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Abstract: Blockchain has emerged as a solution for ensuring accurate and truthful environmental
variable monitoring needed for the management of pollutants and natural resources. The immutabil-
ity property of blockchain helps protect the measured data on pollution and natural resources to
enable truthful reporting and effective management and control of polluting agents. However,
specifics on what to measure, how to use blockchain, and highlighting which blockchain frameworks
have been adopted need to be explored to fill the research gaps. Therefore, we review existing
works on the use of blockchain for monitoring and managing environmental variables in this paper.
Specifically, we examine existing blockchain applications on greenhouse gas emissions, solid and
plastic waste, food waste, food security, water usage, and the circular economy and identify what
motivates the adoption of blockchain, features sought, used blockchain frameworks and consensus
algorithms, and the adopted supporting technologies to complement data sensing and reporting. We
conclude the review by identifying practical works that provide implementation details for rapid
adoption and remaining challenges that merit future research.

Keywords: environmental sustainability; blockchain; pollution monitoring; plastic waste; solid waste;
greenhouse gas emissions; food waste and security; water management; wastewater; circular economy

1. Introduction

Environmental sustainability faces significant challenges due to escalating pollution
from our daily activities and production practices [1]. Factors such as unsustainable
utilization of natural resources and inadequate waste management exacerbate global
warming, resulting in more frequent extreme weather events such as droughts, floods,
shifts in climate patterns, and rising sea levels, leading to land loss [2].

Numerous countries and regions worldwide are mobilizing to combat climate change,
striving to curb emissions and limit global warming to 1.5 degrees Celsius as outlined in
the Paris Agreement [3]. While halting pollution is an aspirational long-term goal, it is
currently impractical, as many economies rely on industrialization and diverse human
activities. Striking a balance in managing pollutants and their production emerges as
a pragmatic solution [4]. However, accurately measuring, monitoring, and reporting
waste generation and resource usage present significant challenges, especially given the
presence of stakeholders with conflicting interests within the management chain. In such
circumstances, ensuring data fidelity becomes a considerable concern [5].

To address these challenges, an electronic recording system with features such as data
availability, transparency, and protection against manipulation is crucial. Blockchain technol-
ogy has emerged as a promising solution to these challenges. By employing a distributed and
parallel data ledger, blockchain ensures data immutability, making it resistant to Byzantine
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attacks [6]. However, blockchain offers more than just immutability. Its distributed record-
keeping approach and the use of a consensus algorithm contribute to its trustworthiness and
resiliency, meeting the needs of users and policymakers seeking to protect data associated
with environmental variables to achieve actual results on protecting the environment and
bounding climate change. But there are many possible applications, environmental variables,
and polluters on where blockchain may be applied, and some have been recently addressed
in the literature. Therefore, it is necessary to know the applications and objectives of these
research works and their motivations to use blockchain to identify existing research gaps.

In this paper, we review existing research that applies blockchain technology to en-
hance trust in the recording, sensing, and management of variables affecting environmental
sustainability. These variables are greenhouse gas (GHG) emissions, solid waste, plastic,
food, water, and a new circular economy that targets to reduce, reuse, and repurpose
used materials to reduce their environmental impact. These works represent interdisci-
plinary approaches that leverage environmental, social, financial, and engineering solutions.
We have excluded applications of blockchain technology in energy and chemical waste
management [7] due to the broad scope of the former and the localized nature of the latter.

The contribution of this paper is the addressing of the following questions: (1) What
are the motivations for using blockchain technology in the management of GHG emissions,
solid and plastic waste, food waste, water usage, and circular economy? (2) What specific
features of blockchain are sought in existing research? (3) What gaps exist in current
research that warrant further investigation?

Through exhaustive literature research, we address these questions, uncover intersec-
tions, and outline remaining challenges from the reviewed literature. Our analysis aims to
offer guidance for future research endeavors in this rapidly evolving field. We categorize
the blockchain frameworks utilized in each topic, their respective consensus mechanisms,
the supporting technologies for data collection, and the persistent challenges across the
reviewed works.

The remainder of this review is organized as follows. Section 2 presents some basics
of blockchain and consensus algorithms reported in the reviewed work and overviews the
blockchain features that make blockchain a technology of interest to support the monitoring
of variables for environmental sustainability. Section 3 presents existing applications of
blockchain for the management of GHG emissions (with a specially dedicated section
to carbon), solid, plastic, food waste, water, and circular economy. Each environmental
variable reviewed in this section is structured and can be read as a standalone section
without losing context. Section 4 presents future challenges and Section 5 presents our
conclusions. Figure 1 shows a snapshot of the topics covered in this review.
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Figure 1. Content and organization of this paper: Applications of blockchain for the management of
GHG emissions, carbon, solid waste, plastic waste, water management, food waste, and circular economy.
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2. Blockchain

Blockchain is a decentralized and distributed digital ledger that keeps data immutable
to safeguard both data and the record-keeping process [8]. Blockchain operates across a
peer-to-peer (P2P) network of nodes, called miners or validators, that interplay a consensus
algorithm to certify data as truthful. Data are recorded after consensus is affirmatively
verified. The distributed ledger is organized as blocks of verified transactions. These
blocks are linked as a chain to provide historical immutable records. With the combi-
nation of distributed operations of the consensus algorithm and cryptographic schemes,
blockchain makes it difficult for adversaries to tamper with the information stored in the
distributed ledger.

Based on the access permissions, blockchains can be categorized into public, pri-
vate, and consortium frameworks. A public blockchain allows any user to join, read the
blockchain’s content, submit transactions, verify content correctness, and participate in the
consensus algorithm. Well-known examples of public blockchains are Bitcoin [8], NXT [9],
and Ethereum [10]. A private blockchain uses a sole entity for granting permission for users
to join the network, and write or send transactions to the blockchain. Examples of private
blockchains are Hyperledger Fabric, Ripple, and Eris [11]. A consortium blockchain uses a
consortium to grant access to each participant [12].

2.1. Blockchain Frameworks

There are numerous blockchain frameworks. Here, we briefly introduce those used in
the reviewed literature for environmental data recording.

A blockchain framework is a set of tools that enables the development of blockchain-
based applications. The frameworks support the function of consensus mechanisms, smart
contracts, cryptographic functions, and Application Programming Interfaces (APIs) to build
decentralized applications (dApps) or blockchain-based solutions. Popular blockchain
frameworks include Ethereum [10] and Hyperledger [13]. The following are brief introduc-
tion to blockchains detected in the reviewed works within the scope of this review.

*  Bitcoin is well-known blockchain for payment exchange and cryptocurrency generation [8].
This public blockchain handles between 4.6 and 7 transactions per second, making it
hardly scalable.

e Ethereum is a programmable P2P network that enables users to build and deploy
decentralized applications [10].

*  Hyperledger is an open-source blockchain platform hosted by the Linux Foundation’s
Hyperledger project designed to meet confidentiality, privacy, and scalability require-
ments while maintaining a global collaboration between finance, banking, supply
chains, manufacturing, and technology [13].

*  Corda is designed for enterprise environment, highlighting data privacy, security,
and compliance [14]. Corda shares data on a need-to-know basis because parties
may be competitors who want to keep business relationships and details secret from
one another. Participants must first obtain a digital certificate before joining the
network [15-17].

*  Algorand is a blockchain platform that claims to be secure, decentralized, and scalable
while reducing energy consumption. It uses a consensus algorithm called pure proof-
of-stake (PPoS) that enables large participation and prevents forks for enhanced
security [18].

Table 1 categorizes the frameworks adopted based on the consensus algorithm used,
whether they are fully or partially decentralized, and the throughput in terms of the number
of transactions per second. These values are reported by the individual papers and the
framework platforms.
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Table 1. Performance comparison of blockchain frameworks.

