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D-CRITICAL LOCUS STRUCTURE ON THE HILBERT SCHEMES OF SOME LOCAL
TORIC CALABI-YAU THREEFOLDS

Sheldon Katz and Yun Shi

Abstract. The notion of a d-critical locus is an ingredient in the definition of motivic Donaldson-Thomas
invariants by [6]. In this paper we show that there is a d-critical locus structure on the Hilbert scheme of
dimension zero subschemes on some local toric Calabi-Yau 3-folds. We also show that using this d-critical
locus structure and a choice of orientation data, the resulting motivic invariants agree with the definition
given by the previous work of [2].
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1. Introduction

Donaldson-Thomas (DT) theory was introduced in [22] as an enumerative theory which gives
a virtual count of stable coherent sheaves with fixed topological invariants on certain 3-folds,
including Calabi-Yau threefolds. In the Calabi-Yau case, this moduli problem supports a perfect
obstruction theory of virtual dimension zero in good situations, and so defines a degree zero class
in the Chow ring of the moduli space — the virtual fundamental class of [3]. When the moduli
space is proper, the DT invariant is defined as the degree of this virtual fundamental class. This
theory was applied to Hilbert schemes of points in [22] by identifying the Hilbert scheme with
the moduli space of their corresponding ideal sheaves.

It turns out that there is a rich structure underlying the DT invariant. The DT moduli space
supports a symmetric obstruction theory, which implies that when the moduli space is proper
the DT invariant is a weighted Euler characteristic of the moduli space, the weighting being given
by a constructible function on the moduli space called the Behrend function [1]. These ideas are
applied to show that for a projective threefold X, the generating function of the DT invariants of
Hilbn(X) can be expressed in terms of the MacMahon function and the Euler characteristic of X
[4, 14, 16].

If the moduli space can be globally realized as a degeneracy locus, the value of its Behrend
function at a point can be expressed in terms of the Euler characteristic of the Milnor fiber at that
point [1, 20]. Replacing the Milnor fibers with their motivic incarnations, one is led to the notion
of Motivic DT invariants.

Motivic DT theory was introduced and developed in [13, 6], and had been studied by sev-
eral authors, see e.g. [2, 8, 17, 18]. One of the first computations of motivic DT invariants was
given for Hilbn(X), where X is a Calabi-Yau threefold [2]. This computation relied on the fact
that Hilbn(C3) can be realized as a degeneracy locus with an equivariant torus action. The au-
thors introduced a notion of motivic DT invariants of Hilbn(X) based on their computations for
Hilbn(C3).
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Later, a general formalism for motivic DT invariants was given in [6], using the notions of a
d-critical locus and orientation introduced in [11]. The notion of orientation is extracted from the
notion of orientation data introduced in [13].

Now let X be a local toric surface ωS, the total space of the canonical bundle of a smooth,
complete toric surface S. In this paper, we define a d-critical locus structure on Hilbn(X) if
X = ωP2 or X = ωFn , and endow it with an orientation following [8]. We then show that the
motivic DT invariants of Hilbn(X) as defined using the d-critical locus and orientation agree with
the motivic DT invariants as defined in [2]. We therefore show that the results of [2] are valid in
the context of the more general theory for these Calabi-Yau threefolds.

A natural question arises which we do not address further in this paper:
The notion of a d-critical locus was introduced as a classical truncation of the notion of a −1-
shifted symplectic structure in derived algebraic geometry. It was shown in [19] that the derived
moduli stack of sheaves on a projective Calabi-Yau threefold has a canonical −1-shifted symplec-
tic structure. For a similar result in the noncompact case, see [5]. Does the classical truncation
of the canonical −1-shifted symplectic structure on the derived Hilbert scheme agree with our
d-critical locus structure? This would imply that our motivic result Corollary 5.4 can be extended
to the total space of the canonical bundle of any smooth toric surface.1

1.1. Outline of the paper. In Section 2 we review background material including the definition
of motivic DT invariants following [6]. Section 3 begins with the necessary toric geometry. We
then prove that there is a canonical d-critical locus structure on an open subset of Hilbn(ωS) for
any smooth toric surface S (Proposition 3.2). We use this result and its proof to show that there
is a natural d-critical locus structure on all of Hilbn(ωS) induced by copies of Hilbn(C3)’s, for
S = P2 and S = Fn (Theorem 3.3). In Section 4, we exhibit an orientation on Hilbn(ωS) associated
to this d-critical structure. Finally in Section 5, using the d-critical locus structure constructed in
Section 3 and the orientation in Section 4, we recover the computation of Hilbn(ωS) in [2].

1.2. Notations. All schemes in this paper are assumed to be separated and of finite type over
C. We use X to denote a smooth quasi-projective Calabi-Yau 3-fold. For a smooth surface S,
we denote the total space of its canonical bundle by ωS, and the projection from ωS to S by
π : ωS → S.

2. Background

2.1. Introduction to motivic DT invariants. In this section, we review the main ingredients of
motivic Donaldson-Thomas (DT) invariants as defined by Bussi, Joyce and Meinhardt [6].

First we recall the definition of the monodromic Grothendieck ring, where the motivic in-
variant associated to a moduli space lives. Let S be a separated scheme of finite type over C.
The Grothendieck group of S-schemes is the abelian group generated by isomorphism classes of
S-schemes [X → S], modulo the scissor relations:

[T → S] = [T′ → S] + [T\T′ → S]

for T′ a closed S-subscheme of T.
Now we consider an equivariant version of the Grothendieck ring. Let µn be the group of nth

roots of unity. A µn action on a scheme T is called good if every µn orbit is contained in an affine

1While this paper was under review, we have answered this question in the affirmative [12].



D-CRITICAL LOCUS STRUCTURE ON THE HILBERT SCHEMES OF SOME LOCAL TORIC CALABI-YAU THREEFOLDS10003

subscheme of T. Note that there are maps µm → µn if n|m, defined by x 7→ xm/n forming an
inverse system. Denote lim←− µn by µ̂.

Definition 2.1. ([10, 6]) The monodromic Grothendieck group Kµ̂
0 (S) is the abelian group generated by

isomorphism classes [T → S, σ̂], where T is a separated S-scheme of finite type and

σ̂ : µ̂× T → T

is a µ̂ action which factors through a good µn action for some n. The relations of Kµ̂
0 (S) are given by

(i) [T1, σ̂1] = [T2, σ̂2] for T1 and T2 equivariantly isomorphic as S-schemes,
(ii) [T, σ̂] = [T′, σ̂|T′ ] + [T \ T′, σ̂|T\T′ ,] for any T′ ⊂ T closed σ̂ invariant S-subscheme,
(iii) [T ×An, σ̂× τ̂1] = [T ×An, σ̂× τ̂2] for any linear µ̂ actions τ̂1, τ̂2 on An.

Note that there is an obvious commutative ring structure on Kµ̂
0 (S) defined by

[T1, σ̂] · [T2, τ̂] = [T1 ×S T2, σ̂× τ̂].

We denote by L the element [A1 × S→ S, ι̂], where ι̂ is the trivial action. Then we obtain a ring

Mµ̂
S := Kµ̂

0 (S)[L
−1]

by formally joining the inverse of L under this multiplication. We can similarly define MS as
the abelian group generated by classes [T → S] of S-schemes of finite type, modulo the relations
analogous to (i) and (ii) of Definition 2.1. Note that there is a map πµ̂ : Mµ̂

S → MS of MS-
modules, defined by taking generators to the corresponding orbit space:

πµ̂ : [T → S, σ̂]→ [T/σ̂].

Let f : S1 → S2 be a morphism between C-schemes. The notions of pushforward and pullback
on K0(S) are defined by f∗([T → S1]) = [T → S2] by composing the map T → S1 with the map
f , and f ∗[T′ → S2] = [T′ ×S2 S1 → S1]. These maps induce a pushforward and a pullback on
Mµ̂

S in the obvious way.

