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Modern applications of atomic physics, including the determination of frequency standards and the analysis of
astrophysical spectra, require prediction of atomic properties with exquisite accuracy. For complex atomic sys-
tems, high-precision calculations are a major challenge due to the exponential scaling of the involved electronic
configuration sets. This exacerbates the problem of required computational resources for these computations
and makes indispensable the development of approaches to select the most important configurations out of
otherwise intractably huge sets. We have developed a neural-network (NN) tool for running high-precision
atomic configuration interaction (CI) computations with iterative selection of the most important configurations.
Integrated with the established PCI atomic codes, our approach results in computations with significantly
reduced computational requirements in comparison with those without NN support. We showcase a number
of NN-supported computations for the energy levels of Fe16+ and Ni12+ and demonstrate that our approach can
be reliably used and automated for solving specific computational problems for a wide variety of systems.
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I. INTRODUCTION

Accurate modeling of electronic correlations in atoms and
ions is a ubiquitous problem in modern atomic physics. It is
typically addressed using the configuration interaction (CI)
approach [1], which consists in expanding the wave function
of the searched electronic states |�〉 = ∑

α cα |�α〉 in a fixed
basis |�α〉 (usually Slater determinants or configuration state
functions). The unknown coefficients cα for each state and the
state energies Eα are then obtained as solutions to the eigen-
value problem for the Hamiltonian matrixHαβ = 〈�α|Ĥ |�β〉.
For accurate computations, the required basis set |�α〉 can
become huge, posing high demands both on the hardware
and the atomic codes, which need to be highly efficient and
parallelized. Even then, the required precision remains often
beyond the computational feasibility.

In a recent work [2], an algorithm using a neural network
(NN) was demonstrated to tackle big CI computations for the
GRASP2018 general relativistic atomic structure package [3].
In this approach, one large CI computation is replaced by a
number of smaller ones on a subsequently growing sub-basis.
The basis growth is managed by a NN classifier that receives
the basis-state quantum numbers as input. In each iteration,
it predicts the important basis states from the full set, i.e.,
those with weights wα = |cα|2 exceeding a specified cutoff
x. They are then included in the CI computation that yields
the energy and the coefficients cα . The latter are used to

*Contact author: pavlo.bilous@mpl.mpg.de

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI. Open
access publication funded by Max Planck Society.

give the NN feedback on its prediction and retrain it. The
“importance” cutoff x is decreased from iteration to iteration,
leading to convergence of the energy to its “true” value on
the full set. In Ref. [2], otherwise unfeasible computations
for the ground-state energy of the Re and Os atoms were
performed. The results were compared with Ref. [4], where
the CI problem was simplified down to a tractable scale using
experimental data for electronic transition and excitation ener-
gies. The comparison showed a good agreement leading to the
conclusion that the NN-supported algorithm yielded reliable
results.

Unfortunately, in many cases, there are no experimental
data to carry out such benchmarks as in Ref. [2]. This is
especially the case in the domain of highly charged ions,
which has yet to be thoroughly explored, but has recently
been of great interest, due to its promising applications [5].
Therefore, it is necessary to have at hand an independent
systematic ab initio approach, which would ensure the validity
of the NN-supported computations. Further analysis of the
computations in Ref. [2] suggests that the required NN-related
part was itself computationally demanding. The usual dense
NN architectures failed, and only switching to a deep con-
volutional architecture tailored specifically to the structure of
the input data (in Ref. [2], configuration state functions) led
to a stable behavior. Even on a GPU, the training of such NN
took time comparable with the atomic computation in each
iteration.

Here, we introduce significant algorithmic improvements
and simplifications to the approach from Ref. [2], making
the computational overhead beyond the actual CI computa-
tions negligible. Instead of using the GRASP package [3] to
implement CI, we use the PCI code package developed in
Ref. [6] to carry out extremely large-scale parallel CI compu-
tations. This package can be also used in combination with the
coupled-cluster method and has demonstrated exceptional ac-
curacy for a wide variety of many-electron systems, including
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neutral atoms, highly charged ions, and negative ions [7–13].
With the new implementation, the NN part needs only tens
of minutes on a single CPU, which is negligible in compar-
ison to the large-scale CI computation. We also generalize
the method from computations for only one electronic level
(e.g., the ground state as in Ref. [2]) to many levels at once,
i.e., yielding the electronic transition energies. The latter are
undoubtedly of superior relevance in atomic physics and its
applications. The computations performed in this work con-
tained up to 17 levels at once. Importantly, we show how the
obtained results can be verified using an alternative approach
to perform large CI computations “by parts” without the NN.
The developments in this work promote the NN-supported
algorithm to a generic practical tool for high-precision atomic
computations.

