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1 Introduction

The predominant component of matter in the Universe, contributing ∼ 85%, resides in
mysterious dark matter (DM) (see e.g. ref. [1] for an overview). Despite decades of effort, DM
continues to evade direct detection aiming to detect DM energy depositions in experiments
due to non-gravitational DM interactions. Significant attention has been devoted to exploring
weakly interacting massive particles (WIMPs), which have typical masses in the range of
∼ 1 GeV–100 TeV (see e.g. refs. [2, 3] for reviews). A well-motivated class of DM that has been
less studied is ultralight dark matter (ULDM) [4], having mass mϕ ≲ 1 eV. With such small
mϕ, the DM is characterised by very large occupation numbers and behaves like a coherent
classical wave (e.g. [5, 6]). The associated direct DM detection signatures are also distinct.

In the case of scalar ULDM, direct couplings with the Standard Model (SM) can lead
to the variation of fundamental constants, such as the fine-structure constant α [7, 8]. The
experimental program searching for scalar ULDM has particularly benefited from variety of
approaches based on high-precision instruments [4, 9, 10], such as atomic clocks [7, 11–21],
optical cavities [22–25], spectroscopy [26, 27], mechanical resonators [28–30], optical interfer-
ometers [31–36], atom interferometers [37, 38], tests of the equivalence principle (EP) [39, 40],
and fifth force searches [41–43] whose complementary sensitivities span and cover a wide
ULDM mass range.

ULDM can form gravitationally-bound boson stars [44–46] through both gravitational
interactions [47, 48] and the self-interactions of the ULDM field [49–51]. In the presence of
attractive self-interactions, the boson star is expected to become unstable once it reaches a
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critical mass. This occurs when the density of the boson star increases enough for the ULDM
self-interactions to destablize the previously-established hydrostatic equilibrium between the
boson star’s gravitational and the gradient energies [52–54]. Subsequently, the boson star
collapses and, due to the same self-interactions, explodes in a bosenova event, copiously
emitting relativistic ULDM scalars [55–58]. Due to wave-spreading of relativistic scalar bursts
in-flight away from the source the signal can persist for a significant time, even months
to years, as it traverses terrestrial or space-based experiments [59]. In previous work [60],
we explored transient signals from bosenovae, establishing prospects for enhanced reach in
case of dilatonic ULDM couplings to SM present at first order in the effective field theory
(EFT). Some of us also have explored the prospects for the detection of bosenovae from axion
stars [59]. Complementarly, relativistic particles originating from historic bosenova events
can contribute to diffuse background with distinct observable signatures [61].

In this work we explore the detection prospects for bosenovae focusing on quadratic
couplings of ULDM to the SM. Quadratic couplings could dominate over linear ULDM
couplings in scenarios with additional symmetries, such as a Z2 symmetry under which ULDM
ϕ field is odd. This is readily realized for axions, which transform as a pseudoscalar field under
parity symmetry. As a consequence, axion-like fields including the QCD axion generically
possess quadratic couplings without corresponding linear “dilatonic” coupling [62–64]. In
contrast to the analysis of observational bosenova signatures with linear ULDM couplings
to SM [60], quadratic interactions posses additional phenomenological consequences, such
as screening of the field in the presence of ordinary matter [39].

The paper is organized as follows. First, in section 2 we describe the EFT characterizing
the ULDM-SM interactions, as well as the self-interaction coupling. Then, in section 3 we
give an overview of boson stars and bosenovae which provide the astrophysical signal. Next,
in section 4 we give an outline of the detection methods for bosenovae and experimental
sensitivities. In section 5 we describe implications of our results. We conclude in section 6.

2 Theoretical model

2.1 Effective interactions

A real scalar field ϕ can be generally characterized by a Lagrangian

Lϕ = 1
2∂µϕ∂µϕ − 1

2m2
ϕϕ2 + λ

4!ϕ
4 + . . . (2.1)

where mϕ is the field’s mass and λ is the self-interaction coupling, and the [. . . ] indicate
possible terms with higher powers of ϕ. Here, we consider ϕ to constitute ULDM with mass
mϕ ≲ eV and treat |λ| ≪ 1 as a free parameter that depends on the underlying theory. We
focus on parameter space λ > 0, denoting attractive self-interactions between ϕ particles.1
In section 2.3 we discuss various constraints on λ.

The couplings of ϕ with the SM, and as a consequence their optimal detection methods,
will depend on the symmetries such as the parity of the model. Axions and axion-like
particles more generally (see e.g. [10]) are typically parity-odd, which implies derivative

1This is also motivated by some theoretical considerations, see e.g. [65].
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couplings to SM fields. On the other hand, parity-even fields (see e.g. [9]) have different
interactions with SM fields. As we discuss below, this leads to distinct detection prospects
and promising search strategies.

We can generally characterize the possible dilatonic-type (i.e. parity-even) couplings of
ϕ to the SM by their EFT Lagrangian contributions

Lint =
∑
n,i

d
(n)
i

(√4π ϕ

Mpl

)n

Oi
SM , (2.2)

where Mpl = 1.2 × 1019 GeV is the Planck mass and Oi
SM are dimension-four SM operators

labeled by index i. In this parametrization the d
(n)
i couplings are dimensionless. Throughout,

we will focus on scalars with quadratic ∝ ϕ2 interactions with SM constituents, corresponding
to eq. (2.2) with n = 2. In particular, we consider

Lint ⊃
4π ϕ2

M2
pl

(
d(2)

me
meee − d

(2)
e

4 FµνF µν − d
(2)
g β(gs)

2gs
Ga

µνGaµν
)

, (2.3)

where d
(2)
me , d

(2)
e and d

(2)
g are couplings of ϕ2 to SM, Fµν is the electromagnetic field strength

tensor, Ga
µν is the quantum chromodynamics (QCD) field strength tensor, and e is the

electron field with mass me. The gluon interactions depend on the ratio β(gs)/gs of the
QCD beta function to the strong coupling.