There is a less obvious product on Kµ̂
0 (S) orMµ̂

S , called the convolution product. It is denoted
by ’⊙’ in [6]. Since we will not explicitly use it in this paper, we refer to [15], [9] and [6] for its
definition.

The motivic DT invariants we consider here take values in a quotient of (Mµ̂
S ,⊙) denoted by

(Mµ̂
S ,⊙). To define it, we first write

L1/2 = [S, ι̂]− [S× µ2, µ2]

with the natural µ2 action. The notation is justified since the square of the right hand side (using
⊙) can be checked to be L. It follows immediately that L−1/2 ∈ Mµ̂

S as well. Then to a principal
Z2-bundle P over a scheme T we associate a motive:

Υ(P) = L−1/2 ⊙ ([T, ι̂]− [P, ρ̂]) ∈ Mµ̂
T ,

where ρ̂ is induced by the Z2 action on P. Then (Mµ̂
S ,⊙) is obtained from (Mµ̂

S ,⊙) by taking
the quotient by the ideal generated by elements ϕ∗(Υ(P⊗Z2 Q)−Υ(P)⊙Υ(Q)), for all C-scheme
morphisms ϕ : Z → S and P, Q principal Z2-bundles on Z. Note that if P is a trivial Z2-bundle,
then Υ(P) = 1 is trivial as well.
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Now we review the definition of motivic DT invariants. First consider the case of a moduli
space Y which can be globally realized as a degeneracy locus, i.e. Y := {d f = 0} ⊂ U where
f : U → C is a regular function on a smooth scheme U. Then the motivic DT invariant can
be defined as the motivic vanishing cycle up to a factor of a power of L1/2. We will not work
with motivic vanishing cycles directly in this paper, and we simply refer to [15], [9], [6] for their
precise definition.

More generally, the motivic invariants can still be defined if the moduli space can be covered
by degeneracy loci which satisfy a compatibility condition. The precise terminology for this
structure is called a d-critical locus structure [11]. Let Y be a C-scheme locally of finite type. The
following theorem is from [11]:

Theorem 2.2. ([11], Theorem 2.1) There exists a sheaf SY of C vector spaces, uniquely characterized by
two properties.

(i) Suppose R ⊂ Y is a Zariski open subset of Y, and i : R ↪→ U a closed embedding in some smooth
scheme U. Define the sheaf of ideals IR,U by the following exact sequence of vector spaces on R.

0→ IR,U → i−1(OU)→ OY|R → 0.

Then there is an exact sequence of sheaves of vector spaces on R:

0→ SY|R
ιR,U−−→ i−1(OU)

I2
R,U

d−→ i−1(T∗U)

IR,U · i−1(T∗U)
,

where ιR,U is a morphism of sheaves of vector spaces, and d is the differential map.
(ii) Let R ⊂ S ⊂ Y be Zariski open inclusions, and i : R ↪→ U, j : S ↪→ V closed embeddings in smooth

schemes U and V. Let Φ : U → V be a morphism satisfying Φ ◦ i = j|R. Then the following diagram
commutes:

0 SY|R j−1(OV )

I2
S,V
|R j−1(T∗V)

IS,V ·j−1(T∗V)
|R

0 SY|R i−1(OU)

I2
R,U

i−1(T∗U)
IR,U ·i−1(T∗U)

.

ιS,V |R

id

d

i−1(Φ♯) i−1(dΦ)

ιR,U d

Let S0
Y be the kernel of the composition

SY → OY → OYred ,

where the map SY → OY is locally defined by composing ιR,U with i−1(OU)→ OY|R.
Then the sheaf SY has a canonical decomposition

SY ≃ CY ⊕ S0
Y .

Definition 2.3. ([11] Definition 2.5) An algebraic d-critical locus over C is a pair (Y, s), where Y is a
C-scheme and s ∈ H0(S0

Y) such that the following is satisfied: for every point y ∈ Y, there is a Zariski
open neighborhood R of y with a closed embedding i : R ↪→ U into a smooth scheme U, such that
i(R) = {d f = 0} ⊂ U for f : U → C a regular function on U. Furthermore, ιR,U(s|R) = i−1( f ) + I2

R,U .

Using the notation in the definition, the charts (R, U, f , i)’s are called critical charts of (Y, s).
Consider a moduli space which has a d-critical locus structure. In particular it is locally

covered by degeneracy loci, and one can associate motivic vanishing cycles to the local charts.
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However, these locally defined invariants do not naturally agree on intersections, see e.g. [6] Ex-
ample 3.5. It turns out that these locally defined invariants can be modified using an orientation,
and they then agree and can be glued to a global motivic invariant.

To give the definition of an orientation, we first recall the notion of the virtual canonical bundle
of a d-critical locus.

Theorem 2.4. ([11] Theorem 2.28, [6] Theorem 5.4) Let (Y, s) be a d-critical locus, and let Yred be Y
with its reduced structure. Then there exists a line bundle KY,s on Yred which is uniquely defined by two
properties.

(i) If (R, U, f , i) is a critical chart on (Y, s), there is a natural isomorphism

(2.1) ιR,U, f ,i : KY,s|Rred → i∗(K⊗2
U )|Rred ,

where KU is the usual canonical bundle of U.
(ii) Let Φ : (R, U, f , i) → (S, V, g, j) be an embedding of critical charts on (Y, s). Then there is an

isomorphism of line bundles on Crit( f )red:

JΦ : K⊗
2

U |Crit( f )red → Φ|∗Crit( f )red(K⊗
2

V ).

such that

i|∗Rred(JΦ) : i∗(K⊗
2

U )|Rred → j∗(K⊗
2

V )|Rred ,

is an isomorphism and

ιS,V,g,j|Rred = i|∗Rred(JΦ) ◦ ιR,U, f ,i : KX,s|Rred → j∗(K⊗
2

V )|Rred .

Here JΦ is induced by the isomorphism KU ⊗ΛnN∗UV → Φ∗(KV). For details of the definition
of JΦ see [11], Def. 2.26 or [6], section 4.

Definition 2.5. ([11] Definition 2.31) Let (Y, s) be a d-critical locus. An orientation on (Y, s) is given
by a line bundle L on Yred together with an isomorphism L⊗2 ≃ KY,s.

With these two additional structures, a global motivic DT invariant can always be defined:

Theorem 2.6. ([6] Theorem 5.10) Let (Y, s) be a finite type algebraic d-critical locus with a choice of
orientation K1/2

Y,s . There exists a unique motive MFY,s ∈ M
µ̂
Y with the property that if (R, U, f , i) is a

critical chart on (Y, s), then

MFY,s|R = i∗(L−dimU/2 ⊙MFϕ
U, f )⊙ Υ(QR,U, f ,i) ∈ M

µ̂
R.

Here, the term MFϕ
U, f is the motivic vanishing cycle associated to the critical chart (R, U, f , i),

see [15], [9], [6]. The term QR,U, f ,i is the principal Z2-bundle of local isomorphisms αR :
K1/2

Y,s |Rred → i∗(KU)|Rred such that α⊗2
R = ιR,U, f ,i in (2.1). We would like to point out that the

motivic vanishing cycle used in this paper is the class of f−1(0) with the trivial action minus the
motivic nearby cycle, which is the negative of the definition used in [2].
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2.2. Construction of Hilbn(C3). We next briefly recall the construction of Hilbn(C3) used in [2],
in particular its presentation as a degeneracy locus.

To a subscheme Q ⊂ C3 with Hilbert polynomial PQ = n we can associate an n-dimensional
vector space Vn = H0(OQ), three pairwise commuting linear maps

X, Y, Z : Vn → Vn

defined as multiplication by x, y, z ∈ C[x, y, z], and a vector v ∈ Vn corresponding to 1 ∈ H0(OQ).
The vector is v cyclic for the action of C[X, Y, Z] on Vn: C[X, Y, Z] · v = Vn.

Now consider the space of triples of n× n matrices and a vector in Vn:

Hom(Vn, Vn)
3 ×Vn.