As demonstration, we perform calculations of the energy
levels on particularly large basis sets for the highly charged
Fe16+ and Ni12+ ions. While Fe16+ is directly relevant for un-
derstanding the astrophysical spectra, the Ni12+ ion possesses
a clock transition between its ground and second-excited state,
and thus has potential in metrology. These ambitious appli-
cations require a high precision of a few cm−1, which we
achieve in our computations using the two complementary
algorithms, with and without a NN. In these cases, obtaining a
high level of accuracy requires the use of very large basis sets,
with both large number of partial waves and large principal
quantum numbers. The procedure to increase the basis set
to numerical completeness at the required precision level is
usually extremely costly in terms of computational resources.
It also requires submission of a large number of multiple runs
that limits such computations to a few exceptional cases. In
the present work, we show that the NN-supported algorithm
can solve the problem of the basis set increase with complete
NN automation, as well as drastic reduction of the computer
resource requirements, enabling future automated basis set
upscaling for increased accuracy of computations.

The article is structured as follows. In Sec. II, we present
the details of our CI computations and, in particular, the alter-
native approach to perform large CI computations by parts,
without NN support. In Sec. III, we describe in detail our
NN-supported algorithm and highlight the improvements with
respect to Ref. [2]. Section IV contains the demonstration
computations for the Ni12+ and Fe16+ ions. We finish the
article by summarizing our conclusions in Sec. V.

II. CONFIGURATION INTERACTION COMPUTATIONS

All calculations are carried out using the CI method to cor-
relate all valence electrons. We construct one-electron orbitals
from solutions of the Hartree-Fock-Dirac (HFD) equations in
the central field approximation. The basis set is designated
by the highest principal quantum number for each included
partial wave. For example, 17g means that all orbitals up to
n = 17 are included for the spdf g partial waves.

The CI many-electron wave function is obtained as a
linear combination constructed from all distinct states and
possessing a given total angular momentum and parity:

|�k〉 =
∑

α

ckα |�α〉 . (1)

Here the index α labels the involved Slater determinants |�α〉,
whereas k enumerates the many-electron states. The energies
and wave functions are determined from the time-independent
many-electron Schrödinger equation

Ĥ |�k〉 = Ek |�k〉 . (2)

We construct one-electron basis orbitals from solutions
of the HFD equations in the central field approximation. In
general, we start by building core orbitals for the ground state
configuration. Then we freeze those orbitals and construct
valence orbitals for a few excited states. Virtual orbitals are
then built from the HFD orbitals. A list of configurations
defining the CI space is then obtained from all possible single
and double (SD) excitations to any orbital in our basis set
from a few selected reference configurations (typically the
ground state and a few excited states). The Hamiltonian is then
constructed and diagonalized to obtain the desired eigenvalues
and eigenvectors.

This procedure is completed for increasing basis sets (in-
creasing principal quantum number n or partial wave l) to
identify the convergence pattern towards the most accurate
results. This process is repeated until (1) either the energies
have converged, or (2) the computation becomes too large
for the available computational resources. Once the energies
have converged as in (1), we consider our computations to be
completed; otherwise, we treat (2) via a method optimizing
and reducing the size of the CI space.

Upscaling the basis set

For computations with basis sets that cannot be run directly
on currently available computational resources, we opt to
reduce the size of the CI space by selecting only the most
important configurations for subsequent calculations via some
cutoff x.

We begin with an initial configuration space H0 from
which corresponding low-lying eigenvalues E0 and eigen-
vectors were obtained. Our goal is then to obtain the
energies E of a larger configuration space H = H0 + H1,
where H1 corresponds to an expansion of H0 with con-
figurations of higher principal quantum number n or par-
tial wave l . We can approximate H by stripping H0 of
unimportant configurations, thus reducing the size of the
overall configuration space. Here, we construct an effective
configuration space

H ′ = H ′
0 + H1 (3)

≈ H0 + H1 = H, (4)

where H ′
0 ⊂ H0 is a subspace of the original H0 with only the

most important configurations. A corresponding CI calcula-
tion is then run to obtain E ′ = E ′

0 + E1. The importance of
a configuration is determined by its weight wα = |cα|2. An
optimal cutoff x is determined by minimizing �E0 = E ′

0 −
E0, while ensuring the resulting calculation is possible with
available computational resources. This is done by running
the CI procedure for the H ′

