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Abstract: Topological data analysis (TDA) has proven to be a potent approach for extracting intri-
cate topological structures from complex and high-dimensional data. In this paper, we propose a
TDA-based processing pipeline for analyzing multi-channel scalp EEG data. The pipeline starts with
extracting both frequency and temporal information from the signals via the Hilbert–Huang Trans-
form. The sequences of instantaneous frequency and instantaneous amplitude across all electrode
channels are treated as approximations of curves in the high-dimensional space. TDA features, which
represent the local topological structure of the curves, are further extracted and used in the classifica-
tion models. Three sets of scalp EEG data, including one collected in a lab and two Brain–computer
Interface (BCI) competition data, were used to validate the proposed methods, and compare with
other state-of-art TDA methods. The proposed TDA-based approach shows superior performance
and outperform the winner of the BCI competition. Besides BCI, the proposed method can also be
applied to spatial and temporal data in other domains such as computer vision, remote sensing, and
medical imaging.

Keywords: topological data analysis; Hilbert–Huang transform; scalp EEG; persistent homology;
brain–computer interface

MSC: 55-11; 91E10

1. Introduction

Topological data analysis (TDA) is an innovative approach increasingly employed in
statistical applications and machine learning, offering a fresh perspective for exploring
complex data structures, especially the shapes of data. One of the most widely used TDA
algorithms is persistent homology (PH), introduced in [1,2]. Homology is a fundamental
tool in the area of algebraic topology employed to capture the topological structures of
simplicial complexes such as components, loops, and voids, etc. PH computes the homology
of a Vietoris–Rips complex filtration built on the data, which is typically a finite metric
space in high dimensions. The PH algorithm reveals the changes of these topological
structures in the simplicial complex filtration and gains insights from the data.

In recent years, there has been a growing interest in leveraging TDA to extract pertinent
topological features from signals in the field of signal processing. For the analysis of EEG
signals, recent research [3–10] has demonstrated that the extracted topological features
contain valuable information relevant to various neurological disorders. As summarized
in the survey [11], the following three approaches are commonly employed in the TDA
analysis of EEG signals:

(i) Applying TDA to the EEG signals channel by channel using sublevel filtration [9];
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(ii) Applying TDA to the point cloud using Vietoris–Rips filtration, with each channel as
a point and distance measured by connectivity measures such as Pearson correlation
coefficients [6];

(iii) Applying TDA to the reconstructed state space using time-delay embedding backed
by Taken’s embedding theorem [12,13].

Persistent diagrams, also called barcodes, are then generated along with the filtration
processes. Various methods exist for extracting topological features from these persistent
diagrams. For instance, areas of one-dimensional Betti curves has been used to detect
delirium using bispectral EEG (BSEEG) [7].

However, the current TDA analyses are applied either on the EEG signals or on the
frequency information extracted from the Fourier transform, which are not comprehensive
representation of both the time and frequency information embedded in EEG signals.
In methods (i) and (iii), TDA is applied to the signals channel by channel; hence, the
information of spatial distribution and correlation among the channels are not captured;
and method (ii) misses the local information of the signals, which is hidden in short
time intervals.

To address these challenges, in this paper, we propose a new way to extract TDA
features from scalp EEG signals. We consider the multivariate brain signals as a curve
in a Banach space. The recorded multi-channel scalp EEG signals can be treated as an
approximation of the true brain signal curves with sampled spatial and temporal points
(i.e., electrode channels and samples). The signal curve can be further segmented based on
time intervals (2 ms/4 ms/8 ms, 100 ms, and 200 ms), from which local topological features
are extracted. Moreover, the instantaneous frequency and instantaneous power of the scalp
EEG signals are extracted via Hilbert–Huang Transform (HHT), and are also treated as
curves in the Banach space. The TDA features are further extracted from the segmented
frequency and power curves. In this paper, we utilized two ways of extracting topological
features from a persistent diagram and compared their discriminative capability in the
classifiers. The first one is the Betti numbers on five evenly distributed scales [5] and the
second one is the areas of Betti curves, with dimensions being 0 and 1 in both ways. The
contributions of this work can be summarized as follows:

• The multivariate time series are treated as approximations of curves in a Banach space
and further segmented to extract local topological features.

• The time–frequency representation of EEG signals are extracted via HHT, and the
instantaneous frequency and power series are treated as approximations of curves in
a Banach space.

• The proposed TDA approach extracts spatial, temporal, and frequency information
embedded in the multivariate time series and can be applied in other domains such as
computer vision, remote sensing, medical imaging etc.

This is the first study that extracts time–frequency representation from multi-channel
scalp EEG signals and considers the multivariate frequency and power series as curves
in a Banach space to extract local topological features. To evaluate the proposed method
and compare with other state-of-art TDA approaches, three scalp EEG datasets includ-
ing two from a Brain–computer Interface (BCI) competition and one dataset collected as
part of a cognitive neuroscience study are utilized. Besides comparing with other TDA
approaches via cross-validation, we also compare the proposed method with the winner of
the competition as well as the classification performance reported in the literature on the
test data.

Compared to existing TDA approaches, our proposed method demonstrates signifi-
cantly superior performance. Additionally, when compared to various signal processing
methods, our TDA approach exhibits robust and stable performance across subjects, with
average results being comparable and even better than some advanced methods. In the
BCI application, it is important to have an accurate and robust classifier that translates
the brain signals into commands for external devices. Employing TDA techniques enable
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the researchers to extract meaningful features from BCI data and reduce noise, which
promotes the accuracy of signal processing and classification. Furthermore, TDA allows for
the exploration of topological properties across different brain regions, which enhances a
deeper comprehension of neural processes.