In the presence of the couplings described in eq. (2.3), classical oscillations of the ULDM
field at frequency of order mϕ lead to oscillations of the fundamental constants, me/mp

(electron-to-proton mass ratio), α (fine structure constant), and mq/ΛQCD (ratio of quark
mass to QCD scale), respectively. As we discuss, this allows for unique opportunities to
search for their manifestations in quantum sensing experiments. Typically, such searches
focus on detecting the local DM abundance in the vicinity of Earth, which is expected to have
an energy density of order ρDM ≃ 0.4 GeV/cm3 [66]. However, burst emissions of relativistic
ULDM arising from Galactic transient sources establish novel and unique complementary
observational targets [59, 60]. Previously [60], we analyzed the detection prospects for ULDM
with linear ∝ ϕ interactions with the SM constituents, corresponding to n = 1 case in
eq. (2.2). In this study, we analyze the signatures and detection prospects for ULDM scalars
with quadratic SM couplings.

2.2 Screening

A distinct consequence of quadratic ULDM couplings to SM is the screening of ϕ fields,
arising from an increase in their effective masses in the presence of large densities of SM fields
in various environments [39]. These effects can lead to significantly decreased sensitivities to
such interactions in cases where critical screening occurs. In particular, for ULDM couplings
proportional to ϕ2 the presence of SM fields modifies the effective mass of ϕ as

m2
eff,ϕ = m2

ϕ + ∆m2
eff,ϕ = m2

ϕ +
∑

i

8π d
(2)
i ⟨Oi

SM⟩
M2

pl
, (2.4)

where
⟨Oi

SM⟩ ≡ ρi = ⟨meēe⟩,
〈
− 1

4FµνF µν
〉

,

〈
− β(gs)

2gs
Ga

µνGaµν
〉

(2.5)
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Δm2eff,ϕ = ∑
i

8π d(2)i ρi
M2

pl

ϕ

ϕ Reflects

Transmits

Potential Barrier

Eϕ > VBarrier

Eϕ < VBarrier

Earth

Exponential 
suppression of  

inside Earth
ϕ

VBarrier ≡
Δm2eff,ϕ
mϕ

Figure 1. A pictorial representation of the Earth screening a ULDM wave, analogous to typical
finite width barrier problems in quantum mechanics. Due to the quadratic ϕ−SM coupling, the Earth
represents a potential barrier, whose height is equivalent to Vbarrier ≡

∑
i 8π d

(2)
i ρi/(mϕM2

pl). If the
DM has kinetic energy greater than the height of the potential barrier, the DM will primarily reflect
off the barrier, with an exponentially suppressed profile inside the Earth.

are the expectation values of the SM operators in the presence of electron, photon and gluon
SM fields, which represent the energy density of those fields in a medium. In environments
with sufficiently dense SM matter, such as the Earth, the effective mass of traversing ϕ can
become greater than its total energy. This leads to an exponentially decaying field profile
inside, such as in case of the Earth. As we illustrate in figure 1, the considered system can be
also viewed akin to a quantum mechanical potential barrier of finite width whose potential
energy is larger than the particle’s kinetic energy, where the transmission probability of the
field in those regions becomes significantly suppressed. In this case, the potential barrier
height is governed by the change in effective mass between different regions, eq. (2.4).

The critical coupling above which the field ϕ becomes exponentially screened depends on
the density of the environment of interest, and for terrestrial experiments particularly relevant
is that of Earth. In the case where d

(2)
i > 0, the characteristic critical coupling is given by

d
(2), crit
i = M2

pl
1/R2 + E2

ϕ − m2
ϕ

8πρi
, (2.6)

where Eϕ =
√

p2
ϕ + m2

ϕ is the total energy of ϕ and R is the radius of the Earth, which
plays the role of the potential-barrier width. For terrestrial experiments, the SM energy
density ρi ≃ 10−4ρ⊕, 10−3ρ⊕, ρ⊕ for the electron, photon, and gluon coupling respectively,2
where ρ⊕ ≃ 1 − 10 g/cm3 is of order the mass density of Earth. This sets an upper limit on
the coupling that can be probed, for example, for the gluon coupling it is approximately
d

(2),crit
g ≃ 108 for mϕ ≲ 10−14 eV. The constraint weakens at larger mϕ, due to the finite-size

effect becoming subdominant, i.e. when E2
ϕ − m2

ϕ ≡ p2
ϕ > 1/R2 in eq. (2.6). Analogously,

2These fractions can be derived from a semi-empirical formula for the distribution of mass and energy in
atoms composing the Earth; see e.g. [67].
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there also exists critical coupling associated with the dense medium of the experimental
apparatus itself. However, it corresponds to a significantly larger values of the dilatonic
coupling. Thus, high-precision space-based experiments sensitive to smaller couplings that are
unaffected by dense terrestrial environments, are advantageous for probing broader parameter
space of ULDM couplings.

We note that dilatonic ULDM couplings with an opposite, negative, sign can in principle
also appear. This is a more complicated situation with rich phenomenology, where higher-
order effects are expected to be prominent and is beyond the scope of the present study.
Here, we only discuss positive sign interactions and leave a thorough general investigation
of other scenarios for future work [68].

2.3 Constraints on self-interaction coupling λ

2.3.1 Observational constraints

There are a number of observational constraints on ULDM, which we summarize below
and represent quantitatively in figure 3. First, we consider those that arise purely from
gravitational interactions and depend only on the mass mϕ.

• Lyman–α: ULDM fields can have significant de Broglie wavelengths that are relevant
on astrophysical scales. Their presence can suppress cosmic structure growth below
certain scales. Observations of the matter power spectrum using Lyman-α forest neutral
hydrogen absorption seen in high-redshift quasar spectra imply that [69, 70]

mϕ ≳ 10−21 eV . (2.7)

• Ultrafaint dwarf (UFD) galaxies: wave-like fluctuations in the ULDM density field can
induce anomalous heating of stellar populations [6, 71–73]. Observations of velocity
dispersions in cold UFD galaxies suggest that [74]

mϕ ≳ 10−19 eV . (2.8)

Note that this constraint depends on various assumptions, including that the DM in
the outer regions of considered galaxies is not tidally stripped by galaxy mergers or
encounters (see e.g. [75]) and that boson star formation inside does not diminish heating
effects. See ref. [76] for further discussion.