Name Consensus Decentralized Transaction Rate (tps)
Algorand [18,19] PPoS, Algorand Consensus public 1100
Bitcoin [8] PoW public 4.6, max 7
Ethereum [10] PoW public 15
Hyperledger-Iroha [20] YAC open source and private depends on network
Hyperledger-Fabric [13] PBFT, Raft or Kafka private 3500
Hyperledger-Sawtooth [21] PBET (%iiogo()églapsed open source and private depends on network
Corda [14,16] Pluggable Consensus private 200

2.2. Consensus Algorithms

A consensus algorithm is a protocol used by the nodes of a blockchain network to ensure

consistency among the distributed ledgers [11]. Various consensus algorithms have been
considered for environmental monitoring. Here, we briefly introduce those widely adopted
ones in the reviewed works.

Proof of Work (PoW) is a consensus algorithm used in Bitcoin, and later also used in
Ethereum [11]. In this scheme, nodes called miners or validators compete to solve
a computationally challenging puzzle to decide who leads the addition of the latest
block in the valid blockchain. The miner who resolves the puzzle first is the selected
miner who adds the new block in the blockchain.

Proof of Useful Work (PoUW) is similar to PoW; however, it requires that the work is not
just computational but also useful in some real-world applications [22,23].

Proof of Stake (PoS) uses the level of a stake that each validator (called forgers) puts
forward to as another variable to select the block committing node (instead of resolving
a puzzle) [9,24].

Delegated Proof of Stake (DPoS) resolve “the rich getting richer” problem presenting in
PoS by also considering votes from the nodes in the network [25].

Proof of Stake Time (PoST) solves the problem of “the coin-age”. Beside the stake,
validators must demonstrate consistent participation and contribution over time to be
chosen to create new blocks.

Practical Byzantine Fault Tolerance (PBFT) is a consensus algorithm proposed to solve the
Byzantine Generals Problem and optimizes for low overhead time to solve problems
associated with already available Byzantine Fault Tolerance solutions [25].

Three consensus used with Hyperledger are: Raft [26] and Kafka [27], which are crash
fault-tolerant, and YetAnotherConsensus, as used by Iroha [20,28]. Raft and Kafka use a
leader—follower mechanism to improve transmission efficiency and rotated the leader
role to ensure fault tolerance.

Proof-of-trust (PoT) is a consensus algorithm that selects validators based on the par-
ticipants’ trust values. PoT has a centralized reputation-based approach to reach a
consensus and avoids low throughput and high resource consumption. By separating
participants” powers in the consensus process, PoT promotes fairness and security [29].
Proof of Vote (PoV) is a consensus protocol based on a voting mechanism and consor-
tium blockchain. PoV separates voting rights and executive rights. The consensus
mimics the voting campaign by designing four types of network participants: com-
missioner, butler, butler candidates, and ordinary participants [30].

2.3. Blockchain Features in Environmental Monitoring

Blockchain provides features such as data security, transparency, and trust, enhancing

efficiency across diverse industries and applications for recording and management systems.
Some blockchain features are inherent attributes, like data immutability, and others are
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enabled by the use of smart contracts in a blockchain. For example, a smart contract can be
deployed on a blockchain to facilitate the establishment of environmental policy and ensure
enforcement. Figure 2 shows the blockchain features mostly sought after in environmental
management and monitoring applications. These features are described as follows:

Immutability (IM) is the feature that transactions (data) stored in the blockchain
cannot be tampered with. Once data are recorded in the blockchain, it cannot be
changed. This measure guarantees the integrity of the data within the blockchain,
as attempts to modify it are highly infeasible.

Anonymity (AN) is the attribute of a system where participants’ and stakeholders
information is protected and kept private.

A Smart contract (SC) is a self-executing trusted code that runs on a blockchain
network without needing a trusted or centralized node [31]. Blockchain clients issue
transactions to trigger smart contracts to perform functions on the blockchain.
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Figure 2. Blockchain features in environmental monitoring: inherent ones and acquired ones,
identified in this paper.

Other acquired features that are enabled by blockchain include the following:

Data Governance (DG) defines how data are shared and who or what processes have
access to the recorded data.

Data Security (DS) is the property of a system that makes data immune to a specific
attack. These data are the transaction content.

Incentives (IN) are the mechanisms designed to encourage user participation. These
incentives encompass both rewards and penalties within the system. Rewards are
employed to promote favorable behavior and adherence to the established rules
defined by smart contracts, while penalties serve to discourage unfavorable behaviors.
Payments (PY) is the process of transferring cryptocurrencies or tokens between
blockchain clients” accounts in exchange for goods or services.

Traceability (TC) is the ability to access chronological information of a client, a physical
or digital object, or a process through recorded transactions. Traceability allows users
to follow the history of an object. Provenance, as a specialized application of tracking,
uses traceability to identify the origin of the subject.

Tokenization (TK) is the representation of a universal value of physical or digital
assets, or ownership rights on a blockchain network. Tokens can be exchanged or
generated in a blockchain as a result of a smart contract.

Transparency (TP) is the property that allows users to access information recorded in
the blockchain for verification. Users may look into this feature to access historical data.
Tracking (TR) is the feature of blockchain that allows access to the data regarding the
current location or status of objects or processes.
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Table 2 outlines the terminologies and abbreviations for features of blockchain used in
this paper. In the following analysis, we highlight the commonly targeted features in the
existing literature.

Table 2. Features of blockchain sought by reviewed approaches.

Terminology Abbreviation
Anonymity AN
Immutability M
Smart contracts SC
Data Governance DG
Data Security DS
Incentives IN
Payments PY
Traceability TC
Tokenization TK
Transparency TP
Tracking TR

3. Blockchain-Based Management of Critical Elements for Sustainability

The critical elements for sustainability identified in this paper are greenhouse gas
and carbon emissions, solid and plastic waste, food, water, and circular economy. Be-
cause blockchain is used as a ledger, we look into the motivations of using blockchain
and the features sought, and identify which blockchain framework are adopted. We also
identify the technology used to support data acquisition and monitoring. At the end of the
section, we identify the challenges left for future research.

Research Methods. The followed research method was an exhaustive search for publica-
tions where blockchain is used to monitor the environmental variables addressed in this
paper, and identify the motivations of using blockchain, threats, features, frameworks, con-
sensus algorithms, and the supporting technologies. The searched databases were Science
Direct (Elsevier) and IEEE Xplore that archive conference and journal papers. We greatly
used Google Scholar, which directed the search to many other publishers and databases. We
also made a general search on the Internet and retrieved information from sites on products
and projects on the focus themes. The search produced about 300 publications, and about
200 were considered to have enough original information to be reported. The others are
references to basic or associated information for completness. Different from other works,
the uniqueness of this review is the identification of the motivations for using blockchain on
environmental sustainability. Each environmental variable addressed here are independent
from the others and so that each topic in this review can be read independently. The results
of the analysis are greatly summarized by the provided tables.

3.1. Greenhouse Gas Emissions

GHG are those that contribute to the warming of the Earth’s atmosphere. These
gases include carbon dioxide (CO;), methane (CHy), nitrous oxide (N,O), hydrofluorocar-
bons (HFCs), perfluorocarbons (PFCs), sulfur hexafluoride (SF¢), and nitrogen trifluoride
(NF3) [32,33]. Other important GHG emissions are particulate matter PM2.5, PM5, and
PM10 and volatile organic compounds [32].

Monitoring the generation of GHG emissions is recognized as a critical need. Industries
and households that utilize combustion in various capacities are significant sources of GHG
emissions that also require monitoring.