The remainder of this paper is organized as follows. In Section 2, we introduce the
three datasets used for validation and comparison. In Section 3, we discuss the details of
the proposed TDA method. In Section 4, we validate the proposed method on three EEG
datasets and compare it with other state-of-art TDA approaches as well as the winner of
the BCI competition. Finally, we conclude the paper in Section 5.

2. Data Description

To validate the proposed method and further compare it with the state-of-art TDA
approaches in the literature, we employed three scalp EEG datasets. To encompass a
comprehensive representation of cases encountered in EEG-based BCI, the following three
datasets with varying numbers of electrode channels, ranging from three to one hundred
and eighteen, are selected.

Data 1 are from Dataset IIb from BCI competition IV [14]. The data contain both
the EEG and electrooculogram (EOG) activity of nine subjects, but, in this study, we only
leveraged the EEG signals, which were recorded from three electrode channels (C3, Cz,
and C4) with a sampling frequency of 250 Hz. Each subject participated in the cue-based
screening paradigm that consisted of two classes, motor imagery (MI) of the left hand
(class 1) and the right hand (class 2). There were a total of three online feedback sessions,
with the first session (03T) serving as the training data and the other two sessions (04E, 05E)
as test data. Each session contained four runs with smiley feedback, and each run consisted
of twenty trials per class, resulting in a total of eighty trials per class. The data provided
by the competition were bandpass-filtered between 0.5 and 100 Hz and filtered by a notch
filter at 50 Hz. No extra pre-processing was conducted in this study. The winner of the
competition was the algorithm giving the largest kappa value on the test data.

Data 2 are from Dataset IVa from BCI competition III [15]. It contains 118-channel
scalp EEGs from five subjects with two motor imagery tasks, concerning the right hand and
foot. It is worth mentioning that the challenge of these data are the small training samples.
Specifically, subject aa underwent168 trials for training and 112 trials for testing, subject
al underwent 224 trials for training and 56 for testing. However, subject av underwent
84 trials for training and 196 trials for testing. Subject aw only underwent 56 trials for
training but 224 trials for testing. Subject ay only underwent 28 trials for training but
252 trials for testing. To overcome the problem, training trials from other subjects could
also be considered during the model training, as recommended by the competition [15].
Therefore, we included the training trials from subject av when training the classifier of
subject ay. The performance measure of the competition was the overall accuracy.

Data 3 are from the Human Spatial Cognition Laboratory at the University of Ari-
zona [16,17]. It consists of 64-channel scalp EEGs from 19 subjects (written informed
consent was obtained in accordance with the Institutional Review Board at the University
of Arizona) who performed a spatial distance monitoring task to identify binary outcomes,
short vs. long distance in an immersive virtual environment. There were 48 trials per sub-
ject with 24 trials in each class. The signals were processed by 1–50 Hz bandpass filtering,
artifact amelioration, and eye/muscle artifacts removal. The details of the experimental
design and data pre-processing can be found in [16]. The information about the three
datasets are summarized in Table 1. All datasets are publicly available.
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Table 1. The configurations of datasets.

Data 1 Data 2 Data 3
BCI IV IIb BCI III IVa Lab Data

Subject Number 9 5 19
Channel Number 3 118 64
Trials per Class 80 14–112 24

Trial Length 1000 2500 2828
Sampling Rate 250 Hz 1000 Hz 500 Hz

3. Method

The proposed TDA approach is composed of four parts, including data transformation,
persistent homology, TDA feature extraction, and classification, as outlined in Figure 1.
Details of each component are discussed in the following section.

Figure 1. The proposed TDA-based processing pipeline.

3.1. Data Transformation

Existing TDA-based approaches for analyzing EEG signals extract the topological
features from signals either in the original time domain or frequency domain via Fourier
transform. Scalp EEG signals are assumed to be stationary in many methods, but tem-
poral drift and experimental manipulations may introduce non-stationarities. In other
words, the frequency and power of the signals change over time. Fourier transform has
limitations for revealing the frequency information of EEG signals because it estimates
a constant power for each frequency during the entire time span. To better capture the
frequency and power shift over time, we leveraged the Hilbert–Huang Transformation
(HHT), proposed by [18], to reveal the dynamic time–frequency representation of the
EEG signals.

Different from the Fourier or wavelet transform, HHT is a data-driven approach. It
first decomposes the signals into sub-signals, named Intrinsic Mode Functions (IMFs), via
Empirical Mode Decomposition (EMD), and then reveals the time–frequency information of
each IMF via Hilbert Transform (HT). Specifically, we denoted the signal from one channel
during one trial as x(t). The EMD decomposes the signal into a collection of IMFs, denoted
as {ci(t), i = 1, . . . , n}, via a sifting process [18]. The instantaneous frequency ωi(t) and
instantaneous amplitude ai(t) of each IMF is then revealed by HT.

x(t) =
n

∑
i=1

ci(t) + r(t) =
n

∑
i=1

Re{ai(t)exp(i
∫

ωi(t)dt)}+ r(t).

For scalp EEG signals, the dynamic frequency and power revealed by HHT are es-
sential information because they are used to reveal the subtle changes in the underlying
dynamic process in the brain. Moreover, due to the sifting process in EMD, the IMFs are in
descending frequency bands, with the first IMF carrying the highest frequency sub-signal.
Considering the frequency bands of brain oscillations, in this study, we chose the first four
IMFs that cover delta, theta, alpha, and beta waves.
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We denoted the EEG signals during each trial as X(t)N×T , with each row xn(t) (n = 1,
2, . . . , N) being length T signals from each of the N channels. HHT was applied on each
xn(t), and the resulting instantaneous frequency and amplitude of the first four IMFs are
denoted as ωni(t) and ani(t), respectively, where i = 1, 2, 3, 4. Figure 2 shows an example
of the time-varying frequency and power (i.e., square of the amplitude) of the first four
IMFs under two different tasks. The color represents the instantaneous amplitude of
the corresponding instantaneous frequency. By organizing the dynamic frequency and
power information from each channel in a matrix form, we obtained one frequency matrix,
denoted as Fi, and one power matrix, denoted as Pi, for each IMF, resulting in a total
of eight matrices. All matrices are N × T, with each row being ωni(t) or ani(t). In the
following, TDA features are extracted from the eight matrices that represent the dynamic
time–frequency information of the signals.