Additionally, there are variety of observational constraints that depend on the ULDM
self-interaction coupling λ.

• Bullet Cluster : the distribution of matter in the colliding Bullet Cluster of galaxies
constrains the size of the DM self-interaction cross section [77], for ULDM giving

λ ≲ 10−38
(

mϕ

10−18 eV

)3/2
. (2.9)
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• Structure formation: sizable attractive (repulsive) ULDM self-couplings can lead to
enhancement (suppression) of the matter power spectrum on astrophysical and cosmo-
logical scales (e.g. [65, 78]). Observations on scales of O(Mpc) imply [79]

λ ≲ 3 × 10−79
(

mϕ

10−18 eV

)4
. (2.10)

Such constraints can become even stronger if the growth of structure begins earlier
than the epoch of matter-radiation equality [80].

• Black-hole superradiance (BHSR): rotating black holes can spin down by copiously
generating ULDM particles in a gravitational-atom-like cloud configuration. Obser-
vations of rapidly spinning black holes can thus constrain existence of such ULDM
fields. Astrophysical stellar-mass black holes can constrain ULDM in the mass range
2 × 10−13 eV ≲ mϕ ≲ 3 × 10−12 eV [29, 81–83], whereas supermassive black holes are
sensitive to 3 × 10−21 eV ≲ mϕ ≲ 2 × 10−17 eV [84]. Sizable ULDM self-interactions
can quench the growth of superradiant instability and particle generation [83, 85],
alleviating the constraints when

|λ| ≳ 10−84
(

mϕ

10−18 eV

)5/2
. (2.11)

We stress that the BHSR constraints depend sensitively on challenging astrophysical
measurements and accurate determination of black hole spins, with high degree of
uncertainty.

More detailed discussion of these constraints can be found in ref. [60], and references
therein. In our sensitivity estimates, we use the following benchmark for the self-coupling:

λb = 10−90
(

mϕ

5 × 10−21 eV

)4
, (2.12)

which is indicated by a black dashed line in figure 3. Given the challenges and uncertainties
associated with establishing robust BHSR bounds, we do not include them in λb here. In
appendix A (see black dotted line in figure 3) we present results for an alternative analysis
with a discontinuous λ benchmark, which is taken to satisfy the expected BHSR limits.

2.3.2 Naturalness

The overall ϕ4 self-interaction in eq. (2.1) is generated not only by the bare parameter λ0,
which originates in the high-energy (UV) potential of ϕ, but also by the ϕ-SM couplings
with contributions arising at loop level; the relevant diagrams at one-loop level are shown in
figure 2. We can outline a limitation on λ motivated by naturalness, i.e. by requiring that
contributions due to ϕ-SM interactions at one-loop level are not significantly greater than the
effective coupling λ, thus avoiding unnatural cancellation of these contributions with the bare
Lagrangian parameter. We emphasize that the resulting upper limit on λ will depend on the
unknown dilatonic coupling and more generally does not constitute a strict bound. Instead,
our estimates show a rough guideline for where the one-loop effects begin to become important.
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ϕ

ϕ

ϕ

ϕ
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g

Figure 2. One-loop diagrams that generate corrections to ULDM self-interaction coupling λ

originating from the quadratic couplings to SM d
(2)
me (top left), d

(2)
e (top right) and d

(2)
g (bottom). See

eq. (2.3) of text.

Accounting for the contribution of one-loop diagrams in figure 2 at an ultraviolet (UV)
cutoff scale ΛUV, the quartic coupling scales as

λ(ΛUV) ≃ λ(µ0) − (d(2)
me)2m2

e

4π2M4
pl

Λ2
UV + (d(2)

e )2

8π2M4
pl

Λ4
UV + 2(d(2)

g β(gs))2

π2g2
sM4

pl
Λ4

UV , (2.13)

where µ0 ≪ ΛUV is a reference energy scale. The same couplings in eq. (2.3) imply divergent
contributions δm2

ϕ to the ULDM mass mϕ (see e.g. [86] for a recent review). Requiring a
“natural” ULDM mass, with corrections being subdominant δmϕ ≲ mϕ, implies

Λme
UV ≲

2πMplmϕ

me

√
d

(2)
me

, (2.14)

Λe
UV ≲

(8π2M2
plm

2
ϕ

d
(2)
e

)1/4
, (2.15)

Λg
UV ≲

(4π2M2
plgsm2

ϕ

β(gs)d(2)
g

)1/4
. (2.16)

Applying these limits to eq. (2.13), the naturalness limits on renormalized self-couplings are

λ ≳
d

(2)
mem2

ϕ

M2
pl

, (2.17)

λ ≳
d

(2)
e m2

ϕ

M2
pl

, (2.18)

λ ≳
8d

(2)
g β(gs)m2

ϕ

gsM2
pl

. (2.19)

To summarize, a theory with a UV cutoff satisfying eqs. (2.14)–(2.16) and self-coupling
satisfying eqs. (2.17)–(2.19) can be considered natural in both its quadratic (i.e. mass) and
quartic (i.e. self-interaction coupling) UV contributions at one-loop order.

The constraints from naturalness are shown in figure 3 for a benchmark choice of the
dilatonic coupling d

(2)
i = 10−4, which is allowed by all current experimental bounds. We note

that dilatonic couplings that are larger than this are also allowed by experimental constraints
at the higher end of the mass spectrum (see section 5 for details), and also the dilatonic
couplings could be significantly smaller. The naturalness constraint depends on the choice

– 7 –



J
H
E
P
0
8
(
2
0
2
4
)
2
2
2

-23 -20 -17 -14 -11 -8 -5
log(mφ/eV)

-100

-80

-60

-40

-20

lo
g(
λ
)

Naturalness with d
(2)
e,me

=O(10
−4 )

Naturalness with d
(2)
g

=O(10
−4 )

Bullet Cluster

Str
uct

ure
Form

ati
on

Rc<RS

U
F
D

←

L
y
m

a
n
−
α

BHSR

BHSR
λb

λ
′
b

Figure 3. Constraints on ULDM self-interaction λ versus mass mϕ. The bounds from the Bullet
Cluster (cyan) [77], structure formation (orange) [79], Lyman-α [69, 70] and ultra-faint dwarf (UFD)
galaxies [74] (red vertical thick and dashed lines, respectively), black hole superradiance [83, 84]
(BHSR, brown), as well as the lower bounds for naturalness arising from d