In this section, we examine existing research on monitoring and recording GHG
emissions data, identifying the objectives that drive the implementation of blockchain
technology, and the target GHG emission. Figure 3 highlights the detected objectives in the
use of blockchain applications for GHG emissions. We also provide insights into blockchain
and other supporting technologies. These supporting technologies are those used to sense,
collect, transmit, or store data in combination with blockchain. The supporting technologies
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are various and aim to provide additional information on strategies to address an interface
between blockchain and the environment/users. Table 3 summarizes the information
gathered from the reviewed literature.
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Figure 3. Objectives of blockchain applications for the management of GHG emissions.

Table 3. Blockchain applications for the management of GHG emissions.

Blockchain Supporting

Objectives Emissions Features Framework Technologies Challenges
Ethereum [36]
Check CO [35], NO,, ! IPFS [35], data ..
compliance [34-37] SO, [34-36], N,O SC, TP Hyperl;%ger [34, compression [36] Scalability
Facilitate HCH§] gLO/élO], 5G [38],e§é(;ud and
27 2, 2, JN
managir?]ent [38- NH; [38], TC, TP Ethereum [39] computing [38], Scalability [39]
PM2.5 [39] crowdsourcing [39]
Manage emission NO,, O3, PM2.5, IN IB-AQMS N.A Smart contract
credit [42] PM10 blockchain/PoW o conditions check
Collect fines [43] NO,, PM2.5 TP N.A. N.A. Tracking,
scalability
NO,, O3, PM2.5, Cost,
Reduce cost [44] PM10 Ethereum IPFS IPFS reliability

3.1.1. Objectives

Five distinct objectives have been identified using blockchain to mitigate the impact
of GHG emissions: (a) monitoring for compliance with policy limits, (b) managing emis-
sions by polluters, (c) utilizing emission credits, (d) reducing costs, and (e) managing
fine collection.

*  Check compliance: It is generally believed that curbing GHG emissions depends on
compliance policy, agreements, and allowances [34,36-38,45]. The main concern is to
keep sensed data accurate [38] so compliance can be verified [34]. It is important for
some policies to also record humidity and temperature data to justify environmental
variations [36] that can be associated with specific policy agreements [37].

¢  Facilitate management: Management of emissions share similarities with compliance
except that it can help emitters as well [39]. Such activity may involve monitoring and
quantification of the GHG (as seen for methane) [40,41].
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* Manage emission credit: In this scenario, producers of GHG emissions may be
granted credits or allowances for emission, and blockchain could serve as a reliable
mechanism for verifying compliance [42].

*  Collect fines: The process of fine collection necessitates an efficient system to monitor
and track payments made by environmental policy offenders [43]. The adoption
of blockchain technology in this context ensures the implementation of a secure
payment system.

* Reduce cost: It was also explored to use blockchain for recording various GHG
emissions to reduce cost [44]. One strategy was to reduce the cost of storage and for
that they resorted to using Inter-Planetary File System (IPFS). However, the use of
IPFS also requires looking into reliability and data durability [46].

3.1.2. Blockchain Features

Transparency [34—41,43], traceability [36—41], and integrity [42], facilitated by the
immutability property of blockchain, are key motivations for employing blockchain in
monitoring and measuring GHG emissions. These properties are sought by studies on
compliance verification, management facilitation, and fine collection. However, achieving
transparency often requires additional functionalities to grant different stakeholders access
to the recorded data.

3.1.3. Blockchain Frameworks

The most commonly reported blockchain framework for recording GHG emissions is
Ethereum [36,44]. Other frameworks, such as IBM-AQMS [42] and Hyperledger [34], have
also been adopted. However, the reported studies did not provide information about the
rationale behind their choice of framework nor the sought features.

3.1.4. Supporting Technologies

Given the expansive nature of monitoring GHG emissions, crowdsourcing approaches
have been considered [39]. Additionally, technologies such as 5G have been utilized to
transmit data directly to blockchain repositories, minimizing data exposure [38]. Some
studies have explored the use of IPFS to store recorded data in large public off-chain
databases, offering enhanced security protection [35,44]. Furthermore, data compression
techniques have been employed to reduce storage requirements [36].

3.1.5. Challenges

The plethora of works focusing on recording and monitoring GHG emissions con-
verge on scalability as a major challenge [36,39]. Managing numerous sensors required for
accurate evaluations of GHG generation in large urban areas poses difficulties in central-
ized management. One proposed approach involves outsourcing the monitoring of such
emissions [39], although implementing a methodology to crowdsource while maintaining
data immutability presents significant challenges. Nevertheless, this approach could extend
sensing coverage to large areas. The scalability required not only affects the blockchain
itself but also off-chain storage and the used storage in general [44].

Other challenges include implementing actionable smart contracts to monitor changes
and compliance with emission limits for emissions credit management [42]. Scalable
tracking for fine collection management of nonconforming emitters is another challenge.
The cost of blockchain implementation is an important factor that one must consider for
actual implementations and it is, therefore, a topic that needs further study. Other GHGs
that are yet to be considered for monitoring with blockchain technology are HFCs, PFCs,
SFg, and NF;. Furthermore, the reviewed literature focuses more on proposing systems
that may not have yet been implemented and tested. Therefore, there is an evident gap
in developing systems that prioritize the implementation of blockchain and observing its
performance under real testing scenarios.
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3.2. Carbon Management

As the primary and popular global warming contributor, monitoring of carbon has
attracted significant attention, with the objective of regulating, monitoring, decreasing,
and eventually recapturing such emissions [47]. To mitigate climate change, global ini-
tiatives by governments, industries, and organizations have focused on monitoring and
regulating carbon emissions [48-52]. However, measuring, monitoring, and reporting of
carbon management lacks public trust because most human activity produces carbon and
the required reporting and verifying task might conflict with economy benefits [53,54]. In
Table 4, we summarize the objectives, the blockchain systems, and technologies reported in
the literature.

Table 4. Blockchain-based systems for carbon emission management.

c Blockchain Framework Supporting
Objective Sector Features (Consensus) Technologies Challenges
o Hyperledger
Bulldmg and Fabric (Kafka) [55], Database [56], Raw data
construction [55, SC,IN, TC, TP
. Hyperledger sensor fraud [56]
Monitor carbon 56] .
Fabric [56]
Environment [57] TC, TP N/A Sensor Scalability
. Carbon Footprint
Food industry [58] TR Chain (Raft-like) N/A N/A
Not specified Scalability, data
General public [59]  SC, DS, PY, TK, TP (PpoR) Al privacy, implemen-
tation cost
FISCO BCOS

(PBFT) [60],
Multi-level

blockchain [53],
Hyperledger
Corporate [53,54,  SC,DG,IN,PY,  Fabric (DPoR) [61], ~ cnsor [53,60],
reputation N/A
60-69] TC, TK, TP Hyperledger system [61,63]
Trade carbon Fabric (Solo) [62], y !
Multichain [63],
Bitcoin [64],
Hyperledger
Fabric (Kafka) [68]
Hyperledger Data privacy,
Transportation [70-  SC, DG, IN, PY, Fabr‘CI(PBFT) [7}(?' env lmnme“ftal
73] TC TK. TP Hyperledger Iroha VANETS: [70] impacts o
e (YAQ) [71], blockchain,
Ethereum [73] scalability [72]
Hyperledger Priority and
Energy [74,75] G, ,{_ﬁ’ I,;;’ TG, (Kafka) [74], reputation N/A
’ Ethereum [75] system [74]
Marine SC, DG, TC, TK,
ecosystem [76] TP N/A N/A N/A
Building and SC, DG, IN, TC,
construction [77] TK, TP N/A N/A Raw data fraud
Fashion
industry [78] P N/A N/A N/A
Capture and store Not specified
carbon Industry [79] DS, IN, TK, TP (PoUW) Sensor N/A

