2 submanifold of T �M n f0g. Moreover, the vector
field .g�1/˛ˇ �ˇ@x˛ �

1
2
.@�g

�1/˛ˇ �˛�ˇ@�� is by definition tangential to S .

Given ' 2 C0.T
�M/, define '� 2 C0.S

�M/ as the function such that '� ↾SD ' ↾S
which is homogeneous of order 0 in �. Define a map J W C0.T

�M/! R by

J.'/ WD

Z
S�M

'� d�:

This is non-negative by the non-negativity of d�. Hence, by the Riesz–Markov representation
theorem, it follows that there exists a non-negative d� such that

J.'/ D

Z
T �M

' j�j2d�:

Note that j�j2d� is finite since d� is finite. The Einstein equation also follows by definition.

To see that d� is supported on the zero mass shell, it suffices to note that by definition, S ,
on which by definition d� is supported, is a subset of the zero mass shell by construction.

Finally we show that (2.19) holds. Take a.x; �/ 2 C1
c .T

�M n f0g/. Define ea so thatea ↾SD a but such thatea is homogeneous of order 1. Therefore, using (2.23), we know that
(2.19) holds withea in the place of a. However, since d� is supported on S (by construction),
it follows that in fact (2.19) holds for a.

Remark 2.6 (d� can be chosen to be even). – In the “forward” direction of the above
proof, we could have instead defined

I.'/ WD

Z
T �M

1

2
.'.�/C '.��// j�j2d�.�/;

so that I is even, i.e., I.'/ D 0 for every odd function '. Consequently, d� is also even. In fact,
the measure solution to the Vlasov equation that we will eventually construct is even.
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2.5. Restricted Einstein-massless Vlasov system in U.1/ symmetry

The final notion that we introduce in this section is that of the restricted Einstein-massless
Vlasov system in U.1/ symmetry. By “restricted,” we mean that we are not considering
general .3C 1/-dimensional solutions to the Einstein-massless Vlasov system for which the
metric admits a U.1/ symmetry, but instead we require that massless Vlasov measure to be
supported in the cotangent bundle corresponding to the .2C 1/-dimensional (instead of the
.3C 1/-dimensional) manifold.

Since we have already introduced and contrast both measure solutions and radially-
averaged measure solutions for the Einstein-massless Vlasov system (cf. Sections 2.3 and 2.4),
we will directly define the notion of radially-averaged measure solutions for the restricted
Einstein-massless Vlasov system in U.1/ symmetry.

Definition 2.7 (Radially-averaged measure solutions for the restricted Einstein-massless
Vlasov system in U.1/ symmetry).

Let ..4/M;.4/ g/ be a .4C 1/-dimensional C 2 Lorentzian manifold which is U.1/ symmetric
as in (2.1), i.e., the metric takes the form

.4/g D e�2 g C e2 .dx3 C A˛dx˛/2;

for g,  , A independent of x3. Let d� be a non-negative finite Radon measure on S�M.

We say that ..4/M;.4/ g; d�/ is a radially-averaged measure solution for the restricted
Einstein-massless Vlasov system in U.1/ symmetry if

1. the following equations are satisfied:
(2.24)8̂̂<̂

:̂
□g C

1
2
e�4 g�1.d!; d!/ D 0;

□g! � 4g�1.d!; d / D 0;R
M Ric.g/.Y; Y / dVolg D

R
MŒ2.Y /2 C 1

2
e�4 .Y!/2� dVolg C

R
S�Mh�; Y i2 d�

j�j2
;

for every C1
c vector field Y , where ! relates to A˛ via (2.3);

2. (2) and (3) in Definition 2.4 both hold.

2.6. Null dust and massless Vlasov

In this subsection, we show that a solution to the null dust system is a measure solution
to the massless Vlasov system. In particular, this shows that solutions to Einstein–null dust
system considered in [11] can indeed be viewed within the framework of this paper.

For simplicity, let us just consider the case where FA is compactly supported.

Lemma 2.8. – Let .M; g/ be a C 2 Lorentzian manifold. Suppose for a finite set A,
f.FA; uA/gA2A is a compactly supported solution to the null dust system on .M; g/, i.e.,
FA W M ! R is a compactly supportedC 1 function anduA W M ! R is aC 2 function satisfying

1. g�1.duA; duA/ D 0; duA ¤ 0 for all A 2 A,

2. 2.g�1/˛ˇ .@ˇuA/@˛FA C .□guA/FA D 0 for all A 2 A.
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Then the measure d� on T �M defined by

(2.25) d� WD

X
A2A

F 2A ıvDduAdVolg

is a measure solution to the massless Vlasov equation on .M; g/ (cf. Definition 2.1).

Proof. – That d� is supported on the zero mass shell follows immediately from (2.25) and
g�1.duA; duA/ D 0. It remains therefore to verify the transport equation in Definition 2.1.

For this we need a preliminary calculation. First, since .g�1/˛ˇ@˛u@ˇu D 0, we have

.@� .g
�1/˛ˇ /@˛u@ˇuC 2.g�1/˛ˇ .@ˇu/.@˛@�u/ D 0:

Therefore, given any a 2 C1
c .T

�M/, viewing a.x; du.x// as a function on M (and empha-
sizing this by calling the coordinates Nx), we have

.g�1/˛ˇ .@ˇu/@ Nx˛ .a. Nx; du. Nx/// D .g�1/˛ˇ .@ˇu/@x˛aC .g�1/˛ˇ .@ˇu/.@��a/.@˛@�u/

D .g�1/˛ˇ .@ˇu/@x˛a �
1

2
.@� .g

�1/˛ˇ /.@˛u/.@ˇu/.@��a/:

(2.26)

We now check the transport equation in Definition 2.1 using (2.26) and integrating by
parts:Z
T �M

�
.g�1/˛ˇ �ˇ@x˛a �

1

2
.@� .g

�1/˛ˇ /�˛�ˇ .@��a/
�

d�

D

X
A2A

Z
M

�
.g�1/˛ˇ .@ˇuA/@x˛a �

1

2
.@� .g

�1/˛ˇ /.@˛uA/.@ˇuA/.@��a/
�
F 2A dVolg

D

X
A2A

Z
M

�
.g�1/˛ˇ . Nx/.@ˇuA/. Nx/@ Nx˛

�
a. Nx; duA. Nx//

��
F 2A . Nx/ dVolg. Nx/

D �

X
A2A

Z
M

�
2.g�1/˛ˇ .@ˇuA/@˛FA C .□guA/FA

�
. Nx/FA. Nx/a

�
Nx; duA. Nx/

�
dVolg. Nx/ D 0;

where in the last line we used the equation satisfied by FA. This concludes the proof.

3. Notations and function spaces

Ambient space and coordinates. – In this paper, we will be working on the ambient mani-
fold M WD .0; T / � R2 (although often we only restrict to subsets � � �0 � �00,
cf. Section 4.1); see Section 4. The space will be equipped with a system of coordi-
nates .t; x1; x2/. We often write x D .t; x1; x2/. We will use xi with the lower case Latin
index i; j D 1; 2. We will also sometimes denote xt D t .

Let T �M be the cotangent bundle. The standard coordinates on T �M will be given
by .x; �/ D .xt ; x1; x2; �t ; �1; �2/.

When there is no risk of confusion, we write @i D @xi .
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Indices. – We will use the following conventions:

— Lower case Latin indices run through the spatial indices 1; 2, while lower case Greek
indices run through all t; 1; 2.

— Repeat indices are always summed over: where lower case Latin indices sum over the
spatial indices 1; 2 and lower case Greek indices sum over all indices t; 1; 2.

Metrics

— gn and g0 denote the metrics introduced in Section 4, which both take the form (2.4)
and (2.5).

— We denote by gn 2 flogNn; ˇin; 
ng and g0 2 flogN0; ˇi0; 
0g the metric coefficients
of gn and g0 respectively.

— ıij (and ıij ) denotes the Euclidean metric.

Norms for tensors and derivatives

— Given a rank-r covariant tensor ��1����r , define

j�j2 WD
X

�1;:::;�rDt;1;2

j��1����r j
2; j�i1���ir j

2
WD

X
j1;:::;jrD1;2

j�j1���jr j
2:

(The second definition is a slight abuse of notation, by which we mean unless otherwise
stated, we will also implicitly take the sum. Similarly below.)

— The above notation is in particular used for .x; �/ 2 T �M where we denote

j�j2 WD
X

�Dt;1;2

j��j
2; j�i j

2
WD

X
jD1;2

j�j j
2:

— Likewise, given a scalar function f W R2C1 ! R, we define

j@f j2 WD j@tf j
2
C

2X
iD1

j@xif j
2; j@if j

2
D

2X
jD1

j@xj f j
2:

— A similar notation will be used for higher coordinate derivatives (even though they are
not tensors), i.e.,

j@kf j2 WD
X

�1;:::;�kDt;1;2

j@k�1;:::;�kf j
2:

Constants. – Conventions for constants will be discussed in the beginning of Section 8.

Differential operators

— � denotes the spatial Laplacian on R2 with respect to the spatial Euclidean metric, i.e.,

�u D

2X
iD1

@2i u:

— □g0 and□gn denote the Laplace–Beltrami operators with respect to g0 and gn respec-
tively. (see also (9.1) and (9.2)).

— □g0;A and □gn;A are operators to be defined respectively in (9.3) and (9.4).
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— .e0/0 and .e0/n denote the vector fields .e0/0 D @t � ˇ
i
0@xi and .e0/n D @t � ˇ

i
n@xi

respectively (where ˇn and ˇ0 will be introduced in (2.4)).

— L denotes the Euclidean conformal Killing operator acting on vectors on R2 to give a
symmetric traceless (with respect to the Euclidean metric ı) covariant 2-tensor, i.e.,

.L�/ij WD ıj`@i�
`
C ıi`@j�

`
� ıij @k�

k :

Fourier transforms. – We will denote spacetime Fourier transform byband spatial Fourier
transform by Fspa. We will take the following normalizations:bf .�/ WD 1

.2�/
3
2

Z
R2C1

e�ix
���f .x/ dx;

Fspa.f /.t; �k/ WD
1

2�

Z
R2
e�ix

k�kf .t; xj / dx1 dx2:

Fourier multipliers will be denoted as follows for m W R2C1 ! R:

.m.
1

i
r/f /.x/ WD

1

.2�/3

Z
R2C1

ei.x
��y�/��m.�/f .y/ dy:

Functions spaces. – Unless otherwise stated, all function spaces will be understood on R2C1.
Define the following norms for a scalar function f W R2C1 ! R:

kf kLp WD .

Z
R2C1

jf jp.x/ dx/
1
p ; p 2 Œ1;C1/; kf kL1 WD esssupx2R2C1 jf j.x/;

kf kWm;p WD

X
j˛j�m

k@˛f kLp ; m 2 N [ f0g; p 2 Œ1;C1/:

Define also the corresponding function spaces in the obvious way. We will denote Hm WD W m;2.
Define also the norm

kf kH�1 WD

� Z
R2C1

.1C j�j2/�1j bf j2.�/ d�
� 1
2

and the corresponding function space.
We will also use the above function spaces for tensors on R2C1, where the norms in the

case of tensors are understood componentwise (with respect to the .t; x1; x2/ coordinates).

4. Main results

Let M WD .0; T / � R2. Suppose f. n; !n; gn/g
C1
nD1 is a sequence such that  n, !n are

C 4 real-valued functions on M and gn is a C 4 Lorentzian metric on M satisfying the
following four conditions:

1. (Solving the equations) . n; !n; gn/ satisfies (2.2) for all n 2 N.

2. (Gauge condition) The metric gn is put into a form satisfying (2.4) and (2.5) for all
n 2 N.

3. (Local uniform convergence) There exists a limit . 0; !0; g0/ which is smooth and
g0 satisfies (2.4) and (2.5). Assume that the following convergences hold:

(a)  n !  0, !n ! !0 uniformly on (spacetime) compact sets.
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(b) For g 2 flogN; ˇi ; 
g (being the metric components; cf. (2.4)), gn ! g0
uniformly on compact sets.

4. (Weak convergence of the derivatives) Let p0 2 .8
3
;C1/. With . 0; !0; g0/ as above,

the following convergences hold:

(a) @ n * @ 0, @!n * @!0 weakly in Lp0loc.

(b) For g 2 flogN; ˇi ; 
g, @gn * @g0 weakly in Lp0loc.

Theorem 4.1. – Given f. n; !n; gn/g
C1
nD1 and . 0; !0; g0/ such that the conditions (1)–(4)

above hold, there exists a non-negative Radon measure d� onS�M such that .M;  0; !0; g0; d�/
satisfies the following conditions:

1. d� is supported on f.x; �/ 2 S�M W g�10 .�; �/ D 0g;

2. the following system of equations holds:
(4.1)8̂̂<̂
:̂
□g0 0 C

1
2
e�4 0g�10 .d!0; d!0/ D 0;

□g0!0 � 4g
�1
0 .d!0; d 0/ D 0;R

M Ric.g0/.Y; Y / dVolg0 D
R
MŒ2.Y 0/

2 C
1
2
e�4 0.Y!0/

2� dVolg0 C
R
S�Mh�; Y i2 d�

j�j2
;

for every C1
c vector field Y .

In particular, the effective stress-energy-momentum tensor T�� is traceless, non-negative and
obeys the dominant energy condition.

The above theorem has the advantage that the assumptions are very weak. On the other
hand, we also do not get the full Burnett’s conjecture in that we do not show that the limit is
isometric to a solution to the Einstein-massless Vlasov system. In order to obtain the stronger
result, we impose the following additional assumption:

5. (Estimates) For every compact subsetK � M, there exists a sequence f�ng1nD1 � .0; 1�

(depending on K) with limn!C1 �n D 0 such that for g 2 flogN; ˇi ; 
g,

sup
n
��1n k. n �  0; !n � !0; gn � g0/kL1.K/ < C1;(4.2)

sup
n

k.@ n; @!n; @gn/kL1.K/ < C1:(4.3)

sup
n
�k�1n k.@k n; @

k!n; @
kgn/kL1.K/ < C1; for k D 2; 3; 4:(4.4)

Theorem 4.2. – Given f. n; !n; gn/g
C1
nD1 and . 0; !0; g0/ such that the conditions (1)–(5)

above hold, there exists a non-negative Radon measure d� onS�M such that .M;  0; !0; g0; d�/
is a radially-averaged measure solution to the restricted Einstein-massless Vlasov equations
in U.1/ symmetry in the sense of Definition 2.7.

Remark 4.3. – Even though it is most convenient for the proof to formulate Theorem 4.2
so that the Einstein part of the system is satisfied in the weak sense (see (2.24)), it follows a
posteriori that the Einstein part of the system is also satisfied classically for an appropriately
defined stress-energy-momentum tensor.
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This can be formulated as follows. Let π W S�M ! M be the natural projection map. It
follows from Theorem 4.2 that after defining

T˛ˇ .p/ WD lim inf
r!0

3

4�r3

Z
π�1.B.p;r//

�˛�ˇ

j�j2
d�

(where B.p; r/ is the coordinate ball), T˛ˇ is continuous and that the Einstein equation

Ric˛ˇ .g/ D 2@˛ @ˇ C
1

2
e�4 @˛!@ˇ! C T˛ˇ

holds classically.

4.1. Reduction to compact sets

It will be technically convenient to reduce our theorems to corresponding cut-off versions.
Fix an open and precompact � � M. Let �0 � M be an open and precompact set

containing �, the closure of �. Let � be a non-negative function in C1
c such that

(4.5) � D 1 on �; supp.�/ � �0:

We will show that (cf. Section 6.1 below) for every such �, �0 and �, there exists a
non-negative Radon measure d� on S�R2C1 such that for some subsequence nk , the
following holds for any 0-th order pseudo-differential operator A with principal symbol a
(cf. Section 5):

lim
k!C1

2

Z
R2C1

@˛
�
�. nk �  0/

�h
A@ˇ .�. nk �  0//

i
dVolgnk

C lim
k!C1

1

2

Z
R2C1

e�4 0@˛
�
�.!nk � !0/

�h
A@ˇ .�.!nk � !0//

i
dVolgnk

D

Z
S�R2C1

a�˛�ˇ
d�
j�j2

:

(4.6)

We now claim that in order to prove Theorems 4.1 and 4.2, it suffices to show that for
every �, �0 and � as above, .�; 0; !0; g0; d� ↾�/ verifies the conclusion of Theorems 4.1
and 4.2. More precisely,

Proposition 4.4. – Let .�; 0; !0; g0; d�/ be as defined above.

1. Suppose that under the assumptions of Theorem 4.1, for every �, �0 and � above, d� is
supported in f.x; �/ 2 S�M W g�10 .�; �/ D 0g and (4.1) holds in� with any Y 2 C1

c .�/.
Then Theorem 4.1 holds.

2. Suppose that under the assumptions of Theorem 4.2, for every �, �0 and � above,
.�; 0; !0; g0; d� ↾�/ is a radially-averaged measure solution to the restricted Einstein-
massless Vlasov equations in U.1/ symmetry in the sense of Definition 2.7. Then
Theorem 4.2 holds.

Proof. – We will define a Radon measure on all of M under the assumptions.
Let f�igC1

iD1 be an exhaustion of M, i.e., �i � �iC1 and
SC1

iD1 �i D M. Define �i by
(4.5) with � D �i and �0 D �iC1.

We now proceed inductively in i . First, define d�1 as a Radon measure on �1 as in
the assumption of the proposition. Now, for every i � 1, suppose we are given a Radon
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measure d�i on �i so that the convergence in (4.6) holds and the properties as in the state-
ment of the proposition are satisfied. We can then define a Radon measure d�iC1 on �iC1
by considering a further subsequence of . nk ; !nk ; gnk / as in the assumption of the propo-
sition. Notice that by definition d�iC1 ↾�iD d�i for all i 2 N. By considering a diagonal
subsequence, we therefore obtain that there is a fixed subsequence nk such that the following
holds for every i 2 N:

lim
k!C1

2

Z
R2C1

@˛
�
�i . nk �  0/

��
A@ˇ .�i . nk �  0//

�
dVolgnk

C lim
k!C1

1

2

Z
R2C1

e�4 0@˛
�
�i .!nk � !0/

��
A@ˇ .�i .!nk � !0//

�
dVolgnk

D

Z
S�R2C1

a�˛�ˇ
d�i
j�j2

:

Define d�1 as follows. Let ' 2 Cc.S
�M/. Then there exists�i such that supp' � S��i .

Define
d�1.'/ WD d�i .'/:

Note that this is well-defined (and independent of the particular choice of i ).
In each of the cases (1) and (2), it is then easy to verify that .M;  0; !0; g0; d�1/ obeys

the desired conclusion.

In view of the above proposition, from now on we fix �, �0 and � as above. It will suffice
to prove that the conditions in Proposition 4.4 hold.

It will be convenient to fix also two open, precompact sets �00 � �000 � M such that
�0 � �00 and �00 � �000. Define

(4.7) e� D 1 on �00; supp.e�/ � �000:

5. Preliminaries on pseudo-differential operators and microlocal defect measures

In this section, we recall useful notions on pseudo-differential operators and microlocal
defect measures. Everything in this section is standard and is mainly included to fix notations.

For the remainder of this section, fix k 2 N (which will be taken as 3 D 2 C 1 in later
sections). Denote by T �Rk the cotangent bundle of Rk with coordinates .x; �/ 2 Rk � Rk .

Definition 5.1. – 1. For m 2 Z, define the symbol class

Sm WD fa W T �Rk ! C W a 2 C1; 8˛; ˇ; 9C˛;ˇ > 0; j@
˛
x@
ˇ

�
a.x; �/j � C˛;ˇ .1C j�j/m�jˇ j

g:

2. Given a symbol a 2 Sm, define the operator Op.a/ W S.Rk/! S.Rk/ by

.Op.a/u/.x/ WD
1

.2�/k

Z
Rk

Z
Rk
ei.x�y/��a.x; �/u.y/ dy d�:

For A D Op.a/ as above, we say that A is a pseudo-differential operator of order m with
symbol a. If moreover a.x; �/ D aprin.x; �/�.�/Caerror, where aprin.x; ��/ D �ma.x; �/

for all � > 0, �.�/ is a cutoff � 1 for large j�j and � 0 near 0, and aerror 2 S
m�1, we say

that aprin is the principal symbol of A.

We record for convenience some standard facts.
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Lemma 5.2. – 1. ([16, Theorem 2, p.237]) Let a1 2 Sm1 , a2 2 Sm2 . Then
9c 2 Sm1Cm2 such that Op.a1/ ı Op.a2/ D Op.c/, where

c.x; �/ � a1.x; �/a2.x; �/ 2 S
m1Cm2�1:

2. ([16, Theorem 2, p.237]) Let a1 2 Sm1 , a2 2 Sm2 . Then 9c 2 Sm1Cm2�1 such
that Op.a1/ ı Op.a2/ � Op.a2/ ı Op.a1/ D Op.c/, where

c.x; �/C ifa1; a2g 2 S
m1Cm2�2; fa1; a2g WD @��a1@x�a2 � @x�a1@��a2:

3. ([16, Proposition, p.259]) Let a 2 Sm. Then Op.a/� (theL2-adjoint of Op.a/) satisfies

Op.a/� � Op.a/ 2 Sm�1:

4. (Calderón Zygmund theorem [16, Proposition 5, p.251]) A pseudo-differential oper-
ator A of orderm extends to a bounded mapW nCm;p.Rk/! W n;p.Rk/, 8n 2 N[ f0g,
8m 2 Z, 8p 2 .1;C1/.

5. (Rellich Kondrachov theorem) A pseudo-differential operator A of order �1 extends to
a compact map W L2.Rk/! L2loc.R

k/.

6. (Calderón commutator theorem [16, Corollary, p.309]) Let u W Rn ! R be a Lipschitz
function for which there existsM > 0 so that ju.x/�u.y/j �M jx�yj for all x; y 2 Rn.
Let T be a pseudo-differential operator of order 1. Then ŒT; u� 2 B.L2.Rn/; L2.Rn//,
i.e., that it is a bounded linear map on L2.Rn/. In addition (4), for every f 2 S.Rn/,

(5.1) kT .uf / � u.Tf /kL2.Rn/ ≲Mkf kL2.Rn/;

where the implicit constant depends only on T .

We now turn to the discussion of microlocal defect measures, following [7] (see also [17]).
We first need some preliminary definitions.

LetS�Rk be the cosphere bundle given byS�Rk WD .T �Rknf0g/= �, where .x; �/ � .y; �/

if and only if x D y and � D �� for some � > 0. From now on, we identify a function
on S�Rk with a function on T �Rknf0g which is homogeneous of order 0 in �, i.e., a.x; ��/ D
a.x; �/, 8� > 0.

