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In a broad class of theories, the accumulation of ultralight dark matter (ULDM) with particles of mass
10−22 eV < mϕ < 1 eV leads to the formation of long-lived bound states known as boson stars. When the
ULDM exhibits self-interactions, prodigious bursts of energy carried by relativistic bosons are released from
collapsing boson stars in bosenova explosions. We extensively explore the potential reach of terrestrial and
space-based experiments for detecting transient signatures of emitted relativistic bursts of scalar particles,
including ULDM coupled to photons, electrons, and gluons, capturing a wide range of motivated theories.
For the scenario of relaxion ULDM, we demonstrate that upcoming experiments and technology such as
nuclear clocks as well as space-based interferometers will be able to sensitively probe orders of magnitude in
the ULDM coupling-mass parameter space, challenging to study otherwise, by detecting signatures of
transient bosenova events. Detection of a bosenova event may also give information about microphysics
properties of ϕ that would otherwise be difficult with typical direct detection methods. Our analysis can be
readily extended to different scenarios of relativistic scalar particle emission.
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I. INTRODUCTION

The influence of dark matter (DM), which constitutes
∼85% of matter in the Universe, has been firmly estab-
lished by astronomical observations (see, e.g., [1] for a
review). With decades of searches for its nongravitational
interactions, the nature of DM remains mysterious. A
particularly well-studied scenario has been that of weakly
interacting massive particles, with typical masses in the

range of 1 GeV–100 TeV, often associated with theories
attempting to address the hierarchy problem. A well-
motivated DM paradigm that has been less explored is
ultralight dark matter (ULDM) [2], where extremely low-
mass (10−22 eV≲mϕ ≲ 1 eV) bosonic fields ϕ behave as
classical waves due to their high occupation numbers and
large de-Broglie wavelengths.
There are amultitude ofways inwhichULDMcan interact

with the Standard Model (SM), which has led to the recent
development of a broad and diverse experimental search pro-
gram [2–4]. Owing to the wide range of possible masses
mϕ of ULDM, a large number of experiments, including
atomic clocks [5–10], optical cavities [11–13], optical inter-
ferometers [14,15], spectroscopy [16–18], tests of the
equivalence principle (EP) [19,20], mechanical resona-
tors [21], fifth force searches [22,23], gravitational wave
detectors [24,25], and torsion balance experiments [26] are
currently exploring the ULDMparameter space. Scalar DM
that couples to the SM can cause tiny variations in the
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fundamental constants due to the coherent oscillations of
the DM background, providing key observables that have
been extensively studied [3,27].
ULDM can generally coalesce into long-lived bound

structures known as boson stars [28–30]. Such states can
form through purely gravitational interactions [31,32] or
through self-interactions [33–35], and at small-enough den-
sities they are stable both under perturbations [36–39]
and decay [40–47]. The full gamut of phenomenological
implications and experimental signatures of boson stars has
been poorly explored.
A stable boson star configuration can be understood as a

balance between the (attractive) self-gravity of the ULDM
particles and their (repulsive) gradient energy. This balance
can be sustained as long as the star is relatively dilute,
such that the contribution of self-interactions is negligible.
However, if the mass of the star grows through merger
events [48–53] and/or accretion of ULDM from the back-
ground [32,54,55], eventually the self-interactions contrib-
ute and, if they are attractive in nature, they can destabilize
the star.
When the boson star begins to collapse, its density

rapidly increases, as does the binding energy of the collap-
sing ULDM particles. As the size of the star approaches
the Compton wavelength of the ULDM, 2π=mϕ, annihi-
lations of the ULDM particles to relativistic ones rapidly
deplete the energy of the collapsing star. This typically
occurs far before the star reaches its Schwarzschild radius,
and therefore the boson star does not collapse1 to a black
hole [57–59]. The pressure resulting from the relativistic
emission reverses the collapse, and, after a few collapse/
emission cycles [58], a large fraction of the boson star
energy is emitted, and the cold ULDM that remains settles
into a dilute, gravitationally bound configuration again.
This explosion of relativistic ULDM that occurs at the
endpoint of boson star collapse is known as a bosenova.
The bosenovae are a promising target for distinct

direct ULDM searches. In previous work [60], some of
us studied the bosenova signal in detail for the case of
ULDM composed of axionlike (parity-odd) fields, finding
that current and near-future experiments, e.g., those using
LC-circuit-based detectors [61,62] like ABRACADABRA
[63,64], SHAFT [65], and DM-Radio [66–68], could
viably search for relativistic ULDM bursts from collapsing
boson stars. This was possible both because the energy
density in the burst could exceed the background density of
DM, ρDM ≃ 0.4 GeV=cm3, and because the wave spreading
of the burst in flight led to a month to year-long signal that

was highly coherent over the duration of the burst in the
detector.
As stressed in Ref. [60], axionlike fields generically

exhibit a close relationship between the self-interaction
coupling λ of the ULDM field and its couplings to the SM:
both couplings are typically determined by the same scale
fa, the axion decay constant. While such a relationship is
predictive, other scalar fields (e.g. parity-even fields or
dilatons) can have independent distinct DM-SM and self-
interaction couplings. This highlights the importance of
general exploration of possible scenarios for scalar field
bursts.

In this paper, building on previous work [60], we
consider and develop a comprehensive methodology to
analyze a general ultralight scalar (parity-even) field, and
determine the prospects for detecting transient signals of
relativistic scalars emitted in bosenovae. We describe the
DM-SM interactions in effective field theory (EFT) with
dilatonic couplings, e.g., with couplings to photons, elec-
trons, and gluons, capturing a large swath of possible
theories. Although most of the analysis is model indepen-
dent, we also examine in detail the specific case of a
relaxion field [69] as a concrete realization of the scalar
DM with dilatonic couplings [70,71].
The paper is organized as follows. Section II outlines the

leading-order couplings between the DM and the SM
within the framework of EFT. We also include a detailed
discussion of constraints on the self-interactions of ULDM.
We proceed by describing boson stars and the properties
of their explosions in Sec. III. Section IV discusses the
detection prospects of the transient scalar bursts, and Sec. V
presents the results, including general sensitivity analyses
for photon, electron, and gluon couplings. We also analyze
detection prospects in the scenario of relaxion DM. We
reserve Sec. VI for our conclusions and future outlook. We
work in natural units throughout with ℏ ¼ c ¼ 1.

II. EFFECTIVE COUPLINGS

A. Dilatonic ULDM-SM couplings

We consider the case of DM as composed of a real scalar
field ϕ. Direct scalar couplings of ϕwith the SM can lead to
an effective variation of fundamental constants, which are
targets for direct searches (e.g., in quantum sensors) as
discussed in the Introduction (see, e.g., [19]). Such oper-
ators can be characterized within EFT as

Lint ¼
X
n;i

dðnÞi

�
ϕ

Mpl

�
n
Oi

SM; ð1Þ

where dðnÞi are the dilatonic couplings labeled by an index i
and ϕ-exponent n, and Oi

SM are corresponding operators
within the SM. The leading effective couplings, which
appear at linear order (n ¼ 1), are

1This discussion holds when the boson star is still non-
relativistic when the self-interactions become relevant. Note on
the contrary that, if the self-interactions are exceptionally weak,
then the boson star can become a black hole directly as a result of
mass increase. See the discussion in Sec. III. In the special case of
ULDM axions with Planck-scale decay constants, these con-
clusions can also be modified [47,56].
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Lint ⊃
ffiffiffiffiffiffi
4π

p
ϕ

Mpl

�
dð1Þmemeēeþ

dð1Þe

4
FμνFμν

þ dð1Þg βðgsÞ
2gs

Ga
μνGaμν

�
; ð2Þ

where e is the electron field with mass me, Fμν, and Gaμν

are the photon and gluon field strength tensors (respec-
tively), and gs and βðgsÞ are the coupling and beta function
of QCD. The three interaction terms above lead to effective
variation of fundamental quantities (respectively): the
electron-to-proton mass ratio me=mp, the fine-structure
constant α, and the strong coupling constant αs.
In this work, we focus on the linear-in-ϕ couplings given

in Eq. (2). However, we note that a family of operators of
higher dimensionality exists as well. The next-to-leading-
order couplings are quadratic in ϕ, and can have interesting
phenomenological consequences [19,72,73]. A qualitative
difference between linear and quadratic couplings is that
the latter can lead to screening (or antiscreening) of the field
in the presence of significant matter densities (see [19] for
details). This could suppress (or enhance) detection sensi-
tivities for terrestrial experiments, even when the detection
sensitivity is otherwise dominated by the leading-order
coupling. This additional model dependence provides one
motivation for the use of space-based experiments [72].