(2)
me,e (red), and d

(2)
g (pink)

are shown. The naturalness lines assume benchmark values for the couplings that are allowed by
current experimental observations, as labeled. We also illustrate the region where critical boson
stars would not undergo bosenova due to general relativistic effects (purple hatched region). The
dashed black line represents the benchmark λb that we choose at each mass, as given in eq. (2.12)
and discussed in the section 2.3. The dotted black line shows the benchmark λ′

b we choose when we
consider the BHSR bounds, given in eq. (A.1). See text for details.

of dilatonic coupling linearly, as can be seen from eqs. (2.17)–(2.19). While we illustrate
constraints from naturalness considerations, we do not consider them here as strict limits
for our choice of benchmark parameter values of self-interaction coupling λ.

3 Boson stars and bosenovae

ULDM can form gravitationally-bound objects known as boson stars [44–46]. The most
important quantity characterizing a boson star is its mass M , which can grow in astrophysical
environments, through accretion [47, 48, 87–89] or mergers [90–95], until it reaches a critical
value [52–54]

Mc = 10Mpl√
λ

, (3.1)

assuming attractive self-interactions λ > 0. Subsequently, the boson star collapses. Due to
the minus sign on the one-loop electron correction (see figure 2 and eq. 2.13), one might
consider whether or not the electron loops could contribute more during the final moments of
the boson star collapse, and cause the λ to flip sign, resulting in a respulsive self-interaction.
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However, since the energies associated with the bosenova are ∼ a few×mϕ, the shift in energy
of the process is only a factor of a few, which is still much lower than the electron mass.
We therefore do not expect this to be an important effect. In this work, we are interested
in transient signals associated with such events.

Importantly, if λ is too small, the corresponding critical radius Rc ≃ 0.5Mpl
√

λ/mϕ of
a boson star would be smaller than its Schwarzschild radius RS = 2Mc/M2

pl. Hence, we
will be interested only in couplings for which the critical radius satisfies Rc > RS , which
is equivalent to the condition

λ ≳ λBH ≡ 40
m2

ϕ

M2
pl

. (3.2)

This limit is illustrated by the shaded purple region in figure 3. The benchmark λb of
eq. (2.12) can be written as λb = 10λBH.

When a boson star reaches the critical mass in eq. (3.1), it collapses gravitationally and
emits O(1) of its mass fraction in the form of semi-relativistic ULDM particles [55–58]. This
so-called bosenova emission of energetic particles has already been established to constitute
a novel fruitful source of signatures that is complementary to the conventional searches
for cold DM [59, 60].

Key properties of the bosenova emission from a boson star have been obtained with
numerical simulations [56]. Of interest for our work, the leading peak of the emission
spectrum occurs around particle momentum of k̄ ≃ 2.4mϕ with a spread of δk ≃ mϕ (see
also refs. [96, 97]). This first peak can be understood by energy conservation, as it is expected
to be generated by 3-to-1 (ϕϕϕ → ϕ) annihilation, where the initial state consists of bound
state ϕ with energies comparable to their masses. Energy conservation then implies an
energy for the outgoing ϕ of order ∼ 3mϕ. The total energy emitted in this range can
be estimated as [59, 60]

Epeak ≃ 103 mϕ

λ
. (3.3)

The emission is expected to be approximately spherically symmetric, and therefore associated
ULDM bursts will travel in spherical waves from the source to the detector.

After emission, the relativistic ULDM wave will spread in-flight along the radial direction
from the source. We briefly outline the consequences of these effects below, with a com-
prehensive discussion given in refs. [59, 60]. For emission sources located at astrophysical
distances r, the wave spreading in-flight rapidly comes to dominate the intrinsic burst duration
δt0 ≃ 400/mϕ [56], which is intuitively proportional to the characteristic oscillation timescale
of the bosons, 1/mϕ. However, we find that given the relatively low energies of the emitted
bosons, Eϕ ≃ few × mϕ, the effect of wave-spreading dominates the signal duration, and the
internal burst time does not significantly modify the result. Due to this, we only need to
consider the signal duration due to wavespreading. This can result in a persistent signal
of a significant duration at detector site

δt ≃ δk

mϕ

r

q2
√

q2 + 1
≃ 0.2 year

(
r

pc

)
, (3.4)
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where q ≡ k̄/mϕ ≃ 2.4 for the bosenova. Eq. (3.4) indicates the timescales on which
the relativistic bosenova waves can interact in the detector. Since the signal duration is
significantly protracted, one can benefit from long integration time as the burst passes
through the experiment, as opposed to searching only for a signal from the leading edge of
the wavefront. The typical energy density of a bosenova at the detector site, taking into
account wave spreading in-flight, is given by

ρ∗ = Epeak
4πr2δx

≃ 3ρDM

(
mϕ

10−15 eV

)(10−80

λ

)(pc
r

)3
, (3.5)

where δx ≃ δt is the spatial spread of the wave, and we have normalized to the background DM
density to the local DM density near the vicinity of Earth ρDM ≃ 0.4 GeV/cm3 (see e.g. [66]).

Another important consequence of the wave spreading is that the momentum modes in
the wave become increasingly separated. Hence, the energy deposited in a given detector
will “chirp” from high to low frequency over timescales δt. Although the wave is incoherent
at the source, due to this spreading of momentum modes, at any given time the wavefront
depositing energy in the detector can posses significant degree of coherence. The effective
coherence timescale for the bosenova, after traveling a distance r, is given by [59]

τ∗ ≃
2πr

q3ξ
≃ 4 × 10−3 year

(
r

pc

)
, (3.6)

where ξ ≡ mϕδt0 ≃ 400 is linked to the intrinsic burst duration δt0 of the emission. This can
be compared to the typical coherence time in the DM signal, τDM ≃ 2π/(mϕv2

vir) ≃ 107/mϕ,
where vvir ≃ 10−3 is the virial velocity of the DM.

