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Abstract

Reproduction is a fundamental aspect of life that affects all levels of biology, from genomes and development to population dynamics and
diversification. The first Tree of Sex database synthesized a vast diversity of reproductive strategies and their intriguing distribution throughout
eukaryotes. A decade on, we are reviving this initiative and greatly expanding its scope to provide the most comprehensive integration of knowl-
edge on eukaryotic reproduction to date. In this perspective, we first identify important gaps in our current knowledge of reproductive strategies
across eukaryotes. We then highlight a selection of questions that will benefit most from this new Tree of Sex project, including those related to
the evolution of sex, modes of sex determination, sex chromosomes, and the consequences of various reproductive strategies. Finally, we out-
line our vision for the new Tree of Sex database and the consortium that will create it (treeofsex.org). The new database will cover all Eukaryota
and include a wide selection of biological traits. It will also incorporate genomic data types that were scarce or non-existent at the time of the
first Tree of Sex initiative. The new database will be publicly accessible, stable, and self-sustaining, thus greatly improving the accessibility of
reproductive knowledge to researchers across disciplines for years to come. Lastly, the consortium will persist after the database is created to
serve as a collaborative framework for research, prioritizing ethical standards in the collection, use, and sharing of reproductive data. The new
Tree of Sex consortium is open, and we encourage all who are interested in this topic to join us.
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Introduction physiology, through populations, ecology, behaviour, genetic
diversity and the propensity for adaptation, diversification, and
extinction. Describing the diversity of reproductive strategies
among organisms and investigating how and why they evolve
is thus essential when trying to understand the natural world.
Given the numerous biological factors associated with
reproductive strategies, their characterization in diverse taxa

Reproduction is a defining characteristic of life. Whether sex-
ual, clonal, or one of a myriad of strategies in between, every
extant species has some successful method for propagation.
Importantly, an organism’s reproductive strategy (see the glos-
sary for all terms in bold) can influence all biological levels of
organization, from genomes, cellular processes, development,
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Table 1. Example of existing databases containing data relevant to reproduction. The species numbers were derived from publications or directly by
counting unique species names within available databases. Except for Tree of Sex v1, the databases are listed in alphabetical order.

Database name

Scope

Taxonomic scope

Species number

Reference

Tree Of Sex v1
Animal Chromosome
Count, ACC
AmphibianKaryo

AndrodioecyAnimal
Animal_rDNA

AnimalGenomeSize
ASER

B-chrom

CCDB
ChromNematoda

ColeopteraKaryo
DipteraKaryo
DrosophilaKaryo
FishBase
FISHKARYOME
FishSexChrom

HarvestmenCyto
HerpSexDet

HZmatingSystem

Insect_Egg_Evolution

InSexBase

KaryoBlatto
Mammal_SameSexSexual-
Behavior

MammalKaryo

NESCent

Phaeodev

Phycocosm
Plant_DNA_C-values

Plant_rDNA
PolyneopteraKaryo

PseudoscorpionCyto
ReprodTraitsAlgae
ROSIE

SAGD

Sexual systems, sex chromosomes
Chromosome counts

Sex chromosomes, chromosome
counts

Androdioecy

Chromosome counts, karyotypes,
genome size

Genome size (C-values)
Sex reversal

B chromosomes

Chromosome counts

Chromosome counts, reproductive
strategy

Sex chromosomes, chromosome
counts

Sex chromosomes, chromosome
counts

Sex chromosomes, chromosome
counts

Reproduction mode, life-history
traits

Sex chromosomes, chromosome
counts

Sex chromosomes (direct compar-
ison with ToS v.1)

Chromosome counts

Sex determination, sex reversal
Mating systems

Egg size and shape

Sex chromosomes, sex-biased
genes

Chromosome counts

Observed same-sex sexual
behavior

Sex chromosomes, chromosome
counts

Mating systems
Genome sizes, ploidy

Genome sizes

Genome sizes (c-values), chromo-
some counts

Chromosome counts, karyotypes,
genome size

Sex chromosomes, chromosome
counts

Chromosome counts
Sexual systems, life-history traits

Sex determination

Sex-biased genes

Vertebrates, invertebrates,
plants
Animals

Amphibians

Animal

Animals

Animals
Animals

Animals, plants, fungi

Plants

Nematodes
Beetles
Diptera
Drosophila
Fish

Fish

Fish

Harvestmen

Amphibians, reptiles
Plants (hybrid zones)

Insects

Insects

Termites, cockroaches

Mammals

Mammals

Plants, life-history traits
Brown algae

Algae, heterokonts
Plants

Plants
Polyneoptera

Pseudoscorpions
Brown algae

Testudines

Animals

37,496

14,524

2,124

36
2,800

6,534
18
2,951

77,958
257

4,960

3,443

1,247

35,400

1,285

440

100
891

245

6,700
49

229
322

1,440

154

67

154
12,273

2,770

823

65
91
125

21

(Tree of Sex Consortium,
2014)

(Roman-Palacios et al.,
2021)

(Perkins et al., 2019)

(Weeks et al., 2006)
(Sochorova et al., 2018)

(Gregory, 2024)
(Y. Lietal., 2021)

(D’Ambrosio et al., 2017;
Gutiérrez et al., 2023)

(Rice et al., 2015)
(Blaxter et al., 2024a)

(Blackmon & Demuth,
2015a)

(Morelli et al., 2022)
(Morelli et al., 2022)
(Froese & Pauly, 2024)
(Nagpure et al., 2016)
(Sember et al., 2021)

(Tsurusaki et al., 2022)

(Nemeshazi & Bokony,
2023)

(Pickup et al., 2019,
2020)

(Church et al., 2019)
(Chen et al., 2021)

(Jankdsek et al., 2021)
(Gomez et al., 2023)

(Blackmon et al., 2019)

(Goodwillie et al., 2005b,
2010)

(The Phaeoexplorer
project, 2024)

(Grigoriev et al., 2021)

(Leitch et al., 2019; Pelli-
cer & Leitch, 2020)

(Rodriguez-Gonzilez et

al., 2023)
(Sylvester et al., 2020)

(Stahlavsky, 2022)
(Heesch et al., 2021)

(Krueger & Janzen,
2022)

(Shi et al., 2019)
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Table 1. Continued

Database name Scope Taxonomic scope Species number Reference
ScorpionCyto Chromosome counts Scorpions 264 (Schneider et al., 2024)
Sex-chrom Sex chromosomes, ploidy, chro- Land plants, green algae 229 (Barankova et al., 2020;
mosome counts Garcia et al., 2023)
SexChromAlgae Sex chromosomes Brown algae 10 (Barrera-Redondo et al.,
2024)
SexSystemCrustacea Sexual systems Crustaceans 334 (Benvenuto & Weeks,
2020)
SexSystemFish Sexual systems Fish 4,614 (Pla et al., 2022)
SpermTree Sexual systems, sperm morphol- ~ Animals 5,675 (Fitzpatrick et al., 2022)
ogy
SpiderCyto Chromosome counts Spiders 933 (Araujo et al., 2024)

requires multiple approaches and expertise from a broad
range of disciplines, including genetics/genomics, cell biology,
physiology, developmental biology, ecology, behavioural ecol-
ogy, and evolutionary biology. Understanding the drivers and
consequences of these strategies throughout nature requires
subsequent in-depth analyses against a reliable phylogeny.
However, before this is possible, information from disparate
methodological and taxonomic disciplines must be integrated.

Roughly a decade ago, a group of scientists created the Tree
of Sex database (Tree of Sex Consortium, 2014), collected data
for over 37,000 species, across many eukaryotic lineages, and
used it to gain several foundational insights into the distribu-
tion and evolution of reproductive strategies. These included
the previously unrecognized lability and patterning of sex
determination mechanisms across eukaryotes (Bachtrog et
al., 2014), and well-supported estimates of variation in the
rates of transitions among different reproductive strategies
(Blackmon & Demuth, 2014; Blackmon et al., 2017; Pennell
et al., 2018). Since then, extensive research and methodolog-
ical advancements, including the continuing genomic revolu-
tion, have deepened our insights into reproductive biology.
To capitalize on these advances, we have revived the Tree of
Sex consortium. We are now working towards a new data-
base that not only updates the information compiled by the
first initiative, but also largely expands its scope to include all
clades of eukaryotes for which data exists, all reproductive
strategies identified to date, and new data types, including
genomic data. Crucially, we will integrate this knowledge via
a purpose-built ontology for reproductive biology, allowing
us to connect information from disparate fields and from
studies that are decades apart. The new Tree of Sex consor-
tium will also serve as a framework for collaborative research
to address fundamental questions about the evolution of
reproductive strategies.

To set the stage for the new Tree of Sex project, here we
summarize existing efforts to describe the diversity of eukary-
otic reproductive strategies and highlight the current gaps in
our knowledge and their importance. We then describe some
of the topics and unanswered questions that we believe will
benefit most from large comparative approaches that the Tree
of Sex database will enable. Lastly, we describe our plans for
the Tree of Sex database and the consortium, emphasizing the
need for proactive engagement of a diversity of people, under-
standings, and perspectives so that we can build a database
that encompasses the complexity and nuances of reproduc-
tion and its contexts throughout nature.

Characterizing the diversity of reproductive
strategies across eukaryotes

Existing data on eukaryotic reproduction

Taxonomically speaking, the first Tree of Sex database (Tree
of Sex Consortium, 2014) remains the broadest integrated
collection of information on reproduction in eukaryotes com-
piled to date. In the decade since, several additional databases
(Table 1) have been assembled, focusing on reproduction-
related traits for distinct groups of organisms, including (but
not limited to) fishes (Pla et al., 2022; Sember et al., 2021),
amphibians and reptiles (Nemeshdzi & Bodkony, 2023),
insects (Chen et al., 2021), and plants (Barankova et al., 2020;
Garcia et al., 2023). In addition, several other databases con-
tain information that is relevant but not necessarily specific
to reproduction, including karyotypes (Blackmon & Demuth,
2015a; Blaxter et al., 2024a; D’Ambrosio et al., 2017; Garcia
et al., 2012; Jankasek et al., 2021; Roman-Palacios et al.,
2021; Sochorova et al., 2018) and genome sizes (Gregory,
2024; Pellicer & Leitch, 2020). Because reproductive strat-
egies depend on and shape genomic characteristics (e.g.,
divergence, sex chromosomes, karyotype), these data types
can greatly improve our understanding of the reproductive
strategy of a given species.