3.2.1. Objectives

We categorize the reported objectives into carbon monitoring [55-57], carbon trad-
ing [53,54,59-78], and carbon capture and storage (CCS) [79], as shown in Figure 4. Table 4
summarizes the various identified objectives and the features of the adopted blockchains
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to achieve those objectives. Carbon monitoring is primarily focused on measurement,
reporting, and verification (MRV) of sensed data [80]. Carbon trading, while treating these
emissions as tradable commodities, is an emerging objective.
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Figure 4. Objectives of blockchain applications for carbon management.

e  Carbon monitoring: The building and construction sector is one of the largest con-
tributors to GHG [81]. Here, making data transparent to stakeholders and preserving
data integrity [55,57], especially among service providers [58], to support trust among
various stakeholders [56], have been major objectives in data monitoring projects.

e  Carbon trading: In carbon trading among individuals and companies [53,54,59-69],
transaction verification [59], data integrity [60], and maintaining security and effi-
ciency of the trading system [61], where transactions are influenced by both the offer
price and the reputation value of emitting enterprises, are main concerns. Trans-
portation systems are another large contributor of carbon [70-73]. Blockchain-based
systems enable the transportation emission trading with trust between individuals [71]
and vehicles [70,73]. In the energy sector, blockchain is being proposed to trace the
source of carbon, enabling transparency in carbon trading [74,75]. Various conceptual
blockchain frameworks for emission trading to ensure transparency have also been
proposed for marine and coastal ecosystems [76], the building sector [77], and the
fashion apparel industry [78].

e  Carbon capture and storage: For CCS, Bachman et al. [79] introduced a new native
token on a blockchain that uses Proof-of-Useful-Work (PoUW) as the consensus mech-
anism to incentivize carbon removal. With this incentive mechanism, CCS facilities
compete with each other for the amount of captured and stored carbon emissions.

3.2.2. Blockchain Features

The most demanded use of blockchains in carbon emission management is smart
contracts, as it provides the mechanism to keep records in a blockchain. Transparency [53—
57,59-65,69-79] and traceability [53-57,60-65,67,69-77] are also amongst the most sought-
after features in this topic. Incentive management [53-56,60-65,70-75,77,79], tracking [53,
54,59-65,70-77,79], and data governance [53,54,60-65,70-73,76,77] are also considered.

3.2.3. Blockchain Framework

The adopted blockchains for carbon management are: Hyperledger Fabric [55,56,61,
62,68,70,74], Ethereum [73,75], CFC [58], FISCO BCOS [60], Multichain [63], Bitcoin [64],
and Hyperledger Iroha [71]. Hyperledger Fabric is the most widely adopted blockchain,
owing to its flexibility to adopt different consensus algorithms. Some applications that also
target scalability, and thus, high transaction throughput, use raft-like consensus algorithms,
such as in food-industry applications [58].
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3.2.4. Supporting Technologies

The use of sensors and numerous IoTs motivates the adoption of a database to store
the data obtained to achieve fast access time and low cost per record stored [56]. Aligned
with the objective to reduce data exposure, the protocol design for having sensors directly
reports data to the blockchain, and thus, minimizing human intervention has been reported
to be of large interest [53]. To govern the carbon trading system, artificial intelligence (Al) is
employed to detect carbon emissions anomalies [59]. The use of vehicular ad hoc networks
(VANETSs) has been explored to enable direct trading between vehicles that contribute to
the generation of carbon [70]. Other approaches to incentivize the reduction of carbon
emissions require a reputation system that allows carbon contributors to compare their
emission levels [61,63,74].

3.2.5. Challenges

Although holding significant promise in reducing carbon emissions, blockchain-based
carbon management systems may encounter issues such as data privacy, scalability, cost,
and the risk of raw data fraud during the emission data collection process. The inherent
transparency of blockchain technology ensures symmetrical information sharing among
stakeholders, but it also raises concerns regarding the handling of confidential information.
Scalability becomes a growing concern as more participants or sensors are integrated
into the carbon management system, potentially impacting its performance. Additionally,
the energy consumption of blockchain technology raises concerns about its carbon footprint
and its implications for carbon emissions. Collecting emission data are inherently exposed
to raw data fraud, especially those systems that require human intervention. Autonomous
communication and management are also needed solutions.

3.3. Solid Waste Management

Solid waste is the materials generated from daily human activities, movable, and per-
manently discarded [82]. They are categorized into municipal, electronic, medical, agri-
cultural, and hazardous waste, depending on the source of generation. Most of the solid
waste ends up in landfills, and it significantly impacts the environment and human health
by contaminating the soil and groundwater and generating methane and carbon dioxide
during decomposition [83]. As shown in Figure 5, the phases of effective solid waste
management (SWM) typically are: generation, segregation, collection, transportation, treat-
ment, and disposal in an environmentally friendly manner. To perform this task effectively,
solid waste may need to be tracked using well-recorded immutable data using blockchain.
The following objectives highlight the foreseen challenges.

A L8,

Generation Segregation Collection Transportation Treatment and Disposal

Figure 5. Stages of solid waste management for the application of blockchain.

3.3.1. Objectives

Table 5 shows a summary of the objectives of using blockchain in SWM along with
the type of waste, the reported blockchain features, adopted framework and consensus,
supporting technologies, and its remaining challenges.

* Incentivize waste segregation: Waste segregation is more effective at the source.
Therefore, a system to reward cryptocurrency to those individuals or groups who
segregate solid waste is a major incentive mechanism [84].

* Incentivize waste collection: This is the most popular objective in SWM. Systems
to manage the recording of proper disposal of solid waste and the distribution of
rewards are of major interest [85-88]. Other approaches include a penalty to those
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who do not comply with disposal policy. Proper discarding often means to return
such disposed materials to a retailer or dealer, so that rewards are assigned. Rewards
are in the form of tradable tokens [89] or cryptocurrency [87].

Monitor waste transportation: Illegal dumping and dumping hazardous waste are
major concerns in the reviewed applications. For the latter concern, reducing in-
formation asymmetry between contributors of solid waste and waste manager is
needed [90]. Real-time monitoring of waste transportation can also help reduce these
two concerns [91].

Improve solid waste management: There are a few works that consider the general
management of solid waste as a target. These approaches aim to support waste
tracking [92], especially for medical waste [93,94].

3.3.2. Blockchain Features

In summary, smart contracts, transparency, and tracking are widely sought-after

blockchain features to address the challenges of information asymmetry in SWM. Data
governance [92,95-97] is of interest for improving municipal waste management to control
access to the record. Data security is adopted by monitoring municipal waste transporta-

tion

[91] and improving medical waste management [93,94]. Incentivization is adopted

for waste segregation and collection as well as improving municipal waste manage-
ment [84,87,88,92,95-97]. Traceability is reported in approaches for incentivizing waste
segregation [84], monitoring hazardous waste transportation [90], and improving municipal
waste management [93,94].

Table 5. Blockchain applications for solid waste management.

