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Abstract The onset of glaciation in the late Cenozoic caused rapid bedrock erosion above the snowline;
however, whether the influx of eroded sediment is recorded in continental weathering and basin accumulation
rates is an ongoing debate. We propose that the transport of glacially eroded bedrock through the fluvial system
damps the signal of rapid headwater erosion and results in steady basin-integrated sediment flux. Using a
numerical model with integrated glacial and fluvial erosion, we find that headwater bedrock erosion rates
increase rapidly at the onset of glaciation and continue to fluctuate with climatic oscillation. However, bedrock
erosion rates decrease in the downstream fluvial system because larger grain sizes from glaciers result in an
increase in sediment cover effect. When erosion and sediment flux rates are averaged, long-term sediment flux
is similar to nonglacial flux values, while localized bedrock erosion rates in the glaciated landscape are elevated
2-4 times compared to nonglacial values. Our simulated values are consistent with field measurements of
headwater bedrock erosion, and the pattern of sediment flux and fluvial erosion matches paraglacial theory and
terrace aggradation records. Thus, we emphasize that the bedload produced from glacial erosion provides a
missing link to reconcile late Cenozoic erosion records.

Plain Language Summary Glaciers are effective erosion agents and the start of mountain glaciation
is thought to correspond to higher alpine erosion rates. However, at the landscape-scale, there is little to no
change in erosion rates across the start of glaciation. In order to connect across these scales, we use a computer
model to calculate erosion rates and sediment transfer rates. We find that the increase in sediment size from
glaciation will lower erosion rates in rivers. Larger sediment sits on the riverbed and protects the underlying
rock from erosion. Despite rapid erosion by glaciers upstream of the river, the slower erosion rates in the river
result in a constant rate of sediment transferred out. Therefore, sediment transfer from glacier to river systems is
an important process for understanding erosion across landscape scales.

1. Introduction

Our understanding of landscape response to late Cenozoic climate change, namely the onset of alpine glaciation,
is confounded by conflicting observations. Point measurements of erosion rates in high elevation and glaciated
regions show significant increases in bedrock erosion rates and sediment production (Herman et al., 2013; Shuster
et al., 2005), whereas geochemical proxies (Lenard et al., 2020; Willenbring & von Blanckenburg, 2010) show
little change in long-term denudation rates. In contrast, accumulation curves in oceanic and sedimentary basins
suggest an increase in depositional rates coeval with the onset of glaciation (Hay et al., 1988; Molnar, 2004).
While both hypotheses are rooted in empirical observations, these data sets measure different spatial and temporal
scales of erosion. As such, these opposing observations have not been reconciled. One potential mechanism to
reconcile these hypotheses that has yet to be explored is the downstream impact of glacial sediment on fluvial
erosion processes. Specifically, we seek to explore the role of glacially derived sediment in covering bedrock
from fluvial incision (Cowie et al., 2008; Sklar & Dietrich, 2001) and lowering landscape erosion rates down-
stream of glacial activity.

High rates of bedrock erosion due to glaciation creates trimmed topography, termed the ‘buzzsaw effect’, that is
observed globally (Egholm et al., 2009; Pedersen et al., 2010). Regionally, glaciated orogens show a corre-
spondence in high frequency elevations, snowline altitudes, and equilibrium line altitudes (ELAs) in the
Himalayas (Brozovi¢ et al., 1997), Andes (Montgomery et al., 2001), Sierra Nevada (Brocklehurst & Whip-
ple, 2002), and Cascade Range (Mitchell & Montgomery, 2006). These topographic trends for a glacial buzzsaw
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are supported by numerical models (e.g., Egholm et al., 2009) as well as thermochronometric data from glaciated
areas, which tend to show an increase in exhumation rates over the late Cenozoic (Herman et al., 2013). For
example, data in the Southern Coast Range of British Columbia revealed a >6-fold increase in erosion rates,
coincident with the onset of erosive ice sheets at 1.8 + 0.2 Ma, that lasts for 0.4 Ma (Shuster et al., 2005), and
cooling ages associated with rapid denudation of 4-5 mm/yr are co-located with ELAs in southern Alaska, US
(Berger & Spotila, 2008).

The strong correspondence between glacial ELA, exhumation rates, and topography implies that glacial erosion
rates are enhanced near the ELA, which in turn is controlled by regional and global climate. This link between
erosion and climate has been used to explain late Cenozoic increases in erosion rates and associated downstream
basin accumulation (Molnar, 2004). Accumulation rates in the last 5 My for oceanic basins are nearly twice as
high as any prior period, even when subduction of older basins is accounted for (Hay et al., 1988; Molnar, 2004).
Continental basins and mountains also record increased accumulation rates at this time, suggesting that the cause
is not related to eustasy (Herman et al., 2013; Molnar, 2004). There was little to no increase in accumulation rates
near the tropics, which combined with a lack of a global increase in tectonic activity (Rowley, 2002; Van Der
Meer et al., 2014) led researchers to suggest that increased amplitude and frequency of glaciations led to increased
erosion and accumulation (e.g., Pedersen & Egholm, 2013).

However, increased erosion cannot be sustained for long before a new topographic equilibrium is achieved;
observations of decoupled erosion rates and tectonics tend to last on the order of 10° years or less (Koppes &
Montgomery, 2009; Whipple, 2009). Willenbring and Jerolmack (2016) suggest that erosion rates have actually
been steady for the last 10 My; isotopic signatures of silicate weathering are steady over the last 10 My (Wil-
lenbring & von Blanckenburg, 2010), in contrast to inferred 2—4 fold increases in weathering based on accu-
mulation rates (Peizhen et al., 2001). Cosmogenic isotopes in Himalayan sedimentary basins indicate steady
erosion rates over the late Miocene to present (Lenard et al., 2020). These recent observations suggest that the
previously estimated increases in late Cenozoic accumulation rates are potentially biased by the Sadler effect, in
which recent events are over-represented in the sedimentary record due to the unsteady nature of erosion and
deposition (Sadler, 1981). An updated estimate of sediment accumulation on continental shelves indicates steady
rates over the last tens of millions of years (Sadler & Jerolmack, 2015).