Together, the above databases contain information for tens
of thousands of species, including the presence or absence
of sexual reproduction, mating systems, sex allocation, sex
determination, karyotype, sex chromosome differentiation,
ecological and behavioural phenotypes and many other traits
that can inform the study of reproduction. However, these
datasets are currently difficult to use in combination, as they
lack standardized terms. Moreover, the lack of a common
phylogeny hampers evolutionary analyses outside of the tax-
onomic bounds of each individual database.

Gaps in our knowledge of reproduction in
eukaryotes

Despite extensive efforts, existing databases capture only a
portion of the existing literature, which itself does not encom-
pass the full diversity of reproductive strategies in nature. To
identify taxonomic gaps in our knowledge, we conducted a lit-
erature search based on a non-exhaustive set of 36 keywords
related to reproductive strategies (see legend of Figure 1). The
search hits reveal a substantial taxonomic bias in the litera-
ture on reproductive strategies (Figure 1A). Unsurprisingly,
species with relevance to medicine, agriculture, and basic
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research (such as humans, mice, fruit flies, and the round-
worm Caenorhabditis elegans) have received the most
research interest. Indeed, over half of all papers studying
chordates focus on humans or mice. Consequently, the spread
of research across individual phyla does not reflect their spe-
cies richness (Figure 1C).

One additional factor likely contributing to these taxo-
nomic biases is the difficulty of characterizing reproductive
strategies in non-model organisms. However, technological
advancements are mitigating many such issues. Genomic
techniques can help characterize the ploidy, karyotype, inher-
itance, sex chromosomes, sex-specific gene expression pat-
terns, population dynamics, and other reproduction-relevant
traits, in many cases without any prior knowledge. While it
is still necessary to integrate such data with ecological, phe-
notypic, quantitative genetics, and cytogenetic approaches in
order to gain a holistic picture of reproduction in a given spe-
cies, genomics can provide a valuable foundation on which
to build our understanding of reproduction, even in hard to
study organisms (Deakin et al., 2019; Stock et al., 2021a;
Zaidem et al., 2019).

In addition to biases from methodological limitations or
applied practices, it is well known that the attention received
by a given study system in biology is also affected by cultural
and geographical biases. Owing to differences in resources
and funding access, the most biodiverse regions of the planet
have received the least research focus (Linck & Cadena, 2024;
Titley et al., 2017). This also affects the diversity of research-
ers studying a given species as well as phrasing of hypothe-
ses (Ahnesjo et al., 2020). Despite the ever-increasing yearly
publication rates across science (Bornmann et al., 2021), the
taxonomic biases in the distribution of publications on repro-
ductive strategies per phylum have remained stable for over
70 years (Figure 1A). The available genomes show a different
skew (Figure 1B) to that of the published literature, however,
this has again changed little through time. Together, the sta-
bility of these trends highlights that closing the taxonomic
gaps in our knowledge will require proactivity in the choice of
future study systems and a serious push for inclusive research
strategies that provide opportunities to researchers in low-
and middle-income countries.

When defining a strategy to mitigate problems caused by
existing biases in study systems, one important factor to con-
sider is the reproductive diversity of the studied taxa. For
example, the large majority of studied viviparous mammals
possess an XX/XY sex determination system with Sry as a
sex determining gene, which has remained conserved for hun-
dreds of millions of years (Hughes & Page, 2015). As such,
it is less likely that exploring additional viviparous mammal
systems will significantly broaden our knowledge of diversity
and frequency of sex determination systems in eukaryotes. In
contrast, based on the species studied so far, animals such as
amphibians (Jeffries et al., 2018; Ma & Veltsos, 2021), rep-
tiles (Gamble et al., 2015; Holleley et al., 2015; Krueger &
Janzen, 2022; Pinto et al., 2022, 2023), fish (El Taher et al.,
2021; Jeffries et al., 2018; Kitano et al., 2024), crustaceans
(J. Li, 2022; Ye et al., 2023), insects (Blackmon et al., 2017;
Bracewell et al., 2024; Vicoso & Bachtrog, 2015), arachnids
(Araujo et al., 2012; Cordellier et al., 2020; Kofinkova &
Kral, 2013), and potentially molluscs (Breton et al., 2018;
Yusa, 2007) seem to display a large diversity of sex determi-
nation mechanisms, and yet they have received comparatively
little attention in this regard. Similarly, haploid sexual systems

Jeffries et al.

are severely understudied, despite being found in many taxa
including algae and bryophytes (Charlesworth, 2022; Coelho
et al., 2018) and being important for testing predictions
about sex chromosome evolution. Finally, there are many
more fundamental gaps in our knowledge of reproduction
of unicellular eukaryotes. For example, in microsporidia
(important spore-forming unicellular fungi that parasitize all
major groups of animals) all we know is that some form of
sexual reproduction likely occurs, based on the presence of an
intact multi-gene cassette involved in mating-type determina-
tion in fungi (Lee et al., 2008), and putatively imaged gametes
(reviewed in Khalaf et al., 2024). These taxa, which have tra-
ditionally been overlooked and show signs of high variability
in reproductive strategies, likely hold the most potential for
broadening our knowledge of reproductive strategy diversity
and understanding the relative frequencies of the many sys-
tems that exist in nature.

We note, however, that we are not petitioning against the
further study of already-well-studied clades. Indeed, the ideal
study system is defined by the question at hand, and the
in-depth study of model systems, and those that are excep-
tions to clade norms can be extremely insightful for specific
evolutionary processes, as has been the case with the few
exceptional mammal species which do not share the usual
mammalian XX/XY sex determination system (e.g., Fredga,
1988; Hughes et al. 2024 ; Mulugeta et al., 2016; Ruiz-
Herrera & Waters, 2022; Saunders & Veyrunes, 2021).

Aside from taxonomic gaps, the types of data avail-
able for a given study system are also sporadic, with many
lacking cytological (e.g., chromosome morphologies, cen-
tromere positions) or genomic data. The combination of
high-throughput genomics with cytogenetic analyses (as in
Deakin et al., 2019; Liehr, 2021) will undoubtedly prove to
be a powerful approach to studying patterns of chromosomal
rearrangements, such as inversions, translocations, fusions, or
fissions, which can all impact reproductive processes includ-
ing recombination in meiosis or gametogenesis, e.g., result-
ing in complete versus incomplete genome complements in
gametes (Bardnkova et al., 2020; Deakin et al., 2019; Gil-
Fernandez et al., 2020; Vara et al., 2021), as well as speciation
and hybridization. Such approaches will also be instrumental
in describing phenomena such as programmed DNA elimina-
tion, which leads to differences in (sex) chromosome numbers
or synteny between germline and somatic genomes. While
programmed DNA elimination has so far been observed in
multiple eukaryotic lineages (Hodson & Ross, 2021; Smith
et al., 2021; Wang & Davis, 2014), its frequency is still not
well known.

Advancements in chromosome conformation capture
(“3C”) methods, such as Hi-C (Jerkovic & Cavalli, 2021;
Rao et al., 2014), are also opening new avenues for study-
ing genome evolution across various timescales and cell types
(Alvarez-Gonzalez et al., 2022; Bista et al., 2024; Hoencamp
et al., 2021; Vara et al., 2019). This technology has already
provided insights into the chromatin structure of sex chro-
mosomes in both somatic and germ cells, albeit in a limited
number of organisms (Bista et al., 2024; Chen et al., 2020;
Hoencamp et al., 2021; Liu et al., 2024; Vara et al., 2019).
As the accessibility of these approaches increases, so will our
understanding of the role of chromatin architecture during
meiosis and thus its role in the evolution of reproductive
mechanisms (e.g., Alvarez-Gonzilez & Ruiz-Herrera, 2025;
Chen et al., 2020).
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a) 60,409 articles on reproductive systems by phylum (1950-2023)
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Figure 1. Summary of reproductive strategies literature and high-quality genome assemblies across eukaryotes. (A) Published primary literature by
phylum and year. Literature libraries were searched using Dimensions (on 8th May 2024), with a search prompt that included 36 terms relating to topics
within reproductive strategies research (search prompt: hermaphrodite OR monoecy OR dioecy OR gynodioecy OR androdioecy OR gynomonoecy

OR andromonoecy OR polygamodioecy OR polygamomonoecy OR apomictic OR gonochorous OR parthenogenetic OR sex chromosome OR sex
determination OR arrhenotoky OR haplodiploid OR genome elimination OR hybridogenesis OR dosage compensation OR self compatibility OR self
incompatibility OR hermaphrodism OR monoecious OR dioecious OR gynodioecious OR androdioecious OR gynomonoecious OR andromonoecious
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In summary, methodological advances like those listed
above promise exciting opportunities for closing existing gaps
in our knowledge of reproduction. The Tree of Sex consor-
tium is thus committed to accommodating any such data type
that could be pertinent to the interpretation of reproductive
diversity to facilitate a holistic understanding of reproduction.

