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Abstract
In this paper, we develop a quantum theory of homogeneously curved tetrahed-
ron geometry, by applying the combinatorial quantization to the phase space
of tetrahedron shapes defined in Haggard et al (2016 Ann. Henri Poincaré 17
2001–48). Our method is based on the relation between this phase space and the
moduli space of SU(2) flat connections on a 4-punctured sphere. The quantiza-
tion results in the physical Hilbert space as the solution of the quantum closure
constraint, which quantizes the classical closure condition M4M3M2M1 = 1,
Mν ∈ SU(2), for the homogeneously curved tetrahedron. The quantum group
Uq(su(2)) emerges as the gauge symmetry of a quantum tetrahedron. The phys-
ical Hilbert space of the quantum tetrahedron coincides with the Hilbert space
of 4-valent intertwiners of Uq(su(2)). In addition, we define the area operators
quantizing the face areas of the tetrahedron and compute the spectrum. The
resulting spectrum is consistent with the usual Loop-Quantum-Gravity area
spectrum in the large spin regime but is different for small spins. This work
closely relates to 3+1 dimensional Loop Quantum Gravity in presence of cos-
mological constant and provides a justification for the emergence of quantum
group in the theory.
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1. Introduction

Quantum tetrahedron is a key building block in the theory of Loop Quantum Gravity (LQG)
and plays a crucial role in the boundary states of the spinfoam amplitude of LQG. In LQGwith
vanishing cosmological constant, the physical Hilbert space of the quantum flat tetrahedron is
the 4-valent SU(2) intertwiner space labeled by irreducible representation Kν’s, each assigned
to a face `ν of the quantum flat tetrahedron. Furthermore, the space is the solution space of the
quantum flat closure condition, i.e.

∑4
ν=1 Ĵν = 0, where Ĵν = (Ĵ1, Ĵ2, Ĵ3)ν are su(2) generators

acting on the νth copy of irreducible representation. The area spectrum of each face `ν of the
quantum flat tetrahedron is discrete and is characterized by a spin label Kν .

The quantum flat closure condition is a quantization of the classical closure condition∑4
ν=1 aν n̂ν = 0, where aν , n̂ν are the area and unit normal to the face `ν respectively.

Classically, the correspondence between a set of solutions of flat closure condition and flat
tetrahedron is guaranteed by theMinkowski theorem [1]. This theorem has been generalized to
the curved case [2], where a curved closure condition applies. The curved Minkowski theorem
allows us to reconstruct homogeneously curved tetrahedra (spherical or hyperbolic tetrahedra)
from a family of four SU(2) holonomies Mν (ν = 1, · · · ,4) that satisfy the curved closure
condition

M4M3M2M1 = idSU(2). (1)

Here, Mν is the holonomy around the νth face of the homogeneously curved tetrahedron.
Although the quantization of the closure condition for a flat tetrahedron has been extensively
studied in LQG, the quantization of the curved closure condition and curved tetrahedron has
not been explored yet. The homogeneously curved tetrahedron has played an important role
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in the recent construction of the spinfoam model with cosmological constant [3–5] in 3+1
dimensional LQG. It is anticipated that the quantization of a curved tetrahedron should define
the building block for the boundary Hilbert space of the spinfoam model.

In this paper, we study the quantization of the curved closure condition and a homogen-
eously curved tetrahedron. At the classical level, the phase space corresponds to the solution
spaces of the curved closure condition. The solution space coincides with the moduli space
of SU(2) flat connections on a four-puncture sphere. In our approach, we adopt the Poisson
bracket on the moduli space inspired by [6], and then proceed with the quantization method
known as combinatorial quantization [7–9] as an approach of canonical quantization for the
moduli space of flat connections. A quantum algebra M of observables for flat connections
is obtained on the four-puncture sphere. The quantum group Uq(su(2)) emerges naturally as
the gauge symmetry. It turns out that elements in M enjoy the invariance under the quantum
group action.

The curved closure condition, when quantized, becomes a quantum constraint that is
imposed on the quantum states to obtain the physical Hilbert spaceW0 (we use bold letters to
denote quantum operators) such that

M4M3M2M1Ψ = ζΨ, ∀Ψ ∈W0 (2)

where Mν is the quantum holonomy operator and the constant ζ has the classical limit

ζ
q→1
−−−→ 1. By using the representation theory of the quantum algebraM, we demonstrate that

the solution space W0 of the quantum closure condition exists and coincides with the inter-
twiner space of the quantum groupUq(su(2)). Our result is valid for all q= eiθ with θ ∈ (0,2π)

which includes q= e
2π i
k+2 (k ∈ N) being a root of unity. The intertwiner space depends on

four irreducible Uq(su(2)) representations Kν ∈ N/2 (and additionally Kν ⩽ k/2 for q root of
unity), ν = 1, . . .,4 labeling the four punctures and corresponding to the quanta of the tetrahed-
ron’s areas. The quantization of the curved closure condition is equivalent to the quantization
of the curved tetrahedra, with the solution space of the quantum closure condition encoding
the geometric information of the quantum curved tetrahedra. The main result of this paper can
be summarized by the following commuting diagram:

classical closure condition
solution space

−−−−−−−−−−−−→
moduli space of flat connection
as the physical phase spacey

quantization

y

quantization

quantum closure condition
solution space

−−−−−−−−−−−−→
representation space of quantum algebra

as the physical Hilbert space
(3)

For q a root of unity with θ = 2π
k+2 (k ∈ N), the solution space derived from solving the

quantum closure condition matches the physical Hilbert space of the Chern–Simons theory
with a compact Lie group SU(2) on a compact surface with zero genus and four punctures, and
k+ 2= 12π(`2pγ|Λ|)

−1 relates the Chern–Simons level to the cosmological constant. Here, γ

is the Barbero–Immirzi parameter, `p =
√
8πGℏ/c3 is the Planck length and Λ is the cos-

mological constant. For generic q= eiθ, the phase θ relates to the cosmological constant by
θ = 1

6`
2
pγ|Λ|.
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One of the geometric information of the curved tetrahedra is the areas aν’s of the faces of
a curved tetrahedron. The area aν relates to the holonomy Mν in the closure condition (1) by
1
2Tr(Mν) = cos( |Λ|

6 aν) [2], whereΛ is the cosmological constant. The quantization relates the
area operator to the q-deformed Wilson loop. As a result, the area spectrum labeled by spin
Kν in the case of q= eiθ is given by

specKν (âν) =

{
γ`2p
(
Kν +

1
2

)
, 0⩽ Kν < 1

2B
12π
|Λ| − γ`2p

(
Kν +

1
2

)
, 1

2B< Kν ⩽ B
, B=

12π
`2pγ|Λ|

− 1. (4)

And the area spectrum in the case of q= exp( 2π i
k+2 ) is given by

specKν (âν) = γ`2p

(
Kν +

1
2

)
, 0⩽ Kν ⩽ A, A=

6π
`2pγ|Λ|

− 1. (5)

Where âν is the quantum area operator for the νth face. The area spectrum is bounded above
and below. This formula is valid for both q root of unit and generic q as a phase. The cosmolo-
gical constant provides a cut-off to the area spectrum. For vanishing cosmological constant (so
the second case in (4) disappears) and large spinKν , the area spectrum reduces to γ`2pKν , which

is consistent with the usual LQG area spectrum γ`2p
√
Kν(Kν + 1) for large Kν . However, for

small Kν , there is a significant difference from LQG with vanishing Λ. In particular, the area
spectrum here is restrictively positive, whereas the usual LQG spectrum gives a trivial area at
Kν = 0.

This paper is organized as follows. Section 2 reviews the main ideas regarding classical
curved closure conditions and its solution space, which is the moduli space of SU(2) flat con-
nections. In this section, we also collect the main theorem of [2]. In section 3, following Fock
and Rosly’s idea [10] that one can replace a 2-dimensional surface with a homotopically equi-
valent ‘fat graph’ with an additional structure called ciliation, the graph we choose is called
a simple graph which contains one base point and four loops that are generators of the fun-
damental group on the four-punctured sphere. With this setup, we give the Poisson bracket
of holonomies. The Poisson bracket is defined by the classical r-matrix, which is the solution
of the classical Yang–Baxter equation. In section 4, we prove that the solution space of the
quantum closure condition coincides with the intertwiner space of quantum group Uq(su(2)),
which is the representation space of moduli algebra. The intertwiner space is characterized
by four irreducible representations of Uq(su(2)) labeled by Kν ,ν = 1, . . .,4, labeling the four
punctures and corresponding to the quanta of the tetrahedron’s areas. In section 5, we define the
quantum area operator and calculate its spectrum. We also compare it with the area spectrum
obtained from standard LQG. We conclude the paper in section 6.

2. Classical closure condition of a curved tetrahedron

We start by reviewing the closure condition of a convex homogeneously curved tetrahedron
whose (Gaussian) curvature, identified with the cosmological constantΛ, can be either positive
or negative. That is each face of the tetrahedron is flatly embedded in a three-sphere S3 or a
hyperbolic three-space H

3. Tetrahedra in flat space are then obtained when Λ→ 0 in both
cases. To unify the notations, we denote the sign of the curvature as s := sgn(Λ) and the n-
dimensional homogeneously curved space as En,s hence E3,+ = S3 and E3,− =H

3. Let us also
fix the notations for the simplices. For a tetrahedron, we label a vertex v and its opposite face
f by the same number and label an oriented edge connecting the target vertex v1 and source
vertex v2 by the number pair (v1v2). The same edge with the opposite orientation is denoted
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Figure 1. (a) A tetrahedron flatly embedded in S3. (b) A tetrahedron flatly embedded in
H

3. For both tetrahedra, each one of the four numbers 1,2,3,4 labels a vertex as well as
the face opposite to the vertex. An edge is labelled by a pair of numbers. For instance,
the oriented edge connecting the source vertex 4 and the target vertex 2 is (24) and the
edge with the opposite orientation is (42)≡ (24)−1. The orientations of the edges are
not specified here.

as (v1v2)−1 ≡ (v2v1). An illustration of spherical and hyperbolic tetrahedra and the notations
for simplices are given in figure 1. We focus on non-degenerate tetrahedra in this paper.

