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D-CRITICAL LOCUS STRUCTURE ON THE HILBERT SCHEMES OF SOME LOCAL
TORIC CALABI-YAU THREEFOLDS

SHELDON KATZ AND YUN SHI

ABsTRACT. The notion of a d-critical locus is an ingredient in the definition of motivic Donaldson-Thomas
invariants by [6]. In this paper we show that there is a d-critical locus structure on the Hilbert scheme of
dimension zero subschemes on some local toric Calabi-Yau 3-folds. We also show that using this d-critical
locus structure and a choice of orientation data, the resulting motivic invariants agree with the definition
given by the previous work of [2].
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1. Introduction

Donaldson-Thomas (DT) theory was introduced in [22] as an enumerative theory which gives
a virtual count of stable coherent sheaves with fixed topological invariants on certain 3-folds,
including Calabi-Yau threefolds. In the Calabi-Yau case, this moduli problem supports a perfect
obstruction theory of virtual dimension zero in good situations, and so defines a degree zero class
in the Chow ring of the moduli space — the virtual fundamental class of [3]. When the moduli
space is proper, the DT invariant is defined as the degree of this virtual fundamental class. This
theory was applied to Hilbert schemes of points in [22] by identifying the Hilbert scheme with
the moduli space of their corresponding ideal sheaves.

It turns out that there is a rich structure underlying the DT invariant. The DT moduli space
supports a symmetric obstruction theory, which implies that when the moduli space is proper
the DT invariant is a weighted Euler characteristic of the moduli space, the weighting being given
by a constructible function on the moduli space called the Behrend function [1]. These ideas are
applied to show that for a projective threefold X, the generating function of the DT invariants of
Hilb" (X) can be expressed in terms of the MacMahon function and the Euler characteristic of X
[4, 14, 16].

If the moduli space can be globally realized as a degeneracy locus, the value of its Behrend
function at a point can be expressed in terms of the Euler characteristic of the Milnor fiber at that
point [1, 20]. Replacing the Milnor fibers with their motivic incarnations, one is led to the notion
of Motivic DT invariants.

Motivic DT theory was introduced and developed in [13, 6], and had been studied by sev-
eral authors, see e.g. [2, 8, 17, 18]. One of the first computations of motivic DT invariants was
given for Hilb"(X), where X is a Calabi-Yau threefold [2]. This computation relied on the fact
that Hilb" (C®) can be realized as a degeneracy locus with an equivariant torus action. The au-
thors introduced a notion of motivic DT invariants of Hilb" (X) based on their computations for
Hilb" (C3).
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Later, a general formalism for motivic DT invariants was given in [6], using the notions of a
d-critical locus and orientation introduced in [11]. The notion of orientation is extracted from the
notion of orientation data introduced in [13].

Now let X be a local toric surface wg, the total space of the canonical bundle of a smooth,
complete toric surface S. In this paper, we define a d-critical locus structure on Hilb"(X) if
X = wp2 or X = wp,, and endow it with an orientation following [8]. We then show that the
motivic DT invariants of Hilb" (X) as defined using the d-critical locus and orientation agree with
the motivic DT invariants as defined in [2]. We therefore show that the results of [2] are valid in
the context of the more general theory for these Calabi-Yau threefolds.

A natural question arises which we do not address further in this paper:

The notion of a d-critical locus was introduced as a classical truncation of the notion of a —1-
shifted symplectic structure in derived algebraic geometry. It was shown in [19] that the derived
moduli stack of sheaves on a projective Calabi-Yau threefold has a canonical —1-shifted symplec-
tic structure. For a similar result in the noncompact case, see [5]. Does the classical truncation
of the canonical —1-shifted symplectic structure on the derived Hilbert scheme agree with our
d-critical locus structure? This would imply that our motivic result Corollary 5.4 can be extended
to the total space of the canonical bundle of any smooth toric surface.!

1.1. Outline of the paper. In Section 2 we review background material including the definition
of motivic DT invariants following [6]. Section 3 begins with the necessary toric geometry. We
then prove that there is a canonical d-critical locus structure on an open subset of Hilb" (ws) for
any smooth toric surface S (Proposition 3.2). We use this result and its proof to show that there
is a natural d-critical locus structure on all of Hilb"(ws) induced by copies of Hilb"(C3)’s, for
S =P?and S = FF,, (Theorem 3.3). In Section 4, we exhibit an orientation on Hilb" (ws) associated
to this d-critical structure. Finally in Section 5, using the d-critical locus structure constructed in
Section 3 and the orientation in Section 4, we recover the computation of Hilb" (ws) in [2].

1.2. Notations. All schemes in this paper are assumed to be separated and of finite type over
C. We use X to denote a smooth quasi-projective Calabi-Yau 3-fold. For a smooth surface S,
we denote the total space of its canonical bundle by wg, and the projection from wgs to S by
7T wg — S.

2. Background

2.1. Introduction to motivic DT invariants. In this section, we review the main ingredients of
motivic Donaldson-Thomas (DT) invariants as defined by Bussi, Joyce and Meinhardt [6].

First we recall the definition of the monodromic Grothendieck ring, where the motivic in-
variant associated to a moduli space lives. Let S be a separated scheme of finite type over C.
The Grothendieck group of S-schemes is the abelian group generated by isomorphism classes of
S-schemes [X — S], modulo the scissor relations:

[T —S] =T — S|+ [T\T' — S]

for T" a closed S-subscheme of T.
Now we consider an equivariant version of the Grothendieck ring. Let y,; be the group of nth
roots of unity. A u, action on a scheme T is called good if every y, orbit is contained in an affine

IWhile this paper was under review, we have answered this question in the affirmative [12].



D-CRITICAL LOCUS STRUCTURE ON THE HILBERT SCHEMES OF SOME LOCAL TORIC CALABI-YAU THREEFOLDS10003H

subscheme of T. Note that there are maps i, — uy if n|m, defined by x + x™/" forming an
inverse system. Denote 1&1 Hn by fl.

Definition 2.1. ([10, 6]) The monodromic Grothendieck group Kg (S) is the abelian group generated by
isomorphism classes [T — S, |, where T is a separated S-scheme of finite type and
o:axT—=T
is a i action which factors through a good u, action for some n. The relations of Kg (S) are given by
(i) [Ty, F1] = [T, &] for Ty and T, equivariantly isomorphic as S-schemes,
(i) [T, 0] = [T, 0|0 ] + [T\ T, &|p\p ] for any T' C T closed & invariant S-subscheme,
(iii) [T x A",0 x t] = [T x A", X 1] for any linear i actions 1, T on A".

Note that there is an obvious commutative ring structure on Kg (S) defined by
[Tl,@’] . [Tz,ﬂ = [Tl X T, 0 X f’]
We denote by IL the element [A! x S — S, 1], where [ is the trivial action. Then we obtain a ring
M = K ()L )
by formally joining the inverse of IL under this multiplication. We can similarly define Mg as
the abelian group generated by classes [T — S] of S-schemes of finite type, modulo the relations
analogous to (i) and (ii) of Definition 2.1. Note that there is a map 7, : Mé’ — Mg of Mg-
modules, defined by taking generators to the corresponding orbit space:
my [T —S,0] — [T/0].