One possible mechanism to reconcile the contradiction of locally increased erosion rates and integrated
continental-scale steadiness in accumulation and weathering rates is to consider the longitudinal effects of glacial
bedrock erosion. An increase in bedrock erosion and sediment production in the headwaters produces sediment
that can cover bedrock and damp erosion rates (Sklar & Dietrich, 2001) downstream of the glacially impacted
area, potentially balancing the increase in bedrock erosion upstream.

We propose and test the hypothesis that although glacial erosion is more efficient than fluvial erosion in steep
landscapes, the resulting increase in sediment production decreases erosion downstream of the glacial extent,
which results in overall less mass transported out of the purely fluvial parts of the landscape. Such a process would
dampen and perhaps reverse any upland signal of increased sediment production in depositional basins and
possibly skew continental-scale weathering estimates (e.g., Willenbring & Jerolmack, 2016). Glacial erosion, in
contrast to fluvial erosion, produces sediment that is commonly coarser and in greater supply (Hallet et al., 1996),
which could further exacerbate downstream deposition and aggradation. Cycles of fluvial aggradation and
incision caused by glacial cycles are well documented in river terrace records (e.g., Hancock & Anderson, 2002;
Pan et al., 2003; Pazzaglia & Brandon, 2001), but the effect on total erosion and sediment flux has not been
analyzed. We test our hypothesis using a coupled glacial-fluvial 1-D numerical model to quantify how glacially
derived sediment affects topographic development, bedrock erosion rates, and sediment fluxes in mountainous
environments.

2. Methods

We built a numerical model that integrates one-dimensional (1-D) glacial (MacGregor et al., 2000) and fluvial
(Campforts et al., 2020; Shobe et al., 2017; Yanites, 2018) erosion models, with feedbacks in place for sediment
and water transfer (Figure 1). Although the model is 1-D, valley width is tracked and sediment is stored across the
valley in order to simulate glacial sediment storage. The model is 200 km long with computational nodes every
2 km; this spacing was necessary for sediment transport stability at a timestep of 1 year (Text S4 in Supporting
Information S1). The major components of the model are detailed below and include bedrock incision, sediment
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Figure 1. Schematic of the modeled glacial-fluvial interface showing

feedbacks between the two systems (orange) and the variables altered in our
simulations (purple). Panels show the original glacier position (a), glacier

advance (b), and glacier retreat (c).

Initial sediment size

transport, glacial erosion, valley widening, and isostasy. Input parameters
include initial grain size, attrition rate, sediment cover, and glaciation
(Table 1).

2.1. Bedrock Incision

Fluvial erosion into exposed bedrock is commonly assumed to be propor-
tional to shear stress or stream power (e.g., Howard & Kerby, 1983; Whipple
& Tucker, 1999). We use the shear stress derivation of the form:

E= RakaZ (1)

where a is a constant equal to 1, k,, is a constant related to rock properties and
erosional process, and R, is a sediment buffering term that ranges from 0 (full
cover) to 1 (full bedrock exposure). Erosional processes are captured in the
constant a (Whipple et al., 2000). Given the complexity of erosion processes
and dominance of sediment cover downstream of glaciers (e.g., Anderson &
Shean, 2022; Coviello et al., 2022), we chose this simpler stream power/
bedrock exposure model as a general model rather than the more mechanis-
tically specific saltation abrasion model of Sklar and Dietrich (2004). While
the exposure model does not allow erosion rates to increase above that
calculated by stream power, it does predict lower erosion rates at greater
sediment supply and vice versa, which follows the patterns produced by
sediment cover and tool effects, respectively. The exposure model is used by
previous researchers at similar time and spatial scales (e.g., Hancock &
Anderson, 2002; Shobe et al., 2017; Yanites, 2018) and is noted to produce
similar results as the full saltation abrasion model (Yanites, 2018) while being
much more computationally efficient.

The basal shear stress, 7;,, depends on hydraulic radius (R) and slope as follows:

7, = pgRS (2)
WH
R= 3
2H+ W ®

where p is water density, g is gravitational acceleration, W is channel width, and H is water height for a rectangular

shaped channel.

While this approach does not explicitly incorporate the role of sediment as an abrasive tool (Sklar & Die-

trich, 2004), the sediment buffer term R, modifies E in Equation 1 and is defined by

Ra =1- Qs/Qt (4)

where Q; is the sediment supply and Q, is the total sediment transport capacity in kg. We compared multiple
sediment buffer terms (Text S1 in Supporting Information S1) and found they produce similar erosion magnitudes

and nearly identical values when erosion and sediment flux are normalized to control simulations.

2.2. Sediment Transport

We model the transport of bedload of a median grain size D using the total sediment transport capacity, Q,,
calculated with a modified Meyer-Peter and Miiller (1948) equation from Wong and Parker (2006):

3

0, = 3,97pSW|:4Tb T*] pi [P P, (5)

(ps—p)gD p
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Table 1 where p, is sediment density and 7} is Shield's parameter, set at 0.0495

Model Parameters

following Wong and Parker (2006). Median bedload size along the model

space is assumed to abrade following Sternberg's (1875) law:

Parameter Value Reference
Fluvial erosion D = Dye " (6)
Vertical erosivity &, —5e—5 m” s/kg
Lateral erosivity ,, 1.3 %k, Finnegan and Dietrich (2011)  where D, is the initial grain size, x is the downstream distance, and a, is the
Manning's n 0.04 fining parameter or attrition rate. To investigate the effect of sediment size on
Timestep dt 1 year landscape development, we varied D, between 0.01 and 0.5 m and a, between
Stz e le—5 and le—4 m™'. The median grain size is limited to a lower value of
Shield's parameter 7 0.0495 Wong and Parker (2006) 0.0005 m.
Porosity 1 0.2 Yanites (2018) Movement of sediment follows mass conservation laws and is modeled using
Proportion of eroded 0.2 Yanites (2018) the Exner equation at each node (Exner, 1920, 1925):
hillslope as
bedload g % __ 1 % )
Glacial erosion ot 1 -4, ox
Sliding coefficient, C, 0.0012 m MacGregor et al. (2000)
Pa~! yr! where g, is the sediment flux (Q,-Q,) for each node and 4, is the bed-sediment
Arrhenius constant, A 2.1e—16 Pa—> yr~! MacGregor et al. (2000) porosity. The supply of sediment into each node depends on the transport of
Trapezoid angle 300 MacGregor et al. (2000) sediment from the upstream node [Q,(i-1)] as well as the sediment added to
R ditaton Gl ST MacGregor et al. (2000) the channel through l.ocal hillslope tr?msport an.d tr1F)utary flux [Q L(,m.,( i)l We
model the added sediment by assuming a fluvial-hillslope coupling in which
AL 2 Egrotmatal (02) the local river channel erosion rates over the last 10 ky drive the local hillslope
ELA amplitude 1,000 m Egholm et al. (2009)

Annual mass balance
factor, a

Calculation
timestep, dtg

Isostasy

Radius of relative
stiffness, L

Flexural rigidity, D

Timescale of
lithospheric
response, T

Calculation
timestep, dt;

0.01 m/(yr-m)

0.1 years

132 km

10 N'm
3,000 years

10 years

sediment supply:
Oerlemans (1984)

QLocal = ﬁE()A (8)
where Q; .., 1S the local addition of sediment, f is the proportion of hillslope
eroded material that becomes bedload, E is the 10 ky mean erosion rate, and
0A is the drainage area added between the previous node and node of interest.
All sediment flux out of the last node is allowed to leave the model domain.

Pollard and DeConto (2012)

Pollard and DeConto (2012)

Pollard and DeConto (2012) 2.3. Glacial Erosion

Ice mass balance is calculated following Oerlemans (1984) and MacGregor
et al. (2000) in which mass balance linearly increases with initial valley
elevation. We use a mass balance gradient (@) to calculate the change in ice

thickness () based on ice elevation (z;-z) and equilibrium line altitude (ELA):

b = a(z;ce — ELA) ©)
but we cap b at 2 m to reflect realistic snow accumulations (e.g., MacGregor et al., 2000). Ice height is then used to
calculate shear stress and sliding velocity following the methods of MacGregor et al. (2000). We modify the
erosion law to use an erosion rule coefficient of 0.46, which corresponds to glacial quarrying in a heterogeneous
bedrock with a Gaussian distribution of fractures from Figure 3 in Iverson (2012):

E, = CUX* (10)
where the constant C, varies between 0.0001 and 0.0003 (Table 2); this produces annual erosion rates on the order
of those calculated for mountain glaciers by Hallet et al. (1996). Based on long-term erosion rates, we use
C, = 0.0002 for the results presented in this paper (Text S2 in Supporting Information S1). We use a glacier

erosion exponent of 0.46; whereas model and field studies suggest that exponents >1 may be more appropriate for
individual glacier modeling, particularly for seasonal variations in velocity and erosion (Herman et al., 2018),

SCHANZ AND YANITES

4 of 16

0d ‘8 “vT0T ‘1106691T

“sduy woxy papeo

D) PuE SWId | Y1 298 “[§70¢/L0/£0] uo Arexqry duruQ A1 989100 0pEI0[0D) Aq 1Z7LLO0ATPTOT/6TOT 01/10p/w0d" Kajim Areiqrour)

sdiy)

SULIO) /W0 K[

1PUOd-p!

QSULOIT SUOWWO)) AANEAI) d[qearjdde oy Aq pauIoA0S a1e SOOILE V() (SN JO I[N 10J ATeIqIT QUIUQ A[IA UO (S!



MID
ADVANCING EARTH
AND SPACE SCIENCES

Journal of Geophysical Research: Earth Surface

10.1029/2024JF007721

Table 2
Parameters Used in 800 ky Simulations (n = 180)
Uplift rate (mm/yr) Initial grain size (m) Attrition rate (km™") Glacial erosion constant C2 Glaciation
1 0.5 0.1 0.0001 On
0.5 0.25 0.05 0.0002 Off
0.1 0.1 0.01 0.0003

0.05

0.01

exponents <1 are appropriate for mean erosion rates and velocities (Cook et al., 2020). Uj is the basal sliding
velocity, and E, is the erosion rate due to quarrying.

We simulate feedbacks between glacial melt, glacial erosion, and fluvial transport by allowing water discharge,
sediment flux, and grain size to vary at the first fluvial node (Figure 1). The mass balance of the modeled glacier is
tracked, and any meltwater that is generated is added to the discharge of the river downstream. In the case of glacial
growth, the glacier advance is assumed to “push” pre-existing sediment downstream, thus increasing the sediment
supply. Sediment supply is also enhanced by glacial erosion. Because the glacial erosion law is based on quarrying
processes, we assume that all the eroded glacial material becomes bedload; while glacial flour is common in field
settings, this results from abrasion, which is not included in the glacial erosion model and is assumed to be
dominantly in suspension and thus a minimal contribution to the fluvial bedload. Lastly, bedload sediment attrition
(Equation 6) begins at the glacier terminus, allowing the bedload to coarsen with glacier advance (see Text S3 in
Supporting Information S1 for sensitivity analysis and further justification of these feedbacks).

2.4. Valley Widening

In glacial settings, valley geometry, and particularly the development of wide valley bottoms, is a key control on
sediment storage and glacial erosion. We allow glacial erosion to widen a valley, which in turn decreases the
glacier height, leading to decreased glacial erosion rates. The widening valley also provides additional accom-
modation space for sediment storage.