Each face of a tetrahedron is a triangle flatly embedded in a two-dimensional homogen-
eously curved subspace E2,s of E3,s. The convexity guarantees that each edge of the triangle
is the shortest geodesic on E2,s connecting the two end vertices of the edge. For each face, we
choose a base point p on the boundary and consider the oriented loop ` along the boundary
starting and ending at p whose orientation is counterclockwise when seen from the outside of
the tetrahedron. Such an orientation generates an outward direction normal n̂ℓ(p) to the face
at p (and any other point within the face) by the right-hand rule, which is consistent with the
topological orientation of the tetrahedron. We also denote the same loop with the opposite
orientation as `−1.

Indeed, a vector at p tangent to the face gets rotated after parallel transport along `. The
rotation angle is proportional to the area aℓ of the face enclosed by `. We denote the holonomy
of the Levi-Civita connection along ` in the local frame of p as Oℓ(p). It is a group element
of SO(3) for both curved tetrahedra embedded in S3 and H

3 and encodes the information of
aℓ by

Oℓ (p) = exp

[
s
|Λ|

3
aℓn̂ℓ (p) ·~J

]
∈ SO(3) ,

|Λ|

3
aℓ ∈ [0,2π] (6)

where ~J= {J1,J2,J3} are the generators of so(3) and the sign s determines in which space
the tetrahedron is embedded. For the convenience of constructing geometrical variables such
as areas, dihedral angles and triple products, we lift the SO(3) holonomies Oℓ’s to the SU(2)
ones Mℓ’s encoding the face areas in a similar way [2]:

Mℓ (p) = exp

[
s
|Λ|

3
aℓn̂ℓ (p) ·~τ

]
≡ cos

(
|Λ|

6
aℓ

)
id− isin

(
|Λ|

6
aℓ

)
~σ ∈ SU(2) , (7)
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where ~τ =− i
2~σ ∈ su(2) and ~σ = {σ1,σ2,σ3} are the Pauli matrices. Changing the base point

corresponds to a conjugation action on Mℓ(p) by an SU(2) group element, say g,

Mℓ (p) −→ Mℓ (p
′) = gMℓ (p)g

−1 , g ∈ SU(2) . (8)

In the rest of the paper, we only focus on SU(2) holonomies at the classical level and, when
the base point is not necessarily specified, one denotes the holonomy simply by Mℓ.

We have seen that the holonomy is taken in both the fundamental representation and the
adjoint representation. In general, the holonomy can be expressed in an arbitrary irreducible
representation of SU(2). Every element of SU(2) is conjugated to an element in the abelian
subgroup (maximal torus) consisting of all diagonal matrices in SU(2). The holonomy Mℓ

in (7) can be expressed as:

Mℓ = g

(
ei

|Λ|
6 aℓ 0

0 e−i |Λ|
6 aℓ

)
g−1 = gei

|Λ|
6 aℓHg−1 , g ∈ SU(2) , (9)

where H is the generator of the Cartan subalgebra of su(2). The right-most expression can be
written in an arbitrary irreducible representation of SU(2). In particular, we are interested in
the trace Tr(Mℓ) of the holonomy, which stores the area information of the curved triangle
that ` encircles (see (A1a)). Considering the irreducible representation labeled by I ∈ N/2, the
trace reads

TrI
(
MI

ℓ

)
= TrI

(
gI
(
ei

|Λ|
6 aℓH

)I (
g−1
)I
)
=

sin
(
(2I+ 1) |Λ|

6 aℓ
)

sin
(

|Λ|
6 aℓ

) . (10)

This result is the consequence of the conjugation-invariant property of the trace. We will see
in section 5 that equation (10) has a straightforward quantum counterpart when we express the
quantum version of Mℓ in the I representation.

Changing the orientation of ` corresponds to changing Mℓ to its inverse, i.e. Mℓ−1 =M−1
ℓ .

For each curved tetrahedron, there exists a closure condition expressed as

M4M3M2M1 = id , Mℓ ∈ SU(2) , (11)

where all four holonomies are defined at the same base point. Indeed, it is easy to find a com-
mon point for three of the four holonomies. One then has to parallel transport the base point
at least once through a specified path to define all the holonomies properly. As one of the
simplest examples, choosing vertex 4 in figure 1 as the base point, M1(4),M2(4),M3(4) can
all be defined directly by (7). To define M4(4), we first define M4(2) based on vertex 2 by (7)
and parallel transport it to vertex 4 through the edge (42). We would like to stress here that,
although holonomies in the closure condition (11) are written for the fundamental representa-
tion, they can be generalized to arbitrary irreducible representation I ∈ N/2:

MI
4M

I
3M

I
2M

I
1 = idI . (12)

A solution to (11) can be given by introducing the edge holonomy hv1v2 for each oriented
edge (v1v2) with h−1

v1v2 = hv2v1 . Then




M1 = h43h32h24
M2 = h41h13h34
M3 = h42h21h14
M4 = h42M4 (2)h24 = h42h23h31h12h24

(13)

is indeed a solution to (11). The paths for the solution (13) are illustrated in figure 2 for a
spherical tetrahedron as an example and are the same for a hyperbolic tetrahedron. These paths
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Figure 2. The set of simple paths (in red) for holonomies {M1,M2,M3,M4} defined
in (13) with vertex 4 as the base point and edge (42) as the special edge. They satisfy
the closure condition (11).

are called the simple paths as they are the simplest set of paths up to the choice of the base
point and the special edge [2].

Note that, given a curved tetrahedron whose curvature is Λ, the full geometrical inform-
ation can be described by the four holonomies Mℓ’s. We collect these geometrical interpret-
ations in appendix A. What is important for the rest of the construction is the sign, denoted
by sgn(detGram(Mℓ)), of the determinant of the Gram matrix Gram(Mℓ) := Gram(cosθℓ1ℓ2)
defined in (A3).

The key result of [2] is that, reversely, each closure condition written in the form of (11)
with a few extra restrictions identically defines a curved tetrahedron up to translation. This
is called the curved Minkowski theorem for tetrahedra. In the flat limit, it coincides with the
well-known Minkowski theorem for flat tetrahedra which was proven in 1897 [1]. The curved
Minkowski theorem is stated as follows.

Theorem 2.1 (the curved Minkowski theorem for tetrahedron [2]). Given four SU(2) holo-
nomies Mℓ’s satisfying the non-degeneracy condition detGram(Mℓ) ̸= 0 and the closure con-
dition M4M3M2M1 = id, one can uniquely determine a non-degenerate curved tetrahedron in
the following way.

1. Label the sub-simplices of the tetrahedron as in figure 1. The tetrahedron is flatly embedded
in S3 if sgn(detGram(Mℓ))> 0 and flatly embedded in H3 if sgn(detGram(Mℓ))< 0;

2. The holonomies Mℓ’s are associated to a set of simple paths with either the base point at
vertex 4 and special edge (42) or the base point at vertex 3 and special edge (31) and the
orientation of the paths determine the orientation of the face surrounded by the path;

3. Each holonomyMℓ encodes the area aℓ of face ` and the outward direction normal n̂ℓ (when

parallel transported to the base point) in its parametrization Mℓ = exp
(
s |Λ|

6 aℓn̂ℓ ·~τ
)
with

s := sgn(detGram(Mℓ)).

We refer interested readers to [2] for detailed proof of this theorem. Let us only make
two comments on the theorem. Firstly, the requirement of detGram(Mℓ) ̸= 0 is to exclude
the degenerate curved tetrahedra, which cannot be reconstructed uniquely with holonomies in
the above way. detGram(Mℓ) = 0 does not correspond to a flat tetrahedron for nonzero |Λ|.
Indeed, the theorem is based on a constant Λ, while the flat limit corresponds to Λ→ 0, and
the linearization of the closure condition recovers the closure condition for the flat tetrahed-
ron. Secondly, the two choices of pairs of (base point, special edge), i.e. (4, (42)) and (3, (31))
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reproduce the same curved tetrahedron. The solution of the four holonomies Mℓ’s in terms of
the edge holonomies hv1v2’s for the first case is given in (13) and those for the second case is





M1 = h34h42h23
M2 = h31h14h43
M3 = h31M3 (1)h13 = h31h12h24h41h13
M4 = h32h21h13

. (14)

These holonomies will be used to describe the moduli space of flat connections on a four-
punctured sphere in the next section, which are closely related to the curved tetrahedron
encoded in {Mℓ}.

3. Moduli space Mflat of flat connections

In the previous section, we have seen that a homogeneously curved tetrahedron can be one-
to-one described by four SU(2) holonomies satisfying the closure constraint (with some extra
conditions) as given in theorem 2.1. The closure constraint (11) appears in the same shape
as the defining equation for the moduli space of flat connection on a four-punctured sphere,
denoted as Σ0,4 (0 denoting the genus of a sphere). The goal of this section is to show that
the SU(2) holonomies fully describing a homogeneously curved tetrahedron are exactly those
describing the moduli space of su(2) flat connection on a Σ0,4.