Blockchain Framework Supporting

Objective Waste Type Features (Consensus) Technologies Challenges
Incenthl;e waste Municipal SC,IN, TC, TP Ethereum IoT, QR code N/A
segregation [84]
Incentivize waste . 10T, sensors, Incentivization [85]
. Electronic [85,86] SC, IN, TP, TR Ethereum barcodes, browser . ’
collection [85-89] . Security [86]
extensions
Agricultural [89] TP N/A QR Code, IoT Scalability
Fog computing, Implementation
Municipal [87,88] SC, IN, TR Ethereum [87] GPS, RFID [88], and
ToT [88] tokenization [87,88]
Monitor waste Validate input data,
transportation [90, Hazardous [90] SC, TC, TP, TR N/A IoT, GPS data ownership,
91] lack of regulation
UHF, VANETS, IoT,
Municipal [91] DS, TP, TR N/A Geo-fencing N/A
techniques
. Resilience in
Improve solid Ethereum adoptin
waste Municipal [92,95-  SC, DG, IN, TC, TP, QR code [92], pung
management [92— 971 TR (PoW) [95], IoT [97] blockchain
97] Ethereum [92,97] technology [96],
scalability [92]
Data privacy, lack
of regulation,
Ethereum [93], smart contract
Medical [93,94] SC, DS, TC, TP, TR Hyperledger IPFS [93] vulnerabilities,
Fabric [94] scalability [93],
data

validation [94]
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3.3.3. Blockchain Frameworks and Consensus Algorithms

Among the reviewed papers for SWM, Ethereum [84-87,92,93,95,97] and Hyperledger
Fabric [94] emerge as popular frameworks. The reported consensus algorithm includes
PoW [95].

3.3.4. Supporting Technologies

Various technologies, such as IoT [84,88-90,97], GPS [88], QR codes [84,89,92], and
RFID [88], are crucial in collecting data throughout the waste segregation, collection,
transportation, treatment, and disposal processes. These technologies are often integrated
into smart waste bins or waste trucks. On the computational side, a decentralized storage
system, IPFS, is also used for off-chain data logging [93]. Ultra-high frequency (UHF) and
VANETs are used to efficiently retrieve sensor data over extended distances. UHF tags
and readers are used to identify waste bins while VANETs enable the location detection of
them [91]. Geo-fencing techniques are also employed for effective waste monitoring and
timely collection from dump spots [91].

Computing infrastructure and applications are identified for the collection, recording,
sharing of data, and managing of IoT devices and for hosting services. These applications
include fog [88], cloud [87], and edge computing [89].

3.3.5. Challenges

Some challenges commonly identified with blockchain technology are also identified
in blockchain-based SWM systems. They are the implementation and monetary value de-
termination of the cryptocurrency [87,88], data sharing boundary [90,93], scalability [89,92],
lack of regulation on blockchain technology [90], resilience in adopting blockchain tech-
nology [96], and smart contract vulnerabilities [93]. Data standards and how to validate
data from off-chain storage to blockchain are needed to ensure interoperability among the
systems [90,94].

3.4. Plastic Management

Plastics represent a major source of pollution to the environment, and are already
permeating into most of the food chain and into animals and people [98-100]. Plastic is a
key contributor to the municipal solid waste. However, because of its vast impact on the
environment, we give it its own section.

Municipalities manage plastic waste through incineration, disposal to landfills, recy-
cling, or exporting to other countries/regions [101]. Some of these options are not helpful as
they just move plastic waste from one place to another through exportation or contaminate
in other forms as GHG generated by incineration.

3.4.1. Objectives

As shown in Table 6, the objectives of blockchain-based approaches for plastic-waste
management include incentivizing plastic collection, plastic feedstock tracing, and plastic
trading. Figure 6 shows these objectives described in the following.

* Incentivize plastic collection: Plastic collection is a prime management task for
the others and one that depends on incentivizing individuals to discard and collect
plastics [102]. Traceability can help to motivate proper plastic disposal by increasing
consumer liability [103], while tokenization helps with rewarding those individuals
who properly dispose plastic waste [104]. Another strategy to facilitate plastic waste
collection is to crowdsource the location of the plastic waste with reliably geo-tagged
public photographs so that collectors can locate it [105] and by connecting collectors
with plastic collecting companies [106].

*  Trace plastic feedstock: Plastics and microplastics in the ocean have recently claimed
significant attention. Publicity has also generated plans to incentivize plastic collectors
to recover such plastics from the ocean. But monetary incentives also motivate abuse
(e.g., claim ground plastics as ocean plastics). Therefore, blockchain finds its use
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in incentivization [107], plastic segregation [108,109], and plastic traceability [110].
Data management is another supporting task in plastic collection, specially targeting
raw recyclable plastics that currently considered of high value [111,112]. There is
especial interest in applications that target textile products made from recycled plastics
collected from land and ocean [111].
*  Support plastic trading: The recyclability index (RI) of plastics indicates how much
plastic can be recycled and the value of plastic is driven by it [113]. Recyclable
plastic can be traded and that benefits from trading and accounting systems using
blockchain [114,115].
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Figure 6. Objectives sought in the management of plastic with existing blockchain-based systems.

Table 6. Blockchain applications for plastic waste management.

C. . Blockchain Framework Supporting
Objective Plastic Type Features (Consensus) Technologies Challenges
Plastic bottle [102] IN Multichain/Fine- — Digital badge,
grain permission mobile app
Hybrid
Incentivize plastic blockchain [103], Digital badge,
collection ﬁ 02— Urban SCIN Hyberledger mobile app, IoT
106] plastic [103-106] ’ Besu [106], IOTA devices [103,104, Data security [104]
(Fast probabilistic 106]
consensus) [104]
Mobile app,
Coastal plastic and crowdsourcing
plastic IN Ethereum geo-tagged image,
packaging [105] relational database,
cloud computing
Trace plastic Ocean Plastic TC N/A N/A
feedstock [107— Rgcycled Consortium Digital badge [111],
111] plastic [108,109, SC, IN, TC, TP blockchain [109] IoT devices,
111] AI[108]
Consortium
blockchain [113],
Support plastic Plastic Hyperledger Scalability [112,
trading [112-115] products [112,113] SC,IN, TC, TP, TR Fabric + Ethereum N/A 113]
(PBFT +
PoW) [112]
Plastic Ethereum [114],
waste [114,115] >« INTC TR IR EVM [115] DApp




Blockchains 2024, 2

348

3.4.2. Blockchain Features

Incentivization is the most sought-after blockchain feature for plastic management,
which is triggered mostly for plastic waste collection. This feature is leveraged by the use
of smart contracts [111]. Traceability and tracking are mostly used for feedstock tracing
and trading while transparency is reported for tracing recycled plastics and supporting
plastic trading to provide the source information [111,113,115]. Tracking is also considered
to help consumers approach plastic recycling organizations [106,114].

3.4.3. Blockchain Framework

Hyperledger fabric and Ethereum are the most adopted frameworks. However, many
of the blockchain solutions for plastic management adopt a multi-chain approach that
uses a combination of multiple blockchains to handle credit transferring and recording
tracing [112,113,115], IOTA [104], or a consortium blockchain [109].

3.4.4. Consensus Algorithms

The most popular consensus algorithm in plastic waste management is PBFT, while
PoW and PoS are also considered in system implementations. Expectedly, many of the
piloted systems lead by commercial organizations use proprietary consensus in their
systems and little can be found about them.

3.4.5. Supporting Technologies

Incentivization mostly drives the adoption of digital badges, digital assets, and wallets
as credit systems to incentivize plastic collection and trading. Database, image processing,
smartphone apps, cloud computing, and IoT devices are often adopted in collecting, segre-
gating, tracking plastic waste, and in providing information to improve system efficiency.

3.4.6. Challenges

A few of the pilot blockchain solutions for plastic management have exposed several is-
sues including data security [116], scalability of the system because of the selected consensus
algorithm [117], privacy concerns [118], and energy efficiency of the blockchain framework.