Comparative analyses and their role in
advancing the field of reproductive strategy
evolution

Centralizing and integrating information across the field will
enable large, phylogenetically deep comparative analyses to
test for the evolutionary forces that shape diversity in repro-
ductive strategies. With such analyses we can estimate the rate
of reproductive trait evolution, the likelihood of transitions
from one strategy to another, test whether trait evolution or
transitions correlate with environmental, ecological, physio-
logical, or genetic changes, and reconstruct the reproductive
strategies in the ancestors of extant taxa. By compiling infor-
mation as exhaustively as possible across eukaryotes, the Tree
of Sex database will facilitate analyses at a previously unfea-
sible scale and resolution. Below we highlight several broad
topics and ways in which we envisage such comparative anal-
yses might advance our knowledge of reproduction.

The evolution of sexual vs asexual reproduction,
and everything in between

Sexual reproduction, broadly viewed as a process that brings
together and mixes the genetic material from two parental
gametes, is widespread in eukaryotes (Speijer et al. 2015) .
At its core, sexual reproduction involves the production of
haploid (reduced) cells via meiosis. These cells can either be
gametes (in most animals), or spores that will develop and
produce gametes after additional mitotic cell divisions (in land
plants). Haploid gametes then fuse (syngamy) during fertiliza-
tion to create the genome of the offspring. However, within
this broad definition of sexual reproduction lies a large diver-
sity of strategies (Figure 2). For example, sexual reproductive
strategies can differ in relative time spent within individual
stages of their cycle. In some cases, the reduced stage is domi-
nant; in others, the unreduced stage is dominant, while others
spend large portions of their life cycle between these stages in
the heterokaryotic phase. Strategies also differ in the types of
gametes or spores that they produce. Many sexual eukaryotes
are anisogamous, producing two gamete types that differ in
size and form (e.g., eggs and sperm in many animals), while
others are isogamous, wherein all gametes produced are of
similar size and form (e.g., brewer’s yeast and some protists,
dinoflagellates, and algae (Lehtonen et al., 2016)). A similar
distinction can be made between spore-producing organisms
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which can either make spores of similar size (i.e., isospory,
found in bryophytes; Mogensen 1985 and most ferns; Dyer
1979 ) or different sizes (anisospory, as found in seed plants;
Jesson & Garnock-Jones 2011). Lastly, in some species, syn-
gamy occurs between the gametes from two individuals (bipa-
rental sexual reproduction); in others, zygotes can be made
from the fusion of gametes from only one individual (unipa-
rental sexual reproduction), and some species can do both.

The evolution of anisogamy has received much attention
in the context of species with distinct gamete types carried by
different individuals (Parker, 1978). Anisogamy is thought to
be a major cause of the evolution of different sex phenotypes
(Schirer et al. 2012), and of sexual selection (Janicke et al.,
2016). But why does anisogamy evolve despite its tendency
to restrict mating opportunities (Otto, 2009)? And why is the
predominant number of gamete classes two (Charlesworth,
1978)? Many models have been proposed to answer these
questions (Billiard et al., 2011), with some receiving the-
oretical support (Constable & Kokko, 2021; Lehtonen &
Kokko, 2011; Lehtonen & Parker, 2014; Lehtonen et al.,
2021). However, conclusive empirical evidence for any
of them remains rare. One type of empirical evidence that
could prove useful in this case is the association of gamete
types with other fundamental reproductive traits (e.g., self-
compatibility, sex ratios, gamete competition/fertilization
success) though such analyses would require multiple phy-
logenetically independent taxa to provide statistical power.
Thus, this topic could benefit greatly from the integrated
knowledge of such traits across eukaryotes, and especially
clades such as algae (Coelho et al., 2018; Krueger-Hadfield,
2024) and fungi (Billiard et al., 2011).

The two distinct types of gametes of anisogamous species
can be produced by different individuals or within a single
individual. When produced by different individuals, we refer to
the species as gonochoristic in animals, or dioecious in plants
with a diploid-dominant life cycle. While in plants with a
haploid-dominant life cycle, species in which different gamete
types are produced by separate gametophytes are termed dioi-
cous (Villarreal and Renner 2013) (Figure 2A). If both gamete
types are produced by a single individual, we refer to them
as hermaphroditic/monoecious/monoicous. Hermaphrodites
can further be classified into those in which individuals can
produce both types of gametes at the same time (simultaneous/
synchronous hermaphroditism) or at different times (sequen-
tial hermaphroditism). In plants, hermaphroditism refers to
systems where individuals carry bi-sexual flowers, while the
system where individuals generate male and female flowers
is called monoecious. Hermaphroditism is the most common
sexual system in flowering plants (Kifer et al., 2017; Renner
2014) and has been described in a variety of invertebrates (see
initial review by Ghiselin, 1969); while among vertebrates,

OR polygamodioecious OR polygamomonoecious OR apomixis OR gonochoristic OR hermaphroditic OR parthenogenesis OR self compatible OR
self incompatible). The resulting 85,533 papers were searched for taxonomic names taken from the NCBI taxonomy (downloaded 8th May 2024). A
total of 60,409 could be classified into phyla (though no manual curation was performed, so some errors may exist). We included all name categories
(e.g., scientific, common, blast names) for all taxonomic ranks between phylum and genus. Common names and blast names were also included for
species, but species scientific names were not used to reduce the total number of search terms, and because genera were already included. Inset
pie chart shows the total proportion of all classified papers by phylum, with four model organisms also shown. For comparison, the black line shows
a 4.1% annual increase publication rate estimated as the rate for all scientific publications (Bornmann et al., 2021) (B) All genomes archived by the
The International Nucleotide Sequence Database Collaboration by phylum and year (Created in GoaT (Challis et al., 2023) on 06 June 2024). Only one
assembly per species is counted. (C) Estimate of the number of named species for the 15 most speciose phyla taken from the Global Biodiversity
Information Facility as of 16th May 2024. (D) Distribution of sex chromosome information (morphology and system of heterogamety) from ToS v1

database across eukaryotic phyla (Created in GoaT from data sources here).
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Figure 2. Selected examples of diverse reproductive strategies found in eukaryotes. The canonical animal reproductive cycle is highlighted in blue. The
prominent phase of life is indicated by the following taxa/silhouettes listed here clockwise starting in top-right corner: Ascomycota (generic hyphae),
Bryophytes (sporophyte of Rosulabryum capillare), Hymenopterans (male Camponotus sp.), Basidiomycota (Boletus edulis), animals (Homo sapiens),
vascular plants (Polypodium vulgare), cnidarians (budding Hydra vulgaris), vascular plants (runner of Fragaria sp.), aphids (generic member of Aphididae),
and Caucasian rock lizards (Darevskia spp.). The majority of animals or vascular plants spend most of their lives in the unreduced (diploid or polyploid)
state, while the dominant phase in bryophytes is haploid, and algae span a diversity of life cycles. Plants and animals fuse gametes (plasmogamy)

and nuclei (karyogamy) very quickly within a process we jointly call syngamy, though this is not universally true. For instance, basidiomycete fungi live
for a substantial part of their lives as large fruiting bodies of dikaryotic cells (with two unfused nuclei). In other cases, such in haplodiploid species,
males are haploid, develop from unfertilized eggs and generate sperm via abortive meiosis. Some species can also reproduce via unfertilized gametes
(parthenogenesis) or by vegetative (asexual) reproduction during their haploid and/or diploid phases. Parthenogenesis frequently features a modified
meiosis, or a regular meiosis with pre- (endoreplication) or post- (gamete duplication) meiotic genome duplication restoring the parental ploidy. This
figure includes only a small selection of the many paths that reproduction can take, which were chosen to highlight some of the major differences in
reproductive strategies in eukaryotes.

G20z AInf €0 uo Jasn Aleiqr Ayisiaaiun a1els emo| Aq £089Z 1 8/ES0/EONARI/EE0L 0L/I0P/BI01E-80UBADE/GR/W0D" dNO"dlWSPESE//:SAY WOIj PIPEO|UMOQ



it is thought to be specific to teleost fishes (Pla et al., 2022).
Hermaphrodites can also coexist with males (androdioecy),
females (gynodioecy) or both (trioecy/trioicy), in mixed sex-
ual systems. In animals (Sasson & Ryan, 2017; Weeks et al.,
2006), androdioecy is known in very few taxa, for example,
in Caenorhabditis nematodes (Thomas et al., 2012), in bran-
chiopod crustaceans (Benvenuto & Weeks, 2020); in barna-
cles (Ewers-Saucedo et al., 2016) and among vertebrates, it
has only been observed in Kryptolebias killifishes (Costa et
al., 2010). Gynodioecy is even more rare in animals (Weeks,
2012). In flowering plants, gynodioecy is more common than
androdioecy (McCauley & Bailey, 2009), while trioecy is very
rare in both animals (Oyarzin et al., 2020) and flowering
plants (Godin, 2022). Recent studies have investigated evo-
lutionary transitions among all sexual systems (Goldberg et
al., 2017; Leonard, 2019; Pannell & Jordan, 2022; Weeks,
2012). By centralizing all known examples of sexual systems
and self-compatibility in eukaryotes, the Tree of Sex database
will allow us to better test whether the contexts of these strat-
egies are general across Eukaryota.

While sexual reproduction is often thought of as involving
two individuals (biparental), in self-compatible simultane-
ous hermaphrodites the fusing gametes might be from the
same parent in a process known as self-fertilization or self-
ing. Selfing is found in plants (Baker, 1955; Barrett, 1998;
Hedrick, 1987) and animals (Goodwillie et al., 2005a; Jarne
& Auld, 2006; Jarne & Charlesworth, 1993), in automictic
fungi (Hood & Antonovics, 2004) and algae (Chepurnov
et al.,, 2004; Heesch et al. 2021; Krueger-Hadfield et al.,
2024). Uniparental sexual reproduction has been most
extensively studied in the form of self-fertilization in plants
(Cheptou, 2018; Hartfield et al., 2017; Wright et al., 2013),
which is often thought to evolve in response to selection
for reproductive assurance when mates (or pollinators) are
scarce (Baker, 1955; Pannell et al., 2015). Selfing in animals
has been reported in a variety of invertebrates (Annelida,
Arthropoda, Cnidaria, Echinodermata, Ectoprocta,
Mollusca, Nematoda, Platyhelminthes, and Urochordata;
Jarne & Auld, 2006). Isogamous species might undergo
self-fertilization via fusion of gamete of the same meiotic tet-
rad (Billiard et al., 2011). Unfortunately, many selfing taxa,
e.g., algae, still lack population genetic data with which to
test theories for the predictors and consequences of selfing
(Krueger-Hadfield, 2024). However, by centralizing known
examples of gonochorism, hermaphroditism, and self-
fertilization across diverse lineages, the Tree of Sex database
will allow us to search for explanations for the distribution
of selfing across eukaryotes.

