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STACKY HEIGHTS ON ELLIPTIC CURVES IN

CHARACTERISTIC 3

by Aaron LANDESMAN (*)

Abstract. — We show there are no stacky heights on the moduli stack of stable
elliptic curves in characteristic 3 which induce the usual Faltings height, negatively
answering a question of Ellenberg, Satriano, and Zureick-Brown.

Résumé. — Nous montrons qu’il n’existe pas de hauteur sur le champ de mo-
dules des courbes elliptiques en caractéristique 3 qui induit la hauteur de Faltings
usuelle. Cela donne une réponse négative à une question posée par Ellenberg, Sa-
triano et Zureick-Brown.

1. Introduction

In this paper, we investigate heights on the compactified moduli stack

of elliptic curves in characteristic 3. We show that the notion of stacky

height introduced in [2] does not always recover the classical notion of

height. Specifically, we show there is no vector bundle whose associated

stacky height induces the usual notion of Faltings height for elliptic curves

in characteristic 3.

Throughout this paper, we work over a fixed perfect field k of charac-

teristic 3. Let M 1,1 denote the Deligne-Mumford moduli stack of stable

elliptic curves over k. Given a finite field extension K over k(t) and an

elliptic curve E → Spec K, there is a Faltings height on that elliptic curve,

which we define as follows.

Definition 1.1. — Given E → Spec K as above, let C be the regular

proper connected curve over k whose generic point is Spec K and let f :

X → C denote the minimal proper regular model of E → Spec K. The

Keywords: heights, elliptic curves, stacks.
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1882 Aaron LANDESMAN

Faltings height of E is given by deg f∗ωX/C . Thinking of E → Spec K as

a K point of M 1,1, given by x : Spec K → M 1,1, we denote this Faltings

height by ht(x).

Remark 1.2. — The Faltings height is also computable by the formula
1

12 deg(∆X/C) where ∆X/C is the discriminant of the relative elliptic sur-

face, viewed as a section of H0(C, f∗ω¹12
X/C).

On the other hand, suppose we are given a vector bundle V on M 1,1 and

a K point x : Spec K → M 1,1, corresponding to a stable elliptic curve E →

Spec K. Ellenberg, Satriano, and Zureick-Brown [2, Definition 2.11] define

a notion of height associated to x and V , notated htV (x), see Definition 2.4.

Suppose k′ is a field of characteristic not 2 or 3, and let ω denote the Hodge

bundle over (M1,1)k′ . That is, ω := f∗ω
E /(M1,1)k′

for f : E → (M1,1)k′

the universal stable elliptic curve. Then [2, Proposition 3.11] show that,

for K a finite extension of k′(t), and x : Spec K → (M1,1)k′ a point,

htω(x) = ht(x), with the latter notion of Faltings height as defined in

Definition 1.1. However, as [2, p. 27] observe, for k a field of characteristic

3, it is no longer true that htω(x) = ht(x) for all x : Spec K → M 1,1.

In particular, they show cubic twists of the form y2 = x3 − x + f(t), for

f(t) ∈ k[t], all have height 0 with respect to the Hodge bundle, even though

their Faltings heights can be nonzero.

Moreover, they show there is no line bundle L on M 1,1 for which

htL (x) = ht(x) [2, p. 27]. This leads to the following question:

Question 1.3. — Is there some vector bundle V (necessarily of rank

more than 1) on M 1,1 so that htV (x) = ht(x) for every x : Spec K → M 1,1

over a field of characteristic 2 or 3?

In this note, we show that the answer is “no” when k is a perfect field of

characteristic 3. More precisely, we have the following:

Theorem 1.4. — Let M 1,1 denote the Deligne–Mumford stack of sta-

ble elliptic curves over a perfect field k of characteristic 3. There is no vector

bundle V on M 1,1 for which htV (x) = ht(x) for all points x : Spec K →

M 1,1, where K is a finite extension of k(t).

We deduce this from Theorem 3.2 in Section 3.1.