Figure 2. An example of the HHT-transformed data during two different tasks: the instantaneous
frequency and instantaneous amplitude (represented by color) of IMF 1 (A), IMF 2 (B), IMF 3 (C),
and IMF 4 (D).

3.2. Persistent Homology and Vietoris–Rips Filtration

An abstract simplicial complex K over a finite set S is a collection of nonempty subsets
of the set S, such that

⋃
K = S and, for any two subsets τ, σ of S, τ ⊆ σ ∈ K implies that

τ ∈ K. Every abstract simplicial complex has a geometric realization, which is a set of
points, line segments, triangles, and general n-simplices. An n-simplex (n-dimensional
simplex) is the convex hull of n + 1 many affine independent points, making it naturally a
geometric object. The dimension of a simplicial complex is the maximum of the dimensions
of its simplices. For instance, any graph (G, E) is a one-dimensional simplicial complex,
with G being the set of points and E being the set of 1-simplices. Consequently, graphs
capture the pairwise relations between the points, and simplicial complexes yield the
higher-order relationships among the points.



Mathematics 2024, 12, 1727 6 of 17

For any metric space X and scale r ≥ 0, the Vietoris–Rips complex VR(X; r) is the
complex with simplicies to be the nonempty finite subsets of X of diameter ≤ r. In TDA,
the metric space X is the data sampled from some unknown topological space Y and one
would like to use the state space X to uncover the topological features of the unknown
space Y. The idea behind TDA/PH is to investigate the ‘shape’ of the complex VR(X; r)
using homology as the scale r varies from small to large and trust the persisting topological
features to be the representative of the topological properties of Y. This idea is supported
by a fundamental result, the nerve theorem [19], which states that the nerve complex of a
nice open cover of a topological space Y is homotopic to Y. This theorem shows that the
topological features of a space Y is encoded in finite abstract combinatorial structures built
on the space Y.

In algebraic topology, (co)homologies are used to capture the topological properties
of simplicial complexes such as the numbers of components, loops, and voids, etc. In the
following, we provide a brief overview of the computation process for homologies with
coefficients in Z2, which is the field with two elements, 0 and 1, where 1 + 1 = 0.

Let K be a finite simplicial complex. We fix an integer p ≥ 0. We define Cp(K) to be the
vector space on the field Z2 with a base to be the collection of p-simplicies. Furthermore, we
define a boundary map ∂p from Cp(X) to Cp−1(X) to be the linear extension of the intuitive
boundary map on any p-simplices. The kernel of ∂p, denoted by Zp(K), is the collection of
p-cycles and the image of ∂p+1, denoted by Bp(K), is the collection of p-boundaries, i.e., the
‘filled’ p-cycles. Then, the pth simplicial homology group with coefficients in Z2 is defined
to be

Hp(K) = Zp(K)/Bp(K).

Therefore, the dimension of the vector space Hp(K) gives the count of the ‘unfilled’
p-dimensional ‘hole’ in K, which is also called the pth Betti number. Topologically, a one-
dimensional ‘hole’ is a circle and a two-dimensional ‘hole’ is a void. The dimension of the
0th homology group H0(K) gives the number of connected components in the simplicial
complex K.

To extract a filtration of simplicial complexes from a state space X, Vietoris–Rips
filtration was employed. It starts with expanding each point in the state space to a disk
with a radius of zero. The radii of the disks grow uniformly, and then the procedure ends
when they reach a predetermined value. The predetermined value in our calculation is
the one such that the resulting simplicial complex loses all the topological structures, i.e.,
homotopy equivalent to a singleton. For each radius ri ≥ 0 with i = 0, 1, 2, . . . , n, we
obtain a Vietoris–Rips complex VR(X; ri), denoted by Kri . This yields a filtration of nested
simplicial complexes, Kr0 , Kr1 , Kr2 , . . . , Krn with

Kr0 ⊆ Kr1 ⊆ Kr2 ⊆ · · · ⊆ Krn .

The persistent homology of this filtration of simplicial complexes {Kri : i = 0, 1, . . . , n}
is the homology groups {Hp(Kri ) : p ≥ 0 and i = 1, . . . , n} connected by the mapping

{ϕ
i,j
p : p ≥ 0 and 0 ≤ i < j ≤ n}, where each ϕ

i,j
p is the linear transformation from Hp(Kri )

to Hp(Krj) induced by the inclusion map. For each homology dimension p ≥ 0, we obtain
a finitely generated persistence module Vp over the field Z2:

Hp(Kr0)
ϕ0,1

p
==⇒ Hp(Kr1)

ϕ1,2
p

==⇒ · · ·
ϕn−1,n

p
===⇒ Hp(Krn).