B. ULDM self-interactions

In addition to the ULDM-SM interaction Lagrangian of
Eq. (2), we parametrize the ϕ-only Lagrangian as

Lϕ ¼ 1

2
∂μϕ∂

μϕ −
1

2
m2

ϕϕ
2 þ λ

4!
ϕ4 þ � � � : ð3Þ

Generically, λ can be positive or negative, corresponding
to attractive and repulsive self-interactions (respectively).
We focus on the case of attractive self-interactions, as the
collapse of boson stars (which gives rise to the signal we are
investigating) only arises when λ > 0 [37–39]. Attractive
self-interactions can generically be realized within ultra-
violet (UV) completions (see, e.g., [74]).
We note that a cubic term, −λ3ϕ3=3!, is possible as well,

and can be attractive or repulsive. However, its leading
contribution is to mediate 2 → 1 or 1 → 2 transitions which
are suppressed in the nonrelativistic limit relevant to DM
studies. For simplicity, in this work we set λ3 ¼ 0 and focus
on λ. In boson star collapse, the presence of this cubic term
or terms proportional to ϕn with n > 4 may modify the
emission spectrum of bosons in the bosenova, which is a
topic we leave for future work. See Sec. III for a brief
discussion.
The couplings considered in this work are extremely

small, λ ≪ 1, as motivated by well-studied models of
ULDM. As a benchmark example, axionlike fields often

have self-interaction couplings determined by their mass
mϕ and symmetry-breaking scale fa as λ ≃ ðmϕ=faÞ2.
For QCD axions, one has mϕfa ≃ Λ2

QCD ≃ ð75 MeVÞ2
(the QCD scale; see, e.g., [75]), implying λ ≃m4

ϕ=Λ4
QCD ≃

3 × 10−56ðmϕ=μeVÞ4. Studies of so-called fuzzy DM
[76–80] often use a benchmark of mϕ ≃ 10−22 eV and
fa ≃ 1016 GeV, which gives λ ≃ 10−94 (see [81,82] for
recent reviews). We will discuss constraints on λ in the next
section.
Note that for axionlike fields, the SM couplings are

typically connected to the same high scale fa. For example,
the linear axion-photon interaction is typically parame-
trized as Laγ ∝ ðϕ=faÞFμνF̃μν, where F̃ is the dual field
strength of the photon. This relation is not applicable to the
scalars considered in this work.

C. Constraints on λ

In parametrizing the scalar field EFT, we treat λ as
independent of the SM couplings at the Lagrangian level
(in contrast to the axion case just described). Therefore, it is
useful to explore general constraints on λ, which we
describe below and summarize in Fig. 1.

FIG. 1. Summary of the parameter space relevant for the
bosenova signal analyzed in this work. Constraints on λ illus-
trated arise from the bullet cluster (cyan) [83], structure formation
(orange) [84], Lyman-α [85,86] and UFD galaxies [87] (red
vertical thick and dashed lines, respectively), black hole super-
radiance [88,89] (BHSR, brown), as well as the lower bounds for
naturalness arising from de (blue), dme

(red), and dg (pink). The
naturalness lines assume benchmark values for the couplings
which are allowed by current experiments, as labeled. We also
illustrate the region where critical boson stars would not undergo
bosenova due to general relativistic effects (purple hatched
region). The dashed black line represents the benchmark values
for λ that we choose at each mass, as given in Eq. (40) and
explained in Sec. V. Finally, for comparison, we show the QCD
axion line corresponding to jλj ≃m4

ϕ=Λ4
QCD (green dotted line);

see text for details.
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1. Bullet cluster

The coupling λ can be constrained by the observed gross
distribution of DM in galaxy-cluster collisions, including
the bullet cluster [83]. The tree-level scattering cross
section σ for ϕ − ϕ scattering via λ is given by

σ

mϕ
¼ λ2

16πm3
ϕ

: ð4Þ

Gravitational-lensing observations of the bullet cluster
constrain the DM self-interaction cross section to be [83]

σ

mϕ
≲Oð1Þ cm2=g; ð5Þ

which implies

λ≲ 10−11
�
mϕ

eV

�
3=2

: ð6Þ

This model-independent constraint on DM self-interactions
is illustrated by the cyan shaded region in Fig. 1.

2. Cosmological constraints

The presence of ultralight fields of mass m and self-
interaction coupling λ gives rise to contributions to the
evolution of the matter power spectrum, as discussed in,
e.g., [27,74]. Density perturbations δk ≡ ðρk − ρ̄Þ=ρ̄ at
scales jkj will evolve as

 δk þ 2Hδ̇k ≃
�
4πρ̄

M2
pl

−
�

k2

4m2
ϕa

2
−

3λϕ2

16m2
ϕ

�
k2

a2

�
δk; ð7Þ

where H is the Hubble parameter, a is the scale factor of
the Universe, and ρ̄ and ρk are the average DM density
and the density at scale jkj (respectively). The first term
in parentheses on the right-hand side of Eq. (7) contri-
butes to a suppression of the matter power spectrum on
a distance scale of Lm ≃ ½π3M2

pl=ðρ̄m2
ϕÞ�1=4. In the mass

range mϕ ≲ 10−21–10−20 eV, this can lead to constraints
from measurements of small-scale structure in Lyman-α
forest [85,86]. A stronger constraint, approximately
mϕ ≳ 10−19 eV, was recently derived in Ref. [87] by
modeling stellar velocity dispersion in ultra-faint dwarf
(UFD) galaxies. The result depends on astrophysical
assumptions about the evolution and tidal stripping of
DM in particular UFDs (see, e.g., [90]). These constraints
are illustrated by the red thick and dashed lines (respec-
tively) in Fig. 1.
The second term in parentheses on the right-hand side

of Eq. (7) suppresses (enhances) the matter power spec-
trum when λ < 0 (λ > 0), corresponding to a repulsive
(attractive) interaction; the relevant scale is approximately
Lλ ≃ ½3πjλjM2

pl=ð8m4
ϕÞ�1=2. Observational constraints

require Lλ ≲Mpc [84], corresponding to

λ≲ 3 × 10−79
�

mϕ

10−18 eV

�
4

: ð8Þ

We show this constraint in orange color in Fig. 1. Note that
these constraints may be improved due to enhancement of
the power spectrum before matter-radiation equality (see
discussion in [91]). Additionally, there are constraints on
the lowest masses of dark matter mϕ ≲ 10−21 eV from
studies of the concentration of dark matter in the Galactic
Center [92,93].
Note finally that the constraints of this section and the

previous one assume that ϕ constitutes an Oð1Þ fraction of
the DM of the Universe, and vanish when this is not so.

3. Naturalness of λ

We also consider theoretical constraints on λ, demanding
that the values of λ considered do not require technical fine-
tuning of the theory (see, e.g., [94] for a recent summary).
The ϕ-SM couplings can generate self-interactions propor-
tional to ϕ4 through box diagrams, illustrated in Fig. 2 for
electron (upper) or gauge boson (lower) couplings. If this
contribution is much larger than the physical, observable λ,
then this implies an “unnatural” cancellation between the
loop contribution and the bare Lagrangian parameter,
which are a priori unrelated. This allows us to set an
approximate lower bound on the value on λ, essentially by
the requirement that the effective λ coupling is not much
smaller than the one generated at one loop.
Integrating the box diagrams in Fig. 2 up to some UV

cutoff ΛUV gives

FIG. 2. One-loop diagrams that generate corrections to λ from

the linear ϕ coupling dð1Þme (upper panel) or dð1Þe and dð1Þg

(lower panel).
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λðΛUVÞ ≃ λðμ0Þ −
ðdð1Þme Þ4m4

e

8π2M4
pl

log

�
ΛUV

μ0

�

þ
�
dð1Þe
�
4

32π2M4
pl

Λ4
UV þ

�
dð1Þg βðgsÞ

�
4

2π2g4sM4
pl

Λ4
UV; ð9Þ

where μ0 is some reference energy scale. Equation (9)
represents a rough estimate for illustration only; the gluon
coupling in particular neglects any color factors that may
alter the expression by an Oð1Þ factor.
In its current form, each term of Eq. (9) has two unknown

parameters: dð1Þi and ΛUV. To obtain a definitive bound on λ
from this expression, we also need a constraint on ΛUV,
especially for the gauge boson loops, which are quartic in
ΛUV. As noted in Ref. [73], there is an upper bound on the
UV cutoff of the theory from requiring that the one-loop
mass corrections induced by the DM-SM interactions are
also natural. Since the interactions involved in the correc-
tions to m2

ϕ and λ are the same, the UV scales that arise in
loop integration are the same. The loops have quadratic and
quartic UV divergences, which means that the UV cutoff
must be sufficiently small for the mass corrections to be
subdominant to the tree-level mass of ϕ [72]. By enforcing
δðm2