This result leaves open the question as to whether there some vector

bundle W on M 1,1, over a field of characteristic 3, and some integer n so

that n ht(x) = htW (x). We conjecture the answer is no:
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Conjecture 1.5. — There is no vector bundle W on M 1,1, over a field

of characteristic 3, for which there exists an integer n such that n ht(x) =

htW (x).

See [5, Remark 9.2.7 and 9.2.8] for some speculation related to this con-

jecture.

Another related question, originally posed to us by Jordan Ellenberg, is

whether there exist Northcott stacky heights on M 1,1 in characteristic 3.

We say a height function on the set of k(t) points of a stack X satisfies

the Northcott property if there are finitely many such points of bounded

height, cf. [2, p. 4].

Question 1.6 (Ellenberg). — Does there exist a vector bundle V on

M 1,1 over a finite field of characteristic 3 whose induced height function htV

is Northcott?

Remark 1.7. — In [5, Theorem 9.2.4], I had claimed there do exist such

Northcott bundles. However, the proof of this relies on [5, Lemma 9.7.1],

which contains an error where I incorrectly claimed that trigonal curves

have a certain minimal form without justification. This leaves the above

question open.

1.1. Idea of the proof of Theorem 1.4

We use notation for Kodaira reduction type, as pictured in [7, p. 365].

The idea of the proof of Theorem 1.4 is to show that any V which induces

the correct local stacky height for places of type Kodaira III reduction

necessarily induces the incorrect local stacky height for cubic twists.

We now elaborate on the above idea. The substack BG ¢ M 1,1 corre-

sponding to elliptic curves with j-invariant 0 has geometric automorphism

group G, where G is the dicyclic group of order 12. When we restrict V to

BG, we obtain a G-representation ρ. We show that some element g ∈ G

of order 4 acts with a codimension 1 fixed space and no eigenvalues equal

to −1. This is enough to deduce that ρ is a sum of 1-dimensional rep-

resentations, and hence factors through the abelianization of G. We then

show that any such vector bundle cannot detect nontrivial stacky heights

associated to elliptic curves which are isotrivial cyclic cubic twists.

1.2. Overview

The structure of this paper is as follows. We review the notion of stacky

heights in Section 2. We then reduce Theorem 1.4 to the statement about
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local stacky heights, Theorem 3.2, at the end of Section 3. Finally, we prove

Theorem 3.2 at the end of Section 6, using a group theoretic input from

Section 4.
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2. Review of the definition of heights on stacks

We now recall the definition of heights on stacks introduced in [2].

Definition 2.1. — Let k be a field, let C be a regular proper integral

curve over k, and let K := K(C). Let X be an algebraic stack over k

and x : Spec K → X be a K-point. A tuning stack C for x is a normal

algebraic stack C with finite diagonal together with a map x : C → X

extending x so that π : C → C is a birational coarse space map. A tuning

stack (C , x, π) is a universal tuning stack if it is terminal among all all

tuning stacks.

Remark 2.2. — Although we will not need it, one can also extend Def-

inition 2.1 to the number field case as follows. Let L be a number field,

B = Spec OL, and let X be an algebraic stack over B. Let K/L be a finite

extension of number fields and x : Spec K → X be a K point. A tuning

stack C for x is then a normal algebraic stack C with finite diagonal to-

gether with a map x : C → X extending x so that π : C → Spec OK is a

birational coarse space map.

Remark 2.3. — This definition of tuning stack differs slightly from that

of [2, Definition 2.1], in that we do not require X to be a stack over C.

In particular, if X is a stack over a base k, we may discuss tuning stacks

and heights of points associated to function fields of transcendence degree

1 over k.

We now recall the notion of stacky height.

ANNALES DE L’INSTITUT FOURIER
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Definition 2.4 ([2, Definition 2.11]). — Let X be a proper algebraic

stack over a field k with finite diagonal, let C be a smooth proper connected

curve over k with function field K(C). Let V be a vector bundle on X and

x ∈ X (K(C)). If C is a tuning stack for x and x, π are the corresponding

maps defined in Definition 2.1, then we define the height of x with respect

to V as

htV (x) := − degC (π∗x∗
V

() .