By the structure theorem [20], such a persistence module can be decomposed to a
direct sum of interval modules I[ri, rj) with i < j in the following form:

0 =⇒ · · · =⇒ 0 =⇒ Z2
id
=⇒ · · · id

=⇒ Z2 =⇒ 0 =⇒ · · · =⇒ 0
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where 0 is the trivial groups and id represents the identity map. Each of the interval
modules represents a topology structure that persists in the interval [ri, rj). We denote the
collection of such intervals as Jp. So, we obtain the the following decomposition of the
persistence module:

Vp ∼=
⊕

I∈Jp

I(I)

In this decomposition, topological invariants (components, circles, voids, etc) persist in
these Vietoris–Rips complexes on the corresponding intervals. Hence, each p-dimensional
interval module corresponds to one of these topological invariants. These intervals are
called p-dimensional Betti intervals, in the form [rbirth, rdeath), which defines the scales
at which a p-dimensional hole appears in the simplicial complex Krbirth and dies in the
simplicial complex Krdeath . These topological features are not observable through the
analytic approach with a fixed scale. We then denote the persistent barcode to be the
collection of all these intervals. Then, the Betti curve of dimension p is defined to be

βp(r) = ∑
I∈Jp

w(I)1r∈I

where w is the pre-chosen weight function and 1r∈I is the characteristic function, i.e., its
value is 1 if r ∈ I, otherwise 0. If the weight function w(I) is the constant function 1, then
the value of the Betti curve at r is the number of Betti intervals containing the scale r. It is
not hard to see that if the data are sampled from a line segment and the weight function
is chosen to be the constant 1 function, then the area of the Betti curve at dimension 0 is
exactly half of the length of the line segment. Hence, the areas of the Betti curves are closely
related to the topological/geometric properties of the underlying space. In our proposed
approach, the constant function 1 is chosen to be the weight function for the Betti curves.

To illustrate the process, we discuss two simple examples (A) and (B) in Figure 3.
Example (A) contains three data points with the only zero-dimensional persistent homology
being nontrivial (as shown in the figure, only red barcodes, H0, appear in the persistent
barcode of (A)); and Example (B) contains five data points whose filtration has nontrivial
zero- and one-dimensional persistent homology (both H0 and H1 appear in the persistent
barcode as shown in the figure). A graphical representation of the persistent barcode of the
datasets is also included and it is associated with the filtration of Vietoris–Rips complexes.

Persistent homology possesses a crucial property [21], wherein the persistence bar-
codes from Vietoris–Rips filtrations demonstrate remarkable stability when the data are
contaminated. Specifically, the distance between the persistence barcodes (bottleneck dis-
tance) obtained via applying persistent homology on two datasets in a given dimension p is
controlled by the distance of these two datasets (Gromov–Hausdorff metric). The computa-
tion of persistent homology is carried out using Python 3.12.1 [22] named Giotto-tda, which
allows the users to perform Vietoris–Rips filtration analysis along with a time-delayed
embedding of time series.
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Figure 3. Illustrations of filtration and the associated barcode using three data points (A) and five data
points (B), with black points representing the data. Both (A) and (B) show four stages of filtration
along with the associated simplicial complexes and persistent barcodes. In stage 1, all points are
isolated, giving the same number of bars and data points. As balls grow, some balls merge together
resulting in the death of certain bars, and the length of each line segment (red/blue) represents the
life span of certain topological features during the filtration. The red line segments denote the life
span of connected components. Therefore, (A) has three red lines and (B) has five red lines in their
barcodes. During the filtration of (B), a loop emerges in stage 3 of the filtration but disappears later.
The life span of this feature is represented by the blue line segment in the barcode of (B). In (A), only
the collection of zero-dimensional Betti intervals is nontrivial while both collections of zero- and
one-dimensional Betti intervals are nontrivial in (B).

3.3. TDA Feature Extraction

The existing TDA-based frameworks extract topological features from the signal or
transformed signal recorded in each channel, respectively, without considering the spatial
information across channels. To overcome this limitation, we consider the transformed
data across different locations as an approximation of some curves in a Banach space and
further extract their local topological structures as follows.

Let M denote a compact manifold and C(M) denote the collection of all real-valued
continuous functions, which is a Banach space when it is equipped with the supreme norm.
We consider the true brain signals during a time period as a function from a time interval
to the Banach space C(M) with M representing the scalp, a compact two-dimensional
manifold. The inherent brain signals exhibit continuity both temporally and spatially,
meaning that signals are present throughout the scalp at any given moment. Hence, the
true brain signals can be considered as a curve in the Banach space C(M). The scalp EEG
signals are recorded via electrode channels placed at certain locations on the scalp with a
specific sampling frequency. Therefore, the recorded brain signals (after pre-processing)
can be considered as an approximation of the true brain signals, effectively capturing both
temporal and spatial characteristics. The electrode channels act as an approximation of the
entire scalp, and the signals are recorded discretely at specific time points determined by the
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sampling rate. Thus, the recorded scalp EEG signals can be considered as an approximation
of the curve. The same idea can be applied to the instantaneous frequency {Fi : i = 1, 2, 3, 4}
and instantaneous amplitude {Pi : i = 1, 2, 3, 4}, which are the transformed signals obtained
in Section 3.1. For illustration purposes, we use F1 as an example to discuss the following
TDA feature extraction.

We recall that F1 is a multivariate time series:

F1(t)N×T = {x(t) ∈ RN : t = 1, 2, . . . , T}

where T is the length of the time series and N is the number of channels. To obtain local
topological properties, we first divide F1(t)N×T into shorter time segments with the length
being ∆T. We denote the number of time intervals as L, i.e., L × ∆T is a number equal to or
slightly less than T. The data during each time segment,

F1ℓ = {x(t) ∈ RN : t = (ℓ− 1)∆T + 1, (ℓ− 1)∆T + 2, . . . , ℓ∆T}

with 1 ≤ ℓ ≤ L, are considered as a finite metric space with ∆T points in the Euclidean
space RN .