ϕÞ≲m2
ϕ, we obtain

Λme
UV ≲ 23=2

πmϕMpl

dð1Þmeme

; ð10Þ

Λe
UV ≲ 25=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πmϕMpl

dð1Þe

s
; ð11Þ

Λg
UV ≲ 23=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πmϕMplgs

dð1Þg βðgsÞ

s
; ð12Þ

for the electron, photon, and gluon couplings respectively.
Substituting these limits on the UV cutoff into the renor-
malized λ in Eq. (9), we find

λ≳ ðdð1Þme Þ4m4
e

8π2M4
pl

log

� ffiffiffi
8

p
πmϕMpl

dme
μ0

�
; ð13Þ

λ≳ ðdð1Þe Þ2 m
2
ϕ

M2
pl

; ð14Þ

λ≳ 2

�
dð1Þg

βðgsÞ
gs

�
2 m2

ϕ

M2
pl

; ð15Þ

for the electron, photon, and gluon couplings, respectively.
Therefore, the “natural” regions of λ depend on the

unknown SM couplings. For illustration, in Fig. 1 we show

the natural scale of λ assuming dð1Þe ¼ 10−8, dð1Þme ¼ 10−5,

and dg ¼ 10−6 (blue, red, and pink, respectively), which
are benchmark values that are allowed by current con-
straints across the full range ofmϕ we consider in this work
(cf. the results of Sec. V). For the electron coupling in

Fig. 1, we assume logð ffiffiffi
8

p
πmϕMpl=d

ð1Þ
meμ0Þ ∼Oð1Þ, as the

prefactor primarily determines its magnitude. For the gluon
coupling, the β function is given by βðgsÞ=gs ¼
−ð11 − ns=6 − 2nf=3Þg2s=16π2. Here we use αs ≡
g2s=4π ¼ 1 to represent that QCD is nonperturbative at
these energy scales. The results do not strongly depend on
the value chosen for αs, and the Rc > RS constraint (purple
region) discussed below, where RS is the Schwarzschild
radius, is strictly stronger. Even for a choice of larger
benchmark couplings limited by the EP bounds, the
Rc > RS constraint remains stronger. Additionally, we do
not specify a UV completion, which could modify βðgsÞ via
the introduction of additional SUð3Þc colored scalars (ns)
and fermions (nf), but this also does not appreciably
change the results shown here. For simplicity, we choose
the SM contribution ns ¼ 0 and nf ¼ 6.

4. Black hole superradiance

In the vicinity of a rapidly rotating black hole, ultralight
scalars can be produced in hydrogenlike bound states by
extracting energy and angular momentum from the black
hole. This process, known as black hole superradiance, is
most efficient for scalars whose Compton wavelength is
comparable to the Schwarzschild radius of the black hole,
i.e., 2πm−1

ϕ ≃ RS ≡ 2MBH=M2
pl, where MBH is the black

hole mass [95–97].
Because superradiance causes the host to spin down over

time, observations of black holes with large spins today
have led to constraints on the existence of such scalars, in
the mass rangemϕ ≃ 10−13–10−11 eV (for solar-mass black
holes) [88] and mϕ ≃ 10−21–10−17 eV (for supermassive
black holes) [89]. We illustrate these constraints by the
brown lines in Fig. 1. These studies take advantage of a
large number of measured black hole spins, which are
difficult to measure and in some cases have Oð1Þ uncer-
tainties, and are likely to improve in the future. Direct
laboratory searches, including those studied here, are
complementary to these indirect astrophysical limits.
Self-interactions can also lead to important effects on

black hole superradiance, as the constraints in Fig. 1
illustrate. If the scalar field density around the black hole
exceeds a critical value, attractive self-interactions desta-
bilize the cloud, causing it to collapse and quenching its
exponential growth [95]. Depending on the value of the
self-interaction coupling λ, the cloud can also transition to a
steady-state configuration, where superradiant states are
excited and relaxed at roughly equal rates [88,98]. This also
quenches the growth of the cloud. The end result of both
processes is that, for strong-enough self-interaction cou-
plings, the superradiance rate is insufficient to spin down
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the black hole on astrophysical timescales, and the con-
straints are relaxed accordingly. Roughly, spin-down
occurs within the lifetime of the Universe when [98]

jλj < 10−64αg

�
mϕ

10−10 eV

�
5=2

; ð16Þ

though this condition is approximate and only valid when
the gravitational coupling αg ≡MBHmϕ=M2

pl is order unity
for a given MBH. A full study of the spin-down rates gives
rise to the upper edge of the superradiance constraints seen
in [88,89], reproduced in Fig. 1.

D. Relaxion dark matter

As a concrete example of a well-motivated particle
physics model that is captured by our analysis, consider
the relaxion, a scalar field proposed to alleviate the
hierarchy problem in the Higgs sector [69]. In these
models, the cosmological rolling of the ϕ (relaxion) field
scans the electroweak scale vew until a Higgs-dependent
backreaction traps ϕ in a local minimum with a Higgs
mass scale close to the measured value. Additionally, by
displacing the relaxion field from the minimum of its
potential, either by reheating the Universe after infla-
tion [70] or through stochastic quantum fluctuations [71],
the relaxion is able to acquire a significant energy density,
making it a viable ULDM candidate.
Because the backreaction potential is generated through

direct ϕ-Higgs couplings, the relaxion naturally acquires
Higgs-like interactions with SM fields parametrized by an
effective scalar mixing angle θhϕ (see, e.g., [99] for details).
We therefore characterize the effective relaxion couplings
with a Lagrangian of the form

L ⊃ sin θhϕ
ϕffiffiffi
2

p
 X

f

mf

vew
f̄f þ cγ

α

4πvew
FμνFμν

þ cg
αs

4πvew
Ga

μνGaμν

!
; ð17Þ

where f is a SM fermion field (we will take f ¼ e in what
follows). Comparing each term to the EFT parametrization
in Eq. (2), we can derive the relationship of sin θhϕ to each

of the dilatonic couplings dð1Þi :

sin θhϕ ¼ vew
Mpl

×

8>>><
>>>:

ffiffiffiffiffiffi
8π

p
dð1Þme ðelectronÞffiffiffiffiffi

8π3
p
α dð1Þe ðphotonÞffiffiffiffiffi
8π2

p
βðgsÞ

α3=2s
dð1Þg ðgluonÞ

; ð18Þ

where for simplicity we took cγ ¼ cg ¼ 1. As with axion-
like fields, relaxion self-interactions can be parametrized by
the effective coupling λ ≃m2

ϕ=f
2
a. Nonetheless, taking fa

as a free parameter, this implies that λ can take a wide range
of values in the allowed region of Fig. 1.

III. BOSON STARS

ULDM can form self-gravitating bound states known
as boson stars [28–30], which can be understood as quasi-
static standing-wave solutions of the low-energy equations
of motion: the Gross-Pitaevskii–Poisson (GPP) equations
[37,38]. These equations are easily derived from the
relativistic Lagrangian in Eq. (3) (minimally coupled to
gravity) by decomposing the ULDM field ϕ using ϕ ¼
½ψ expð−imϕtÞ þ H:c:�= ffiffiffiffiffiffiffiffiffi

2mϕ

p
with ψ a nonrelativistic

wave function, and neglecting higher-order terms in the
limit  ψ ≪ mϕψ̇ ≪ m2

ϕψ . After a short derivation (see,
e.g., [100,101]), the resulting GPP equations are

iψ̇ ¼
�
−

∇2

2mϕ
þ Vgðjψ j2Þ −

λ

8m2
ϕ

jψ j2
�
ψ ; ð19Þ

∇2Vg ¼ 4πGm2
ϕjψ j2; ð20Þ

where Vgðjψ j2Þ is the self-gravitational potential. When the
density jψ j2 is relatively small, the third term in Eq. (19)
(which arises from self-interactions and is proportional
to λ) can be neglected, and the boson star is understood as a
stable balance of the other two forces.
As the mass of a boson star grows, its density also

grows, and the attractive self-interaction of the field
becomes stronger. Once it is of the same order as the
other terms in Eq. (19), this interaction destabilizes the
star, leading to gravitational collapse. This occurs once
the boson star reaches a critical value of the mass Mc ≈
10Mpl=

ffiffiffi
λ

p
[37,38]. The corresponding (minimum) radius

of a boson star is Rc ≈ 0.5Mpl

ffiffiffi
λ

p
=m2

ϕ.
As a consequence of the above, at the critical point (just

before it collapses), the radius and mass of a boson star are
related as

Rc ≈
5M2

pl

Mcm2
ϕ

: ð21Þ

In Fig. 3, we show the mass-radius relationship of critical
boson stars in Eq. (21) for different choices of the mϕ (blue
lines, as labeled). The gray regions represent masses
and radii of boson stars that are either more massive
or larger than the Milky Way itself. The red region
represents the region where the detection of bosenovae
is disfavored because the density of the boson star
ρc ≃ 3Mc=ð4πR3

cÞ < ρDM.
Importantly, the allowed mass-radius relationship for criti-

cal boson stars in Eq. (21) was derived in the nonrelativistic
limit. As mϕ increases, the critical radius Rc becomes
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smaller, eventually approaching the Schwarzschild radius
of the boson star, RS ≡ 2Mc=M2

pl; at this point, the non-
relativistic calculation would suggest that the boson star
forms a black hole, though in fact the calculation breaks
down unless Rc ≪ RS. Using Eq. (21), we can interpret this
as a limitation on the critical mass as a function of mϕ,

Mc ≳
ffiffiffi
5

2

r
M2

pl

mϕ
; ð22Þ

or equivalently, a minimum value of λ,

λ≳ λBH ≡ 40
m2

ϕ

M2
pl

; ð23Þ

for which our study is applicable.
We illustrate this region of parameter space in purple

color in both Figs. 1 and 3. In the shaded range, the
equation of state is dominated by general-relativistic
corrections, and the analysis above no longer applies.
On the basis of previous work [47,56–59], we expect no
bosenova to take place in this regime. Note that this applies,
for example, to QCD axion stars for mϕ ≲ 10−10 eV (see
green dotted line in Fig. 1).