Let us consider a simple graph onΣ0,4 containing one node and four loops `1, `2, `3, `4, each
of which starts and ends at the node and surrounds a puncture as illustrated in figure 3(a). The
orientations of the loops match that of the two-sphere. (The homotopy equivalence classes of)
these loops generate the fundamental group π1(Σ0,4) on the four-punctured sphere

π1 (Σ0,4) = {`1, `2, `3, `4 : `4 ◦ `3 ◦ `2 ◦ `1 = 1} . (15)

The representation of π1(Σ0,4) can be used to define the moduli space of G flat connections
on Σ0,4 as follows.

M0
flat (Σ0,4,G) := {flat G connection on Σ0,4}/gauge≃ Hom(π1 (Σ0,4) ,G)/G , (16)

where the quotient in the last expression is by the conjugate action ofG. This means the moduli
space of SU(2) flat connections can be represented as

M0
flat (Σ0,4,SU(2)) =

{
G1,G2,G3,G4 ∈ SU(2) : G4G3G2G1 = idSU(2)

}
/SU(2) , (17)

where each Gν (ν = 1,2,3,4) is the SU(2) holonomy of the loop `ν around the νth puncture.
One immediately observes the form of the closure condition in (17). Remarkably, if we identify
these holonomies {Gν} with the holonomies {Mν} that identify a constant curved tetrahedron
as described in theorem 2.1,Mflat(Σ0,4,SU(2)) can be one-to-onemapped to a constant curved
tetrahedron (up to orientation).

M0
flat(Σ0,4,SU(2)) is equipped with a Poisson bracket induced from the Chern–Simons

theory on the three-manifold Σ0,4 ×R

{
Aai (x1) ,A

b
j (x2)

}
=−

2π
k
δabεijδ

(2) (x1 − x2) , x1,x2 ∈ Σ0,4 , (18)

where A is an su(2)-valued one-form, a,b are Lie algebra indices, i, j are coordinate indices on
Σ0,4, and the prefactor − 2π

k is introduced here to relate to the Chern–Simons theory with
k ∈ N being the Chern–Simons level. We are interested in the symplectic leaves obtained
fromM0

flat(Σ0,4,SU(2)) by fixing the conjugacy classes of the holonomies {Gν}ν=1,2,3,4 each

8
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Figure 3. (a) A four-punctured sphereΣ0,4 (surface in red) and the simple graph (loops
in black) on it. Every loop ℓν (ν = 1,2,3,4) surrounding the νth puncture in the simple
graph is oriented counter-clockwise when seen outside Σ0,4. (b) A ciliated graph based
on the simple graph in (a). A cilium (in blue) is added between loops ℓ1 and ℓ4 to fix the
linear order ℓ1 ≺ ℓ2 ≺ ℓ3 ≺ ℓ4.

labelled by the eigenvalue λν , which relates to the area of the face ν in the geometrical inter-
pretation of tetrahedron. We denote this symplectic space as Mflat(Σ0,4,SU(2)). This is the
phase space of the Chern–Simons theory equipped with the symplectic form known as the
Atiyah–Bott–Goldmann two-form [11–13]:

Ω=

ˆ

Σ0,4

Tr(δA∧ δA) , (19)

where δ is the exterior differential on the phase space and Tr is the non-degenerate Killing
form on su(2).

Quantizing (18) directly leads to an infinite-dimensional quantum algebra which is com-
plicated to deal with. An alternative approach is called the combinatorial quantization [7–9]
whose classical setup follows the description of Fock and Rosly [10]. The idea is to replace the
Riemann surface, here Σ0,4, by a so-called ciliated fat graph and represent the moduli space
Mflat(Σ0,4,SU(2)) by a finite-dimensional space whose Poisson structure of graph connec-
tions is consistent with the one given in (18). The consistency is checked by the fact that the
Poisson brackets of observables recover those in the continuous theory.

To build the ciliated flat graph onΣ0,4, we start with the simple graph as shown in figure 3(a).
The cyclic order of (half-)links incident to the node is set to be clockwise. On top of that, we
also (randomly) fix a linear order of these links. One can graphically add a cilium sitting at
the node to separate the first and the last links. We say that link l1 is of a lower order than l2,
denoted as l1 ≺ l2 or l2 ≻ l1, if the cilium sweeps through l1 before l2 in the clockwise direction.
An example of linear order is illustrated in figure 3(b). The Poisson structure is represented
by the Poisson brackets of holonomies {Ul} along the links l’s. The linear order on the node
is important to present the full Poisson algebra [10].

To express the Poisson bracket in a concise way, one makes use of the classical r-matrix
r≡

∑
a r

(1)
a ⊗ r(2)a ∈ su(2)⊗ su(2) which is a solution to the classical Yang–Baxter equation

(CYBE) [8, 14, 15]:

[r12,r13] + [r12,r23] + [r13,r23] = 0 , (20)

9
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where r12 =
∑

a r
(1)
a ⊗ r(2)a ⊗ id,r13 =

∑
a r

(1)
a ⊗ id⊗ r(2)a and r23 =

∑
a id⊗ r(1)a ⊗ r(2)a . We

also denote the transpose of the r-matrix by r ′ :=
∑

a r
(2)
a ⊗ r(1)a . Under the basis τa = 1

2iσa
of su(2), the r-matrix can be expressed as

r= τ3 ⊗ τ3 + 2τ+ ⊗ τ− , r ′ = τ3 ⊗ τ3 + 2τ− ⊗ τ+ , (21)

where τ± ≡ τ1 ± iτ2. The full algebra is rather complicated for a general Riemann surface.
Here we only give the two types of Poisson brackets relevant to us and refer interested readers

to [10] for other types3. Denote the holonomy along a loop ` byMℓ and
1
Mℓ :=Mℓ ⊗ id,

2
Mℓ :=

id⊗Mℓ.

i For a single loop `, the Poisson bracket of the holonomy Mℓ reads
{

1
Mℓ,

2
Mℓ

}
= r

1
Mℓ

2
Mℓ +

2
Mℓr

′
1
Mℓ −

1
Mℓr

2
Mℓ −

1
Mℓ

2
Mℓr

′ . (22)

ii For two loops ` and `′ with linear order `≺ `′, the Poisson bracket of the holonomiesMℓ

and Mℓ′ reads
{

1
Mℓ,

2
Mℓ′

}
= r

1
Mℓ

2
Mℓ′ +

1
Mℓ

2
Mℓ′r−

2
Mℓ′r

1
Mℓ −

1
Mℓr

2
Mℓ′ . (23)

As in the lattice gauge theory, the gauge transformation acts at the nodes of the graph. For
a given oriented link l, denote the source and target as s(l) and t(l) respectively. The holonomy
Ul transforms under gauge transformation as

Ul → Ug
l = g−1

s(l)Ul gt(l) . (24)

In the simple graph that we are interested in, only one node is relevant hence the gauge trans-
formation acts on the holonomies by conjugation

Mℓ → Mg
ℓ = g−1Mℓg . (25)

To preserve the Poisson brackets of holonomies, the gauge transformation gv at each node v is
equipped with the following Poisson brackets

{
1
gv,

2
gv
}
=

1
gv

2
gvr− r

2
gv

1
gv ,

{
1
gv,

2
gv′
}
= 0 , v ̸= v ′ . (26)

It shows that the symmetry group forms a Poisson Lie group. Observables are constructed by
functions of holonomies which are invariant under the gauge transformation. Examples are the
traces of products of holonomies as given in (A1). Our goal next is to quantize the holonomy
algebra given by (22) and (23) as well as the gauge symmetry (25) into quantum algebras and
construct the quantum observables.

Thanks to the expression with the classical r-matrix, the Poisson structure of
Mflat(Σ0,4,SU(2)) possesses a natural quantization given by the commutation relations in

3 On a general graph embedded on a Riemann surface, a classical r-matrix is assigned to each node and only the
symmetric part of these r-matrices are required to be equal for all nodes [10]. The CYBE (20) ensures that the Poisson
brackets expressed in terms of the r-matrices satisfy the Jacobi identity.

10
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terms of quantum matrices and the quantum version of the r-matrix. The quantum theory is
described based on the so-called quasitriangular ribbon (quasi) Hopf algebra Uq(su(2)) which
is a deformation of the universal enveloping algebra of su(2) with a deformation parameter
q ∈ C and some extra algebraic structures, e.g. the ∗-structure. It is important to note that
Uq(su(2)) has different algebraic as well as representation structures for different values of
q. We are in particular interested in the case that q is a root-of-unity, i.e. qp = 1 for some
p ∈ N+,p⩾ 2 and that q is a phase but not a root-of-unity, i.e. |q|= 1,qp ̸= 1 ,∀q ∈ N+.
(In this paper, we denote the case of q root-of-unity as qp = 1 and q not a root-of-unity as
|q|= 1,qp ̸= 1.) Uq(su(2)) is a Hopf algebra in the latter case while it is a quasi Hopf algebra
in the former case (e.g. [14, 16]). We collect the necessary knowledge of Uq(su(2)) for both
cases and their representation theory in appendix B.

The SU(2) gauge transformation is also quantized to the non-commutative quantum sym-
metry described by the (quasi) Hopf-∗ algebra Uq(su(2)) in order to preserve the commuta-
tion relations. The Poisson brackets of holonomies are quantized into commutation relations of
quantum holonomies, the details can be found in [7–9] as well as appendix C.1. Following con-
struction of combinatorial quantization [7–9], the quantum observables are constructed, which
are conservative under the quantum symmetry on Σ0,4. They are mathematically described by
the invariant algebra. These quantum observables are then used to build up themoduli algebra
which is recognized as the quantum version ofMflat(Σ0,4,SU(2)). In the moduli algebra, there
is a set of central elements denoted cIν for ν = 1, . . .,4 and I runs through all (physical) irredu-
cible representations, from which we define the area operator and find its spectrum in the later
section. They are defined as

cIν = κITr Iq
(
MI

ν

)
, (27)

where MI
ν is the quantum monodromy for the loop around the νth puncture and Tr Iq is the

quantum trace defined in (B43). For the details of moduli algebra, we refer to appendix C.2,
where we collect the necessary knowledge of quantization of the moduli spaceMKν

0,4. The rep-
resentation of this moduli algebra are constructed in [9, 17]. The representation of the moduli
algebra is realized in the subspace of the tensor product space

T (K1,K2,K3,K4) := VK1 ⊗VK2 ⊗VK3 ⊗VK4 . (28)

The representations in the tensor product space are denoted as DK1,K2,K3,K4 for q as a root
of unity and ρK1,K2,K3,K4 for q as a generic phase, respectively. The representation of moduli
algebra can be obtained by using DK1,K2,K3,K4 and ρK1,K2,K3,K4 . For explicit expressions of the
representation theory and details, we refer to appendix C.3, where we collect the necessary
theorems and knowledge. There in the appendix, it will be much clearer to see the distinctions
in notation for the different choices of q.