Definition 5.3. – We say that d� is a non-negative .N � N/-complex-matrix-valued
Radon measure on S�Rk if d� is a map d� W Cc.S

�Rk/! CN�N

1. obeying the estimate kd�.'/k � CKk'kC.K/ for every compact set K � S�Rk (for
some CK > 0 depending on K), and

(4) The precise statement in [16] only asserts that ŒT; u� 2 B.L2.Rn/;L2.Rn// (without explicitly saying that the
operator norm is proportional toM ). Nevertheless, (5.1) follows from the closed graph theorem. Let .Lip; k � kLip/
be the Banach space of equivalence classes of Lipschitz functions, where two functions are equivalent if they differ
by a constant, and kukLip WD supx¤y

ju.x/�u.y/j
jx�yj

. The corollary on p.309 in [16] implies that there is a map

ˆ W Lip ! B.L2.Rn/;L2.Rn// given by Œu� 7! ŒT; u�. By the closed graph theorem, in order to obtain (5.1),
it suffices to show that if limj!C1 kŒuj �kLip D 0 and limj!C1 kŒT; uj � � SkB.L2.Rn/;L2.Rn// D 0 for
some S 2 B.L2.Rn/;L2.Rn//, then S D 0. To show this, pick a representative uj such that uj .0/ D 0. In
particular it follows that kjxj�1uj kL1 ! 0 as j ! C1. Now for any ' 2 L2.Rn/, T.uj'/ and ujT.'/ both
tend to 0 in the sense of distributions as j ! C1. Therefore, S D 0 as required.
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2. satisfying d�.'/ is a positive semi-definite Hermitian matrix whenever ' is a non-negative
function.

Definition 5.4. – Let d� be a non-negative .N � N/-complex-matrix-valued Radon
measure on S�Rk and a W S�Rk ! CN�N a continuous matrix-valued function on S�Rk .

Define tr .a.x; �/ d�/ to be the (scalar-valued) Radon measure on S�Rk given by

.tr .a.x; �/ d�//.'/ WD tr Œa.x; �/ � .d�.'//�:

Theorem 5.5 (Existence of microlocal defect measures, Theorem 1 (6) in [7]).

Suppose fung
C1
nD1 2 L2.Rk ICN / is a bounded sequence such that un * 0 weakly

in L2.Rk ICN /.

Then there exist a subsequence funk g
C1

kD1
and a non-negative .N � N/-complex-matrix-

valued Radon measure d� on S�Rk such that for every CN�N -valued pseudo-differential
operator A of order 0 with principal symbol a 2 Cc.S

�Rk ICN�N /,

lim
k!C1

Z
Rk

hAunk ; unk iCN dx D

Z
S�Rk

tr .a.x; �/ d�/:

The measure d� in Theorem 5.5 is called a microlocal defect measure. Following [7], if
the conclusion of Theorem 5.5 holds for fungC1

nD1 (without passing to a subsequence), we say
that fungC1

nD1 is a pure sequence.

Theorem 5.6 (Localization of microlocal defect measures, Corollary 2.2 in [7]).

Let fung be a pure sequence of L2.Rk ;CN /, of microlocal defect measure d�. Let P be an
m-th order differential operator with principal symbol p D

P
j˛jDm a˛.i�/

˛ for some smooth
.N �N/-matrices a˛. If fPungnD1 is relatively compact in H�m

loc .R
k ;CN /, then p d� D 0.

6. Microlocal defect measures for  and !

We begin to prove Theorem 4.1 by studying the properties of the microlocal defect
measures. For the remainder of this section, we work under the assumption of Theorem 4.1.

6.1. Existence of the microlocal defect measures

Consider now the sequence of functions �. n �  0/ and �.!n � !0/ (cf. (4.5)). We are
now in a setting to apply the existence theorem (Theorem 5.5) to obtain microlocal defect
measures.

(6) Note that this is a specialization of the original theorem of Gérard. In the original paper, the domain is any open
set in Rk and un may take value in any separable Hilbert space, instead of CN .
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Proposition 6.1 (Existence of microlocal defect measures). – There exist Radon
measures d� 

˛ˇ
, d�!

˛ˇ
and d�cross

˛ˇ
on S�R2C1 such that for any zeroth order (scalar) pseudo-

differential operators fA˛ˇ g˛;ˇDt;1;2 with principal symbols fa˛ˇ g˛;ˇDt;1;2, the following holds
up to a subsequence (which we do not relabel):

lim
n!1

Z
R2C1

@˛.�. n �  0//A
˛ˇ@ˇ .�. n �  0// dVolg0 D

Z
S�R2C1

a˛ˇ d� 
˛ˇ
;

lim
n!1

Z
R2C1

@˛.�.!n � !0//A
˛ˇ@ˇ .�.!n � !0// dVolg0 D

Z
S�R2C1

a˛ˇ d�!˛ˇ ;

lim
n!1

Z
R2C1

@˛.�. n �  0//A
˛ˇ@ˇ .�.!n � !0// dVolg0 D

Z
S�R2C1

a˛ˇ d�cross
˛ˇ ;

lim
n!1

Z
R2C1

@˛.�.!n � !0//A
˛ˇ@ˇ .�. n �  0// dVolg0 D

Z
S�R2C1

a˛ˇ .d�cross/�˛ˇ ;

where � denotes the Hermitian conjugate.

Moreover, d� 
˛ˇ

and d�!
˛ˇ

are non-negative in the sense of Definition 5.3.

Proof. – Applying Theorem 5.5 with

un D

26666666664

@t .�. n �  0//

@x1.�. n �  0//

@x2.�. n �  0//

@t .�.!n � !0//

@x1.�.!n � !0//

@x2.�.!n � !0//

37777777775
;

we obtain a non-negative .6 � 6/-complex-matrix-valued Radon measure d�. Since d� is
Hermitian by Theorem 5.5, d� takes a block diagonal form as follows

d� D

"
d� d�cross

.d�cross/� d�!

#
:

It is then easy to check that the components d� 
˛ˇ

, d�!
˛ˇ

and d�cross
˛ˇ

of the corresponding
measures have the properties as claimed.

(Note that we have in particular used @˛.�. n �  0// D @˛.�. n �  0//, etc. in the
expressions in the proposition.)

Without loss of generality (by passing to a subsequence if necessary), we will assume from
now on that the sequence is pure.

6.2. First properties of the microlocal defect measures

In this subsection, we prove some properties of the microlocal defect measures.

Proposition 6.2. – The measure d�cross
˛ˇ

is symmetric, i.e.,

d�cross
˛ˇ D d�cross

ˇ˛ :
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Proof. – This amounts to

lim
n!C1

Z
R2C1

@˛.�. n �  0//A
˛ˇ@ˇ .�.!n � !0// dVolg0

D lim
n!C1

Z
R2C1

@ˇ .�. n �  0//A
˛ˇ@˛.�.!n � !0// dVolg0 :

This can be seen by noting that ŒA˛ˇ ; @˛� W L2 ! L2loc is bounded by Lemma 5.2.2 (and that
the corresponding contribution ! 0 since !n ! !0 in L2), integrating by parts and using
assumptions (3) and (4) of Theorem 4.1.

Proposition 6.3 (Microlocal defect measures are effectively given by d� and d�!).

There exist non-negative Radon measures d� , d�! on S�R2C1 such that

d� 
˛ˇ

D
�˛�ˇ

j�j2
d� ; d�!˛ˇ D

�˛�ˇ

j�j2
d�! ;

where j�j2 WD
P2
�D0 j��j

2.

Proof. – We will focus on d� in the exposition. d�! can be treated similarly.

Step 1: Defining an auxiliary measure d� 
ˇ

. – Using the identity @˛@� n D @�@˛ n and
Theorem 5.6, it follows that for every ˇ,

��

j�j
d� 
˛ˇ

D
�˛

j�j
d� 
�ˇ
:

This implies that

1.
d� 
˛ˇ

�˛
(to be understood without summing repeated indices) is a well-defined Radon

measure for every ˇ. (To see this, note that at each point in T �M n f0g, some compo-
nent �˛ ¤ 0.)

2.
d� 
˛ˇ

�˛
D

d� 
˛0ˇ

�˛0
for every ˛, ˛0.

With the above observations, we can thus define the measure d� 
ˇ
WD

j�jd� 
˛ˇ

�˛
.

Step 2: Defining d� . – Since d� 
˛ˇ

is Hermitian (by Proposition 6.1), for d� 
ˇ

defined as in
Step 1,

(6.1) �˛d� 
ˇ
D �ˇd� ˛ :

Arguing as in Step 1 above, we know that d� ˛
�˛

is well-defined. We define

d� WD
j�jd� ˛
�˛

:
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Step 3: Non-negativity of d� . – Finally, using Proposition 6.1, one sees that d� is non-
negative.

We record the following result, which follows from Propositions 6.1, 6.3 and simple alge-
braic manipulations.

Corollary 6.4. – For d� , d�! as in Proposition 6.3, it holds that for every zeroth
pseudo-differential operator A with principal symbol a which is homogeneous of order 0, and
supported in S��,Z

R2C1
@˛.� n/.A.@ˇ .� n/// dVolg0 !

Z
R2C1

@˛.� 0/.A.@ˇ .� 0/// dVolg0(6.2)

C

Z
S�R2C1

a�˛�ˇ
d� 

j�j2
;Z

R2C1
@˛.�!n/.A.@ˇ .�!n/// dVolg0 !

Z
R2C1

@˛.�!0/.A.@ˇ .�!0/// dVolg0(6.3)

C

Z
S�R2C1

a�˛�ˇ
d�!

j�j2
:

Moreover, Z
R2C1

@˛.� n/.A.@ˇ .�!n/// dVolg0 !
Z
R2C1

@˛.� 0/.A.@ˇ .�!0/// dVolg0(6.4)

C

Z
S�R2C1

a d�cross
˛ˇ ;

and Z
R2C1

@˛.�!n/.A.@ˇ .� n/// dVolg0 !
Z
R2C1

@˛.�!0/.A.@ˇ .� 0/// dVolg0(6.5)

C

Z
S�R2C1

a .d�cross/�˛ˇ :

6.3. Microlocal defect measures are supported on the light cones

Our goal in this subsection is to use Theorem 5.6 to show that the microlocal defect
measures are supported on the light cones.

Lemma 6.5. – □g0.�. n� 0// and□g0.�.!n�!0// admit the following decomposition:

□g0.�. n �  0// D @˛.�
. /
n /˛ C �. /n ; □g0.�.!n � !0// D @˛.�

.!/
n /˛ C �.!/n ;

where �. /n , �.!/n are vector fields compactly supported in �0 (recall the definition of �0 in
Section 4.1) which converges to 0 in the L2 norm; and �. /n , �.!/n are functions compactly
supported in �0 which are uniformly bounded in L

p0
2 (for p0 as in assumption (4) of

Theorem 4.1).

Proof. – We will prove the decomposition for□g0.�. n� 0//;□g0.�.!n�!0// can be
treated similarly.

First we write

(6.6) □g0.�. n �  0// D .□g0 �□gn/.� n/„ ƒ‚ …
DWIn

C□gn.� n/„ ƒ‚ …
DWIIn

�□g0.� 0/„ ƒ‚ …
DWIIIn

:
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Clearly each term is compactly supported in �0.

Term In can be computed further as follows:

In D @˛...g
�1
0 /˛ˇ � .g�1n /˛ˇ /@ˇ .� n//„ ƒ‚ …

DWIa;n

�.@˛..g
�1
0 /˛ˇ � .g�1n /˛ˇ //@ˇ .� n/„ ƒ‚ …

DWIb;n

C .
1p

� detg0
@˛..g

�1
0 /˛ˇ

p
� detg0/ �

1p
� detgn

@˛..g
�1
n /˛ˇ

p
� detgn//@ˇ .� n/„ ƒ‚ …

DWIc;n

:

Under the assumptions of Theorem 4.1, Ib;n and Ic;n are both uniformly bounded inL
p0
2 .

For term Ia;n, note that by assumptions (3) and (4) of Theorem 4.1 (and Hölder’s
inequality), ..g�10 /˛ˇ � .g�1n /˛ˇ /@ˇ .� n/! 0 in the L2 norm.

For the term IIn in (6.6), we note that by (2.2), assumptions (3), (4) of Theorem 4.1 and
Hölder’s inequality, it follows that IIn is uniformly bounded in L

p0
2 .

Finally, the term IIIn in (6.6) is smooth and independent of n. It is therefore uniformly
bounded in L

p0
2 .

Combining the above results and letting

.�. /n /˛ WD ..g�10 /˛ˇ � .g�1n /˛ˇ /@ˇ .� n/; �. /n WD □g0.�. n �  0// � @˛.�
. /
n /˛;

we obtain the desired result.

Proposition 6.6 (Support of microlocal defect measures). – Let d� , d�! be as in
Proposition 6.3. Then

.g�10 /˛ˇ �˛�ˇ

j�j2
d� D 0 D

.g�10 /˛ˇ �˛�ˇ

j�j2
d�! :

Proof. – We will only prove the equality for d� . The equality for d�! can be treated in
the same manner.

Step 1: Compactness of □g0.�. n �  0// in H�1
loc . – We use the decomposition

□g0.�. n �  0// D @˛.�
. /
n /˛ C �

. /
n given by Lemma 6.5.

Since .�. /n /˛ ! 0 in the L2 norm, @˛.�
. /
n /˛ converges to 0 in H�1

loc (and hence is
compact).

On the other hand, we know that �. /n is uniformly bounded inL
p0
2 , where p0 2 .83 ;C1/

(cf. assumption (4)). In .2C 1/ dimensions, since p0
2
> 4

3
, L

p0
2 embeds compactly intoH�1

loc .
(This can be proven by a duality argument after recalling that H�1 is the dual of H 1.) It
follows that f�. /n g

C1
nD1 is compact in H�1

loc .

Putting all the above considerations together, it follows that □g0.�. n � 0// is compact
in H�1

loc .
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Step 2: Application of Theorem 5.6. – By Theorem 5.6 and the compactness obtained in
Step 1, we obtain that, for any index ˇ,

.g�10 /˛���

j�j
d� 
˛ˇ

D 0:

This implies, via Proposition 6.3, that for any index ˇ,

.g�10 /˛����˛�ˇ

j�j3
d� D 0:

For every .x; �/ 2 S�R2C1, �ˇ ¤ 0 for some ˇ. Hence, we obtain the desired conclusion.

7. The proof of Theorem 4.1

In this section, we prove Theorem 4.1. We continue to work under the assumptions of
Theorem 4.1. As discussed in Section 4.1, with d� D 2d� C

1
2
e�4 0d�! , it suffices to show

that .�; g0;  0; !0; d�/ obeys the conclusion of Theorem 4.1.

We have already proven that d� is supported on the null cones by Proposition 6.6. We
therefore only need to prove (4.1). The two wave equations will be proven in Section 7.1;
the equation for the geometry will be proven in Section 7.2. These results can be viewed
as consequences of (bilinear) compensated compactness. We then put all these together in
Section 7.3.

7.1. Wave equations for the limits  0 and !0

We begin with a simple (bilinear) compensated compactness type result related to the null
forms.

Lemma 7.1. – Let f�.1/n g
C1
nD1 and f�

.2/
n g

C1
nD1 be two sequences of real-valued smooth func-

tions on M D .0; T /�R3. Assume that there exist smooth functions �.1/0 and �.2/0 on M such
that the following hold for some p0 2 .83 ;C1/:

1. For any (spacetime) compact subset K of M,

k�.i/n � �
.i/
0 k

L
maxf2;

p0
p0�2

g
.K/

! 0:

2. For any (spacetime) compact subset K of M,

max
i

sup
n

k@�.i/n kL2.K/ < C1:

3. □g0�
.i/
n admits a decomposition □g0�

.i/
n D @˛.�

.i/
n /

˛ C �
.i/
n for some vector field .�.i/n /˛

and some function �.i/n such that for any (spacetime) compact subsetK ofM, .�.i/n /˛ ! 0

in the L2.K/ norm and �.i/n is uniformly bounded in the L
p0
2 .K/ norm.

Then as n! C1,

g�10 .d�.1/n ; d�.2/n / * g�10 .d�
.1/
0 ; d�

.2/
0 / in the sense of distributions:
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Proof. – Let # 2 C1
c .M/. We want to show that

(7.1)
Z
R2C1

#g�10 .d�.1/n ; d�.2/n / dx !

Z
R2C1

#g�10 .d�
.1/
0 ; d�

.2/
0 / dx:

We write

g�10 .d�.1/n ; d�.2/n / D
1

2
□g0.�

.1/
n �.2/n /„ ƒ‚ …

DWI

�
1

2
.□g0�

.1/
n /�.2/n„ ƒ‚ …

DWII

�
1

2
�.1/n .□g0�

.2/
n /„ ƒ‚ …

DWIII

(and similarly for g�10 .d�
.1/
0 ; d�

.2/
0 /). We handle each of these terms below.

Step 1: Term I. – To handle the term I, simply note that the assumptions and Hölder’s
inequality imply that �.1/n �

.2/
n ! �

.1/
0 �

.2/
0 strongly in L1 (on any compact set). Since □g0

is a smooth differential operator, it follows that 1
2
□g0.�

.1/
n �

.2/
n / converges to 1

2
□g0.�

.1/
0 �

.2/
0 /

as distributions.

Step 2: Terms II and III. – We then consider the term II; the term III is clearly similar.

Step 2(a): Contribution from 1
2
@˛.�

.1/
n /˛�

.2/
n . – Using the L2 norm convergence of .�.1/n /˛

and theL2 norm boundedness of @�.2/n , a simple integration by parts and Hölder’s inequality
imply that 1

2
@˛.�

.1/
n /˛�

.2/
n * 0 in the sense of distributions.

Step 2(b): Contribution from 1
2
�
.1/
n �

.2/
n . – Since g0 is smooth, □g0�

.1/
n * □g0�

.1/
0 in the

sense of distributions. The assumptions then imply that �.1/n * □g0�
.1/
0 in the sense of

distributions. Using now theL
p0
2 boundedness of �.1/n and the norm convergence of�.i/n ��

.i/
0

in L
p0
p0�2 , it follows that for any # 2 C1

c .M/,Z
R2C1

#�.1/n �.2/n dx !

Z
R2C1

#.□g0�
.1/
0 /�

.2/
0 dx:

Combining Steps 1 and 2, we have proven (7.1).

Using Lemma 7.1, we obtain the following equation for � 0 and �!0.

Proposition 7.2. – � 0 obeys (classically) the wave equation

(7.2) □g0.� 0/ � 2g
�1
0 .d�; d 0/ �  0□g0�C

1

2
�e�4 0g�10 .d!0; d!0/ D 0:

�!0 obeys (classically) the wave equation

(7.3) □g0.�!0/ � 2g
�1
0 .d�; d!0/ � !0□g0� � 4�g�10 .d!0; d 0/ D 0:

Proof. – We will focus the exposition on (7.2). (7.3) can be treated similarly.
Since� 0 is smooth, it suffices to show that (7.2) holds in the sense of distributions, i.e., we

want to show that for any � 2 C1
c .R2C1/,Z

R2C1
.□g0�/� 0

p
� detg0 dx„ ƒ‚ …

DWI

C
1

2

Z
R2C1

��e�4 0g�10 .d!0; d!0/
p
� detg0 dx„ ƒ‚ …

DWII

C

Z
R2C1

�
�
�2g�10 .d�; d 0/ �  0□g0�

�p
� detg0 dx„ ƒ‚ …

DWIII

D 0:

(7.4)
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We note that by assumption (4) of Theorem 4.1, @ n and @gn converge respectively to @ 0
and @g0 weakly in Lp0loc. Therefore, using also the locally uniform convergence of  n and gn
(in assumption (3) of Theorem 4.1), we obtain

(7.5) I C III D lim
n!C1

Z
R2C1

�
.□gn�/� n � 2�g

�1
n .d�; d n/ � � n□gn�

�p
� detgn dx:

For the term II in (7.4), we compute using the uniform convergence of  n and gn (on
compact sets) and Lemma 7.1. Note that Lemma 7.1 indeed applied to g�10 .d!n; d!n/
since by assumptions (3), (4) of Theorem 4.1 and Lemma 6.5, !n obeys the assumptions of
Lemma 7.1. Hence, we obtain

II D
1

2
lim

n!C1

Z
R2C1

��e�4 0g�10 .d!n; d!n/
p
� detg0 dx

D
1

2
lim

n!C1

Z
R2C1

��e�4 ng�1n .d!n; d!n/
p
� detgn dx:

(7.6)

Combining (7.5) and (7.6), we obtain

I C II C III D lim
n!C1

Z
R2C1

�
.□gn�/� n � 2�g

�1
n .d�; d n/ � � n□gn�

�p
� detgn dx

C
1

2
lim

n!C1

Z
R2C1

��e�4 ng�1n .d!n; d!n/
p
� detgn dx D 0;

(7.7)

where in the last line we have used the fact that for every n 2 N, the wave equation

□gn.� n/ � 2g
�1
n .d�; d n/ �  n□gn�C

1

2
�e�4 ng�1n .d!n; d!n/ D 0

holds. We have thus proven (7.4).

7.2. The limiting stress-energy-momentum tensor

Proposition 7.3. – There is a subsequencenk such that for every vector fieldY 2 C1
c .�/,Z

R2C1
Ric.g0/.Y; Y / dVolg0 D lim

k!C1

Z
R2C1

Œ2.Y nk /
2
C
1

2
e�4 nk .Y!nk /

2� dVolgnk :

Step 1: @i
n and .Hn/ij have strong subsequential L2loc limits. – In this step, we show that
on any fixed compact set, after choosing a subsequence nk , @i
nk and .Hnk /ij have strong

L2 limits. Since p0 2 .83 ;C1/, W
1;
p0
2

loc embeds compactly into L2loc (in .2C 1/ dimensions).
Therefore, it suffices to show that for any fixed compact set, @i
n and .Hn/ij are uniformly

bounded in W 1;
p0
2 . By assumptions, we already know that @i
n and .Hn/ij are uniformly

bounded in L
p0
2 (in fact also Lp0 ) on any compact set; we therefore need to show that the

same holds true for all first derivatives of @i
n and .Hn/ij . By (2.13), (2.14) and (2.15),�
n,

�N and ıik@k.Hn/ij are all uniformly bounded in L
p0
2 in any fixed compact set. Standard
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Lp elliptic theory (7) (applied for each fixed t ) implies that

@2ij 
n; @
2
ikN; @k.Hn/ij

are all uniformly bounded inL
p0
2 on any fixed compact set. Using the above, and also (2.17),

the assumptions of Theorem 4.1 and Hölder’s inequality, we also obtain that

@t .Hn/ij

is uniformly bounded in L
p0
2 on any fixed compact set. It remains to bound @t@i
n. For

this, first note that by (2.16), the assumptions of Theorem 4.1 and the above bounds, we see
that�ˇin is uniformly bounded inL

p0
2 on any fixed compact set. Elliptic theory then implies

that
@2jkˇ

i
n

is uniformly bounded in L
p0
2 on any fixed compact set. Now we use (2.5), take a spatial

derivative, and apply the above estimates. We see that

@t@i
n

is uniformly bounded in L
p0
2 on any fixed compact set. The above discussions imply that

indeed @i
n and .Hn/ij have strong subsequentialL2loc limits. We now turn to the expressions
for the Ricci tensor as given in (2.7), (2.8), (2.9) and (2.12). Notice that in each of the terms
which is quadratic in the first derivative of metric, there is at least one factor of @i
nk or
.Hnk /ij . By Step 1 and the Cauchy–Schwarz inequality, it follows that Ric.gnk / converges
to Ric.g0/ in the sense of distributions (where nk is the subsequence as in Step 1). By Step 2
and assumption (3) of Theorem 4.1, it follows that for any smooth vector field Y supported
in �, as k ! C1,Z

R2C1
Ric.gnk /.Y; Y / dVolgnk !