A. Bosenova signal

As described in the Introduction, very massive boson
stars (with mass approaching Mc) collapse gravitationally

due to the attractive ϕ4 self-interaction in Eq. (3). In the
final stage of boson star collapse, relativistic number-
changing processes in the core of the collapsing star are
excited, and high-energy ULDM particles are rapidly
emitted from the star [57,58]. This process is known as
a bosenova, by analogy to supernovae observed from the
collapse of heavy stars. The “life-cycle” of a boson star
(including mass growth, collapse, and bosenova) is illus-
trated in Fig. 4.
A full-scale simulation of the collapse, including rela-

tivistic evolution and eventual bosenova, was conducted
in [58]. The authors found that the leading relativistic peak
in the emission spectrum was centered near the momentum
of2 k̄ ≃ 2.4mϕ, with width δk ≃mϕ. The total integrated
energy emitted around this leading peak was of order

Epeak ≈ 1020
mϕ

λ
; ð24Þ

where we translated the result of Ref. [60] but substituted
λ ¼ m2

ϕ=f
2
a. In the simulation, the boson star collapsed and

exploded OðfewÞ times before eventually settling to a
stable, dilute configuration; each collapse produced an
energy of order Epeak on a timescale of order δt0 ≃ 400=mϕ,
corresponding to an intrinsic burst “size” of δx0 ≃ 400=mϕ

(since the scalar velocity is v� ≃ 1). This work focuses on
the signal from a single explosion, and is in this sense
conservative, as the signal should only be enhanced by
additional subsequent explosions.
Note that the authors of [58] analyzed the emission

spectrum for axionlike fields with a chiral potential, i.e., a
QCD axion (see, e.g., [75]). The leading term in this
potential has the same form as we consider in Eq. (3).
Although we are considering a different set of physical
models, we will employ the output of these simulations as a
characteristic behavior for the present study. Indeed, the
authors of [58] indicate that in their simulations, they did
not observe a strong dependence of the emission spectrum
on the specific form of the potential, and since we are
considering only the leading relativistic peak (which should
be dominated by the ϕ4 term), we expect the difference to
be small at leading order.
The precise form of the potential, including higher-order

terms, could affect detection prospects. It is an open
question, a detailed study of which we leave for future
work, whether differences in the emission spectrum arising
from distinct self-interaction potentials can be distin-
guished experimentally. In the event of a detection, such
details could contain important information about the
underlying scalar field theory, including its UV completion,
which could be challenging to probe otherwise.

FIG. 3. Mass-radius relation of scalar boson stars along the
critical point in Eq. (21) for different values of the scalar mass,
mϕ (blue lines, as labeled). The red shaded region is disfavored
from the perspective of detection, as in this region, the density of
a boson star is smaller than the ambient DM density. Additionally,
the two gray shaded regions signify where the boson stars either
become larger (≳16 kpc), or more massive (≳1012M⊙) than the
Milky Way Galaxy. The purple shaded region represents the
Schwarzschild limit, where boson stars will not explode; see
Sec. III for details.

2This peak can be understood as arising from a leading
3ϕ → ϕ number-changing interaction which is ∝λ; see,
e.g., [41,44,57].
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Bosenovae eject bursts of relativistic ULDM bosons in
an approximately spherical shell, which can eventually
reach Earth. Under the assumption that the thickness
bosenova shell δx is much smaller than the distance from
the explosion to Earth, δx ≪ r, the energy density in a
bosenova shell is

ρ� ≈
E

4πr2δx
; ð25Þ

where E is the total energy emitted in the burst. If the
emitted scalar waves do not spread in flight, then the
duration of the burst is merely the intrinsic duration from
the source, δx → δx0. Using this result and substituting
E ¼ Epeak from Eq. (24), one finds

ρ�;0 ≃ 4 × 108ρDM

�
mϕ

10−15 eV

�
2
�
10−80

λ

��
pc
r

�
2

ð26Þ

in the limit of minimal wave spreading. However, as the
shell propagates to Earth, the wave naturally spreads
in flight. This further dilutes the energy density by the
factor [60]

δx0
δx

≃
�
ξ2qðq2 þ 1Þ
1.5 × 108

��
10−15 eV

mϕ

��
pc
r

�
; ð27Þ

where ξ≡mϕδx0 ≈ 400, and q≡ k̄=mϕ ≈ 2.4, and we took
δk ≃mϕ. Therefore, at the detector, the energy density
takes the form

ρ�
ρDM

≃
ρ�;0
ρDM

δx0
δx

≃ 3

�
mϕ

10−15 eV

��
10−80

λ

��
pc
r

�
3

: ð28Þ

We conclude that the energy density in the burst at the
position of Earth can be much larger than the ambient DM
density ρDM ≃ 0.4 GeV=cm3.
On the other hand, the oscillations of the scalar waves

are very incoherent at the source [with OðmϕÞ spread in

momentum], compared to the high-quality oscillations of
the ambient DM (which has a momentum spread
∝ mϕv2DM ≃ 10−6mϕ). However, as pointed out in [60],
the spreading of the waves leads to increased effective
coherence in the detector. This can be understood by
observing that the different momentum modes travel at
different velocities, e.g., with the fastest modes arriving
first, so at any given time the energy deposition in the
detector is remarkably coherent. It was found that the
effective coherence time of a relativistic burst at the detector
scaled as

τ� ≃
2πr
q3ξ

≃ 4 × 10−3 year

�
r
pc

�
; ð29Þ

which approaches, e.g., 1 year for r ≃ 300 pc. The duration
of the burst is also extended, as

δt ≃
δk
mϕ

r

q2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ 1

p ≃ 0.2 year

�
r
pc

�
; ð30Þ

where as before we took δk ≃mϕ. For the two benchmark
distances we consider, the signal durations are estimated
to be a few months for r ¼ 1 pc, and Oð100 yearsÞ for
r ¼ 1 kpc. This significant momentum spread implies that
broadband, rather than resonant, searches for ULDM
are optimal for bosenova searches. We note that even
though the signal duration can be longer than the lifetime of
a given experiment, we still refer to this signal as transient
since it originates from a transient astrophysical event.
Furthermore, if a bosenova signal were to pass by the Earth,
experiments running before and during the signal would be
exposed to different ULDM field densities.
At the position of the detector, the burst can be

characterized by a sum of plane waves of varying momenta
k, as ϕkð  x; tÞ ≃ ϕk;0 cos ðEϕtþ  k ·  xÞ. As a consequence,
the emitted ULDM burst passing through the detector will
deposit energy through the same interactions as cold DM.
In particular, for nonderivative couplings that are linear in

FIG. 4. Illustration of the basic process leading to the signal analyzed in this work, which divides into three subprocesses: (1) the boson
star massM grows by accretion or merger, until (2)M approaches the critical valueMc, leading to spherical collapse. Finally, (3) in the
final moments of collapse, the collapsing scalar field density grows large, exciting rapid emission of relativistic scalars in a bosenova
explosion. See text for further details.
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ϕ, as in Eq. (2), the sensitivity of a broadband DM
experiment to a bosenova signal will follow characteriza-
tion as in Ref. [60]. Taking the above effects into account,
the sensitivity of a search for relativistic scalar fields,
di;�, relative to a DM search sensitivity, di, at the same
frequency by the ratio

dð1Þi;�
dð1Þi

∼
ffiffiffiffiffiffiffiffiffi
ρDM
ρ�

r
t1=4int min

�
τ1=4DM; t

1=4
int

�
min
�ðδtÞ1=4; t1=4int

�
min
�
τ1=4� ; t1=4int

� ; ð31Þ

where tint is the integration time of the experiment. Note
that the translation between frequency of the experiment
and mass is slightly changed, since for virial DM the
frequency of oscillation is ω ≈mϕ, whereas for the
bosenova signal ω ≈ 2.6mϕ. We observe for example that
for long burst duration (δt≳ tint) and long effective
coherence time (τ� → τDM), the sensitivity ratio is deter-
mined solely by the energy density in the burst ρ� relative
to the background DM density ρDM. We will discuss

the sensitivity dð1Þi;DM of current and future experimental
searches in Sec. IV.
Finally, note that the analysis above only takes into

account the leading relativistic peak in the ULDM emission
spectrum, as in the analysis of Ref. [60]. This simplification
allows one to capture qualitative behavior and the typical
expected sensitivity reach. However, detailed analysis of
the full emission spectrum from a given source, such as
numerically computed in Ref. [58] for bosenova, can
provide unique information about the underlying funda-
mental potential of ULDM beyond leading order that could
be extracted in the event of a successful bosenova detection.
We leave this for a dedicated study in the future.