0 configuration space to obtain
E ′
0 and subtracting the energies with E0. The final energy is

then obtained as E = E0 + E1 = E ′ − �E0. We refer to this
procedure of systematically increasing the basis set from a
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FIG. 1. Schematic representation of the iterative NN-supported algorithm described in the text. The thin big ellipse denotes the full set
of configurations (potentially intractable with a direct CI approach). The subsets shown with thick ellipses are all included in the current CI
expansion. The blue color denotes configurations for which the CI expansion coefficients have been already evaluated. The green (red) color
depicts the important (unimportant) configurations with respect to the current cutoff x—this is established either directly (if the CI coefficients
are known) or using the NN. Note that the different shades of red are irrelevant. The algorithm begins with the “starting” stage (shown to the
left) which assumes that a direct or NN-supported computation has been previously performed on a partial subset of the full set. A number of
random configurations is additionally included, and a CI computation is performed yielding the coefficients for the included configurations. The
algorithm then enters stage (A) of the NN-supported iterations (shown in the box to the right). The CI expansion contains some configurations
either from the starting stage or the previous iteration [finished at stage (F)]. In the latter case, we distinguish between the configurations added
directly in the previous iteration and those present in the CI expansion before—the latter are denoted “Old.” At stage (B), we split the set of
the “newly added” configurations into the important and unimportant classes with respect to the current cutoff x, and thus form a training set
for the NN. The NN is trained and applied to classification of configurations from the pool at stage (C). At stage (D), a number of additional
“balancing” configurations is randomly selected. At stage (E), the unimportant configurations are removed from the current CI expansion,
whereas the NN-predicted and the balancing ones are included. At stage (F), the CI computation on the formed CI set is performed, finishing
the iteration. The energy obtained at (F) is monitored to terminate the algorithm once convergence is achieved.

selected list of important configurations as upscaling the basis
set.

As an example, we describe the process of upscaling the
17h basis set to the 20h basis set. In this case, we have
completed the CI calculation for the 17h basis set, but 20h
was not possible. Here, a cut log10 x = −10 is used to reduce
the size of the 17h basis set, with the resulting subspace
consisting of only the most important configurations (we
denote it as 17h_cut). This cut reduces the size of the CI
space from 242 924 relativistic configurations (41 071 940
Slater determinants) to 89 861 (13 345 491). We then con-
struct a list of configurations obtained from increasing 17h
to 20h and merge this list to the 17h_cut list. The result-
ing configuration list contains 17h_cut + (20h − 17h). The
CI procedure is then executed using this basis set to ob-
tain the desired energies from the 20h basis set. However,
it is important then to also subtract the energy difference
due to the cut that was made to the 17h basis. So the final
energy in the 20h calculation is E20h = E17h_cut+(20h−17h) −
E17h_cut−17h. In this way, we are able to approximate the ex-
act CI results of the 20h basis by performing much smaller
computations. We note that this procedure is still very time
consuming and still requires both large memory and CPU
allocations.

III. NEURAL-NETWORK-SUPPORTED ALGORITHM

In this section, we discuss a powerful alternative to the
direct CI described above. We introduce our NN-supported

iterative algorithm illustrated schematically in Fig. 1 and high-
light the improvements with respect to Ref. [2]. Here, we
work not with the basis Slater determinants, but instead with
relativistic configurations, which are constructed from the de-
terminants. The weight of each configuration � is obtained
from the individual basis coefficients as wk

� = ∑
α∈� |ckα|2,

where, as before, k labels the considered energy level. We
perform our computations for all levels of interest at once,
and aggregate their weights in one weight as w� = maxk wk

� .
Given a large “full” set of configurations not tractable with
the direct CI, the algorithm aims at forming an approximative
CI subset of the most relevant configurations in the sense of
their weight w� . This approximative set (the “current” CI
expansion) is improved with iterations by including further
configurations from the remaining “pool,” consisting of con-
figurations from the full set which are currently not included
in the CI expansion.

A. Starting stage

At the beginning, we need to form an initial CI expansion,
which serves as data for the initial NN training. We assume
that before our algorithm starts, a computation on a smaller
sub-basis of the full basis has already been performed. For in-
stance, a computation for a smaller number of virtual orbitals
can serve this purpose. Alternatively, the results of another
NN-supported computation can be employed.

We construct the starting CI space by combining the initial
CI space with a number of configurations chosen randomly
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from the remainder of the full basis. This set of randomly
chosen configurations is needed for (a) the NN to explore
the data not represented in the preceding computation, and
for (b) mitigation of possible bias towards the “important”
class of the training data. Note that the CI coefficients for
the random selection are not yet known, and therefore a CI
computation is performed at this step to calculate them. In
case the obtained set is too big, a part of the sub-basis from
the previous computation with weights below some cutoff y
can be omitted at this stage. We stress that this omission is
done only for this particular CI computation step, since the
aim is only evaluation of the CI coefficients for the random
selection. The CI expansion obtained at the described starting
stage is schematically shown to the left in Fig. 1.

B. Iterations

We now enter the NN-supported iterations shown in Fig. 1
in the box to the right. At step (A), we assume that the CI
expansion contains configurations from the starting stage de-
scribed above or from the previous iteration [finished at (F)].
In the latter case, we distinguish between the configurations
added directly in the previous iteration and those present in
the CI expansion before (the latter are denoted “old”). Each it-
eration is characterized by its own importance cutoff x, which
is decreased during the computation. At step (B), the newly
added configurations in the CI expansion are distributed into
the two importance classes with respect to the current cutoff
x. At the next step (C), the NN is retrained on the obtained
data and predicts new important configurations from the pool.