3.5. Food Waste Management

Food waste comprises not only the discarded food itself, but also the energy, water,
and resources expended during its production, transportation, and packaging, significantly
amplifying the carbon footprint of the food supply chain [119]. As a response, recent
research has increasingly turned to blockchain technology to enhance the efficiency of food
supply chains, reduce food waste, and ensure food safety and security.

3.5.1. Objectives

The objectives of using blockchain in the food supply chain are to (a) reduce food
waste, (b) ensure food safety and security, and (c) improve the efficiency of the food supply
chain. These objectives, shown in Figure 7 and summarized in Table 7, are discussed in
the following.
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Figure 7. Objectives of blockchain applications for food management.

Table 7. Blockchain applications for food waste management.

Objective Blockchain Features Framework Supportlr}g Challenges
Technologies
Hyperledger
Fabric [120]
’ QR code [120,121,123],
Reduce food SC, DS, TC, TP SmartNoshWaste [121], - “prin 11501 'Cloud Scalability
waste [120-124] Hyperledger Computing [121]
Sawtooth [123], P &
OriginChain [124]
Trusted Trade
Blockchain Network
Cloud Platform
Ensure food (TTBNCP) [129], IoT [129], REID [128], Scalability,
safety [125-132] TG, TP TR NavIC [131], Not IPFS [131,132] data security
specified [127,128], IBM !
Hyperledger
Framework [125,126,
130]
Ensure food i IoT [135], RFID [133], .
security [133-137] TC, TP, TR Not specified ML [134], PDS [136] Scalability
Modified -
Improve food supply . ToT [138], RFID [138], Scalability,
chain [138-142] SC,TC, TP blockchain [138], MAS [140] transparency

(PBFT) [141]

*  Reduce food waste: The proposed blockchain-based solutions to manage food waste
leverage the management of data across the supply chain for product tracking and
origin tracing. The approaches include mobile app platforms for preventing food
fraud, enhancing transparency in dairy product provenance, and expediting food
contamination source identification [120]. Other applications have targeted reducing
waste through the food supply chain [123] and also at the household side by helping
manage food consumption [121]. One has the challenge of supporting multiple stages
of the chain while the other to support a large number of consumers.

¢  Ensure food safety: Food fraud, where suppliers deceive customers about food quality
and contents, is a growing global issue [130]. Tackling this requires traceability and
authenticity checks along the supply chain [125-127]. Combining RFID, IoT devices,
and blockchain across the agri-food supply chain ensures food safety by gathering
and securing data throughout production, processing, warehousing, distribution,
and sales [128,129].
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e Ensure food security: To improve food security (i.e., access to food) while reducing
food waste, IoT and blockchain were adopted [135]. Other approaches target food
security by monitoring food quality, safety, and provenance [136].

e Improve food supply chain: There is an increasing interest in using blockchain to
improve the food supply chain while reducing waste and improving food prove-
nance [140], food safety [142], and system scalability [141]. These features are pro-
vided by the transactions issued at each process of the supply chain. Such information
provides traceability. To improve transparency, an RFID and proof-of-object-based
authentication protocol was introduced, using unique RFID tags to monitor real-time
product quality, with customizable sensors for added precision [138].

3.5.2. Blockchain Features

Transparency and traceability promote confidence across the processes by allowing
customers to check the safe management of food [120,124]. Incentivization is a feature
sought by supermarkets to help consumers keep food safe and reduce waste [130]. Trace-
ability [125-129,141] and transparency [125,126,130] are widely adopted features sought to
support food safety. These feature also allow stakeholders to step-up communication with
customers, increase efficiency, and reduce risks and costs of collection in case of product
recall [135,136].

3.5.3. Blockchain Frameworks

The frameworks proposed to reduce food waste are Hyperledger Fabric [120], Smart-
NoshWaste [121], Hyperledger Sawtooth [123], and consortium blockchain [124]. Public
Blockchain [127-129] and IBM Hyperledger Framework [125,126,130] are used to create
solutions to ensure food safety. Public blockchains have been proposed to support food
security [133,136] and to support the food supply chain [138], as those can reach more
consumers or to make data accessible to users [123].

3.5.4. Supporting Technologies

Supporting technologies such as using RFID tags [128,133,138] and other IoT de-
vices [129,135,138] to track the food product along the supply chain have been widely
adopted in the proposed blockchain systems that address food waste. For instance, QR
codes [120,121,123], RFID [120], and cloud computing [121] are common supporting tech-
nologies on such works. QR code and cloud computing can improve data traceability and
accessibility to every stakeholder, including the consumer. This approach can reduce the
waste generated by a product of unknown origin [121] and allow consumers to track the
history of a product by simply scanning a QR code [123]. IoT [129] and RFID [128] are used
for traceability, finding food provenance, and enhancing food safety. These IoT devices
digitize systems in farms, processing plants, plantation fields, and logistics companies.
Customers can verify the information for the products they want to purchase by scanning
the RFID tags [128]. Similarly, IoT [135] devices and RFID [133] strengthen food security
by providing information regarding food location and product history along the supply
chain. Furthermore, the result of machine learning (ML) classification methods presents
food-related information to help the stakeholders better manage their supply chain [133].

3.5.5. Challenges

Food provenance is a major concern for consumers [130,143]. The food origin may indi-
cate food properties or whether food is associated with a contamination recall. Transparency
and traceability can help satisfy the demand for provenance information. Because the food
supply chain is complex and extensive, and it involves many stakeholders, blockchain’s
scalability, transparent and data governance, and accessibility remain key challenges. Data
governance is a particular challenge to support the private sector as it is a major stakeholder
of the food supply chains. Although blockchain and smart contracts can help users navigate
the intricacies of regulation and compliance for the food supply chain systems, how they
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can be standardized and implemented across the numerous stakeholders along the supply
chain remains an open issue.

3.6. Water Management

Water scarcity is a pressing and recurring issue faced by countries worldwide [144].
Climate change and extreme weather events keep increasing concerns on water availability
and quality. The critically needed water management, in general, suffers from issues such
as information asymmetry [145], staff shortage [146], and data tampering [146]. Research
groups have proposed using blockchain as necessary tool for effective water management.
Works on water management using blockchain focused mainly on three objectives: im-
proving water management, supporting water trading, and conserving water resources,
as indicated in Figure 8 and summarized in Table 8. The table also summarizes the adopted
approaches, supporting technology, and identified challenges.
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Figure 8. Objectives of blockchain applications on water management.

Table 8. Blockchain applications on water management.

L. Blockchain Framework Supportin,
Objective Sector Features (Consensus) Tecllzrlljologigs Challenges
Hyperledger
Fabric
(Kafka) [148],
Wastewater [146—  SC, DS, IN, TC, TK, double 101%454[11745 4;512 g'z]
153] TP, TR blockchain [152], HOT,[] 4 6’] !
(DPoS) [150],
(PoSL) [147],
(PoML) [147]
Improve water Harvle:;e% " SC. DS. TC. TP Eggiﬂ)rilﬁé]%], IOTIEL??%E;,}]]?L Scalability [148
management water][59 T T Hyperledger IoAT [157], calability [145]
] fabric [158] IPFS [158]
Ethereum [160,161,  IoT [163,164,169],
164], Hyperledger IoUT [169],
Irrigation [160— SC, DS, TC, Fabric [168], IoWT [172],
172] TK, TP, TR (PQW) [16()1, sensors [160,169],
Alliance chain RFID [161],
(PBFT) [165], LPWAN [163],
PoST [167] Fuzzy logic [162]
Smart
Private meter [175-178],
Municipal [173- SC, DS, IN, TC, TK, Blockchain [177], ML [173],
179] TP Hyperledger IoT [173,175-177],

Fabric [176]

Bloom filter
algorithm [177]
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Table 8. Cont.