We also define the stable height of x with respect to V as

htst
V (x) := − degC (x∗

V
() .

To make sense of this definition, one has to check various properties. For

example, one must verify this notion is independent of the choice of tuning

stack. These are verified in [2, § 2.2].

One can also define heights in the number field case, but then one has to

use metrized line bundles and Arakelov heights as in [2, Appendix A]. We

will only be concerned with the function field case, and so do not discuss

this further.

Finally, we recall the notion of local stacky height, which will play a

crucial role in our proof.

Notation 2.5. — Let L be a field and let K either be a number field or a

finite extension of L(t) with regular model C. Here, C is the spectrum of

the ring of integers OK in the case K is a number field and a regular proper

curve over L when K is a function field. Suppose x : Spec K → X is a K

point of a stack X locally of finite presentation and with finite diagonal,

so that X possess a coarse moduli space α : X → X. Let C denote the

universal tuning stack associated to x, as in Definition 2.1 or Remark 2.2.

Let Cv denote the localization of C at v and let Cv := C ×C Cv. Then, we

have a diagram

(2.1)

Spec K

Cv C X

Cv C X.

x

x

π α

In this setting, for V a vector bundle on X and v a place of K, we recall

the definition of the local stacky height, which is equivalent to that given

in [2, Definition 2.21]. The local stacky height associated to x and V at the
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place v as

δV ;v(x) := deg(coker (γ∗π∗π∗x∗
V

( → γ∗x∗
V

()).

3. The reduction to j = 0

In this section, we explain how to reduce Theorem 1.4 to another result

about the structure of our vector bundle restricted to a particular residual

gerbe of M 1,1. In order to prove our main result, we will need to examine

elliptic curves with extra automorphisms. The next remark describes them.

Remark 3.1. — Recall that there are only 2 possibilities for the geometric

automorphism group of an elliptic curve in characteristic 3. It is either Z/2Z

or the dicyclic group of order 12, which we denote G. The following basic

facts about G can be found in [4]. This dicyclic group G of order 12 is a

semidirect product G ≃ Z/3Z ì Z/4Z where a generator of Z/4Z acts on

Z/3Z by the nontrivial automorphism. For the remainder, we fix a splitting

to identify Z/4Z as a subgroup of G.

It will be useful to note that the center of G is Z/2Z, which can be

identified as an index 2 subgroup of Z/4Z for any choice of splitting Z/4Z →

G. The quotient of G by its central Z/2Z is isomorphic to S3.

Further, a semistable elliptic curve has geometric automorphism group

G if and only if its j invariant is 0.

The key to proving Theorem 1.4 is the following:

Theorem 3.2. — Suppose k is an algebraically closed field of charac-

teristic 3. Suppose V is a vector bundle on M 1,1 for which htV (x) = ht(x)

for all points x : Spec K → M 1,1, for K ranging over finite extensions of

k(t). Let ι : [Spec k/G] → M 1,1 be the residual gerbe over the point of j-

invariant 0, with G as in Remark 3.1. If γ : [Spec k/(Z/3Z)] → [Spec k/G]

denotes the quotient by Z/4Z, then γ∗ι∗V is trivial.

We prove this in Section 6.1.

We next verify Theorem 1.4 assuming Theorem 3.2.

3.1. Proof of Theorem 1.4 assuming Theorem 3.2

To prove Theorem 3.2, that no vector bundle can induce a stacky height

which agrees with Faltings height, We first observe we may assume k is

ANNALES DE L’INSTITUT FOURIER
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algebraically closed. Indeed, both Faltings height and stacky height are

preserved under base change along extensions of k.