Z
R2C1

Ric.g0/.Y; Y / dVolg0 :

On the other hand, since . n; !n; gn/ satisfies (2.2) for all n 2 N, we know that for every nk 2 N,Z
R2C1

Ric.gnk /.Y; Y / dVolgnk D

Z
R2C1

Œ2.Y nk /
2
C
1

2
e�4 nk .Y!nk /

2� dVolgnk :

The conclusion follows.

Proof. – Proposition 7.4. – Let

(7.8) d� WD 2d� C
1

2
e�4 0 d�! :

Then the limiting metric g0 satisfiesZ
R2C1

Ric.g0/.Y; Y / dVolg0 D
Z
R2C1

�
2.Y 0/

2
C
1

2
e�4 0.Y!0/

2

�
dVolg0 C

Z
S�R2C1

.Y ˛�˛/
2 d�

(7) Note that Hn is traceless. In two (spatial) dimensions, this implies that a bound on the divergence of Hn also
gives a bound on the curl ofHn. Hence, we indeed have an elliptic estimate of the typeX

i;j;k

k@k.Hn/ij k
L
p0
2 .U1/

≲
X
j

kıik@k.Hn/ij k
L
p0
2 .U2/

C
X
i;j

k.Hn/ij k
L
p0
2 .U2/

for U1 � U2 � R2, each set being an open and precompact subset of the next set.
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for every vector field Y 2 C1
c .�/.

Proof. – Since  k and gk converge uniformly on compact sets, they in particular
converge uniformly on �. Therefore, taking nk as the subsequence in Proposition 7.3,

lim
k!C1

Z
R2C1

Œ2.Y nk /
2
C
1

2
e�4 nk .Y!nk /

2� dVolgnk

D lim
k!C1

Z
R2C1

Œ2.Y nk /
2
C
1

2
e�4 0.Y!nk /

2� dVolg0 :

Now using the fact that � � 1 on the support of Y and Corollary 6.4, we obtain

lim
k!C1

Z
R2C1

Œ2.Y nk /
2
C
1

2
e�4 0.Y!nk /

2� dVolg0

D

Z
R2C1

Œ2.Y 0/
2
C
1

2
e�4 0.Y!0/

2� dVolg0 C
Z
S�R2C1

.Y ˛�˛/
2 d�:

The desired conclusion therefore follows from Proposition 7.3.

7.3. Conclusion of the proof of Theorem 4.1

We now conclude the proof of Theorem 4.1:

Proof of Theorem 4.1. – First, d� is supported on f.x; �/ 2 S�M W g�10 .�; �/ D 0g in
view of Proposition 6.6.

To check that the three equations in (4.1) are verified, note that the first two equations
are verified due to Proposition 7.2 (and the fact that � D 1 on �), while the last equation is
verified thanks to Proposition 7.4.

Finally, using Proposition 4.4, we have completed the proof of Theorem 4.1.

8. Beginning of the proof of Theorem 4.2

From now on and for the remainder of the paper, we prove Theorem 4.2. We will there-
fore work under the assumptions of Theorem 4.2. The main goal from now on will be to
show that with the additional assumption (5) of Theorem 4.2, we can show moreover that the
measure d� satisfies a transport equation on� (where we have used the reduction in Propo-
sition 4.4).

From now on, unless otherwise stated, let A be a zeroth order pseudo-differential operator
with real symbol a.x; �/. Assume moreover that a.x; �/ is supported in S��.

We introduce now conventions that we will use for the remainder of the paper. We use the
convention that �n refers to the sequence of constants in assumption (5) of Theorem 4.2 with
K D �000 (cf. Section 4.1).
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From now on, we use the convention that for two non-negative quantities B1 and B2,
B1 ≲ B2 means there exists C > 0 depending potentially on T ,  0, !0, g0, �, �0, �00, �000

and A, but independent of n, such that

B1 � CB2:

We will also use the big-O and small-o conventions, i.e., for a non-negative quantity B
(depending on n) and a positive function f .n/ of n, B D O.f .n// means B ≲ C � f .n/,
while B D o.f .n// means B

f.n/
! 0 and n! C1.

In this section, we carry out various preliminary steps. In Section 8.1, we begin with
some convergence estimates for the derivatives of the metric which follow from the elliptic
equations (and are stronger than (4.3)). In Section 8.2, we discuss the freezing of coefficients,
which will be used in various places later. Finally, in Section 8.3, we discuss a reduction
allowing us to consider only a subclass of pseudo-differential operators A later.

8.1. Convergence of the derivatives of the metric components

Proposition 8.1. – Let e� be as in (4.7).

k@i .e�.
n � 
0//kL1 C k@i .e�.ˇjn � ˇ
j
0 //kL1 C k@i .e�.Nn �N0//kL1 ≲ �

1
2
n :

Proof. – In view of the elliptic equations (2.14), (2.15) and (2.16) satisfied by 
 ,N andˇj ,
it suffices to show that for smooth un; u0 W R3C1 ! R (n 2 N) such that

(8.1) ke�.un � u0/kL1 ≲ �n

and

(8.2) k�.e�.un � u0//kL1 ≲ 1;

we have k@i .e�.un � u0//kL1 ≲ �
1
2
n . This is a standard interpolation estimates; we include

below a proof for completeness.
Let ‚ W Œ0;C1/! R be a non-negative smooth cutoff function such that

‚ � 0; ‚.x/ D 1 for x 2 Œ0; 1�; ‚.x/ D 0 for x � 2:

For every fixed (8) t 2 R, we take the spatial Fourier transform Fspa and then decompose into
a low-spatial-frequency part and a high-spatial-frequency part as follows:

e�.un � u0/.t; �i / D F�1
spa‚.�

1
2
n j�i j/Fspa.e�.un � u0//.t; �i /„ ƒ‚ …

DWI

C F�1
spa.1 �‚.�

1
2
n j�i j//Fspa.e�.un � u0//.t; �i /„ ƒ‚ …

DWII

:

(8.3)

(8) Note that in fact for t … Œ0; T �, the term (8.3) vanishes.
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For the term I, we apply Bernstein’s inequality and (8.1) to obtain



@j �F�1
spa

�
‚.�

1
2
n j�i j/Fspa.e�.un � u0//.t; �i /��





L1
x

.t/ ≲ �
� 12
n ke�.un � u0/kL1

x
.t/ ≲ �

� 12
n �n D �

1
2
n :

Taking supremum over t implies the desired estimate for this term.
For the term II, define first Pspa;k the spatial standard Littlewood–Paley projection to

spatial frequency j�i j � 2k . Denote the corresponding Fourier multiplier by mLP .2�k�i /
where mLP is a radial smooth spatial function supported in an annulus.

Now note that for each fixed t 2 R and for each Littlewood–Paley piece,



@j �F�1
spa

�
.1 �‚.�

1
2
n j�i j//FspaPspa;k.e�.un � u0//.t; �i /��





L1
x

.t/

≲





F�1
spa

�
i�j

j�j2
.1 �‚.�

1
2
n j�i j//mLP .2

�k�i /Fspa .�.e�.un � u0/// .t; �i /�




L1
x

.t/

≲





F�1
spa

�
i�j

j�j2
mLP .2

�k�i /

�




L1x

k�.e�.un � u0//kL1
x
.t/

C





F�1
spa

�
i�j

j�j2
mLP .2

�k�i /

�




L1x





F�1
spa

�
‚.�

1
2
n j�i j/Fspa .�.e�.un � u0/// .t; �i /�





L1
x

.t/

≲ 2�k
�
1C kF�1

spa‚.�
1
2
n j�i j/kL1x

�
k�.e�.un � u0//kL1

x
.t/ ≲ 2�k k�.e�.un � u0//kL1

x
.t/≲ 2�k ;

where in the last estimate we used (8.2).

Now, summing up all the Littlewood–Paley pieces with 2k ≳ �
� 12
n , we obtain that for every

fixed t 2 R,



@j �F�1
spa

�
.1 �‚.�

1
2
n j�i j//Fspa.e�.un � u0//.t; �i /��





L1
x

.t/ ≲
X

kW2k≳�
� 1
2

n

2�k ≲ �
1
2
n :

Taking supremum over t then implies the desired estimate.

Proposition 8.2. – Let e� be as in (4.7).

k@t .e�.
n � 
0//kL1 ≲ �
1
2
n :

Proof. – This is an immediate consequence of (2.5) and the estimates in (4.2) and Propo-
sition 8.1.

8.2. Freezing coefficients

One trick that we will repeatedly use is to to freeze coefficients. This will be used in
Section 8.3, but will again be useful when we capture some trilinear cancellations; see already
Section 11. In this subsection, we will introduce some relevant notations and prove some
basic estimates.

Fix some "0 2 .16 ;
1
2
/ (for the remainder of the paper). For each n 2 N, choose finitely many

(spacetime) balls of radius �"0n (with respect to the .t; x1; x2/ coordinates), labeled by fB˛g˛
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so that �0 �
S
˛ B˛ �

S
˛ B˛ � �00 (cf. Section 4.1). Note that this gives O.��3"0n / balls,

each with volume O.�3"0n /. Introduce a partition of unity f�3˛g˛ adapted to these balls so
that supp.�˛/ � B˛ and X

˛

�3˛ D 1 on �0:

Due to the choice of B˛, �˛ can be chosen so that for every r 2 Œ1; 2�,

(8.4) k@k�r˛kL1 ≲ ��k"0n ; k D 0; 1; 2; 3:

The following is an immediate consequence of mean value theorem:

Proposition 8.3. – Let b W �00 ! R be a C 1 function. Then for every fixed n 2 N and
fixed ˛ as above, there exist constants bc;˛ (depending on ˛) such that (with implicit constants
depending on the C 1 norm of b but independent of n or ˛)

kb � bc;˛kL1.B˛/ ≲ �
"0
n :

Moreover, the constants satisfy
sup
˛

jbc;˛j ≲ 1:

In particular, for every ˛, there exist uniformly bounded constants Nc;˛, ˇic;˛ and 
c;˛
(depending on ˛) such that

k logN0 � logNc;˛kL1.B˛/ C kˇi0 � ˇ
i
c;˛kL1.B˛/ C k
0 � 
c;˛kL1.B˛/ ≲ �

"0
n :

Proposition 8.4. – For every ˛, every r 2 Œ1; 2� and every p 2 Œ1;C1�,

k@k.�r˛�. n �  0//kLp ≲ �
1�kC

3"0
p

n ; k D 0; 1; 2; 3;(8.5)

k@�.�
r
˛�. n �  0// � �

r
˛@�.�. n �  0//kLp ≲ �

1C"0.�1C
3
p /

n ;(8.6)

k@2��.�
r
˛�. n �  0// � �

r
˛@
2
��.�. n �  0//kLp ≲ �

"0.�1C
3
p /

n :(8.7)

Similarly, for every ˛, every r 2 Œ1; 2� and every p 2 Œ1;C1�,

k@k.�r˛�.!n � !0//kLp ≲ �
1�kC

3"0
p

n ; k D 0; 1; 2; 3;

k@�.�
r
˛�.!n � !0// � �

r
˛@�.�.!n � !0//kLp ≲ �

1C"0.�1C
3
p /

n ;

k@2��.�
r
˛�.!n � !0// � �

r
˛@
2
��.�.!n � !0//kLp ≲ �

"0.�1C
3
p /

n :

Proof. – We will only discuss (8.5)–(8.7); the remaining bounds can be derived in an
identical manner.
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Step 1: Proof of (8.5). – By (4.2), (4.3), (4.4) and (8.4), and using "0 < 1
2

, we have, for k D

0; 1; 2; 3,
k@k.�r˛�.!n � !0//kL1 ≲ �1�kn :

Now since supp.@k.�r˛�. n� 0/// � B˛, andB˛ has volumeO.�3"0n /, we obtain the desired
conclusion for all p 2 Œ1;C1�.

Step 2: Proof of (8.6) and (8.7). – The proof of (8.6) and (8.7) is similar to that of (8.5) except
in this case we are computing the commutator so at least one derivative hits on �r˛. This results
in the better bounds.

Proposition 8.5. – For every ˛, for p 2 Œ1;C1� and for g 2 flogN; ˇj ; 
g,

k�˛.gn�g0/kLp ≲ �
1C

3"0
p

n ; k@.�˛.gn�g0//kLp ≲ �
3"0
p
n ; k@2.�˛.gn�g0/kLp ≲ �

�1C
3"0
p

n ;

k@i .�˛.gn � g0//kLp ≲ �
1
2C

3"0
p

n ; k�.�˛.gn � g0//kLp ≲ �
3"0
p
n :

Proof. – The estimates for @k.�˛.gn�g0// (k D 0; 1; 2) are similar to Proposition 8.4; we
omit the details.

The last two estimates assert that there is an improvement associated to spatial derivative.
First, using Proposition 8.1 (which is applicable since supp.�˛/ � �00), (8.4), (4.2) and
"0 <

1
2

, we obtain

k@i .�˛.gn � g0//kL1 ≲ maxf�1�"0n ; �
1
2
n g ≲ �

1
2
n :

(Here, the �1�"0n error arises when the derivative acts on �˛, while the �
1
2
n error arises when

the derivatives acts on gn � g0.) Taking the Lp norm over B˛ yields the desired claim for all
p 2 Œ1;C1�.

Finally, using the equations (2.14)–(2.16) (which together with (4.2) and (4.3) give an L1

bound for �
n, � logNn and �ˇjn ), the estimates in (4.2), (4.3), Proposition 8.1, (8.4) and
"0 <

1
2

, we obtain

k�.�˛.gn � g0//kL1 ≲ maxf�1�2"0n ; �
1
2�"0
n ; 1g ≲ 1:

As before, taking the Lp norm over B˛ yields the desired claim for all p 2 Œ1;C1�.

One important consequence of freezing the coefficients is that in every B˛, the □g0 oper-
ator is comparable to a constant coefficient operator:

Proposition 8.6. – For every ˛, let e□c;˛ be the constant coefficient second order differen-
tial operator defined by

e□c;˛ WD �
1

N 2
c;˛

.@t � ˇ
i
c;˛@i /.@t � ˇ

j
c;˛@j /C e�2
c;˛ık`@2k`;

where the constants Nc;˛, ˇic;˛ and 
c;˛ are defined in Proposition 8.3 (cf. (2.18)).
Then, for every ˛, for every n 2 N and for every p 2 Œ1;C1�,

k@ke□c;˛.�˛�. n �  0//kLp ≲ ��1�kC"0n � �
3"0
p
n ; k D 0; 1; 2:
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Similarly, for every ˛, for every n 2 N and for every p 2 Œ1;C1�,

k@ke□c;˛.�˛�.!n � !0//kLp ≲ ��1�kC"0n � �
3"0
p
n ; k D 0; 1; 2:

Proof. – We will only prove the estimates for n� 0; the estimates for!n�!0 are similar
and will be omitted.

First, notice that after using the first equation in (2.2) and the bounds (4.2)–(4.4) in a
similar (but easier) argument as in the proof of Lemma 6.5, we obtain

(8.8) k@k□g0.�. n �  0//kL1 ≲ ��kn ; k D 0; 1; 2:

Next, we compute

□g0 � e□c;˛
D�

� 1

N 2
0

�
1

N 2
c;˛

�
@2t C 2

� ˇi0
N 2
0

�
ˇic;˛

N 2
c;˛

�
@2ti C

h
.e�2
 � e�2
c;˛ /ıij � .

ˇi0ˇ
j
0

N 2
0

�
ˇic;˛ˇ

j
c;˛

N 2
c;˛

/
i
@2ij

C
1p

� detg0

h
@�..g

�1
0 /��

p
� detg0/

i
@� :

(8.9)

Therefore, it follows that by (8.8), Propositions 8.3 and 8.4 and (4.2)–(4.4), we have

k�˛@
ke□c;˛.�. n �  0//kLp
≲ k�˛@

k□g0.�. n �  0//kLp C k�˛@
k Œ.□g0 � e□c;˛/.�. n �  0//�kLp

≲ ��kn � �
3"0
p
n C ��k�1C"0n � �

3"0
p
n ≲ ��k�1C"0n �

3"0
p
n ; k D 0; 1; 2:

(8.10)

Here, �
3"0
p
n comes from the volume of the support of �˛. For the @k□g0.�. n �  0// term,

we applied (8.8). For the main @k Œ.□g0 � e□c;˛/.�. n �  0//� term, when there are k C 2

derivatives (which is the maximum possible) hitting on  n �  0, we use the expression (8.9)
together with the bounds in Propositions 8.3 and 8.4; when fewer derivatives hit on  n� 0,
this is slightly easier.

Finally, since "0 < 1, when k D 0; 1; 2, the following commutator can be estimated above
by

k@kC2�1����kC2
.�˛�. n �  0// � �˛@

kC2
�1����kC2

.�. n �  0//kLp

≲
kC1X
`D0

k.@kC2�`�˛/.@
`.�. n �  0///kLp ≲

kC1X
`D0

��.kC2�`/"0n �1�`n �
3"0
p
n ≲ ��k�"0n �

3"0
p
n :

(8.11)

Therefore, by (8.10) and (8.11), we obtain that for k D 0; 1; 2,

k@ke□c;˛.�˛�. n �  0//kLp ≲ ��k�1C"0n �
3"0
p
n C ��k�"0�

3"0
p
n ≲ ��k�1C"0n �

3"0
p
n ;

where in the last estimate we used "0 < 1
2

.
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8.3. Main preliminary reduction

Proposition 8.7. – Let a.x; �/ D b.x/m.�/. Suppose m.�/ is homogeneous of order 0
and is odd, i.e., m.�/ D �m.��/ for all � 2 R3. ThenZ

S�R2C1

�
.g�10 /˛ˇ �ˇ@x˛ .

.�t � ˇ
i
0�i /a

N0
/ �

1

2
.@�g

�1
0 /˛ˇ �˛�ˇ@��.

.�t � ˇ
i
0�i /a

N0
/
� d� 

j�j2
D 0

andZ
S�R2C1

e�4 0
�
.g�10 /˛ˇ �ˇ@x˛ .

.�t � ˇ
i
0�i /a

N0
/ �

1

2
.@�g

�1
0 /˛ˇ �˛�ˇ@��.

.�t � ˇ
i
0�i /a

N0
/
� d�!

j�j2
D 0:

Proof. – We will only prove the first equality as the second one can be achieved in an
identical manner.

It is easy to check that 1
j�j2
.g�10 /˛ˇ �ˇ@x˛ .

.�t�ˇ
i
0
�i /a

N0
/ and 1

j�j2
.@�g

�1
0 /˛ˇ �˛�ˇ@��.

.�t�ˇ
i
0
�i /a

N0
/

are both odd in �. In particular, these terms can be written as a finite sum of terms of the
form f .x; �/ D b.x/m.�/, where m.�/ is homogeneous of degree 0 and odd.

It therefore suffices to show that for every such f .x; �/ D b.x/m.�/,Z
S�R2C1

f .x; �/ d� D 0:

Equivalently, since �t �ˇi0�i ¤ 0 on the support of d� (by Proposition 6.6 and the form of
the metric), it suffices to show that for f .x; �/ D b.x/m.�/ as above,

(8.12)
Z
S�R2C1

f .x; �/
.�t � ˇ

i
0�i /

2

j�j2
d� D 0:

To proceed, given b as above, we freeze the coefficients as in Proposition 8.3 and find
constants fbc;˛g˛ adapted to the partition of unity introduced in Section 8.2 so that the
conclusion of Proposition 8.3 holds.

Then, using Corollary 6.4,
P
˛ �

3
˛ D 1, Propositions 8.3, 8.4, (4.2) and (4.3), the LHS of

(8.12) can be expressed as follows:

LHS of (8.12) D lim
n!C1

Z
R2C1

.@t � ˇ
i
0@i /.�. n �  0//b m.

1

i
r/.@t � ˇ

i
0@i /.�. n �  0// dx

D

X
˛

lim
n!C1

Z
R2C1

�3˛.@t � ˇ
i
0@i /.�. n �  0//b m.

1

i
r/.@t � ˇ

i
0@i /.�. n �  0// dx

D

X
˛

bc;˛ lim
n!C1

Z
R2C1

.@t � ˇ
i
0@i /.�

3
2
˛ �. n �  0//m.

1

i
r/.@t � ˇ

i
0@i /.�

3
2
˛ �. n �  0// dx:

(8.13)

Taking Fourier transform and using that m, �˛, �. n �  / are real, we obtain

RHS of (8.13) D
X
˛

bc;˛ lim
n!C1

Z
R2C1

.�t � ˇ
i
0�i /

2
̂

.�
3
2
˛ �. n �  0//.�/m.�/

̂
.�
3
2
˛ �. n �  0//.�/ d�

D

X
˛

bc;˛ lim
n!C1

Z
R2C1

.�t � ˇ
i
0�i /

2
̂

.�
3
2
˛ �. n �  0//.��/m.�/

̂
.�
3
2
˛ �. n �  0//.�/ d�:

(8.14)
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Since m is odd, a simple change of variable � 7! �� shows that the last line in (8.14) also
equals

�

X
˛

bc;˛ lim
n!C1

Z
R2C1

.�t � ˇ
i
0�i /

2
̂

.�
3
2
˛ �. n �  0//.��/m.�/

̂
.�
3
2
˛ �. n �  0//.�/ d�:

This then implies that the term is identically zero as desired.

Proposition 8.8. – Let d� D 2d� C
1
2
e�4 0 d�! . Suppose the following holds for all

a.x; �/ D b.x/m.�/ with b, m smooth, real, m homogeneous of order 0 and m even:
(8.15)Z

S�R2C1
..g�10 /˛ˇ �ˇ@x˛ .

.�t � ˇ
i
0�i /a

N0
/ �

1

2
.@�g

�1
0 /˛ˇ �˛�ˇ@��.

.�t � ˇ
i
0�i /a

N0
//

d�
j�j2

D 0:

Then in fact (8.15) holds for all smooth real a.x; �/ which are homogeneous of order 0.

Proof. – By a standard density argument using the Stone–Weierstrass theorem we can
reduce to the case where a.x; �/ takes the form a.x; �/ D

P
finite bk.x/mk.�/. It therefore

suffices to consider a.x; �/ D b.x/m.�/. Decompose m into its odd and even parts. Propo-
sition 8.7 shows that the odd part must give a zero contribution to (8.15). The conclusion
follows.

From now on we assume that a.x; �/ D b.x/m.�/ and that b.x/ is real and m.�/ is
real and even. Moreover, we will take A to be a 0-th order pseudo-differential operator
A D b.x/em.1

i
r/, where em.�/ is a smooth real-valued even function such that em.�/ D m.�/

for j�j � 1.