Both cases of |q|= 1,qp ̸= 1 and |q|= 1,qp = 1 are considered without specifying unless
necessary and keeping in mind that admissible irreducible representations are I ∈ N/2 in the
former case but only I ∈ N/2, 0⩽ 2I⩽ p− 2 in the latter case. q being a root of unity relates
to the SU(2) Chern–Simons theory by q= exp( 2π i

k+2 ), i.e. p= k+ 2. Both cases can describe
the quantization of a curved tetrahedron.

4. Quantum closure condition and the solution space—the intertwiner space

We have seen in section 3 that, classically, the moduli space Mflat(Σ0,4,SU(2)) of SU(2) flat
connection on Σ0,4 is the solution space of the closure condition M4M3M2M1 = id where the

11
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Mν ∈ SU(2) is the holonomy around the νth (ν = 1, · · · ,4) puncture of Σ0,4. On the other
hand, the curved Minkowski theorem (theorem 2.1) states that a set of four holonomies {Mν}
satisfying the closure condition uniquely maps to a homogeneously curved tetrahedron whose
faces {`ν} carry areas {aν} corresponding to the eigenvalues of {Mν}. Here, each face `ν is
isomorphic to the loop around the νth puncture of Σ0,4. Inspired by LQG, the areas should be
quantized to operators with discrete spectra, each characterized by an irreducible representa-
tion of the underlying algebra, which is Uq(su(2)) in our case.

In this spirit, given fixed {aν}, the moduli space is quantized to the moduli algebra MKν

0,4
where each representation label Kν ∈ N/2 encodes the information of (quantum) area of face
`ν . It is then natural to expect that the representation space of such moduli algebra can be
viewed as the solution space of some quantum version of the closure condition. We illustrate
in this section that this is the case. More precisely, we show that the quantum closure condition
is naturally read out from the construction of the moduli algebra as described in appendix C,
which realizes the left downward arrow of (3) hence closes the loop. Due to the different
definitions of moduli algebra for the |q|= 1,qp ̸= 1 and qp = 1 cases, wewill need to define the
quantum closure conditions for the two cases separately. This section and the next contribute
the core of this paper.

Definition 4.1 (quantum closure condition for Uq(su(2))). For case qp = 1, given the
quantum holonomyMI

0 represented in V
I representation defined in (C24), the quantum closure

condition is

MI
0 ≡ κ3

IM
I
4M

I
3M

I
2M

I
1 = κ−1

I eI , (29)

where κI ≡ q−
1
2 I(I+1) is a central element and eI = ρI(e) is the I representation of the identity

element of Uq(su(2)).

For case |q|= 1,qp ̸= 1, given L0,4 generators X
I
0 ≡ κ−1

I XI
0,+

(
XI

0,−

)−1
defined in (C28),

the quantum closure condition is defined as

XI
0 ≡ κ3

IX
I
4X

I
3X

I
2X

I
1 = κ−1

I eI . (30)

It is easy to see that the above expressions of the quantum closure conditions take a similar
form as the classical closure condition (11). Equations (29) and (30) are the quantized version
of (11) (restricted to VI) under the following natural quantization map

idSU(2) → κ−1
I eI , Mν →

{
MI

ν , for qp = 1

XI
ν , for |q|= 1,qp ̸= 1

, ∀ν = 1, · · · ,4 . (31)

Theorem 4.2 (solution to the quantum closure condition). Given the representation labels
K1,K2,K3,K4 assigned to the punctures of Σ0,4, the representation space W0(K1,K2,K3,K4)
of the moduli algebraMKν

0,4 for Uq(su(2)), or the intertwiner space, is and is the only solution
space to the quantum closure condition (29) or (30) in the sense that

MI
0

(
W0 (K1,K2,K3,K4)

)
= κ−1

I eI
(
W0 (K1,K2,K3,K4)

)
, for qp = 1 , (32)

XI
0

(
W0 (K1,K2,K3,K4)

)
= κ−1

I eI
(
W0 (K1,K2,K3,K4)

)
, for |q|= 1,qp ̸= 1 . (33)

Proof. We first consider the case of qp = 1. The proof relies on the ‘flatness condition’4

χ0
0M

I
0 = χ0

0κ
−1
I eI (34)

4 We remind the readers that the term ‘flatness’ here means the flatness of the Chern–Simons connection [7] and does
not refer to zero curvature as the flatness in gravity context.

12
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that is proven in [7] for both truncated and before-truncation cases, which we provide in
appendix F (lemmas F.2 and F.3).

The goal is to look for the subspace, say H, of T (K1,K2,K3,K4)≡
⊕

JV
J⊗

WJ(K1,K2,K3,K4) s.t.

MI
0H= κ−1

I eIH . (35)

By (34), it implies

χ0
0M

I
0H=MI

0χ
0
0H= κ−1

I eIχ0
0H , (36)

where the first equality comes from the fact that χ0
0 is a central element. We look for suchH by

testing the action ofMI
0χ

0
0 on the multiplication spaceWJ(K1,K2,K3,K4)≡WJ of each VJ sep-

arately, which is simply the representation ofMI
0χ

0
0 restricted on the spaceW

J. Recalling (C45)
and (34), we immediately have

MI
0χ

0
0W

J ≡ DK1,K2,K3,K4
(
MI

0χ
0
0

)
|WJ = δ0Jκ

−1
I eIidW 0 ≡ δ0Jκ

−1
I eIχ0

0W
0 . (37)

This implies that H⊆W0. Since W0 is defined from a projection of χ0
0 i.e. χ

0
0W

0 =W0,
(37) also implies MI

0W
0 = κ−1

I eIW0, which means the full space W0 is the solution of H
to (35).

We next consider the case of |q|= 1,qp ̸= 1. In this case, we can no longer define χ0
0 but the

proof becomes simpler due to the isomorphism of L0,4 and Uq(su(2))
⊗4. The representation

of XI
0 in T (K1,K2,K3,K4) can be directly calculated:

ρK1,K2,K3,K4
(
XI

0

)
= κ−1

I

(
ρI⊗

(
ρK1 ⊗ ρK2 ⊗ ρK3 ⊗ ρK4

))
(R ′

12R
′
13R

′
14R

′
15R15R14R13R12)

= κ−1
I

(
ρI⊗

(
ρK1 ⊗ ρK2 ⊗ ρK3 ⊗ ρK4

))(
∆(3) (R ′R)

)

= κ−1
I

(
ρI⊗ ι5

)
(R ′R) ,

(38)

whose restriction on each invariant subspace WJ of T (K1,K2,K3,K4) gives

ρK1,K2,K3,K4
(
XI

0

)
|WJ = κ−1

I

(
ρI⊗ ρJ

)
(R ′R) . (39)

Only when J= 0 the action of XI0 gives us the closure condition. That is,

XI
0W

0 := ρK1,K2,K3,K4
(
XI

0

)
|W 0 = κ−1

I

(
ρI⊗ ε

)
(R ′R) = κ−1

I eI|W 0 = κ−1
I eIW0 . (40)

This completes the proof that W0 is and is the only solution to the quantum closure condition
for both cases of q.

5. Area operator

Having found the eigenspaceW0 of the quantum closure condition, it remains to show that the
representation labels K1,K2,K3,K4 do represent the spectra of quantum areas for completing
the loop of (3). Classically, as described in section 2, the area aν of a face `ν of a curved
tetrahedron is encoded in the trace of holonomy Mν around the νth puncture written in the
fundamental representation (7):

1
2
Tr(Mν) = cos

(
|Λ|

6
aν

)
. (41)

13
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Noting that Mν is quantized to the quantum holonomy Mν , we propose a quantization of
cos( |Λ|

6 aν) with a natural spectrum labeled by Kν ∈ N/2, denoted as specKν (Recall the geo-
metrical interpretation of the holonomies in (7)):

cos

(

|Λ|

6
aν

)

−→ cos

(

|Λ|

6
specKν (âν)

)

: =
κ1/2

2
DKν

(

Tr1/2q

(

M1/2
ν

))

≡











1
2D

Kν

(

c1/2ν

)

, for qp = 1

1
2ρ

Kν

(

c1/2ν

)

, for |q|= 1 ,qp ̸= 1
.

(42)

We require that the area spectrum only takes value in a finite interval

|Λ|

6
specKν (âν) ∈ [0,π). (43)

It can also be understood by defining the area operator with the inverse function:

|Λ|

6
specKν (âν) := arccos

[κ1/2

2
DKν

(
Tr1/2q

(
M1/2

ν

))]
, (44)

where arccos(x) ∈ [0,π) is single-valued. The area spectrum takes a simple form, which is
given in the following theorem.