Uniparental reproduction might also happen without
fusion of gametes (syngamy), which is known as partheno-
genesis. These species usually have a modified meiosis or pre-
or post-meiotic genome duplication, resulting in unreduced
gametes and thus to stable ploidy levels between generations
(Stock et al., 2021b). The offspring might be a genetic clone
of the parent (e.g., in parthenogenetic animals using premei-
otic endoreplication; Dedukh et al., 2024) or a mixture of
parental haplotypes known in plant and animal literature
as automixis. Finally, reproduction can occur via separation
of somatic tissue such as vegetative propagation in plants
(Schwaegerle, 2005), budding or fragmentation in cnidarians
(Berzins et al., 2021), fissiparity in some flatworms (Zaccanti
& Farne, 1986) and echinoderms (Dolmatov et al., 2018;
Thuy et al., 2024).

Jeffries et al.

Though we have presented sexual and asexual reproduc-
tion above as separate modes of reproduction, in fact a spec-
trum of strategies exists, which do not neatly fall into these
two discrete categories. For example, in sperm-dependent
parthenogenesis, also known as gynogenesis, sperm is required
but only to initiate embryo development, i.e., its DNA is not
incorporated into the zygote (Beukeboom & Vrijenhoek,
1998). This system is known, for example, in the teleost
fish genera Poecilia and Poeciliopsis (Cerepaka & Schlupp,
2023; Lampert & Schartl, 2008; Schlupp, 2005; Schultz,
1969), Carassius (Choleva et al., 2008; Komen & Thorgaard,
2007; Liet al., 2018) and Cobitis (Choleva & Janko, 2013).
Similarly, androgenesis requires two parents for fertilization,
but a zygote is formed solely with paternal nuclear genes; this
is found in plants and animals (Schwander & Oldroyd, 2016).
Some amphibians, teleosts and insects perform hybridogene-
sis, wherein DNA from both sperm and egg are incorporated
into the zygote; however, the genome of one of the parental
species is consistently eliminated during meiosis in each gen-
eration (Neaves & Baumann, 2011).

The categorization of organisms as exclusively sexual or
asexual also does not work for organisms using more than
one reproductive strategy, as in cyclical parthenogenesis
(found in aphids and water fleas) or arrhenotoky (a form
of haplodiploidy) where males develop parthenogenetically
from unfertilized eggs and females develop sexually from fer-
tilized egg (for example in hymenopterans, thrips, and several
other arthropod lineages; reviewed in de la Filia et al., 2015).
Finally, many species switch between sexual and asexual
forms of reproduction. Such strategies are used by most stud-
ied unicellular eukaryotes which generally reproduce asexu-
ally, with occasional sexual cycles (Green & Noakes, 19935;
Hofstatter & Lahr, 2019).

Obligately asexual (or uniparental) reproduction is rela-
tively rare, which has led to the famous question “why sex?”
(Bell, 1981; Hartfield & Keightley, 2012; Otto, 2009, 2021).
Indeed, where, how, and why sexual reproduction and its
constituent processes (meiotic recombination, outcrossing,
anisogamy, and sex) have evolved or been lost has received
much attention. It is thought that recombination dates back
to the ancestor of all eukaryotes (Bernstein & Bernstein,
2010; Mirzaghaderi & Horandl, 2016; Ramesh et al., 2005).
Yet, recombination has been lost or much reduced in the
meiosis of the heterogametic sex in many species (Morgan,
1914; Sardell & Kirkpatrick, 2020; Satomura et al., 2019),
or lost entirely in some asexuals employing asynaptic meiosis,
like the Amazon molly (Dedukh et al., 2022) or achiasmatic
meiosis, as in Bithynia snails (Debus, 1978) and scorpions
(Shanahan & Hayman, 1990). It has been proposed that
recombination evolved because it disrupts detrimental com-
binations of alleles and brings together beneficial alleles that
arise in different individuals (Felsenstein, 1974; Hartfield &
Keightley, 2012; Otto, 2009). Furthermore, recent theoretical
work points to selective interference as the main driver of the
evolution of sexual reproduction with recombination (Otto,
2021). Without genetic mixing and recombination, selec-
tion cannot act upon individual loci, as genetic variance is
restricted to the level of the whole genome. There is substan-
tial empirical support for selective interference (Neiman et al.,
2018); however, so far it is restricted to individual genes and
limited taxonomically. Importantly, many of these hypothe-
ses have remained largely untested, primarily due to techni-
cal challenges in accurately estimating key parameters, such
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recombination rates, effective population sizes, and selection
coefficients (Dapper & Payseur, 2017), as well as the fact that
sex and meiotic recombination evolved only a small number
of times. Thus, there is yet to be a fully satisfactory explana-
tion for the vast prevalence of sex, which necessarily needs to
be based on a study of a taxonomically diverse set of asexual
species.

The complexities of categorizing reproductive strategies
make comparative analyses difficult. By structuring the data-
base to include nuanced characteristics of meiosis and inher-
itance for these species, the Tree of Sex will allow us to study
the evolution of various components of these reproductive
strategies in their most relevant context without forcing them
into categories that could mask important patterns.

Explaining the many ways of sex determination

Anisogamy is more common than isogamy among multicel-
lular eukaryotes and is often associated with dioecy/dioicy/
gonochorism. In such species, mechanisms must exist to deter-
mine which type(s) of gamete an individual will produce, and
individuals are classified as female (producing macrogametes)
or male (producing microgametes). We refer to such mech-
anisms as sex determination (Beukeboom & Perrin, 2014;
Bull, 1983). This term is also sometimes used in isogamous
clades such as algae and fungi, though, to avoid confusion,
we refer to individuals producing different types of similarly
sized gametes as mating types (Aanen et al., 2016).

One of the main goals of the first Tree of Sex project was to
synthesize the many ways in which sex is determined across
eukaryotes and the non-random distribution of these mech-
anisms among eukaryotic clades (Bachtrog et al., 2014). For
instance, to our knowledge every mammal or bird has geno-
typic sex determination (GSD), wherein the sex of an individ-
ual is determined by their genotype at one or more locus, or
in their karyotype. In contrast, some reptiles and teleost fishes
use environmental sex determination (ESD), wherein male
or female development depends on environmental cues (e.g.,
temperature or social environment).

Similarly to reproductive strategies, however, sex determi-
nation modes resist binary classification into GSD or ESD
with sex in some species being determined by the interac-
tion between genotype and the environment (Baroiller et al.,
1995; Collin, 2006; Holleley et al., 2015; Mork et al., 2014;
Piferrer et al., 2005; Sarre et al., 2004; Whiteley et al., 2021).
In addition, there are increasing examples of putative GSD
systems in which the genotype at the presumed sex determi-
nation locus is less predictive of the sex phenotype than orig-
inally thought (Cossard & Pannell, 2019; Ehlers & Bataillon,
2007; Holleley et al., 2016; Nemeshazi & Bdkony, 2022;
Nemeshadzi et al., 2020; Phillips et al., 2020; Rodrigues et al.,
2018; Wiggins et al., 2020). It has been proposed (but not yet
empirically tested) that such cases could arise from interac-
tions between the random noise inherent in gene expression
and the required expression thresholds for sex development
pathways (Perrin, 2016). Though, it is also possible that the
occurrence of mismatches between genotypic and phenotypic
sex could be favoured by natural selection as it can allow
for occasional self-fertilization, which could be beneficial in
some situations (e.g., low mate abundance, Crossman and
Charlesworth 2014; Pannell 2015).

There is also ample variation in sex determination mech-
anisms within GSD systems. In many cases a single locus
acts, in a switch-like fashion, to divert development to the

male or female pathway. This gene is widely referred to as the
Master Sex Determination gene, though some suggest that it
should be referred to as the Primary Signal (PS) gene reflecting
a more polygenic view of developmental regulation (Kocher
et al., 2024). We use the latter from hereon. Polygenic sex
determination has indeed been shown in some species, such
that multiple genes in an individual’s genome act together to
determine sex (reviewed in Kocher et al., 2024; Schartl et al.,
2023). Another form of a GSD present in several diverse taxa
(15% of known arthropod species; de la Filia et al., 2015)
is arrhenotoky, which has independently evolved multiple
times (Normark, 2003; Ross et al., 2015) and is often associ-
ated with eusociality (da Silva, 2022; Joshi & Wiens, 2023),
inbreeding (Hamilton, 1967; Ross et al., 2015), flexible sex
allocation (Hamilton, 1967; Normark, 2004), reproductive
manipulation by infectious endosymbionts (Werren et al.,
2008) and often uses the ecologically vulnerable complemen-
tary sex determination system (Beye et al., 2003; Leung &
van der Meulen, 2022; Zayed & Packer, 2005).