Now, we consider F1ℓ with a fixed ℓ such that 1 ≤ ℓ ≤ L. We build the Vietoris–Rips
filtration VR(F1ℓ; r) at scales r ≥ 0, and then compute the homology groups of the filtration
objects VR(F1ℓ; r) at scales r ≥ 0 with the homology dimension p being 0 and 1 using the
package Giotto-tda [22]. These groups generate the persistent barcodes of the filtration
objects, consisting of intervals in the form [rbirth, rdeath), which represent the birth and death
of some topological structure, either a connected component (zero-dimensional homology)
or a loop (one-dimensional homology). To extract the TDA features, we calculate the areas
Cp,ℓ of p-dimensional Betti curves of the persistent homology of F1ℓ with p = 0, 1. The
weight function used in the Betti curves is the constant function 1. Hence, the areas Cp,ℓ
can also be calculated as the sum of all the life spans of each topological structure in the
filtration objects, i.e.,

∑{|rdeath − rbirth| : [rbirth, rdeath) ∈ Jp,ℓ},

where Jp,ℓ is the collection of intervals in a persistent barcode of the segment F1ℓ, which
correspond to the existences of p-dimensional topological structures during the filtration.
A summary of this TDA feature extraction process is given below Algorithm 1.

Algorithm 1 TDA feature extraction.

INPUT XN×T and time interval length ∆T.

1. Time Segment Divide XN×T into a collection of {Xℓ : 1 ≤ ℓ ≤ L} with length of the
time intervals to be ∆T satisfying that L × ∆T ≤ T.

2. Vietoris–Rips Filtration Build Vietoris–Rips complexes VR(Xℓ; r) by the collection of
subsets of Xℓ whose diameter is less or equal to some given r > 0.

3. Persistent Homology Compute homology groups of the filtration objects VR(Xℓ; r)
with r ≥ 0 and homology dimensions being 0 and 1; then, obtain the persistent barcodes
consisting of Betti intervals in the form [rbirth, rdeath).

4. TDA Features Calculate the areas Cp,ℓ of p-dimensional Betti curves of each persistent
homology on the dataset Xℓ with p = 0, 1 as

∑{|rdeath − rbirth| : [rbirth, rdeath) ∈ Jp,ℓ}

where Jp,ℓ is the collection of pth dimensional Betti intervals in the persistent barcodes
of Xℓ for 1 ≤ ℓ ≤ L.

RETURN Cp,ℓ, p = 0, 1, and ℓ = 1, 2, . . . , L.
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With the time interval length being ∆T, the total number of TDA features {Cp,m : p = 0,
1 and ℓ = 1, 2, . . . , L} extracted from F1 is 2L. For each of the eight matrices, Fi and Pi with
i = 1, 2, 3, 4 obtained in Section 3.1, we extract the TDA features with the same process,
resulting in a total of 16L TDA features for each trial. To better capture the intrinsic local
topological properties of the transformed signals, we use three different ∆T, 8 ms, 100 ms,
and 200 ms, and denote the corresponding number of shorter time segments as L1, L2, and L3.
Therefore, the total TDA features extracted for each trial is 16× (L1 + L2 + L3).

Besides the proposed method, there are other widely used TDA approaches in the
literature that we will compute and compare with. Therefore, we briefly introduce them in
the following.

In the existing literature, there are two different ways to create the state space for EEG
data, spatial embedding and time-delay embedding. For spatial embedding, a signal from
each channel is considered as a point in the state space. Since there are only three channels
in Data 1, TDA features from the state space obtained by spatial embedding do not provide
any valid information about Data 1. Based on Taken’s embedding theorem (see [12,13]),
time-delay embedding is a very useful way to reconstruct state space for the single signal
from one channel. One can reconstruct the state space of each signal independently with
time-delay embedding in the following way. For a time series x(t), an embedding with
time delay ∆t and embedding dimension d is a mapping ϕ from x(t) to Rd such that, for
each t,

ϕ(x(t)) = (x(t), x(t + ∆t, . . . , t + (d − 1)∆t)).

The key to successfully reconstructing the state space is to choose the parameters,
time-delay, embedding dimensions, and the time interval length. Selecting parameters
arbitrarily can distort the reconstruction of the state space, leading to the obscuring of
underlying assets and the highlighting of noise. The false nearest neighbor (FNN) test firstly
proposed in [23] has been widely applied in determining the proper embedding dimension
of a nonlinear system [24]. The authors in [5] use FNN to determine the best parameters for
the TDA approach to reconstruct the state space using channel-wise time-delay embedding
for original EEG data and find out that time delay ∆t = 1 and embedding dimensions
d = 3 and 5 with time interval lengths of 100 or 250 have the best performance. Hence,
there are four different sets of parameters that perform best. We adopt all of them to extract
the corresponding TDA features.

To illustrate the channel-wise time-delay embedding TDA approach, we use the time
delay ∆t = 1, embedding dimension d = 3, and time interval length of 100 as an example.
Let {x(t) : t = 1, 2, . . . , T} denote the original EEG signal from one channel during one
trial. Then, we apply time-delay embedding ϕ with d = 3 and ∆t = 1 to reconstruct the
state space X(t) in R3. We notice that, in this case, the reconstructed state space X(t) is a
3 × (T − 2) matrix, i.e.,

X(t) = {ϕ(x(t))T : t = 1, 2, . . . , T − 2}.

Then, we divide the reconstructed state space X(t) into segments

Xℓ(t) = {ϕ(x(t))T : t = 100(ℓ− 1) + 1, 100(ℓ− 1) + 2, . . . , 100ℓ}

of equal time window 100 with ℓ = 1, 2, . . . , L and 100L ≤ T − 2. For each ℓ with 1 ≤ ℓ ≤ L,
we build the Vietoris–Rips filtration, compute their homologies, and obtain the persistent
barcodes of dimensions 0 and 1. We group the Betti intervals into Jp,ℓ for p = 0, 1 and
ℓ = 1, 2, . . . , L which contains all the pth dimensional Betti intevals in the persistent
barcodes of the state space Xℓ(t).