Theorem 5.1 (spectrum of the area operator). Given q= eiθ being a phase with θ ∈ (0,2π)
and Kν ∈ N/2 characterizing the area spectrum specKν (âν) defined in (42), specKν (âν) is
given by

specKν (âν) =

{
6
|Λ|

(2Kν + 1) θ
2 , 0⩽ Kν < 1

2

( 2π
θ − 1

)

6
|Λ|

[
2π − (2Kν + 1) θ

2

]
, 1

2

( 2π
θ − 1

)
⩽ Kν < 1

2

( 4π
θ − 1

) , ν = 1, · · · ,4 . (45)

If q= e
2π i
k+2 (k ∈ N) is a root-of-unity and Kν ⩽ k

2 ,

specKν (âν) =
6
|Λ|

(2Kν + 1)
π

k+ 2
, 0⩽ Kν ⩽

k
2
, ν = 1, · · · ,4 . (46)

Proof. The area spectrum comes from the direct calculation of DKν (c1/2ν ) for the case qp = 1
and ρKν (c1/2ν ) for the other case, which has been revealed in (C31) and (C34) followed by the
substitution rule (C46) for the former case. Therefore,

DKν

(
c

1
2
ν

)
=

1
dKν

(
Tr1/2q ⊗TrKν

q

)
(R ′R) , ρKν

(
c

1
2
ν

)
=

1
dKν

(
Tr1/2q ⊗TrKν

q

)
(R ′R) . (47)

To proceed, we use the results in lemmas 5.2 and 5.3 below, which give the same result for Kν

representation of cIℓ for any q= eiθ. For the case |q|= 1,qp ̸= 1, we calculate that

ρ1/2 ⊗ ρKν (R ′R) = ρKν+
1
2 (R ′R)+ ρKν−

1
2 (R ′R) =

v
1
2 vKν

vKν+
1
2

idKν+
1
2
+
v

1
2 vKν

vKν−
1
2

idKν−
1
2
. (48)

For the case qk+2 = 1, on the other hand, the same expression holds only when Kν +
1
2 ⩽

k
2 ,

leading to u(Kν ,
1
2 ) = Kν +

1
2 . In this case,

ρ
1
2 ⊗ ρKν (R ′R) = ρKν+

1
2 (R ′R)+ ρKν−

1
2 (R ′R) =

v
1
2 vKν

vKν+
1
2

idKν+
1
2
+
v

1
2 vKν

vKν−
1
2

idKν−
1
2
. (49)
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The irreducible representation of the ribbon element v takes the form vI = q−I(I+1) (see lemma
B.1). The quantum trace of the identity matrix simply gives the quantum dimension of the
representation space i.e. TrIq (idI) = dI ≡ [2I+ 1]q. Combining these facts, (47) reads

DKν

(

c
1
2
ν

)

= ρ
Kν

(

c
1
2
ν

)

=
1
dKν

(

q−
3
4 q−Kν(Kν+1)

q−(Kν+ 1
2 )(Kν+ 3

2 )
dKν+ 1

2
+

q−
3
4 q−Kν(Kν+1)

q−(Kν− 1
2 )(Kν+ 1

2 )
dKν− 1

2

)

=
1

[2Kν + 1]q

(

qKν [2Kν + 2]q+ q−Kν−1 [2Kν ]q

)

=
[2(2Kν + 1)]q
[2Kν + 1]q

=
ei(2Kν+1)θ − e−i(2Kν+1)θ

ei
1
2
(2Kν+1)θ − e−i 1

2
(2Kν+1)θ

=
sin((2Kν + 1)θ)

sin
(

1
2 (2Kν + 1)θ

)

= 2cos

(

1
2
(2Kν + 1)θ

)

,

(50)

where we have used the definition of a quantum number [n]q :=
q
n
2 −q−

n
2

q
1
2 −q−

1
2
and that qiθ is a pure

phase.
As a special case, when qk+2 = 1 and Kν = k/2, u(Kν ,

1
2 ) = Kν − 1/2 and hence only one

representation ρKν−
1
2 is left in the recoupling theory. This means, instead of (49), we have

ρ
1
2 ⊗ ρKν (R ′R) = ρKν−

1
2 (R ′R) =

v
1
2 vKν

vKν−
1
2

idKν−
1
2

= q−
1
2 (k+2) [k]q ≡ q−

1
2 (k+2) [k]q+ [k+ 2]q q

1
2 k ≡ [2k+ 2]q

⇒ DKν

(
c

1
2
ℓν

)
=
q−

1
2 (k+2) [k]q
[k+ 1]q

≡ 2cos

(
k+ 1
k+ 2

π

)
,

(51)

which is the same as the result of (50) when Kν = k/2 and θ = 2π
k+2 . Adding the factor

6
|Λ| , by

definition (44)–(46) are proven5.

As described in section 2, the holonomies can be written in an arbitrary irreducible repres-
entation. This allows us to read the area spectrum from any irreducible representation. Recall
that, classically, the area aν of a face `ν of a curved tetrahedron is encoded in the trace of the
holonomy Mν around the νth puncture written in an arbitrary representation (10):

TrI
(
MI

ℓν

)
= TrI

(
gI
(
ei

|Λ|
6 aνH

)I (
g−1
)I
)
=

sin
(
(2I+ 1) |Λ|

6 aν
)

sin
(

|Λ|
6 aν

) . (52)

As a natural generalization of (42), we define the quantization of the r.h.s as

sin
(

(2I+ 1) |Λ|
6 specKν (âν)

)

sin
(

|Λ|
6 specKν (âν)

) := κID
Kν

(

Tr Iq
(

MI
ν

))

≡







DKν
(

cIν
)

, for qp = 1

ρKν
(

cIν
)

, for |q|= 1 ,qp ̸= 1
. (53)

With the results from the lemmas 5.2, 5.3, F.4 and F.5, when q= eiθ is a phase, we have

DKν
(
cIℓ
)
= ρKν

(
cIℓ
)
=

[(2J+ 1)(2Kν + 1)]q
[2Kν + 1]q

=
sin
(
(2I+ 1)(2Kν + 1) 1

2θ
)

sin
(
(2Kν + 1) 1

2θ
) . (54)

5 More generally, DKν
(
cJℓ
)
= ρKν

(
cJℓ
)
=

[(2J+1)(2Kν+1)]q
[2Kν+1]q

for any q ∈ C, which is proved in lemma F.4.
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Therefore, the spectrum in (45) also satisfies (53). This shows that equation (45) defines the
quantization of area independent of the choice of representation I for the closure condition.

Below we prove the lemmas that are used in the proof of theorem 5.1.

Lemma 5.2. Let ρI and ρJ be two irreducible representations of Uq(su(2)) with qp ̸= 1 with
highest weights I and J respectively. Let ρK be the irreducible component with the highest
weight K in the decomposition of the tensor product of representations ρI and ρJ. Then

(
ρI⊗ ρJ

)
(R ′R) =

I+J∑

K=I−J

vIvJ
vK

idK . (55)

Proof. Since Uq(su(2)) with qp ̸= 1 possesses the semisimplicity property, for every admiss-
ible tuple (I,J,K), the tensor product of representations is decomposable, i.e. (ρI⊠ ρJ)(ξ) =∑I+J

K=|I−J| ρ
K(ξ). Now, we will show that the action of ρI⊗ ρJ(R ′R) on each subspace VK is

given by vIvJ
vK

idK, where idK represents the identity map of VK. It is important to note that R ′R
commutes with∆(ξ), ∀ξ ∈ Uq(su(2)). By Schur’s lemma, the restriction of R ′R onto the sub-
space VK is equal to the identity map idK up to a factor.

We now show that this factor is vIvJ
vK

. Recall that the defining relation of the ribbon element v:
∆(v) = (R ′R)−1(v⊗ v) or equivalently (R ′R)∆(v) = (v⊗ v). Taking the presentation ρI⊗ ρJ

of the latter relation, we get

ρI⊗ ρJ (R ′R∆(v))≡ ρI⊗ ρJ (R ′R)ρI⊗ ρJ (∆(v)) = ρI⊗ ρJ (v⊗ v)≡ vIvJ (idI⊗ idJ) . (56)

This relation holds for each subspace VK, which gives

vK (R
′R)

IJ
K = vIvJidK =⇒ (R ′R)

IJ
K =

vIvJ
vK

idK , (57)

where (R ′R)IJK denotes the ρI⊗ ρJ representation of R ′R restricted to the subspace VK and
we have used the definition ρI(v) = vIidI of the representation of the ribbon element and that
ρI⊗ ρJ(∆(v))|VK = vKidK. We have, therefore, completed the proof for the lemma.

Lemma 5.3. For the truncated case UT
q (su(2)) with q= e

2π i
k+2 , consider two physical repres-

entations, ρI and ρJ, of UT
q (su(2)), where I and J can take values in half-integers from 0 to

k
2 . Let ρ

K represent the irreducible component in the decomposition of the tensor product of
these representations, ρI and ρJ. Applying the substitution rule (C46), we obtain the following
identity

(
ρI⊗ ρJ

)
(R ′R) =

(
ρI⊗ ρJ

)(
ϕIJ (R ′R)

IJ (
ϕ−1

)IJ)
=

u(I,J)∑

K=|I−J|

vIvJ
vK

idK . (58)

Proof. We follow the same idea as we used to prove the lemma 5.2. For the truncated algebra
UT
q (su(2)), the semisimplicity property holds, i.e.