Despite great progress in the discovery of sex determina-
tion mechanisms across eukaryotes (Bachtrog et al., 2014;
Beukeboom & Perrin, 2014; Blackmon et al., 2015, 2017,
Goldberg et al., 2017; Iwasaki et al., 2021; Sabath et al.,
2016), this information is distributed in a very biased way
across eukaryotic clades. For example, we currently know the
PS gene of approximately 140 teleost species (Kitano et al.,
2024; Wang et al., 2024), which has allowed us to recognize
not only the high amounts of polymorphism in PS genes in
this clade, but also the strong convergence on a few genes,
implying strong evolutionary constraints on which genes can
become PS genes in some lineages. These insights highlight
how important and powerful it is to have good phylogenetic
coverage and detailed information on reproductive strate-
gies. In contrast, we currently have no knowledge of the sex
determination genes in most organisms, including even well-
studied ones like guppies (Charlesworth et al., 2020) or
Rumex plants (Sacchi et al., 2024) to name but two cases.
This not only precludes similar inferences in these clades but
also prevents our understanding of whether the evolutionary
patterns seen within teleosts are an exception, or whether
they are indicative of a general pattern across eukaryotes.
This issue applies not only to the study of PS genes, but also
to mechanisms of ESD, which, to our knowledge have only
been described to date in turtles (Ge et al., 2018; Schroeder et
al.,2016; Weber et al., 2020) and Daphnia (Kato et al., 2024),
though similar ESD mechanisms involving thermally sensitive
isoforms have been implicated across distantly related reptiles
(Deveson et al., 2017; Whiteley et al., 2022).

By integrating available data on sex determination systems
across eukaryotes, the Tree of Sex database will facilitate
comparative approaches to describe, with higher resolution
than before, the distribution of sex determination mecha-
nisms across eukaryotes, their association with relevant traits
(e.g., life cycle, environmental stability), and patterns of gene
use for sex determination.

Sex chromosome evolution

In organisms with GSD, the term sex chromosome refers to a
linkage group harbouring a locus whose inheritance correlates
with an organism’s sex. They are common among eukary-
otes with separate sexes and have evolved many times inde-
pendently across many clades (Bachtrog et al., 2011; reviewed
in Bachtrog et al., 2014). The term “sex chromosome” refers
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to all ranges of sex chromosome differentiation (see below),
including systems in which one homolog is almost completely
sex linked, completely absent, or in which the sex-linked
region containing the sex determination gene represents only
a small portion of the chromosome, with the rest segregating
autosomally (pseudoautosomal region [PAR]). In organisms
with fixed separate sexes, in which sex is determined in the
diploid phase of the life cycle, sex chromosome systems can
be split into two major categories: (1) male heterogamety
(e.g., XX/XY), where males (XY) can produce two different
(hence “hetero”) types of haploid gametes, containing either
an X or a Y chromosome; and (2) female heterogamety (e.g.,
Z717ZW), where it is the females that produce two different
gamete types (e.g., with either a Z or a W chromosome). In
such systems, the sex-limited chromosome may carry an allele
that initiates development of the heterogametic sex, or sex
might be determined by the number of X (Bridges, 1916;
Meyer, 2022) or Z (Ioannidis et al., 2021) chromosomes. In
some organisms, no sex-limited chromosome exists (e.g., XX/
X0 in nematodes (Nigon, 1949), springtails (Nufez, 1962),
and many insects (reviewed in Blackmon et al., 2017; White,
1945), or ZZ/Z0 in many moths (Sahara et al., 2012)). Again,
in such cases, it is the number of X or Z chromosomes that
determines sex. And finally, taxa in which only the sex-
limited chromosome exists have also been found (00/Y0, or
00/W0) (Jonika et al., 2022), though the latter is seemingly
rare. In anisogamous species in which sexes are determined in
the haploid life phase, sex chromosomes are denoted as U/V,
with only one of the two being present in a given haploid cell
(Ahmed et al., 2014; Lipinska et al., 2024; Nieuwenhuis &
James, 2016). Finally, while isogamous species do not have
sex chromosomes, their “mating-type chromosomes” often
behave similarly to U/V chromosomes (Coelho et al., 2018).

One of the most notable and consistent properties of sex
chromosomes is the tendency for recombination to be reduced
between the sex-limited chromosome (e.g., Y or W) and its
gametolog (e.g., X or Z) (Charlesworth, 2023; reviewed in
Charlesworth et al., 2005). This can either be a progressive
reduction (as reviewed in Jay et al., 2024), or perhaps due to a
sex determination gene arising in a region that already lacked
recombination (Bergero et al., 2019; Rifkin et al., 2020,
2022). Due to the lack of genetic exchange between gameto-
logs, the sex-linked region often degenerates over time, los-
ing much of its gene function and content (Muller, 1964) and
accumulating repetitive elements (Charlesworth et al., 1994;
Nguyen & Bachtrog, 2021; Peona et al., 2021). However,
due to differences in selection in the two sexes, sex chromo-
somes can also become specialized, e.g., Y chromosomes may
become enriched in genes important for male reproduction
(Bachtrog et al., 2019; Carvalho et al., 2001; Colaco & Modi,
2018; Okada et al., 2001). In contrast to XY/ZW systems,
the degeneration and/or specialization of U and V chromo-
somes is expected to be symmetrical as they are each inherited
without recombination by gametophytes of just one sex (Bull,
1978; Carey et al., 2021; Immler & Otto, 20135).

The evolutionary forces driving recombination reduction
on sex chromosomes have received considerable debate.
Several theoretical models have been proposed to explain
this process (reviewed in Charlesworth, 2023; Jay et al.,
2024; Kifer, 2022; Ponnikas et al., 2018; Veltsos et al.,
2024). Most of these theories are adaptive (but see Jeffries et
al., 2021; Kent et al., 2017; Rifkin et al., 2020) and invoke
selection either due to the presence of sexually antagonistic
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polymorphisms, deleterious mutations, regulatory evolution,
or meiotic drive. While debate is ongoing as to which of these
models is most promising (Bergero & Charlesworth, 2019;
Charlesworth & Olito, 2024; Jay et al., 2024; Lenormand &
Roze, 2024), this discussion is almost entirely theoretical and
rests on many untested assumptions (summarized in Jay et al.,
2024). However, some of these assumptions can potentially
be tested (Charlesworth, 2023) and the Tree of Sex database
will facilitate this, for example, by relating the rate and extent
of recombination loss on sex chromosomes to its proposed
drivers across phylogenetically distant species.

Another interesting characteristic of sex chromosomes
is the rate at which fusions between sex chromosomes and
autosomes fix within some lineages (Anderson et al., 2020;
Lisachov et al., 2021; Pennell et al., 2015; Pokorna et al.,
2014; Wright et al., 2024). This is often followed again by the
spread of recombination reduction to parts of the fused chro-
mosome (neo-sex chromosome), further increasing the pro-
portion of the genome which is sex linked. In extreme cases,
this can happen multiple times, as in the sex chromosome
chains of monotremes (Rens et al., 2007). Proposed evolu-
tionary drivers of such fusions overlap with those proposed
above for recombination suppression. For example, a sex
chromosome-autosome fusion may be favoured if the auto-
some harbours a gene under sexually antagonistic selection
(Charlesworth & Charlesworth, 1980; Matsumoto & Kitano,
2016). However, additional hypotheses specific to the fixation
of fusions also exist. The fragile Y hypothesis (Blackmon &
Demuth, 2015b), for example, proposes that, as recombina-
tion is lost on a sex chromosome, opportunity for chiasmata
is reduced along much of its length. As chiasmata are import-
ant for correct chromosomal segregation during meiosis, their
absence can result in maladaptive or lethal aneuploidies. This
could provide an advantage to sex chromosomes fused to
an autosome, which could restore pairing. Here, the Tree of
Sex database will facilitate a more complete characterization
of the rates of various types of fusions across the eukary-
otic phylogeny. Further, it will allow for tests of association
between the rate of fusions and the extent of sex chromosome
degeneration, size of the pseudoautosomal region, the integ-
rity of centromeres, holocentricity, and many more potential
predictors across a much more diverse set of lineages than is
currently possible.

Extensive degeneration via deletions, massive accumula-
tion of repeat elements (Chalopin et al., 2015), or fusions
can all result in heteromorphic sex chromosomes, i.e., those
that show morphological differences that can be seen via
microscopy. As such techniques were the only ones available
for decades after sex chromosomes were first discovered in
1905 (Brush, 1978; Stevens, 1905, 1906), heteromorphic
sex chromosomes were generally the only ones that could be
detected and studied. However, the increasing availability of
genetic and genomic techniques has enabled the discovery of
many new sex chromosome systems that do not show mor-
phological differences via microscopy (homomorphic). While
this newly available data is still fragmented, it has revealed
that homomorphic sex chromosomes are common among
eukaryotes (Bachtrog et al., 2014). Further, the distribution
of homomorphic vs heteromorphic sex chromosomes across
eukaryotic lineages is highly heterogeneous. For example, in
mammals almost every species has heteromorphic sex chro-
mosomes (Graves, 1995), while in amphibians, between 75%
and 96% of species are thought to have homomorphic sex
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chromosomes (Ma & Veltsos, 2021; Schmid et al., 1991).
Assembling detailed information for sex chromosome differ-
entiation from all data types, including microscopy, genetic
maps and genomic data within the Tree of Sex database will
help crystallize this picture, and give a much more accurate
view of the extent and distribution of sex chromosome degen-
eration across the eukaryote phylogeny.

The extent of sex chromosome degeneration observed is
related to the frequency at which new sex chromosomes arise
in each clade. Transitions from hermaphroditism to gonocho-
rism (with GSD; Ming et al., 2011), ESD to GSD (Johnson
Pokorna & Kratochvil, 2016; Sabath et al., 2016), or from
one GSD system to another (i.e., sex chromosome turnovers;
El Taher et al., 2021; Gamble et al., 2015; Jeffries et al., 2018;
Kratochvil et al., 2021b; Vicoso, 2019) will all create new
sex chromosomes. Because, in most cases, new sex chromo-
somes arise from existing autosomes (but see Fraisse et al.,
2017; Imarazene et al., 2021), and because sex chromosomes
degenerate progressively through time, the gametologs of very
young sex chromosome systems are generally undifferenti-
ated. Lineages with frequent transitions in sex determination
system thus tend to have undifferentiated sex chromosomes
(Blaser et al., 2014; El Taher et al., 2021; Jeffries et al., 2018).
However, correlations between the age of a sex chromosome
system and levels of degeneration can be weak across divergent
taxa (Renner & Miiller, 2021) and there are several known
cases of old yet homomorphic sex chromosome systems (Kuhl
etal.,2021; Pan et al., 2019). Given the ratchet-like nature of
sex chromosome degeneration, this may reflect differences in
the rates of sex chromosome degeneration, but we currently
lack the dataset to assess this. To solve this question, we need
accurate estimates of the age of sex chromosomes (e.g., from
phylogenies and neutral sequence divergence (dS)) along with
accurate measures of their degeneration (e.g., gene loss, dNdS,
repeat accumulation) from multiple species within multiple
distant clades. Indeed, such a task is a prime candidate for the
new Tree of Sex database and consortium.