B. Bosenova rate

The event rate of bosenovae is sensitive to model-
dependent cosmological and astrophysical assumptions,
and hence is complicated with nontrivial estimates. To a
first approximation, the rate depends on the intrinsic for-
mation rate and distribution of boson stars at high redshift,
the accretion [32,54,55,102] and merger [51–53] rate of
boson stars, and details of the collapse and bosenova
processes [57–59,103]. It should be noted that although
we have focused on the well-studied example of boson star
collapse, other ULDM systems are also expected to give
rise to bosenovae, including superradiant clouds (discussed
in Sec. II C 4) and gravitational atom configurations bound
to astrophysical objects [91]. Importantly, as emphasized
below, many experimental searches for ULDM will be
automatically sensitive to the passage of a bosenova burst,
without any change to their experiment and at most minor
changes to their analysis pipeline. For this reason, we
consider it reasonable to decouple the signal and rate
estimates, focusing on the former here.

In the Appendix, we provide a very crude estimate of the
rate under simplifying assumptions, which should be taken
as illustrative only. While this issue is important and worthy
of dedicated study in the future, it is far beyond the scope of
this work, which focuses on the bosenova signal across a
wide range of detector architectures. An additional dis-
cussion of the bosenova rate can be found in Ref. [60].

IV. METHODS OF DETECTION

A variety of experimental setups and technology, espe-
cially those traditionally focusing on detecting scalar DM
(see, e.g., [3]) and the variation of fundamental constants,
constitute excellent laboratories for probing bursts of
propagating relativistic ULDM particles. The sensitivity
to couplings is further enhanced when the density of the
scalar particles originating from a bosenova (or other) burst
at the detector is larger than the ambient scalar particle DM
density, in accordance with Eq. (31).
Various technologies for the detection of scalar DM

have recently been reviewed in [3]. These include atomic,
molecular, and nuclear clocks, as well as other spectros-
copy experiments, optical cavities, atom interferometers,
optical interferometers, torsion balances, mechanical reso-
nators, and others. While here we are detecting the transient
rather than continuous signal due to halo DM, the detection
principles remain the same, and we only briefly review the
sensitivities of relevant current and future detectors below.

A. Atomic clocks

The coupling of the scalar DM to the SM leads to
oscillations of fundamental constants [27], such as the
fine-structure constant α, proton-to-electron mass ratio
μ ¼ mp=me, and Xq ¼ mq=ΛQCD [104], where mq is the
average light quark mass, and ΛQCD is the QCD scale. As
atomic, molecular, and nuclear energy levels depends on
values of fundamental constants, this effect leads to the
variation of such energies, as well as the clock frequencies.
Different types of clocks are sensitive to different funda-
mental constants. Moreover, clocks based on different
transitions could have significantly different sensitivities;
therefore, one observes a ratio of clock frequencies over
time and extracts the signal via the discrete Fourier trans-
form or power spectrum of the data [5–9,27]. The signal
will persist for the duration of the burst. The bosenova
burst would be detectable with various quantum clocks for
a wide range of DM masses (being most sensitive for
m≲ 10−13 eV) and interaction strengths.

1. Optical atomic clocks

The ratios of optical clock frequencies [105], i.e., based
on transitions between different electronic levels (frequen-
cies of 0.4–1.1 × 1015 Hz) are sensitive to photon [27] and
hadronic sector [106] couplings. The frequency of the
optical atomic clock can be expressed as [107]
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ν ∼ cR∞AFðαÞ; ð32Þ

where c is the speed of light, A is a numerical factor
depending on an atom, FðαÞ depends upon the particular
transition, and R∞ is the Rydberg constant. The sensitivity
of optical atomic clocks to the variation of α is parametrized
by dimensionless sensitivity factors K that can be com-
puted from first principles with high precision [108] and
can be either positive or negative. Ultimate accuracy in the
ability to detect the variation of the fundamental constant,
and, therefore, ultralight scalar DM, depends on the differ-
ence in the sensitivity factors between two clocks and the
achievable fractional accuracy of the ratio of frequencies ν:

∂

∂t
ln
ν2
ν1

¼ ðK2 − K1Þ
1

α

∂α

∂t
; ð33Þ

where indices 1 and 2 refer to clocks 1 and 2, respectively.
The Ybþ clock based on an electric octupole (E3)
4f146s 2S1=2 ↔ 4f136s2 2F7=2 transition has the largest
(in magnitude) sensitivity factor K ¼ −6 [108] among
all presently operating clocks. The Ybþ ions also support
another clock transition based on the electric quadrupole
(E2) 4f146s 2S1=2 ↔ 4f145d 2D3=2 transition with K ¼ 1,
and the 171Ybþ E3/E2 clock-comparison pair presently
provides the best limit for scalar DM for the lightest
masses, with the experiment carried out by the PTB
team [6].
Optical clocks based on highly charged ions (HCIs)

[109] will have much larger sensitivities to the variation of
α than presently operating optical clocks. For example,
a Cf15þ=Cf17þ pair has K2 − K1 > 100 [110]. Develop-
ment of HCI clocks is progressing rapidly, with a
recent demonstration of an Ar13þ clock with 2 × 10−17

uncertainty [111].
Recently, it was shown that coupling of ultralight scalar

DM to quarks and gluons would lead to an oscillation of
the nuclear charge radius detectable with optical atomic
clocks [106,112], and their comparisons can be used to
investigate DM-nuclear couplings, which were previously
only accessible with other platforms.
The total electronic energy Etot of an atomic state

contains the energies associated with the finite nucleus
mass [mass shift] and the nonzero nuclear charge radius
rN [field shift (FS)], which dominated for heavy atoms
and provides the better sensitivity. The field shift can be
parametrized as

EFS ≃ KFShr2Ni;

where KFS is the field-shift constant leading to oscillation
of the atomic energy due to the oscillation of the rN caused
by the coupling of nuclear sector to DM [106].
Therefore, measuring the ratio of two clock frequencies

ν2 and ν1 of heavy atoms enables the detection of ultralight

DM that will cause the oscillation of rN :

Δðν2=ν1Þ
ðν2=ν1Þ

¼ K2;1
Δhr2Ni
hr2Ni

: ð34Þ

We note that the sensitivity K2;1 of the clock pair to DM is
different from the sensitivity to α and is determined by the
field shift constants of the clock transitions:

K2;1 ≡ Kν2
FShr2Ni
ν2

−
Kν1

FShr2Ni
ν1

:

Corresponding limits on DM to coupling to gluons dg and
quarks dm̂ are obtained as

Δðν2=ν1Þ
ðν2=ν1Þ

¼ K2;1½ðc1 þ c2Þdg þ c2dm̂�
ffiffiffiffiffiffi
4π

p ffiffiffiffiffiffiffiffiffiffiffi
2ρDM

p
mϕMpl

;

where c1 and c2 are of order unity (see Refs. [106,112]3).
Interestingly, 171Ybþ E2/E3 clock pair has high sensitivity
to this effect as well—upper states in these two clock
transitions have significantly different electronic structure
resulting in field shift constants that differ in sign. Yb is
also quite heavy with Z ¼ 70, and near-future experiments
will allow improvement in a wide mass range [106].