Let f : S; — Sy be a morphism between C-schemes. The notions of pushforward and pullback
on Ky(S) are defined by f.([T — S1]) = [T — Sp] by composing the map T — S; with the map
f,and f*[T" — S;] = [T/ xg, S1 — S1]. These maps induce a pushforward and a pullback on

M in the obvious way.

There is a less obvious product on Kg (S) or Mk, called the convolution product. It is denoted
by ‘®’ in [6]. Since we will not explicitly use it in this paper, we refer to [15], [9] and [6] for its
definition. X

The motivic DT invariants we consider here take values in a quotient of (Mg, ©) denoted by

(ﬂﬁ ,®). To define it, we first write
ILY2 = [S,1] — [S x pa, 2

with the natural y; action. The notation is justified since the square of the right hand side (using

®) can be checked to be L. It follows immediately that IL.~1/2 € ./\/lg as well. Then to a principal
Zy-bundle P over a scheme T we associate a motive:

Y(P) =L"V26 ([T,1] - [P, p]) € ML,

where § is induced by the Z; action on P. Then (MZ, ©) is obtained from (M&, ®) by taking
the quotient by the ideal generated by elements ¢, (Y(P ®z, Q) — Y(P) ® Y(Q)), for all C-scheme
morphisms ¢ : Z — S and P, Q principal Z,-bundles on Z. Note that if P is a trivial Z,-bundle,
then Y(P) = 1 is trivial as well.
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Now we review the definition of motivic DT invariants. First consider the case of a moduli
space Y which can be globally realized as a degeneracy locus, i.e. Y := {df = 0} C U where
f U — C is a regular function on a smooth scheme U. Then the motivic DT invariant can
be defined as the motivic vanishing cycle up to a factor of a power of IL'/2. We will not work
with motivic vanishing cycles directly in this paper, and we simply refer to [15], [9], [6] for their
precise definition.

More generally, the motivic invariants can still be defined if the moduli space can be covered
by degeneracy loci which satisfy a compatibility condition. The precise terminology for this
structure is called a d-critical locus structure [11]. Let Y be a C-scheme locally of finite type. The
following theorem is from [11]:

Theorem 2.2. ([11], Theorem 2.1) There exists a sheaf Sy of C vector spaces, uniquely characterized by
two properties.

(i) Suppose R C Y is a Zariski open subset of Y, and i : R — U a closed embedding in some smooth
scheme U. Define the sheaf of ideals Ig 11 by the following exact sequence of vector spaces on R.

0—Iruy — i_l(Ou) — Oy|r — 0.
Then there is an exact sequence of sheaves of vector spaces on R:

i—1 i—1 (=
wu_ i (Oy) 4 i (T*U)
0— Sylr — — ,
Y|R 1123,1,1 IR,U . i_l(T* U)

where 1R 11 is a morphism of sheaves of vector spaces, and d is the differential map.

(ii) Let R C S C Y be Zariski open inclusions, and i : R — U, j : S < V closed embeddings in smooth
schemes U and V. Let ® : U — V be a morphism satisfying ® oi = j|g. Then the following diagram
commutes:

is,vIrR - j1(0y) d YT V)
0—— SY|R IEV |R 15,\/']'71(T*V)|R

i.{ li*l(dﬂ) li’l(d‘P)

RU 7Y 0y) d i~1(T*U)
By I~ 1(T*U) *

0—— Sy|R

Let S be the kernel of the composition

Sy - Oy — Oymd ,

where the map Sy — Oy is locally defined by composing (g ;; with i1 (Oy;) — Oy |-
Then the sheaf Sy has a canonical decomposition

Sy ~CyaSY.

Definition 2.3. ([11] Definition 2.5) An algebraic d-critical locus over C is a pair (Y,s), where Y is a
C-scheme and s € H°(SY) such that the following is satisfied: for every point y € Y, there is a Zariski
open neighborhood R of y with a closed embedding i : R — U into a smooth scheme U, such that
i(R) = {df =0} C U for f : U — C aregular function on U. Furthermore, ig i (s|r) = i ' (f) + I -

Using the notation in the definition, the charts (R, U, f,i)’s are called critical charts of (Y,s).
Consider a moduli space which has a d-critical locus structure. In particular it is locally
covered by degeneracy loci, and one can associate motivic vanishing cycles to the local charts.
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However, these locally defined invariants do not naturally agree on intersections, see e.g. [6] Ex-
ample 3.5. It turns out that these locally defined invariants can be modified using an orientation,
and they then agree and can be glued to a global motivic invariant.

To give the definition of an orientation, we first recall the notion of the virtual canonical bundle
of a d-critical locus.

Theorem 2.4. ([11] Theorem 2.28, [6] Theorem 5.4) Let (Y,s) be a d-critical locus, and let Y be Y
with its reduced structure. Then there exists a line bundle Ky s on Y"* which is uniquely defined by two
properties.

(i) If (R, U, f,i) is a critical chart on (Y,s), there is a natural isomorphism

(2.1) IRuf ¢ Kyslgred = 1% (KG?) | greas

where Ky is the usual canonical bundle of U.
(ii) Let @ : (R, U, f,i) — (S,V,g,j) be an embedding of critical charts on (Y,s). Then there is an
isomorphism of line bundles on Crit(f)"?:

22 * 2
Jo : Ky |crit(pyed = (D|Crit(f)”-"”(K§ )-
such that
. . 2 . 2
l‘;;red(]q)) : l*(Kﬁ )|R“’d — ]*(K§ )|Rred1

is an isomorphism and

. . 2
rred = il peed (Joo) © tru g+ Kxs|grea = 17 (K) | grea-

ls,v,gj

Here ] is induced by the isomorphism Ky; ® A" Ny, — @*(Ky ). For details of the definition
of ¢ see [11], Def. 2.26 or [6], section 4.

Definition 2.5. ([11] Definition 2.31) Let (Y,s) be a d-critical locus. An orientation on (Y, s) is given
by a line bundle L on Y™ together with an isomorphism L®? ~ Ky .

With these two additional structures, a global motivic DT invariant can always be defined:

Theorem 2.6. ([6] Theorem 5.10) Let (Y,s) be a finite type algebraic d-critical locus with a choice of
orientation K%/ 52. There exists a unique motive MFy ¢ € Mﬁ with the property that if (R, U, f,i) is a
critical chart on (Y,s), then

MFyg[g = i* (L7412 0 MF{’},f) O Y(Qru i) € Mp.

Here, the term MFE is the motivic vanishing cycle associated to the critical chart (R, U, f, i),
see [15], [9], [6]. The term Qg is the principal Z;-bundle of local isomorphisms ag :
K%/ 2| gred — i*(Ky)|grea such that a%? = IRu,fi in (21). We would like to point out that the

motivic vanishing cycle used in this paper is the class of f~1(0) with the trivial action minus the
motivic nearby cycle, which is the negative of the definition used in [2].
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2.2. Construction of Hilb” (C3). We next briefly recall the construction of Hilb"(C?) used in [2],
in particular its presentation as a degeneracy locus.