Another mystery relating to sex determination system tran-
sitions is their highly heterogeneous rates among taxa. For
example, they are very rare in some lineages within insects
(Toups & Vicoso, 2023), bryophytes (Carey et al., 2021),
cephalopods (Coffing et al., 2024), sturgeons (Kuhl et al.,
2021), birds (Fridolfsson et al., 1998) and many other amni-
ote lineages (Kratochvil et al., 2021a), but very frequent in
geckos (Gamble et al., 2015), true frogs (Jeffries et al., 2018),
medaka fishes (Ansai et al., 2022; Myosho et al., 2015), and
cichlids (El Taher et al., 2021; Feller et al., 2021). Why some
sex chromosome systems are so stable, while others transi-
tion often, remains an important but unresolved question.
Comparative analyses are essential for identifying, dating,
and placing transitions on a phylogeny. The Tree of Sex will
allow us to do this on an unprecedented scale, and by relat-
ing transitions to other life-history traits, we hope to better
understand their evolutionary drivers.

Evolutionary and ecological consequences of
reproductive strategies

The reproductive strategy of a given taxon affects its ecology
and evolution. For instance, dispersal to, and establishment
in a new geographic region can be easier for self-compatible
hermaphroditic or asexual species, especially in geographic
regions where pollinators or mates are rare (Baker, 1955).
This theory has received support in many hermaphroditic
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plant systems (Grossenbacher et al., 2015; Hargreaves &
Eckert, 2014; Pannell et al., 2015; Razanajatovo et al.,
2016). Similarly, in animals, simultaneous hermaphroditism
can increase fertilization success in unpredictable, unstable,
or extreme environments where mates are at low density
(Benvenuto & Weeks, 2020), as for parasitic species, and
gynogenesis using sperm from other species can result in
increased invasion success where conspecific mates are not
present (Fuad et al., 2021). For example, parthenogenesis
has been linked to range expansion in stick insects (Morgan-
Richards et al., 2010). Extending this test of range size to
other modes of reproduction would give a more holistic pic-
ture of how colonization and establishment can be impacted
by reproductive strategy (Tilquin & Kokko, 2016). This could
further be used to help predict the potential invasiveness or
pathogenicity of species, or their potential for range shifts in
response to climate change or other anthropogenic impacts.

Reproductive strategies also influence the ability of taxa
to adapt and thus their resilience to biotic or abiotic envi-
ronmental change. The efficacy of selection is impacted by
random associations that occur between alleles that increase
fitness and those that decrease fitness limiting both adapta-
tion and the elimination of deleterious mutations (reviewed in
Otto, 2021). This process is known as Hill-Robertson effect
(Hill & Robertson, 1966) or “selective interference.” Sexual
reproduction with recombination can break down these
genetic associations and generate variation upon which selec-
tion can act. However, some reproductive strategies, such as
self-fertilization, limit the effective rate of recombination and
therefore exacerbate selective interference (Hartfield, 2016;
Hartfield et al., 2017). Similar consequences are predicted in
parthenogenetic species, though the exact dynamics depend
on the cellular mechanism of parthenogenesis (Engelstadter,
2017). Furthermore, the origin of parthenogenetic species is
another factor affecting the levels of selective interference. In
addition, the efficacy of selection can be reduced when new
parthenogenetic or selfing species form, if they arise sponta-
neously with little genetic diversity (Jaron et al., 2022).

In the absence of sexual reproduction and effective recom-
bination in a diploid species, homologous haplotypes will
independently accumulate mutations resulting in extreme
Allelic Sequence Divergence (White, 1945), often also referred
to as the “Meselson effect” (Birky, 1996). Consequently, cor-
responding haplotypes in different individuals and/or pop-
ulations will be more closely related than two homologous
haplotypes within an individual. Despite the elegance of this
predicted effect and a large number of parthenogenetic spe-
cies tested, support is limited (Brandt et al., 2021; Oztoprak
et al., 2023; Weir et al., 2016) and evidence in several sys-
tems has later been reinterpreted (Freitas et al., 2023; Jaron et
al., 2022; Mark Welch et al., 2008; Schwander et al., 2011).
Hybridization of distantly related species can generate new
parthenogenetic lineages that also show a similar genomic
pattern to the Meselson effect (Jaron et al., 2021). Some
parthenogenetic species occasionally lose heterozygosity by
mitotic recombination between homologous parental chro-
mosomes (Janko et al., 2021), which potentially contributes
to mitigation of the accumulation of deleterious mutations
due to selective interference (Ko¢i et al., 2020). In general, the
consequences of parthenogenesis have proven less apparent
compared to early predictions (Normark, 2003) and are often
masked by lineage-specific effects (Jaron et al., 2021). It is
of great interest to separate lineage-specific effects and the
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consequences of the individual reproductive strategies. Only
then can we identify the underlying causes of the observed
phenomena and finally get closer to answering the question
“why sex?.”

In the face of escalating environmental change, determin-
ing how different reproductive strategies interact with the
environment to influence population resilience is also key for
conservation biology. Of the environmental stimuli that can
influence organisms, temperature can affect sex determina-
tion in many vertebrates (Kitano et al., 2024; Nemeshazi &
Bokony, 2022; Valenzuela & Lance, 2004). The fast pace of
global warming threatens temperature-sex determined verte-
brates by disrupting sex ratios and other traits (Honeycutt et
al., 2019; Jensen et al., 2018; Lockley & Eizaguirre, 2021;
Valenzuela et al., 2019). Similar climate-driven sex-ratio
distortions are expected in GSD species that are prone to
thermal sex reversal, with complex consequences for pop-
ulation dynamics and microevolution (Bokony et al., 2017;
Nemeshdzi et al., 2021; Schwanz et al., 2020; Whiteley et al.,
2018). Further, population dynamics of species with multifac-
torial sex determination such as GSD houseflies or TSD/GSD
silverside fish, where the distribution of sex determination
variants is temperature-dependent and geographically clinal
(Duffy et al., 2015; Feldmeyer et al., 2008; Foy et al., 2024),
will also be affected by climate change. Aside from tempera-
ture, sex determination mechanisms may also be disrupted by
pollutants that act as endocrine disruptors that directly affect
sexual development or induce stress that renders individu-
als susceptible to thermal insults (Mizoguchi & Valenzuela,
2016). Thus, anthropogenic disruption of the chemical (pol-
lution) and thermal environment (globally or locally, e.g., the
urban heat island effect) may have a combined influence on
sex determination. For instance, elevated sex-reversal fre-
quency has been observed in agile frogs (Rana dalmatina)
in areas where anthropogenic land use (i.e., agriculture and
urbanization) is high (Nemeshazi et al., 2020). By centralizing
data for environmental effects on sex determination mecha-
nisms, the Tree of Sex database will allow a comprehensive
overview of species that are more vulnerable to unavoidable
environmental changes, which could, in turn, support conser-
vation actions.

At a macroevolutionary scale, reproductive strategies play
an important role in shaping species diversity. For instance,
in the plant family Solanaceae, obligate outcrossing (self-
incompatibility) is associated with higher net diversification
rates than in species capable of self-fertilization (Goldberg et
al., 2010). Even though self-compatible Solanaceae species
exhibit a higher speciation rate than obligate outcrossing spe-
cies, this rate is exceeded by the much higher extinction rate
of self-compatible plants. This pattern agrees with theoret-
ical expectations, showing that species barriers accumulate
faster in selfing than outcrossing species under most scenar-
ios of speciation (Marie-Orleach et al., 2022). However, the
relative importance of genetic (selective interference) and
demographic factors in driving higher rates of extinction in
self-compatible species remains unclear. Species with separate
sexes can exhibit conflicts for traits that have different optima
between sexes, leading to an evolutionary arms race that can
ultimately contribute to reproductive isolation. A comparative
analysis of hybridizing plants supports this idea, with strictly
dioecious species pairs exhibiting an excess of species bar-
riers compared to species with other reproductive strategies
(Pickup et al., 2019). Sex chromosomes are also expected to
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facilitate reproductive isolation, as evidenced by the two rules
of speciation, namely Haldane’s rule (Haldane, 1922) and the
large-X effect (Charlesworth et al., 1987; Coyne, 1985, 2018;
Masly & Presgraves, 2007; Turelli & Orr, 1995; Turner &
Harr, 2014). These rules have been widely validated using
empirical data (reviewed in Beukeboom & Perrin, 2014).
Furthermore, hemizygosity of sex chromosomes appears to
be a key feature in explaining the disproportionate role of sex
chromosomes in speciation (Fraisse & Sachdeva, 2021; Lima,
2014); however, more work is required to understand the
underlying mechanisms. It is also not known what impact sex
chromosome turnovers have on reproductive barriers, though
many potential mechanisms exist for them to do so. Using the
Tree of Sex to relate these factors to rates of branch splitting
on a robust phylogeny could lend valuable insights into the
role of reproductive strategies in diversification.