2. Microwave clocks

Microwave clocks are based on transitions between
hyperfine substates of the ground state of the atom
(frequencies of a few GHz). The corresponding frequency
of such with transitions can be expressed as [107]

νhfs ∼ cR∞Ahfs × gi ×
me

mp
× α2FhfsðαÞ; ð35Þ

where Ahfs is a numerical quantity depending on a par-
ticular atom and FhfsðαÞ is specific to each hyperfine
transition. The dimensionless quantity gi ¼ μi=ðIμNÞ is
the nuclear g factor, where μi is the nuclear magnetic
moment, I is a nuclear spin, and μN ¼ eℏ

2mp
is the nuclear

magneton. The variation of g factors is commonly reduced
to the variation of Xq ¼ mq=ΛQCD enabling sensitivity to
DM-SM coupling to gluons dg and quarks dm̂.
Comparing formulas given by Eqs. (32) and (35), we see

that the ratio of microwave to optical clocks is sensitive to
the various α, μ, and Xq providing sensitivity to all linear
couplings discussed in this work. The microwave Rb to
Cs frequency clock ratio is sensitive to the variation of α
and Xq [107]:

3The coefficients c1 and c2 were originally labeled as α and β
(respectively) in [106]. We have changed them here to avoid
confusion with α, αs, and βðgsÞ.
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νCs
νRb

¼ gCs
gRb

α0.49; ð36Þ

see Refs. [104,113] for extraction of sensitivity to the
nuclear sector from the g factors. Therefore, microwave
clocks can probe all of the scalar DM couplings discussed
here, but have reached their technical accuracy limit of
10−16 [114], 2 orders of magnitude below the optical
clocks. Rb/Cs clock-comparison limits are reported in [9].

B. Molecular and nuclear clocks

Several new types of clocks are being developed
(see reviews [3,113]), based on molecules and molecular
ions [115,116], and the 229Th nucleus [117].
Molecular clocks provide enhanced sensitivity to μ

variation and will allow a significantly improved sensitivity
to electron couplings as well. For example, the linear
triatomic molecule SrOH possesses a low-lying pair of
near-degenerate vibrational states leading to a large sensi-
tivity to changes in μ and a high degree of control over
systematic errors [118].
The design of a high precision optical clock requires the

ability to construct a laser operating at the wavelength of
the clock transition, which precludes using nuclear energy
levels as their transition frequencies are generally outside of
the laser-accessible range by many orders of magnitude.
However, there is (so far) a single known exception, a
nuclear transition that occurs between the long-lived
(isomeric) first excited state of the 229Th and the corre-
sponding nuclear ground state, with a laser-accessible
wavelength near 149 nm.
In 2023, the first observation of the radiative decay of the

229Th nuclear clock isomer was reported [119], and the
transition energy was measured to be 8.338(24) eV, cor-
responding to the photon vacuum wavelength of the
isomer’s decay of 148.71(42) nm. In 2024, laser excitation
of Th-229 nuclear transition was demonstrated in Th-doped
CaF2 crystals using a tabletop tunable laser system [120].
The nuclear resonance for the Th4þ ions in Th:CaF2 is
measured at the wavelength 148.3821(5) nm, with the
fluorescence lifetime in the crystal being 630(15) s,
corresponding to an isomer half-life of 1740(50) s for a
nucleus isolated in vacuum.
The nuclear clock can be operated with a single Th3þ

trapped ion, much like a single ion atomic clock, except
that it excites a nuclear rather than an atomic transition.
Laser cooling of Th3þ has already been demonstrated. An
alternate solid-state scheme has also been suggested which
cannot be implemented with atomic clocks (see the
review [117] and references therein).
The nuclear clock is expected to have several orders of

magnitude larger sensitivities to both the variation of α and
Xq, giving a unique opportunity to drastically enhance
scalar ULDM searches, since the projected accuracy of

nuclear trapped ion clocks is 10−19 [121]. Flambaum [122]
suggested that the anomalously small transition energy of
the 229mTh isomer is the result of a nearly perfect cancella-
tion of a change in Coulomb energy,

ΔEC ¼ Em
C − EC ∼ −1 MeV;

by opposite and nearly equal changes of the nuclear energy
through the strong interaction; this is why both sensitivity
to photon and nuclear couplings are similarly enhanced.
This difference in the Coulomb energy and corresponding
sensitivity to variation of α can be estimated from the
measured differences in the charge radii and quadru-
pole moments Q0 between the ground state and the
isomer [123,124]:

ΔEC≈−485MeV

�hr2229mi
hr2229i

− 1

�
þ 11.6MeV½Qm

0 =Q0− 1�

¼−0.29ð43ÞMeV; ð37Þ

which is limited by the accuracy in the Qm
0 =Q0 value, but

planned to be improved with a better ion trap [117]. The
sensitivity value of K ¼ −0.9ð3Þ × 104 for α sensitivity has
been evaluated based on additional nuclear modeling that
includes a relation between the change of the charge radius
and that of the electric quadrupole moment [125]. Using
this value, the sensitivity to the variation of α and DM is
determined the same way as for the atomic clock pair given
by Eq. (32). A Th nuclear clock can be compared to any
other atomic clock or a cavity. The sensitivity for the DM
couplings of the hadronic sector is also OðKÞ; see [122].
The plans for the development of a nuclear clock have been
discussed in detail in [117], and rapid progress is expected
after a recent new measurement of the transition wave-
length [119].

C. Optical cavities

Variations of α and particle masses also alter the geo-
metric sizes of solid objects, scaling as L ∝ aB, where aB ¼
1=ðmeαÞ is the atomic Bohr radius [126,127] in the non-
relativistic limit. When sound-wave propagation through
the solid occurs sufficiently fast for a solid to fully respond
to changes in the fundamental constants, the size of a solid
body changes according to [3]:

δL
L

≈
δaB
aB

¼ −
δα

α
−
δme

me
; ð38Þ

leading to the sensitivity to both photon and electron
couplings.
Therefore, the cavity reference frequency νcavity ∝ 1=L

can respond to changes in the fundamental constants,
as [3,126,127]
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δνcavity
νcavity

¼ −
δL
L

≈ −
δaB
aB

¼ δα

α
þ δme

me
ð39Þ

for the cavity whose length depends on the length of the
solid spacer between the mirrors, enabling DM searches.
One can compare the cavity reference frequency to the
atomic frequency or to another cavity. We note that the
atomic clock design includes an optical cavity, naturally
supporting clock-cavity comparisons, as carried out in [11].
The size changes of the solid are enhanced if the

oscillation frequency of the fundamental constants matches
the frequency of a fundamental vibrational mode of the
solid [3]. Various optical cavities can be used for ultra-
light scalar particle detection, with comparisons of atom-
cavity [13] and cavity-cavity [12,16] comparisons setting
limits on DM-SM couplings. Such experiments are natu-
rally sensitive to DM mass ranges higher than that of
clocks, complementing clock-clock comparisons as well as
providing limits on additional couplings.

D. Atom interferometers

In atom interferometry, laser pulses are used to coher-
ently split, redirect, and recombine matter waves through
stimulated absorption and emission of photons, driving
transitions between the ground and a long-lived excited
atomic state [128]. We note that a 1S0 − 3P0 narrow transi-
tion in Sr is used for both ultraprecise atomic clocks and
atom interferometry schemes for future gravitational wave
detection and DM searches [129].
Atom interferometers are sensitive to the oscillations of

fundamental constants as well as DM-induced accelerations
in dual-species interferometers, for example 88Sr and 87Sr.
Such experiments compare the phase accumulated by
delocalized atom clouds with DM affecting the atomic
energies or exerting a force on the atom clouds, respectively.
Large-scale atom interferometers are required to enhance

the sensitivity to DM. Large-scale 100-meter prototypes are
currently being built [129]. Space-based atom interferom-
eters (see AEDGE proposal [130]) will be highly sensitive
to scalar and vector DM.

E. Other detectors

Other spectroscopy DM limits include atomic Dy [18]
and molecular iodine [16] experiments.
Ultralight DM may also exert time-varying forces on

test bodies in optical inteferometers, but such forces are
suppressed by the smallness of the electromagnetic and
electron-mass contributions to the overall mass of a test
body for scalar DM (see [3] for a brief review).
Torsion balances sense differential forces on macro-

scopic test masses. Although they were designed to
test the EP [19], one can derive limits to scalar DM
assuming that these particles create a differential force.
The MICROSCOPE space mission tested the EP in orbit

using electrostatic accelerometers onboard a drag-free
microsatellite [20]. We note that all limits derived from
EP tests do not assume DM halo density, so these limits will
not be affected by the enhanced density. This is because
for linear couplings, the EP tests search for long-range
Yukawa-type interactions, rather than the energy deposition
from interactions with local DM fields. The EP tests are
insensitive to the density of the DM nearby, and only test
the long-range force between test masses. In the language
of particle physics, the field potential arises at tree level,
where a single virtual ϕ is exchanged.
Various proposals recently reviewed in [3,131] use

mechanical resonators spanning a range of frequencies
from 1 Hz to 1 GHz, corresponding to a ULDM mass from
10−14 eV to 10−5 eV. These are naturally narrowband in
DM mass.