(
ρI⊠ ρJ

)
(ξ) =

u(I,J)∑

K=|I−J|

ρK (ξ) ,∀ξ ∈ UT
q (su(2)) , (59)

where u(I,J) =Min(I+ J,k− I− J). Moreover, the defining relations for the ribbon element
and quasi-triangularity still hold [18]:

∆(v) = (R ′R)
−1

(v⊗ v) , (R ′R)∆(ξ) = ∆(ξ)(R ′R) , (60)
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where R and R′ satisfy the quasi-Yang–Baxter equation. For UT
q (su(2)), the action of ρI⊗

ρJ(R ′R) on each subspace VK is given by vIvJ
vK

idK as

(ρI⊗ ρJ)(ϕ((R ′R)(ϕ−1))|VK = ϕIJK (R
′R)IJK (ϕ

−1)IJK = ϕIJK
vIvJ
vK

idK(ϕ
−1)IJK =

vIvJ
vK

idK . (61)

By combining the semisimplicity property of UT
q (su(2)), the proof is complete.

We compare the area spectrum in (45) and (46) to the area spectrum in LQG. The stand-
ard area spectrum in 4D LQG without cosmological constant takes the form specKν (â) =
γ`2p
√
Kν(Kν + 1), whereKν is the SU(2) spin. IdentifyingKν to theUq(su(2)) spin and requir-

ing (45) and (46) consistent with the standard LQG area in the limit θ, |Λ| → 0 and large Kν

(i.e. the area grows linearly in Kν)6 results in that θ = 1
6`

2
pγ|Λ|, or k+ 2= 12π

ℓ2pγ|Λ| ∈ N in the

case of q= exp( 2π i
k+2 ). k+ 2 here equals to the integer level in 3+1 dimensional spinfoam

model with cosmological constant [3, 5, 19]. The area spectrum (45) in the case of q= eiθ

reduces to

specKν (âν) =

{
γ`2p
(
Kν +

1
2

)
, 0⩽ Kν < 1

2B
12π
|Λ| − γ`2p

(
Kν +

1
2

)
, 1

2B< Kν ⩽ B
, B=

12π
`2pγ|Λ|

− 1. (62)

And the area spectrum (46) in the case of q= exp( 2π i
k+2 ) reduces to

specKν (âν) = γ`2p

(
Kν +

1
2

)
, 0⩽ Kν ⩽ A, A=

6π
`2pγ|Λ|

− 1. (63)

As a key difference from LQG with vanishing Λ, the area spectrum is bounded from above,

specKν (âν)⩽
6π
|Λ|

. (64)

Although the resulting area spectrum is consistent with the standard LQG result for Λ→ 0
and large Kν , a noticeable difference shows up in the regime of small Kν . In particular, when
Kν = 0, the area does not become trivial, in contrast to the area spectrum in the standard LQG.
Indeed, the area spectrum here is restrictively positive, and in both cases of q= exp( 2π i

k+2 ) and
q= eiθ,

Min
[
specKν (âν)

]
=

1
2
γ`2p. (65)

Interestingly, our result (62) is the same as the area spectrum obtained in e.g. [20], which
suggests the value of γ different from the standard LQG by the black hole microstate counting.

6. Conclusion and discussion

In this work, we show that the solution space of the quantum curved closure condition coincides
with the intertwiner space, W0(K1,K2,K3,K4) of Uq(su(2)) with the quantum deformation
parameter q being a phase for both cases |q|= 1,qp ̸= 1 and qp = 1, where Kν is the Uq(su(2))
spin. Inspired by the LQG, the geometrical quantities are quantized as the operators such that

6 The second case in (45) disappears in the limit θ→ 0.
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their actions on theHilbert space give discrete spectra. Classically, the area aν of the face `ν of a
curved tetrahedron can be calculated from the holonomyMν surrounding `ν in the fundamental
representation by 1

2Tr(Mν) = cos( |Λ|
6 aν). Moreover, we generalize the holonomy MI

ℓ in the
classical theory to arbitrary representation I and the area is also related to the trace of the
holonomy. In the quantum theory, the area spectrum is discrete and bounded from above and
below.

Recently, an improved spinfoam model was proposed [5]. This model formulates the 3+1
dimensional Lorentzian spinfoam amplitude with a non-zero cosmological constant in terms of
the Chern–Simons theory with the complex group SL(2,C). It has been demonstrated to pos-
sess finite spinfoam amplitudes and exhibit the correct semiclassical behavior. The amplitude
involves sum over quantum areas jf, and a natural cutoff is provided by the Chern–Simons level
k. The space of boundary data can be identified as the phase space of shapes of a homogen-
eously curved tetrahedron, which is equivalent to the phase space of SU(2) flat connections
on a 4-punctured sphere. The quantization of the space of boundary data is then the moduli
algebra that we study in this paper. The corresponding Hilbert space is the intertwiner space
W0(K1,K2,K3,K4) of Uq(su(2)).

Given that the boundary data of the spinfoam model is semiclassical, to gain a clearer
understanding of the relationship between the quantization and the boundary data, it becomes
interesting to construct coherent states in W0(K1,K2,K3,K4) parameterized by phase space
variables. The result on this aspect will be reported elsewhere [21].

This paper makes the first step toward reformulating the LQG kinematics in order to make it
compatible with the spinfoam theory with nonzero cosmological constant. This work focuses
on the quantization of a curved tetrahedron, which is at the same level as a single intertwiner
in the LQG Hilbert space. We have to generalize the quantization to arbitrary 3D cellular
complexes to reformulate the entire LQG Hilbert space and geometrical operators. The res-
ult in [22] shows that the moduli space of SU(2) flat connections on higher-genus surfaces
closely relates to the LQG phase space on cellular complexes. Then we expect that applying
the combinatorial quantization to flat connections on higher-genus surfaces should lead to an
interesting reformulation of the LQG kinematics.
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Appendix A. Geometry of a homogeneously curved tetrahedron in terms of
holonomies

In this appendix, we collect the geometrical information of a homogeneously curved tetrahed-
ron stored in the holonomiesM1,M2,M3 andM4 which can be decomposed in the way of (13).
These materials can also be found in [2].

For convenience, let us first introduce the half-traces of the products of one, two and three
holonomies, respectively

⟨Mℓ⟩=
1
2
Tr(Mℓ) , (A1a)

⟨Mℓ1Mℓ2⟩=
1
2
Tr(Mℓ1Mℓ2)−

1
4
Tr(Mℓ1)Tr(Mℓ2) , (A1b)

⟨Mℓ1Mℓ2Mℓ3⟩=
1
2
Tr(Mℓ1Mℓ2Mℓ3)−

1
4
[Tr(Mℓ1)Tr(Mℓ2Mℓ3)+ cyclic] (A1c)

+
1
4
Tr(Mℓ1)Tr(Mℓ2)Tr(Mℓ3) .

The half-trace (A1a) of one holonomy Mℓ around a face ` encodes the area aℓ of the face;
the half-trace (A1b) of two holonomiesMℓ1 andMℓ2 encodes the dihedral angle θℓ1ℓ2 of the two
faces `1 and `2; the half-trace (A1c) of three holonomies Mℓ1 ,Mℓ2 and Mℓ3 encodes the triple
product of the normals (n̂ℓ1 × n̂ℓ2) · n̂ℓ3 to the three faces `1, `2, `3 calculated at the common
vertex of the three faces. Explicitly,

cos(saℓ) = εℓ⟨Mℓ⟩ , (A2)

cosθℓ1ℓ2 : = n̂ℓ1 · n̂ℓ2 =−
εℓ1εℓ2⟨Mℓ1Mℓ2⟩√

1−⟨Mℓ1⟩
2
√
1−⟨Mℓ2⟩

2
, (A3)

(n̂ℓ1 × n̂ℓ2) · n̂ℓ3 =
εℓ1εℓ2εℓ3⟨Mℓ1Mℓ2Mℓ3⟩√

1−⟨Mℓ1⟩
2
√
1−⟨Mℓ2⟩

2
√
1−⟨Mℓ3⟩

2
. (A4)

The signs {εℓ =±} are fixed by requiring the following inequalities for triple products of the
normals evaluated at vertex 4 (referring to figure 1):





(n̂1 × n̂2) · n̂3 > 0

(n̂1 × n̂3) · n̂4 > 0

(n̂2 × n̂1) ·M1n̂4 > 0

(n̂3 × n̂2) ·M
−1
3 n̂4 > 0

. (A5)

These four inequalities pick four signs each associated to a face ` of the tetrahedron which
corresponds to εℓ = sgnsin(|s|aℓ). Therefore, the Gram matrix Gram(θℓ1ℓ2) for a tetrahedron
given by the dihedral angles {cosθℓ1ℓ2}, hence Gram(Mℓ) used in theorem 2.1, can be written
in terms of the holonomies using (A3).