Combining the results above, for a given direct DM detection experiment we can relate its
sensitivity to a bosenova signal, characterized by the coupling d

(2)
i,∗ , to its sensitivity expected

for a cold DM signal, characterized by d
(2)
i,DM. The ratio is given by

d
(2)
i,∗

d
(2)
i,DM

≃ ρDM
ρ∗

t
1/4
int min

(
τ

1/4
DM, t

1/4
int

)
min

(
(δt)1/4, t

1/4
int

)
min

(
τ

1/4
∗ , t

1/4
int

) , (3.7)

where tint is the livetime of the experiment, which we assume to be tint = 1 year. Note
that both sensitivities should be evaluated at the same frequency Eϕ, which will correspond
to different mϕ shifted by k̄/mϕ ≃ O(few) in this case, i.e. Eϕ ≃ mϕ for cold DM and
Eϕ =

√
k̄2 + m2

ϕ ≃ 2.6 mϕ for the bosenova peak described above. When eq. (3.7) is smaller
than unity, a given experiment can probe couplings with higher sensitivity for a bosenova
signal, if such occurs during the experimental livetime within a distance r, than to the
cold DM signal.

The expected rate of bosenovae in the Galaxy is a complex topic worthy of a dedicated
study beyond the scope of the present work. The predictions depend on variety of considera-
tions including cosmological evolution [98–103] and structure formation [104–108] for ULDM,
as well as details of boson star formation [47–51], tidal stripping [109–111], accretion [87–89]
and mergers [90–95], among others. See also refs. [59, 60] for further discussion. Recent
studies, under various simplifying assumptions, have estimated the DM fraction expected

– 10 –



J
H
E
P
0
8
(
2
0
2
4
)
2
2
2

to consist of boson stars finding fractions of few to tens of percent [112, 113]. Additionally,
ref. [114] found that the rate of bosenovae in a Milky Way-like galaxy can be as large as a
few per day, depending on the model. Given the uncertainties and complexity of population
statistics and event rate estimates, in this study, instead, we focus on characterizing signals
and features of a singular bosenova event.

We emphasize that although we focus on bosenovae events here, our analysis methodology
is applicable to other potential sources of transient signals, such as instabilities of superradiant
clouds around black holes or gravitational atoms around stars. Recently, it has been shown
that intriguing signatures can result from accumulation of such emissions over time to
comprise, in case of axions, diffuse axion background [61].

4 Detection

4.1 Detection methods

A variety of distinct experiments can sensitively probe variations in fundamental constants
that can result from ULDM interactions with SM, including the fine-structure constant α.
We refer to ref. [9] for detailed discussion of experimental probes, and below summarize the
searches which are relevant to our results discussed in section 5.

• Atomic, molecular and nuclear clocks: atomic, molecular, and nuclear energy levels
depend on fundamental constant values, with variations resulting in observable modifi-
cation of clock frequency ratios. Comparing ratios between distinct clocks allows for
unique probes of new physics interactions. Clock that are based on transitions between
different electronic configurations are referred to as “optical” clocks. Microwave clocks
are based on transitions between atomic ground state hyperfine substates. Molecular
clocks are based on various transitions in molecules and molecular ions. All of the
clock comparisons experiments are sensitive to de. Optical clock frequency ratios are
also sensitive to dg via the oscillating nuclear radius [18]. Optical to microwave clock
comparisons are sensitive to dme and dg in addition to de.
Limits to dme include 133Cs/87Rb atomic fountain clock frequency ratio [16], frequency
comparison between 171Yb optical lattice clock and 133Cs fountain microwave clock [15],
and a comparison of Rb hyperfine transition with quartz oscillator [20].
The limits on de come from frequency ratio measurements of 27Al+, 171Yb and 87Sr
optical clocks (BACON) [12], frequency ratios of the E3 transition in a single-ion
171Yb+ clock with E2 transition in the same ion and with and 171Yb+ 87Sr optical
lattice clock [13], and a dynamical decoupling demonstration in Sr+ trapped ion clock
transition [17].
The limits on dg come from the 133Cs/87Rb atomic fountain clock frequency ratio [16],
the limits from oscillating nuclear radius effects in 171Yb+ ion clock [18], and 171Yb
optical lattice clock and 133Cs fountain microwave clock comparison [15]. A significant
improvement in dme limits is expected with the SrOH molecular experiment [19].
Very high sensitivity to variation of fundamental constants is expected of the nuclear
clock [115], which rely on a nuclear transition in 229Th, leading to potential orders of
magnitude improvement in de and dg [9].
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• Optical cavities: variations of fundamental constants can induce modifications of physical
dimensions of solid objects, which can be observable when sound waves propagate
through objects faster than the relaxation response time. Effects of ULDM can be
sensitively probed by cavity reference frequency comparisons. H-maser comparison
with a Si cavity [22] provides limits to dme and dg, comparison of Cs frequency with
a cavity [23] is sensitive to dme and de, while frequency comparisons of strontium
optical clock with silicon cavity [22], and H-maser and sapphire oscillator with quartz
oscillator [24] are sensitive to de. A proposal for a future cavity experiment [25] offers
sensitivity to dme in a different mass range to the current optical cavity searches.

• Spectroscopy: variations in fundamental constants due to ULDM-SM couplings that
lead to observable signatures in atomic and molecular spectra are the basis of clock
searches. However, other spectroscopy experiments can also be used for this purpose.
These include molecular spectroscopy of iodine molecules [26], frequency comparisons of
164Dy with quartz oscillator [20], and between two isotopes of dysprosium (Dy/Dy) [27],
which are all sensitive to de.

• Mechanical resonators: both torsion balances and optical-cavity-based ULDM searches
involve the measurement of the deformation of an elastic body (the mechanical response)
produced by a weak force [9]. The deformation can be amplified by a factor as large
as the resonance Q factor if the body has internal resonances at the ULDM Compton
frequency, yielding massive sensitivity enhancement over a narrow bandwidth.

Results from AURIGA [28] were used to put constraints on ULDM-SM coupling. Future
experiments include DUAL gravitational wave detector [29] and compact acoustic
resonators composed of superfluid Helium and crystals (Sapphire, Pillar, Quartz) [30]
sensitive to both dme and de.