We adopted two different methods (A) and (B) in the literature to extract TDA features
from each Betti interval collection Jp,ℓ of the persistent barcodes, or, equivalently, the Betti
curve βp,ℓ with the pre-chosen weight function being the constant function 1, with p = 0, 1
and ℓ = 1, 2, . . . , L:
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• Method (A) extracts TDA features in the same way as Algorithm 1. We calculate
the areas of the Betti curves βp,ℓ mentioned above, and equivalently, the sum of the
life spans of each p-dimensional topological structure in the Vietoris–Rips filtration
of Xℓ(t) for p = 0, 1 and ℓ = 1, 2, . . . , L. The areas of the 1-dimensional Betti curve
for each state space are used in [7] to detect delirium through BSEEG with different
embedding dimensions, time delay, and time windows. Here, we adopted the best
parameters according to [5] in the time-delay embedding process.

• Method (B) extracts the p-dimensional Betti number of the Vietoris–Rips complex
VR(Xℓ(t), r) at a pre-chosen set of scales for homology dimensions p = 0, 1. The scales
are chosen as a fraction of a scale R such that the complex VR(Xℓ(t), R) is contractible.
Following the procedure in [25], the scale R is determined as follows: we choose an
arbitrary point x0 in Xℓ(t) and take R to be the maximum of {∥x0 − x∥ : x ∈ Xℓ(t)},
which is also called the radius of the spherical volume of the corresponding state
space. Then, we extract the TDA features of Xℓ as the values of the Betti curve βp,ℓ
on the complex VR(Xℓ(t), R) for p = 0, 1 at the scales R/100, R/50, R/25, R/10, R/4,
i.e., the one-dimensional Betti number of each Vietoris–Rips complex VR(Xℓ, r) at the
corresponding scales [5].

We suppose that there are 2 × L × N many collections of Betti intervals with dimen-
sions 0 and 1. Then, Method (A) extracts 2 × L × N number of TDA features, while Method
(B) offers 10 × L × N as many TDA features. These two methods were applied on the EEG
data as well as the transformed data, and compared with our proposed approach.

3.4. Classification

The classifier was constructed for each subject, respectively, predicting the label (i.e.,
MI in the BCI or tasks in the lab experiment) of the test trial. For each subject during each
trial, 16 × (L1 + L2 + L3) TDA features were extracted using the proposed TDA approach.
The number of features varied depending on the methods for TDA feature extraction. The
classifiers we considered include both linear and nonliear models: logistic regression with
LASSO (Logistic), Linear Discriminate Analysis (LDA), Support Vector Machine (SVM)
with linear and RBF kernel, K-Nearest Neighbors (KNN), and Random Forest (RF). For the
machine learning models (SVM, KNN, and RF), recursive feature elimination (RFE) was
employed to select the most relevant features for the classifiers. For the logistic regression,
no extra feature selection was performed because LASSO preforms both variable selection
and regularization.

The comparison was carried out in two phases: different classifiers were firstly com-
pared using the same TDA features, then the best classifier was used to compare various
TDA approaches including the proposed approach and other state-of-art TDA approaches
in the literature. The performance of classifiers was assessed by accuracy and Cohen’s
kappa values. Specifically, accuracy measures the proportion of correct predictions among
the total number of predictions. Kappa is a statistic that measures the the agreement
between the prediction and the observed classes while considering the possibility of the
agreement occurring by chance. It is computed as Po−Pe

1−Pe
, where Po is the proportion of

agreement between the predicted and observed classifications and Pe is the hypothetical
probability of agreement by chance. The kappa ranges from −1 to 1 with 1 indicating
perfect agreement between predictions and observations. In short, for both accuracy and
kappa values, a higher value indicates better classification performance.

When assessing the performance of classifiers, repeated five-fold cross-validation (CV)
was used for all datasets. Regarding the BCI data (Data 1 and 2), an additional assessment
was conducted on the test data, which were provided by the competition organizers. The
classifiers submitted by all teams were evaluated using this test data with the performance
ranked on a leader board. Hence, for BCI data, repeated CV was applied on the training
data and the classifiers that were re-trained using all training trials were also tested on the
test trials. The performance of the testing data was compared with the top-performing
teams on the leader board as well as the results reported in the literature.
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4. Results

For the comparison of classifiers and TDA features, we used Data 1 as an illustrating
example, showing the detailed performance of each subject on the training trials. For Data
2 and Data 3, only the average training performance is reported.

With the proposed TDA features, we first compared the statistical and machine learn-
ing models based on their training performance estimated by repeated CV, including
accuracy (Acc) and kappa (κ), which are summarized in Table 2 with the highest values
highlighted in bold. Overall, Random Forest (RF) shows the superior performance with the
highest accuracy and kappa, on average, as well as the highest accuracy and kappa for all
subjects except one. Therefore, we chose RF as our classifier in the further analysis.

With RF as the classifier, Table 3 summarizes the classification performance, obtained
via CV on the training data, of the proposed TDA approach and other state-of-art TDA
methods in the literature, as discussed in Section 3.3. The highest values are highlighted
in bold. The first two approaches in Table 3 compare method (A) and (B) applied on
EEG signals, and method (A) shows better performance on average. Then, we applied
a channel-wise time-delay embedding TDA approach to the instantaneous frequency Fi
and amplitude Pi with i = 1, 2, 3, 4, and obtained collections of persistent barcodes of
each segment. The same time delay, embedding dimensions, and time interval lengths
were used in the process. Then, we applied method (A) on the persistent barcodes to
obtain the third group of comparison features with a total number of TDA features being
16 × L × N for each set of time-delay parameters. Comparing with the first two TDA
approaches, extracting TDA features from the transformed data achieved significantly
higher classification performance. However, the three existing TDA approaches were
all focused on individual channels, which means that the TDA features were extracted
separately from each channel, ignoring the spatial correlation in the spatial-temporal data.
Compared with the existing TDA approaches, our proposed TDA method shows superior
performance with the highest accuracy and kappa value on all subjects.