F. Networks of detectors on Earth and in space

One can use all of these experiments to set the limits on
the bosenova bursts. The potential for significantly
increased density of particles compared to halo DM
leads to an increased chance of detection for all density-
dependent experiments. One significant factor to consider
is whether the experiment can reach its ultimate sensitivity
during the burst, which we assume in all limits. Owing to
vast differences in integration time to full sensitivity for
different detection methods, we assume it can be achieved
during the burst time in the present manuscript.
A network of detectors allows for better differentiation

of burst signals from the local noise sources as well as
improved precision [3]. Networks of detectors in space
provide particularly interesting opportunities due to the large
possible distances between network nodes. For example, the
global positioning system (GPS) has been used to provide
limits on transientDMeffects [132]. A potentially tantalizing
opportunity with the space network is the observation of the
onset of the burst signal propagating through the network
nodes and potential localization of the signal. Further work is
needed for different detector types to explore these oppor-
tunities. Detecting the onset of relativistic bursts as opposed
to nonrelativistic transients is a challenging prospect, but
quantum technologies are improving rapidly, leading to
significant improvements in both accuracy and stability.
For example, the stability of optical lattice clocks has
improved drastically in recent years, allowing us to reach
10−18 uncertainties within a few minutes [133], with further
orders of magnitude improvements possible.
Finally, note that a number of fundamental physics and

DM studies with high-precision optical clocks in space
have recently been proposed [134–136].

V. RESULTS

We find that bursts of relativistic scalars offer a discovery
reach orders of magnitude better than from background
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DM over a range of bosenova distances r, scalar masses
mϕ, and self-interaction couplings λ. In Fig. 5, we show
contours of the potential reach of the coupling ratio,

dð1Þi;� =d
ð1Þ
i with i ¼ e;me; g, over the mϕ − λ plane. We

calculate the coupling ratio using Eq. (31), with burst
density given by Eq. (28) and the burst timescales in
Eqs. (29) and (30). Since the distance to the bosenova is a
free parameter (for our purposes), we take two benchmarks

FIG. 5. The ratio of sensitivity to a given coupling for a burst search di;� relative to a DM search di, for the allowed parameter space in
mϕ vs λ; the white dotted line corresponds to equal sensitivity to bursts and DM. We illustrate two choices of distance to the bosenova:
r ¼ pc (left) and r ¼ kpc (right). See Sec. II C and Fig. 1 for discussion of constraints.

FIG. 6. Bounds on dð1Þme as a function ofmϕ from current experiments (left) and projections for future experiments (right). In both plots,
the solid black lines trace the best bound for each mass. The dashed and dotted black lines represent the potential reach for detecting
bosenovae at distances of r ¼ pc and kpc, respectively. We choose λ ¼ λb in Eq. (40), as explained in the text. Current experiments consist
of various detector types. Clocks: frequency comparison between 171Yb optical lattice clock and 133Cs fountain microwave
clock (Yb/Cs) [8]. Optical cavities: H-maser comparison with a Si cavity (H/Si) [11], comparison between Cs clock and a cavity
(Cs/Cav) [12], and comparison of a H-maser and sapphire oscillator with a quartz oscillator (H/Quartz/Sapphire) [13]. Optical
interferometers: unequal delay interferometer experiment (DAMNED) [14], colocated Michelson interferometers (Holometer) [15],
Spectroscopy:molecular iodine spectroscopy (I2) [16], comparison between 87Rbhyperfine transition and quartzmechanical oscillator (Rb/
Quartz) [17]. Equivalence principle tests: searches for EP violation (Eöt-Wash [19] and MICROSCOPE [20]). Mechanical oscillators:
resonant mass detector (AURIGA) [21]. Fifth force tests: fifth force searches looking for deviations from the gravitational inverse square
law [23].Gravitational wave detectors: (GEO 600 [24], LIGOO3 [25]). Future experiments include optical/microwave clock comparison
(Optical/MW) [27], SrOH molecular spectroscopy [118], atom interferometery (terrestrial MAGIS [129], and space-based AEDGE
and AION [130]), resonant-mass detectors [DUAL [137]) and other mechanical resonators (sapphire, pillar, quartz and superfluid
helium [138] ]. UFDs [87] and Lyman-α [85,86] also constrain ULDM. Finally, the regions of the parameter space corresponding to the
BHSR bounds [88,89] are displayed at the bottom of the plots by the arrows (note the discontinuity in λb in this range).
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of r ¼ 1 pc (left) and r ¼ 1 kpc (right) to capture a range
of possible Galactic sources. This coupling ratio is inde-
pendent of the specifics of the experiment in question, and
therefore provides a blueprint for the most interesting
parameter space for current and future experiments. As
in Fig. 1, the relevant parameter space is limited by
Lyman-α [85,86] and UFDs [87] and structure forma-
tion considerations (see Sec. II C 2), as well as at small
λ by the limitations of the nonrelativistic analysis
[see Eq. (23)].
The dotted white line in Fig. 5 represents where

dð1Þi;� =d
ð1Þ
i ¼ 1, i.e., the coupling that can be probed by

detecting a bosenova at a distance r is the same as that
of background DM. Modulo the timing factors of
Eq. (31), this in essence says that the density of scalars
from the burst is the same as the background DM.

Regions below this contour represent dð1Þi;� =d
ð1Þ
i < 1,

which means that the coupling that can be probed in those
regions of the parameter space are smaller than those
that can be probed by signals from background DM.
In other words, below this line the bosenovae are most
advantageous.

Figure 5 can be used to translate an experiment’s
sensitivity to background DM into a sensitivity to a
bosenova by multiplying the experimental coupling reach
by the coupling ratio di;�=di. The recipe to translate a DM
limit to a burst limit in a given experiment is as follows:
for a given mass range mϕ that the experiment is sensitive
to, choose a value of λ that is allowed in that mass range.
Then the coupling reach can be determined by multiply-

ing the DM limit on dð1Þi by the value of the dð1Þi;� =d
ð1Þ
i over

that λ slice. For instance, if an experiment was sensitive to
DM masses of 10−19–10−16 eV, a viable benchmark for λ
could be, e.g., 10−85. For a bosenova with these param-

eters, the coupling ratio dð1Þi;� =d
ð1Þ
i is Oð10−3Þ for a

distance of r ¼ 1 pc. This means that, in the presence
of a bosenova, the sensitivity for the burst signal covers 3
additional orders of magnitude compared to the back-
ground DM limit.

Figures 6–8 show the reach of the dð1Þme , d
ð1Þ
e , and dð1Þg ,

respectively, as a function of mϕ. We display the reach for
both current experiments (left) and proposed future experi-
ments (right). For this parameter space, there are two

FIG. 7. Bounds on de as a function of mϕ from current experiments (left) and projections for proposed experiments (right). In both
plots, the solid black lines trace the best bound for each mass. The dashed and dotted black lines represent the potential reach for
detecting bosenovae at distances of r ¼ pc and kpc, respectively. We choose λ ¼ λb in Eq. (40), as explained in the text. Current
experiments include the following. Clocks: frequency ratios of 27Alþ, 171Yb, and 87Sr optical clocks (BACON) [5], frequency ratios of
single-ion 171Ybþ clock and 87Sr optical lattice clock (PTB) [6], ratio of frequencies of atomic clocks based on 171Ybþ and 87Sr (Yb+/Sr)
[7], and dual 133Cs=87Rb atomic fountain clock frequency ratio (Rb/Cs) [9]. Optical cavities: frequency comparisons between strontium
optical clock and silicon cavity (Sr/Si) [11], atomic spectroscopy in cesium vapor with Fabry-Perot cavity locked to laser (Cs/Cav) [12]
and frequency comparision of hydrogen maser and sapphire oscillator with quartz oscillator (H/Quartz/Sapphire) [13]. Optical
interferometers: three-arm Mach-Zender interferometer (DAMNED) [14] and colocated Michelson interferometers (Holometer) [15].
Spectroscopy: spectroscopic experiments of molecular iodine (I2) [16], frequency comparison of 164Dy with quartz oscillator (Dy/
Quartz) [17], precision spectroscopy measurements involving two isotopes of dysprosium (Dy/Dy) [18]. Equivalence principle tests:
tests of equivalence principle violation by (Eöt-Wash) [19] and (MICROSCOPE) [20]. Mechanical resonators: resonant mass detector
(AURIGA) [21]. Gravitational wave detectors (GEO 600) [24] and (LIGO O3) [25]. Future experiments include thorium nuclear
clock projections [3], space-based atom interferometers (AEDGE and AION) [130], terrestrial atom interferometers (MAGIS) [129],
resonant-mass detectors DUAL [137], and mechanical resonators (sapphire, pillar, quartz and superfluid helium) [138]. UFDs [87] and
Lyman-α [85,86] also constrain ULDM. Finally, the regions of the parameter space corresponding to the BHSR bounds [88,89] are
displayed at the bottom of the plots by the arrows (note the discontinuity in λb in this range).
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additional parameters: the self coupling λ and bosenova
distance r. As before, each figure shows two benchmark
distances of r ¼ 1 pc and r ¼ 1 kpc.