At step (D), we randomly select a number of configurations
discarded by the NN, since the NN needs some feedback on
them at the next iteration. This balancing is characterized by
the ratio rbal between the number of the randomly included
configurations and the number of configurations classified
by the NN as important. For larger rbal values, the NN per-
forms better in the next iteration, but the current CI expansion
includes randomly selected and thus mostly irrelevant config-
urations, making the computational overhead larger. For small
rbal values, the computational overhead in the current iteration
decreases, but in the next iteration, the NN may perform
poorly, suggesting many irrelevant configurations. In Ref. [2],
the value rbal = 1 was used, whereas in the present work, the
choice rbal = 0.5 is sufficient. We note that in the very last iter-
ation, rbal = 0 can be chosen since no NN retraining follows.

At step (E), the current CI expansion is “cleaned up” by
removing the configurations belonging to the “unimportant”
class from step (D). We note that since the cutoff x is it-
eratively decreased, and the NN state evolves with further
training, these removed configurations may be classified by
the NN as important and re-included in future iterations. The
CI expansion is now enriched with the new configurations,
and the CI computation is performed at step (F), yielding
the energy levels and the CI expansion coefficients. The
convergence of the energies is monitored and the algorithm
is stopped once the targeted precision is achieved.

C. Data preparation, neural network architecture, and training

For each relativistic configuration, the input data consist of
populations of the electronic orbitals. Before feeding them to

TABLE I. Data preparation shown for an exemplary dataset of
four relativistic configurations for eight electrons in seven relativistic
orbitals shown at the top. The data undergo transformation stages
S1–S4 described in the text.

2s1/2 2p1/2 2p3/2 3s1/2 3p1/2 3p3/2 3d3/2

S1 2 2 4 0 0 0 0
2 2 3 0 1 0 0
2 2 3 0 0 1 0
1 2 4 0 0 0 1

S2 010 010 100 000 000 000 000
010 010 011 000 001 000 000
010 010 011 000 000 001 000
001 010 100 000 000 000 001

S3 nyy nnn yyy nnn nny nny nny
S4 1 0 1 0 0 0 0 0

1 0 0 1 1 1 0 0
1 0 0 1 1 0 1 0
0 1 1 0 0 0 0 1

the NN, we transform this input as demonstrated in Table I
for an exemplary dataset. The latter consists of four relativis-
tic configurations for eight electrons, distributed over seven
relativistic orbitals, as shown at the top of Table I. We start at
stage “S1” from the usual decimal representation of the orbital
populations for the 4 configurations shown as the rows. At step
“S2,” each population is converted from the decimal to the
binary format. The obtained representation of the dataset can
be compressed, since there are “trivial” columns containing
the same value (zero or one). This is performed at stage “S3”
by the row indicating which columns are kept (“y”) and which
are discarded (“n”). In Table I, we show the resulting dataset
as sent to the NN at stage “S4.”

In contrast with Ref. [2], where a convolutional NN was
used, we employ here the usual dense architecture [14]. In all
computations, we include four hidden layers, each with a few
tens to a few hundreds of neurons, resulting in a number of
trainable parameters of the order of 105 (concrete sizes of the
input and the NN layers will be specified for each example
separately). In the hidden layers the standard ReLU activation
function was used. The NN output consists of two numbers
interpreted as the probabilities of the input configuration to be
important or unimportant. The probabilities are guaranteed to
sum up to one by using the softmax activation function in the
NN output layer.

The NN is trained to minimize the categorical cross-
entropy loss using the Adam optimization algorithm [15]. The
training is stopped based on the NN performance monitored
on 20% of the data held out randomly from the training set.
The described functionality is leveraged using the Python
library TENSORFLOW [16].

D. Algorithm improvements

Here, we explicitly highlight the main improvements with
respect to the algorithm developed in Ref. [2].
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TABLE II. Comparison of the five lowest energy levels of Ni12+ between completed direct CI computation (performed on basis parts using
the basis upscaling technique) and iterations of the NN-supported algorithm. The final approximative CI expansion has a size of 145 490
relativistic configurations.