To a subscheme Q C C? with Hilbert polynomial Py = 1 we can associate an n-dimensional
vector space V, = H(Op), three pairwise commuting linear maps

XY, Z:Vy, =V,

defined as multiplication by x, y, z € C|x,y, z|, and a vector v € V,, corresponding to 1 € H(Op).
The vector is v cyclic for the action of C[X,Y,Z] on V,;: C[X, Y, Z] - v = V},.
Now consider the space of triples of n X n matrices and a vector in Vj,;:

Hom(V,, Vy)? x V.

This space is a quasiprojective variety and admits a GL, action induced from the action of GL,
on Vj,. The character x : GL, — C* defined by x(g) = det(g) defines a linearization of the trivial
bundle. Let U be the stable locus of the linearization. It turns out that U consists of the points
(X,Y,Z,v) where v is cyclic for the action of X, Y, Z. Consider the GIT quotient

NHilb" (C3) := Hom(V,, V,,)? x V;, J GL, = U/GLy,

with respect to this linearization. Let W : NHilb"(C3) — C be the function on NHilb"(C3)
defined by W(X,Y, Z,v) = tr([X,Y]Z). The condition {dW = 0} is equivalent to the condition
that X, Y and Z pairwise commute. Then the locus {dW = 0} is isomorphic to Hilb” (C3). As the
construction suggests, we call NHilb" (C2) the noncommutative Hilbert scheme.

Remark. While any nonzero scalar multiple of W would work just as well as W in defining
Hilb"(C3), the construction of [2] makes clear that the choice of Calabi-Yau form dx A dy A dz on
C3 determines the normalization of W described above. More precisely, any determinant 1 linear
change of coordinates in T = span{x,y,z} will leave W unchanged.

3. D-critical Locus Structure on Hilb" (ws)

We begin this section with a lightning review of some standard notions and notations of toric
geometry. We knowingly omit some important details and simply refer the reader to [7] if more
detail is needed.

We let N be an n-dimensional lattice and X a fan in Ng = N ® R, giving rise to a normal
toric variety Xy with torus T = N ®z C*. We can describe Xy by a quotient construction.
Let vy,...,v, be the primitive integral generators of the 1-dimensional cones in X(1). Let A1
denote the Chow group of rational equivalence classes of cycles of dimension n — 1. We have an
exceptional closed subset Z(X) C C" and the group G = Hom(A,_1(Xx),C*) acts on C" — Z(X)
by an action which will be described below. Then Xy is identified with the quotient

Xy =(C"-Z(%))/G.
If 0 is a cone in %, then we have an affine toric variety X, which is identified with an open subset
of XZ by
Xoe ={[(x1,..., %) € Xz | x; #0if v; € 0},
where [(x1,...,x,)] denotes equivalence class of (x1,...,%,) € C" — Z(X) mod G.

For i = 1...r we have T-invariant divisors D; C Xy defined by x; = 0, where (x1,...,%) are
coordinates on C”. The action of G on C’ is given by

8- (1., %) = (8([D1])x1, .., g([Dr])xr)
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where [D;] is the divisor class of D;.

Now suppose that Xy is smooth. Then A,_i(Xs) is torsion-free and consequently G =~
(C*)"~". Furthermore, if o € X(n) is a maximal cone generated by v;,...,v;,, the affine toric
variety X, is isomorphic to C” via the isomorphism

(3.1) Cc" — X, (x1,..,x0) — (1,...,1,x,1,...,,x,1...,1,x,,1...,1),
where x; is in the i;th position and all other entries are 1.

We are concerned with the case where Xy is a smooth Calabi-Yau threefold. For any smooth
toric variety we have

O(KXZ) ~0 ( tDl> ,
i=1

so the Calabi-Yau condition says that }_;_; D; ~ 0. It is convenient to express this condition in
terms of the homogeneous coordinate ring

S =Clxy,...,xs].

The ring S is graded by A, _1(Xy) = A2(Xy), with x; having degree [D;] € A»(Xy). The Calabi-
Yau condition translates into the statement that x; - - - x; has degree 0.

We now construct a nowhere-vanishing T-invariant holomorphic form () on Xy, well-defined
up to sign. We have holomorphic r-form on C"

(A):dxl/\~~~/\dxr,

well-defined up to a sign depending on the chosen ordering of ¥(1). The action of G ~ (C*)
on C" determines a rank r — 3 lattice of holomorphic vector fields on C". More precisely, let
A C Z be the lattice of relations

r—3

(3'2) A:{(ﬂl,..,ar)GZr|2alvl:O}_
Then A = (ay,...,4a,) determines the vector field
d
XA = ZaixiaTCi

on C’. The relation A determines a 1-parameter subgroup of G
t— ([D;] — t%).

The fact that A = (ay,...,a,) satisfies (3.2) implies that [D;] +— t% is compatible with linear
equivalence and so describes an element of G = Hom(A,_1(Xy),C*). The vector field x, is then
seen to be the infinitesimal action of this 1-parameter subgroup.

Choosing generators x1, ..., Xr—3 for the lattice of vector fields, we define

(3.3) Q =iy, iy, 4(Q),

where iy, is contraction with respect to x;. For each j = 1,...r — 3 we have i;Q) = 0, so that )
is G-invariant and therefore pulls back from a holomorphic 3-form on Xy. We abuse notation
and denote this 3-form on Xy, by () as well. In other words, () is the unique holomorphic 3-form
Q) on Xy whose pullback to C" — Z(X) is the right hand side of (3.3). The Calabi-Yau condition
guarantees that ) is a 3-form rather than merely a 3-form valued in a line bundle.

We now specialize further to local toric surfaces, the total space wg of the canonical bundle of
a smooth complete toric surface S. Since S is a toric variety, we have a rank 2 lattice N’ and a
complete fan ¥ in N with edges spanned by primitive integral vectors v,...,v,_;. We form
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the rank 3 lattice N = N’ @ Z, identify the fan ¥’ with the collection of cones {¢’ x {1} | ¢/ € ¥’}
in the affine hyperplane of NR defined by setting the last coordinate to 1. We then form the fan
Y. as the collection of cones in Ny over the cones ¢’ x {1}, i.e. the collection of three-dimensional
cones generated by the rays from the origin through the vertices of ¢/ x {1}. In particular, the
primitive integral generators of the 1-dimensional cones of X are identified with

(3.4) v = (v),1),...,0,1 = (v,_4,1),0, = (0,1),

where 0 is the zero of N. We introduce the convention of replacing x, by the variable p, to
emphasize the distinguished role of v;.

Example. Local IP? can be described by a fan ¥ with edges generated by the vectors
v1 =(1,0,1), v =(0,1,1), v3 = (—1,-1,1), v4 = (0,0,1).

We have maximal cones oj for j =1,2,3. Each 0j is spanned by the set of vectors {vy,...,v4} —
{v;}.