By Theorem 3.2, any point x : Spec K → M 1,1 factoring through

B(Z/3Z) at the point of M 1,1 corresponding to j-invariant 0 must have

htV (x) = 0. Therefore, it suffices to construct an elliptic curve over Spec k(t)

so that the associated map x : Spec k(t) → M 1,1 factors through

Spec k(t) → [Spec k/(Z/3Z)] → [Spec k/G] → M 1,1 but so that x has

nontrivial Faltings height. Indeed, we can easily construct cubic twists of

the form y2 = x3 − x + f(t) with nontrivial Faltings height. As a concrete

example, we can take f(t) = t + t4 which has additive reduction at infinity

and Faltings height 1, as can be verified with a computer. It is therefore

enough to verify the associated map Spec k(t) → M 1,1 factors through

[Spec k/(Z/3Z)]. Indeed, the isotrivial elliptic curve y2 = x3 − x + f(t)

becomes trivial over the Z/3Z-extension k(t)[v]/(v3 − v − f(t)), as then we

can substitute x − v for x to obtain

y2 = (x − v)3 − (x + v) + f(t)

= x3 − x − (v3 − v) + f(t)

= x3 − x − f(t) + f(t)

= x3 − x.

4. Representations of G in characteristic 3

Throughout this section, we work over a field k of characteristic 3 con-

taining all 4th roots of unity. Let G denote the dicyclic group of order 12,

as described in Remark 3.1. In order to prove Theorem 3.2, we will need to

analyze G-representations in characteristic 3. The only result in this section

we will use in the proof of Theorem 3.2 is Proposition 4.5. To begin, we

show we can decompose any G-representation into two subrepresentations,

depending on how the center of G acts.

Lemma 4.1. — Let V be a G representation over a base field k of char-

acteristic 3 containing 4th roots of unity. Then V splits as a direct sum

V+ · V− where V+ ¢ V is the subspace on which the nontrivial central ele-

ment α ∈ G acts by id and V− ¢ V is the subspace on which α acts by − id.

Proof. — This follows from a standard averaging trick. Namely, It is

enough to realize V1 and V2 as subrepresentations of V . Since 2 is invert-

ible on the base and α has order 2, ρ(α) is a diagonalizable matrix, so

V1 · V2 = V .

TOME 74 (2024), FASCICULE 5



1888 Aaron LANDESMAN

To check V1 and V2 are subrepresentations, it suffices to show that for

any v ∈ Vi and any g ∈ G, ρ(g)v ∈ Vi. We first check this for i = 1. Since

ρ(α)|V1
= id and ρ(α)|V2

= − id, we have 1
2 (id +ρ(α)) is the projector

V → V1 which acts as the identity on V1. This projector is well defined as 2

is invertible on the base. Then for any v ∈ V1, using that α is central in G,

ρ(g)v = ρ(g)

(

1

2
(id +ρ(α)) v

)

=

(

1

2
(id +ρ(α))

)

(ρ(g)v) ∈ V1

The case i = 2 is completely analogous, using the projector 1
2 (id −ρ(α)) in

place of 1
2 (id +ρ(α)). □

Using the surjection G → S3, we will want the following elementary fact

about S3 representations.

Lemma 4.2. — Let ρ : S3 → GL(V ) be a indecomposable representation

over a field k of characteristic 3, with dimension at least 2. Let τ ∈ S3 be

a transposition. Then, ρ(τ) has at least two distinct eigenvalues.

Proof. — Because τ has order 2, ρ(τ) is semisimple, and all eigenvalues

are ±1. Therefore, it is enough to show ρ(τ) cannot be ± id. After possibly

tensoring with the sign representation, it is enough to show ρ(τ) ̸= id. Since

transpositions generate S3, ρ(τ) = id implies ρ is trivial. Since dim ρ > 1,

it is not indecomposable. □

Remark 4.3. — According to [3, p. 160], there are precisely 6 indecompos-

able representations of S3 in characteristic 3: the trivial representation, the

standard representation, the permutation representation, and those three

representations tensored with the sign representation, and one can also de-

duce Lemma 4.2 directly from this classification. I had claimed to give an

alternate proof of this classification in [5, Theorem 9.8.2], though the proof

there has a number of errors.

Combining the above lemmas, we next show that if an order 4 element

has η as an eigenvalue under ρ, it also has −η as an eigenvalue.

Lemma 4.4. — Let ρ be an indecomposable G-representation of dimen-

sion at least 2 over a field k of characteristic 3 containing 4th roots of unity,

and g ∈ G has order 4. If η is a primitive fourth root of unity which is an

eigenvalue of ρ(g), then so is −η.