Appendix B. Mathematical tools: Uq(su(2)) and representations

In this appendix, we review concisely Uq(su(2)) for both cases |q|= 1,qp ̸= 1 and qp = 1
algebraically and their representation theories.
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B.1. Uq(su(2)) with |q|= 1,qp ̸= 1 as a quasitriangular ribbon Hopf-∗ algbera

Let us start by introducing the Hopf algebra Uq(su(2)) with |q|= 1,qp ̸= 1. It is generated by
identity e and H,X,Y subject to relations:

[H,X] = 2X , [H,Y] =−2Y , [X,Y] =
q

H
2 − q−

H
2

q
1
2 − q−

1
2

. (B1)

The first two commutation relations can be equivalently written in terms of the q
H
4 (and its

inverse q−
H
4 ):

q
H
4 Xq−

H
4 = q

1
2X , q

H
4 Yq−

H
4 = q−

1
2 Y . (B2)

The definition of Uq(su(2)) is completed by its co-algebra structure and an antipode. The co-
structure is defined as

∆(e) = e⊗ e , ∆
(
q±

H
4

)
= q±

H
4 ⊗ q±

H
4 , ∆(X) = X⊗ q

H
4 + q

−H
4 ⊗X ,

∆(Y) = Y⊗ q
H
4 + q

−H
4 ⊗ Y , ε(e) = ε

(
qH
)
= 1 , ε(X) = ε(Y) = 0 ,

(B3)

where ε : Uq(su(2))→ C is the counit and∆ : Uq(su(2))→Uq(su(2))⊗Uq(su(2)) is the cop-
roduct satisfying the co-associativity,

(∆ ◦ id) ◦∆= (id ◦∆) ◦∆ . (B4)

The antipode S : Uq(su(2))→Uq(su(2)) acts on the generators as

S
(
q

H
4

)
= q−

H
4 , S(X) =−q

1
2X , S(Y) =−q−

1
2 Y . (B5)

It is compatible with the coproduct and counit through
∑

a

S
(
ξ(1)a

)
ξ(2)a =

∑

a

ξ(1)a S
(
ξ(2)a

)
= ε(ξ) , ∀ξ ∈ Uq (sl2) , (B6)

where∆(ξ) =
∑

a ξ
(1)
a ⊗ ξ

(2)
a . Note that the antipode is not an involution. Instead, the follow-

ing relation holds

S2 (ξ) = q
H
2 ξ q−

H
2 ∀ξ ∈ Uq (su(2)) . (B7)

The Hopf algebra Uq(su(2)) is of quasitriangular type. The quasitriangularity is realized by
a quantum R-matrix R ∈ Uq(su(2))⊗Uq(su(2)) which is a solution to the quantum Yang–
Baxter equation (QYBE)

R12R13R23 = R23R13R12 . (B8)

Here we have used the same notation as for the classical r-matrix, i.e. R12 =
∑

aR
(1)
a ⊗

R(2)
a ⊗ 1,R13 =

∑
aR

(1)
a ⊗ 1⊗R(2)

a andR23 =
∑

a 1⊗R(1)
a ⊗R(2)

a . The permuted coproduct∆ ′

is related to ∆ through R:

∆ ′ := σ ◦∆= R∆R−1 , (B9)

where σ is the permutation operator i.e. σ(ξ⊗ η) = η⊗ ξ ,∀ξ,η ∈ Uq(su(2)). Similarly, we
also denote theR-matrix with two vector subspace permuted as

R ′ := σ ◦R≡
∑

a

R(2)
a ⊗R(1)

a . (B10)
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There are some properties of R-matrix that we use to derive the theorem of this paper:

(S⊗ id)(R) = (id⊗ S)(R) = R−1, (S⊗ S)(R) = R,

(ε⊗ id)(R) = (id⊗ ε)(R) = e, (ε⊗ id)(R ′) = (id⊗ ε)(R ′) = e.
(B11)

The deformation parameter q≡ eℏ in Uq(su(2)) is inherited by R hence R= R(ℏ). Taking the
ℏ expansion of R(ℏ), the classical r-matrix (21) is recovered in the first-ℏ order:

R(ℏ) = 1+ ℏr+O
(
ℏ
2
)
. (B12)

In this sense, (B8) is the quantum version of the CYBE (20). The R-matrix for Uq(su(2)) is
defined as

R=
∑

n∈N

(
q

1
2 − q−

1
2

)n

[n]!
q−n(n+1)/4q

1
4 (H⊗H)+ n

4 (H⊗e−e⊗H) (Xn⊗ Yn) , (B13)

where [n] := q
n
2 −q−

n
2

q
1
2 −q−

1
2

is called the q number and [n]! := [1][2]. . .[n] for n> 1 while

[0]! = [1]!≡ 1.
Uq(su(2)) is the Hopf ∗-algebra consisting of the Hopf algebra Uq(sl2) for |q|= 1, and the

∗-structure defined as:

H∗ = H , X∗ = Y , Y∗ = X . (B14)

It follows that (R)∗ ≡ R−1. The ∗-operation is an anti-homomorphism and can be viewed
as analogous to the conjugate transpose operation for matrices in the sense that (λξη)∗ =
λ̄η∗ξ∗ ,∀λ ∈ C, ξ,η ∈ Uq(su(2)), where the bar denotes the complex conjugate. Therefore, in
the case of |q|= 1, H∗ = H can be equivalently written as (q±

H
2 )∗ = q∓

H
2 .

We also require that the ∗-operation on Uq(su(2))⊗Uq(su(2)) behaves as [8]

(ξ⊗ η)
∗
= η∗ ⊗ ξ∗ , ∀ξ,η ∈ Uq (su(2)) . (B15)

Moreover, the following properties hold for a general element ξ ∈ Uq(su(2))

S(ξ∗) = S(ξ)∗ , ε(ξ∗) = ε(ξ) , ∆(ξ∗) = (∆(ξ))
∗
. (B16)

Equations (B15) and (B16) lead to a simple result for R under the ∗-operation: R∗ = (S⊗
id)(R) = Rq−1 ≡ R−1.

To describe Uq(su(2)) as a ribbon Hopf algebra, we also introduce a ribbon element v ∈
Uq(su(2)) which is an invertible central element defined as

v2 = uS(u) , S(v) = v , ε(v) = 1 , ∆(v) = (R ′R)
−1

(v⊗ v)≡ (v⊗ v)(R ′R)
−1 with

u : =
∑

a

S
(
R(2)
a

)
R(1)
a . (B17)

It has been known that such a ribbon element exists for Uq(su(2)) [23]. The ∗-operation acts
on the ribbon element as v∗ = v−1.

In fact, the above construction can also be generalized to the case of a generic q ∈ C. The
only difference is that ∗-operation is defined differently for the tensor products of Uq(su(2))
[7–9]. That is, for generic q, (ξ⊗ η)∗ = ξ∗ ⊗ η∗ ,∀ξ,η ∈ Uq(su(2)) and the follow-up formulas
would be changed.
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The representation theory.
Let us also give the representation theory of Uq(su(2)) with |q|= 1,qp ̸= 1. In this case,
Uq(su(2)) is a semi-simple Hopf algebra and its representation is a deformed version of
that for su(2). For a unitary representation ρ : Uq(su(2))→ End(V) on a Hilbert space V,
(ρ(ξ))∗ = ρ(ξ∗) holds for all ξ ∈ Uq(su(2)).

The tensor product of two representations ρ1 and ρ2 is expressed in terms of the
coproduct ∆:

ρ1 ⊠ ρ2 (ξ) = (ρ1 ⊗ ρ2)(∆(ξ)) , ∀ξ ∈ Uq (su(2)) . (B18)

Note that the tensor product of two unitary representations is not unitary due to our
choice (B15) of ∗-operation on Uq(su(2))⊗Uq(su(2)). Instead, we have

(ρ1 ⊗ ρ2)(∆
′ (ξ∗)) = ((ρ1 ⊗ ρ2)(∆(ξ)))

∗
, (B19)

where ∆ ′ is the permuted coproduct defined in (B9).
For every equivalence class [J] of irreducible representations (with label J ∈ N/2 being a

half-integer), there exists a unitary representation ρJ with carrier space VJ.
The unitary representations of the Uq(su(2)) generators act on the basis of VJ as

ρJ
(
q

H
4

)
eJm = q

m
2 eJm , (B20a)

ρJ (X)eJm =
√
[J−m]q [J+m+ 1]q e

J
m+1 , (B20b)

ρJ (Y)eJm =
√

[J+m]q [J−m+ 1]q e
J
m−1 . (B20c)

The representation of the unit element e in VJ gives the identity matrix of dimension 2J+ 1,
i.e. ρJ(e) = idJ.

Due to semi-simplicity, the tensor product ρI⊠ ρJ of unitary representations is decompos-
able into the direct sum of irreducible representations

(
ρI⊠ ρJ

)
=

I+J⊕

K=|I−J|

ρK . (B21)

This decomposition determines the Clebsch–Gordon (CG) maps C[IJ|K]: VI⊗VJ → VK up to
normalization,

C [IJ|K]
(
ρI⊠ ρJ

)
(ξ) = ρK (ξ)C [IJ|K] , ∀ξ ∈ Uq (su(2)) , (B22)

Taking the ∗-operation on both sides of (B22), on can define another CG maps C[IJ|K]∗:VK →
VI⊗VJ,

(
ρI⊗ ρJ

)
∆ ′ (ξ)C [IJ|K]∗ = C [IJ|K]∗ ρK (ξ) , ∀ξ ∈ Uq (su(2)) . (B23)

Denote RIJ :=
∑

a ρ
I(R(1)

a )⊗ ρJ(R(2)
a ) as the representation of R in End(VI)⊗End(VJ). Define

R̃IJ := σIJ ◦RIJ with σIJ : VI⊗VJ → VJ⊗VI being the permutation operator. R̃IJ is called the
braiding and it furnishes an intertwining relation between ρI⊠ ρJ(ξ) and ρJ⊠ ρI(ξ) in the way
that

(
ρJ⊠ ρI

)
(ξ) R̃IJ = R̃IJ

(
ρI⊠ ρJ

)
(ξ) . (B24)

It can be proven by taking the representation of the relation (B9), which gives
(
ρI⊗ ρJ

)
∆ ′ (ξ)RIJ = RIJ

(
ρI⊗ ρJ

)
∆(ξ) . (B25)

Permuting the two representation spaces for both sides, one obtains the relation (B24).
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Denote the representation of the ribbon element v in VI as vI := ρI(v). Since v is a central
element, vI is simply a complex number by Schur’s Lemma. By the definition of u defined
in (B17), the following relation holds [24]

S2 (ξ) = uξ u−1 ∀ξ ∈ Uq (su(2)) . (B26)

Recalling the relation (B7), q−
H
2 u≡ q−

H
2 u must be a central element. Its invertibility is obvi-

ous from the definition. The element v satisfies the defining relations of a ribbon element.
Therefore, the ribbon element v= q−

H
2 u.

Lemma B.1. The ribbon element v= q−
H
2 u in the irreducible representation ρJ has value

q−J(J+1).