This space is a quasiprojective variety and admits a GLn action induced from the action of GLn
on Vn. The character χ : GLn → C∗ defined by χ(g) = det(g) defines a linearization of the trivial
bundle. Let U be the stable locus of the linearization. It turns out that U consists of the points
(X, Y, Z, v) where v is cyclic for the action of X, Y, Z. Consider the GIT quotient

NHilbn(C3) := Hom(Vn, Vn)
3 ×Vn � GLn = U/GLn

with respect to this linearization. Let W : NHilbn(C3) → C be the function on NHilbn(C3)
defined by W(X, Y, Z, v) = tr([X, Y]Z). The condition {dW = 0} is equivalent to the condition
that X, Y and Z pairwise commute. Then the locus {dW = 0} is isomorphic to Hilbn(C3). As the
construction suggests, we call NHilbn(C3) the noncommutative Hilbert scheme.

Remark. While any nonzero scalar multiple of W would work just as well as W in defining
Hilbn(C3), the construction of [2] makes clear that the choice of Calabi-Yau form dx ∧ dy ∧ dz on
C3 determines the normalization of W described above. More precisely, any determinant 1 linear
change of coordinates in T = span{x, y, z} will leave W unchanged.

3. D-critical Locus Structure on Hilbn(ωS)

We begin this section with a lightning review of some standard notions and notations of toric
geometry. We knowingly omit some important details and simply refer the reader to [7] if more
detail is needed.

We let N be an n-dimensional lattice and Σ a fan in NR = N ⊗ R, giving rise to a normal
toric variety XΣ with torus T = N ⊗Z C∗. We can describe XΣ by a quotient construction.
Let v1, . . . , vr be the primitive integral generators of the 1-dimensional cones in Σ(1). Let An−1
denote the Chow group of rational equivalence classes of cycles of dimension n− 1. We have an
exceptional closed subset Z(Σ) ⊂ Cr and the group G = Hom(An−1(XΣ), C∗) acts on Cr − Z(Σ)
by an action which will be described below. Then XΣ is identified with the quotient

XΣ = (Cr − Z(Σ)) /G.

If σ is a cone in Σ, then we have an affine toric variety Xσ, which is identified with an open subset
of XΣ by

Xσ = {[(x1, . . . , xr)] ∈ XΣ | xi ̸= 0 if vi ̸∈ σ} ,
where [(x1, . . . , xr)] denotes equivalence class of (x1, . . . , xr) ∈ Cr − Z(Σ) mod G.

For i = 1 . . . r we have T-invariant divisors Di ⊂ XΣ defined by xi = 0, where (x1, . . . , xr) are
coordinates on Cr. The action of G on Cr is given by

g · (x1, . . . , xr) = (g([D1])x1, . . . , g([Dr])xr)
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where [Di] is the divisor class of Di.
Now suppose that XΣ is smooth. Then An−1(XΣ) is torsion-free and consequently G ≃

(C∗)r−n. Furthermore, if σ ∈ Σ(n) is a maximal cone generated by vi1 , . . . , vin , the affine toric
variety Xσ is isomorphic to Cn via the isomorphism

(3.1) Cn → Xσ, (x1, . . . , xn) 7→ (1, . . . , 1, x1, 1, . . . , 1, x2, 1 . . . , 1, xn, 1 . . . , 1),

where xj is in the ijth position and all other entries are 1.
We are concerned with the case where XΣ is a smooth Calabi-Yau threefold. For any smooth

toric variety we have

O(KXΣ) ≃ O

(
−

r

∑
i=1

Di

)
,

so the Calabi-Yau condition says that ∑r
i=1 Di ∼ 0. It is convenient to express this condition in

terms of the homogeneous coordinate ring

S = C[x1, . . . , xr].

The ring S is graded by An−1(XΣ) = A2(XΣ), with xi having degree [Di] ∈ A2(XΣ). The Calabi-
Yau condition translates into the statement that x1 · · · xr has degree 0.

We now construct a nowhere-vanishing T-invariant holomorphic form Ω on XΣ, well-defined
up to sign. We have holomorphic r-form on Cr

Ω̂ = dx1 ∧ · · · ∧ dxr,

well-defined up to a sign depending on the chosen ordering of Σ(1). The action of G ≃ (C∗)r−3

on Cr determines a rank r − 3 lattice of holomorphic vector fields on Cr. More precisely, let
Λ ⊂ Zr be the lattice of relations

(3.2) Λ =
{
(a1, . . . , ar) ∈ Zr |∑ aivi = 0

}
.

Then λ = (a1, . . . , ar) determines the vector field

χλ = ∑ aixi
∂

∂xi

on Cr. The relation λ determines a 1-parameter subgroup of G

t 7→ ([Di] 7→ tai ).

The fact that λ = (a1, . . . , ar) satisfies (3.2) implies that [Di] 7→ tai is compatible with linear
equivalence and so describes an element of G = Hom(An−1(XΣ), C∗). The vector field χλ is then
seen to be the infinitesimal action of this 1-parameter subgroup.

Choosing generators χ1, . . . , χr−3 for the lattice of vector fields, we define

(3.3) Ω = iχ1 · · · iχr−3(Ω̂),

where iχi is contraction with respect to χi. For each j = 1, . . . r− 3 we have iχj Ω = 0, so that Ω
is G-invariant and therefore pulls back from a holomorphic 3-form on XΣ. We abuse notation
and denote this 3-form on XΣ by Ω as well. In other words, Ω is the unique holomorphic 3-form
Ω on XΣ whose pullback to Cr − Z(Σ) is the right hand side of (3.3). The Calabi-Yau condition
guarantees that Ω is a 3-form rather than merely a 3-form valued in a line bundle.

We now specialize further to local toric surfaces, the total space ωS of the canonical bundle of
a smooth complete toric surface S. Since S is a toric variety, we have a rank 2 lattice N′ and a
complete fan Σ′ in N′R with edges spanned by primitive integral vectors v′1, . . . , v′r−1. We form
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the rank 3 lattice N = N′ ⊕Z, identify the fan Σ′ with the collection of cones {σ′ ×{1} | σ′ ∈ Σ′}
in the affine hyperplane of NR defined by setting the last coordinate to 1. We then form the fan
Σ as the collection of cones in NR over the cones σ′ × {1}, i.e. the collection of three-dimensional
cones generated by the rays from the origin through the vertices of σ′ × {1}. In particular, the
primitive integral generators of the 1-dimensional cones of Σ are identified with

(3.4) v1 = (v′1, 1), . . . , vr−1 = (v′r−1, 1), vr = (0, 1),

where 0 is the zero of N. We introduce the convention of replacing xr by the variable p, to
emphasize the distinguished role of vr.

Example. Local P2 can be described by a fan Σ with edges generated by the vectors

v1 = (1, 0, 1), v2 = (0, 1, 1), v3 = (−1,−1, 1), v4 = (0, 0, 1).

We have maximal cones σj for j = 1, 2, 3. Each σj is spanned by the set of vectors {v1, . . . , v4} −
{vj}.

In this case, the lattice Λ is spanned by (1, 1, 1− 3), corresponding to the relation v1 + v2 + v3−
3v4 = 0. We get the generating vector field χ = x1(∂/∂x1) + x2(∂/∂x2) + x3(∂/∂x3)− 3p(∂/∂p).
Putting Ω = iχ (dx1 ∧ dx2 ∧ dx3 ∧ dp), we get

Ω = x1dx2 ∧ dx3 ∧ dp− x2dx1 ∧ dx3 ∧ dp + x3dx1 ∧ dx2 ∧ dp + 3pdx1 ∧ dx2 ∧ dx3.

By respectively setting xi = 1 for i = 1, 2, 3, we obtain

Ω|Xσ1
= dx2 ∧ dx3 ∧ dp, Ω|Xσ2

= dx3 ∧ dx1 ∧ dp, Ω|Xσ3
= dx1 ∧ dx2 ∧ dp.