One consequence of the evenness assumption is the following.

Proposition 8.9. – Let A D b.x/em.1
i
r/, where b.x/ is real, em.�/ is real and even

and agrees with a real, even, homogeneous of order 0 m.�/ for j�j � 1. Then for any real
function � 2 L2, we have A� 2 L2 and A�� 2 L2 are both real (where A� D em.1

i
r/b.x/

denotes the L2-adjoint of A).

Proof. – It suffices to show that em.1
i
r/� is real. First, since � is real, we haveb�.�/ D b�.��/. Hence,

̂hem.1
i
r/�

i
.�/ D em.�/b�.�/ D em.�/b�.��/ D em.��/b�.��/ D ̂hem.1

i
r/�

i
.��/:

This implies that em.1
i
r/� is real.
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9. Energy identities

We continue to work under the assumptions of Theorem 4.2 and the reductions
in Sections 4.1 and 8.3. Let A be a 0-th order pseudo-differential operator given by
A D b.x/em.1

i
r/, where the principal symbol a.x; �/ D b.x/m.�/ (with m.�/ D em.�/

for j�j � 1) is real and supported in T ��, m.�/ is homogeneous of order 0, and m and em
are both even.

In this section, we derive the main energy identities that will be used to prove the transport
equation for the microlocal defect measure. We first introduce some notations in Section 9.1.
In Section 9.2 and Section 9.3, we will then derive respectively energy identities using the
equations satisfied by . 0; !0/ and . n; !n/.

9.1. Definitions of □g0;A and □gn;A

Using (2.18) for the metric g0, we obtain

□g0� D �
e�2
0

N0
@t
�e2
0
N0

.e0/0�
�
C
e�2
0

N0
@i
�ˇi0e2
0
N0

.e0/0�
�
C
e�2
0

N0
ıij @i

�
N0@j�

�
:(9.1)

Similarly,

□gn� D �
e�2
n

Nn
@t .
e2
n

Nn

�
e0/n�

�
C
e�2
n

Nn
@i
�ˇine2
n
Nn

.e0/n�
�
C
e�2
n

Nn
ıij @i

�
Nn@j�

�
:(9.2)

Define the operator □g0;A by

□g0;A� D �
e�2
0

N0
@t Œe

2
0A.
.e0/0�

N0
/�C

e�2
0

N0
@i
�
ˇi0e

2
0A.
.e0/0�

N0
/
�
C
e�2
0

N0
ıij @i

�
N 2
0A.

@j�

N0
/
�
:

(9.3)

Similarly, for every n 2 N, define the operator □gn;A by

□gn;A� D �
e�2
n

Nn
@t
�
e2
nA.

.e0/n�

Nn
/
�
C
e�2
n

Nn
@i
�
ˇine

2
nA.
.e0/n�

Nn
/
�
C
e�2
n

Nn
ıij @i

�
N 2
nA.

@j�

Nn
/
�
:

(9.4)

9.2. Energy identities for . 0; !0/

We first derive some energy identities by directly integrating by parts. One can view these
as analogues of the standard energy identities for the wave map system for . ; !/ with
multiplier e0

N0
, though now we also need to take into account the contribution of the pseudo-

differential operator A.
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Proposition 9.1. – The following identities hold:

Z
R2C1

.e0/0.� 0/

N0
□g0;A.� 0/ dVolg0 C

Z
R2C1

A
� .e0/0.� 0/

N0

�
□g0.� 0/ dVolg0

D�

Z
R2C1

.e0/0.� 0/

N0
.@te

2
0/A
� .e0/0.� 0/

N0

�
dx C

Z
R2C1

.e0/0.� 0/

N0
.@i .ˇ

i
0e
2
0//A

� .e0/0.� 0/
N0

�
dx

C

Z
R2C1

N0@i .� 0/ı
ij
n
ŒA; @j �.

.e0/0.� 0/

N0
/
o

dx C

Z
R2C1

Œ@i .� 0/�ı
ijN0

n
Œ.e0/0; A�.

@j .� 0/

N0
/
o

dx

�

Z
R2C1

Œ@i .� 0/�ı
ij .@kˇ

k
0 /N0

h
A.
@j .� 0/

N0
/
i

dx C

Z
R2C1

Œ@i .� 0/�ı
ij Œ.e0/0N0�

h
A.
@j .� 0/

N0
/
i

dx

C

Z
R2C1

h
@i .� 0/�ı

ijN0ŒA.
..e0/0.� 0//.@jN0/

N 2
0

C
.@jˇ

k
0 /@k.� 0/

N0
�
..e0/0N0/@j .� 0/

N 2
0

/
i

dx

C

Z
R2C1

.@iˇ
k
0 /Œ@k.� 0/�ı

ijN0

h
A.
@j .� 0/

N0
/
i

dx C

Z
R2C1

Œ.e0/0.� 0/�.@iN0/ı
ij
h
A.
@j .� 0/

N0
/
i

dx;

(9.5)

and

1

4

Z
R2C1

e�4 0
.e0/0.�!0/

N0
□g0;A.�!0/ dVolg0 C

1

4

Z
R2C1

e�4 0A.
.e0/0.�!0/

N0
/□g0.�!0/ dVolg0

D
1

4

Z
R2C1

e�4 0
n
�
.e0/0.�!0/

N0
.@te

2
0/A.
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/
o
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4

Z
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e�4 0
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ijN0
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/
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�
1

4

Z
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e�4 0
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Œ@i .�!0/�ı

ij .@kˇ
k
0 /N0ŒA.

@j .�!0/

N0
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e�4 0 Œ@i .�!0/�ı
ijN0

h
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..e0/0.�!0//.@jN0/

N 2
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C
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k
0 /@k.�!0/

N0
�
..e0/0N0/@j .�!0/

N 2
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C
1

4

Z
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e�4 0
n
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k
0 /Œ@k.�!0/�ı

ijN0ŒA.
@j .�!0/

N0
/�C Œ.e0/0.�!0/�.@iN0/ı

ij ŒA.
@j .�!0/

N0
/�
o
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�

Z
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e�4 0e2
0..e0/0 0/
.e0/0.�!0/

N0
A
� .e0/0.�!0/

N0

�
dx

C

Z
R2C1

e�4 0ıijN0.@i 0/Œ.e0/0.�!0/�
h
A.
@j .�!0/

N0
/
i

dx

�

Z
R2C1

e�4 0..e0/0 0/Œ@i .�!0/�ı
ijN0

h
A.
@j .�!0/

N0
/
i

dx

C

Z
R2C1

e�4 0.@j 0/Œ@i .�!0/�ı
ijN0A

� .e0/0.�!0/
N0

�
dx:

(9.6)

Here, we recall the definition of □g0;A in (9.3).
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Proof. – We first prove (9.5). Consider each term in (9.3) and integrate by parts to obtain
the following three identities.

�

Z
R2C1

.e0/0.� 0/

N0
@t
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e2
0A.

.e0/0.� 0/
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dx
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dx �

Z
R2C1

.e0/0.� 0/

N0
.@te

2
0/A
� .e0/0.� 0/

N0

�
dx

D

Z
R2C1

@t

�
e2
0

.e0/0.� 0/

N0

�h
A.
.e0/0.� 0/

N0
/
i

dx �

Z
R2C1

.e0/0.� 0/

N0
.@te

2
0/A
� .e0/0.� 0/

N0

�
dx:

(9.7)
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(9.8)
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(9.9)
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Combining (9.7)–(9.9), and recalling (9.1) and (9.3), we obtain (9.5).

Now the proof of (9.6) is similar, except that since there is an e�4 0 weight, we need to
handle the extra (four) terms arising from differentiating e�4 0 . We omit the details.

Using the equations derived in Proposition 7.2, we obtain the following energy identities,
which give different ways of expressing (9.5) and (9.6).

Proposition 9.2. – Let

F
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(9.10)

Similarly, let
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(9.11)

Proof. – This is an obvious consequence of □g0.� 0/ D F
 
0 and □g0.�!0/ D F !0

(which holds by Proposition 7.2).

9.3. Energy identities of . n; !n/

We now derive analogues of Propositions 9.1 and 9.2 with . 0; !0/ replaced by . n; !n/.
The results are given in Proposition 9.3 and 9.4 below. Since the proofs are essentially the
same as those for Propositions 9.1 and 9.2, they are omitted.
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Proposition 9.3. – We have
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(9.12)
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and
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(9.13)

Proposition 9.4. – Let

F  n WD 2g�1n .d�; d n/C  n□gn� �
1

2
�e�4 ng�1n .d!n; d!n/:
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ThenZ
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(9.14)

Similarly, let
F !n D 2g�1n .d�; d!n/C !n□gn�C 4�g�1n .d!n; d n/:
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(9.15)

Our goal now is to compute the limit of the RHS of (9.12), (9.13), (9.14) and (9.15)
as n! C1 (allowing possibly passing to a subsequence). We then compare the resulting
expression with the RHS of (9.5), (9.6), (9.10) and (9.11) to derive an equation for d�. This
task will be the goal of Sections 10–13 below.

10. Terms in Proposition 9.3

We continue to work under the assumptions of Theorem 4.2 and the reductions in
Sections 4.1 and 8.3. As above, let A be a 0-th order pseudo-differential operator given
by A D b.x/em.1

i
r/, where the principal symbol a.x; �/ D b.x/m.�/ (with m.�/ D em.�/

for j�j � 1) is real and supported in T ��, m.�/ is homogeneous of order 0, and m and em
are both even.

Our goal in this section is to compute the limit (as n! C1) of the terms on the RHSs of
(9.12) and (9.13) in Proposition 9.3. We will focus mainly on (9.12). The terms in (9.13) can be
treated mostly in a similar manner; we will explain the additional details in Proposition 10.5.
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The terms on the RHS of (9.12) labeled as “easy” will be treated in Section 10.1. The terms
on RHS of (9.12) labeled as “medium” will then be treated in Section 10.2. Note that the
“hard” terms will not be dealt with but need to be combined with other terms later. We then
conclude the section in Section 10.3.

10.1. The easier terms

Proposition 10.1. – As n! C1, for easyi being the terms in (9.12),

8X
iD1

easyi ! corresponding terms on the RHS of (9.5)

� 2

Z
S�R2C1

�
.g�10 /˛ˇ .@ˇX


 /�˛�
 �
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2
X�@�.g

�1
0 /˛
�˛�


�
a
d� 

j�j2

C

Z
S�R2C1

h
� ıij �i .�t � ˇ

k
0 �k/@xj a

i e�2
0
N0

d� 

j�j2
;

where X D
1
N0
.@t � ˇ

i
0@i /.

Proof. – Step 1: Taking limits for the metric quantities. – In all the “easyi” terms for i ¤ 3,
note that we have the appearance of the metric components 
n, logNn, ˇjn and the following
derivatives @i
n, @i logNn, @iˇ

j
n and @t
n. In other words, there are no appearances of @tˇ

j
n

and @t logNn.

Therefore, by the estimates in (4.2) and (4.3) and the convergence statements for @i
n,
@i logNn, @iˇ

j
n and @t
n in Propositions 8.1 and 8.2, all the easyi terms have the same limit

(as n ! C1) if we replace all the .
n; logNn; ˇ
j
n/ by .
0; logN0; ˇ

j
0 /. (Notice that we can

apply Propositions 8.1 and 8.2 here disregarding the factors e� because e� � 1 on supp.�/.)
For instance,

�

Z
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.e0/n.� n/

Nn
.@te

2
n/A.
.e0/n.� n/

Nn
/ dx

C

Z
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.e0/0.� n/

N0
.@te

2
0/A.
.e0/0.� n/

N0
/ dx ! 0:

Similarly for other “easyi” terms with i ¤ 3.

The i D 3 term is also similar. We only need to note additionally by Lemmas 5.2.2 and
5.2.4 ŒA; @j � is a bounded L2 ! L2 operator independent of n. Hence,Z

R2C1
Nn@i .� n/ı

ij
fŒA; @j �.

.e0/n.� n/

Nn
/g dx

�

Z
R2C1

N0@i .� n/ı
ij
fŒA; @j �.

.e0/0.� n/

N0
/g dx ! 0:

Step 2: Using the microlocal defect measures. – After the reduction in Step 1, we now use
Corollary 6.4 to take the n ! C1 limits. We treat the i ¤ 3 (Step 2(a)) and i D 3 cases
(Step 2(b)) separately.
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Step 2(a): All terms except for easy3. – Consider now the sum
P
1�i�8
i¤3

easyi . Using

Step 1, Corollary 6.4, and recalling that dx D
1p

�detg0
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(10.1)

We now use the fact that 1
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Proposition 6.6) to derive
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(10.2)
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(10.3)
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Subtracting (10.4) from (10.3), it follows that

.g�10 /˛ˇ .@ˇX

 /�˛�
 �

1

2
X�@�.g

�1
0 /˛
�˛�


D �
1

N 2
0

e�2
0ıij .@iN0/�j .�t � ˇ
k
0 �k/ �

1

N0
e�2
0ıij .@iˇ

k
0 /�j �k

C
1

2

e�4
0

N0
..@t � ˇ

k
0@k/e

2
0/ıij �i�j :

By inspection, we have proven that
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Step 2(b): The term easy3. – By Lemma 5.2.2, ŒA; @j � is a 0-th order pseudo-differential
symbol with principal symbol

�ifa; i�j g D �@xj a:
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Together with Step 1, this gives the desired limit.

4 e SÉRIE – TOME 57 – 2024 – No 2



TRILINEAR COMPENSATED COMPACTNESS AND BURNETT’S CONJECTURE 437

10.2. The not-so-easy terms

Proposition 10.2. – The following holds after passing to a subsequence (which we do not
relabel):
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Proof. – Using (4.2) and (4.3), it is easy to see that the first two terms in (10.5) have the
same limit asZ
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To prove (10.6), we need to rely further on the structure of the terms. We begin with the
following algebraic manipulation.
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We first consider I C II. Note that by Proposition 8.9, A�.Œ@i .�. n �  0//�N0/ is real.
Therefore,
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Now bothA��A and ŒA;N 2
0 � are pseudo-differential operators of order�1 by Lemmas 5.2.2

and 5.2.3 (and the fact that a is real). Lemma 5.2.5 then implies that after passing to a
subsequence, both .A��A/.Œ@i .�. n� 0//�N0/ and ŒA;N 2

0 �.
@i .�. n� 0//

N0
/ converge strongly

in the L2 norm. Since the strong limit must coincide with the weak limit, the L2 limit is in
factD 0. The Cauchy–Schwartz inequality then implies that (up to passing to a subsequence)
I C II ! 0.

For the terms III and IV, we show that they separately tend to 0. To show each of
these convergences, it suffices to show that ..e0/0.Nn � N0//@j .�. n �  0// converges
to 0 weakly in L2, i.e., the weak limit of the product coincides with the product of the
weak limits. This can be viewed as a compensated compactness result: the key is that even
though .e0/0.Nn �N0/ does not have a strong limit, we can integrate by parts to take
advantage of the fact that @i .Nn�N0/ converges locally uniformly to 0. More precisely, take
# 2 C1

c .R2C1/ (which we can do by a density argument). We then computeZ
R2C1

#..e0/0.Nn �N0//@j .�. n �  0// dx

D �

Z
R2C1

#.Nn �N0/.e0/0@j .�. n �  0// dx

C

Z
R2C1

Œ�.e0/0# C #.@iˇ
i
0/�.Nn �N0/@j .�. n �  0// dx

D

Z
R2C1

Œ.@j#/.Nn �N0/C #@j .Nn �N0/�.e0/0.�. n �  0// dx

�

Z
R2C1

#.Nn �N0/.@jˇ
i
0/@i .�. n �  0// dx

C

Z
R2C1

Œ�.e0/0# C #.@iˇ
i
0/�.Nn �N0/@j .�. n �  0// dx:

By virtue of (4.2), (4.3) and Proposition 8.1, this ! 0.

Finally, V and VI both ! 0 by virtue of the fact that ..e0/0.Nn �N0// converges weakly
in L2 to 0. We thus conclude the proof of (10.6).
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Proposition 10.3. – We haveZ
R2C1

Œ@i .� n/�ı
ij Œ.e0/nNn�

h
A.
@j .� n/

Nn
/
i

dx

�

Z
R2C1

Œ@i .� n/�ı
ijN0A

� ..e0/nNn/@j .� n/
N 2
n

�
dx

!

Z
R2C1

Œ@i .� 0/�ı
ij Œ.e0/0N0�

h
A.
@j .� 0/

N0
/
i

dx

�

Z
R2C1

Œ@i .� 0/�ı
ijN0A

� ..e0/0N0/@j .� 0/
N 2
0

�
dx:

Proof. – By Corollary 6.4,

�

Z
R2C1

Œ@i .� n/�ı
ij Œ.e0/0N0�

h
A.
@j .� n/

N0
/
i

dx

C

Z
R2C1

Œ@i .� n/�ı
ijN0A

� ..e0/0N0/@j .� n/
N 2
0

�
dx

! �

Z
S�R2C1

e�2
0..e0/0N0/

N 2
0

aıij �i�j
d� 

j�j2

C

Z
S�R2C1

e�2
0..e0/0N0/

N 2
0

aıij �i�j
d� 

j�j2
D 0:

The result therefore follows from Proposition 10.2.

10.3. Putting everything together

We summarize what we have obtained in this section.

Proposition 10.4. – Suppose A D b.x/em.1
i
r/, where the principal symbol is real

and supported in T ��, and m.�/ is homogeneous of order 0 and is even. After passing to a
subsequence (which we do not relabel),

RHS of (9.12) �
Z
R2C1

Œ@i .� n/�ı
ijNn

n
Œ.e0/n; A�.

@j .� n/

Nn
/
o

dx

! RHS of (9.5) �
Z
R2C1

Œ@i .� 0/�ı
ijN0

n
Œ.e0/0; A�.

@j .� 0/

N0
/
o

dx

� 2

Z
S�R2C1

�
.g�10 /˛ˇ .@ˇX


 /�˛�
 �
1

2
X�@�.g

�1
0 /˛
�˛�


�
a
d� 

j�j2

C

Z
S�R2C1

h
� ıij �i .�t � ˇ

k
0 �k/@xj a

i e�2
0
N0

d� 

j�j2
;

where X D
1
N0
.@t � ˇ

i
0@i /.

We have a similar result regarding the limit of the RHS of (9.13).
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Proposition 10.5. – Suppose A D b.x/m.1
i
r/, where the principal symbol is real

and supported in T ��, and m.�/ is homogeneous of order 0 and is even. After passing to a
subsequence (which we do not relabel),

RHS of (9.13) �
1

4

Z
R2C1

e�4 0 Œ@i .�!n/�ı
ijNn

n
Œ.e0/n; A�.

@j .�!n/

Nn
/
o

dx

! RHS of (9.6) �
1

4

Z
R2C1

e�4 0 Œ@i .�!0/�ı
ijN0

n
Œ.e0/0; A�.

@j .�!0/

N0
/
o

dx

�
1

2

Z
S�R2C1

e�4 0
�
.g�10 /˛ˇ .@ˇX


 /�˛�
 �
1

2
X�@�.g

�1
0 /˛
�˛�


�
a
d�!

j�j2

C
1

4

Z
S�R2C1

e�4 0
h
� ıij �i .�t � ˇ

k
0 �k/@xj a

i e�2
0
N0

d�!

j�j2

C 2

Z
S�R2C1

e�4 0

N0
.g�10 /˛ˇ .@˛ 0/�ˇ .�t � ˇ

k
0 �k/a

d�!

j�j2
;

where X D
1
N0
.@t � ˇ

i
0@i /.

Proof. – Except for the terms labeled “extra1”–“extra4,” all the other terms in (9.13) have
their obvious analogues in (9.12). We thus only focus on the terms “extra1”–“extra4”.

Using (4.2) and Corollary 6.4, it immediately follows that

4X
iD1

extrai ! corresponding terms on RHS of (9.6)

�

Z
S�R2C1

e�4 0
h ..e0/0 0/

N 3
0

.�t � ˇ
k
0 �k/

2
C
e�2
0..e0/0 0/

N0
ıij �i�j

i
a

d�!

j�j2

C 2

Z
S�R2C1

e�4 0
he�2
0.@i 0/

N0
ıij .�t � ˇ

k
0 �k/�j

i
a

d�!

j�j2
:

(10.7)

Note that by Proposition 6.6, on the support of d�! ,

(10.8)
1

N 2
0

.�t � ˇ
k
0 �k/

2
D e�2
0ıij �i�j :

Hence, a direct computation shows that on the support of d�! ,

2

N0
.g�10 /˛ˇ .@˛ 0/�ˇ .�t � ˇ

k
0 �k/

D �
2

N 3
0

..e0/0 0/.�t � ˇ
k
0 �k/

2
C
2e�2
0

N0
ıij .@i 0/.�t � ˇ

k
0 �k/�j

D �
1

N 3
0

..e0/0 0/.�t � ˇ
k
0 �k/

2
�
e�2
0

N0
..e0/0 0/ı

ij �i�j C
2e�2
0

N0
ıij .@i 0/.�t � ˇ

k
0 �k/�j :

(10.9)

Therefore, using the computations leading to Proposition 10.4 and also (10.7) and (10.9),
we obtain the desired conclusion.
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Let us again emphasize that we have not handled the termsZ
R2C1

Œ@i .� n/�ı
ijNnfŒ.e0/n; A�.

@j .� n/

Nn
/g dx

and
1

4

Z
R2C1

e�4 0 Œ@i .�!n/�ı
ijNnfŒ.e0/n; A�.

@j .�!n/

Nn
/g dx:

They are considerably more difficult: not only do we need to use a version of trilinear
compensated compactness, but we will also need to combine this with appropriate terms on
the RHS of (9.14) and (9.15) to obtain extra cancellations.

11. The main commutator terms in Proposition 9.4
and the elliptic-wave trilinear compensated compactness

We continue to work under the assumptions of Theorem 4.2 and the reductions in
Sections 4.1 and 8.3. As above, let A be a 0-th order pseudo-differential operator given
by A D b.x/em.1

i
r/, where the principal symbol a.x; �/ D b.x/m.�/ (with m.�/ D em.�/

for j�j � 1) is real and supported in T ��, m.�/ is homogeneous of order 0, and m and em
are both even.

Our goal in this section is to compute the limit of the term labeled “maincommutator” in
(9.14) (and the corresponding term in (9.15)). To handle this term, we will in particular need
various forms of trilinear compensated compactness for special combinations of functions
satisfying nonlinear elliptic and wave equations.

To proceed, let us compute using (9.2) and (9.4) thatp
� detgn

 
□gn;A.� n/ �

1p
� detgn

A.
p
� detgn□gn.� n//

!
(11.1)

D �@t

h
e2
nA.

.e0/n.� n/

Nn
/
i
C A@t

h
e2
n.

.e0/n.� n/

Nn
/
i

(11.2)

C ıij @i

h
N 2
nA.