Glacial erosion widens the valley following the methods in MacGregor et al. (2000) where the initial valley width
(W,) is equal to the channel width (W), derived as a function of drainage area (A):

W, = kAP (11)

The coefficients k. and b are set to 5e—3.5 and 0.5, respectively. The drainage area is calculated from downstream
distance (x) using Hack's Law:

A = Cple (12)

with coefficients C,, = 1 and H, = 1.8. The valley walls are set at an angle of 30°and have a maximum width of
500 m. If vertical glacial erosion is E,, then the change in valley width is:

ow,
ot

= 2E, tan(30°) (13)

As glaciers recede, the widened valleys become sediment storage locations for the river channel, enabling
simulation of a paraglacial effect. Sediment is added back to the fluvial system through lateral migration:

QL = kytyHp,0x (14)

where Oy, is the lateral sediment supply in kg/s and k,, is the erosional coefficient that takes into account rock
properties and erosional processes. In nodes with prior glaciation, we assume that the banks are alluvial and so k,,
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4000 — . . is set to allow for up to meters per year of lateral erosion for simulated shear
A. Initial condition .
stresses. If nodes have not been glaciated, we assume they are bedrock
€ 3000 channels and set k,, for lateral erosion rates of less than mm/yr.
c
2 2000
E 2.5. Isostasy
]
w1000 4= Isostatic adjustment to erosion is calculated following Huybrechts and de
| | Wolde (1999) and Pollard and DeConto (2012), in which the crustal flexure is
0 ! T | a response of asthenospheric relaxation and lithospheric load. The rate of
0 50 100 150 200 )
Distance (km) bedrock change (5) due to loading or unloading is given by:
4000 1T~ al f
B. Climate forcing 0z; 1 e
= (7 — %+ 15
£ 3000 ot T(zh 2"+ wp) (15)
B 'N\[\[\N\j\]\
g é 2000 4~ where 7 is a response time scale, z, is the current bedrock elevation, and qu is
;ié = the equilibrium bedrock elevation. The downward deflection w,, for a given
uf;:- < 1000 4 distance r, load P, flexural length scale L, and flexural rigidity D is given by
| ] | 2
T T =1 PL”  /r
0 200 400 600 800 wy(r) = Z”—Dkel(z)- (16)

Figure 2. (a) Initial model configuration with a 3000-m plateau. (b) Climate
forcing during the analysis portion of the simulation.

Time (ky)

kei is a kelvin function of zeroth order. Isostatic parameters (Table 1) follow
values used by Huybrechts and de Wolde (1999) and Pollard and
DeConto (2012).

2.6. Simulations

The model is run for 5 My with only fluvial erosion in order to create a steady-state fluvial profile. To create
sufficient initial topography for erosion, we initiate the model as a 3,000 m plateau (Figure 2a) with a fixed end
node at 0 m elevation; in all our simulations, this results in a smooth concave up profile at 5 My runtime. After a
steady state is achieved, glaciation is imposed with a mean ELA of 2,500 m and a range of 1,000 m following the
ELA of Egholm et al. (2009). We then run the model with glaciation for eight 100-ky glacial cycles (Figure 2b).
The ELA begins at 2,000 m, then rapidly rises for 10 ky to the maximum 3,000 m, before slowly falling for 90 ky
following the sawtooth pattern recorded in both the Vostok ice core and previous coupled glacial-fluvial models
(e.g., Braun et al., 1999). While late Cenozoic glaciations have been ongoing for the last 2 My, 800 ky of
simulation time allows patterns of topography, erosion rates, and sediment flux to stabilize following the initial
glacial adjustment (e.g., Hancock & Anderson, 2002). For each simulation, we also run a control in which glacial
erosion is turned off; we refer to this set of simulations as “fluvial-only”.

We run the model under varying uplift and sediment conditions (Table 2) in order to understand the controls on
glacial extent and landscape modification. Topography, erosion, and sediment flux are saved every 1,000 years to
give a timeseries of glacial modification. We ran additional simulations for 3 Ma to compare sediment flux and
erosion rates over timescales comparable to late Cenozoic glaciations (Table 3). We do not include the effect of
general cooling over the late Cenozoic in the 3 Ma runs as the purpose of this particular modeling exercise is to

Table 3
Parameters Used in 3 Ma Simulations (n = 10)
Uplift rate (mm/yr) Initial grain size (m) Attrition rate (km™!) Glacial erosion constant C2 Glaciation
0.5 0.5 0.01 0.0002 On
0.25 Off
0.1
0.05
0.01
SCHANZ AND YANITES 6 of 16
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Glacial zone Mean glacial ~ Proglacial zone
in Fig 4-8 extent in Fig 4-8
4000 D509 = 0.1 8 m 400 800
2000 200 700
: : 5 . : . 600
=
E DSOg = 0.1 0 m ,g 400 E 500 CBD
= = —~
.% g 550 400 g
>
(]
g 0T ' : : ' " 0 ] 7 i i i 300
20001 200 F 200
1000 A 100 100
0T - + | r ' 04 : T | | | 0
00 05 1.0 15 20 25 30 00 05 1.0 15 20 25 30

Normalized distance, x*

Figure 3. (a—) Long profile and (d-f) valley width evolution for three simulations with an uplift rate of 0.5 mm/yr; simulations show a range of D5, values. Gray bars
show zones of interest for Figures 4-8. Distance is normalized as x* = distance/mean glacial extent for each simulation.

examine how 800 ky trends continue over a longer timescale rather than replicate rates of erosion and sediment
flux in the late Cenozoic.