Level k Configuration Ek
direct , Hartree Ek

i − Ek
direct , cm

−1

Start −10.0 −10.5 −11.0 −11.5 −12.0 Final

0 3s23p4 3P2 −1457.78467907 1294.4 257.3 88.8 35.5 18.4 9.3 3.8
1 3s23p4 3P1 −1457.69624247 1266.1 195.4 73.5 30.6 16.4 8.2 2.7
2 3s23p4 3P0 −1457.69337789 1309.3 256.3 91.6 37.0 20.1 9.9 3.6
3 3s23p4 1D2 −1457.56972999 1458.1 238.1 88.1 35.8 19.2 9.7 3.6
4 3s23p4 1S0 −1457.33747811 1506.4 248.6 94.4 39.5 21.8 11.1 3.8

1. Grouping basis states in relativistic configurations

A crucial change with respect to Ref. [2] consists in
treating the basis states in groups of Slater determinants corre-
sponding to relativistic configurations instead of considering
them individually. The weight of a configuration � is the
sum of the individual weights of the participating basis states
wk

� = ∑
α∈� |ckα|2. In this case, all information distinguishing

the basis states within a single relativistic configuration is
discarded. This has two major advantages. This significantly
simplifies the input structure and reduces the number of fea-
tures (the dataset “width”) without harming the quality of
the results, and this strongly reduces the amount of data (the
dataset “length”) and is advantageous for large computations.
The resulting data are well compatible with the commonplace
dense NN architecture. This leads to a stable and well re-
producible computation flow and results, without the need of
introducing a deep convolutional block as in Ref. [2].

Another advantage of switching to relativistic configura-
tions is a unification of computations performed in the basis
of Slater determinants (used in the present work) and config-
uration state functions (used in Ref. [2]). Specifically for our
atomic code package [6], this choice also corresponds to the
standard input-output mechanism.

2. Multilevel optimization

In this work, we obtain all energy levels of interest in
one computation, rather than optimizing them one by one,
as described in Ref. [2]. We achieve this by switching
from individual weights wk

� for each kth energy level to
an “aggregated” weight w� = maxk wk

� for each relativistic
configuration �. With this choice, a configuration becomes
important if it is important for at least one energy level. We

note that other aggregation approaches tailored to a specific
computation can be employed here.

A special challenging situation occurs in computations for
the Ni12+ ion due to an extreme closeness of its first and
second excited states, lying approximately 600 cm−1 apart.
Optimization for each level separately in an independent com-
putation based on the algorithm from Ref. [2] led to a wrong
ordering of the levels and difficulties in their identification. In
our improved algorithm, all levels are optimized, preventing
such mixing due to poor quality energies. This makes our
approach practical also in such peculiar situations.

3. Starting from a prior computation (direct or NN supported)

In our algorithm, each iterative computation starts not from
scratch as in Ref. [2], but from the output of a prior (direct
or NN supported) computation. This approach is compati-
ble with the standard basis expansion procedures in atomic
computations, e.g., increasing the highest principal quantum
number n for the included virtual orbitals. More importantly,
the information from the previous computation is reused for
the starting training of the NN classifier. This resolves the
issue of the starting iteration, in which the NN is not yet
trained, and thus unable to predict important basis states. In
Ref. [2], random basis states were drawn from the full set and
included in the computation as the initial training dataset. A
great disadvantage of such approach is strongly unbalanced
data due to the lack of important basis states in the random
selection. This severely contributes to instabilities, which had
to be tackled in Ref. [2] at a high computational cost, but are
circumvented in this work. With this improvement, there is
also no need to manually select a so-called “primary set” to
be explicitly included in each iteration as in Ref. [2].

TABLE III. Comparison of the five lowest even energy levels of Fe16+ between completed direct CI computation (performed on basis parts
using the basis upscaling technique) and iterations of the NN-supported algorithm. The final approximative CI expansion has a size of 207 604
relativistic configurations.

Level k Configuration Ek
direct , Hartree Ek

i − Ek
direct , cm

−1

Start −9.5 −10.0 −10.5 −11.0 −11.5 −12.0 Final

0 2p6 1S0 −1148.40541049 2074.8 523.6 294.5 133.1 31.0 5.0 1.5 0.2
1 2p53p 3S1 −1120.64481897 1829.3 672.7 453.0 196.5 48.8 11.4 5.0 2.4
2 2p53p 3D2 −1120.51593721 1800.5 523.6 330.7 141.5 33.0 6.1 2.3 0.9
3 2p53p 3D3 −1120.45669580 1798.6 522.9 298.6 129.1 28.5 5.3 1.9 0.6
4 2p53p 1P1 −1120.41525162 1827.4 581.6 361.9 157.6 36.9 7.1 3.0 1.5
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TABLE IV. Comparison of the 17 lowest odd energy levels of Fe16+ between completed direct CI computation (performed on basis parts
using the basis upscaling technique) and iterations of the NN-supported algorithm. The final approximative CI expansion has a size of 351 452
relativistic configurations.