Proof. — Let α = g2 so that α generates the center of G. By Lemma 4.1,

we have that either V = V+ or V = V− where α acts on V+ by id and α

acts on V− by − id. After tensoring ρ with a 1 dimensional representation

in which g acts by η, we may assume V = V+. Since α generates the kernel

ANNALES DE L’INSTITUT FOURIER
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of the surjection G → S3 and α acts trivially on V = V+, ρ factors through

S3. By Lemma 4.2, ρ(g) must have both ±1 as an eigenvalue, as we wished

to show. □

We can now use the above lemma to deduce our main group-theoretic

result for G-representations.

Proposition 4.5. — Suppose ρ : G → GL(V ) is a G-representation

over a field k of characteristic 3 containing 4th roots of unity. If there is

an order 4 element g ∈ G so that ρ(g) has a codimension 1 eigenspace

with eigenvalue 1 and the remaining eigenvalue is a primitive fourth root

of unity η, then ρ is a sum of 1-dimensional representations. In particular,

ρ : G → GL(V ) factors through the abelianization of G, ρ : G → Z/4Z →

GL(V ).

Proof. — By Lemma 4.4, if ρ is any indecomposable representation of

dimension at least 2, then if a primitive fourth root of unity η shows up as

an eigenvalue of ρ(g), so does −η. Therefore, ρ is a sum of 1-dimensional

representations. Hence ρ factors through the abelianization of G. □

5. Review of local Faltings heights

In order to prove our main result, we will need the notion of local Faltings

heights, which we now briefly review.

For K a finite extension of k(t) and v a closed point of the proper regular

model of K over k and x : Spec K → M 1,1, we let δV ;v(x) denote the

local stacky height associated to V and x at v, as defined in Notation 2.5.

Further, [2] define a notion of stable stacky height htst
V (x), see Definition 2.4

which satisfies the relation htst
V (x) +

∑

v δV ;v(x) = htV (x). We next recall

the analogous notion of local and stable Faltings height associated to elliptic

curves.

Definition 5.1. — Let x : Spec K → M 1,1 be a point. For each closed

point v, let Spec L → Spec K be a finite extension over which x acquires

semistable reduction at v. Define the local stable Faltings height of x at

v, notated htst
v (x), to be htst

v (x) := 1
12

∑

w|v
1

deg(L/K) deg(∆w), for ∆w the

discriminant of w restricted to the local ring at w, for w ranging over

closed points of L over v. Define the stable Faltings height by htst(x) :=
∑

v htst
v (x).

Also, define the local Faltings height of x : Spec K → M 1,1 at a closed

point v, notated htv(x), to be 1
12 (deg ∆v) − htst

v (x).
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Using uniqueness of semistable models, one may verify the above notion

of stable Faltings height is well defined, and can be computed explicitly in

terms of the discriminant at various closed points v. In what follows, we use

Kodaira’s notation for reduction type of elliptic curves. See, for example,

[7, IV Section 9], especially the chart on [7, p. 365].

Example 5.2. — When the fiber at a k-rational closed point v has re-

duction type I∗
n, we have deg ∆v = n + 6 by [7, p. 365]. The valuation of

the j-invariant of a given Kodaira reduction type is ⩾ 0 if and only if that

curve has potentially good reduction after a base change, and is equal to

−n if that curve has In reduction after a base change. From [7, p. 365], we

therefore find that htst
v (x) = 1

12 n, and hence htv(x) = 1
12 (n+6)− 1

12 n = 1/2.

6. Computing heights on M 1,1

To conclude the proof of Theorem 1.4, it remains to prove Theorem 3.2.

We do so at the end of this section. The basic idea is to compute what

the restriction of V to BG has to be using Proposition 4.5 and studying

the action of a certain order 4 element of G. This is done via Lemma 6.3,

whose hypothesis is verified in Lemma 6.6.

