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ABSTRACT

Measurements of B-mode polarization in the CMB sourced from primordial gravitational waves would provide
information on the energy scale of inflation and its potential form. To achieve these goals, one must carefully
characterize the Galactic foregrounds, which can be distinguished from the CMB by conducting measurements
at multiple frequencies. BICEP Array is the latest-generation multi-frequency instrument of the BICEP/Keck

program, which specifically targets degree-scale primordial B-modes in the CMB. In its final configuration, this
telescope will consist of four small-aperture receivers, spanning frequency bands from 30 to 270 GHz. The
220/270 GHz receiver designed to characterize Galactic dust is currently undergoing commissioning at Stanford
University and is scheduled to deploy to the South Pole during the 2024–2025 austral summer. Here, we will
provide an overview of this high-frequency receiver and discuss the integration status and test results as it is
being commissioned.
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1. INTRODUCTION

Precise measurements of the cosmic microwave background (CMB) play a key role in cosmology. In particular, we
are motivated to measure the polarization patterns in the CMB to search for evidence of cosmic inflation. Under
the ΛCDM standard model, assuming only scalar perturbations were present at the surface of last scattering, we
expect the primordial CMB signal to consist purely of E-mode polarization patterns.1 However, inflationary the-
ories additionally predict tensor perturbations in the early universe, i.e., a background of primordial gravitational
waves. Tensor perturbations source both E-mode and B-mode patterns in the CMB via Thomson scattering
at the recombination epoch.2 Thus by searching for an excess of B-modes in the CMB at recombination, we
can detect or set limits on primordial gravitational waves from inflation. Since 2006, the BICEP/Keck program
has been taking measurements to constrain this primordial B-mode signature, parameterized by the tensor-to-
scalar ratio, r. BICEP/Keck ’s latest published results, which includes BICEP/Keck data taken up to the end
of the 2018 season (“BK18”), set the most sensitive B-mode-only constraints to date on r, with a sensitivity of
σ(r) = 0.009.3

The search for primordial gravitational waves is complicated by the presence of non-primordial B-mode signals
in the CMB that come from Galactic foregrounds and gravitational lensing. We typically focus on two dominant
types of polarized Galactic foreground contaminants: synchrotron radiation and thermal dust emission. These
foreground components can be separated from the CMB through multi-frequency measurements utilizing their
different spectra. While CMB signal peaks at around 160 GHz and follows a blackbody spectrum, Galactic
polarized synchrotron emission follows a power law and is brightest at lower frequencies,4 and polarized thermal
dust emission from within our Galaxy has a modified blackbody spectrum that dominates at higher frequencies.5

In particular, polarized Galactic dust is brighter than synchrotron at the peak of the CMB spectrum in the
region that BICEP is observing, and the sample variance from dust contributes more than 20% of the total
uncertainty in the best B-mode-only r constraint to date.3 Thermal dust emission is caused by starlight re-
radiating from dust grains in the interstellar medium. Because these dust grains are asymmetric and elongated,
they align with the Galactic magnetic field and therefore emit slightly polarized photons. This emission is the
brightest in the Galactic plane, highly anisotropic, and extends all the way to high Galactic latitudes where
BICEP/Keck is observing. In order to effectively guard for spurious B-modes from the Galaxy, any future
experiment must carefully characterize the spectral properties of dust, which requires appropriate frequency
coverage. Thus, a sensitive high-frequency instrument for taking precise measurements of the dust is a crucial
part of the BICEP/Keck program.

BICEP Array (BA) is the latest-generation multi-frequency instrument of the BICEP/Keck program, re-
placing Keck Array. BA, which specifically targets degree-scale B-modes in the CMB, will consist of four
small-aperture receivers in its final configuration, spanning frequency bands from 30 to 270 GHz and covering
the same sky patch as BICEP3. Two of these have already been deployed: a 30/40 GHz receiver for constraining
synchrotron and a 150 GHz receiver observing close to the peak of the CMB spectrum. The other two slots of
the telescope are currently occupied by Keck Array receivers until BA receivers are ready to replace them. The
next receiver of BA to deploy will be the 220/270 GHz receiver, which is designed to characterize Galactic dust.















4. CONCLUSION

In-lab optical testing of the 220/270 GHz receiver was performed at Stanford University. This testing involved
the first two 220 GHz detector modules, the complete set of official optics, and all necessary cabling. The goals
for this test run was to characterize the optics and the detector modules, assess the cryogenic performance, and
verify the readout. These tests in North America provide insight of the predicted overall performance of the
receiver on-site at the South Pole.

The 220/270 GHz receiver has excellent cryogenic performance, and the readout has been tested. The results
of the OE, FTS, and NFBM tests are all within spec, and we are on track to deploy to the South Pole in the
2024–2025 austral summer season. Fig. 10 is a schematic of the achieved and projected sensitivity for the entire
BICEP/Keck program, and shows the predicted impact of this high frequency receiver as it starts observing at
the end of 2024. In the top subplot, the 220/270 GHz BA receiver can be seen starting operations in blue, in
the 2025 observing season. Until this, the high frequency band is only covered by Keck receivers.

With data up to and including 2027, without delensing, we estimate that our uncertainty on r will be reduced
to σ(r) ∼ 0.006.14 With delensing, we expect to achieve σ(r) ∼ 0.003.3 Even without delensing, it is clear that
there is a “cusp” of improved σ(r) in 2025 with the 220/270 GHz receiver added as seen in the bottom subplot
of Fig. 10, as this receiver will significantly improve our sensitivity to Galactic dust.

More high frequency detector modules are currently being fabricated at Caltech/JPL, and we will run more
optical tests in North America before deployment to characterize these modules.

Figure 10. Achieved and projected sensitivity of the BICEP/Keck program, adapted from Fig. 5 of Cheshire et al.
(2024).13 Top: The frequency bands covered by the various receivers through each season, with the different colors
showing the different frequencies, and the width representing detector count. Middle: Achieved and projected map
sensitivities for each frequency band. SPT-3G is included in the solid black line. Black × symbols indicate published
values. Bottom: Progression of our sensitivity to r over time. The solid line shows the projected σ(r) with delensing in
collaboration with SPT-3G, and the dotted line is the case with no delensing.
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