Level k Configuration Ek
direct , Hartree Ek

i − Ek
direct , cm

−1

Start −9.5 −10.0 −10.5 −11.0 −11.5 −12.0 Final

0 2s22p53s 2 −1121.76048561 2263.9 866.8 658.0 252.9 71.6 17.3 7.2 3.0
1 2s22p53s 3P1 −1121.69077098 2282.1 877.0 667.8 255.5 72.6 17.7 7.3 3.0
2 2s22p53s 1P1 −1121.25287031 2175.6 877.2 661.8 264.7 74.2 18.7 8.0 3.4
3 2s22p53d 3P1 −1118.92128256 2286.3 829.2 594.5 245.5 70.2 14.4 5.0 0.9
4 2s22p53d 3P2 −1118.85451593 2299.9 837.6 591.5 253.3 67.5 15.0 4.8 0.2
5 2s22p53d 3F4 −1118.85179744 2329.5 853.0 599.7 260.1 68.1 16.2 5.1 0.0
6 2s22p53d 3F3 −1118.82459374 2362.7 859.1 621.7 254.6 74.2 15.6 5.7 1.5
7 2s22p53d 1D2 −1118.76136360 2363.2 858.6 618.1 255.5 72.7 15.5 5.5 1.1
8 2s22p53d 3D3 −1118.72173088 2375.2 857.8 605.0 260.3 67.9 16.0 4.9 −0.1
9 2s22p53d 3D1 −1118.55136331 2371.3 855.5 608.8 259.8 71.0 15.9 5.1 0.2
10 2s22p53d 3F2 −1118.36202727 2308.3 838.7 598.3 267.1 77.5 17.0 5.5 0.0
11 2s22p53d 3D2 −1118.33212227 2296.9 855.9 587.0 264.7 72.7 16.3 5.6 0.6
12 2s22p53d 1F3 −1118.31283417 2317.1 866.8 596.1 271.4 76.5 17.5 6.2 0.7
13 2s22p53d 1P1 −1118.05785037 2373.0 859.3 607.3 267.8 76.2 17.2 5.5 −0.1
14 2s2p63p 3P1 −1115.59428826 2317.9 971.2 731.6 306.2 89.5 24.7 8.3 0.0
15 2s2p63p 3P2 −1115.50892176 2275.1 939.9 712.2 286.2 88.2 23.1 8.1 0.8
16 2s2p63p 1P1 −1115.43721159 2309.4 964.9 730.6 293.6 90.6 24.3 8.8 1.2

IV. DEMONSTRATION COMPUTATIONS

In this section, we demonstrate our approach by perform-
ing computations on particular basis sets for

(i) the five lowest Ni12+ levels (belonging to the ground
state fine structure).

(ii) the five lowest even states of the Fe16+ ion.
(iii) the 17 lowest odd states of the Fe16+ ion.
These examples cover the most relevant aspects of the

NN-supported computations. We concentrate here on obtain-
ing high-precision results using the improved version of the
algorithm, and refer to Ref. [2] for further demonstration and
discussions of the basic procedure.

A. Numerical results

1. Five lowest states of Ni12+

We start with a demonstration of our NN-supported ap-
proach for computations of the five lowest energy levels of
Ni12+, which all belong to the ground-state fine structure.
Such ions with optical narrow transitions are of particular
importance to the development of highly-charged-ion clocks
[5]. We consider Ni12+ with a closed core [1s2 2s2 2p6] and
ground-state configuration 3s2 3p4 with six valence electrons.
The core can be accounted for using the coupled-cluster ap-
proach as in, e.g., Ref. [17], so here we focus on making the
six-electron CI computation complete with respect to the basis
set convergence.

The full basis is constructed by SD excitations from the
reference electronic configurations 3s2 3p4, 3s 3p4 3d , and
3s2 3p2 3d2 to the orbitals up to 22spdf gh20ikl , resulting in
862 788 relativistic configurations (208 827 180 Slater deter-
minants). For this set of orbitals, the number of features after
the binary transformation of the input data (see Sec. III C) is

575. We use four hidden NN layers of sizes 150, 75, 45, 20,
resulting in 102 107 trainable NN parameters. We perform a
full CI computation on a restricted subset of 171 644 configu-
rations (24 064 676 Slater determinants) obtained by limiting
the basis set to 17spdf g, and use it as the starting point for the
NN-supported computation.

In Table II, we compare the energies of the lowest five
levels evaluated using the direct CI computation (performed
using the basis upscaling technique described in Sec. II A)
and obtained for iterations of the NN-supported approach. The
latter are labeled by their cutoff value x; the starting stage is
also presented. The final energy value in the NN-supported
algorithm is obtained by exponential extrapolation of the val-
ues in the iterations (discussed in more detail later in the
text). The energies Ek

direct from the direct CI computation are
shown in Hartree units, whereas the energies obtained in the
NN-supported algorithm are counted from the corresponding
Ek
direct values and are measured in cm−1. It is seen that in the

subsequent iterations with decreasing importance cutoff x, the
energies Ek

i are refined and converge eventually to the values
Ek
direct with the targeted precision of a few cm−1. The resulting

basis set from the NN consists of 145 490 configurations, a
factor of approximately six times less than that of the full
basis set. Note that the energy differences between the levels
obtained using the two computation methods agree within
an error of 1 cm−1 smaller than for the individual levels.
We attribute this cancellation effect to the similarity of the
considered levels since they all belong to the fine structure of
the same electronic state.