3. Results
3.1. Channel Evolution

To compare the effect of glaciation on topographic development, we normalized channel length, x*, as channel
distance divided by the mean glacial extent of the simulation. Bedrock longitudinal profiles evolve rapidly in
response to glaciation with topographic buzzsaw effect and most lateral erosion occurring in the first four glacial
cycles (Figure 3). Simulations with initial relief greater than the imposed 2,000-3,000 m ELA experience the
most lateral and vertical bedrock erosion and form convexities in the bedrock channel profile where glacial
erosion has flattened the channel slope. The profile convexity extends to approximately 2/3 of the mean glacier
extent (x* = 0.66) and is formed in the first 200-400 ky as glaciers erode the channel to the lower limit of the
ELA. Glacial erosion is initially rapid but slows considerably as the topography reaches a buzzsaw elevation.

While glaciation results in rapid bedrock erosion down to a topographic buzzsaw level, the bedrock channel
downstream of the glacier undergoes surface uplift on the order of meters to tens of meters (Figures 3a and 3b).
Although this is much lower in magnitude than the >1,000 m of erosion in the glaciated reach, surface uplift
occurs over a zone of 30 km, indicating that bedrock erosion is not keeping pace with rock uplift.

To further investigate the trends in glacial and proglacial erosion, we define two zones for further analysis: a
glacial zone at half the mean glacial extent (x* = 0.5) and a proglacial zone at two times the mean glacial extent
(x* = 2). This allows us to compare similar erosion processes across simulations with a wide range of glacial
extents. Additionally, we compare the effect of the initial grain size and attrition rate by differentiating simu-
lations based on the median grain size in the glacial zone (Ds,).

Sediment depth patterns imitate the long profile evolution trends and suggest that sediment has modulated erosion
rates downstream of the glaciated zone (Figure 4). In the glacial zone, sediment aggradation behaves differently
for simulations with D5, of less than and greater than 0.1 m. At larger D5, values, aggradation occurs during
interglacial periods but is transported downstream during glacial occupation (Figure 4a). Interglacial aggradation
is caused by lowered slopes due to the intense glacial erosion, which lowers the transport capacity in the glaciated
reaches (Figure 3) and results in sediment accumulation. The highest accumulation tends to occur between the
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Figure 4. Sediment depth through the model simulations at (a, b) glaciated zone (x* = 0.5) and (c, d) proglacial zone (x* = 2).
Lines are colored by the D5, value and separated into D, > 0.1 m (a, ¢) and <0.1 m (b, d). Orange lines represent
simulations that did not have sufficient topography to form glaciers. Bottom panels show the imposed ELA (Figure 2 for
values).

first and fourth glacial cycles, corresponding to when glacial erosion forms a buzzsaw-determined elevation
profile (Figure 3). In contrast, simulations with smaller D5, values tend to show either no sediment aggradation
or short-lived aggradation during deglaciation, though aggradation becomes negligible after the third glacial cycle
(Figure 4b).

In contrast, sediment depths are much greater and in an opposite pattern in the proglacial zone (Figures 4c and 4d).
Sediment is deposited in cycles that correspond to the maximum glacial period, and reaches consistent depths of
50 m, with maxima of 900 m for simulations with the largest Ds,. During interglacial periods, the sediment is
transported away, and in all but three simulations, the channel returns to bare bedrock. Unlike sediment in the
glacial zone, aggradation patterns are similar for all D5, values in glaciated simulations. However, this cyclic
aggradation pattern is not immediately established; most simulations take four glacial cycles to reach a recurring
pattern with consistent aggradation depths. This timescale is consistent with the buzzsaw response and valley
width adjustment timescales (Figure 3) and with simulations of river terrace formation in response to glacial
cycles (Hancock & Anderson, 2002).

Sediment depths in the proglacial zone are thick enough to act as a significant erosion cover and are the cause of
overall surface uplift (Figures 3a and 3b) produced by damped bedrock erosion rates that do not keep pace with
rock uplift. Sensitivity analyses (Figure S3 in Supporting Information S1) show that sediment aggradation results
from the increase in bedload grain size due to glacier advance; therefore, this surface uplift—and damping of
bedrock erosion—is directly caused by glaciation. However, based on the topographic profile, it is unclear
whether the surface uplift is of a magnitude needed to balance the rapid bedrock erosion in the glacial zone. In the
next sections, we analyze bedrock erosion rates in the glacial and proglacial zones and contrast these to steady-
state erosion rates.

3.2. Bedrock Erosion Rates

To compare erosion values across simulations, we normalized erosion rates, E*, as erosion rates in glacial
simulations divided by erosion rates in fluvial-only simulations. High erosion rates are expected in the glacial
zone where glacial erosion limits topography (buzzsaw effect) (Figure 3). For simulations undergoing glaciation,
calculated erosion rates initially increase to up to 25-50 m/ky greater than erosion rates in fluvial-only simu-
lations (Figure 52). Initial landscape lowering is dependent on grain size; when the D5, value of the glacial zone
is larger than 0.1 m, erosion rates are >5 times the fluvial-only erosion rates (Figure 5a) in contrast to smaller D5,
values in which erosion rates are within an order of magnitude of the fluvial-only rates.
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Figure 5. Normalized bedrock erosion rate at the glacial zone (x* = 0.5) shown in panels (a, b) and in the proglacial zone (x* = 2) in panels (c) and (d). Erosion rates vary
by D5, and are split into Ds,, > 0.10 m (panels a and ¢) and D5, < 0.10 m (panels b and d). Orange lines indicate runs with insufficient relief to generate glaciation.
Normalized erosion rate, E¥, is glacial erosion rate/fluvial-only erosion rate. Bottom panels show the imposed ELA (Figure 2 for values).

High bedrock erosion rates are not sustained; by 400 ky, all simulations have settled into a pattern wherein
interglacial erosion rates are the same or lower than fluvial-only simulations but increase up to 5-20x fluvial
steady-state rates during the glacial period (Figures 5a and 5b). Simulations with smaller D5, tend to have a sharp
increase in erosion rates at peak glaciation, then a damped erosion signal as material is transported downstream in
the early interglacial (Figure 5b). In contrast, higher D5, simulations, which tend to have higher relief, have
heightened bedrock erosion rates in the early and mid-glacial periods. This difference is due to the relief within
each simulation; simulations with D5, values less than 0.1 m have a buzzsawed relief that does not produce
glaciation until the lowest imposed ELA.