Accordingly, we can transfer the construction of Section 2.2 from Hilbn(C3) to each Hilbn(Xσi ),
using the respective coordinate systems (x2, x3, p), (x3, x1, p), (x1, x2, p).2 For example we can
describe NHilbn(Xσ1) as a GIT quotient of a space of n × n matrices X2, X3, P together with a
vector v, and define Hilbn(Xσ1) as the degeneracy locus of W1 = Tr([X2, X3]P). Similarly, we can
define Hilbn(Xσ2) as the degeneracy locus of W2 = Tr([X3, X1]P) in NHilbn(Xσ2) and Hilbn(Xσ3)
as the degeneracy locus of W3 = Tr([X1, X2]P) in NHilbn(Xσ3). This description gives the data
(Hilbn(Xσj), NHilbn(Xσj), Wj, ij), where ij : Hilbn(Xσj) ↪→ NHilbn(Xσj) is the inclusion.

We will show that the (Hilbn(Xσj), NHilbn(Xσj), Wj, ij) are among the d-critical charts of a d-
critical locus on Hilbn(ωP2). The construction of the d-critical locus structure proceeds in two
steps.

First, we show that the sections sj of S0
n(Xσj )

induced by the Wj agree on pairwise intersections

Hilbn(Xσj) ∩ Hilbn(Xσk ) ⊂ Hilbn(ωP2). We will show this more generally for any local toric
Calabi-Yau threefold in Proposition 3.2 below. But this is still not enough to construct a d-critical
locus, since the Hilbn(Xσj) do not cover Hilbn(ωP2).

Second, we construct a cover of ωP2 by open subsets Uα ≃ C3 such that the Hilbn(Uα) cover
Hilbn(ωP2). Furthermore, automorphisms of P2 induce isomorphisms Uα ≃ Xσj . These isomor-
phisms are used to construct the data (Hilbn(Uα), NHilbn(Uα), Wα, iα). Finally, a comparison to
the first step shows that the sections sα of S0

n(Uα)
are pairwise compatible. We will elaborate on

this step more generally in the proof of Theorem 3.3 below.

2We have abused notation here. The relationship between the three local coordinates and homogeneous coordinates
is given by three separate applications of (3.1). It follows that the coordinate changes will be nontrivial, even for the
variables in different coordinate systems denoted by the same symbol.
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Returning to the general case, we have the following easy lemma. The coordinates (x, y, z) on
Xσ in the statement of the lemma are given by (3.1).

Lemma 3.1. Let Ω be the holomorphic 3-form (3.3) on the local Calabi-Yau threefold ωS and let σ be a
maximal cone in a fan for ωS. Then we can order the coordinates(x, y, z) on Xσ ≃ C3 so that Ω|Xσ =
dx ∧ dy ∧ dz.

We had already seen this for ωP2 by direct calculation.

Proof. Reordering Σ(1) if necessary, we can assume that the edges of σ are generated by vr−2, vr−1,
and vr. We have coordinates (xr−2, xr−1, xr) on Xσ as in (3.1). Choosing generators λ1, . . . , λr−3
of the lattice (3.2) and writing λi = (ai1, . . . , air), we get Ω|Xσ = ±det(A) dxr−2 ∧ dxr−1 ∧ dxr,
where A is the (r− 3)× (r− 3) matrix with entries aij, 1 ≤ i, j ≤ r− 3. Choosing a different set
of generators for the lattice in the definition of Ω can only change Ω|Xσ by a sign as remarked
earlier. However, since {vr−2, vr−1, vr} is a basis for N, for each 1 ≤ i ≤ n we can uniquely write

vi = ci,r−2vr−2 + ci,r−1vr−1 + ci,rvr.

Then choosing

(3.5) λi = (0, . . . , 0, 1, 0 . . . 0,−ci,r−2,−ci,r−1,−ci,r), i = 1, . . . , r− 3

as generators for the lattice (3.2), we see that A is the indentity matrix, so that det(A) = 1. In
(3.5), the entry 1 is in the ith position. □

Now fixing a choice of Ω on ωS, for each maximal cone σ we choose coordinates (x, y, z) on Xσ

so that Lemma 3.1 holds, noting that the coordinates (x, y, z) can undergo a cyclic permutation
and still satisfy Lemma 3.1. We repeat the description of Hilbn(C3) in this context, introducing
endomorphisms Xσ, Yσ, Zσ ∈ Hom(Vn, Vn) and putting NHilb(Xσ) = Hom(Vn, Vn)3 × Vn � GLn
as before. This determines the data (Hilbn(Xσ), NHilbn(Xσ), Wσ, iσ), where Wσ is the func-
tion on NHilb(Xσ) given by tr([Xσ, Yσ]Zσ). Since Wσ is unchanged by a cyclic permutation
of (Xσ, Yσ, Zσ), we conclude that (Hilbn(Xσ), NHilbn(Xσ), Wσ, iσ) only depends on σ.

Put Rσ = Hilbn(Xσ) and Uσ = NHilbn(Xσ). Using the gluing data of the Xσ’s, we see that the
kernels of the maps

i−1(ORσ )

I2
Rσ ,Uσ

→ i−1(T∗Rσ)

IRσ ,Uσ · i−1(T∗Rσ)

in Theorem 2.2 glue to a global sheaf T on ∪n
σ(Xσ). This sheaf is isomorphic to the sheaf S∪n

σ(Xσ)

by the construction of the sheaf S in [11].
Let sσ ∈ S0

Hilb(Xσ)
be the section induced by Wσ.

Proposition 3.2. Given maximal cones σ and σ′, the sections sσ and sσ′ agree on Hilbn(Xσ) ∩
Hilbn(Xσ′), understood as a subset of Hilbn(ωS).

We therefore have a canonical d-critical locus structure on ∪σ Hilbn(Xσ) ⊂ Hilbn(ωS) with
critical charts (Hilbn(Xσ), NHilbn(Xσ), Wσ, iσ).

Proof. We begin by observing that the proposition can be reduced to the case when σ and σ′ share
a codimension 1 face. If σ and σ′ do not share a codimension 1 face, then we can choose maximal
cones σ1, σ2, . . . , σm with m ≥ 3 and σ1 = σ and σm = σ′ such that each pair σi, σi+1 has a common
codimension 1 face. Furthermore, Xσ ∩Xσ′ = Xρ ≃ C× (C∗)2, where ρ is the 1-dimensional cone
generated by vr = (0, 0, 1) in the notation (3.4). Since ρ is a face of every σi, we have Xρ ⊂ Xσi
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for each i. Correspondingly, Hilbn(Xσ) ∩Hilbn(Xσ′) = Hilbn(Xρ) ⊂ Hilbn(Xσi ) for all i. Here
the intersection of the Hilbert schemes are taken inside Hilbn(ωn). Once we have proven the
proposition for cones sharing a codimension 1 face, it will follow immediately that on Hilbn(Xρ)
we have sσ = sσ2 = sσ3 = . . . = sσ′ as required.

The common codimension 1 face of σ and σ′ is spanned by vr and some vi = (v′i, 1) for i < r.
The vector v′i ∈ N′ corresponds to a torus-invariant curve D′i in the toric surface S. We let η be
the self-intersection of D′i in S, so that v′i−1 + ηv′i + v′i+1 = 0.3 It follows that vi−1 + ηvi + vi+1 =

(η + 2)vr. Using the basis {vi−1, vi, vr} for N to identify N with Z3, we have, reordering σ and σ′

if necessary

σ = span{(1, 0, 0), (0, 1, 0), (0, 0, 1)}, σ′ = span{(0, 1, 0), (−1,−η, η + 2), (0, 0, 1)}.

The coordinate change between Xσ and Xσ′ is given by

(3.6) (x′, y′, z′) = (x−ηy, x−1, xη+2z),

as is easily computed. We have ordered the coordinates so that dx′ ∧ dy′ ∧ dz′ = dx ∧ dy ∧ dz. If
Ω|Xσ = −dx ∧ dy ∧ dz, we simply reorder the coordinates appropriately without impacting the
rest of the argument.