In this case, the lattice A is spanned by (1,1,1 — 3), corresponding to the relation vy + v, +v3 —
3vy = 0. We get the generating vector field x = x1(9/9dx1) + x2(9/9x2) + x3(9/9dx3) — 3p(d/dp).
Putting () = iX (dxl ANdxy Ndxs A dP), we get

QO = x1dxy Adxg Adp — xpdxq ANdxs Adp + x3dxy Adxy Adp + 3pdxy Adxg A dxs.
By respectively setting x; = 1 for i = 1,2, 3, we obtain
Qlx, = dx; Adxz Adp,Qx,, =dxz Adxy Adp,Qlx,, =dxy Adxy Ndp.

Accordingly, we can transfer the construction of Section 2.2 from Hilb"(C?) to each Hilb" (Xy,),
using the respective coordinate systems (xy,x3,p), (X3, x1,p), (X1, %2, p).> For example we can
describe NHilb"(Xgl) as a GIT quotient of a space of n x n matrices Xy, X3, P together with a
vector v, and define Hilb" (X, ) as the degeneracy locus of Wy = Tr([Xp, X3]P). Similarly, we can
define Hilb" (X, ) as the degeneracy locus of W, = Tr([X3, X;]P) in NHilb" (X,,) and Hilb" (X, )
as the degeneracy locus of W3 = Tr([X1, X»]P) in NHilb"(X,,). This description gives the data
(Hilb" (X, ), NHilb" (X, ), Wj, i;), where i; : Hilb"(Xs;) < NHilb" (Xo,) is the inclusion.

We will show that the (Hilb"(X;), NHilb"(Xs;), Wj,i;) are among the d-critical charts of a d-
critical locus on Hilb" (wp2). The construction of the d-critical locus structure proceeds in two
steps.

First, we show that the sections s; of SY (Xo) induced by the W; agree on pairwise intersections
Hilb" (X,,) N Hilb" (X,,) C Hilb" (wpa). We] will show this more generally for any local toric
Calabi-Yau threefold in Proposition 3.2 below. But this is still not enough to construct a d-critical
locus, since the Hilb"(X;) do not cover Hilb" (wpa).

Second, we construct a cover of wp2 by open subsets U, ~ C3 such that the Hilb" (U,) cover
Hilb" (wp2). Furthermore, automorphisms of IP? induce isomorphisms U, ~ Xg;- These isomor-
phisms are used to construct the data (Hilb" (U, ), NHilb" (Uy), Wy, iy ). Finally, a comparison to
the first step shows that the sections s, of S? (U,) are pairwise compatible. We will elaborate on

this step more generally in the proof of Theorem 3.3 below.

2We have abused notation here. The relationship between the three local coordinates and homogeneous coordinates
is given by three separate applications of (3.1). It follows that the coordinate changes will be nontrivial, even for the
variables in different coordinate systems denoted by the same symbol.
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Returning to the general case, we have the following easy lemma. The coordinates (x,y,z) on
X, in the statement of the lemma are given by (3.1).

Lemma 3.1. Let Q) be the holomorphic 3-form (3.3) on the local Calabi-Yau threefold wg and let o be a
maximal cone in a fan for ws. Then we can order the coordinates(x,y,z) on Xy ~ C3 so that Q|x, =
dx ANdy Ndz.

We had already seen this for wp2 by direct calculation.

Proof. Reordering (1) if necessary, we can assume that the edges of o are generated by v,_»,v,_1,
and v,. We have coordinates (x,_3,x,_1,xr) on X, as in (3.1). Choosing generators Aq,...,A,_3
of the lattice (3.2) and writing A; = (a;1,...,4a;), we get Q|x, = tdet(A)dx,_o Adx,_q Ndx,,
where A is the (r — 3) x (r — 3) matrix with entries a;;,1 < i,j < r — 3. Choosing a different set
of generators for the lattice in the definition of () can only change Q|x, by a sign as remarked
earlier. However, since {v,_,v,_1,0,} is a basis for N, for each 1 < i < n we can uniquely write

Uj = Cir—2Ur—2 + Ciy—10r—1 + Ci 1 Ur.

Then choosing

(3.5) )\i = (0, ...,0,1,0...0, —Cir—2,—Cir—1, _Ci,r)/ i= 1,...,r—3
as generators for the lattice (3.2), we see that A is the indentity matrix, so that det(A) = 1. In
(3.5), the entry 1 is in the ih position. O

Now fixing a choice of Q) on wg, for each maximal cone ¢ we choose coordinates (x,y,z) on X,
so that Lemma 3.1 holds, noting that the coordinates (x,y,z) can undergo a cyclic permutation
and still satisfy Lemma 3.1. We repeat the description of Hilb"(C?) in this context, introducing
endomorphisms X, Yy, Z, € Hom(V,, V) and putting NHilb(X,) = Hom(V,, Vn)3 X Vu | GLy
as before. This determines the data (Hilb"(X,), NHilb"(X,), Wy, i,), where W, is the func-
tion on NHilb(X,) given by tr([X,, Ys]Zs). Since W, is unchanged by a cyclic permutation
of (X¢,Ys, Zs), we conclude that (Hilb" (X,,), NHilb" (X, ), Wy, i) only depends on ¢.

Put R, = Hilb" (X, ) and U, = NHilb" (X, ). Using the gluing data of the X,’s, we see that the
kernels of the maps

i~(Og,) i"!(T*Ry)
IIZQU,UU IRLT/ULT il (T*RU)
in Theorem 2.2 glue to a global sheaf 7" on U (X, ). This sheaf is isomorphic to the sheaf S (x,)
by the construction of the sheaf S in [11].

Let sy € SIO{ilb(Xg) be the section induced by W,.

Proposition 3.2. Given maximal cones o and o', the sections s, and s, agree on Hilb"(X,) N
Hilb" (X,), understood as a subset of Hilb" (wys).

We therefore have a canonical d-critical locus structure on U, Hilb" (X)) C Hilb"(wg) with
critical charts (Hilb" (X, ), NHilb" (X, ), Wy, iy ).

Proof. We begin by observing that the proposition can be reduced to the case when ¢ and ¢’ share
a codimension 1 face. If ¢ and ¢’ do not share a codimension 1 face, then we can choose maximal
cones 01,07, ...,0, withm > 3 and 07 = ¢ and 03, = ¢’ such that each pair 0, 0;,1 has a common
codimension 1 face. Furthermore, X, N Xy = X, ~ C x (C*)Z, where p is the 1-dimensional cone
generated by v, = (0,0,1) in the notation (3.4). Since p is a face of every ¢;, we have X, C X,
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for each i. Correspondingly, Hilb" (X,,) N Hilb"(X,/) = Hilb"(X,) C Hilb"(X,,) for all i. Here
the intersection of the Hilbert schemes are taken inside Hilb"(wy). Once we have proven the
proposition for cones sharing a codimension 1 face, it will follow immediately that on Hilb" (X))
we have s; = 55, = 50, = ... = 5, as required.