• Optical interferometers: modern optical interferometers can operate beyond the quantum
shot-noise limit, thus offering high sensitivity to minute changes in the optical path length
of their arms. Such interferometers have been used to search for and detect gravitational
waves. Variations in fundamental constants due to ULDM would manifest as changes
in electronic modes and lattice spacing of materials, leading to measurable change in
size and refractive index of the interferometer. Using this principle, DAMNED [116],
Fermi Holometer [34], GEO 600 [35] and LIGO O3 [36] have been used to constrain
ULDM couplings to electrons and photons.

• Atom interferometers: atom interferometers involve splitting of matter waves and
recombining them using coordinated laser pulses. Particularly high sensitivity can
be achieved for large-scale interferometers, prompting considerations of space-based
interferometers. Here, we consider projected constraints on dme and de from terrestrial
AION and space-based AEDGE [37], and terrestrial MAGIS [38] proposals.

We refer to the searches above as direct DM (DDM) searches due to the nature of their
coupling directly to the DM background (see section 4.2 for details). In addition to these
direct searches, there are searches for ULDM emission or absorption in physical systems,
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which are outlined below. As we will explain in section 4.2, the sensitivity of such probes
will scale differently with the local DM density compared to direct searches.

• Equivalence-principle tests: ultralight scalars can induce violations in the Einstein
equivalence principle (EP). Torsion balances can measure differences in forces acting
on massive objects, and thus can be used to test EP violation, such as the Eöt-Wash
experiment [39], which gives constraints on dme and de. The space-based MICROSCOPE
experiment tests the same by measuring the difference in accelerations of two freely-
falling objects of differing composition in orbit around the Earth [40], and is sensitive
to dme , de and dg.

• Fifth-force tests: scalar coupling to SM fields can lead to Yukawa-type interactions
between matter, modifying Newton’s law of universal gravitation. Tests of such “fifth
forces” can constrain linear ULDM-SM couplings [41, 43].

• Astrophysical bounds: massive self-interacting ultralight fields contribute to the evolution
of the matter power spectrum (see our previous work for more details [60]). We have
outlined several astrophysical constraints on the ULDM parameter space in section 2.3.
Constraints on photon emissivity in supernova cores from astrophysical observations
can also be used to constrain ULDM-photon coupling [117].

4.2 Differences with linear couplings

Comparing to linear interactions, experimental sensitivities to fifth-forces and equivalence-
principle (EP) violation are drastically modified for quadratic interactions. For linear
interactions, long-range forces mediated by ϕ arise at tree-level. However, for quadratic
interactions, they are loop-level processes, and require the exchange of two ϕ fields at a vertex.
The long-range effective force between the Earth and each test mass therefore depends on
the background density of dark matter nearby.

To analyze the difference quantitatively, we estimate the acceleration of test masses
near the Earth as

|⃗a| ≃ α̃(ϕ)(∇ϕ + v⃗ϕ̇) , (4.1)

where α̃(ϕ) ∝ ϕ is a coupling function (for details, see refs. [39, 118–120]). The differential
acceleration between two test masses is generated by the gradient of the ϕ profile caused
by massive nearby objects. EP violation experiments seek to measure the difference in
gravitational acceleration experienced by test masses with different compositions. In this case,
the central body corresponds to the Earth, which generates a significant gradient. Because of
this, EP tests depend on the ϕ background, and there exists an effective long-range force.
However, fifth-force searches, search for a violation of the inverse square law between two
test masses on small scales, where the gradient in the ϕ profile generated by the test masses
is negligible. As a consequence, the fifth force searches rely purely on the quantum potential,
Vϕ2(r) ∼ r−3 [118], leading to significant suppression of their sensitivity.
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The ratio of sensitivities of a given experiment to the dilatonic couplings of ultralight
scalar dark matter to SM fields (i ∈ (me, e, g)) for the quadratic and linear cases is (see [118])(

d
(2)
i

d
(1)
i

)
EP

= MPlmϕ√
ρDM

, (4.2)

(
d

(2)
i

d
(1)
i

)
DDM

= 23/2 MPlmϕ√
ρDM

, (4.3)

for EP-type and direct dark matter detection experiments. In our results, all experimental
lines scale from the linear case in either of these two ways. Astrophysical observational bounds
due to Lyman-α forest [69, 70], UFDs [74] and supernova constraints on γγ → ϕϕ [117] are
analogous to the case of linear couplings.

Finally, the quadratic coupling case can induce screening of the field (as discussed in
section 2), which is not the case for linear couplings. The terrestrial experiments are therefore
at a disadvantage because they cannot probe arbitrarily large dilatonic couplings, and must
reach sensitivities beyond the critical dilatonic coupling in eq. (2.6). All direct-detection and
EP experiments that are based on the Earth are subject to this screening, which provides
important motivation for future space-based searches.

5 Results

We find that bosenovae can lead to large enhancements of the ULDM density at experimental
sites in a wide range of the parameter space. Our results complement those of ref. [60] that
analyzed bosenovae signatures for linear ULDM couplings to SM constituents. However, in
our studied case of quadratic couplings, the signal enhancement is greater than for linear
couplings. This is because the sensitivity reach of quadratic couplings follows a scaling relation
of d

(2)
i,∗ /d

(2)
i,DM ∼ ρDM/ρ∗, as opposed to d

(1)
i,∗ /d

(1)
i,DM ∼

√
ρDM/ρ∗ for linear couplings [60]. We

demonstrate the sensitivity enhancement in the case of a bosenova search using eq. (3.7) for
the parameter space of mϕ − λ plane in figure 4. The region below the dotted white line
indicates d

(2)
i,∗ /d

(2)
i,DM < 1, implying improved sensitivity to a bosenova search provided that

such a transient event occurs within distance r from detector. We find that the reach for
ULDM dilatonic couplings could be over 10 orders of magnitude better than that of cold
DM in case of a bosenova occurring below ≲ kpc of experimental site.