@j .� n/

Nn
/
i
� ıijA@i

h
Nn@j .� n/

i
(11.3)

C @i

h
ˇine

2
nA.
.e0/n.� n/

Nn
/
i
� A@i

h
e2
nˇin.

.e0/n.� n/

Nn
/
i
:(11.4)

We will consider the contribution to the “maincommutator” term from (11.2), (11.3) and
(11.4) in Section 11.1, Section 11.2 and Section 11.3 respectively. We then put together the
computations and obtain our conclusion in Section 11.4 and Section 11.5.

11.1. The term (11.2)

Proposition 11.1. – We haveZ
R2C1

.e0/n.� n/

Nn

n
@t Œe

2
nA.
.e0/n.� n/

Nn
/� � A@t Œe

2
n.
.e0/n.� n/

Nn
/�
o

dx

�

Z
R2C1

.e0/0.� n/

N0

n
@t Œe

2
0A.
.e0/0.� n/

N0
/� � A@t Œe

2
0.
.e0/0.� n/

N0
/�
o

dx ! 0:

A similar statement holds after replacing  n ⇝ !n,  0 ⇝ !0 and dx ⇝ 1
4
e�4 0dx.
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Proof. – We first note that

.e0/n.� n/

Nn

n
@t Œe

2
nA.
.e0/n.� n/

Nn
/� � A@t Œe

2
n.
.e0/n.� n/

Nn
/�
o

�
.e0/0.� n/

N0

n
@t Œe

2
0A.
.e0/0.� n/

N0
/� � A@t Œe

2
0.
.e0/0.� n/

N0
/�
o

D .
.e0/n.� n/

Nn
�
.e0/0.� n/

N0
/
n
@t Œe

2
nA.
.e0/n.� n/

Nn
/� � A@t Œe

2
n.
.e0/n.� n/

Nn
/�
o

(11.5)

C
.e0/0.� n/

N0

n
@t Œe

2
nA.
.e0/n.� n/

Nn
/� � A@t Œe

2
n.
.e0/n.� n/

Nn
/�
o

(11.6)

�
.e0/0.� n/

N0

n
@t Œe

2
0A.
.e0/0.� n/

N0
/� � A@t Œe

2
0.
.e0/0.� n/

N0
/�
o
:(11.7)

Step 1: Estimating (11.5). – We bound (11.5) in L1. First, it is easy to check using (4.2) and
Hölder’s inequality that

k
.e0/n.� n/

Nn
�
.e0/0.� n/

N0
kL2

≲ kˇin � ˇ
i
0kL1k

@i .� n/

Nn
kL2 C k.e0/0.� n/kL2k

1

Nn
�

1

N0
kL1 ≲ �n:

On the other hand,

@t Œe
2
nA.

.e0/n.� n/

Nn
/� � A@t Œe

2
n.
.e0/n.� n/

Nn
/�g

D e2
n.@tb/em.1
i
r/.

.e0/n.� n/

Nn
/„ ƒ‚ …

DWI1

C be2
n@tem.1
i
r/.

.e0/n.� n/

Nn
/ � bem.1

i
r/@t Œe

2
n.
.e0/n.� n/

Nn
/�„ ƒ‚ …

DWI2

C .@te
2
n/ŒA.

.e0/n.� n/

Nn
/�„ ƒ‚ …

DWI3

;

where we have used that em.1
i
r/ commutes with @t and @i . Each of I1, I2 and I3 can easily be

seen to be bounded in L2 uniformly in n. For I1, this simply follows from the assumptions
(4.2) and (4.3) and the fact that em.1

i
r/ is bounded on L2. For I2, this is a consequence of

the Calderón commutator theorem (Lemma 5.2.6) and (4.2) and (4.3). Finally, for I3, this is
an immediate consequence of (4.2) and (4.3).

Therefore, by the Cauchy–Schwarz inequality,

(11.8) k(11.5)kL1 ≲ �n ! 0:
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Step 2: Estimating (11.6) and (11.7). – The term .(11.6) C (11.7)/ is more subtle. First,

@t Œe
2
nA.

.e0/n.� n/

Nn
/� � A@t Œe

2
n.
.e0/n.� n/

Nn
/� � f@t Œe

2
0A.
.e0/0.� n/

N0
/� � A@t Œe

2
0.
.e0/0.� n/

N0
/�g

D b.e2
n � e2
0/Œ@tem.1
i
r/.

.e0/n.� n/

Nn
/� � b@tem.1

i
r/Œ.e2
n � e2
0/.

.e0/n.� n/

Nn
/�/

(11.9)

C be2
0 Œ@tem.1
i
r/.

.e0/n.� n/

Nn
�
.e0/0.� n/

N0
/� � b@tem.1

i
r/Œe2
0.

.e0/n.� n/

Nn
�
.e0/0.� n/

N0
/�

(11.10)

C b.@t .e
2
n � e2
0//Œem.1

i
r/.

.e0/n.� n/

Nn
/�C b.@te

2
0//Œem.1
i
r/.

.e0/n.� n/

Nn
�
.e0/0.� n/

N0
/�

(11.11)

C .@tb/f.e
2
n � e2
0/Œem.1

i
r/.

.e0/n.� n/

Nn
/�C e2
0 Œem.1

i
r/.

.e0/n.� n/

Nn
�
.e0/0.� n/

N0
/�g:

(11.12)

By the Calderón commutation theorem (Lemma 5.2.6), the fact that em.1
i
r/ is bounded

on L2 (Lemma 5.2.4), and the estimates in (4.2), (4.3) and Proposition 8.1 and 8.2,

k(11.9) C (11.10)kL2

≲ ke�.e2
n � e2
0/kW 1;1k
.e0/n.� n/

Nn
kL2 C ke�e2
0kW 1;1k

.e0/n.� n/

Nn
�
.e0/0.� n/

N0
kL2 ≲ �

1
2
n :

(11.13)

Using again the fact that em.1
i
r/ is bounded on L2, and the estimates in (4.2), (4.3) and

Proposition 8.1 and 8.2, the remaining terms can be bounded directly as follows:

k(11.11) C (11.12)kL2

≲ ke�.e2
n � e2
0/kW 1;1k
.e0/n.� n/

Nn
kL2 C ke�e2
0kW 1;1k

.e0/n.� n/

Nn
�
.e0/0.� n/

N0
kL2 ≲ �

1
2
n :

(11.14)

Using (11.13), (11.14) and also (4.2) and (4.3), and the Cauchy–Schwarz inequality, we
thus obtain
(11.15)

k(11.6) C (11.7)kL1 ≲ k
.e0/0.� n/

N0
kL2.k(11.9) C (11.10)kL2 C k(11.11) C (11.12)kL2/ ≲ �

1
2
n :

Combining (11.8) and (11.15) yields the conclusion.

11.2. The term (11.3)

We first argue as in Section 11.1 to control most of the terms. We will identify, however, in
Proposition 11.2 that there is one difficult term that cannot be handled just with techniques
in Section 11.2. In the rest of this subsection, we will then handle the difficult term that is
identified in this proposition.
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Proposition 11.2. – We haveZ
R2C1

.e0/n.� n/

Nn
ıij f@i ŒN

2
nA.

@j .� n/

Nn
/� � A@i ŒNn@j .� n/�g dx
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Z
R2C1
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N0
ıij f@i ŒN

2
0A.
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/� � A@i ŒN0@j .� n/�g dx
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Z
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N0
ıij bf.N 2

n �N 2
0 /em.1i r/.@2ij .� n/N0

/ � em.1
i
r/Œ.N 2

n �N 2
0 /
@2ij .� n/

N0
�g dx„ ƒ‚ …

DWI

! 0:

Proof. – The idea is to argue as in the proof of Proposition 11.1 until we face a term that
does not obviously ! 0.

In analogy with (11.5)–(11.7), we have

.e0/n.� n/

Nn
ıij f@i ŒN

2
nA.

@j .� n/

Nn
/� � A@i ŒNn@j .� n/�g

�
.e0/0.� n/

N0
ıij f@i ŒN

2
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@j .� n/

N0
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D .
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�
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N0
/ıij f@i ŒN

2
nA.

@j .� n/

Nn
/� � A@i ŒNn@j .� n/�g(11.16)

C
.e0/0.� n/

N0
ıij
�
f@i ŒN

2
nA.

@j .� n/

Nn
/� � A@i ŒNn@j .� n/�g(11.17)

�f@i ŒN
2
0A.

@j .� n/

N0
/� � A@i ŒN0@j .� n/�g

�
:(11.18)

First, note that (11.16) can be handled completely analogously as in Step 1 in the proof
of Proposition 11.1 using that k .e0/n.� n/

Nn
�
.e0/0.� n/

N0
kL2 ! 0 and that

k@i ŒN
2
nA.

@j .� n/

Nn
/� � A@i ŒNn@j .� n/�kL2

is uniformly bounded.

To control (11.17)C(11.18), we first compute as in Step 2 in the proof of Proposition 11.1.

f@i ŒN
2
nA.
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2
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C .@ib/N
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n em.1i r/.@j .� n/Nn
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@j .� n/

N0
/C .@ib/.N

2
n �N 2

0 /em.1i r/.@j .� n/N0
/

(11.20)

C bŒ@i .N
2
n �N 2

0 /�em.1i r/.@j .� n/N0
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i
r/Œ.@i .N

2
n �N 2

0 //
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(11.21)
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� b.N 2
n �N 2

0 /Œem.1i r/. .@iN0/@j .� n/N 2
0

/�C bem.1
i
r/Œ.N 2

n �N 2
0 /.

.@iN0/@j .� n/

N 2
0
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(11.22)

C b.N 2
n �N 2

0 /em.1i r/.@2ij .� n/N0
/ � bem.1

i
r/Œ.N 2

n �N 2
0 /
@2ij .� n/

N0
�:

(11.23)

Using the Calderón commutator theorem (Lemma 5.2.6), L2 boundedness of em.1
i
r/

(Lemma 5.2.4), Hölder’s inequality, and the estimates in (4.2), (4.3) and Proposition 8.1, we
obtain (in a similar manner as (11.13) and (11.14))

k(11.19)kL2 C k(11.20)kL2 C k(11.21)kL2 C k(11.22)kL2

≲ ke�N 2
n kW 1;1k

@j .� n/

Nn
�
@j .� n/

N0
kL2 C ke�.N 2

n �N 2
0 /kL1k

@j .� n/

N0
kL2

C k@i .e�.N 2
n �N 2

0 //kL1k
@j .� n/

N0
kL2 ≲ �

1
2
n :

Therefore, the contribution of (11.19)–(11.22) to (11.17) C (11.18) ! 0 in analogy with
(11.15).

However, in contrast to Proposition 11.1, it is not clear whether the term (11.23) converges
to 0 in L2. This therefore gives rise to the additional term I in the statement of the proposi-
tion.

The remaining task of this subsection is therefore to show that I in Proposition 11.2 ! 0

as n ! C1. (This requires a use of the full trilinear structure.) We first perform a series of
reductions; see Propositions 11.3 and 11.4 below.

Our first reduction is to show that I in Proposition 11.2 has the same limit after the
replacement  n ⇝  n �  0.

Proposition 11.3. – We haveZ
R2C1

.e0/0.� n/

N0
ıij b

n
.N 2

n �N 2
0 /em.1i r/.@2ij .� n/N0

/ � em.1
i
r/
�
.N 2

n �N 2
0 /
@2ij .� n/

N0

�o
dx

�

Z
R2C1

.e0/0.�. n �  0//

N0
ıij b

n
.N 2

n �N 2
0 /em.1i r/.@2ij .�. n �  0//N0

/

� em.1
i
r/Œ.N 2

n �N 2
0 /
@2ij .�. n �  0//

N0
�
o

dx ! 0:

Proof. – It clearly suffices to prove the following three convergences as n! C1:

Z
R2C1

.e0/0.� 0/

N0
ıij b

n
.N 2

n �N 2
0 /em.1i r/.@2ij .� 0/N0

/ � em.1
i
r/
�
.N 2

n �N 2
0 /
@2ij .� 0/

N0

�o
dx ! 0;

(11.24)

Z
R2C1

.e0/0.� n/

N0
ıij b

n
.N 2

n �N 2
0 /em.1i r/.@2ij .� 0/N0

/ � em.1
i
r/
�
.N 2

n �N 2
0 /
@2ij .� 0/

N0

�o
dx ! 0;

(11.25)
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and

Z
R2C1

.e0/0.� 0/

N0
ıij b

n
.N 2

n �N 2
0 /em.1i r/.@2ij .� n/N0

/ � em.1
i
r/
�
.N 2

n �N 2
0 /
@2ij .� n/

N0

�o
dx ! 0:

(11.26)

We will in fact not need to take advantage of the commutator Œ.N 2
n �N 2

0 /; em.1i r/� in the
expressions above. We will simply control the first term in each of (11.24)–(11.26); the second
term in each line can be handled in exactly the same way.

Step 1: Proof of (11.24) and (11.25). – The terms (11.24) and (11.25) are easier because  0
is smooth and we can directly bound its second derivatives. More precisely, using Hölder’s
inequality, the boundedness of em.1

i
r/ on L2, and the estimate (4.2), we obtain

jFirst term in (11.24)j ≲ k.e0/0.� 0/kL2ke�.N 2
n �N 2

0 /kL1kıij @2ij .� 0/kL2 ≲ 1 � �n � 1 ≲ �n ! 0:

Similarly, but using in addition (4.3), we obtain

jFirst term in (11.25)j ≲ k.e0/0.� n/kL2ke�.N 2
n �N 2

0 /kL1kıij @2ij .� 0/kL2 ≲ 1 � �n � 1 ≲ �n ! 0:

Step 2: Proof of (11.26). – The key is an integration by parts to throw the derivatives on the
smooth  0. More precisely, after integrating by parts, applying Hölder’s inequality and the
boundedness of em.1

i
r/ in L2, and using the estimates in (4.2), (4.3) and Proposition 8.1, we

obtain

jFirst term in (11.26)j ≲

ˇ̌̌̌Z
R2C1

@i
.e0/0.� 0/

N0
ıij .N 2

n �N 2
0 /em.1i r/@j .� n/N0

dx

ˇ̌̌̌
C

ˇ̌̌̌Z
R2C1

.e0/0.� 0/

N0
ıij @i .N

2
n �N 2

0 /em.1i r/@j .� n/N0
dx

ˇ̌̌̌
C

ˇ̌̌̌Z
R2C1

.e0/0.� 0/

N0
ıij .N 2

n �N 2
0 /em.1i r/ .@iN0/@j .� n/N 2

0

dx

ˇ̌̌̌
≲ k@i .e0/0.� 0/kL2kN

2
n �N 2

0 kL1k@j .� n/kL2

Ck.e0/0.� 0/kL2.k@i .N
2
n �N 2

0 /kL1 C kN 2
n �N 2

0 kL1/k@j .� n/kL2

≲ �n C �
1
2
n ≲ �

1
2
n ! 0:

Our next reduction is to freeze the coefficients (cf. Section 8.2). We show that the difficult
term is essentially the same as a “frozen coefficient” version up to error terms which are o.1/.

Proposition 11.4. – Let bc;˛, Nc;˛, ˇic;˛ be as in Proposition 8.3. Denote moreover
.e0/c;˛ WD @t � ˇ

i
c;˛@i . ThenZ

R2C1

.e0/0.�. n �  0//

N0
ıij bf.N 2

n �N 2
0 /em.1i r/.@2ij .�. n �  0//N0

/

� em.1
i
r/Œ.N 2

n �N 2
0 /
@2ij .�. n �  0//

N0
�g dx

�

X
˛

bc;˛

N 2
c;˛

Z
R2C1

.e0/c;˛.�˛�. n �  0//ı
ij
f�˛.N

2
n �N 2

0 /em.1i r/.@2ij .�˛�. n �  0///
� em.1

i
r/Œ�˛.N

2
n �N 2

0 /@
2
ij .�˛�. n �  0//�g dx ! 0:
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Proof. – We write 1 D
P
˛ �

3
˛. Then for every ˛, we apply the estimates in Proposition 8.3

and 8.4 together with Hölder’s inequality and the L2 boundedness of em.1
i
r/ to obtain the

desired result.

After the series of reductions above, we now finally estimate the term with frozen coeffi-
cients. As we have indicated earlier, the frozen coefficients allow us to employ Fourier tech-
niques and exploit crucial cancellations.

Proposition 11.5. – Let bc;˛, Nc;˛, ˇic;˛ and .e0/c;˛ be as in Proposition 11.4. ThenX
˛

bc;˛

N 2
c;˛

Z
R2C1

.e0/c;˛.�˛�. n �  0//ı
ij
f�˛.N

2
n �N 2

0 /em.1i r/.@2ij .�˛�. n �  0///
� em.1

i
r/Œ�˛.N

2
n �N 2

0 /@
2
ij .�˛�. n �  0//�g dx ! 0:

Proof. – We will bound each term in the sum. Since there areO.��3"0n / terms in the sum
(cf. beginning of Section 8.2), it suffices to show that each term is o.�3"0n /. This is what we
will show.

From now on fix ˛.

Step 1: Frequency space decomposition. – Decompose �˛.N 2
n � N 2

0 / into three pieces in
frequency space. For this purpose, define a smooth cutoff function ‚ W Œ0;C1/ ! R such
that

(11.27) ‚ � 0; ‚.x/ D 1 for x 2 Œ0; 1�; ‚.x/ D 0 for x � 2:

Define now the decomposition of �˛.N 2
n �N 2

0 / as follows

�˛.N
2
n �N 2

0 / D .Ndiff/n;1 C .Ndiff/n;2 C .Ndiff/n;3;

where

̂.Ndiff/n;1.�/ WD ‚.�
5
6
n j�j/

�
�̂˛N 2

n .�/ � �̂˛N
2
0 .�/

�
;(11.28)

̂.Ndiff/n;2.�/ WD .1 �‚.�
5
6
n j�j//.1 �‚.

j�i j

j�j
5
8

//
�
�̂˛N 2

n .�/ � �̂˛N
2
0 .�/

�
;(11.29)

̂.Ndiff/n;3.�/ WD .1 �‚.�
5
6
n j�j//‚.

j�i j

j�j
5
8

/
�
�̂˛N 2

n .�/ � �̂˛N
2
0 .�/

�
:(11.30)

(We recall here our convention from Section 3 that j�i j denote only the spatial part.)

Step 2: Handling .Ndiff/n;1. – We first deal with the terms involving .Ndiff/n;1.
By Bernstein’s inequality and Proposition 8.5,

(11.31) k.Ndiff/n;1kW 1;1 ≲ �
� 56
n k�˛.N

2
n �N 2

0 /kL1 ≲ �
1
6
n :

On the other hand, notice that for all sufficiently regular functions u and f , we have the
commutator estimate

kuem.1
i
r/@2ijf � em.1

i
r/.u@2ijf /kL2

≲ kuem.1
i
r/@2ijf � em.1

i
r/@i .u@jf /kL2 C kem.1

i
r/Œ.@iu/@jf /�kL2 ≲ kukW 1;1k@jf kL2 ;

(11.32)
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where we have used the Calderón commutator theorem (Lemma 5.2.6) for the first term, and
the L2-boundedness of em.1

i
r/ (by Lemma 5.2.4) for the second term.

Using (11.32) with u D .Ndiff/n;1 and f D �˛�. n �  0/, and applying the Cauchy–
Schwartz inequality, (11.31) and Proposition 8.4, we haveˇ̌̌̌

ˇ bc;˛N 2
c;˛

Z
R2C1

.e0/c;˛.�˛�. n �  0//ı
ij .Ndiff/n;1em.1

i
r/.@2ij .�˛�. n �  0///

�em.1
i
r/Œ.Ndiff/n;1@

2
ij .�˛�. n �  0//� dx

ˇ̌̌̌
≲ k@.�˛�. n �  0//kL2k.Ndiff/n;1kW 1;1k@.�˛�. n �  0//kL2

≲ �
3"0
2
n � �

1
6
n � �

3"0
2
n D �

1
6C3"0
n D o.�3"0n /;

as desired.

Step 3: Handling .Ndiff/n;2. – For this, we make use of the large spatial frequency to obtain

a good L2 bound. More precisely, since on the support of .1 � ‚.�
5
6
n j�j//.1 � ‚. j�i j

j�j
5
8

//,

j�i j
2 ≳ j�j

5
4 ≳ �

� 2524
n , by the Plancherel theorem and Proposition 8.5,

(11.33) k.Ndiff/n;2kL2 ≲ k��1�.Ndiff/n;2kL2 ≲ �
25
24
n k�.�˛.N

2
n �N 2

0 //kL2 ≲ �
25
24C

3"0
2

n :

By Lemma 5.2.4, em.1
i
r/ is a bounded operator inL4. Therefore, using Hölder’s inequality

and the estimates in (11.33) and in Proposition 8.4, we obtain

ˇ̌̌̌
ˇ bc;˛N 2

c;˛

Z
R2C1

.@t � ˇ
k
c;˛@k/.�˛�. n �  0//ı

ij
f.Ndiff/n;2em.1

i
r/.@2ij .�˛�. n �  0/// dx

ˇ̌̌̌
ˇ

C

ˇ̌̌̌
ˇ bc;˛N 2

c;˛

Z
R2C1

.@t � ˇ
k
c;˛@k/.�˛�. n �  0//ı

ij em.1
i
r/Œ.Ndiff/n;2@

2
ij .�˛�. n �  0//�g dx

ˇ̌̌̌
ˇ

≲ k.@t � ˇ
k
c;˛@k/.�˛�. n �  0//kL4kı

ij @2ij .�˛�. n �  0//kL4k.Ndiff/n;2kL2

≲ �
3"0
4
n � �

�1C
3"0
4

n � �
25
24C

3"0
2

n D �
1
24C3"0
n D o.�3"0n /;

(11.34)

as desired.