Remark 6.1. — If we have an elliptic curve with reduction II, III, IV,

II∗, III∗, or IV∗ at v, it has potentially good reduction, with corresponding

j invariant 0 by [6, Theorem 2.1]. Therefore, if x : Spec K → M 1,1 is

a map with one of the above reduction types at v, we must have that v

maps to the point of M 1,1 lying over j = 0 in the coarse moduli space, for

j : M 1,1 → P
1 the coarse moduli space of M 1,1.

We next introduce some notation used heavily in the remainder of the

proof.

Notation 6.2. — We will assume k = k. Suppose we have some vector

bundle V on M 1,1, a point x : Spec K → M 1,1, and a place v of K

so that δV ;v(x) = htv(x). Note that M 1,1 has coarse space given by the

j-invariant map j : M 1,1 → P
1
k. Construct the universal tuning stack

C → M 1,1. Let B(Gv) denote the residual gerbe of C at the place v,

so that we obtain an induced map B(Gv) → BG
ι

−→ M 1,1 inducing an

injection Gv → G on inertia groups. Let s denote the geometric point

over BG → M 1,1. Then, under the identification between vector bundles

on BG and G representations, ι∗V can be viewed as a G-representation

ρ : G → GL(V |s).

ANNALES DE L’INSTITUT FOURIER
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Now, recall that in Remark 3.1, we chose a splitting Z/4Z → G. Fix a

generator 1 of Z/4Z in G. This abelian group then has a diagonalizable

action on V |s. When we restrict ρ to a Z/4Z representation, we obtain a

decomposition ρ|Z/4Z ≃ ·3
i=0χ·bi

i where χi are the four characters of Z/4Z

given by χi(1) = ζi for ζ a fixed primitive 4th root of unity.

We can now characterize the bi appearing in the above decomposition of

ρ|Z/4Z. For the proof, it will be useful to recall the notation for local heights

introduced in Section 5.

Lemma 6.3. — Suppose V satisfies δV ;v(x) = htv(x) for some place

v at which x has type III reduction. Under the above decomposition of

ρ|Z/4Z ≃ ·3
i=0χ·bi

i from Notation 6.2, after possibly modifying our choice

of generator 1 for Z/4Z, we have b0 = dim ρ − 1, b1 = 1 and b2 = b3 = 0.

Proof. — We first set up notation to describe the Z/4Z representation.

From the explicit computation of the discriminant for an elliptic curve

x : Spec K → M 1,1 with a closed point v of type III reduction, we know

htv(x) = 1
4 , by [7, p. 365]. Therefore, we must have δV ;v(x) = 1/4. Now, x

induces a tuning stack map x : C → M 1,1 with coarse space π : C → C.

Let Cv be the local scheme at v ∈ C and let Cv = π−1(Cv). Because v

acquires semistable reduction after a degree 4 cyclic extension, but not

after any smaller extension, the residual gerbe of C at v is Gv := Z/4Z

and the induced map on residual gerbes B(Gv) → BG is obtained from

an injection Z/4Z = Gv → G. Denote by α : B(Gv) → BG → M 1,1 the

composite map above. We may view α∗V ( as a Z/4Z representation.

We claim that under the above identification, we may view α∗V ( as

the direct sum of a 1-dimensional faithful representation of Z/4Z and a

codimension 1 trivial representation. This will complete the proof because

after modifying the generator, we can assume the faithful representation is

χ1, in which case b0 = dim ρ − 1, b1 = 1 and b2 = b3 = 0.

To prove our claim, we will need the following assertion: In general,

if W is a vector bundle on Cv, we assert one can read off the degree of

W from the µ4 representation corresponding to the restriction of W to

the residual µ4 gerbe over v. We now explain how this assertion follows

from [1, Théorème 3.13], which shows there is a correspondence between

vector bundles on the tame stacky curve Cv and parabolic bundles on Cv.

This correspondence preserves degree, which is shown for proper curves

in [1, Théorème 4.3], but the proof works equally well for localizations by

restricting from the proper case. However, the definition of parabolic degree
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on Cv, as in [1, Définition 4.1] is then given in terms of the corresponding

µ4 representation obtained by restricting the vector bundle on Cv to v.