In the proglacial zone downstream of the simulated glaciers, erosion rates are dictated by fluvial processes but are
subject to high-frequency changes in sediment transport capacity and flux—which drives variations in bedrock
erosion via reduced cover (Sklar & Dietrich, 2001)—from upstream glaciers. During the first 400 ky, the glacial
buzzsaw effect and associated sediment production cause variable bedrock erosion rates, as each simulation
erodes from a unique spin-up fluvial profile (Figures 5c and 5d). After 400 ky, bedrock erosion rates begin to
follow a cyclic pattern with a spike in erosion rates up to 20 times greater than fluvial-only erosion rates
immediately post-glaciation, followed by a decrease to just 2%—5% of the nonglacial erosion rate. Simulations
with Dsq, > 0.35 m take up to 500 ky to achieve this pattern. Erosion rates continue to fluctuate between high and
low values with a damped oscillation throughout the interglacial period. These patterns of bedrock erosion in the
proglacial zone are a result of sediment aggradation and transport controlled by the increase in bedload size
caused by glacier advance (Figure S3 in Supporting Information S1).

3.2.1. Averaged Bedrock Erosion Rates

Glaciation causes short-lived changes in erosion rates in the glacial and proglacial zones, but long-term averaged
erosion rates are damped as more of the interglacial period is incorporated. We calculated erosion rates over
different timescales, starting from the end of the simulation up to the onset of glaciation at 800 ky. For instance, an
averaging time of 10 ky uses erosion rates from 790 to 800 ky in the simulation and is representative of field-based
erosion rates measured from a 10 ky rock or sediment sample. We also ran a subset of models that resulted in a
range of glacial extents for 3 Ma (Table 3).

In the glacial zone, time-averaged erosion rates are initially similar or higher than fluvial-only erosion rates
(Figures 6a and 6b) because the model ends in a glacial period. The high averaged erosion rates are consistent
with the high erosion rates at 800 ky in Figures 5a and 5b. Averaged erosion rates steadily decline as an
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Figure 6. Normalized time-averaged erosion rates at (a, b) glacial zone (x* = 0.5) and (c, d) proglacial zone (x* = 2). Simulations are split into D5y, > 0.1 m (a, ¢) and
D5, < 0.1 m (b, d). The averaging time is relative to the end of simulations (800 ky in Figure 4 or 3 My for long runs). Orange lines represent simulations in which initial

relief was too low to generate glaciers.

interglacial period and the associated low erosion rates are integrated. At 100 ky averaging time, averaged
erosion rates increase slightly because the 700 ky glacial period is integrated. Averaged erosion rates approach
fluvial-only values as more glacial cycles are integrated and proportionally more of the averaging time is spent
in interglacial periods. However, for simulations with Ds,, values above 0.2 m, averaged erosion rates rise
rapidly when the onset of glaciation is integrated and can be up to 25 times larger than fluvial-only erosion
rates. Because the initial topography and relief are greater with larger grain sizes, the initially high erosion rates
corresponding with the topographic buzzsaw are also dependent on grain size properties (Figure 5a) and thus
the 800 ky averaged rates are sensitive to grain size (Figure 6a). However, when glaciation has been ongoing
for 3 Ma, similar to timescales of periodic alpine glaciation, averaged erosion rates are at maximum only 2-3
times greater than the fluvial-only control.

In the proglacial zone, erosion rates are more variable over time (Figures Sc and 5d), yet the time averaged erosion
rates converge for simulations with D5, values <0.1 m (Figures 6¢ and 6d). Averaged erosion rates are initially
lower than the fluvial steady state, particularly for short averaging times in which glacial states predominate.
Glacial periods result in aggradation in the proglacial zone and minimal bedrock erosion. As the averaging time
increases toward 10° years and incorporates the interglacial period, the averaged erosion rate approaches a steady
state. By the time 800 ky is integrated into the averaged erosion rate, including achievement of a topographic
buzzsaw and onset of glaciation, averaged erosion rates for simulations with D5, values <0.1 m are within 90%~—
110% of the steady state. This implies that the fluvial zone downstream of glaciers may experience damped
erosion rates at timescales of <100 ky, but rapid erosion rates in the post-glacial period (Figures Sc and 5d)
compensate for the lowered erosion rates during the late interglacial and glacial periods and approximate rock-
uplift rates at >100 ky timescales.

3.3. Sediment Flux

Glacial advance and retreat alter the sediment size distribution and cause aggradation and erosion; consequently,
the sediment exported out of the system into downstream basins must be temporally variable with glacial cycles.
We examine the sediment flux, defined as the sediment leaving the last node of the model, over the 800 ky model
runtime and normalize the sediment flux against the sediment flux in fluvial-only simulations with the same
sediment and uplift parameters. This normalization is used because we found that sediment flux values are
sensitive to the choice of bedrock erosion model, but that the ratio of glacial to fluvial-only sediment fluxes was
relatively insensitive to the erosion model choice (Figure S1 in Supporting Information S1).

Sediment flux out of the model initially has a cyclic nature that is most pronounced for simulations with D5,
values >0.1 m (Figure 7a). For these larger grain sizes, sediment flux is lower than fluvial-only simulations for
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Figure 7. Sediment flux out of the simulations shown over model time and separated by the median grain size in the glacial
zone (DSOg). Normalized sediment flux, Qs*, is defined as sediment flux from the glacial simulation divided by the fluvial-
only simulation flux. The bottom panel shows the imposed ELA (Figure 2 for values).

most of the model period but increases during the early glacial period. Most simulations, however, are within
90%—110% of the nonglacial sediment flux values, particularly for D5, less than 0.1 m (Figure 7b). The pattern of
sediment flux out over a glacial cycle is similar to the pattern of proglacial aggradation but opposite to the
aggradation pattern in the glacial zone (Figure 4). This suggests that the glacial zone, with the wider valleys
(Figures 3d-3f), is a location of sediment storage during the interglacial period but a source of sediment for
proglacial aggradation and sediment flux out of the model during the glacial period.