Step 4: Handling .Ndiff/n;3. – To handle .Ndiff/n;3, we need to compute in Fourier space.
Here, we take full advantage of having frozen the coefficients. In order to simplify the
formulae, we will denote . diff/n WD �˛�. n �  0/.
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bc;˛

N 2
c;˛

Z
R2C1

.@t � ˇ
k
c;˛@k/. diff/nı

ij
f.Ndiff/n;3em.1

i
r/.@2ij . diff/n/

� em.1
i
r/Œ.Ndiff/n;3@

2
ij . diff/n�g dx

D
�ibc;˛

N 2
c;˛

“
.�t � ˇ

k
c;˛�k/�i�j ı

ij ̂. diff/n.�/ ̂.Ndiff/n;3.� � �/ ̂. diff/n.�/Œem.�/ � em.�/� d� d�

D
�ibc;˛

N 2
c;˛

“
.�t � ˇ

k
c;˛�k/�i�j ı

ij ̂. diff/n.�/ ̂.Ndiff/n;3.� � �/ ̂. diff/n.��/Œem.�/ � em.�/� d� d�:

(11.35)

Exchanging � and �,(11.35) can be given equivalently as

(11.35) D
�ibc;˛

N 2
c;˛

“
.�t � ˇ

k
c;˛�k/�i�j ı

ij ̂. diff/n.�/ ̂.Ndiff/n;3.� � �/ ̂. diff/n.��/Œem.�/ � em.�/� d� d�:

(11.36)

Changing variables � 7! �� and � 7! ��, and using the evenness of m,

(11.36) D
�ibc;˛

N 2
c;˛

“
.�t � ˇ

k
c;˛�k/�i�j ı

ij ̂. diff/n.�/ ̂.Ndiff/n;3.� � �/ ̂. diff/n.��/Œem.�/ � em.�/� d� d�:

(11.37)

Therefore, averaging between (11.35) and (11.37), we obtain

bc;˛

N 2
c;˛

Z
R2C1

.@t � ˇ
k
c;˛@k/. diff/nı

ij
f.Ndiff/n;3em.1

i
r/.@2ij . diff/n/

� em.1
i
r/Œ.Ndiff/n;3@

2
ij . diff/n�g dx

D
�ibc;˛

2N 2
c;˛

“ �
.�t � ˇ

k
c;˛�k/j�i j

2
C .�t � ˇ

k
c;˛�k/j�i j

2
�

� ̂. diff/n.�/ ̂.Ndiff/n;3.� � �/ ̂. diff/n.��/Œem.�/ � em.�/� d� d�:

(11.38)

Step 4(a): Some manipulation of the Fourier multiplier. – Note that on the support of�
1 � ‚.�

5
6
n j� � �j/

�
‚
�
j�i��i j

j���j
5
8

�
, we easily have j�t � �t j ≳ j� � �j � j�j � �j j ≳ j� � �j.

It follows that ˇ̌̌
.�t � �t / � ˇ

j
c;˛.�j � �j /

ˇ̌̌�
1 �‚.�

5
6
n j� � �j/

�
‚
�
j�i � �i j

j� � �j
5
8

�
≳ �

� 56
n :(11.39)

In particular, .�t � �t / � ˇ
j
c;˛.�j � �j / is bounded away from 0. Therefore, we can divide

by .�t � �t / � ˇ
j
c;˛.�j � �j / and a direct computation shows that

.�t � ˇ
j
c;˛�j /C .�t � ˇ

j
c;˛�j /

D
.�t � ˇ

j
c;˛�j /

2 � e�2
c;˛N 2
c;˛j�i j

2

.�t � ˇ
j
c;˛�j / � .�t � ˇ

j
c;˛�j /

�
.�t � ˇ

j
c;˛�j /

2 � e�2
c;˛N 2
c;˛j�i j

2

.�t � ˇ
j
c;˛�j / � .�t � ˇ

j
c;˛�j /

C
e�2
c;˛N 2

c;˛.j�i j
2 � j�i j

2/

.�t � ˇ
j
c;˛�j / � .�t � ˇ

j
c;˛�j /

:

(11.40)
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Using (11.40), we can therefore write the Fourier multiplier in (11.38) as follows:�
j�i j

2.�t � ˇ
j
c;˛�j /C j�i j

2.�t � ˇ
j
c;˛�j /

� �
1 �‚.�

5
6
n j� � �j/

�
‚
�
j�i � �i j

j� � �j
5
8

�
D
��
j�i j

2
� j�i j

2
�
.�t � ˇ

j
c;˛�j /(11.41)

C j�i j
2
�
.�t � ˇ

j
c;˛�j /C .�t � ˇ

j
c;˛�j /

���
1 �‚.�

5
6
n j� � �j/

�
‚
�
j�i � �i j

j� � �j
5
8

�
D ıik.�i � �i /.�k C �k/.�t � ˇ

j
c;˛�j /

�
1 �‚.�

5
6
n j� � �j/

�
‚
�
j�i � �i j

j� � �j
5
8

�
(11.42)

C j�i j
2
.�t � ˇ

j
c;˛�j /

2 � e�2
c;˛N 2
c;˛j�i j

2

.�t � ˇ
j
c;˛�j / � .�t � ˇ

j
c;˛�j /

�
1 �‚.�

5
6
n j� � �j/

�
‚
�
j�i � �i j

j� � �j
5
8

�
(11.43)

� j�i j
2
.�t � ˇ

j
c;˛�j /

2 � e�2
c;˛N 2
c;˛j�i j

2

.�t � ˇ
j
c;˛�j / � .�t � ˇ

j
c;˛�j /

�
1 �‚.�

5
6
n j� � �j/

�
‚
�
j�i � �i j

j� � �j
5
8

�
(11.44)

C j�i j
2
e�2
c;˛N 2

c;˛ı
k`.�k � �k/.�` C �`/

.�t � ˇ
j
c;˛�j / � .�t � ˇ

j
c;˛�j /

�
1 �‚.�

5
6
n j� � �j/

�
‚
�
j�i � �i j

j� � �j
5
8

�
:(11.45)

Step 4(b): Estimating each term. – Define now the terms I, II, III and IV respectively by
inserting (11.42), (11.43), (11.44) and (11.45) into (*) below

�ibc;˛

2N 2
c;˛

“
.�/ ̂. diff/n.�/.�̂˛N 2

n � �̂˛N
2
0 /.� � �/

̂. diff/n.��/Œem.�/ � em.�/� d� d�:(11.46)

For the term I, by first applying Fourier inversion and then Hölder’s inequality, we obtain

jIj ≲
�
k�˛�. n �  0/kL4kem.1

i
r/@i .@t � ˇ

j
c;˛@j /.�˛�. n �  0//kL4

Ck@i .�˛�. n �  0//kL4kem.1
i
r/.@t � ˇ

j
c;˛@j /.�˛�. n �  0//kL4

Ckem.1
i
r/@i .�˛�. n �  0//kL4k.@t � ˇ

j
c;˛@j /.�˛�. n �  0//kL4

Ckem.1
i
r/.�˛�. n �  0//kL4k@i .@t � ˇ

j
c;˛@j /.�˛�. n �  0//kL4

�
� k.1 �‚.�

5
6
n jrj//‚.

jri j

jrj
5
8

/@i .�˛.N
2
n �N 2

0 //kL2 :

(11.47)

With the estimates in (4.2), (4.3) and Proposition 8.5, Plancherel’s theorem and Hölder’s
inequality, we obtain

k.1 �‚.�
5
6
n jrj//‚.

jri j

jrj
5
8

/@i .�˛.N
2
n �N 2

0 //kL2

≲ k@i .�˛.Nn �N0//kL2kNn CN0kL1 C k�˛.Nn �N0/kL2k@i .Nn CN0/kL1

≲ �
1
2C

3"0
2

n C �
1C

3"0
2

n ≲ �
1
2C

3"0
2

n :

(11.48)
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Plugging (11.48) into (11.47) and using the estimates in Proposition 8.4 together with
Lemma 5.2.4, we obtain

(11.49) jIj ≲ .�
1C

3"0
4

n � �
�1C

3"0
4

n C �
3"0
4
n � �

3"0
4
n /�

1
2C

3"0
2

n D �
1
2C3"0
n D o.�3"0n /:

To handle the term II, we likewise apply the inverse Fourier transform and then use
Hölder’s inequality to obtain

jIIj ≲
�
kem.1

i
r/@2i

e□c;˛.�˛�. n �  0//kL4k�˛�. n �  0/kL4
Ck@2i

e□c;˛.�˛�. n �  0//kL4kem.1
i
r/.�˛�. n �  0//kL4

�
�




.1 �‚.� 56n jrj//‚.
jri j

jrj
5
8

/
i

rt � ˇjrj
.�˛.N

2
n �N 2

0 //




L2
:

(11.50)

By Plancherel’s theorem, (11.39), Hölder’s inequality, (4.3) and Proposition 8.5, we obtain


.1 �‚.� 56n jrj//‚.
jri j

jrj
5
8

/
i

rt � ˇjrj
.�˛.N

2
n �N 2

0 //




L2

≲ �
5
6
n k�˛.N

2
n �N 2

0 /kL2 ≲ �
5
6
n k�˛.Nn �N0/kL2kNn CN0kL1 ≲ �

11
6 C

3"0
2

n :

(11.51)

Plugging (11.51) into (11.50) and using the estimates in Propositions 8.4 and 8.6 together
with Lemma 5.2.4, we obtain

jIIj ≲ �
�3C"0C

3"0
4

n � �
1C

3"0
4

n � �
11
6 C

3"0
2

n D �
� 16C4"0
n D o.�3"0n /;(11.52)

since "0 > 1
6

(cf. Section 8.2).

III can be controlled in an entirely analogous manner as II; we omit the details:

(11.53) jIIIj ≲ �
� 16C4"0
n D o.�3"0n /:

Finally, we handle the term IV. As before, we apply the inverse Fourier transform and then
use Hölder’s inequality. We then obtain

jIVj ≲

�
kem.1

i
r/@k@

2
i .�˛�. n �  0//kL4k�˛�. n �  0/kL4

Ckem.1
i
r/@2i .�˛�. n �  0//kL4k@k.�˛�. n �  0//kL4

�
�




.1 �‚.� 56n jrj//‚.
jri j

jrj
5
8

/@i
i

rt � ˇjrj
.�˛.N

2
n �N 2

0 //




L2
:

(11.54)

By Plancherel’s theorem, (11.39), Hölder’s inequality, (4.3) and Proposition 8.5, we obtain




.1 �‚.� 56n jrj//‚.
jri j

jrj
5
8

/@i
i

rt � ˇjrj
.�˛.N

2
n �N 2

0 //




L2

≲



.1 �‚.� 56n j�j//‚. j�i j

j�j
5
8

/j�j
5
8�1.�̂˛N 2

n � �̂˛N
2
0 /




L2

≲ �
. 58�1/.�

5
6 /

n k�˛.N
2
n �N 2

0 /kL2 ≲ �
5
16
n k�˛.Nn �N0/kL2kNn CN0kL1 ≲ �

21
16C

3"0
2

n :

(11.55)
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Plugging (11.55) into (11.54) and using the estimates in Propositions 8.4 together with
Lemma 5.2.4, we obtain

jIVj ≲ �
�2C

3"0
4

n � �
1C

3"0
4

n � �
21
16C

3"0
2

n D �
5
16C3"0
n D o.�3"0n /:(11.56)

By (11.49), (11.52), (11.53) and (11.56), we have thus shown that each of the terms obey
the desired estimate. This concludes the proof.

Let us summarize what we have achieved in this subsection. At this point, let us also note
that while the computations in this subsection concern the commutator term involving  n,
they apply in an identical manner to the commutator term involving !n.

Proposition 11.6. – We haveZ
R2C1

.e0/n.� n/

Nn
ıij
n
@i ŒN

2
nA.

@j .� n/

Nn
/� � A@i ŒNn@j .� n/�

o
dx

�

Z
R2C1

.e0/0.� n/

N0
ıij
n
@i ŒN

2
0A.

@j .� n/

N0
/� � A@i ŒN0@j .� n/�

o
dx ! 0:

A similar statement holds after replacing  n ⇝ !n,  0 ⇝ !0 and dx ⇝ 1
4
e�4 0dx.

11.3. The term (11.4)

We now look at the term (11.4). Unlike the terms (11.2) and (11.3) (cf. Sections 11.1 and
11.2), we will not be able to just compute the limit of (11.4). Instead we will need to combine
this term with the “hard” term in (9.12).

For this reason, we first consider some reduction of (11.4) and the “hard” term in (9.12) in
Section 11.3.1 and Section 11.3.2 respectively. We then consider the limit of the combination
in Section 11.3.3.

11.3.1. Reduction for the term (11.4). – We first argue as in Proposition 11.2 and identify the
main term in the limit. The proof is essentially the same as Proposition 11.2 and is omitted.

Proposition 11.7. – We haveZ
R2C1

.e0/n.� n/

Nn

n
@k Œe

2
nˇknA.
.e0/n.� n/

Nn
/� � A@k Œe

2
nˇkn.
.e0/n.� n/

Nn
/�
o

dx

�

Z
R2C1

.e0/0.� n/

N0

n
@k Œe

2
0ˇk0A.
.e0/0.� n/

N0
/� � A@k Œe

2
0ˇk0 .
.e0/0.� n/

N0
/�
o

dx

�

Z
R2C1

.e0/0.� n/

N0
b
n
.e2
nˇkn � e2
0ˇk0 /em.1i r/.@k.e0/0.� n/N0

/

� em.1
i
r/Œ.e2
nˇkn � e2
0ˇk0 /.

@k.e0/0.� n/

N0
/�
o

dx ! 0:
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Proposition 11.8. – We haveZ
R2C1

.e0/0.� n/

N0
b
n
.e2
nˇkn � e2
0ˇk0 /em.1i r/.@k.e0/0.� n/N0

/

� em.1
i
r/Œ.e2
nˇkn � e2
0ˇk0 /.

@k.e0/0.� n/

N0
/�
o

dx

�

Z
R2C1

.e0/0.� n/

N0
b
n
e2
0.ˇkn � ˇk0 /em.1i r/.@k.e0/0.� n/N0

/

� em.1
i
r/Œe2
0.ˇkn � ˇk0 /.

@k.e0/0.� n/

N0
/�
o

dx ! 0:

Proof. – In view of

e2
nˇkn � e2
0ˇk0 D e2
0.ˇkn � ˇk0 /C ˇkn.e
2
n � e2
0/;

it suffices to show thatZ
R2C1

.e0/0.� n/

N0
b
n
ˇkn.e

2
n � e2
0/em.1
i
r/.

@k.e0/0.� n/

N0
/

� em.1
i
r/Œˇkn.e

2
n � e2
0/.
@k.e0/0.� n/

N0
/�
o

dx ! 0:

(11.57)

We compute

ˇkn.e
2
n � e2
0/em.1

i
r/.

@k.e0/0.� n/

N0
/ � em.1

i
r/
�
ˇkn.e

2
n � e2
0/.
@k.e0/0.� n/

N0
/
�

(11.58)

D ˇkn.e
2
n � e2
0/em.1

i
r/@k.

.e0/0.� n/

N0
/ � em.1

i
r/@k

�
ˇkn.e

2
n � e2
0/
.e0/0.� n/

N0

�
C ˇkn.e

2
n � e2
0/em.1
i
r/
� ..e0/0.� n//.@kN0/

N 2
0

�(11.59)

C em.1
i
r/
�
..e0/0.� n//@k

ˇkn.e
2
n � e2
0/

N0

�
:

(11.58) can be controlled using Calderón’s commutator theorem (Lemma 5.2.6) with
T D em.1

i
r/@k and using the estimates in (4.2), (4.3), Propositions 8.1 and 8.2, we obtain

k(11.58)kL2 ≲ ke�ˇkn.e2
n � e2
0/kC1


 .e0/0.� n/N0





L2
≲ �

1
2
n :

On the other hand, (11.59) can be bounded using estimates in (4.2), (4.3) and Proposition 8.1
as follows:

k(11.59)kL2 ≲ ke�ˇkn.e2
n � e2
0/kL1




 ..e0/0.� n//.@kN0/
N 2
0





L2

C k.e0/0.� n/kL2




e�@k ˇkn.e2
n � e2
0/
N0





L1
≲ �n C �

1
2
n ≲ �

1
2
n :

It therefore follows that as n! C1,


ˇkn.e2
n � e2
0/em.1i r/.@k.e0/0.� n/N0
/�em.1

i
r/Œˇkn.e

2
n � e2
0/.
@k.e0/0.� n/

N0
/�




L2

! 0:
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Hence, our goal (11.57) follows from the Cauchy–Schwarz inequality and the estimates
in (4.3).

We now take the main term in Proposition 11.8 (i.e., the term on the last two lines) and
show that the limit remains the same after (1) replacing  n 7!  n �  0 and (2) freezing the
coefficients. The proof is entirely analogous to Propositions 11.3 and 11.4 and is omitted.

Proposition 11.9. – Let bc;˛, Nc;˛, 
c;˛ and ˇic;˛ be as in Proposition 8.3. ThenZ
R2C1

.e0/0.� n/

N0
b
n
e2
0.ˇkn � ˇk0 /em.1i r/.@k.e0/0.� n/N0

/

� em.1
i
r/Œe2
0.ˇkn � ˇk0 /.

@k.e0/0.� n/

N0
/�
o

dx

�

X
˛

bc;˛e
2
c;˛

N 2
c;˛

Z
R2C1

.@t � ˇ
`
c;˛@`/.�˛�. n �  0//n

.ˇkn � ˇk0 /em.1i r/.@k.@t � ˇmc;˛@m/.�˛�. n �  0///
� em.1

i
r/Œ.ˇkn � ˇk0 /.@k.@t � ˇ

m
c;˛@m/.�˛�. n �  0//�

o
dx ! 0:

11.3.2. Reduction for the “hard” term in (9.12). – Note that

Œ.e0/n; A�.
@j .� n/

Nn
/ D �ˇkn@kA.

@j .� n/

Nn
/C AŒˇkn@k.

@j .� n/

Nn
/�C Œ@t ; A�.

@j .� n/

Nn
/:

Hence, the “hard” term in (9.12) has a similar form as the previous commutator terms, can
also be treated in a similar manner.

First, we identify one main term for which the limit is difficult to compute. This is similar
to Proposition 11.7; we omit the details.

Proposition 11.10. – We have

�

Z
R2C1

Œ@i .� n/�ı
ijNn

n
Œ.e0/n; A�.

@j .� n/

Nn
/
o

dx C

Z
R2C1

Œ@i .� n/�ı
ijN0

n
Œ.e0/0; A�.

@j .� n/

N0
/
o

dx

�

Z
R2C1

Œ@i .� n/�ı
ijN0b

n
.ˇkn � ˇk0 /em.1i r/.@2jk.� n/N0

/ � em.1
i
r/Œ.ˇkn � ˇk0 /

@2
jk
.� n/

N0
�
o

dx ! 0:

Next, we show that the limit remains unchanged after replacing  n 7!  n �  0 and
freezing the coefficients. This is similar to Proposition 11.9.

Proposition 11.11. – Let bc;˛ be as in Proposition 8.3. ThenZ
R2C1

Œ@i .� n/�ı
ijN0b

n
.ˇkn � ˇk0 /em.1i r/.@2jk.� n/N0

/ � em.1
i
r/Œ.ˇkn � ˇk0 /

@2
jk
.� n/

N0
�
o

dx

�

X
˛

bc;˛

Z
R2C1

Œ@i .�˛�. n �  0//�ı
ij
n
.ˇkn � ˇk0 /em.1i r/.@2jk.�˛�. n �  0///

� em.1
i
r/Œ.ˇkn � ˇk0 /@

2
jk.�˛�. n �  0//�

o
dx ! 0:
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11.3.3. Computation of the limit. – We now combine the terms in Propositions 11.9 and
11.11 and compute the limit.

Proposition 11.12. – Let bc;˛, Nc;˛, 
c;˛ and ˇic;˛ be as in Proposition 8.3. ThenX
˛

bc;˛e
2
c;˛

N 2
c;˛

Z
R2C1

.@t � ˇ
`
c;˛@`/.�˛�. n �  0//

n
.ˇkn � ˇk0 /em.1i r/.@k.@t � ˇmc;˛@m/.�˛�. n �  0///

� em.1
i
r/Œ.ˇkn � ˇk0 /.@k.@t � ˇ

m
c;˛@m/.�˛�. n �  0//�

o
dx

C

X
˛

bc;˛

Z
R2C1

Œ@i .�˛�. n �  0//�ı
ij
n
.ˇkn � ˇk0 /em.1i r/.@2jk.�˛�. n �  0///

� em.1
i
r/Œ.ˇkn � ˇk0 /@

2
jk.�˛�. n �  0//�

o
dx ! 0:

Proof. – Step 1: Fourier decomposition. – Let ‚ be as in (11.27). Define now the decom-
position of ˇin � ˇ

i
0 as follows (compare (11.28)–(11.30)):

�˛.ˇ
i
n � ˇ

i
0/ D .ˇdiff/

i
n;1 C .ˇdiff/

i
n;2 C .ˇdiff/

i
n;3;

where

̂.ˇdiff/
i
n;1.�/ WD ‚.�

5
6
n j�j/

�
�̂˛ˇin.�/ � �̂˛ˇ

i
0.�/

�
;

̂.ˇdiff/
i
n;2.�/ WD .1 �‚.�

5
6
n j�j//.1 �‚.

j�i j

j�j
5
8

//
�
�̂˛ˇin.�/ � �̂˛ˇ

i
0.�/

�
;

̂.ˇdiff/
i
n;3.�/ WD .1 �‚.�

5
6
n j�j//‚.

j�i j

j�j
5
8

/
�
�̂˛ˇin.�/ � �̂˛ˇ

i
0.�/

�
:

We need to estimate the contributions from .ˇdiff/
i
n;1, .ˇdiff/

i
n;2 and .ˇdiff/

i
n;3. The contri-

butions from the terms .ˇdiff/
i
n;1 and .ˇdiff/

i
n;2 can be handled as in Steps 2 and 3 in the proof

of Proposition 11.5, where analogous terms were estimated. We note in particular that in
Steps 2 and 3 in the proof of Proposition 11.5, the argument relies only on the frequency
support of the corresponding terms and we did not use the precise structure of the nonlin-
earity. We therefore omit the details about bounding these terms.

On the other hand, the contribution from .ˇdiff/
i
n;3 requires a more careful treatment.

(This is analogous to the term in Step 4 in the proof of Proposition 11.5, where we fully
exploit the precise structure of the term.) We will thus focus on this term in the remainder of
the proof.