The common codimension 1 face of ¢ and ¢’ is spanned by v, and some v; = (¢},1) fori < r.
The vector v} € N’ corresponds to a torus-invariant curve D} in the toric surface S. We let 7 be
the self-intersection of Dj in S, so that v;_; + 30} 4+ v}, = 0.3 It follows that v;_1 4 nv; + viy1 =
(7 +2)v,. Using the basis {v;_1,v;, v, } for N to identify N with 73, we have, reordering ¢ and ¢’
if necessary

o = span{(1,0,0),(0,1,0),(0,0,1)}, ¢’ = span{(0,1,0), (=1, —1,7 +2),(0,0,1)}.
The coordinate change between X, and X, is given by
(3.6) (x',y,7) = (x 7Ty, x 1, x1722),

as is easily computed. We have ordered the coordinates so that dx’ A dy’ Adz' = dx Ady A dz. If
Q|x, = —dx Ady A dz, we simply reorder the coordinates appropriately without impacting the
rest of the argument.

We next transfer the construction of Section 2.2 to X, and to X,» while providing some more
detail. We let X,Y and Z be three n x n matrices with indeterminate entries X(k,1), Y(k,1)
and Z(k,1), representing multiplication by x, y and z, respectively. Let uy, ..., u, be n additional
indeterminates and put

A=C[X(k1),Y(k1),Z(k1)uy,.. uy.
Denote by U the open subset (Spec(A))* of Spec(A) with respect to the natural GL, action,
the semistable locus in Spec(A) with respect to x as in Section 2.2. Put N = U/GL(n). Put
d = det(X) and let A; = A[d~']. We denote U N SpecA, by U,. We similarly define

A =C[X'(k 1), Y (k 1), 2 (k,1),1d,... 1),
U’ = (Spec(A’))*s, N' =U'/GLy, A, = A'[det(X")7!], and U}, = U’ N SpecA.

Noting that the entries of X! are in A; and the entries of (Y')~! are in Al,, we can construct
an isomorphism

(3.7) ¢: Aii’ ~ Ay
which identifies
X =x71YY =X"1472 =X"2Z,ul =u;, i=1,...n

induced by the change of coordinates (3.6) after making a choice in the order of matrix multipli-
cation. This induces the isomorphism of open subsets:

(3.8) Uy N~ (Uy) ~ p(Uy) N U,
where we have abused notation slightly by using ¢ to also denote the induced map Spec(A;) —
Spec(Al,).

To simplify notation, we put R = Hilb"(X,) and R’ = Hilb"(X,/). Leti : R — N and
i : R — N’ be the inclusions. Let R N R’ be the intersection of R and R’ taken inside Hilb" (ws).
Note that U, and U, are invariant under the GL, actions. Hence (U; N¢~'(U}))/GLy is an

Sffi=1lori=r—1,we cyclically reorder the v} so that v}, ; makes sense.
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open neighborhood of RNR" in U;/GL, C N, and (¢(U,;) NU’)/GL, is an open neighborhood
of RNR’"in U},/GLy, C N'. Then (3.8) induces an isomorphism

. -1
(3.9) 1 1(ON)/112Q,N|RQR’ ~ i (ON’)/Izzzf,N/|RmR’r

where i ~1(Oy) and Ig y are as defined in Theorem 2.2.
We have the exact sequence of sheaves on N

0= K—i Y On)/Tay L i W(T*N)/Ign i (T*N)

where K is defined as the kernel, and is naturally identified with the sheaf Sg. We have a similar
exact sequence defining a sheaf K’ on R’.
We deduce the following commutative diagram, where the vertical arrows are isomorphisms

(3.10)
. d . R
0 = (K)|rrr — (1 1(ON)/1123,N) lkr = ((THT*N)/Ign - i (T*N)) [rar!
1
- A (- P
0 = (K)lrew = (I7ON/Bn) ko 5 (77 (TN /T -1 (T*N)) [
We show that the sections s, € HY(K) and s,» € H°(K’) agree on RN R’ according to the left-
most isomorphism in (3.10). For this, it suffices to show that their images in i *(Oy)/If \ and
i (Onr)/ IIZ{/,N/ agree on R N R’ via the isomorphism (3.9). We proceed to verify this equality.
We have the potentials W, = tr([X,Y]Z]) on U and W,» = tr([X’,Y’]Z]) on U’. Denote the

image of i~1(W,) in the sheaf i_l(ON)/II%,N by i~1(W,) + II%,N, with analagous notation for

"1 (W,). Then we claim that:

(3.11) iYWy + II%IN|RQR/ = i’_l(WU/) + 112{',1\1' |rnr’ under the identification (3.9).

This is precisely the assertion of the proposition that the sections s, and s, agree on RN R'.
We now demonstrate (3.11). Under the isomorphism (3.7), we have

Wolspec(a,) = tr(XYZ — YXZ)
(3.12) W(,,|Spec(Aé/) = tr(XTYXTZ - X*(’i+1)yX7]+2Z)_
Making use of the identity tr(BC) = tr(CB) for n x n matrices B and C, we can rewrite (3.12) as
(3.13) W lspec(ar,) = tr(XTH1ZX Y — X1H2zx - (1Y),

Since (3.13) can be obtained from (3.12) by exchanging Y and Z, replacing # by —# — 2, and mul-
tiplying by —1, we can and will assume that 7 > —1. If 7 = —1, then We|gpec(a,) = Wor |Spec(A"i,)'
If 7 = 0 we compute

(314)  Wolspec(a,) — Worlspec(ar,) = ¢ (xyz —2YXZ + X—WXZZ) = tr (X—1 X,Y][Z, X]) )

which is visibly in I \|rar-
We proceed by induction on #, assuming the inductive hypothesis

(3.15) tr ((X*’?YX’?“Z - X*W“)YX’MZ) — (XYZ - YXZ)) € I3 ylror-
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The substitution (X,Y,Z) — (X, YX, Z) preserves Ig y and hence I%{,N, since
[X,YX] = [X,Y]X, [Z,YX] = [Z,Y]X + Y[Z, X].
Making this substitution in (3.15) we get
(3.16) tr ((X—WXWZ - x—<'7+1>yx'7+3z) - (XYXZ - szz)) € I3 Nlror-
We write
X~y x1+27 _ x—0+2)yxn+37 — x—1 (X*WX’?*ZZ - X*W“)YX'?*B'Z) )
so that we have by (3.16) modulo 112{,N| RAR
tr(X~ Dy xn1+27 - X~y xX1+37) = tr(YXZ — X 'Y X?Z)
and therefore
(3.17) tr ((X(*W“)YXW“Z - X*<’7+2>YX’7+3Z) - (YXZ - X*1YXZZ)) € I3 ylror-

We also have
tr (XYZ - 2YXZ + XIYX°Z) € B ylre-

by (3.14). Subtracting this last equation from (3.17), we obtain (3.15) with # replaced by # + 1,
proving the inductive step, and we are done. O

We now come to the main result of this section.

Theorem 3.3. Suppose that S = IP% or S = TF,,. Then Hilb" (ws) has a natural d-critical locus structure.
The critical charts are all isomorphic to (Hilb" (C3), NHilb" (C3), W, i).