Since ρ� ∝ 1=λ [see Eq. (28)], smaller values of λ will
increase detection prospects. Taking into account all of the
constraints on λ laid out in Sec. II C, we choose values of λ
at each mass which will maximize the size of the signal.
The benchmark λb is chosen therefore to trace right above
the lower bounds on λ, as shown by the black dashed line in

Fig. 1. This benchmark choice is defined piecewise by

λb ¼

8>><
>>:

3 × 10−73
� mϕ

10−13 eV

�
6 10−13 ≲ mϕ

eV ≲ 10−12

10−90
� mϕ

5×10−21 eV

�
4 10−21 ≲ mϕ

eV ≲ 10−17

10λBH elsewhere

: ð40Þ

For the regions in Fig. 1 not dominated by black hole
superradiance bounds, we take λ ¼ 10λBH to safely ignore

FIG. 8. Bounds on dg as a function of mϕ from current experiments (left) and projections for proposed experiments (right). In both
plots, the solid black lines traces the best bound for each mass. The dashed and dotted black lines represent the potential reach for
detecting bosenovae at distances of r ¼ pc and kpc, respectively. We choose λ ¼ λb in Eq. (40), as explained in the text. Experiments

that are sensitive to dð1Þg include the following. Clocks: 171Yb lattice clock—133Cs microwave clock comparison (Yb/Cs) [8] and
frequency comparison in dual rubidium-caesium cold atom clock (Rb/Cs) [9]. Optical cavities: H-maser comparison with a Si cavity
(H/Si) [11]. Equivalence principle tests: MICROSCOPE [20], while future experiment projections are for the 229Th nuclear clock [3]
and 171Ybþ ion clock [106]. UFDs [87] and Lyman-α [85,86] also constrain ULDM. Finally, the regions of the parameter space
corresponding to the BHSR bounds [88,89] are displayed at the bottom of the plots by the arrows (note the discontinuity
in λb in this range).

FIG. 9. The reach for the bosenova search compared to the relaxion DM parameter space (green shaded region [71]), for current
experiments (left) and future experiments (right). The strongest current constraints, derived from EP and fifth force experiments, are
represented by the light gray region. The potential reach for bosenova searches for dme

and de are shown by the red and blue dashed lines
and derived using Eq. (18) from the experiments listed in Figs. 6 and 7 (respectively). The bosenovae were taken to be at a benchmark
distance of r ¼ pc.
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relativistic effects that would arise and modify the dynam-
ics of the bosenovae. We emphasize that this benchmark
is chosen by hand based on existing constraints, and
the precise form was not derived from any theoretical
considerations.
Finally, we illustrate a dedicated relaxion parameter

space in Fig. 9. We display the parameter space in terms
of the Higgs-relaxion mixing parameter, sin θhϕ, which is
related to the dilatonic couplings via Eq. (18). With
upcoming experiments probing de and dme

, there will be
significant potential to probe well-motivated relaxion DM
parameter space.
Finally, we note that although the parameter space mϕ ≲

10−19 eV is already constrained by astrophysics and
cosmology (especially UFDs and Lyman-α), laboratory
searches are still useful and complementary in this range.
Laboratory and astrophysical probes are based on very
different assumptions and therefore provide useful con-
firmation of one another. Furthermore, in models where the
ULDM scalar field is a subleading fraction f ≲ 0.1 of the
total DM density, astrophysical constraints can disappear
completely, whereas laboratory searches typically reduce
sensitivity by only

ffiffiffi
f

p
. In fact, in the present context, the

total ULDM density only affects the rate of bosenovae, but
not the size of a given bosenova signal if it does occur.

VI. CONCLUSIONS AND OUTLOOK

ULDM can form compact objects that eventually col-
lapse and explode, resulting in transient burst emissions of
relativistic scalar fields. This can lead to distinct observa-
tional signatures compared to Galactic DM. We have
demonstrated that current experiments searching for DM
couplings to photons, electrons, and gluons may already be
sensitive to such bosenova signals. Upcoming experiments
and technology, including nuclear clocks as well as space-
based interferometers, will be able to sensitively probe
orders of magnitude in the ULDM coupling-mass param-
eter space.
The search for transient bursts of relativistic scalars is

a new field of study, which gives rise to unique strategies
for detecting DM. Not only can the ULDM density be
enhanced during the transit of a burst, but a detection of
a bosenova signal can also provide important insight into
the fundamental self-interaction potential of ϕ, which is
otherwise very difficult to probe. This is because the
emission spectrum of the bosenova depends on this
potential. The analysis put forth in our work is general,
and the methodology can be readily applied to other
astrophysical sources of relativistic scalar fields. Scalar
particle emission can generally originate from hot
and dense environments.4 Our work also opens up new

avenues for multimessenger astronomy associated with
new physics as well. For instance, if the bosenova collapse
exhibits a quadrupole moment in its mass distribution,
then it is possible for there to be a detectable gravita-
tional wave signal. Additionally, the dilatonic coupling to
photons could lead to radio emission from boson stars, a
phenomenon which has been studied in the context of axion
stars [103]. We leave the exploration of these ideas for
future work.
Since the properties of the bosenova are linked tomϕ and

λ, other transient sources could have a distinct dependence
on these parameters, and therefore lead to different detec-
tion prospects. In particular, in the event of a bosenova
detection, the pattern of peaks in the emission spectrum
may encode important information about the underlying
UV physics, which is inaccessible in an ordinary DM
search. A dedicated study of the emission spectrum of
bosenovae in theories with different scalar field potentials is
therefore highly motivated.
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APPENDIX: APPROXIMATION
OF BOSENOVA RATE

As emphasized in the main text, the rate of boson star
collapse leading to bosenova is an important but complex
issue, which depends on numerous model-dependent
assumptions. We postpone a dedicated study of this rate
to future work. As a first, very crude approximation, we
illustrate how such a calculation might be done below,
though the reader should not interpret the result as a
concrete estimate.
For the purpose of illustration, we employ the ansatz of a

fixed boson star massM ¼ Mc and assume a homogeneous
distribution around the Galaxy, taking the fraction of DM in
boson stars to be fDM ≤ 1. In this case, the average distance
r̄ between boson stars is

4For example, such as that found in astrophysical settings of
neutron star mergers [139,140].
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r̄ ∼
�

3Mc

4πfDMρDM

�
1=3

≈
30 pc

f1=3DM

�
10−80

λ

�
1=6

: ðA1Þ

This estimate would imply a total number of boson stars

Nbs ∼ 4 × 107fDM

�
λ

10−80

�
1=2
�

r
10 kpc

�
3

ðA2Þ

in a galaxy of size ∼10 kpc (e.g., the Milky Way).
As mentioned above, the average rate of bosenova

signals is complicated with significant uncertainties (see
[60,141] for some discussion). Let us consider an approxi-
mate simplified example. Suppose one boson star collapse
occurs on average every T ∼ Gyr within a given galaxy.
Note that this choice is not the output of any calculation,
but is only used here for illustration. Then using the
estimate in Eq. (A2), the rate of bosenovae within a
distance r of Earth would be of order

Γ ∼
Nbs

T
∼ 0.04 year−1

�
λ

10−80

�
1=2
�

r
10 kpc

�
3

: ðA3Þ

Therefore, this highly simplistic example implies a rate
of one bosenova every 25 years in the Milky Way.

For comparison, the supernova rate in the Milky Way is
estimated at roughly 1 per 50 years [142]. Calculations of
expected event rates for bosenovae from merging axion
stars and axion miniclusters have been found to be as large
as ∼3 bosenovae per day in the Milky Way [143]. While
there is significant uncertainty, this further highlights that
bosenovae can carry significant implications and warrant
further study for which we lay the groundwork.
It is also worth noting in this context that other ULDM

systems can give rise to bosenovae. Superradiant clouds
of ULDM around black holes, discussed in Sec. II C 4,
have been predicted to be destabilized by self-interactions,
leading to collapse and bosenova explosion [95], although
more recent work suggests the possibility of a steady-state
configuration at late times [88,98]. Additionally, ULDM
can be captured around astrophysical objects, including
stars, with density that grows exponentially [91]; in addi-
tion to terrestrial signals from a solar halo [144,145], the
collapse of these gravitational atoms is expected to also end
with a bosenova. A complete picture of the bosenova rate in
the Galaxy should self-consistently take all of these
possibilities into account. We postpone further discussion
and improved estimates of the bosenova rates in each of
these systems for future work.
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