Step 2: Estimating the main term. – Denote . diff/n D �˛�. n �  0/. We compute

bc;˛e
2
c;˛

N 2
c;˛

Z
R2C1

.@t � ˇ
`
c;˛@`/. diff/n.ˇdiff/

k
n;3Œem.1i r/..@t � ˇmc;˛@m/@k. diff/n/� dx

(11.60)

�
bc;˛e

2
c;˛

N 2
c;˛

Z
R2C1

.@t � ˇ
j
c;˛@j /. diff/nem.1

i
r/Œ.ˇdiff/

k
n;3..@t � ˇ

m
c;˛@m/@k. diff/n//� dx

D
�ie2
c;˛bc;˛

N 2
c;˛

Z
R2C1

.�t � ˇ
j
c;˛�j /.�t � ˇ

m
c;˛�m/�k

̂. diff/n.�/
̂.ˇdiff/

k
n;3.� � �/
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̂. diff/n.�/Œem.�/ � em.�/� d� d�

D
�ie2
c;˛bc;˛

N 2
c;˛

Z
R2C1

.�t � ˇ
j
c;˛�j /.�t � ˇ

m
c;˛�m/�k

̂. diff/n.�/
̂.ˇdiff/

k
n;3.� � �/

̂. diff/n.��/Œem.�/ � em.�/� d� d�:

Similarly,

bc;˛

Z
R2C1

@i . diff/nı
ij
f.ˇdiff/

k
n;3Œem.1i r/.@2jk. diff/n/� � em.1

i
r/Œ.ˇdiff/

k
n;3.@

2
jk. diff/n//�g dx

D �ibc;˛

Z
R2C1

ıij �i�j�k ̂. diff/n.�/
̂.ˇdiff/

k
n;3.� � �/

̂. diff/n.��/Œem.�/ � em.�/� d� d�:

(11.61)

We now analyze the Fourier multiplier corresponding to (11.60)C(11.61). First, we compute

e2
c;˛

N 2
c;˛

.�t � ˇ
j
c;˛�j /.�t � ˇ

m
c;˛�m/�k C ıij �i�j�k

D
e2
c;˛

N 2
c;˛

.�t � ˇ
j
c;˛�j /..�t � ˇ

j
c;˛�j /C .�t � ˇ

m
c;˛�m//�k C ıij �i .�j � �j /�k

C Œ�
e2
c;˛

N 2
c;˛

.�t � ˇ
j
c;˛�j /

2
C ıij �i�j ��k

(11.62)

From (11.62) and (11.40) it follows that 
e2
c;˛

N 2
c;˛

.�t � ˇ
j
c;˛�j /.�t � ˇ

m
c;˛�m/�k C ıij �i�j�k

!�
1 �‚.�

5
6
n j� � �j/

�
‚
�
j�i � �i j

j� � �j
5
8

�

D C
e2
c;˛

N 2
c;˛

.�t � ˇ
j
c;˛�j /�k

.�t � ˇ
j
c;˛�j /

2 � e�2
c;˛N 2
c;˛j�i j

2

.�t � ˇ
j
c;˛�j / � .�t � ˇ

j
c;˛�j /

�
1 �‚.�

5
6
n j� � �j/

�
‚
�
j�i � �i j

j� � �j
5
8

�(11.63)

�
e2
c;˛

N 2
c;˛

.�t � ˇ
j
c;˛�j /�k

.�t � ˇ
j
c;˛�j /

2 � e�2
c;˛N 2
c;˛j�i j

2

.�t � ˇ
j
c;˛�j / � .�t � ˇ

j
c;˛�j /

�
1 �‚.�

5
6
n j� � �j/

�
‚
�
j�i � �i j

j� � �j
5
8

�(11.64)

C
e2
c;˛

N 2
c;˛

.�t � ˇ
j
c;˛�j /�k

e�2
c;˛N 2
c;˛ı

k`.�k � �k/.�` C �`/

.�t � ˇ
j
c;˛�j / � .�t � ˇ

j
c;˛�j /

�
1 �‚.�

5
6
n j� � �j/

�
‚
�
j�i � �i j

j� � �j
5
8

�(11.65)

C ıij �i .�j � �j /�k

�
1 �‚.�

5
6
n j� � �j/

�
‚
�
j�i � �i j

j� � �j
5
8

�(11.66)

C Œ�
e2
c;˛

N 2
c;˛

.�t � ˇ
j
c;˛�j /

2
C ıij �i�j ��k

�
1 �‚.�

5
6
n j� � �j/

�
‚
�
j�i � �i j

j� � �j
5
8

�
:

(11.67)
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Define now the terms I, II, III, IV and V respectively by inserting (11.63), (11.64), (11.65),
(11.66) and (11.67) into (*) below

�ibc;˛

“
.�/ ̂. diff/n.�/.�̂˛ˇkn � �̂˛ˇ

k
0 /.� � �/

̂. diff/n.��/Œem.�/ � em.�/� d� d�:(11.68)

We note that the terms I and II here can be handled in a similar way as the terms II and
III in Step 4(b) of the proof of Proposition 11.5. Also, the term III here can be handled in
a similar way as the term IV in Step 4(b) of the proof of Proposition 11.5. In particular, we
have

(11.69) jIj C jIIj C jIIIj D o.�3"0/:

Inverting the Fourier transform, using Hölder’s inequality, Lemma 5.2.4, and applying the
estimates in Propositions 8.4 and 8.5, we obtain

jIVj ≲

�
k@i .�˛�. n �  0//kL4kem.1

i
r/@k.�˛�. n �  0//kL4

�
� k.1 �‚.�

5
6
n jrj//‚.

jri j

jrj
5
8

/@i .�˛.ˇn � ˇ0//kL2

≲ �
3"0
4
n � �

3"0
4
n � �

1
2C

3"0
2

n D �
1
2C3"0
n D o.�3"0n /:

(11.70)

Inverting the Fourier transform, using Hölder’s inequality, Lemma 5.2.4, and applying the
estimates in Propositions 8.4, 8.5 and 8.6, we obtain

jVj ≲

�
k@i .�˛�. n �  0//kL4kem.1

i
r/e□c;˛.�˛�. n �  0//kL4

Cke□c;˛.�˛�. n �  0//kL4kem.1
i
r/@i .�˛�. n �  0//kL4

�
� k.1 �‚.�

5
6
n jrj//‚.

jri j

jrj
5
8

/�˛.ˇn � ˇ0/kL2

≲ �
3"0
4
n � ��1C"0n �

3"0
4
n � �n�

3"0
2
n D �4"0n D o.�3"0n /:

(11.71)

Noticing that the sum
P
˛ has O.��3"0n / terms (cf. beginning of Section 8.2), it follows

from (11.60), (11.61), (11.63), (11.64), (11.65), (11.66), (11.67), (11.68), (11.69), (11.70) and
(11.71) thatX

˛

bc;˛e
2
c;˛

N 2
c;˛

Z
R2C1

.@t � ˇ
`
c;˛@`/. diff/n.ˇdiff/

k
n;3Œem.1i r/..@t � ˇmc;˛@m/@k. diff/n/� dx

C

X
˛

bc;˛

Z
R2C1

@i . diff/nı
ij
f.ˇdiff/

k
n;3Œem.1i r/.@2jk. diff/n/�

� em.1
i
r/Œ.ˇdiff/

k
n;3.@

2
jk. diff/n//�g dx ! 0:

Combining this with the discussions in Step 1, this concludes the proof.

We summarize below what we have obtained in this subsection. As in Proposition 11.6, we
note that the computation for the commutator applies equally well to the term involving !n.
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Proposition 11.13. – We haveZ
R2C1

.e0/n.� n/

Nn

n
@i Œe

2
nˇinA.
.e0/n.� n/

Nn
/� � A@i Œe

2
nˇin.
.e0/n.� n/

Nn
/�
o

dx

�

Z
R2C1

Œ@i .� n/�ı
ijNn

n
Œ.e0/n; A�.

@j .� n/

Nn
/
o

dx

�

Z
R2C1

.e0/0.� n/

N0

n
@i Œe

2
0ˇi0A.
.e0/0.� n/

N0
/� � A@i Œe

2
0ˇi0.
.e0/0.� n/

N0
/�
o

dx

C

Z
R2C1

Œ@i .� n/�ı
ijN0

n
Œ.e0/0; A�.

@j .� n/

N0
/
o

dx ! 0:

A similar statement holds after replacing  n ⇝ !n,  0 ⇝ !0 and dx ⇝ 1
4
e�4 0dx.

11.4. Taking limits using the microlocal defect measures

Let us summarize what we have obtained so far. The following is an immediate conse-
quence of Propositions 11.1, 11.6 and 11.13:

Proposition 11.14. – We haveZ
R2C1

.e0/n.� n/

Nn

�
□gn;A.� n/ �

1p
� detgn

A.
p
� detgn□gn.� n//

�
dVolgn

�

Z
R2C1

Œ@i .� n/�ı
ijNn

n
Œ.e0/n; A�.

@j .� n/

Nn
/
o

dx

�

Z
R2C1

.e0/0.� n/

N0

�
□g0;A.� n/ �

1p
� detg0

A.
p
� detg0□g0.� n//

�
dVolg0

C

Z
R2C1

Œ@i .� n/�ı
ijN0

n
Œ.e0/0; A�.

@j .� n/

N0
/
o

dx ! 0:

A similar statement holds after replacing  ⇝ ! and dx ⇝ 1
4
e�4 0dx.

In other words, we have reduced the computation of the limit of the first two lines to that
of the limit of the last two lines. To proceed, we use Corollary 6.4 to compute the limit of the
last two lines on the LHS as n! C1. This will be achieved in the next two propositions.

Proposition 11.15. – We haveZ
R2C1

Œ@i .� n/�ı
ijN0

n
Œ.e0/0; A�.

@j .� n/

N0
/
o

dx

!

Z
R2C1

Œ@i .� 0/�ı
ijN0

n
Œ.e0/0; A�.

@j .� 0/

N0
/
o

dx

C

Z
S�R2C1

h
ıij �i�j .@xta � ˇ

k
0@xka/C ıij �i�j .@�ˇ

k
0 /�k@��a

i e�2
0
N0

d� 

j�j2
:

A similar statement holds after changing  ⇝ ! and d� ⇝ e�4 0 d�! .

Proof. – By Lemma 5.2.2, Œ.e0/0; A� is a 0-th order pseudo-differential symbol with prin-
cipal symbol

�ifi.�t � ˇ
k
0 �k/; ag D @xta � ˇ

k
0@xkaC .@�ˇ

k
0 /�k@��a:

The conclusion therefore follows from Corollary 6.4 and that
p
� detg0 D e2
N

(by (2.4)).
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Proposition 11.16. – We haveZ
R2C1

.e0/0.� n/

N0

�
□g0;A.� n/ �

1p
� detg0

A.
p
� detg0□g0.� n//

�
dVolg0

!

Z
R2C1

.e0/0.� 0/

N0

�
□g0;A.� 0/ �

1p
� detg0

A.
p
� detg0□g0.� 0//

�
dVolg0

C

Z
S�R2C1

1

N0
.�t � ˇ

k
0 �k/

h
.g�10 /����.@x�a/ � @�.g

�1
0 /˛ˇ �˛�ˇ .@��a/

i d� 

j�j2

C

Z
S�R2C1

e�2
0.@�ˇ
k
0 /.@��a/

N0
ıij �i�j �k

d� 

j�j2
:

A similar statement holds after changing  ⇝ ! and d� ⇝ e�4 0 d�!.

Proof. – Step 1: Computing the limit using Corollary 6.4. – We compare each of the terms
in □g0;A and □g0 (cf. definitions in Section 9.1).

By Lemma 5.2.2, Œ�@te2
0 ; A� (to be understood as

Œ�@te
2
0 ; A�h WD �@t .e

2
0Ah/C A@t .e
2
0h/;

similarly below) is a 0-th order pseudo-differential symbol with principal symbol

�if�i�te
2
0 ; ag D �e2
0@xtaC �t .@x�e

2
0/.@��a/:

It follows from Corollary 6.4 (and that
p
� detg0 D e2
N ) thatZ

R2C1

.e0/0.� n/

N0

n
� @t Œe

2
0A.
.e0/0.� n/

N0
/�C A@t Œe

2
0.
.e0/0.� n/

N0
/�
o

dx

!

Z
R2C1

.e0/0.� 0/

N0

n
� @t Œe

2
0A.
.e0/0.� 0/

N0
/�C A@t Œe

2
0.
.e0/0.� 0/

N0
/�
o

dx

C

Z
S�R2C1

h
�
1

N 3
0

.�t � ˇ
k
0 �k/

2.@xta/„ ƒ‚ …
DWI

C
e�2
0

N 3
0

�t .�t � ˇ
k
0 �k/

2.@x�e
2
0/.@��a/„ ƒ‚ …

DWII

i d� 

j�j2
:

By Lemma 5.2.2, Œ@iN 2
0 ; A� is a 0-th order pseudo-differential symbol with principal

symbol

�ifi�iN
2
0 ; ag D N 2

0 @xia � �i .@x�N
2
0 /.@��a/:

It follows from Corollary 6.4 thatZ
R2C1

.e0/0.� n/

N0
ıij
n
@i ŒN

2
0A.

@j .� n/

N0
/� � A@i ŒN0@j .� n/�

o
dx

!

Z
R2C1

.e0/0.� 0/

N0
ıij
n
@i ŒN

2
0A.

@j .� 0/

N0
/� � A@i ŒN0@j .� 0/�

o
dx

C

Z
S�R2C1

h e�2
0
N0

ıij .�t � ˇ
k
0 �k/�j .@xia/„ ƒ‚ …

DWIII

�
e�2
0

N 3
0

ıij .�t � ˇ
k
0 �k/�i�j .@x�N

2
0 /.@��a/„ ƒ‚ …

DWIV

i d� 

j�j2
:
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Finally, by Lemma 5.2.2, Œ@ie2
0ˇi0; A� is a 0-th order pseudo-differential symbol with
principal symbol

�ifi�ie
2
0ˇi0; ag D e2
0ˇi0.@xia/ � �i .@x�.e

2
0ˇi0//.@��a/

D e2
0ˇi0.@xia/ � �i ..@x�e
2
0/ˇi0 C e2
0.@x�ˇ

i
0//.@��a/:

Therefore, by Corollary 6.4,Z
R2C1

.e0/0.� n/

N0
f@i Œe

2
0ˇi0A.
.e0/0.� n/

N0
/� � A@i Œe

2
0ˇi0.e0/0.� n/� dx

!

Z
R2C1

.e0/0.� 0/

N0
f@i Œe

2
0ˇi0A.
.e0/0.� 0/

N0
/� � A@i Œe

2
0ˇi0.e0/0.� 0/� dx

C

Z
S�R2C1

Œ
ˇi0
N 3
0

.�t � ˇ
k
0 �k/

2.@xia/„ ƒ‚ …
DWV

�
e�2
0

N 3
0

.�t � ˇ
k
0 �k/

2�i ..@x�e
2
0/ˇi0 C e2
0.@x�ˇ

i
0//.@��a/„ ƒ‚ …

DWVI

�
d� 

j�j2
:

Step 2: Computing .g�10 /����.@x�a/

.g�10 /����.@x�a/ D �
1

N 2
0

.�t � ˇ
k
0 �k/.@xta � ˇ

i
0@xia/C e�2
0ıij �i@xj a:(11.72)

Therefore,

1

N0
.�t � ˇ

k
0 �k/.g

�1
0 /����.@x� a/

D �
1

N 3
0

.�t � ˇ
k
0 �k/

2.@xta � ˇ
i
0@xia/C

e�2
0

N0
.�t � ˇ

k
0 �k/ı

ij �i .@xj a/ D I C III C V:

Step 3: Computing @�.g�10 /˛ˇ �˛�ˇ .@��a/

@�.g
�1
0 /˛ˇ �˛�ˇ .@��a/

D

 
�@�.

1

N 2
0

/�t�t C 2@�.
ˇi0
N 2
0

/�t�i C @�.e
�2
0ıij �

ˇi0ˇ
j
0

N 2
0

/�i�j

!
.@��a/

D

�
@�N

2
0

N 4
0

.�t � ˇ
k
0 �k/

2
C 2

.@�ˇ
i
0/

N 2
0

.�t � ˇ
k
0 �k/�i C .@�e

�2
0/ıij �i�j

�
.@��a/

D

�
@�N

2
0

N 4
0

.�t � ˇ
k
0 �k/

2
C 2

.@�ˇ
i
0/

N 2
0

.�t � ˇ
k
0 �k/�i � e

�4
0.@�e
2
0/ıij �i�j

�
.@��a/:

(11.73)

Recall that on the support of d� , (10.8) holds. Hence, by (11.73) and (10.8), on the support
of d� ,

1

N0
.�t � ˇ

k
0 �k/@�.g

�1
0 /˛ˇ �˛�ˇ .@��a/

D

�
@�N

2
0

N 5
0

.�t � ˇ
k
0 �k/

3
C 2

.@�ˇ
i
0/

N 3
0

.�t � ˇ
k
0 �k/

2�i �
e�4
0.@�e

2
0/

N0
.�t � ˇ

k
0 �k/ı

ij �i�j

�
.@��a/
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D

�
e�2
0.@�N

2
0 /

N 3
0

.�t � ˇ
k
0 �k/ı

ij �i�j C 2
.@�ˇ

i
0/

N 3
0

.�t � ˇ
k
0 �k/

2�i �
e�2
0.@�e

2
0/

N 3
0

.�t � ˇ
k
0 �k/

3

�
.@��a/

D �II � IV � VI C
.@�ˇ

i
0/

N 3
0

.�t � ˇ
k
0 �k/

2�i .@��a/

D �II � IV � VI C
e�2
0.@�ˇ

k
0 /

N0
ıij �i�j �k.@��a/:

Combining Steps 1,2 and 3 yields the conclusion.

11.5. Putting everything together

We summarize what we have obtained so far. Combining Propositions 11.14, 11.15 and

11.16, and noting that the two terms of
R
S�R2C1

e�2
0 .@�ˇ
k
0
/

N0
ıij �i�j �k

d� 

j�j2
cancel, we imme-

diately obtain

Proposition 11.17. – Suppose A D b.x/em.1
i
r/, where the principal symbol a.x; �/ D

b.x/m.�/ (withm.�/ D em.�/ for j�j � 1) is real and supported in T ��,m.�/ is homogeneous
of order 0, and m and em are both even. ThenZ

R2C1

.e0/n.� n/

Nn
.□gn;A.� n/ �

1p
� detgn

A.
p
� detgn□gn.� n/// dVolgn

�

Z
R2C1

Œ@i .� n/�ı
ijNnfŒ.e0/n; A�.

@j .� n/

Nn
/g dx

! C

Z
R2C1

.e0/0.� 0/

N0
.□g0;A.� 0/ �

1p
� detg0

A.
p
� detg0□g0.� 0/// dVolg0

�

Z
R2C1

Œ@i .� 0/�ı
ijN0fŒ.e0/0; A�.

@j .� 0/

N0
/g dx

�

Z
S�R2C1

ıij �i�j .@xta � ˇ
k
0@xka/

e�2
0

N0

d� 

j�j2

C

Z
S�R2C1

1

N0
.�t � ˇ

k
0 �k/Œ.g

�1
0 /����.@x�a/ � @�.g

�1
0 /˛ˇ �˛�ˇ .@��a/�

d� 

j�j2
:

A similar statement holds after replacing  ⇝ ! and dx ⇝ 1
4
e�4 0dx.

12. The wave equation terms in Proposition 9.4
and trilinear compensated compactness for three waves

We continue to work under the assumptions of Theorem 4.2 and the reductions in
Sections 4.1 and 8.3. As above, let A be a 0-th order pseudo-differential operator given
by A D b.x/em.1

i
r/, where the principal symbol a.x; �/ D b.x/m.�/ (with m.�/ D em.�/

for j�j � 1) is real and supported in T ��, m.�/ is homogeneous of order 0, and m and em
are both even.

In this section, we handle the terms trilinear1 and trilinear2 in (9.14) (and the analo-
gous terms in (9.15)). There are two types of terms coming from two types of contribution
from F

 
n and F !n . First, there are terms which are linear in the wave variables  n and !n —

these terms are easier and will be handled in Section 12.1. The remaining terms are nonlinear
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and will be treated in Section 12.3. In order to deal with the nonlinear terms, we will need
a trilinear compensated compactness result for three waves, which will be established in
Section 12.2.

12.1. The linear terms in the wave equation

Proposition 12.1. – The following holds after passing to a subsequence (which we do not
relabel):

�

Z
R2C1

.e0/n.� n/

Nn
fAŒ

p
� detgn.2g�1n .d�; d n/C  n□gn�/�g dx

�

Z
R2C1

A.
.e0/n.� n/

Nn
/.2g�1n .d�; d n/C  n□gn�/ dVolgn

�
1

4

Z
R2C1

e�4 0
.e0/n.�!n/

Nn
fAŒ

p
� detgn.2.g�1n /˛ˇ@˛�@ˇ!n C !n□gn�/�g dx

�
1

4

Z
R2C1

e�4 0A.
.e0/n.�!n/

Nn
/.2g�1n .d�; d!n/C !n□gn�/ dVolgn

! �

Z
R2C1

.e0/0.� 0/

N0
fAŒ

p
� detg0.2g�10 .d�; d 0/C  0□g0�/�g dx

�

Z
R2C1

A.
.e0/0.� 0/

N0
/.2g�10 .d�; d 0/C  0□g0�/ dVolg0

�
1

4

Z
R2C1

e�4 0
.e0/0.�!0/

N0
fAŒ

p
� detg0.2g�10 .d�; d!0/C !0□g0�/�g dx

�
1

4

Z
R2C1

e�4 0A.
.e0/0.�!0/

N0
/.2g�10 .d�; d!0/C !0□g0�/ dVolg0 :

Proof. – We will only indicate how to obtain the limit of the terms on the first line; all the
other terms can be treated similarly.

Step 1: First term on first line. – Since a (the symbol of A) and @ˇ� have disjoint support,
by Lemma 5.2, A@ˇ� W L2 ! L2loc is compact. Therefore, using (4.2) and (4.3), we see that
after passing to a subsequence (not relabeled)

kAŒg�1n .d�; d n/
p
� detgn� � AŒg�10 .d�; d 0/

p
� detg0�kL2.�0/ ! 0:

On the other hand, by (4.2) and (4.3), we know that .e0/n.� n/
Nn

* .e0/0.� 0/
N0

weakly in L2.
Therefore,

�

Z
R2C1

.e0/n.� n/

Nn
AŒ
p
� detgng�1n .d�; d n/� dx

! �

Z
R2C1

.e0/0.� 0/

N0
AŒ
p
� detg0g�10 .d�; d 0/� dx:

Step 2: Second term on first line. – By (4.2) and (4.3),
p
� detgn n□gn�!

p
� detg0 0□g0�

in the L2 norm. The fact that A is a 0-th order operator then implies that

AŒ
p
� detgn n□gn��! AŒ

p
� detg0 0□g0��
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in the L2 norm. Using also that .e0/n.� n/
Nn

* .e0/0.� 0/
N0

weakly in L2 (by (4.2) and (4.3)), it
thus follows that

�

Z
R2C1

.e0/n.� n/

Nn
fAŒ

p
� detgn n□gn��g dx ! �

Z
R2C1

.e0/0.� 0/

N0
fAŒ

p
� detg0 0□g0��g dx:

The other terms can be treated similarly; we omit the details.

12.2. A general trilinear compensated compactness result

Proposition 12.2. – Let f�
.1/
n g

C1
nD1, f�

.2/
n g

C1
nD1 and f�

.3/
n g

C1
nD1 be three sequences of

smooth functions with �
.i/
n W R2C1 ! R. Assume that for any (spacetime) compact

set K � R2C1,

1. maxi supn.k@�
.i/
n kL3.K/ C k□g0�

.i/
n kL3.K// < C1;

2. maxi k�
.i/
n kL3.K/ ! 0 as n! C1.

Then for any smooth vector field X ,

.X�.1/n /g�10 .d�.2/n ; d�.3/n / * 0

in the sense of distributions.

Proof. – We write

g�10 .d�.2/n ; d�.3/n / D
1

2
□g0.�

.2/
n �.3/n /„ ƒ‚ …

DWI

�
1

2
.□g0�

.2/
n /�.3/n„ ƒ‚ …

DWII

�
1

2
�.2/n .□g0�

.3/
n /„ ƒ‚ …

DWIII

:

By assumptions of the proposition and Hölder’s inequality, II and III both converge to 0
in theL

3
2 norm as n! C1. Together with the assumed uniformL3-boundedness ofX�.1/n ,

Hölder’s inequality implies thatX�.1/n .IIC III/ in fact converges to 0 in the L1 norm on any
compact set.