Simulations with larger D5, values have more pronounced variability in sediment flux because these simulations
are associated with greater glacial extents. Glacier extent controls the initial grain size distribution and thus the
sediment transport capacity during glaciation. Interestingly, normalized sediment flux patterns are similar during
and after the buzzsaw erosion adjustment period, further supporting that sediment flux is more strongly controlled
by glacial alteration to grain size than by increases in sediment supply from glacial erosion.

Time averaged sediment fluxes, with the exception of three simulations, are lower or similar to fluvial-only fluxes
due to the decreased sediment fluxes in the early to middle interglacial periods (Figure 8). At short averaging
periods of <100 ky, averaged sediment fluxes ranged from 2% to 90% of the fluvial-only values. As the early
interglacial and corresponding high sediment flux are incorporated at 100 ky averaging periods, the averaged
sediment flux rapidly increases to within 10% of the fluvial-only value. By an averaging time of 800 ky, averaged
sediment fluxes for the majority of simulations are 90%—100% of nonglacial values and thus are nearly indis-
tinguishable. The exceptions to this trend are simulations with high (>0.1 m) D5, values (Figure 8a) in which
>25% of the model domain is glaciated. These simulations give sediment fluxes within 50%—150% of nonglacial
values and suggest that basin accumulation rates reflect glaciation if >25% of the contributing basin is glaciated.
However, the average sediment flux trend in Figure 8a shows that these values may be approaching the fluvial-
only flux values at timescales >800 ky and notably do not approach the >500% increase in bedrock erosion rates
noted in the glacial zone (Figure 6).
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Figure 8. Time-averaged sediment flux is shown for two Dy, grain size ranges. Normalized sediment flux is defined as
glacial simulation sediment flux divided by fluvial-only simulation sediment flux. Averaging time is referenced to present, or
year 800 ky of the model.

4. Discussion

We find that damping of bedrock erosion from the transport and storage of glacially derived sediment results in
landscape-scale sediment fluxes that are indistinguishable from unglaciated landscapes. A key disconnect in the
late Cenozoic erosion debate is that erosion rates increase locally, particularly in high elevations (Herman
et al., 2013), while sediment fluxes to basins give conflicting results with some evidence for steady accumulation
rates (Sadler & Jerolmack, 2015; Willenbring & von Blanckenburg, 2010) and other evidence supporting a rapid
increase in accumulation rates in the late Cenozoic (Hay et al., 1988; Molnar, 2004). By incorporating sediment
cover effects and feedbacks between glacial position and transport capacity, our model replicates both the 2- to 4-
fold increase in bedrock erosion rates (Figure 6), as well as the steady sedimentation rates (Figure 8); we thus offer
a potential mechanism to reconcile the disparity between point- and basin-wide erosion measurements.

This finding is supported by spatially localized evidence for (a) rapid and efficient bedrock erosion in the
glaciated reach, (b) lowered erosion rates in the proglacial zone, and (c) temporally unsteady sediment fluxes out
of the model. Below, we compare the numerical results in glaciated, proglacial, and outlet localities with
observational data to show how our numerical model produces results consistent with prior work and gives higher
temporal resolution to erosion trends.

Prior studies have documented rapid and efficacious glacial bedrock erosion over different timescales. At the
scale of months, Herman et al. (2015) measured erosion rates up to 50 times greater than background uplift rates
that range from 1 to 500 mm/yr. Qualitatively, Kirkbride and Matthews (1997) used space-for-time analysis to
find that glacial landforms in New Zealand are carved in the first 200 ky of glaciation, whereas Shuster
et al. (2005) quantified glacial erosion rates at the 10° timescale and found that glacial erosion removed 1.7—
2.2 km of rock in the first 400 ky, with only 0.3 km removed in the subsequent 1.4 Ma in the Coast Range of
British Columbia, Canada. Literature compilations reveal a negative correlation between measurement interval
and erosion rate: Koppes and Hallet (2006) found that erosion rates increased 3.5 times going from 10° to 10"
timescales, and in a compilation of erosion rates in glaciated landscapes, Ganti et al. (2016) show that erosion
rates generally display a two-order-of-magnitude decrease from 10 years to 10 My, with a negative power law
relationship between averaging time and erosion rate.
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However, these data sets are drawn from erosion measurements that differ in collection method, timescale, and,
importantly, location. Through use of a numerical model, we are able to compare similar data across the same
simulated glacial conditions, and thereby make a more direct comparison. Notably, our erosion rates are consistent
with the field measurements; short term erosion rates are up to 100 times background uplift rates (Figure 5), glacial
buzzsaw topography forms within 400 ky (Figure 3), and erosion rates computed at different timescales show a
power law decrease consistent with the compilation data (Ganti et al., 2016; Koppes & Hallet, 2006). Our data
matching field and literature compilations suggests that the power law decrease in erosion rate with averaging time
cannot be explained by differences in erosion rate method, timescale, or location but must be intrinsic to landscape
evolution under glacial erosion processes. Additionally, the agreement in erosion rate trends between our model—
in which the glacial erosion coefficient C2 is calibrated to tectonically active areas—and global compilations
suggests that the trends and patterns we find are likely applicable in less tectonically active regions.