2. Five even energy levels of Fe16+

Next, we compute the five lowest even-parity energy levels
of the highly charged Fe16+ ion. Here, we consider all ten
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FIG. 2. Extrapolation procedure for energies obtained in the iterations of the NN-supported algorithm for the three computations described
in Sec. IVA is shown in the corresponding panels. Here, �E [i] = Ei − Ei+1 is the change of the level energies obtained in adjacent iterations
indexed as i and i + 1. The first iterations in which the pattern given by Eq. (5) is not yet established, are marked with a black cross and
omitted in extrapolation. As shown in color, each energy level k has its own value �Ek[i], which all behave very similarly in the context of the
extrapolation procedure.

electrons to be active, and allow SD excitations to vacancies in
all orbitals up to 24h starting from three reference configura-
tions 1s2 2s2 2p6, 1s2 2s2 2p5 3p, and 1s2 2s 2p6 3s. This leads
to 649 195 relativistic configurations, corresponding to 48 174
193 Slater determinants, which is beyond our computational
capabilities for a direct CI computation on the full set. The
number of data features is in this case 469, and four hid-
den NN layers of size 469, 469, 234, and 117, respectively,
were used, resulting in 578 571 trainable NN parameters.
The starting set is constructed as follows: We begin with a
subset of 204 487 relativistic configurations obtained from
the full basis by restricting the virtual orbitals by 17g. We
perform a full CI computation on this set, and then omit
all nonrelativistic configurations with weights below 10−11.
The resulting subset consists of 133 276 relativistic config-
urations, corresponding to 9 148 479 Slater determinants. In
Table III, we summarize the results of our computations in the
same manner as in the previous section. The final approxima-
tive CI expansion contains 207 604 relativistic configurations.

3. 17 odd energy levels of Fe16+

We proceed now to the lowest 17 odd states of the Fe16+

ion, and target a challenging number of energy levels com-
puted at the same time. As in the preceding section, we
construct the full basis by allowing SD excitations for all 10
electrons to higher orbitals up to 24h. The reference configura-
tions are now 1s2 2s2 2p5 3s, 1s2 2s2 2p5 3d , and 1s2 2s 2p6 3p.
This gives 947 766 relativistic configurations (94 527 257
Slater determinants) in the full basis set. The same number
of features is present in the NN input data and the same NN
structure was used here as in the computations for the even
Fe16+ levels described in the previous section. We perform a
prior full CI computation on a sub-basis of 296 993 relativistic
configurations (24 115 133 Slater determinants) constructed
in the same way as for the even Fe16+ levels. The results

are shown in Table IV. The final approximative CI expansion
consists of 351 452 relativistic configurations.

B. Extrapolation of energies

In the cases described above, and shown in Tables II–IV,
the final level energies are additionally improved via exponen-
tial extrapolation of the values yielded in each NN-supported
iteration. This procedure is based on the observation that after
a few first iterations, the energy change �E [i] = Ei − Ei+1

between adjacent iterations starts decreasing by a factor

�E [i]

�E [i + 1]
= κ, (5)

which is approximately constant. Once κ is obtained numer-
ically from linear fitting of log(�E [i]), as shown in Fig. 2,
this allows us to formally sum up all energy changes �E [i]
beyond our iterations and obtain the final result.

From Fig. 2, it is seen that in the first few iterations, the
described pattern is not yet established. These apparent out-
liers are not included in the extrapolation procedure. Although
the assumption given by Eq. (5) is satisfied not at all pre-
cisely, in the considered examples, it is sufficient to improve
the energy precision and avoid another costly iteration on a
larger CI expansion. We note that, in the Ni12+ example, the
linear pattern establishes earlier, which is attributed to the fact
that all the energy levels belong to the fine structure of the
same electronic (ground) state and behave similarly in the
NN-supported computation, thus supporting the optimization
process. We stress that the extrapolation step is optional and
serves for further improvement of the energies after the suc-
cessfully completed NN-supported iterations. Its efficiency
should be studied separately for other cases at hand. Note also
that this step is applicable only to the energies, and does not
influence the CI expansion, i.e., the wave function, itself.
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TABLE V. Computational resources and execution time for each
computation required to obtain the final energies for Ni12+. For each
computation, the “num_procs” column lists the number of CPU
cores, and the “mem_per_core” column lists the total amount of
required memory in GB. The superscripts “a” and “b” indicate runs
done with a cutoff log10 x = −10 and log10 x = −9, respectively.