Proof. Let 71 : wg — S be the projection. Our strategy is to exhibit an open cover {U,} of S
satisfying the two properties:
(1) There exists an automorphism of wg which preserves () and takes V, := 7w~ 1(U,) to Xy,

for some maximal cone 0.
(2) Any finite subset of S is contained in some U,.

The first condition allows us to define charts
(Hilb" (V, ), NHilb" (V,,), Wy, iy)

by transferring the chart (Hilb"(X,,)), NHilb" (X, ), Wo,, is, ) from Hilb"(X,, ) to Hilb"(V,) via
this automorphism. The second condition implies that {Hilb" (V) } is an open cover of Hilb" (wyg).
To see this, let Q € Hilb"(wg). Thinking of Q as a length n subscheme of wgs, we choose a Uy
containing the finite set 77(Q). Then Q C V,, so that Q € Hilb" (V).

The rest of the proof consists of choosing the U, and automorphisms so that the sections
Sa € SOHilb"(Va) agree on pairwise intersections. We work out the details for S = P? and S = F,
separately.

S = IP%: For a line ¢ C IP?, we let U, = IP? — ¢ be its complement. Then {U,} is an open cover
of P2 which clearly satisfies the second property. To check the first property, fix an equation
for ¢ and let A be a determinant 1 linear transformation of span(xi, x3,x3) which induces an
automorphism of IP? taking ¢ to one of the torus invariant lines. In terms of the homogeneous
coordinates (x1,x2, x3,p) for wpz, the automorphisms we consider are ¢4 (x, p) = (Ax, p) where
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x = (x1,x2,x3). Since both Q= dx1 Adxy Adxs Adp and v are invariant under A, it follows that
() is invariant under the automorphisms ¢4.

Given any pair of lines ¢, ¢/, we can find a determinant 1 linear transformation A taking ¢
and ¢’ to x; and x; respectively. Then ¢, identifies Hilb"(V,) N Hilb" (V) with Hilb"(X,,) N
Hilb" (X, ) using the labeling of the cones ¢; introduced in the example earlier in this section. As
in the discussion before Proposition 3.2, using the gluing data between Hilb" (U,) and Hilb" (U,)
induced by the change of coordinates between U, and Uy, the local sheaves Sy (yy,) glue to
the sheaf SHﬂb(w]Pz). Then by Remark 2.2, the compatibility of the local sections associated to
the critical charts of Hilb" (V;) and Hilb" (V}/) follows immediately from the compatibility of the
critical charts of Hilb" (X, ) and Hilb" (X, ) proven in Proposition 3.2.

S = F,;: We describe FF,, as the toric surface associated to the complete fan with 1-dimensional
cones spanned by the vectors

(3.18) vy = (1,0), vh = (0,1), v5 = (=1,n), v} = (0,-1).

The torus-invariant curves D and Dj are fibers of F,;, the curve Dj is the section with (D})? =
—n, and D) is a section with (D})? = n. The lattice of vectors fields associated to the quotient
construction of wg, is generated by

X1=x2(0/9x2)+x4(0/9x4)—2p(d/9p), xo =x1(9/0x1)+x3(9/0x3)+nx4(0/9x4)—(n+2)p(a/dp).

The automorphisms of w, which we use are of two types, described in terms of homogeneous

coordinates by
(1) (x1,x2,x3,x4,p) — (axqy + bxs, xp,cx1 + dxs, x4, p), where ad — bc = 1
(2) (x1,x2,x3,x4,p) — (x1,X2,X3, X4 + €x2X%, p).

These automorphisms preserve Q) and the y;, hence they preserve Q as well.

Let ¢ : F, — P! be the map exhibiting IF, as a P!-bundle over P!. In homogeneous coordi-
nates, we have ¢(x1, X2, x3,x4) = (x1, x3).

Given a point p = (a,b) € P!, we have a 1-parameter family of sections of S, ;, , of IF,, described
parametrically as {(x1,1,x3,e(bx; —ax3)") | (x1,x3) € P'}. Intrinsically, these sections are the
irreducible members of the linear system |Dj}| which intersect D} only in the point (a,1,b,0) of
Dj, with multiplicity n. Since Soapbp-te = Sape for any p € C*, we see that this 1-parameter
family of sections only depends on p and not on a choice of homogenous coordinates (a,b) of p.
We use the cover {U, .} = {¢p~1(P* — (a,b)) — Sy p.} of Fy. Let V3, = 71 (U, p,). Similar to
the case of IP?, the local sheaves SHﬂbn(ua,ble) glue to a global sheaf on Hilb" (wp,) via the change
of coordinates between the U, ;, C IF;.

To verify the first property required of {U,}, we can find an automorphism of the first type
mapping V, ;. to V;o.. Then an automorphism of the second type maps V; 4, to V;o9. But
V10,0 is equal to X,, where ¢ is the maximal cone generated by {v; = (1,0,1),v2 = (0,1,1),
vs = (0,0,1)}. We use these automorphisms to identify the function W, on NHilb" (X, ) with a
function W, ;. on NHilb"(V, ;). Let s, , be the section of SS(VM) induced by W, ;..

Given a finite subset T of [F,,, we first choose p = (a,b) € P! — ¢(T). Then we can find an
e such that S, , N T is empty, so that T C U, .. This verifies the second property required of

{Ua}-

It remains to show pairwise compatibility of the sections s}, , of SIqulb” (Vape)" Consider distinct

open subsets V, , . and V, ;s ». There are two cases to consider:
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(1) (a,b) = (a',b") as points of P!, or

(2) (a,b) # (', ') as points of P.
In the first case, we can find a determinant 1 linear transformation of span(xy, x3) taking (a,b) to
(1,0). Then we use an automorphism of the second type to take V, }, , to V4 g 9. This automorphism
takes Vi o to Vo for some e” # 0. We are reduced to comparing V; 99 and V; .. On Vigg
we have affine coordinates (x1, xp, p) following (3.1). Our construction gives us affine coordinates
(x},x5,p") on Uy g,.n. We relate (x},x5,p") to (x1,x2, p) using full homogenous coordinates. We
have

(x1,%5,1,1,p) = (31,202, 1,1+ €"x3,p) = (x1,x2(1 +€"x2) 71, 1,1, (1 +€"x2)?p),

where we have used the (C*)? of the quotient construction in the last step. This gives the coor-
dinate change as (x}, x5, p') = (x1,x2(1 +¢"x2) 7%, (1 + ¢”x2)?p). Promoting x1, x2, p, x}, x5, p’ to
elements of End(V,), we compute

(X}, X51P" — [X1, Xo]P = [X1, Xo(1 +€"X2) 71 (1 + € X2)?P — [Xq, X2] P,

which simplifies to
" X1 X3P + Xp X1 P — Xp(1+¢"Xp) " 1X1 (1 + € X5)2P.

Using the cyclic property of the trace and freely commuting terms involving X, only, we see that
this last expression has the same trace as that of

[X1(14€"X2), Xa(14€"Xy) 71 [1 +¢" Xy, P].