Finally, the fundamental transition between isogamy and
anisogamy is likely to have had dramatic consequences for
sexual trait evolution. It is proposed to have caused stron-
ger sexual selection in males leading to female-biased paren-
tal care and male-biased sexual dimorphism (Janicke et al.,
2016). Mating systems also influence the costs and benefits of
parental care for both sexes. For example, theoretical models
predict that males increase the level of care they provide to
their offspring when the certainty of their paternity increases
(Westneat & Craig Sargent, 1996). However, the empirical
evidence for a positive relationship between certainty of
paternity and paternal care is mixed (Alonzo, 2010), which
calls for more theoretical work and standardized empirical
approaches.

In summary, the centralization and integration of repro-
ductive knowledge in the Tree of Sex will allow researchers
to address many fundamental questions related to the evolu-
tion of reproductive strategies. However, there are many more
questions that could be addressed than those listed above. As
the database will be a long-standing public resource, our hope
is that the wider community will eventually use it to address
questions that we have not yet conceived.

The Tree of Sex rebooted

This new iteration of the Tree of Sex was established in June
2023, almost a decade after the first Tree of Sex project ended.
Motivated by the questions and challenges above, we have
two major goals: (1) to centralize and integrate published
knowledge related to reproductive biology in a single public
database and (2) to provide a framework for ethical research
and collaboration in which to use the database to address
scientific questions. Below we outline our plans, current prog-
ress and the challenges we foresee for the Tree of Sex consor-
tium and for the database implementation.

The consortium

At the time of writing (April 2025), the consortium has
approx. 200 members, from 130 institutions across 35 coun-
tries. The Tree of Sex consortium is a global community of
scientists with the aim of building a collective knowledge
base in the field of reproductive biology of eukaryotes. We are
currently in the process of establishing the foundations for a
long-term, self-sustaining initiative (Figure 3). To accomplish
this task, the consortium is managed by a general commit-
tee and six “operations teams,” each responsible for specific
demands of the consortium (Table 2). These demands are
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currently focused on setting up the infrastructure necessary
for the development of the database in a sustainable and equi-
table manner.

Given the volume of literature, numerous subdisciplines
and data types, and the great taxonomic breadth we aim to
capture, we necessarily depend on the engagement of many
experts. The Tree of Sex project is thus, by necessity, a com-
munity effort. The consortium is open, and we invite anyone
and everyone interested in reproductive biology to join us via
the registration form at the Tree of Sex webpage (treeofsex.
org). We welcome and encourage researchers from all career
levels, nationalities, cultures, genders, and sexual orientations,
especially those which have traditionally been minoritized in
science.

Consortium challenges

Establishing a new consortium comes with several chal-
lenges, many of which are shared across projects. Here we
will discuss two challenges that specifically concern the Tree
of Sex. Firstly, reproduction is an extremely complex biolog-
ical process but one that is always viewed through a lens of
human bias; see de Vries and Lehtonen (2023) and references
therein. Our aim within the Tree of Sex is to capture this com-
plexity in a way that is as objective as possible. But how do
we accomplish this when recognizing one’s own biases, or
those of one’s group, is extremely difficult? We believe that
the Tree of Sex consortium must equitably include a diver-
sity of people from the start, so that they can co-determine

2023 2024 2025 2026

setting up the infrastructure

TREE
'SEX

filling up and updating the database

analyses and synthesis

Figure 3. Time plan for the three phases of the Tree of Sex consortium.
We are currently advancing in setting up the infrastructure to manage
the consortium and create the database. The next phase, starting this
year, will be to fill the database with records and continue to keep the
database updated. Once the database contains an adequate number
of records, we will start analyzing the data by organized topic research
teams.

Table 2. Operations teams currently active in the ToS Consortium.

13

its scope, and recognize each other’s biases. To help accom-
plish this, the consortium includes a team dedicated to Ethics
and Inclusivity (Table 2) whose specific goals centre around
building a diverse and inclusive community of scholars. So
far, the Ethics and Inclusivity team have laid the foundation
for an inclusive and supportive environment for its members
through the creation of a code of conduct for members of
the consortium and attendees of networking events as well as
an ethical vision to be used as a guide for ethical behaviour
across all consortium activities. The team is currently work-
ing on establishing standard protocols for accreditation of
work and systems to initiate discrete projects and allocate
leadership and authorship opportunities in an equitable way.
The future plans for this team include the tracking of recruit-
ment, retainment, and advancement of consortium members
from different backgrounds in order to monitor equitable
inclusion and barriers to participation. We also envisage this
team collaborating with others in the consortium to organize
activities that mitigate inequity among members. Such activ-
ities may include, for example, bursaries for travel and child-
care, mentorship programmes for students and members of
minority groups within the consortium, or facilitating remote
access to computing resources required to work with the ever-
increasing amounts of genomic data that is relevant to much
of the research on reproduction. Global inclusivity is a major
outstanding issue in science, and we are committed to work-
ing towards an equitable consortium, yet we recognize the
challenge in doing this effectively and we will continuously
update our activities to do so.

The second challenge is concerning the socially charged
nature of the topic of sex. Indeed, terms like sex, sexuality, and
gender have a long history of critique from the feminist and
LGBTQIA+ groups for their use to marginalize members of
these communities (Aghi et al., 2024; Fausto-Sterling, 2008;
Richardson, 2013). While the scientific work of the consor-
tium will primarily focus on biological systems that have very
little to do with the human-centric sociocultural context of
sex, arguments using natural systems are frequently featured
in public discussions. Therefore, we must put measures in
place to prevent misuse of the collected data in pseudoscience
and bigoted narratives. The exact steps we take to do this
are a matter of ongoing debate within the consortium, and
we welcome input from all members of the scientific com-
munity. Interpretations of sex or sexuality can vary widely
even among biologists, and we are thus working hard to

Operations team Deliverables

Database integration

- listing and describing reproductively relevant databases

- facilitating their integration within Tree the Sex Database

Ethics and inclusivity

- guiding and formulating shared values of the consortium towards building a diverse community of

scholars and approaching the topics of sex with awareness and sensitivity to its potential societal impact
- supporting teams with the work of building the database and challenging decisions that may arise with
our values of justice, equity, and inclusion

Funding

- monitoring research funding landscape for opportunities for the consortium and consortium members

- supporting individual grant applications of consortium members

Literature search

- generating a list of relevant literature to be processed for the database

- exploring opportunities of automated literature processing

Ontology

Outreach and science communication

- create and maintain the Tree of Sex Ontology

- internal communications of the consortium

- managing social media and outreach events
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construct a consortium and an environment where multiple
interpretations of sex and related topics can be integrated. We
also hope to collaborate with social scientists to discuss how
our understanding of reproduction from nature feeds into
human societies. And lastly, we are committed to tracking the
press arising from the outputs of the consortium, and, where
needed, writing public press pieces to counter any erroneous
arguments directly based on our work.

The database

The new Tree of Sex database will store the data at the level
of observation (rather than species). This will allow for multi-
ple observations of the same feature (e.g., chromosome num-
bers) for each species and will enable us to capture conflicting
data within the literature regardless of whether they reflect
erroneous results or biological polymorphism (e.g., in cases
where individuals or populations differ in a reproduction-
related trait). The database interface will allow users to
aggregate data in multiple ways, including by taxon. For each
piece of information stored in the database, the taxon will
be recorded in the form of a taxon ID (TaxID) maintained
within the International Nucleotide Sequence Database
Collaboration. TaxIDs are unique and permanent identifiers
for species that aggregate synonyms as well as accommodate
species name changes. New identifiers will be requested fol-
lowing the guidelines of NCBI together with the Biodiversity
Genomics community (Blaxter et al., 2024b). Each submitted
observation will require a reference to its primary source (e.g.,
scientific article), with multiple submissions from the same
reference possible. Finally, each record will be associated with
the recorder via their ORCID (required for data submission),
and the date of the data entry. These metadata ensure trace-
ability of information and enable crediting active members of
the community.

Database challenges

The scope and scale of this new version of the Tree of Sex
database present several challenges. First, the volume of
research on reproduction is vast. The literature search per-
formed to create Figure 1, though based on a limited search
prompt, resulted in over 85,000 publications, which is
likely the tip of the iceberg for information relevant to the
database. Thus, while many papers may be redundant (e.g.,
thousands of papers on humans and mice), the relevant lit-
erature is enormous and growing at a cumulative annual
rate of over 4% (Figure 1). Synthesizing this vast and grow-
ing literature is a daunting task, even with a large group
of volunteer researchers. However, preliminary tests show
that use of Large Language Models (LLMs) could greatly
speed up this process. LLM tools can be used to interro-
gate publication PDFs and, with well-constructed prompts,
extract specific pieces of information. Our current plans
involve integrating these tools in a data extraction pipeline,
whereby LLMs produce targeted information summaries
of each paper, which are formatted to allow for automatic
import into the database if deemed accurate. Experts will be
tasked with developing these pipelines and checking summa-
ries against the original paper. The final goal is to construct
a hybrid Al-human pipeline in which (ideally) most papers
can be automatically imported via the LLM-produced
summary, with a proportion (e.g., 10%) being checked by
human experts to ground truth their content and estimate
error rates. All unchecked database entries will be flagged
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as such, allowing users to decide how much to trust each
data point that they extract, and the database user inter-
face will allow for users to validate unchecked entries if and
when they are able, facilitating the continuous increase in
proportion of the database that is human validated. In par-
allel we will periodically implement semi-automated checks
of the database contents using biological principles, either
via automated scripts or again using Al. For instance, if a
single ZW system is found in well-sampled clade that oth-
erwise contains a conserved XY system with a single origin,
it could be flagged for manual checking. This is one simple
example of dozens of checks that could be implemented to
reduce error rates in the database if needed.