We next transfer the construction of Section 2.2 to Xσ and to Xσ′ while providing some more
detail. We let X, Y and Z be three n × n matrices with indeterminate entries X(k, l), Y(k, l)
and Z(k, l), representing multiplication by x, y and z, respectively. Let u1, ..., un be n additional
indeterminates and put

A = C[X(k, l), Y(k, l), Z(k, l), u1, ..., un].

Denote by U the open subset (Spec(A))ss of Spec(A) with respect to the natural GLn action,
the semistable locus in Spec(A) with respect to χ as in Section 2.2. Put N = U/GL(n). Put
d = det(X) and let Ad = A[d−1]. We denote U ∩ SpecAd by Ud. We similarly define

A′ = C[X′(k, l), Y′(k, l), Z′(k, l), u′1, . . . , u′n],

U′ = (Spec(A′))ss, N′ = U′/GLn, A′d′ = A′[det(X′)−1], and U′d′ = U′ ∩ SpecAd′ .
Noting that the entries of X−1 are in Ad and the entries of (Y′)−1 are in A′d′ , we can construct

an isomorphism

(3.7) ϕ : A′d′ ≃ Ad

which identifies
X′ = X−ηY, Y′ = X−1, Z′ = Xη+2Z, u′i = ui, i = 1, . . . n

induced by the change of coordinates (3.6) after making a choice in the order of matrix multipli-
cation. This induces the isomorphism of open subsets:

(3.8) Ud ∩ ϕ−1(Ud′) ≃ ϕ(Ud) ∩U′d′ ,

where we have abused notation slightly by using ϕ to also denote the induced map Spec(Ad)→
Spec(A′d′).

To simplify notation, we put R = Hilbn(Xσ) and R′ = Hilbn(Xσ′). Let i : R → N and
i′ : R′ → N′ be the inclusions. Let R ∩ R′ be the intersection of R and R′ taken inside Hilbn(ωS).
Note that Ud and U′d′ are invariant under the GLn actions. Hence (Ud ∩ ϕ−1(U′d′))/GLn is an

3If i = 1 or i = r− 1, we cyclically reorder the v′j so that v′i+1 makes sense.
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open neighborhood of R ∩ R′ in Ud/GLn ⊂ N, and (ϕ(Ud) ∩U′)/GLn is an open neighborhood
of R ∩ R′ in U′d”/GLn ⊂ N′. Then (3.8) induces an isomorphism

(3.9) i−1(ON)/I2
R,N |R∩R′ ≃ i′−1

(ON′)/I2
R′ ,N′ |R∩R′ ,

where i−1(ON) and IR,N are as defined in Theorem 2.2.
We have the exact sequence of sheaves on N

0→ K → i−1(ON)/I2
R,N

d−→ i−1(T∗N)/IR,N · i−1(T∗N)

where K is defined as the kernel, and is naturally identified with the sheaf SR. We have a similar
exact sequence defining a sheaf K′ on R′.

We deduce the following commutative diagram, where the vertical arrows are isomorphisms
(3.10)

0 → (K) |R∩R′ →
(

i−1(ON)/I2
R,N

)
|R∩R′

d−→
(
i−1(T∗N)/IR,N · i−1(T∗N)

)
|R∩R′

↓ ↓ ↓
0 → (K′) |R∩R′ →

(
i′−1(ON′)/I2

R′ ,N′

)
|R∩R′

d−→
(

i′−1(T∗N′)/IR′ ,N′ · i′
−1(T∗N′)

)
|R∩R′ .

We show that the sections sσ ∈ H0(K) and sσ′ ∈ H0(K′) agree on R ∩ R′ according to the left-
most isomorphism in (3.10). For this, it suffices to show that their images in i−1(ON)/I2

R,N and

i′−1(ON′)/I2
R′ ,N′ agree on R ∩ R′ via the isomorphism (3.9). We proceed to verify this equality.

We have the potentials Wσ = tr([X, Y]Z]) on U and Wσ′ = tr([X′, Y′]Z]) on U′. Denote the
image of i−1(Wσ) in the sheaf i−1(ON)/I2

R,N by i−1(Wσ) + I2
R,N , with analagous notation for

i′−1(Wσ′). Then we claim that:

(3.11) i−1(Wσ) + I2
R,N |R∩R′ = i′−1

(Wσ′) + I2
R′ ,N′ |R∩R′ under the identification (3.9).

This is precisely the assertion of the proposition that the sections sσ and sσ′ agree on R ∩ R′.
We now demonstrate (3.11). Under the isomorphism (3.7), we have

Wσ|Spec(Ad)
= tr(XYZ−YXZ)

(3.12) Wσ′ |Spec(A′
d′ )

= tr(X−ηYXη+1Z− X−(η+1)YXη+2Z).

Making use of the identity tr(BC) = tr(CB) for n× n matrices B and C, we can rewrite (3.12) as

(3.13) Wσ′ |Spec(A′
d′ )

= tr(Xη+1ZX−ηY− Xη+2ZX−(η+1)Y).

Since (3.13) can be obtained from (3.12) by exchanging Y and Z, replacing η by −η− 2, and mul-
tiplying by −1, we can and will assume that η ≥ −1. If η = −1, then Wσ|Spec(Ad)

= Wσ′ |Spec(A′
d′ )

.
If η = 0 we compute

(3.14) Wσ|Spec(Ad)
−Wσ′ |Spec(A′

d′ )
= tr

(
XYZ− 2YXZ + X−1YX2Z

)
= tr

(
X−1[X, Y][Z, X]

)
,

which is visibly in I2
R,N |R∩R′ .

We proceed by induction on η, assuming the inductive hypothesis

(3.15) tr
((

X−ηYXη+1Z− X−(η+1)YXη+2Z
)
− (XYZ−YXZ)

)
∈ I2

R,N |R∩R′ .
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The substitution (X, Y, Z) 7→ (X, YX, Z) preserves IR,N and hence I2
R,N , since

[X, YX] = [X, Y]X, [Z, YX] = [Z, Y]X + Y[Z, X].

Making this substitution in (3.15) we get

(3.16) tr
((

X−ηYXη+2Z− X−(η+1)YXη+3Z
)
−
(

XYXZ−YX2Z
))
∈ I2

R,N |R∩R′ .

We write

X−(η+1)YXη+2Z− X−(η+2)YXη+3Z = X−1
(

X−ηYXη+2Z− X−(η+1)YXη+3Z
)

,

so that we have by (3.16) modulo I2
R,N |R∩R′

tr(X−(η+1)YXη+2Z− X−(η+2)YXη+3Z) ≡ tr(YXZ− X−1YX2Z)

and therefore

(3.17) tr
((

X(−η+1)YXη+2Z− X−(η+2)YXη+3Z
)
−
(

YXZ− X−1YX2Z
))
∈ I2

R,N |R∩R′ .

We also have
tr
(

XYZ− 2YXZ + X−1YX2Z
)
∈ I2

R,N |R∩R′ .

by (3.14). Subtracting this last equation from (3.17), we obtain (3.15) with η replaced by η + 1,
proving the inductive step, and we are done. □

We now come to the main result of this section.

Theorem 3.3. Suppose that S = P2 or S = Fn. Then Hilbn(ωS) has a natural d-critical locus structure.
The critical charts are all isomorphic to (Hilbn(C3), NHilbn(C3), W, i).

Proof. Let π : ωS → S be the projection. Our strategy is to exhibit an open cover {Uα} of S
satisfying the two properties:

(1) There exists an automorphism of ωS which preserves Ω and takes Vα := π−1(Uα) to Xσα

for some maximal cone σα.
(2) Any finite subset of S is contained in some Uα.