We found that decreased bedrock erosion rates in the proglacial zone result from aggradation of a coarser bedload
during glaciation that is then transported during the interglacial. Although our 1-D model cannot capture changes
in sediment flux and erosion caused by hillslope dynamics, periglacial processes, and lateral channel migration—
thus limiting our analysis of proglacial aggradation—the patterns of erosion and aggradation are consistent with
field observations. Proglacial erosion and aggradation histories are recorded in bedrock terraces, which are
frequently planed during glacial periods—indicating sediment aggradation that inhibits bedrock incision—and
incised during post-glacial or interglacial periods (e.g., Hancock & Anderson, 2002; Schanz et al., 2018). This
chronology matches our modeled proglacial aggradation patterns (Figures 5c¢ and 5d). Proglacial erosion rate
patterns are similar to those noted by Malatesta et al. (2018) in the Tian Shan of central Asia, in which bedrock
erosion rates reach a maxima 616 ka after glaciation when aggraded sediment has been removed.

Calculated sediment flux out of our model decreased during glaciation and increased during the early interglacial
because of glacially driven increases in grain size and corresponding decreases in sediment transport capacity
(Equation 5). This can be compared with flux predictions from the paraglacial model of Church and Ryder (1972),
which predicts fluvial aggradation during deglaciation followed by incision as deglaciation ends. Field data taken
along the Thompson River, British Columbia, shows aggradation thicknesses of the order of 175 m and accu-
mulate in 1 ky of deglaciation, with incision into those deposits in the following 10 ky (Church & Ryder, 1972).
The paraglacial model would thus predict low sediment fluxes out of the fluvial system during deglaciation when
sediment—aparticularly bedload—is aggrading, followed by high sediment fluxes as the aggraded material is
remobilized in the following 10 ky. This pattern is consistent with our model results. Additionally, higher
sediment fluxes associated with glacial retreat have been noted in the Patagonian Andes (Koppes et al., 2015) and
the Canadian Rocky Mountains (Leonard, 1997) for Holocene neoglacial activity.

The agreement between our spatially localized findings and prior field observations for glacial erosion, proglacial
erosion, and outlet sediment flux lends strength to our modeling approach, despite the limitations of a one-
dimensional model, and suggests that our main finding—that transport and storage of glacially derived bed-
load can slow basin-wide erosion rates and damp sediment fluxes—is robust.

We emphasize that the patterns of erosion and transport are transferrable, but note that future work is necessary to
compare rates. In particular, our model lacks sediment transport and storage in the glacial regime and does not
explicitly include a tool effect in bedrock erosion, which could allow erosion rates to increase above that predicted
by the shear stress model. Inclusion of these factors would allow workers to more directly compare measured
erosion rates with those predicted by the model. Additional work could also test the effect of a general cooling
trend over the late Cenozoic on glacial and proglacial erosion trends and use direct temperature records to control
the ELA rather than a cyclic seesaw pattern.

An implication of these results is that the reduction in erosion rate and subsequent surface uplift in proglacial
reaches can continue to feed glacial erosion, facilitating a glacial landscape steady state. Numerical modeling of
glacial erosion reveals a tendency of cryocide, where the efficient erosion of glaciers lowers topography below the
ELA, resulting in diminishing glacial extent (Anderson et al., 2012). However, the surface uplift resulting from
the reduction in fluvial erosion efficiency acts as a potential feedback to continue feeding the glaciated part of the
landscape new rock to maintain erosion rates without reducing the glacial length. This supports numerical
modeling observations showing that glacial extent is sensitive to the basin hypsometry developed in prior gla-
ciations (Pedersen & Egholm, 2013).
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This finding adds to a growing body of conceptual and numerical models that stress the importance of sediment
transport and erosion in glacially altered landscapes. Under glaciers, sediment transforms the drag at the ice-bed
interface, and new slip laws seek to better parameterize basal sediment to understand ice sheet movement (Zoet &
Iverson, 2020). At the glacier-fluvial interface, temporal changes in sediment availability and connectivity under
a glacier system create cyclical variations in sediment yield (Antoniazza & Lane, 2021), and feedbacks between
glacially sculpted overdeepenings and sediment transfer can drive short-term, but high-volume, transfers of
sediment (Swift et al., 2018). Topography created by glacial deposition and erosion alters the rates and timing of
fluvial sediment transfer in post-glacial periods (Lane et al., 2017). Our model also stresses the importance of
glacially derived bedload in altering fluvial erosion and sediment fluxes, thus emphasizing the need to better
understand and account for sediment dynamics, particularly when upscaling point-measurements of erosion and
deposition to basin- or continental-integrated measurements. Future studies on alpine landscape evolution should
incorporate the armoring effect of glacially produced sediment on downstream fluvial systems.

5. Conclusions

Using a 1-D finite difference model, we simulated the development of topography and sediment flux under glacial
and fluvial erosion. The dependence of sediment transport capacity on glacial cycles, particularly the dependence
of bedload size on glacier extent, leads to cyclic changes in aggradation, erosion rate, and sediment fluxes
throughout a 200 km-long model, even though glaciers on average only occupy the upper 6-8 km. In the pro-
glacial zone, sediment aggradation decreases bedrock erosion rates below those simulated for unglaciated rivers
with the same uplift and sediment characteristics; this aggradation-driven damping of bedrock erosion provides a
basin-wide balance to the increase in bedrock erosion rates in glaciated reaches. Sediment flux out of the model is
steady at timescales >100 ky and matches nonglacial fluxes. By incorporating sediment dynamics into the model,
erosion rates and sediment fluxes match patterns in alpine valleys and ocean basins, respectively. We propose that
glacially derived bedload is the missing ingredient that can reconcile Late Cenozoic measurements of erosion and
sediment flux and stress the importance of sediment dynamics when extending point measurements to the
landscape scale.

Data Availability Statement

The Python model used to simulate glacial and fluvial erosion is hosted on Github (Schanz, 2024). Version 1.0.0
contains the scripts used to produce Figures 3—8. All model results are publicly available on Zenodo (Schanz &
Yanites, 2024).
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