Direct CI

Basis num_procs mem_per_core Time (hr)

17g 1124 8.3 4
22g 1124 17.7 13
17h 1124 15.1 9.5
20h 704 14.4 10.5
22h 850 13.1 10
17i 840 29.4 27
20i 704 25.2 25
17k 840 17.8 19
20k 810 28.3 34
17l 640 29.7 47
18l 1350 15.4 10.5
19l 1056 20.4 15.5
20l 1000 25.3 24
17ha 800 3.7 2.5
20ha 640 5.9 2
17ia 900 5.9 4
20ia 950 9.3 4.5
20ib 900 7 2
17ka 950 8.8 6.5
17lb 1350 8 2
18lb 576 11.5 5.5
19lb 660 13.9 5.5
Total 283.5

NN-supported CI

Iteration num_procs mem_per_core Time (hr)
Start 640 21.7 2.5
−10 640 21.1 2.2
−10.5 640 22.4 5.3
−11 640 24.7 11.1
−11.5 640 27.8 19.7
−12 640 31.5 30.5
Total 71.2

C. Neural-network training

Here we discuss the evolution of the NN performance with
the training epochs. The three panels in Fig. 3 represent the
NN training process for the three computations described in
the previous section. For each case, we show the iterations of
the NN-supported algorithm separated by vertical dashed lines
and labeled by the importance cutoff log10 x at the top of each
panel. The NN performance is measured by the classification
accuracy, i.e., the fraction of the configurations classified cor-
rectly. It is evaluated prior to the training on the whole training
data, and after each epoch on 20% configurations held out
from the training set. This accuracy is monitored to stop the
NN training early for the current iteration of the NN-supported
algorithm if no progress is achieved. In this work, we use
“early stopping with patience” and terminate the training not
immediately after the epoch with the lower accuracy, but in

case 5 further epochs have not led to an improvement. The
NN is then reset back to its state immediately after the epoch
in which the best accuracy was achieved.

The plots in Fig. 3 show the typical patterns of the NN
training in our algorithm. In each iteration, the starting
accuracy prior to training (shown by the points lying directly
on the vertical dashed lines) is lower since the NN is either
yet untrained (in the very first iteration) or has switched from
an iteration with a different importance cutoff x. The accuracy
then grows strongly already after the first training epoch and
is refined in further epochs until the best NN performance is
achieved. The slight accuracy decline in the last five epochs
is attributed to the early stopping method used with patience
= 5. Although these epochs are shown in Fig. 3, they do not
participate in the NN evolution, since it is reset to its best state
achieved in the iteration. We note that in the first iteration,
higher accuracy is typically achieved due to training on the
data obtained in an independent (direct or NN-supported)
CI computation. This contrasts with the training procedure
in Ref. [2], where the first NN training was performed on
a random selection from the pool, leading to unstable NN
performance and necessity to switch to the convolutional
architecture.

D. Computational resources

We now shift attention to the amount of used computa-
tional resources, as well as the total execution time of the
calculations. Since both our NN-supported algorithm and the
basis upscaling approach without NN involve many internal
iterations, we stick to the representative case of Ni12+ for
comparison of the required computational effort. In Table
V, we list the number of processors and required amount
of memory per processor, as well as the runtime for each
calculation for the respective basis sets. All computations are
done with the maximum amount of available computational
resources at the time. We find a total speedup of about 4 times
of the NN-supported approach with respect to the direct CI
with basis upscaling. Note that this only takes into account
the runtime of the actual calculations with the CI atomic
code, excluding any time to prepare basis sets and construct
configuration lists (both with and without NN). The total time
it takes to prepare the calculations is much lower in the case
of the NN-supported approach, since here much fewer CI runs
are performed in total, whereas the NN operation introduces
no significant computational overhead.

V. CONCLUSIONS

We built upon the NN-based approach developed in
Ref. [2] and introduced significant developments and sim-
plifications for its use with the PCI code package [6]. The
improved algorithm operates on groups of Slater determinants
corresponding to relativistic electronic configurations. The
computation is performed for many levels at once, and starts
from another (direct or NN-supported) computation. These
improvements allow us to refrain from a computationally de-
manding convolutional architecture, as in Ref. [2], and use
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FIG. 3. Evolution of the NN classification accuracy with the training epochs for the three computations described in Sec. IVA is shown in
the corresponding panels. For each case, iterations of the NN-supported algorithm are shown separated by the vertical dashed lines and labeled
by their importance cutoff x at the top.

a simple dense NN. We have successfully demonstrated the
validity and accuracy of the results obtained using our NN-
supported algorithm compared with the direct large-scale CI
calculations for energy levels of the highly charged Ni12+ and
Fe16+ ions. For the cases considered in this work, a direct CI
computation on the full basis is not feasible. Instead, all direct
CI calculations (i.e., without NN) were performed on partial
sets using the basis upscaling technique. It has been shown
that the NN-supported computation can be completed with
significantly reduced execution time in comparison with basis
upscaling. The demonstrated NN-supported basis set conver-
gence procedure can now be automated to provide accurate
results for a wide variety of systems for astrophysics and the
development of atomic clocks.
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