The second challenge will be to integrate the information
from the literature. This information will span multiple data
types, a vast taxonomy, and come from sources spanning
over a century. Encoding this information in a database in
such a way that is consistent and usable will represent one
of the largest challenges in the project. To achieve this, we
are developing the Tree of Sex Ontology (TOSO https://
github.com/Tree-of-Sex/ToS-Ontology), which will capture

the hierarchy of terms within the database and their logi-
cal relationships. Using an ontology allows us to integrate
information via a published and versioned logic, which will
facilitate both data entry and interpretation. For example,
consider a scenario in which a researcher wants to enter an
observation of automixis for a given taxon. Automixis is a
mode of parthenogenesis, thus the logic of TOSO will allow
for automatic entry of “parthenogenesis” for reproductive
strategy. Using an ontology also allows for logical testing of
the consistency of the submitted data as well as identifica-
tion of possible discrepancies between studies. Finally, the
ontology has the capacity to record synonyms and give them
context, facilitating the resolution of conflicting or over-
lapping naming conventions between research disciplines
and taxonomic specialities. For example, in the plant liter-
ature “apomixis” refers to asexuality via unfertilized seeds,
whereas, in the animal literature, “apomixis” refers to a type
of asexuality without meiosis and without recombination
(mixing) between haplotypes (mitotic asexuality) (Neiman
et al., 2014; Van Dijk, 2009). The ontology allows contex-
tual definitions of these terms that can be used in parallel,
and users will be able to both submit data and query the
database without enforcing any of their individual commu-
nity’s standards on others. TOSO will therefore be the tool
by which we integrate all information within the Tree of Sex
and will help us unify this currently disparate field.

Outlook

Compiling all knowledge relevant to the diversity of repro-
ductive strategies in eukaryotes is ambitious but promises to
advance the field of evolutionary biology. The integration of
information across the taxa and topics will increase under-
standing of the patterning of reproductive strategies across
the eukaryote phylogeny, identify gaps towards which we
can direct future research, and facilitate large-scale compar-
ative analyses to test fundamental evolutionary questions.
However, this task will require a large community effort
thus we warmly welcome researchers from all locations and
backgrounds who are directly or indirectly interested in
reproduction to join the Tree of Sex consortium (treeofsex.

org).
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Glossary

Below are definitions of some important terms used in this
article. Where possible we have adopted current definitions
from existing biological ontologies (see term IDs). In some
cases, we have slightly modified definitions to match our use
of the term (see “Adapted from”). For terms lacking a defini-
tion in existing ontologies, or for which the existing defini-
tion(s) is inadequate, we have adopted new definitions based
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and that some definitions may not include the full diversity
of cases that exist in nature. Thus, the definitions below are
presented to clarify our use of terms in this manuscript, and
not as the “only” or “correct” definition for a given term.

We also note that definitions of terms may change from
those presented below as our biological understanding
expands. These changes will be reflected in the ontology gen-
erated by the consortium as part of the ongoing work that the

on our own current understanding.
We acknowledge that our interpretation of some of the
terms below may reflect some of our biases as researchers,

Tree of Sex is conducting. This ontology, will include precise
and inclusive definitions connected by logical relationships
between terms, that will eventually be used for the database.

Anisogamy

Arrhenotoky

Asexual reproduction
Automixis

Dioecy

(synonym: Gonochorism)
Dioicy

Environmental sex deter-
mination (ESD)

Female

Gametes

Gametolog

Gametophyte

Genotypic sex determina-
tion (GSD)

Gonochorism
(synonym: Dioecy)
Haploid

Hermaphroditism

Heterogametic

Heteromorphic sex chro-
mosomes

Homogametic
Homomorphic sex chro-
mosomes

Intragametophytic selfing

Isogamy

Male

Mating type

A characteristic of sexually reproducing organisms whereby the different gamete types produced by a species differ
substantially in size or form.

A sex determination strategy in which males develop from unfertilized eggs and are haploid, and females develop
from fertilized eggs and are diploid. From GSSO:000121

A type of reproduction in which new individuals are produced from a single organism, either from an unfertilized egg
or from a single cell or group of cells. From GO:0019954

In the context of fungal reproduction, the fusing gametes might be from the same meiotic tetrad. In plants and ani-
mals, it refers to a form of parthenogenesis, where the progeny is not genetically identical to the parent.

Sexual strategy in which anisogamous (macro or micro) gametes are produced in separate individuals. Dioecy is used
in plants while gonochorism typically refers to animals.

When sex is determined in the haploid stage, the occurrence of gametophytes that produce only one type of gametes;
separate sexes.

The determination of sex by a non-genetic cue, such as temperature, nutrient availability, or social context. Adapted
from GSSO:000107

In anisogamous organisms, a category of individual or organ (e.g., flower) sex which produces macrogametes (ova).
Note that this simplified categorization may not be reflective of existing phenotypic diversity as it ignores the complex
and often overlapping combination of other traits associated with sex.

A mature sexual reproductive cell often (but not always) having a single set of chromosomes (haploid). Adapted from
CL:0000300

One of a homologous set of genes in the non-recombining region on the sex chromosomes. Can also be used to refer
to the individual sex chromosomes themselves (e.g., the X and Y chromosomes are the two gametologs of an XY
system).

The multicellular haploid stage of the life cycle of a (sexual) plant species in which gametes are produced.

Determination of sex by genotypic constitution, namely by chromosomal or genetic factors consistently associated
with each sex. Adapted from GSSO:000104

Sexual strategy in which anisogamous (macro or micro) gametes are produced in separate individuals. Gonochorism
typically refers to animals, whereas dioecy is used in plants.

Chromosomally reduced stage of the life cycle. In some species, the reduced stage is the relatively short phase with gam-
etes directly produced during meiosis; in others (fungi, mosses, ferns) meiosis produce sporophytes that undergo mitotic
divisions to form a multicellular body before gametes are produced. Note that haploid is often used to specifically refer
to a cell containing a single set of chromosomes (i.e., monoploid), though here we use it only to mean reduced.

An umbrella term for a suite of sexual reproductive strategies whereby individuals can produce both macro and
microgametes. In plants, hermaphroditism refers specifically to plants with flowers that can produce both male and
female gametes, and is distinct from Monoecy (see below). See also “Sequential hermaphroditism” and “Simultaneous
hermaphroditism.”

A characteristic of an individual producing gametes that differ in sex chromosome constitution, such as heterogametic
males in XX/XY (or females in ZZ/ZW systems) that produce X- or Y-containing sperm (or Z- or W-containing eggs).
A sex chromosome system in which the sex chromosomes (e.g., X and Y) are morphologically different from each
other when observed via microscopy.

A characteristic of an individual producing gametes with identical sex chromosome constitution, such as females in
systems (XX/XY) (or males in ZZ/ZW systems), that produce exclusively X-containing eggs (or Z-containing sperm).
A sex chromosome system in which the sex chromosomes (e.g., X and Y) are morphologically indistinguishable when
observed via microscopy.

A form of self-fertilization between gametes produced within the same gametophyte.

A characteristic of sexually reproducing organisms whereby the different gamete types produced by a species do not
differ substantially in size or shape.

In the context of anisogamy, a category of individual or organ (e.g., flower) sex that produces microgametes (sperm).
Note that this simplified categorization may not be reflective of existing phenotypic diversity as it ignores the complex
and often overlapping combination of other traits associated with sex.

A characteristic of gametes or individuals of sexually reproducing (often isogamous) species that controls their com-
patibility for genetic mixing (fusion or mating, respectively).
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Monoecy A reproductive strategy In plants, wherein individual plants possess both male and female flowers. Note that this is
distinct from “hermaphroditism.”

Monoicy When sex is determined in the haploid stage, the occurrence of gametophytes that produce both male and female

Neo-sex chromosome

Parthenogenesis
Programmed DNA elim-
ination
Pseudoautosomal region
Reproductive strategy
Self-compatibility

Self-incompatibility
Sequential hermaphro-
ditism

Sex chromosome

gametes.

A sex chromosome resulting from the fusion of either gametolog of an existing sex chromosome pair (e.g., X or Y to
an autosome, which generates a Neo-X chromosome, or a Neo-Y chromosome).

Development of an egg into an embryo without being fertilized. MP:0009443

A process in which genomic fragments or entire chromosomes are eliminated from somatic cells. GO:0031049

The region(s) of a sex chromosome which still recombine(s).
The set of traits (morphological, physiological, behavioral, etc.), that help an organism reproduce.

The opposite of “Self incompatibility,” i.e., gametes of different types from the same organism are able to fuse, result-
ing in reproduction.

A self-recognition mechanism reducing self-fertilization and inbreeding. Adapted from TO:0000310

Sexual reproductive system of some taxa whereby individuals switch between producing either macro or microgam-
etes at some point in their lifetime

A chromosome harbouring a locus involved in sex determination. Sex linkage within a sex chromosome may be

restricted to this locus, or extend, via recombination suppression, across varying proportions of its length. Adapted

from GO:0000803.

Sex A category of individual, tissue, genotype, or gamete in anisogamous taxa that undergo sexual reproduction. Applied
based on primary or secondary sexual characteristics. Common categories for sexes include female and male,
although these generally represent a simplification of phenotypic diversity and continuous variation. Adapted from
PATO:0000047. Sometimes akin to mating type in isogamous organisms.

Sexual reproduction

A type of reproduction in anisogamous or isogamous eukaryotes that combines the genetic material of two gametes,

from two individuals or from a single individual. Adapted from GO:0019953.

Sexual system

The pattern of sex allocation and/or mating behaviour across individuals in a sexually reproducing species (e.g., gono-

chorism, hermaphroditism, mixed sexual systems). Adapted from GSSO:011864

Simultaneous hermaph-

rodites etes at the same time.

Syngamy

Sexual reproductive system of some taxa whereby an individual is capable of producing both macro and microgam-

The union of gametes of types to form a zygote during sexual reproduction. Syngamy involves the fusion of cyto-

plasm (plasmogamy) and nuclei (karyogamy). Some species live a substantial proportion of their lives in between

these two stages (fungi). From GO:0009566
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