. Blockchain Framework Supporting
Objective Sector Features (Consensus) Technologies Challenges
. Ethereum Computational
Agriculture [160], WSN [180],
Support water Municipal [180, SC, PY, TK, TP (Pow) [160], sensors [160,180], and storage
trading 181] Ethereum ToT [181] overhead, high
(PoA) [180] latency [180]
Conserve water Municipal [182, Hyperledger ToT [182,183],
SC, PY, TP ; cloud
resources 183] Fabric [183] .
computing [182]
Ethereum [186], Ener
Harvested (PoW) [184], consum ti%)}; lack
DS, TC, TP Alliance User interface [15] p .
water [15,184-186] . of regulation [184,
chain [185], 185]
Corda [15] -

3.6.1. Objectives

Improve water management: A significant amount of work has focused on improving
water management for both waste water as well as other fresh water use. Wastewater is
the water discharged from industry and households [148]. Direct wastewater disposal
potentially pollutes the water and damages aquatic life [150]. Thus, wastewater treatment
and its management is increasingly necessary. Blockchain-based systems were proposed
to manage wastewater treatment systems [148], to secure and verify water permits and
license information [151] and compliance [153]. The management of water distribution
system is also of great importance [147]. Information asymmetry is also of concern in water
management systems that has attracted commercial blockchain management solutions [145].
Because of water scarcity, many cities are resorting to ground water, but that also calls
for accurate management systems for sustainability [155], efficiency [154], trading [159],
and decision making [158]. The water crisis is a common problem faced by the irrigation
community [163,164]. Water trading, as a solution, requires support by providing real-
time transactional data [165]. Incentivization of sustainable water practices [166] and
securing data in water monitoring [162] are also critical applications. Water conservation
can be incentivized by the application of penalties and rewards, for which blockchain
can support monitoring and reward management [167]. Monitoring household water
consumption [173,176,177] and preservation of smart meter data [178] are key measures
for improving water usage within municipalities.

Support water trading: The lack of transparency between stakeholders, administrative
complexities, and complicated financial settlement processes are challenges for the current
water trading market. As in other trading applications, blockchain is being adopted for
water trading to increase transparency, manage payments, and seal agreements with smart
contracts, where water rights are also of increasing importance [180].

Conserve water resource: Conserving [182,183] and protecting water against pol-
lution [15,184-186] have motivated the adoption of blockchain in water management.
Blockchain is used to manage the use of water resources [182], to ensure water resource
protection [184], and to trade water rights [185]. Blockchain has been widely considered for
monitoring water quality, with measurements of PH, turbidity for water, carbon dioxide,
and carbon monoxide [186], which is particularly important for drinking water [183] and
for protecting aquifers and reservoirs [15].

3.6.2. Blockchain Features

Blockchain-based water management systems mainly aim at enhancing transparency
to reduce water information asymmetry between stakeholders, improving water-use coop-
eration. Most of these features are leveraged by the use of smart contracts and the general
properties of blockchain. The access to consistent data and secure payment enabled by
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smart contracts also allows entities to trade water and to exercise water rights. The water
management system also uses blockchain tracking to find locations with inadequate water
quality [176,177], and traceability features to trace water quality [178].

3.6.3. Blockchain Frameworks

Blockchain-based water management systems are implemented on Hyperledger Fab-
ric [148,153,158,168,176,183], Alliance chain [165,184,185], Ethereum [157,160,161,164,180],
Ethereum Light Client (ELC) [186], and R3 Corda [15]. Hyperledger Fabric was used to
check the feasibility of real-time data storage [176]. A system using a static blockchain
for one-time intervals and two dynamic blockchains for time series was proposed con-
sidering different security levels based on the consensus (PoW, PoT, or PoV) used by the
network [152]. A private blockchain uses k-means++ to group users into clusters, where
each cluster has a private blockchain to record the data of members [177].

3.6.4. Supporting Technologies

IoT devices are commonly deployed to collect data for wastewater treatment manage-
ment [146-153], harvested water [145,154-159], agricultural water management [160-172],
and municipalities [173-179]. IloT devices, developed for industrial applications, are de-
ployed for wastewater treatment management where the risk factor is high [146]. Internet
of Underwater Things (IoUT) [154] and Internet of Agricultural Things (IoAT) [157] devices
are used as specific hardware to monitor water. Industrial Internet of Water Things (IloWT)
was considered for data standardization, interoperability, and data security among differ-
ent water institutions [172]. IoT [147,148,152,154,156,163,164,169,173,175-177,182,183] and
IIoT [146] devices may monitor water use and directly interact with blockchain through
Low Power Wide Area Networks (LPWAN) [163]. ML techniques predict water use [173]
and detect anomalies in data [148]. For agricultural water management, RFID readers
are adopted to grant users water access according to the rules set by the community, also
referred to as irrigation receipt [161].

3.6.5. Challenges

The identified challenges of blockchain for water management from a number of the
reviewed literature are policy and regulation-based [151,184]. Considering that water rights
and access to water often cross national borders, the implementation of blockchain for water
management needs to consider international laws and national policies, as well as geopolit-
ical cases, to allow collaboration and cooperation amongst stakeholders across borders.

Technical challenges that blockchain-based systems face are the energy consumption
of the blockchain application [184,185] and the scalability of the system [148,180], especially
under a massive number of IoT devices and sensors. Transparency of information could
facilitate informed decision-making and encourage collaboration. The cost and complex-
ity of monitoring the vast water systems require significant resources and collaboration.
A feasibility study could be an important first step towards filling this gap.

3.7. Circular Economy and Blockchain

A circular economy (CE) is a mechanism that reuses, renews, and regenerates materials,
products, or services to keep them or make them more sustainable or environmentally
friendly [187,188]. Figure 9 shows an overview of the circular economy concept. CE is
emerging as a sustainable alternative to the traditional linear economy system, where
consumers buy a product, use it, and dispose of it [189]. However, the implementation of a
CE faces many economic and management challenges, such as tokenization of the resources
used along the supply chain, mechanisms for tracking, and setting the value proposition of
recycled materials and resources, among others [188-190]. Therefore, there is an increasing
interest in exploring blockchain as a solution to address some of these challenges.
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Figure 9. Representation of stages involved in a circular economy.

3.7.1. Objectives

Table 9 categorizes the existing blockchain solutions into circulate supply chain prod-
ucts, recycle e-waste, and reuse plastics.

Table 9. Blockchain applications for the management of a circular economy.

Objective Blockchain Features Blockchain Supportlr}g Challenges
Framework Technologies
DApp for stakeholder
Circulate supply chain Hyperledger interaction with
product [191-197] 5C, DG, TC, TP Fabric [196] N/A blockchain [192],
scalability [194]
Recycle ﬁgglonl;i::s;;(f?;é? Scalability [198],
b4 SC, TC, TK, TP P ’ ToT [199] security and privacy
e-waste [198,199] Hyperledger olicy [199]
Fabric [199] ponicy
Reuse SC, DG, TC, TK, TP Hyperledger Fabric =y 15011 censors [108]  Interoperability [200]

plastic [108,200,201]

(implemented) [200]

Circulate supply chain products: Most of the works on blockchain applications
for the management of circular economy aim to address the question of how to circulate
the products for reuse along the supply chain [191-196]. Blockchain has been explored
in digitization of supply chain records to provide reliable data to track waste and inven-
tory [191,192]. A conceptual analysis of using blockchain for product deletion in a circular
economy is proposed [194]. Triple Retry is a blockchain-based CE framework that em-
ploys Hyperledger Fabric to improve throughput and speed [196]. In e-commerce, IoT
and blockchain have crucial influences on the virtual supply chain to achieve a virtual
closed-loop supply chain for informed policy making [197]. Blockchain solutions have also
been explored in the renewal energy grid management [193] and building and construction
sector [195] as case studies for achieving circular economy.