In figures 5, 6, and 7, we display the electron (d(2)
me), photon (d(2)

e ), and gluon (d(2)
g )

ULDM coupling reach associated with bosenova events as a function of Eϕ = 2.6 mϕ, where
the energy of the scalar field is identified with the expected from simulations leading peak
in the emission spectrum from a boson star explosion [56]. We showcase results for two
benchmark distances between the Earth and the bosenova of r = 1 pc (dashed black) and
r = 1 kpc (dotted black), considering reference coupling λ from eq. (2.12). Each figure
displays four panels, separated by the current (left column) and the projected (right column)
experiments, and terrestrial (top row) as well as space-based (bottom row) experiments.
The terrestrial experiments are subject to screening due to the Earth, demonstrated by the
light blue hashed critical screening region, while the space-based experiments are not. Since
the screening by Earth creates an upper bound on dilatonic couplings able to be probed
by terrestrial experiments, we cut off the black lines if they continue above the screening
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Figure 4. The sensitivity ratio of a given DM-SM coupling for a burst search di,∗ compared to a
DM search di, using eq. (3.7), is depicted in the allowed parameter space mϕ vs λ. The white dotted
line represents equal sensitivity to bosenova and DM. Two choices for the distance to the bosenova
are illustrated: r = pc (left) and r = kpc (right). See section 2.3 and figure 3 for a discussion of
constraints.

region. We also represent the region where BHSR bounds would affect the results, without
taking them into account for our benchmark (see section 2.3). We discuss the results with
the BHSR constraints included in appendix A.

We note that the astrophysical constraints coming from Lyman-α and ultra-faint dwarf
galaxies (UFDs) described in section 2.3 rely on the assumption that ϕ comprises the entirety
of the DM abundance. Hence, they become weaker or even disappear if ϕ represents a
sub-leading contribution to the total DM density. The laboratory bounds therefore give
complementary constraints on such mass regions.

6 Conclusions

ULDM can form macroscopic long-lived bound boson star configurations. Their violent
bosenova explosions in the presence of attractive ULDM self-interactions result in copious
emissions of relativistic particles. These transient events provide intriguing novel targets for
ULDM searches, with enhanced densities compared to cold DM at experimental sites that
can persist for months or even years. We find that such sources can increase the reach of
current and future experiments aiming to detect ULDM by many orders of magnitude across
the range of masses 10−23 eV ≲ mϕ ≲ 10−5 eV. This work initiates further studies that will
explore detectable signatures from distinct transient sources for ULDM.

We observe that the phenomenon of screening can significantly diminish ULDM detection
prospects for sizable quadratic couplings to SM. This motivates further developments of space-
based experiments that will avoid screening associated with the Earth affecting terrestrial
experiments. Further, our analysis highlights that there is a ULDM parameter gap where
there are no existing or planned space-based experiments that are sensitive to the larger
mass range of mϕ ≳ 10−10 eV.
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Figure 5. Current and projected bounds on d
(2)
me from terrestrial and space-based experiments as

a function of Eϕ. The best bounds for each mass are depicted by the solid black lines. The dashed
and dotted black lines indicate the potential reach for detection of bosenovae at distances of r = pc
and kpc from the Earth, respectively. We choose λ = λb in eq. (2.12), as explained in the text.
Current experiments consist of various detector types. The following are terrestrial experiments
contributing to current bounds. Clocks: frequency comparison between 171Yb optical lattice clock
and 133Cs fountain microwave clock (Yb/Cs) [15], comparison between 87Rb hyperfine transition
and quartz mechanical oscillator (Rb/Quartz) [20]; Optical cavities: H-maser comparison with a Si
cavity (H/Si) [22], comparison between Cs clock and a cavity (Cs/Cav) [23], and comparison of a
H-maser and sapphire oscillator with a quartz oscillator (H/Quartz/Sapphire) [24]; Spectroscopy:
molecular iodine spectroscopy (I2) [26]; Mechanical Oscillators: resonant mass detector (AURIGA) [28];
Optical interferometers: unequal delay interferometer experiment (DAMNED) [116], co-located
Michelson interferometers (Holometer) [34], GEO600 [35], LIGO O3 [36]; and Equivalence-principle
tests: Eöt-Wash [39]. The only current space-based bound comes from a search for EP violation
(MICROSCOPE [40]). Future terrestrial experiments include 88Sr+ optical clock and 133Cs fountain
atomic clock comparison [7], SrOH molecular clock [19], optical cavities [25], resonant-mass detectors
(DUAL [29]), other mechanical resonators (Sapphire, Pillar, Quartz and Superfluid Helium [30]),
and atom interferometery (AION [37], MAGIS [38]). Future space-based bounds come from atom
interferometery (AEDGE [37]). Lyman-α [69, 70] and ultra-faint dwarf galaxies (UFDs) [74] also
constrain ULDM. In cyan, we show the region of the parameter space critically screened by the Earth,
as discussed in section 2.2. Finally, the regions of the parameter space corresponding to the black hole
superradiance (BHSR) bounds [83, 84] are displayed at the bottom of the plots by the arrows. In the
terrestrial plots, we also show the region of parameter space critically screened by the Earth in cyan.
See section 2.2 for a detailed discussion of screening of quadratically-coupled scalars.
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Figure 6. Current and projected bounds on d
(2)
e from terrestrial and space-based experiments as a