We only have to show that this trace is in the square of the ideal I generated by the entries
of the commutators of Xj, X, and P, appropriately localized so that 1 + ¢”X; is invertible. We
only have to show that the entries of [X1(1+¢”X;), Xo(1+¢”X,) 1] are in I, or equivalently that
X1(1+e"X5)Xo(1 4 €¢"Xp) ! is congruent to Xp(1+ ¢”X,) "X (1 + ¢”X,) modulo I. We can do
this by commuting adjacent terms successively. For example, to show that (1 + ¢”X,)"1X; is
congruent to X1 (1 + ¢”X,)~! moduli I, we only have to observe that X;(1 + ¢”X5) is congruent
to (14 €"X;)X; modulo I, and then multiply by (1 +¢”X,)~! on the left and on the right.

We abbreviate our notation by putting H,,, = Hilb"(V,;,) and NH,;, = NHilb"(V, ).
Thus W10 = Wy g7 on Hy o N Hyg,r, hence si90 = 51,7 on Hygo M Hyer as well.

In the second case, we can find a determinant 1 linear transformation of span(x1, x3) taking
(a,b) to (1,0) and (a’,b") to (0,1). Then we use an automorphism of the second type to take V, ;
to Vi00. This automorphism takes Vs s » to V1 . for some e¢”. We are reduced to comparing
51,00 and 80,1, on Hygo M Hyq .

If ¢ = 0, we are already done by Proposition 3.2. For ¢’ # 0, we first note that Hy 99N Hy1 . =
Hi0,0 N Hpj10M Hyqer. It follows that the three sections s100 on Hj g, So,1,0 on Hp 1,0, and sgq .»
on Hy; . are all defined on Hy o9 N Hy;, and so can be compared there. The first two agree on
Hi0,0 N Hp 1,0 by Proposition 3.2 as just noted, and for the last two, they agree on Hy 19 M Hp .»
by a straightforward calculation analogous to what was just done above. It follows that s1 9 and
S0,1,e” agree on Hy oM Hpy, .~ and we are done.

(]

Remark. Our methods are easily adapted to construct a d-critical locus structure on the Hilbert
schemes of local IP!.
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4. Orientation on (Hilb" (ws), s)

In this section, we understand S to mean either S = P2 or S = FF,,. We use the more generic
notations Uy, Vi, Wy, and s, instead of using Uy etc. for S = P2 and U, pe etc. for S = IF,,. We first
work out the virtual canonical bundle associated to the d-critical locus (Hilb"(ws), s) following
the construction in [Dav], see also [21].

Proposition 4.1. Let F be the universal object on Hilb" (ws) and let 1ty : Hilb" (wg) x wg — Hilb" (wys)
be the projection. Then we have

4.1) Kt (wg),s = (det(7m1.F) )%

Proof. We first prove condition (i) in Definition 2.4. Let (R, U, f,i) = (Hilb"(Vy), Ny, ix, W) be
one of the critical charts of (Hilb"(ws), s) constructed in the proof of Theorem 3.3. It may be more
clear if we use the quiver description of U = Nj. It is well known (see e.g.[2]) that NHilb" (C?) is
isomorphic to the moduli space of stable representations (Veo, V) of the following quiver:

V4

L)~

a4>50$_/

()

X

Sco

with Ve of dimension one and Vj of dimension n. Here the quiver stability condition is equivalent
to the condition that for any nonzero v € Ve, a(v) generates V) under the action of x, y and z.
Let W C End(Vj, Vo) x Hom(Ve, V) be the locus of stable representations. Then we have

N := NHilb"(C3) ~ W/GL(n).

We denote the projection from W to N by 7. Since GL(n) acts equivariantly on Vy and Vo thought
of as trivial bundles on W, these bundles descend to bundles Ey and E on N with 7t*(Eg) ~ Vp
and 77" (E«) ~ Ve equivariantly. We consider the short exact sequence

(4.2) 0= "'T*N = T*W — T,y — 0

of bundles on W. Note that Ty, is a trivial bundle with fiber gl(n)*, on which GL(n) acts by

the dual of the adjoint action. After modding out by GL(#n), (4.2) descends to an exact sequence
of bundles on N

0—-TN—-G—=B—=0.

Also, det(B) is a trivial bundle, since the determinant of the adjoint action of GL(n) is trivial.
This implies that det(T*N) ~ det(G). Also

4.3) G =~ (E; ® Eo) @ (Ef ® Eo) @ (Ef ® Eo) @ (Ef ® Eoo).

Considering V, ~ C3, we have (E0)|Hilb"(v,x) =~ 71, F and the global section 1 of 711, F induces a
trivialization of (Ew)|giip» (v, )- Hence we have a canonical isomorphism

2
KR, it (v, ) = det ((ES) |Hilb”(V“)) ~ (det(7r1.F)* | (1))
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This shows condition (i). We denote the inverse of this isomorphism by g1y (v, )N, ie, W) With
analogous notation for the other charts.
Now consider condition (ii) in Definition 2.4. We need to check that for any embeddings of
critical charts
@ : (Hilb"(V,), Ny, ih, Wy) — (Hilb" (Vy), N, ia, We),
we have

JAES
(4.4) L(HIID™ (Vi) Nuin Wa) = Lacl it (v ) © Lrit? (Vi) NG i, W)

where N is a Zariski open subset of N, and Hilb" (V,)" = Hilb"(V,) N N}. From the above, we see
that ¢ (i (v,), Ny i, w,) 18 induced by Eo g (v,) = 1 F | (v,) and L (v, )7,z i, wy,) 18 induced
by Eolgiwr (v, ) = 71+ F|pir (v, y- The Zariski open immersion N — N, is induced by a change
of coordinates as in Theorem 3.3. The change of coordinates transforms the matrices associated
with the edges x, y, z accordingly, while leaving the universal bundles Ey and E. unchanged. So
we naturally obtain (4.4). |

By Proposition 4.1, we see that det(7ty, F)* with the isomorphism 4.1 defines an orientation on

(Hilb" (ws), s). We denote this choice of orientation by KIl{/ﬂzbn ()" For later use, we also observe
that from the calculations above we infer a canonical isomorphism

. xl/2
(4.5) THELD" (V) Nas i We * Kl (@), — K[t (1)

induced by 701, F | (v,) = Eolmim (v,)

5. Motivic DT invariants for Hilb" (ws)

In this section we use the d-critical locus structure from Section 3 and the orientation from
Section 4 to compute the motivic DT invariants of Hilb"(ws), showing that it agrees with the
computation in [2] for S = P2 and S = F,,.

We first recall some definitions used in Section 2.5 and Section 3.4 of [2]. Let X be a quasi-
projective threefold. Then Hilb"(X) admits a stratification

Hilb"(X) = [ [ Hilb}(X),
yEn
where v is a partition of 1, and Hilb (X) is the locally closed subscheme of Hilb" (X) parametriz-

ing length n subschemes whose support multiplicities are given by <. In particular, there are -;
length i clusters in the length n subscheme.