Recycle electronic waste: Recycling electronic waste or e-waste is another objective
of blockchain implementation for circular economy [198,199]. Authentication, synthesis,
circulation, and reuse of electronic components are objectives for effective tracking [198].
Federated learning has been also objective of interest to distribute the computationally
heavy CE business tasks to conserve resources while keeping confidentiality [199].

Reuse plastics: Plastic reuse is another primary application of blockchain in
CE [108,200,201]. In such scenarios, participants in CE are rewarded with tokens when
they collect, recycle, and reuse plastic waste. The tokens can be traded for goods. How-
ever, at a larger scope, forecast of the generation of plastic is considered to allocate re-
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sources for responding to surges of products [108]. ML is the resorted tool to perform such
forecasts [201].

3.7.2. Blockchain Features

Smart contracts, traceability, and transparency are features sought in circular economy
for tracing products, recycling, and reusing second-life materials. Given the complexity of
the circular supply chain involving numerous stakeholders, stages, and second-life product
record keeping and tracing, data governance emerges as a crucial aspect [195,197,200] to
control data access from different stakeholders of the supply chain [192,196]. Tokenization
is often reported as a feature in implemented systems [198,200].

3.7.3. Blockchain Framework

Despite the limited existing works on circular economy, Hyperledger fabric is the most
popular adopted blockchain [195,196,199,200]. Algorand, a proof-of-stake fast-consensus
blockchain platform, has been reportedly adopted for the implementation to provide digital
tokens for second-life e-waste for easier tracking [198].

3.7.4. Supporting Technologies

A circular economy comprises many processes and stages in the life cycle of a product
or material. Therefore, it requires many and various sensors, data input devices, processing,
and recording systems. IoT devices [199], sensors [108], and ML techniques [201] are used
to keep track of second-life products and provide decision support based on the collected
data are reportedly used.

3.7.5. Challenges in Blockchain Solutions for a Circular Economy

Scalability remains one commonly identified challenge for blockchain solutions for
circular economy applications [194,198]. However, easy-to-use interfaces such as DApp are
needed to allow stakeholders to interact with blockchains [192]. Additionally, establishing
security and privacy policy [199] must be considered together with leveraging support for
interoperability of different systems that rely on the required system features [200].

As in the previous topics, most of the blockchain proposals for circular economy are
conceptual. Therefore, the cost and ease of implementation and whether business incentives
can make the public embrace a circular economy are unknown. While the concept seems
to pack great not only sustainable but also economic benefits, a suitable implementation
framework is required. The high energy cost for the implementation of blockchain is also a
concern for achieving sustainable development with an energy-intensive computational
infrastructure. This topic requires further exploration.

4. Discussion and Future Challenges

As observed in the previous sections, blockchain has been adopted to digitize records,
facilitate tracking and traceability of products and materials, and automate tokenization
in the trading of products and services to enhance truthful monitoring of environmental
variables. The immutability of records supports trust and transparency within the system.
While the body of existing work on blockchain applications in waste and natural resource
management is large, focused and practical work is still needed to identify the far-reaching
potential of blockchain.

As consensus algorithms in blockchain implementations require intensive compu-
tation, energy efficiency is a major concern. The trade-offs between energy efficiency,
performance, and security are yet to be understood.

Data security has been identified as a feature sought by some of the proposed ap-
proaches but existing work lacks identification of actual threats to data. The reason for
this void is that data security is a desirable feature of databases rather than of blockchain.
Approaches to data security have been recently proposed [154,202,203].
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The proliferation of sensors, IoT devices, VANETs, and video feeds is large in blockchain
applications. Therefore, the amount of sensing data for the environment grows at a stagger-
ing rate. That might challenge the scalability of blockchain systems and also methods to
efficiently harvest, represent, and analyze these data. Furthermore, work on data analysis
might offer additional views on the impact of the use of blockchain. Some approaches to
improve scalability of a blockchain may be the increase of transaction throughput through
partitioning of the consensus algorithm, such as sharding [204], by compressing the con-
tents in transactions to increase the capacity of a block [46], or by designing a fast consensus
algorithm without losing the design principles of data protection of blockchain [205].

We observed that the management of carbon and plastic has attracted much atten-
tion from companies and for-profit organizations, which have come up with their own
blockchain-based solutions. However, their implemented systems are mostly proprietary
and do not offer technical details on the blockchain they use or share data for public
access. Due to the lack of information and outcome measurement, it is unclear how the
environmental impact of these systems is evaluated and whether they are effective.

The use of data to trace and track materials or products owned by consumers using
blockchain may also raise privacy concerns. The collection of data on the life cycle of
the material may offer information on the activities of a consumer. Therefore, measures
to protect the privacy of consumers while providing tracking, tracing, and transparency
features, among others, to the blockchain-based management systems merit future research.

We highlight the reported blockchain applications that not only have been practical and
implemented studies but also share part source code. These implementations encompass
blockchain or smart contract codes, as detailed in Table 10. While our presentation of
this code does not imply endorsement (nor the opposite), we provide the associated links
to facilitate thorough examination. The descriptions of the code can be found in the
corresponding references.

Table 10. Implementations of blockchain with available source code.

Topic Authors Implementation Link (accessed on 13 July 2024)
Greenhouse gas Nufbaum et al. [36] SC https:/ /github.com/JCCLaude/IoT-Blockchain
Effah et al. [60] Blockchain https:/ / github.com/De-miles1/Carbon/tree/master
Carbon emissions Eckert et al. [71] Blockchain https://github.com/LiTrans/BSMD-ML
Yuan et al. [62] Blockchain https://github.com/xisiot/HyperETS
Solid waste Ahmad et al. [93] SC https:/ /github.com/AhmadKhalifaUniversity /Code/tree/main
Le et al. [94] Blockchain https:/ /github.com/Masquerade0127 /medical-blockchain
Plastics Alnuaimi et al. [114] SC https:/ /github.com/eimalnuaimi/RecycleChain
Food t Dey et al. [121] Blockchain https:/ /github.com/somdipdey/SmartNoshWaste
ooc waste Baralla et al. [123] SC https:/ / github.com/0xjei/SawChain
Iyer et al. [148] Blockchain https:/ /github.com/sreeragiyer/Wastewater-Reuse
Water Mahmoud et al. [152] Blockchain https:/ /github.com/HaithamHmahmoud /WDSchain
Mughal et al. [158] SC https:/ / github.com/muhammadhussainmughal /
Circular economy  Eshghie et al. [198] Blockchain https:/ /github.com/Kasche153/CircleChain

5. Conclusions

This paper provides a review of the recent existing blockchain applications for pro-
tecting data in the management of emissions, waste, food, and water to minimize negative
impacts on environmental sustainability and categorizes the broad area of environmental
monitoring into greenhouse gas emissions, carbon, solid waste, plastic waste, water, food,
and the circular economy.

We identified the motivations for using blockchain in the reviewed research work
and development, the frameworks used and consensus algorithms, and the supporting
technologies, highlighted the features that existing work aimed to achieve through the
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use of blockchain, and unveiled the remaining challenges in each of the different applica-
tion categories.

We discussed the remaining challenges that signal the direction for future research.
For practical value, we identified those works that reportedly reached implementation
states and shared source code used to model blockchain artifacts in the presented systems.
Therefore, we provided answers to the proposed research questions according to recent
reported work in the reviewed environmental factors and blockchain.
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