Table 2. Comparison of different classifiers: classification accuracy on the training data with cross-
validation (Data 1).

Subject ID LASSO Logistic LDA SVM (Linear)

Acc κ Acc κ Acc κ

1 0.745 0.49 0.845 0.69 0.865 0.73
2 0.756 0.513 0.799 0.599 0.904 0.808
3 0.724 0.448 0.729 0.459 0.809 0.619
4 0.752 0.504 0.742 0.484 0.869 0.738
5 0.730 0.46 0.823 0.645 0.891 0.781
6 0.750 0.5 0.799 0.598 0.857 0.714
7 0.786 0.573 0.768 0.535 0.908 0.815
8 0.771 0.543 0.803 0.606 0.849 0.698
9 0.748 0.495 0.80 0.6 0.865 0.73

Average 0.751 0.503 0.790 0.580 0.868 0.737

Subject ID SVM (RBF) KNN RF

1 0.878 0.755 0.838 0.675 0.958 0.915
2 0.872 0.744 0.811 0.623 0.953 0.906
3 0.838 0.675 0.810 0.62 0.912 0.825
4 0.876 0.753 0.872 0.744 0.945 0.89
5 0.896 0.791 0.771 0.543 0.945 0.89
6 0.869 0.739 0.795 0.59 0.945 0.89
7 0.899 0.798 0.789 0.578 0.924 0.848
8 0.840 0.68 0.716 0.431 0.834 0.668
9 0.863 0.726 0.834 0.669 0.934 0.868

Average 0.870 0.74 0.804 0.608 0.927 0.854
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Table 3. Comparison of TDA features from literature: classification performance on the training data
with cross-validation (Data 1).

Subject
ID EEG (A) EEG (B) HHT (A) Proposed Features

Acc κ Acc κ Acc κ Acc κ

1 0.546 0.093 0.534 0.068 0.788 0.575 0.958 0.915
2 0.528 0.055 0.585 0.17 0.631 0.263 0.953 0.906
3 0.530 0.06 0.543 0.085 0.598 0.195 0.912 0.825
4 0.715 0.43 0.536 0.073 0.926 0.853 0.945 0.89
5 0.721 0.443 0.551 0.103 0.759 0.518 0.945 0.89
6 0.523 0.045 0.510 0.02 0.616 0.233 0.945 0.89
7 0.588 0.175 0.555 0.11 0.7 0.4 0.924 0.848
8 0.724 0.448 0.649 0.298 0.801 0.603 0.834 0.668
9 0.618 0.235 0.506 0.013 0.76 0.52 0.934 0.868

Average 0.610 0.220 0.552 0.104 0.731 0.462 0.927 0.854

Table 4 summarizes the training performance of the proposed TDA approaches on all
three datasets including the averaged performance and the standard deviation across all
subjects. The training performance reported in the literature is also included in the table.
For all three datasets, our proposed TDA approaches exhibit superior performance.

Table 4. Summary of classification performance on the training data with cross-validation.

Data 1 Data 2 Data 3

Accuracy 0.927 (0.038) 0.955 (0.038) 0.987 (0.020)
Kappa 0.854 (0.076) 0.910 (0.076) 0.973 (0.041)

Literature

Accuracy 0.843 (0.15) [26] 0.923 (0.04) [27] 0.961 (0.027) [17]

In addition to validating our approach on the training data and comparing it with
existing TDA methods, we also assessed the proposed method on the testing data provided
by the BCI competition and compared our results with those of top-performing teams on
the leader board as well as those reported in the literature. Specifically, the classifier was re-
trained on the entire training trials provided by the competition organizers. Subsequently,
it was utilized to predict the label of testing trials for each subject. Table 5 summarizes the
top three teams in the public leader board as well as the testing performance reported in the
literature. Our testing performance not only exceeds that of the competition winner but also
outperforms that reported in the literature. Moreover, our proposed method consistently
demonstrates strong performance across all subjects with minimal variation, a notable
contrast to other results that exhibit low kappa values, particularly for subjects 2 and 3.

Table 5. Test Performance of the BCI competition IV dataset IIb (Data 1) from leader board
and literature.

Kappa Mean 1 2 3 4 5 6 7 8 9

Leader Board

Our Method 0.70 0.70 0.71 0.61 0.74 0.64 0.78 0.65 0.75 0.73

1st [28] 0.60 0.40 0.21 0.22 0.95 0.86 0.61 0.56 0.85 0.74

2nd 0.58 0.42 0.21 0.14 0.94 0.71 0.62 0.61 0.84 0.78

3rd 0.46 0.19 0.12 0.12 0.77 0.57 0.49 0.38 0.85 0.61
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Table 5. Cont.

Kappa Mean 1 2 3 4 5 6 7 8 9

Literature

Ang et al. [29] 0.6 0.43 0.21 0.24 0.94 0.84 0.59 0.58 0.86 0.66

Yang et al. [30] 0.62 0.44 0.24 0.25 0.93 0.86 0.70 0.55 0.85 0.75

Kumar et al. [31] 0.56 0.55 0.21 0.01 0.99 0.66 0.53 0.72 0.77 0.61

Ang et al. [32] 0.61 0.36 0.17 0.26 0.96 0.87 0.67 0.56 0.86 0.75

Shahid et al. [33] 0.61 0.43 0.36 0.19 0.95 0.63 0.66 0.59 0.90 0.76

For Data 2, Table 6 summarizes the testing performance of the proposed TDA approach
alongside the top-performing teams on the leader board and those reported in the literature.
Our approach is ranked between second and third place. It is important to note that the
competition does not require the same approach for all subjects. For example, the winning
team [34] employed a common spatial pattern (CSP) for subjects al, aw, and ay, while a
combination of CSP, AR, and LDA were utilized for subjects aa and av. Additionally, they
utilized the testing trials during the training phase for subjects with a small number of
training trials such as subject ay.