function of Eϕ. The best bounds for each mass are depicted by the solid black lines. The dashed and
dotted black lines indicate the potential reach for detection of bosenovae at distances of r = pc and
kpc from the Earth, respectively. We choose λ = λb in eq. (2.12), as explained in the text. Current
experiments consist of various detector types. The following are terrestrial experiments contributing
to current bounds. Clocks: frequency ratios of 27Al+, 171Yb and 87Sr optical clocks (BACON) [12],
frequency ratios of E2/E3 transitions in a single-ion 171Yb+ clock and Yb+ with 87Sr optical lattice
clock (PTB) [13], dual 133Cs/87Rb atomic fountain clock frequency ratio (Rb/Cs) [16], and dynamical
decoupling in trapped ion clock transition (DD) [17]; Optical cavities: frequency comparisons between
Strontium optical clock and Silicon cavity (Sr/Si) [22], atomic spectroscopy in Cesium vapor with Fabry-
Perot cavity locked to laser (Cs/Cav) [23] and frequency comparison of Hydrogen maser and sapphire
oscillator with quartz oscillator (H/Quartz/Sapphire) [24]; Spectroscopy: spectroscopic experiments of
molecular iodine (I2) [26], frequency comparison of 164Dy with quartz oscillator (Dy/Quartz) [20],
precision spectroscopy measurements involving two isotopes of dysprosium (Dy/Dy) [27]; Mechanical
resonators: resonant mass detector (AURIGA) [28]; Optical interferometers: three-arm Mach-Zender
interferometer (DAMNED) [116], co-located Michelson interferometers (Holometer) [34], GEO 600 [35]
and LIGO O3 [36]; and Equivalence-principle tests: test of equivalence principle violation by Eöt-
Wash [39]. The space-based experimental bound also comes from an equivalence-principle test:
MICROSCOPE [40]. Future terrestrial experiments include Thorium Nuclear Clock projections [9],
resonant-mass detectors DUAL [29], mechanical resonators (Sapphire, Pillar, Quartz and Superfluid
Helium) [30], and atom interferometers AION [37] and MAGIS [38]. Future space-based bounds
come from atom interferometer AEDGE [37]. In cyan, we show the region of the parameter space
critically screened by the Earth, as discussed in section 2.2. Lyman-α [69, 70], ultra-faint dwarf
galaxies (UFDs) [74], and Supernova observations [117] also constrain ULDM. Finally, the regions
of the parameter space corresponding to the black hole superradiance (BHSR) bounds [83, 84] are
displayed at the bottom of the plots by the arrows. In the terrestrial plots, we also show the region of
parameter space critically screened by the Earth in cyan. See section 2.2 for a detailed discussion of
screening of quadratically-coupled scalars.
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Figure 7. Current and projected bounds on d
(2)
g from terrestrial and space-based experiments as

a function of Eϕ. The best bounds for each mass are depicted by the solid black lines. The dashed
and dotted black lines indicate the potential reach for detection of bosenovae at distances of r = pc
and kpc from the Earth, respectively. We choose λ = λb in eq. (2.12), as explained in the text. The
terrestrial experiments contributing to current bounds on d

(2)
g include Clocks: 171Yb lattice clock

— 133Cs microwave clock comparison (Yb/Cs) [15], frequency comparison in dual rubidium-caesium
cold atom clock (Rb/Cs) [16] and Yb+ ion clock [18]; and Optical cavities: H-maser comparison
with a Si cavity (H/Si) [22]; while space-based current bound comes from Equivalence-principle tests:
MICROSCOPE [40]. Future experiment projections are for the 229Th Nuclear Clock [9] and 171Yb+

ion clock [18]. Note: the Nuclear Clock line in previous estimates is cut off at 10−21 eV, due to the
Lyman-α constraint. However, there is no reason that the experiment cannot be run to search for
lower mass range, as in Yb+ experiment. Therefore, we extrapolate linearly to lower masses. We are
not aware of any space-based planned experiments that will constrain d

(2)
g . In cyan, we show the region

of the parameter space critically screened by the Earth, as discussed in section 2.2. Lyman-α [69, 70]
and ultra-faint dwarf galaxies (UFDs) [74] also constrain ULDM. Finally, the regions of the parameter
space corresponding to the black hole superradiance (BHSR) bounds [83, 84] are displayed at the
bottom of the plots by the arrows. In the terrestrial plots, we also show the region of parameter
space critically screened by the Earth in cyan. See section 2.2 for a detailed discussion of screening of
quadratically-coupled scalars.
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A Results with superradiance bounds

In the main text, our benchmark choice λ = λb in eq. (2.12) did not account for the existence
of black hole superradiance (BHSR) constraints from rapidly-rotating black holes, discussed
in section 2.3. In the presence of BHSR limits, we can instead use a discontinuous benchmark
of the form

λ′
b =



3 × 10−73
(

mϕ

10−13 eV

)6
, 2 × 10−13 ≲

mϕ

eV ≲ 3 × 10−12

10−90
(

mϕ

5 × 10−21 eV

)4
, 3 × 10−21 ≲

mϕ

eV ≲ 2 × 10−17

10 λBH , elsewhere

. (A.1)

This benchmark traces the BHSR bounds, where applicable, as in the dotted line in
figure 3. The two discontinuities arise from observations of stellar-mass black holes in
the range mϕ ≃ 3 × 10−13−3 × 10−12 eV [83] and supermassive black holes in the range
mϕ ≃ 3 × 10−21−2 × 10−17 eV [84]. As with eq. (2.12), this benchmark is chosen to illustrate
the maximum detection prospects, since smaller values of λ lead to larger bosenova energy
density (see eq. (3.5)).

Using the modified benchmark λ′
b, we illustrate current and projected bosenovae bounds on

the quadratic scalar-electron, scalar-photon and scalar-gluon ULDM couplings in figures 8, 9
and 10, respectively.
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Figure 8. Current and projected bounds on d
(2)
me from terrestrial and space-based experiments as a

function of Eϕ including BHSR in λ benchmark given in eq. (A.1). The strongest limits for each mass
are depicted by the solid black lines. The dashed and dotted black lines indicate the potential reach
for detection of bosenovae at distances of r = pc and kpc from the Earth, respectively. See figure 5
and section 4 for details and references of experimental lines.
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Figure 9. Current and projected bounds on d
(2)
e from terrestrial and space-based experiments as a

function of Eϕ including BHSR in λ benchmark given in eq. (A.1). The strongest limits for each mass
are depicted by the solid black lines. The dashed and dotted black lines indicate the potential reach
for detection of bosenovae at distances of r = pc and kpc from the Earth, respectively. See figure 6
and section 4 for details and references of experimental lines.
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(2)
g from terrestrial and space-based experiments as a

function of Eϕ including BHSR in λ benchmark given in eq. (A.1). The strongest limits for each mass
are depicted by the solid black lines. The dashed and dotted black lines indicate the potential reach
for detection of bosenovae at distances of r = pc and kpc from the Earth, respectively. See figure 7
and section 4 for details and references of experimental lines.
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