First consider the case of Hilb” (C3). Define the relative motivic class of Hilb" (C3) in Mlﬁ{ilb" (©)
by:

. _Ai R 3
(6.1 [Hllb” (Cg)]relvir =L dim(NHHIb"(C)/2) © MFI?IHilb" (c3)we
Comparing to Theorem 2.6, we see that this is the motivic invariant associated to (Hilb"(C3), W)
without the contribution of a principal Z,-bundle from the orientation. Let [Hilbg(C%],dW to be
the pullback of [Hilb" (C?)] e to Hilb!,(C?). On the deepest strata, there is an embedding
(5.2) {0} x Hilb"(C%)g C €* x Hilb"(C?)p = Hilbf,, (C°)

(n
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where Hilb?w (C3) is the punctual Hilbert scheme. The isomorphism in (5.2) is given by sending

(p,Z) € C3 x Hilb"(C3) to the subscheme Z + p C C? obtained by translating Z by p.

Let [Hilb” (C3)o],e10ir be the pullback of [Hilb?n)(C3)]relvir to Hilb"(C3),. Also define the ab-
solute motivic classes to be the pushforwards of the corresponding relative motivic classes to a
point, and denote them by [Hilb" (C?)], [Hilb/}(C?)] and [Hilb" (C?)o] respectively.

Recall the following proposition and definition in [2]:
Proposition 5.1. ([2] Proposition 3.6) (1) The absolute motivic classes [Hilb’,(C?)] and [Hilbl,(C?)o]
live in the subring M¢ C Mé.
(2) On the closed stratum,
[Hilb{,(C%)] = L? - [Hilb" (C%)o] € M.

(3) More generally, for a general stratum,
[Hilbly (C%)] = 76, ([[T(€%)7 \ A] - TTHilb (C*)g]).

1 1

where the map 7iG,, is defined by taking the orbit space on generators.

Definition 5.2. ([2] Definition 4.1) We define motivic classes [Hilbz (X)] € Mc and [Hilb" (X)] € M¢
as follows.
(1) on the deepest stratum,
[Hilb{,) (X)] = [X] - [Hilb"(C?)o).
(2) More generally, on all strata,
[Hilby (X)] = g, ([[ [ X"\ A] - ]‘[[Hﬂbi (C)J).

1 1

(3) Finally
[Hilb" (X)] = ) [Hilb’) (X)].
v

Now consider the case when X = ws for S = P2 or IF,. Let [Hilb"(ws)] be defined as in
Definition 5.2. Then we have

Theorem 5.3. Given the d-critical locus (Hilb" (ws), s) and the choice of orientation

1/2 _
KHilb(ws),s - det(nl*F)*’

the absolute motivic class of the motive given by Theorem 2.6 concides with [Hilb" (ws)].

Proof. Since we are given a d-critical locus structure with a choice of orientation, by Theorem
2.6 there is a unique globally well defined motivic DT invariant MFg .- We continue our
practice of using a generic index vy to be common shorthand for the indexing of either IP? or IF,,.

Furthermore, for any critical chart (Ry, Uy, fu,ia) = (Hilb" (Vy), Ny, Wa, iy) this invariant satisfies:

s —dimNy ik
Hilb (v,) = a (L2 6 MF](f]a,Wa) O Y (Quitb” (v,),No Waia) € Mitn (v)-

By the construction of Ky (), We have

MFHilb”(ws),s

_ 2 ) 2
LHilb" (Vi) Naia, We = THIlb" (Vi) Nagsia/ Wee * K(ws),s‘Hilb”(Va)“’d - KNa|Hilb”(Va)”d’
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where Ty (v,) N, i, W, 1S the canonical isomorphism (4.5). Hence the map

. wl/2 ;
ity (V) Kt (o) Hib? (v et = B (KN i (v, yred
in Theorem 2.6 is identified with Ty, (v,) N, i, w, - It fOllows that Qg (v, N, w, i, and therefore
Y(QHilb”(Va),Na,Wa,ia) is trivial for each &, implying

MFji17 (wg) s b (v,) = [HIID" (Vi) Jretoir-
By Proposition 5.1, [Hilb" (Vi)] eroir € M (v,)- Since the Hilb" (V) cover Hilb" (ws), it follows
that MFygip (wg),s € M (ws)-
Hence we have

(5.3) MPFgip (wg),s = 3 MPrgippr (ws).s | Hilb! (ws) -
v
Since
Hilb{, (Vi) = Vi x Hilb" (C%)g
and W is translation invariant in the sense that
tr([X,Y]Z) = tr([X + xId,Y + yld|(Z + zId))

for any (x,y,z) € C3, we see that

[Hﬂb?ﬂ) (Vtx)]relvir = P>2k [Hﬂbn (C3)0]relvir1

where p, : V, x Hilb"(C3)y — Hilb"(C3)y is the projection to the second factor. Then on the
deepest stratum, we have

M Fgipye i}, (Vi) = [HG (Vi) reroir = [V % Hilb" (C?)o] i (c3), HID" (C?)olretor-

We use the subscript to indicate the scheme over which the product of relative motivic classes
takes place. Since the motivic invariant MFy;,» is uniquely determined by its restriction to

the Hilb" (V,), we have

(ws)rs

(wS)rs

MFggitp (wog) s Hitbf, (w05) = (@S X Hilb" (C?)o] i (c3), HIID" (C)o]reror-

Now consider a general stratum. Let Y, C []; Hilbi(l-) (C3)"i be the open subset on which the
clusters have distinct supports. We have

M Fygjppn Hilb? (vy) = DY (Vi) retoir
=G, (H[Hﬂbii) (Cg)%]relvir | Yy ) :

1

(wS )/5

We also have a fiber product expression

H[Hﬂbl&i) (CB)%]relvir = H[(C3 X Hﬂbi(CS)O)

1 1

where we have put Hilb’) ,(C3) = [T; (Hilbi(C3 )0) "
Then we get

i )
] bt o (c3) [(HHIDY 6 (C2)yeror-

(5.4) MFii (wg) 5

Hilb (ws) = TG, ([(sti - A) X200 (Cg)] : [(Hilbg,o(cg’)]relvir) ,
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where A C [T; wl' is the big diagonal.
Taking the absolute motivic class of (5.3) and using (5.4), we see that the absolute motive of
MPF1p7(5),s Matches the motivic class of [2] from Definition 5.2, completing the proof. O

These absolute motives can be combined into a generating function

Zws(t) = Z MFHilb”(wS),stn'

n=0
Let Exp denote the plethystic exponential.
Corollary 5.4.
5 B Exp (151§25T)L(21+_Lf711)/2) S =12
ws(t) = Exp L-V2(L242L+1)t S—F,

(1-L1/2¢) (1-1L-1/2¢)

Proof. Follows immediately from [2, Theorem 4.3], Theorem 5.3, [ws] = LL[S] for any S, [P?] =
L2 +1L+1,and [F,] = L2+ 2L + 1. O

Remark. We expect that our methods are adaptable to other local toric Calabi-Yaus. We leave
this investigation for future work.
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