We next describe how to compute the degree of the vector bundle W

from the previous paragraph. Choose an isomorphism µ4 ≃ Z/4Z, which

is possible since k = k. Suppose the vector bundle W on Cv corresponds

to a Z/4Z-representation ρ′. It follows from the definition of parabolic

degree that we can express the degree of W as follows: Let ζ denote a fixed

primitive fourth root of unity as in Notation 6.2. There is some generator

g ∈ Z/4Z so that ρ′(g) has a bi dimensional eigenspace with eigenvalue ζi,

and deg W =
∑3

i=1
bi

4 .

We now return to proving our claim. If g is a generator of Z/4Z, we have

seen any nontrivial eigenvalue of ρ(g) contributes at least 1/4 to the degree

δV ;v(x). Since δV ;v(x) = 1/4, we find that α∗V ( must be the direct sum of

a codimension 1 trivial representation and a 1-dimensional nontrivial rep-

resentation. Moreover, that 1-dimensional representation must be faithful,

as otherwise δV ;v(x) = 1/4 would be a multiple of 1/2. □

In order to apply Lemma 6.3 to prove Theorem 3.2, we need to verify

its hypothesis holds. We verify this in Lemma 6.6 below. The specific x we

will use is the following elliptic curve.

Example 6.4. — The magma code

F<t> := FunctionField(GF(3));

E := EllipticCurve([0,t+t^2,0,t+t^2 +t^3,t^2+t^4+t^5]);

LocalInformation(E);

shows that the elliptic curve y2 = x3 + (t + t2)x2z + (t + t2 + t3)xz2 +

(t2 + t4 + t5)z3 has a unique place of additive reduction (t). Further, at (t),

this curve has reduction type III and discriminant of valuation 3.

We will use the following criterion for local stacky height to agree with

local Faltings height.

Lemma 6.5. — Suppose V is a vector bundle on M 1,1 for which

htV (x) = ht(x) for all points x : Spec K → M 1,1, for K a finite exten-

sion of k(t). Any point y : Spec k(t) → M 1,1 which has a unique place v

of additive reduction, i.e., a unique place with nontrivial local height, gives

an example of a point for which δV ;v(x) = htv(x).

Proof. — Let K/k(t) denote an extension on which y acquires semistable

reduction and let z : Spec K → M 1,1 denote the corresponding point. Be-

cause htV (z) = ht(z), and both htV (z) = htst
V (z) = deg(K/k(t)) htst

V (y)

and ht(z) = htst(z) = deg(K/k(t)) htst(y) [2, Proposition 2.14], we con-

clude htst
V (y) = htst(y). Because we are assuming htst

V (y) + δV ;v(y) =
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htV (y) = ht(y) = htst(y) + htv(y) and we have shown htst
V (y) = htst(y), we

conclude δV ;v(y) = htv(y). □

The next lemma verifies the hypothesis of Lemma 6.3.

Lemma 6.6. — Suppose V is a vector bundle on M 1,1 for which

htV (x) = ht(x) for all points x : Spec K → M 1,1, for K a finite exten-

sion of k(t). The point y : Spec k(t) → M 1,1 of Example 6.4 (base changed

from F3 to k) gives an example of a point for which δV ;v(x) = htv(x) at

the place (t) of additive type III reduction.

Proof. — Let v = (t) denote the place of k(t). Note this is the unique

place of k(t) at which y has additive reduction, by Example 6.4. The lemma

then follows from Lemma 6.5. □

We can now prove the main result, Theorem 3.2.

6.1. Proof of Theorem 3.2

Retain notation from Notation 6.2. By Lemma 6.6, the hypothesis of

Lemma 6.3 holds, and so an order 4 element of G has a 1-dimensional ζ

eigenspace and a codimension one 1-eigenspace. By Proposition 4.5, ι∗V

corresponds to a representation ρ : G → GL(V |s) that splits as the direct

sum of 1-dimensional representations. factoring through Z/4Z. Therefore,

ρ|Z/3Z is trivial. □
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