Overall, the proposed TDA based approach outperforms existing TDA approaches
and demonstrates competitive performance when compared to other state-of-art methods.

Table 6. Test accuracy of the BCI competition III dataset IVa (Data 2) from leader board and literature.

Accuracy Mean aa al av aw ay

Leader Board

1st [34] 0.947 0.955 1.00 0.806 1.00 0.976

2nd 0.874 0.893 0.982 0.765 0.924 0.806

Our Method 0.852 0.875 0.964 0.816 0.804 0.802

3rd 0.845 0.821 0.946 0.704 0.875 0.881

Literature

Selim et al. [35] 0.85 0.866 1 0.668 0.906 0.81

Park and Chung [36] 0.845 0.741 1 0.678 0.901 0.893

Dai et al. [37] 0.792 0.681 0.939 0.685 0.884 0.749

Selim et al. [38] 0.788 0.696 0.893 0.592 0.888 0.869

Lotte and Guan [39] 0.786 0.723 0.964 0.602 0.777 0.865

Arvaneh et al. [40] 0.735 0.723 0.964 0.541 0.705 0.734

Belwafi et al. [41] 0.673 0.668 0.961 0.521 0.714 0.50

Herman et al. [42] 0.839 0.768 0.982 0.745 0.929 0.77

Cecchin et al. [43] 0.897 0.824 0.986 0.768 0.94 0.966

Padfield et al. [44] 0.864 0.813 1 0.653 0.933 0.921

Höller et al. [45] 0.861 0.795 1 0.735 0.893 0.885

Zhang et al. [46] 0.76 0.592 0.91 0.585 0.835 0.878

Attallah et al. [47] 0.935 0.922 0.994 0.799 0.989 0.97

Arvaneh et al. [48] 0.882 0.777 1 0.77 0.943 0.921

Lemm et al. [49] 0.736 0.795 0.929 0.526 0.915 0.516

Kee et al. [50] 0.835 0.744 0.985 0.708 0.905 0.834

Meng et al. [51] 0.86 0.83 1 0.735 0.821 0.915

Zhang et al. [52] 0.67 0.75 0.839 0.53 0.741 0.488

Miao et al. [53] 0.895 0.857 0.982 0.766 0.951 0.917
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5. Conclusions

In this paper, we proposed a novel TDA-based approach to analyze scalp EEG data.
One valuable feature of TDA is its capacity to interpret high-dimensional data with com-
plex topological structures and extract meaningful information from the complex data.
Compared to existing TDA approaches in the literature that extract topological features
from each channel individually, we treat the multivariate time series in a Banach space and
extract local and global topological features from all channels simultaneously. Compared to
channel-wise TDA approaches in the literature, the proposed method requires significantly
fewer computational resources and less time, making it more practical for interactive appli-
cations such as BCI. Our approach is also robust against inter-subject variability and the
number of channels, maintaining stable performance across subjects in the three datasets
with varying channel counts. One limitation of the proposed TDA approach is the selection
of appropriate lengths of the time interval used in segmenting multivariate time series.
Since there may not exist a universally optimal choice of interval lengths applicable to
all datasets, we recommend tuning this parameter for each new dataset, considering the
balance between capturing the local and global topological features of the data. Although
the method was introduced in the context of scalp EEG, it can be easily generalized to any
spatial and temporal data, making it applicable to various fields such as computer vision,
remote sensing, climate change, and more.

Author Contributions: Conceptualization, J.Z. and Z.F.; methodology, J.Z. and Z.F.; software, J.Z.
and Z.F.; validation, J.Z. and Z.F.; formal analysis, J.Z. and Z.F.; investigation, J.Z. and Z.F.; resources,
J.Z.; data curation, J.Z. and A.D.E.; writing—original draft preparation, J.Z. and Z.F.; writing—review
and editing, J.Z., Z.F. and A.D.E.; visualization, J.Z. and Z.F.; supervision, J.Z.; funding acquisition,
J.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This paper is based upon work supported by the National Science Foundation under Grant
No. 2153492 and the National Center for Advancing Translational Sciences of the National Institutes
of Health under award number UL1TR003096. The content is solely the responsibility of the authors
and does not necessarily represent the official views of the National Institutes of Health.

Data Availability Statement: All data used in this study are publicly avaiable. Data 1 can be
downloaded at https://www.bbci.de/competition/iv/ (accessed on 1 April 2024). Data 2 can be
downloaded at https://www.bbci.de/competition/iii/index.html (accessed on 1 April 2024). Data 3
can be downloaded at https://osf.io/3vxkn/ (accessed on 1 April 2024).

Acknowledgments: The authors would like to thank anonymous referees, an associate editor, and
the editor for their constructive comments that improved the quality of this paper.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Carlsson, G. Topology and data. Bull. Am. Math. Soc. 2009, 46, 255–308. [CrossRef]
2. Edelsbrunner, H.; Letscher, D.; Zomorodian, A. Topological persistence and simplification. Discret. Comput. Geom. 2002,

28, 511–533. [CrossRef]
3. Wang, Y.; Behroozmand, R.; Johnson, L.P.; Bonilha, L.; Fridriksson, J. Topological signal processing in neuroimaging studies. In

Proceedings of the 2020 IEEE 17th International Symposium on Biomedical Imaging Workshops (ISBI Workshops), Iowa City, IA,
USA, 3–7 April 2020; pp. 1–4.
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