The first condition allows us to define charts

(Hilbn(Vα), NHilbn(Vα), Wα, iα)

by transferring the chart (Hilbn(Xσα)), NHilbn(Xσα), Wσα , iσα) from Hilbn(Xσα) to Hilbn(Vα) via
this automorphism. The second condition implies that {Hilbn(Vα)} is an open cover of Hilbn(ωS).
To see this, let Q ∈ Hilbn(ωS). Thinking of Q as a length n subscheme of ωS, we choose a Uα

containing the finite set π(Q). Then Q ⊂ Vα, so that Q ∈ Hilbn(Vα).
The rest of the proof consists of choosing the Uα and automorphisms so that the sections

sα ∈ S0
Hilbn(Vα)

agree on pairwise intersections. We work out the details for S = P2 and S = Fn

separately.

S = P2: For a line ℓ ⊂ P2, we let Uℓ = P2 − ℓ be its complement. Then {Uℓ} is an open cover
of P2 which clearly satisfies the second property. To check the first property, fix an equation
for ℓ and let A be a determinant 1 linear transformation of span(x1, x2, x3) which induces an
automorphism of P2 taking ℓ to one of the torus invariant lines. In terms of the homogeneous
coordinates (x1, x2, x3, p) for ωP2 , the automorphisms we consider are ϕA(x, p) = (Ax, p) where
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x = (x1, x2, x3). Since both Ω̂ = dx1 ∧ dx2 ∧ dx3 ∧ dp and v are invariant under A, it follows that
Ω is invariant under the automorphisms ϕA.

Given any pair of lines ℓ, ℓ′, we can find a determinant 1 linear transformation A taking ℓ
and ℓ′ to x1 and x2 respectively. Then ϕA identifies Hilbn(Vℓ) ∩Hilbn(Vℓ′) with Hilbn(Xσ1) ∩
Hilbn(Xσ2) using the labeling of the cones σi introduced in the example earlier in this section. As
in the discussion before Proposition 3.2, using the gluing data between Hilbn(Uℓ) and Hilbn(Uℓ′)
induced by the change of coordinates between Uℓ and Uℓ′ , the local sheaves SHilbn(Uℓ)

glue to
the sheaf SHilb(ω

P2 )
. Then by Remark 2.2, the compatibility of the local sections associated to

the critical charts of Hilbn(Vℓ) and Hilbn(Vℓ′) follows immediately from the compatibility of the
critical charts of Hilbn(Xσ1) and Hilbn(Xσ2) proven in Proposition 3.2.
S = Fn: We describe Fn as the toric surface associated to the complete fan with 1-dimensional
cones spanned by the vectors

(3.18) v′1 = (1, 0), v′2 = (0, 1), v′3 = (−1, n), v′4 = (0,−1).

The torus-invariant curves D′1 and D′3 are fibers of Fn, the curve D′2 is the section with (D′2)
2 =

−n, and D′4 is a section with (D′4)
2 = n. The lattice of vectors fields associated to the quotient

construction of ωFn is generated by

χ1= x2(∂/∂x2)+x4(∂/∂x4)−2p(∂/∂p), χ2= x1(∂/∂x1)+x3(∂/∂x3)+nx4(∂/∂x4)−(n + 2)p(∂/∂p).

The automorphisms of ωFn which we use are of two types, described in terms of homogeneous
coordinates by

(1) (x1, x2, x3, x4, p) 7→ (ax1 + bx3, x2, cx1 + dx3, x4, p), where ad− bc = 1
(2) (x1, x2, x3, x4, p) 7→ (x1, x2, x3, x4 + ex2xn

3 , p).

These automorphisms preserve Ω̂ and the χi, hence they preserve Ω as well.
Let ϕ : Fn → P1 be the map exhibiting Fn as a P1-bundle over P1. In homogeneous coordi-

nates, we have ϕ(x1, x2, x3, x4) = (x1, x3).
Given a point p = (a, b) ∈ P1, we have a 1-parameter family of sections of Sa,b,e of Fn described

parametrically as {(x1, 1, x3, e(bx1 − ax3)
n) | (x1, x3) ∈ P1}. Intrinsically, these sections are the

irreducible members of the linear system |D′4| which intersect D′4 only in the point (a, 1, b, 0) of
D′4, with multiplicity n. Since Sρa,ρb,ρ−ne = Sa,b,e for any ρ ∈ C∗, we see that this 1-parameter
family of sections only depends on p and not on a choice of homogenous coordinates (a, b) of p.
We use the cover {Ua,b,e} = {ϕ−1(P1 − (a, b))− Sa,b,e} of Fn. Let Va,b,e = π−1(Ua,b,e). Similar to
the case of P2, the local sheaves SHilbn(Ua,b,e)

glue to a global sheaf on Hilbn(ωFn) via the change
of coordinates between the Ua,b,e ⊂ Fn.

To verify the first property required of {Uα}, we can find an automorphism of the first type
mapping Va,b,e to V1,0,e′ . Then an automorphism of the second type maps V1,0,e′ to V1,0,0. But
V1,0,0 is equal to Xσ, where σ is the maximal cone generated by {v1 = (1, 0, 1), v2 = (0, 1, 1),
v5 = (0, 0, 1)}. We use these automorphisms to identify the function Wσ on NHilbn(Xσ) with a
function Wa,b,e on NHilbn(Va,b,e). Let sa,b,e be the section of S0

n(Va,b,e)
induced by Wa,b,e.

Given a finite subset T of Fn, we first choose p = (a, b) ∈ P1 − ϕ(T). Then we can find an
e such that Sa,b,e ∩ T is empty, so that T ⊂ Ua,b,e. This verifies the second property required of
{Uα}.

It remains to show pairwise compatibility of the sections sa,b,e of S0
Hilbn(Va,b,e)

. Consider distinct
open subsets Va,b,e and Va′ ,b′ ,e′ . There are two cases to consider:
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(1) (a, b) = (a′, b′) as points of P1, or
(2) (a, b) ̸= (a′, b′) as points of P1.

In the first case, we can find a determinant 1 linear transformation of span(x1, x3) taking (a, b) to
(1, 0). Then we use an automorphism of the second type to take Va,b,e to V1,0,0. This automorphism
takes Va′ ,b′ ,e′ to V1,0,e′′ for some e′′ ̸= 0. We are reduced to comparing V1,0,0 and V1,0,e′′ . On V1,0,0
we have affine coordinates (x1, x2, p) following (3.1). Our construction gives us affine coordinates
(x′1, x′2, p′) on U1,0,e′′ . We relate (x′1, x′2, p′) to (x1, x2, p) using full homogenous coordinates. We
have

(x′1, x′2, 1, 1, p) = (x1, x2, 1, 1 + e′′x2, p) = (x1, x2(1 + e′′x2)
−1, 1, 1, (1 + e′′x2)

2 p),

where we have used the (C∗)2 of the quotient construction in the last step. This gives the coor-
dinate change as (x′1, x′2, p′) = (x1, x2(1 + e′′x2)

−1, (1 + e′′x2)
2 p). Promoting x1, x2, p, x′1, x′2, p′ to

elements of End(Vn), we compute

[X′1, X′2]P
′ − [X1, X2]P = [X1, X2(1 + e′′X2)

−1](1 + e′′X2)
2P− [X1, X2]P,

which simplifies to

e′′X1X2
2 P + X2X1P− X2(1 + e′′X2)

−1X1(1 + e′′X2)
2P.

Using the cyclic property of the trace and freely commuting terms involving X2 only, we see that
this last expression has the same trace as that of

[X1(1 + e′′X2), X2(1 + e′′X2)
−1] [1 + e′′X2, P].

We only have to show that this trace is in the square of the ideal I generated by the entries
of the commutators of X1, X2, and P, appropriately localized so that 1 + e′′X2 is invertible. We
only have to show that the entries of [X1(1 + e′′X2), X2(1 + e′′X2)

−1] are in I, or equivalently that
X1(1 + e′′X2)X2(1 + e′′X2)

−1 is congruent to X2(1 + e′′X2)
−1X1(1 + e′′X2) modulo I. We can do

this by commuting adjacent terms successively. For example, to show that (1 + e′′X2)
−1X1 is

congruent to X1(1 + e′′X2)
−1 moduli I, we only have to observe that X1(1 + e′′X2) is congruent

to (1 + e′′X2)X1 modulo I, and then multiply by (1 + e′′X2)
−1 on the left and on the right.