It therefore remains to check the contribution from the term I. Let # 2 C1
c .R2C1/ be a

smooth function with support K. We then computeZ
R2C1

#.X�.1/n /□g0.�
.2/
n �.3/n / dVolg0

D

Z
R2C1

Œ.□g0#/.X�
.1/
n /C #.X□g0�

.1/
n /C #.Œ□g0 ; X��

.1/
n /

C 2.g�10 /˛ˇ .@˛#/.@ˇX�
.1/
n /��.2/n �.3/n dVolg0

DW Ia C Ib C Ic C Id:

To control Ia we note that # is smooth and thus □g0# is pointwise bounded on K. Thus
using Hölder’s inequality and the bounds in the assumptions of the proposition, we obtain

jIaj ≲ kX�.1/n kL3.K/k�
.2/
n kL3.K/k�

.3/
n kL3.K/ ! 0:

For Ib, we integrate by parts to obtain

Ib D

Z
K

Œ�.X#/.□g0�
.1/
n /�.2/n �.3/n � #.□g0�

.1/
n /.X�.2/n /�.3/n �

�

Z
K

Œ#.□g0�
.1/
n /�.2/n .X�.3/n /C #.divg0X/.□g0�

.1/
n /�.2/n �.3/n � dVolg0 :
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Since g0, X and # are smooth, by Hölder’s inequality and the bounds in the assumptions of
the proposition, we obtain

jIbj ≲ k□g0�
.1/
n kL3.K/.k�

.2/
n kL3.K/k�

.3/
n kL3.K/

C kX�.2/n kL3.K/k�
.3/
n kL3.K/ C k�.2/n kL3.K/kX�

.3/
n kL3.K//

! 0:

Note that Œ□g0 ; X� is a smooth second order differential operator that can be written as a
finite sum

P
j YjZj for some smooth vector fields Yj and Zj . Therefore we can treat Ic and

Id simultaneously by bounding a term of the formZ
K

&.YZ�.1/n /�.2/n �.3/n dVolg0

for some smooth function & and smooth vector fields Y and Z. We integrate by parts and
then use Hölder’s inequality and the smoothness of & and Y to show thatˇ̌̌̌Z

K

&.YZ�.1/n /�.2/n �.3/n dVolg0

ˇ̌̌̌
≲ kZ�.1/n kL3.K/.k�

.2/
n kL3.K/k�

.3/
n kL3.K/

C kY�.2/n kL3.K/k�
.3/
n kL3.K/ C k�.2/n kL3.K/kY�

.3/
n kL3/! 0:

This shows that Ic; Id ! 0 and finishes the proof.

We next compute the limits in a similar setting but instead with �.i/n converging to a
potentially non-zero �.i/0 .

Proposition 12.3. – Let f�
.1/
n g

C1
nD1, f�

.2/
n g

C1
nD1 and f�

.3/
n g

C1
nD1 be three sequences of

smooth functions. Assume that there exist smooth �.i/0 W R2C1 ! R so that for every compact
subset K � R2C1,

1. maxi supn.k@.�
.i/
n � �

.i/
0 /kL3.K/ C k□g0.�

.i/
n � �

.i/
0 /kL3.K// < C1;

2. maxi k�
.i/
n � �

.i/
0 kL3.K/ ! 0 as n! C1.

Let # 2 C1
c .R2C1/. ThenZ

R2C1
#.X�.1/n /g�10 .d�.2/n ; d�.3/n / dVolg0

�

Z
R2C1

#.X�.1/n /g�10 .d�.2/0 ; d�.3/n / dVolg0

�

Z
R2C1

#.X�.1/n /g�10 .d�.2/n ; d�.3/0 / dVolg0

! �

Z
R2C1

#.X�
.1/
0 /g�10 .d�.2/0 ; d�.3/0 / dVolg0 :
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Proof. – Using Proposition 12.2 (with �.i/n ��
.i/
0 in place of �.i/n ) and then expanding the

terms,

0 D

Z
R2C1

#.X.�.1/n � �
.1/
0 //g�10 .d.�.2/n � �

.2/
0 /; d.�.3/n � �

.3/
0 // dVolg0

D

Z
R2C1

#.X�.1/n /g�10 .d�.2/n ; d�.3/n / dVolg0 �
Z
R2C1

#.X�
.1/
0 /g�10 .d�.2/0 ; d�.3/0 / dVolg0

C

Z
R2C1

#.X�.1/n /g�10 .d�.2/0 ; d�.3/0 / dVolg0„ ƒ‚ …
DWI

C

Z
R2C1

#.X�
.1/
0 /g�10 .d�.2/n ; d�.3/0 / dVolg0„ ƒ‚ …

DWII

C

Z
R2C1

#.X�
.1/
0 /g�10 .d�.2/0 ; d�.3/n / dVolg0„ ƒ‚ …

DWIII

�

Z
R2C1

#.X�
.1/
0 /g�10 .d�.2/n ; d�.3/n / dVolg0„ ƒ‚ …

DWIV

�

Z
R2C1

#.X�.1/n /g�10 .d�.2/0 ; d�.3/n / dVolg0 �
Z
R2C1

#.X�.1/n /g�10 .d�.2/n ; d�.3/0 / dVolg0 :

Note that each of I, II and III has at most one factor depending on n. Since our assump-
tions easily imply that @�.i/n converges weakly to @�.i/0 in L3 (for each i ), we have

I C II C III ! 3

Z
R2C1

#.X�
.1/
0 /g�10 .d�.2/0 ; d�.3/0 / dVolg0 :

Next, we apply Lemma 7.1 with p0 D 3. Noting that since L3.K/ � L2.K/ and
L3.K/ � L

3
2 .K/ (for any compact set K), by Lemma 7.1, g�10 .d�.2/n ; d�.3/n / converges

to g�10 .d�.2/0 ; d�.3/0 / in the sense of distributions. Hence,

IV ! �

Z
R2C1

#.X�
.1/
0 /g�10 .d�.2/0 ; d�.3/0 / dVolg0 :

Finally, rearranging yields the conclusion.

12.3. Computation of the remaining terms using trilinear compensated compactness

We now look at the contributions in F  n and F !n which are nonlinear in the derivatives
of  n and !n. There are four relevant terms. For these terms, we need the trilinear compen-
sated compactness in Section 12.2.

Proposition 12.4. – The following holds after passing to a subsequence (which we do not
relabel):

1

2

Z
R2C1

A.
.e0/n.� n/

Nn
/�e�4 ng�1n .d!n; d!n/ dVolgn

�

Z
R2C1

e�4 0A.
.e0/n.�!n/

Nn
/�g�1n .d!n; d n/ dVolgn

C
1

2

Z
R2C1

.e0/n.� n/

Nn
AŒ
p
� detgn�e�4 ng�1n .d!n; d!n/� dx

�

Z
R2C1

e�4 0
.e0/n.�!n/

Nn
AŒ
p
� detgn�g�1n .d!n; d n/� dx

! corresponding terms on the RHS of (9.10) and (9.11)
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� 2

Z
S�R2C1

e�4 0
.g�10 /˛ˇ .@ˇ 0/

N0
.�t � ˇ

k
0 �k/�˛a

d�!

j�j2
:

Proof. – We will compute the limit of each term. Since the computation is largely similar,
we will give the details for the first term (Step 1) and only give the results for the remaining
terms (Step 2).

Step 1: Detailed computation for the first term. – Notice that on the support of a, � � 1. In
particular, by Lemma 5.2, A.1��/.1C�/ and .1��/.1C�/A are both pseudo-differential
operators of order �1 and hence compact on L2. We write 1 D .1 � �/.1 C �/ C �2 and
compute each contribution.

1

2

Z
R2C1

A.
.e0/n.� n/

Nn
/�e�4 ng�1n .d!n; d!n/ dVolgn

D
1

2

Z
R2C1

A.
.e0/n.� n/

Nn
/.1 � �/.1C �/�e�4 ng�1n .d!n; d!n/ dVolgn„ ƒ‚ …

DWI

C
1

2

Z
R2C1

A.
.e0/n.� n/

Nn
/�3e�4 ng�1n .d!n; d!n/ dVolgn„ ƒ‚ …

DWII

:

(12.1)

To handle I, we use the following two facts:

— .1 � �/.1C �/A. .e0/n.� n/
Nn

/ converges in the L2 norm to .1 � �/.1C �/A. .e0/0.� 0/
N0

/

after passing to a subsequence (by Lemmas 5.2.1 and 5.2.5).

— By the pointwise convergence in (4.2), the bound in (4.3) and Lemma 7.1,
�e�4 ng�1n .d!n; d!n/ converges to �e�4 0g�10 .d!0; d!0/ in the sense of distribu-
tions. Using (4.2) and (4.3) again then implies that the said convergence holds weakly
in L2.

Then, we obtain that, up to a subsequence (which we do not relabel),

I !
1

2

Z
R2C1

A.
.e0/0.� 0/

N0
/.1 � �/.1C �/�e�4 0g�10 .d!0; d!0/ dVolg0 :(12.2)

For II, we further compute

II D
1

2

Z
R2C1

A.
.e0/n.� n/

Nn
/�e�4 ng�1n .d.�!n/; d.�!n// dVolgn„ ƒ‚ …

DWIIa

C
1

2

Z
R2C1

A.
.e0/n.� n/

Nn
/�e�4 n!nŒg

�1
n .d�; d.�!n//C �g�1n .d�; d!n/� dVolgn„ ƒ‚ …
DWIIb

:

(12.3)

First, using the fact that gn and  n converge in C 0 to their limits (see (4.2)), IIa has the
same limit as

II0a WD
1

2

Z
R2C1

A.
.e0/0.� n/

N0
/�e�4 0g�10 .d.�!n/; d.�!n// dVolg0 :(12.4)
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We now apply the result on trilinear compensated compactness (Proposition 12.3).

II0a D
1

2

Z
R2C1

.e0/0.A.� n//

N0
�e�4 0g�10 .d.�!n/; d.�!n// dVolg0„ ƒ‚ …

DWII0
a;1

C
1

2

Z
R2C1

ŒA.
.e0/0.� n/

N0
/ �

.e0/0.A.� n//

N0
��e�4 0g�10 .d.�!n/; d.�!n// dVolg0„ ƒ‚ …

DWII0
a;2

:

(12.5)

Note that by Lemmas 5.2.2 and 5.2.4,A, Œ@˛; A� are both bounded W L3 ! L3 and Œ□g0 ; A�
is bounded W W 1;3 ! L3. Therefore, �.1/n D A.� n/, �

.2/
n D �

.3/
n D �!n satisfy the estimates

of Proposition 12.3. Hence, by Proposition 12.3, Corollary 6.4 and the fact that � � 1 on
the support of a,

II0a;1 !
1

2

Z
R2C1

.e0/0.A.� 0//

N0
�e�4 0g�10 .d.�!0/; d.�!0// dVolg0

C

Z
S�R2C1

e�4 0
.g�10 /˛ˇ .@ˇ!0/

N0
a ..d�cross/�˛t � ˇ

k
0 .d�

cross/�˛k/:

(12.6)

For IIa;2, we note the following:

— By Lemma 5.2, ŒA; 1
N0
� W L2 ! L2loc and ŒA; .e0/0� W H 1 ! L2loc are compact so that

(after passing to a subsequence) ŒA. .e0/0.� n/
N0

/� .e0/0.A.� n//
N0

� converges in theL2 norm

to ŒA. .e0/0.� 0/
N0

/ � .e0/0.A.� 0//
N0

�.

— By Lemma 7.1, (4.2) and (4.3), g�10 .d.�!n/; d.�!n// converges weakly in L2 to
g�10 .d.�!0/; d.�!0//.

It follows that
(12.7)

II0a;2 !
1

2

Z
R2C1

ŒA.
.e0/0.� 0/

N0
/ �

.e0/0.A.� 0//

N0
��e�4 0g�10 .d.�!0/; d.�!0// dVolg0 :

We now return to the term IIb in (12.3). Notice now that @� and a have disjoint support.
Therefore by Lemmas 5.2.1 and 5.2.5, @�A W L2 ! L2 is compact. As a result, using also
(4.2) and (4.3), we obtain

IIb !
1

2

Z
R2C1

A.
.e0/0.� 0/

N0
/�e�4 0!0Œg

�1
0 .d�; d.�!0//C �g�10 .d�; d!0/� dVolg0 :

(12.8)

Combining (12.3)–(12.8), we obtain

II !
1

2

Z
R2C1

A.
.e0/0.� 0/

N0
/�3e�4 0g�10 .d!0; d!0/ dVolg0

C

Z
S�R2C1

e�4 0
.g�10 /˛ˇ .@ˇ!0/

N0
a ..d�cross/�˛t � ˇ

k
0 .d�

cross/�˛k/:

(12.9)
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Combining (12.1), (12.2) and (12.9), we obtain

1

2

Z
R2C1

A.
.e0/n.� n/

Nn
/�e�4 ng�1n .d!n; d!n/ dVolgn

!
1

2

Z
R2C1

A.
.e0/0.� 0/

N0
/�e�4 0g�10 .d!0; d!0/ dVolg0

C

Z
S�R2C1

e�4 0
.g�10 /˛ˇ .@ˇ!0/

N0
a ..d�cross/�˛t � ˇ

k
0 .d�

cross/�˛k/:

(12.10)

Step 2: Computing the second to fourth terms. – Arguing as in the derivation of (12.10) in
Step 1, we obtain

�

Z
R2C1

e�4 0A.
.e0/n.�!n/

Nn
/�g�1n .d!n; d n/ dVolgn

! �

Z
R2C1

e�4 0A.
.e0/0.�!0/

N0
/�g�10 .d!0; d 0/ dVolg0

�

Z
S�R2C1

e�4 0
.g�10 /˛ˇ .@ˇ 0/

N0
.�t � ˇ

k
0 �k/�˛a

d�!

j�j2

�

Z
S�R2C1

e�4 0
.g�10 /˛ˇ .@˛!0/

N0
a .d�cross

ˇt � ˇk0d�cross
ˇk /:

(12.11)

Similarly, we also obtain

1

2

Z
R2C1

.e0/n.� n/

Nn
AŒ
p
� detgn�e�4 ng�1n .d!n; d!n/� dx

!
1

2

Z
R2C1

.e0/0.� 0/

N0
AŒ
p
� detg0�e�4 0g�10 .d!0; d!0/� dx

C

Z
S�R2C1

e�4 0
.g�10 /˛ˇ .@˛!0/

N0
a .d�cross

tˇ � ˇk0d�cross
kˇ /;

(12.12)

and

�

Z
R2C1

e�4 0
.e0/n.�!n/

Nn
AŒ
p
� detgn�g�1n .d!n; d n/� dx

! �

Z
R2C1

e�4 0
.e0/0.�!0/

N0
AŒ
p
� detgn�g�10 .d!0; d 0/� dx

�

Z
S�R2C1

e�4 0
.g�10 /˛ˇ .@ˇ 0/

N0
.�t � ˇ

k
0 �k/�˛a

d�!

j�j2

�

Z
S�R2C1

e�4 0
.g�10 /˛ˇ .@˛!0/

N0
a ..d�cross/�tˇ � ˇk0 .d�

cross/�kˇ /:

(12.13)

Step 3: Putting everything together. – Adding (12.10), (12.11), (12.12) and (12.13), and
noticing a cancellation using Proposition 6.2, we finish the proof.

12.4. Putting everything together

We now combine the results in Section 11 and this section. More precisely, subtracting
the expression in Proposition 12.4 from the sum of the expressions for  and ! in Proposi-
tion 11.17, we obtain the following:
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Proposition 12.5. – Let d� be defined as in (7.8). Suppose A D b.x/em.1
i
r/, where the

principal symbol a.x; �/ D b.x/m.�/ (with m.�/ D em.�/ for j�j � 1) is real and supported
in T ��, m.�/ is homogeneous of order 0, and m and em are both even. Then, after passing to a
subsequence (which we do not relabel),

(RHS of (9.14)) C (RHS of (9.15))

�

Z
R2C1

Œ@i .� n/�ı
ijNnfŒ.e0/n; A�.

@j .� n/

Nn
/g dx

�
1

4

Z
R2C1

e�4 0 Œ@i .�!n/�ı
ijNnfŒ.e0/n; A�.

@j .�!n/

Nn
/g dx

! (RHS of (9.10)) C (RHS of (9.11))

�

Z
R2C1

Œ@i .� 0/�ı
ijN0fŒ.e0/0; A�.

@j .� 0/

N0
/g dx

�
1

4

Z
R2C1

e�4 0 Œ@i .�!0/�ı
ijN0fŒ.e0/0; A�.

@j .�!0/

N0
/g dx

�
1

2

Z
S�R2C1

ıij �i�j .@xta � ˇ
k
0@xka/

e�2
0

N0

d�
j�j2

C
1

2

Z
S�R2C1

1

N0
.�t � ˇ

k
0 �k/Œ.g

�1
0 /����.@x�a/ � @�.g

�1
0 /˛ˇ �˛�ˇ .@��a/�

d�
j�j2

C 2

Z
S�R2C1

e�4 0
.g�10 /˛ˇ .@ˇ 0/

N0
.�t � ˇ

k
0 �k/�˛a

d�!

j�j2
;

where X D
1
N0
.@t � ˇ

i
0@i /.

13. Transport equation for the microlocal defect measure
and conclusion of the proof of Theorem 4.2

Our goal in this section is to combine Propositions 10.4, 10.5 and 12.5 to prove that the
measure d� indeed satisfies a transport equation as in (2.23). This will allow us to conclude
the proof of Theorem 4.2.

Proposition 13.1. – Let d� be defined as in (7.8).

Suppose a W T �R2C1 ! R is a smooth function which is homogeneous of order 0 in � and is
supported in T ��. ThenZ

S�R2C1
.2.g�10 /˛ˇ �˛@xˇ .

.�t � ˇ
k
0 �k/a

N0
/ � .@�.g

�1
0 /˛ˇ /�˛�ˇ@��.

.�t � ˇ
k
0 �k/a

N0
//

d�
j�j2

D 0:

Proof. – By Proposition 8.8, it suffices to consider the case where a.x; �/ D b.x/m.�/,
wherem is homogeneous of order 0 and even. We make this assumption for the remainder of
the proof (so that we can apply results in earlier sections).

Note that RHS of (9.12) D RHS of (9.14), RHS of (9.13) D RHS of (9.15),
RHS of (9.5) D RHS of (9.10) and RHS of (9.6) D RHS of (9.11) (because the LHSs
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all agree). Therefore, combining Propositions 10.4, 10.5 and 12.5, we obtain

0 D �

Z
S�R2C1

..g�10 /˛ˇ .@ˇX

 /�˛�
 �

1

2
X�@�.g

�1
0 /˛
�˛�
 /a

d�

j�j2

C
1

2

Z
S�R2C1

Œ�ıij �i .�t � ˇ
k
0 �k/@xj a�

e�2
0

N0

d�

j�j2

C
1

2

Z
S�R2C1

ıij �i�j .@xta � ˇ
k
0@xka/

e�2
0

N0

d�
j�j2

�
1

2

Z
S�R2C1

1

N0
.�t � ˇ

k
0 �k/Œ.g

�1
0 /˛ˇ �˛.@xˇa/ � @�.g

�1
0 /˛ˇ �˛�ˇ .@��a/�

d�
j�j2

;

(13.1)

where X D
1
N0
.@t � ˇ

i
0@i / as before.

(Note that the two terms of 2
R
S�R2C1

e�4 0

N0
.g�10 /˛ˇ .@˛ 0/�ˇ .�t � ˇ

k
0 �k/a

d�!

j�j2
cancel.)

Since 1

N2
0

.�t � ˇ
k
0 �k/

2 D e�2
0ıij �i�j on the support of d� (by Proposition 6.6),

1

2

Z
S�R2C1

Œ�ıij �i .�t � ˇ
k
0 �k/@xj a�

e�2
0

N0

d�

j�j2

C
1

2

Z
S�R2C1

ıij �i�j .@xta � ˇ
k
0@xka/

e�2
0

N0

d�
j�j2

D
1

2

Z
S�R2C1

Œ�ıij �i .�t � ˇ
k
0 �k/@xj a�

e�2
0

N0

d�

j�j2

C
1

2

Z
S�R2C1

.�t � ˇ
i
0�i /

2.@xta � ˇ
k
0@xka/

1

N 3
0

d�
j�j2

D
1

2

Z
S�R2C1

.�t � ˇ
k
0 �k/Œ�e

�2
0ıij �i@xj aC
.�t � ˇ

i
0�i /

N 2
0

.@xta � ˇ
k
0@xka/�

1

N0

d�

j�j2
:

(13.2)

By (11.72), it then follows that

(13.3) (13.2) D �
1

2

Z
S�R2C1

.�t � ˇ
k
0 �k/.g

�1
0 /˛ˇ �˛.@xˇa/

1

N0

d�

j�j2
:

Plugging (13.3) into (13.1), we then obtain

0 D �

Z
S�R2C1

 
�.g�10 /˛�

@�ˇ
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�j �˛ C .�t � ˇ
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0�i /..g
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0 /˛ˇ .@ˇ

1

N0
/�˛ �

1

2

1

N0
..e0/0.g

�1
0 /˛
 /�˛�
 /a

!
d�

j�j2

�

Z
S�R2C1

1
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.�t � ˇ

k
0 �k/Œ.g

�1
0 /˛ˇ �˛.@xˇa/ �

1

2
@�.g

�1
0 /˛ˇ �˛�ˇ .@��a/�

d�
j�j2

D �

Z
S�R2C1

Œ.g�10 /˛ˇ �˛@xˇ .
.�t � ˇ

k
0 �k/a

N0
/ �

1

2
.@�.g

�1
0 /˛ˇ /�˛�ˇ@��.

.�t � ˇ
k
0 �k/a

N0
/�

d�
j�j2

;

(13.4)

as desired.

Proposition 13.2. – Let d� be defined as in (7.8).
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Supposeea W T �R2C1 ! R is a smooth function which is homogeneous of order 1 in � and is
supported in T ��. ThenZ

S�R2C1
.2.g�10 /˛ˇ �˛@xˇea � .@�.g�10 /˛ˇ /�˛�ˇ@��ea/ d�

j�j2
D 0:

Proof. – Supposeea is homogeneous of order C1 in � with support in S��. Since d� is
supported on f.x; �/ W g�10 .�; �/ D 0g, �t �ˇk0 �k ¤ 0 on the support of d�. It follows that we

can define a to be homogeneous of order 0 in � supported in S�� so that .�t�ˇ
k
0
�k/a

N0
�ea in

a neighborhood of the support of d�. Applying Proposition 13.1 to this a then yieldsZ
S�R2C1

.2.g�10 /˛ˇ �˛@xˇea � .@�.g�10 /˛ˇ /�˛�ˇ@��ea/ d�
j�j2

;

which is what we want to prove.

Proof of Theorem 4.2. – In view of Theorem 4.1 and Proposition 4.4, it suffices to prove
that under the additional assumption of Theorem 4.2, the transport equation (2.23) holds
in �. This is exactly provided by Proposition 13.2.
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