We abbreviate our notation by putting Ha,b,e = Hilbn(Va,b,e) and NHa,b,e = NHilbn(Va,b,e).
Thus W1,0,0 = W1,0,e′′ on H1,0,0 ∩ H1,0,e′′ , hence s1,0,0 = s1,0,e′′ on H1,0,0 ∩ H1,0,e′′ as well.

In the second case, we can find a determinant 1 linear transformation of span(x1, x3) taking
(a, b) to (1, 0) and (a′, b′) to (0, 1). Then we use an automorphism of the second type to take Va,b,e
to V1,0,0. This automorphism takes Va′ ,b′ ,e′ to V0,1,e′′ for some e′′. We are reduced to comparing
s1,0,0 and s0,1,e′′ on H1,0,0 ∩ H0,1,e′′ .

If e′′ = 0, we are already done by Proposition 3.2. For e′′ ̸= 0, we first note that H1,0,0 ∩H0,1,e′′ =
H1,0,0 ∩ H0,1,0 ∩ H0,1,e′′ . It follows that the three sections s1,0,0 on H1,0,0, s0,1,0 on H0,1,0, and s0,1,e′′

on H0,1,e′′ are all defined on H1,0,0 ∩ H0,1,e′ and so can be compared there. The first two agree on
H1,0,0 ∩ H0,1,0 by Proposition 3.2 as just noted, and for the last two, they agree on H0,1,0 ∩ H0,1,e′′

by a straightforward calculation analogous to what was just done above. It follows that s1,0,0 and
s0,1,e′′ agree on H1,0,0 ∩ H0,1,e′′ and we are done.

□

Remark. Our methods are easily adapted to construct a d-critical locus structure on the Hilbert
schemes of local P1.
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4. Orientation on (Hilbn(ωS), s)

In this section, we understand S to mean either S = P2 or S = Fn. We use the more generic
notations Uα, Vα, Wα, and sα instead of using Uℓ etc. for S = P2 and Ua,b,e etc. for S = Fn. We first
work out the virtual canonical bundle associated to the d-critical locus (Hilbn(ωS), s) following
the construction in [Dav], see also [21].

Proposition 4.1. Let F be the universal object on Hilbn(ωS) and let π1 : Hilbn(ωS)×ωS → Hilbn(ωS)
be the projection. Then we have

(4.1) KHilbn(ωS),s ≃ (det(π1∗F)∗)2.

Proof. We first prove condition (i) in Definition 2.4. Let (R, U, f , i) = (Hilbn(Vα), Nα, iα, Wα) be
one of the critical charts of (Hilbn(ωS), s) constructed in the proof of Theorem 3.3. It may be more
clear if we use the quiver description of U = Nα. It is well known (see e.g.[2]) that NHilbn(C3) is
isomorphic to the moduli space of stable representations (V∞, V0) of the following quiver:

s∞ s0

x

s0

y
s0

z

a

with V∞ of dimension one and V0 of dimension n. Here the quiver stability condition is equivalent
to the condition that for any nonzero v ∈ V∞, a(v) generates V0 under the action of x, y and z.
Let W ⊆ End(V0, V0)

3 ×Hom(V∞, V0) be the locus of stable representations. Then we have

N := NHilbn(C3) ≃W/GL(n).

We denote the projection from W to N by π. Since GL(n) acts equivariantly on V0 and V∞ thought
of as trivial bundles on W, these bundles descend to bundles E0 and E∞ on N with π∗(E0) ≃ V0
and π∗(E∞) ≃ V∞ equivariantly. We consider the short exact sequence

(4.2) 0→ π∗T∗N → T∗W → T∗W/N → 0

of bundles on W. Note that T∗W/N is a trivial bundle with fiber gl(n)∗, on which GL(n) acts by
the dual of the adjoint action. After modding out by GL(n), (4.2) descends to an exact sequence
of bundles on N

0→ T∗N → G → B→ 0.
Also, det(B) is a trivial bundle, since the determinant of the adjoint action of GL(n) is trivial.
This implies that det(T∗N) ≃ det(G). Also

G ≃ (E∗0 ⊗ E0)⊕ (E∗0 ⊗ E0)⊕ (E∗0 ⊗ E0)⊕ (E∗0 ⊗ E∞).(4.3)

Considering Vα ≃ C3, we have (E0)|Hilbn(Vα) ≃ π1∗F and the global section 1 of π1∗F induces a
trivialization of (E∞)|Hilbn(Vα). Hence we have a canonical isomorphism

K2
Nα
|Hilbn(Vα) ≃ det

(
(E∗0 ) |Hilbn(Vα)

)2
≃ (det(π1∗F)∗|Hilbn(Vα))

2.
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This shows condition (i). We denote the inverse of this isomorphism by ι(Hilbn(Vα),Nα ,iα ,Wα), with
analogous notation for the other charts.

Now consider condition (ii) in Definition 2.4. We need to check that for any embeddings of
critical charts

Φ : (Hilbn(Vα)
′, N′α, i′α, W ′α)→ (Hilbn(Vα), Nα, iα, Wα),

we have

(4.4) ι(Hilbn(Vα),Nα ,iα ,Wα) = i′α|∗Hilbn(Vα)′
(JΦ) ◦ ι(Hilbn(Vα)′ ,N′α ,i′α ,W ′α),

where N′α is a Zariski open subset of Nα and Hilbn(Vα)′ = Hilbn(Vα)∩N′α. From the above, we see
that ι(Hilbn(Vα),Nα ,iα ,Wα) is induced by E0|Hilbn(Vα) ≃ π1∗F|Hilbn(Vα) and ι(Hilbn(Vα)′ ,N′α ,i′α ,W ′α) is induced
by E0|Hilbn(Vα)′ ≃ π1∗F|Hilbn(Vα)′ . The Zariski open immersion N′α → Nα is induced by a change
of coordinates as in Theorem 3.3. The change of coordinates transforms the matrices associated
with the edges x, y, z accordingly, while leaving the universal bundles E0 and E∞ unchanged. So
we naturally obtain (4.4). □

By Proposition 4.1, we see that det(π1∗F)∗ with the isomorphism 4.1 defines an orientation on
(Hilbn(ωS), s). We denote this choice of orientation by K1/2

Hilbn(ω),s. For later use, we also observe
that from the calculations above we infer a canonical isomorphism

(4.5) τHilbn(Vα),Nα ,iα ,Wα
: K1/2

Hilbn(ω),s → KNα |Hilbn(Vα).

induced by π1∗F|Hilbn(Vα) ≃ E0|Hilbn(Vα)

5. Motivic DT invariants for Hilbn(ωS)

In this section we use the d-critical locus structure from Section 3 and the orientation from
Section 4 to compute the motivic DT invariants of Hilbn(ωS), showing that it agrees with the
computation in [2] for S = P2 and S = Fn.

We first recall some definitions used in Section 2.5 and Section 3.4 of [2]. Let X be a quasi-
projective threefold. Then Hilbn(X) admits a stratification

Hilbn(X) = ⨿
γ⊢n

Hilbn
γ(X),

where γ is a partition of n, and Hilbn
γ(X) is the locally closed subscheme of Hilbn(X) parametriz-

ing length n subschemes whose support multiplicities are given by γ. In particular, there are γi
length i clusters in the length n subscheme.

First consider the case of Hilbn(C3). Define the relative motivic class of Hilbn(C3) inMµ̂

Hilbn(C3)

by:

(5.1) [Hilbn(C3)]relvir = L−dim(NHilbn(C3)/2) ⊙MFϕ

NHilbn(C3),W .

Comparing to Theorem 2.6, we see that this is the motivic invariant associated to (Hilbn(C3), W)
without the contribution of a principal Z2-bundle from the orientation. Let [Hilbn

γ(C
3)]relvir to be

the pullback of [Hilbn(C3)]relvir to Hilbn
γ(C

3). On the deepest strata, there is an embedding

(5.2) {0} ×Hilbn(C3)0 ⊂ C3 ×Hilbn(C3)0 ≃ Hilbn
(n)(C

3)
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where Hilbn
(n)(C

3) is the punctual Hilbert scheme. The isomorphism in (5.2) is given by sending
(p, Z) ∈ C3 ×Hilbn(C3)0 to the subscheme Z + p ⊂ C3 obtained by translating Z by p.

Let [Hilbn(C3)0]relvir be the pullback of [Hilbn
(n)(C

3)]relvir to Hilbn(C3)0. Also define the ab-
solute motivic classes to be the pushforwards of the corresponding relative motivic classes to a
point, and denote them by [Hilbn(C3)], [Hilbn

γ(C
3)] and [Hilbn(C3)0] respectively.

Recall the following proposition and definition in [2]:

Proposition 5.1. ([2] Proposition 3.6) (1) The absolute motivic classes [Hilbn
γ(C

3)] and [Hilbn
γ(C

3)0]

live in the subringMC ⊂M
µ̂
C

.
(2) On the closed stratum,

[Hilbn
(n)(C

3)] = L3 · [Hilbn(C3)0] ∈ MC.

(3) More generally, for a general stratum,

[Hilbn
γ(C

3)] = πGγ
([∏

i
(C3)γi \ ∆] ·∏

i
[Hilbi(C3)γi

0 ]).

where the map πGγ
is defined by taking the orbit space on generators.

Definition 5.2. ([2] Definition 4.1) We define motivic classes [Hilbn
γ(X)] ∈ MC and [Hilbn(X)] ∈ MC

as follows.
(1) on the deepest stratum,

[Hilbn
(n)(X)] = [X] · [Hilbn(C3)0].

(2) More generally, on all strata,

[Hilbn
γ(X)] = πGγ

([∏
i

Xγi \ ∆] ·∏
i
[Hilbi(C3)γi

0 ]).

(3) Finally
[Hilbn(X)] = ∑

γ

[Hilbn
γ(X)].

Now consider the case when X = ωS for S = P2 or Fn. Let [Hilbn(ωS)] be defined as in
Definition 5.2. Then we have

Theorem 5.3. Given the d-critical locus (Hilbn(ωS), s) and the choice of orientation

K1/2
Hilb(ωS),s

= det(π1∗F)∗,

the absolute motivic class of the motive given by Theorem 2.6 concides with [Hilbn(ωS)].

Proof. Since we are given a d-critical locus structure with a choice of orientation, by Theorem
2.6 there is a unique globally well defined motivic DT invariant MFHilbn ωS ,s. We continue our
practice of using a generic index γ to be common shorthand for the indexing of either P2 or Fn.
Furthermore, for any critical chart (Rα, Uα, fα, iα) = (Hilbn(Vα), Nα, Wα, iα) this invariant satisfies:

MFHilbn(ωS),s|Hilbn(Vα) = i∗α(L
−dimNα/2 ⊙MFϕ

Nα ,Wα
)⊙ Υ(QHilbn(Vα),Nα ,Wα ,iα) ∈ M

µ̂

Hilbn(Vα)
.

By the construction of KHilbn(ωS),s, we have

ιHilbn(Vα),Nα ,iα ,Wα
= τ2

Hilbn(Vα),Nα ,iα ,Wα
: K(ωS),s|Hilbn(Vα)red → K2

Nα
|Hilbn(Vα)red ,
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where τHilbn(Vα),Nα ,iα ,Wα
is the canonical isomorphism (4.5). Hence the map

αHilbn(Vα) : K1/2
Hilbn(ω),s|Hilbn(Vα)red → i∗α(KNα)|Hilbn(Vα)red

in Theorem 2.6 is identified with τHilbn(Vα),Nα ,iα ,Wα
. It follows that QHilbn(Vα),Nα ,Wα ,iα and therefore

Υ(QHilbn(Vα),Nα ,Wα ,iα) is trivial for each α, implying

MFHilbn(ωS),s|Hilbn(Vα) = [Hilbn(Vα)]relvir.

By Proposition 5.1, [Hilbn(Vα)]relvir ∈ MHilbn(Vα). Since the Hilbn(Vα) cover Hilbn(ωS), it follows
that MFHilbn(ωS),s ∈ MHilbn(ωS)

.
Hence we have

(5.3) MFHilbn(ωS),s = ∑
γ

MFHilbn(ωS),s|Hilbn
γ(ωS)

.

Since
Hilbn

(n)(Vα) ≃ Vα ×Hilbn(C3)0

and W is translation invariant in the sense that

tr([X, Y]Z) = tr([X + xId, Y + yId](Z + zId))

for any (x, y, z) ∈ C3, we see that

[Hilbn
(n)(Vα)]relvir = p∗2 [Hilbn(C3)0]relvir,

where p2 : Vα ×Hilbn(C3)0 → Hilbn(C3)0 is the projection to the second factor. Then on the
deepest stratum, we have

MFHilbn(ωS),s|Hilbn
(n)(Vα) = [Hilbn

(n)(Vα)]relvir = [Vα ×Hilbn(C3)0] ·Hilbn(C3)0
[Hilbn(C3)0]relvir.

We use the subscript to indicate the scheme over which the product of relative motivic classes
takes place. Since the motivic invariant MFHilbn(ωS),s is uniquely determined by its restriction to
the Hilbn(Vα), we have

MFHilbn(ωS),s|Hilbn
(n)(ωS)

= [ωS ×Hilbn(C3)0] ·Hilbn(C3)0
[Hilbn(C3)0]relvir.

Now consider a general stratum. Let Yγ ⊂ ∏i Hilbi
(i)(C

3)γi be the open subset on which the
clusters have distinct supports. We have

MFHilbn(ωS),s|Hilbn
γ(Vα) =[Hilbn

γ(Vα)]relvir

=πGγ
(∏

i
[Hilbi

(i)(C
3)γi ]relvir|Yγ

).

We also have a fiber product expression

∏
i
[Hilbi

(i)(C
3)γi ]relvir = ∏

i
[
(

C3 ×Hilbi(C3)0

)γi
] ·Hilbn

γ,0(C
3) [(Hilbn

γ,0(C
3)]relvir.

where we have put Hilbn
γ,0(C

3) = ∏i

(
Hilbi(C3)0

)γi
.

Then we get

(5.4) MFHilbn(ωS),s|Hilbn
γ(ωS)

= πGγ

([(
∏

i
ω

γi
S − ∆

)
×n

γ,0 (C
3)

]
· [(Hilbn

γ,0(C
3)]relvir

)
,
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where ∆ ⊂ ∏i ω
γi
S is the big diagonal.

Taking the absolute motivic class of (5.3) and using (5.4), we see that the absolute motive of
MFHilbn(ωS),s matches the motivic class of [2] from Definition 5.2, completing the proof. □

These absolute motives can be combined into a generating function

ZωS(t) =
∞

∑
n=0

MFHilbn(ωS),stn.

Let Exp denote the plethystic exponential.

Corollary 5.4.

ZωS(t) =


Exp

(
L−1/2(L2+L+1)t

(1−L1/2t)(1−L−1/2t)

)
S = P2

Exp
(

L−1/2(L2+2L+1)t
(1−L1/2t)(1−L−1/2t)

)
S = Fn.

Proof. Follows immediately from [2, Theorem 4.3], Theorem 5.3, [ωS] = L[S] for any S, [P2] =
L2 + L + 1, and [Fn] = L2 + 2L + 1. □

Remark. We expect that our methods are adaptable to other local toric Calabi-Yaus. We leave
this investigation for future work.
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