Proof. By Schurs’ lemma, the irreducible representation of the central element v= uq−
H
2 on

space VJ is proportional to the identity idJ times some complex factor. We can find the complex
factor by the actions of Uq(su(2)) generators on the highest weight vector |J,J⟩, which are the
special case of (B20) and read

q
H
2 |J,J⟩= qJ|J,J⟩ , X|J,J⟩= 0 , Y|J,J⟩=

√
[2J]q|J,J− 1⟩ . (B27)

Then

v|J,J⟩= uq−
H
2 |J,J⟩=






q−

H2

4
− H

2 +







∞
∑

l=1

(

q
1
2 − q−

1
2

)l

[l]q!
q−l(l+1)/4 (S(Y))l q

1
4 (−H2+2lH)Xl






q−

H
2






|J,J⟩

= q−J(J+1)|J,J⟩ , (B28)

where we have used the definition of u given in (B17). The first term in the square bracket
is the l= 0 term of the summation in the R and the second term acts on |J,J⟩ trivially due
to (B27).

Take its square root and define κJ by κ2
J = vJ. The expression of κI in the irreducible rep-

resentation ρJ:

κJ = q−
1
2 J(J+1) . (B29)

Here, we have chosen κI to be the positive square root of vI so that the formulas in the rest of
this section, e.g. (B34), take the forms that matches the literature [7–9]. The normalization of
the CG maps is given by a set of κI’s and we prove it (in a different way from the literature)
in the following proposition.

Proposition B.2. Let the CG maps C[IJ|K] and C[IJ|K]∗ for Uq(su(2)) (|q|= 1,qp ̸= 1) act
on the vector space bases as

C [IJ|K]
(
eIm⊗ eJn

)
=
∑

k

(
I J K
m n k

)

q

eKk , (B30a)

C [IJ|K]∗
(
eKk
)
=
∑

m,n

(
I J K
m n k

)

q

eIm⊗ eJn ≡
∑

m,n

(
I J K
m n k

)

q−1

eIm⊗ eJn ,

(B30b)
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with

(
I J K
m n k

)

q

and

(
I J K
m n k

)

q−1

being complex coefficients. Assume the fol-

lowing normalization and symmetry of the coefficients:

∑

m,n

(
I J K
m n k

)

q

(
I J K ′

m n k ′

)

q

= δKK′δkk′ , (B31)

∑

k

(
I J K
m n k

)

q

(
I J K
m ′ n ′ k

)

q

= δmm′δnn′ , (B32)

(
I J K
m n k

)

q−1

= (−1)I+J−K
(

J I K
n m k

)

q

. (B33)

Then the CG maps satisfy the following normalization relation

C [IJ|K] (R ′)
IJ
C [IJ|K ′]

∗
= δKK′

κIκJ
κK

idK . (B34)

Proof. We first prove that

(
I J K
m n k

)

q

satisfying the conditions (B31)–(B33) takes the

same form of the CG coefficients for Uq(su(2)) with q real.
Let ρI⊗ ρJ(∆(X)) act on the basis vector eIm⊗ eJn in VI⊗VJ. According to (B30a), one

obtains

C [IJ|K]
((

ρ
I⊗ ρ

J (∆(X))
)(

eIm⊗ eJn
))

=
∑

k



q
n
2

√

[I−m]q [I+m+ 1]q

(

I J K
m+ 1 n k

)

q

+q−
m
2

√

[j− n]q [j+ n+ 1]q

(

I J K
m n+ 1 k

)

q



eKk .

(B35)

By the definition (B22), this is equivalent to

ρK (X)C [IJ|K]
(
eIm⊗ eJn

)
=
∑

k

√
[K− k]q [K+ k+ 1]q

(
I J K
m n k

)

q

eKk+1 . (B36)

Similarly, replacing ρK(X) by ρK(Y), a similar identity can be obtained. These are exactly the
recursion relations of the CG coefficients of Uq(su(2)) with q real [25]:

√

[K∓ k]q [K± k+ 1]

(

I J K
m n k± 1

)

q

= q−
m
2

√

[J± n]q [J∓ n+ 1]q

(

I J K
m n∓ 1 k

)

q

+ q
n
2

√

[I±m]q [I∓m+ 1]q

(

I J K
m∓ 1 n k

)

q

.

(B37)

The recursion relation and the normalization (B31) and (B32) of the coefficients(
I J K
m n k

)

q

proves that it takes the same expression as the CG coefficient of Uq(su(2))

with q real:
(

j1 j2 J

m1 m2 M

)

q

=∆( j1j2J)
(
[2J+ 1]q! [J+M]q! [J−M]q! [j1 +m1]q! [ j1 −m1]q! [ j2 +m2]q! [ j2 −m2]q!

)1/2
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j1+j2−J∑

s=0

q
1
4
( j1+j2−J)( j1+j2+J+1)+ j1m2−j2m1

2 q
1
2
s( j1+j2+J+1) (−1)s

[s]q! [j1 + j2 − J− s]q [ j1 −m1 − s]q! [ j2 +m2 − s]q! [J− j2 +m1 − s]q! [ j− j1 −m2 + s]q!
,

(B38)

where ∆( j1j2J) is defined as

∆( j1j2J) =

(
[j1 − j2 + J]q! [J− j1 + j2]q! [j1 + j2 − J]q!

[J+ j1 + j2 + 1]q!

)1/2

. (B39)

The CG coefficients satisfy the following relation [26]

∑

m,n

(
RIJ
)mn
m′n ′

(
I J K
m n k

)

q

= (−1)I+J−K q
1
2 (K(K+1)−I(I+1)−J(J+1))

(
J I K
n ′ m ′ k

)

q

.(B40)

Combining (B40) and the normalization (B31) of the CG coefficients, one proves the nor-
malization relation (B34).

From the normalization and ∆(e) = e⊗ e, we obtain completeness for CG maps:
∑

K

κK
κIκJ

(R ′)
IJ
C [IJ|K]∗C [IJ|K] = eI⊗ eJ . (B41)

Due to the fact that the recoupling of CG coefficients produces the ‘6j-symbols’{
K J P
I L Q

}

q

of Uq(su(2)) [25], the sequence of CG maps follow the identity

C [IP|L]C [JK|P] =
∑

|I−J|⩽Q⩽I+J

{
K J P
I L Q

}

q

C [QK|L]C [IJ|Q] . (B42)

Such an identity takes the same shape as in the SU(2) recoupling theory but the CG maps and
the 6j-symbols are all q-deformed.

We define the quantum trace of any element XJ ∈ End(VJ) by

TrJq
(
XJ
)
= TrJ

(
XJρJ (g)

)
, (B43)

where g := u−1v is a group-like element satisfying

∆(g) = g⊗ g , g∗ = g−1 , S(g) = g−1 , gS(ξ) = S−1 (ξ)g . (B44)

The antipode S of Uq(su(2)) furnishes a conjugation in the set of equivalence classes of irre-
ducible representations. We use [J̄] to denote the class conjugate to [J]. Another definition of
quantum trace is to use the CG map C[J̄J|0] : VJ̄⊗VJ → 0 [7]

TrJq
(
XJ
)
=
dJ
vJ
C [J̄J|0]

2

XJ (R ′)
J̄J
C [J̄J|0]∗ . (B45)

This two definitions of quantum trace are equivalent. The proof is given in [7].
The group-like element g is simply q−

H
2 since v= uq−

H
2 . The quantum trace of idJ defines

the quantum dimension, denoted as dJ, of the irreducible representation ρJ:

dJ = TrJq (idJ)≡ trJ
(
q−

H
2

)
= [2J+ 1]q , dIdJ =

I+J∑

K=|I−J|

dK . (B46)

In general, quantum dimension dJ is different from the dimension of the carrier space VJ . The
numbers vI and dI are symmetric under conjugation, i.e. vI = vĪ and dI = d̄I [7].
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B.2. UT
q(su(2)) as a weak quasitriangular ribbon quasi-Hopf-∗ algebra

When q is a root-of-unity, say qp = 1(p ∈ N
+,p⩾ 2), Uq(su(2)) is no longer a Hopf algebra

but a quasi-Hopf algebra. More importantly, the semi-simplicity is lost, bringing complexity
to its algebraic structure and the representation theory. However, one can construct a ‘trun-
cated algebra’, denoted as UT

q (su(2)), that is canonically associated with Uq(su(2)) with q
a root-of-unity but is semi-simple. Even though the algebraic structure of UT

q (su(2)) is also
more complicated than that of Uq(su(2)) with qp = 1, its representation theory is almost the
same as in the case of Uq(su(2)) with qp ̸= 1 as described in section B.1, which brings enorm-
ous benefits in constructing the quantum theory. Therefore, in this section, we only sketch its
algebraic structure as a weak quasitriangular ribbon quasi-Hopf-∗ algebra and focus on the
representation theory of UT

q (su(2)) (more precisely the difference in the representation theory
from Uq(su(2)) with qp ̸= 1).

Algebraically, UT
q (su(2)) is a weak quasitriangular ribbon quasi-Hopf-∗ algebra generated

by the same generators as Uq(su(2)). To distinguish notations from those of Uq(su(2)), we
denote its coproduct, counit, antipode and quantumR-matrix as∆T, εT,ST and RT respectively.
As a quasi-Hopf algebra, the associativity is relaxed up to conjugation controlled by an element
ϕ ∈ UT

q (su(2))⊗UT
q (su(2))⊗UT

q (su(2)):
(
id⊗∆T

)
∆T (ξ)ϕ = ϕ

(
∆T⊗ 1

)
∆T (ξ) , ∀ξ ∈ UT

q (su(2)) . (B47)

Such ϕ satisfies the identity
(
id⊗ id⊗∆T

)
(ϕ)
(
∆T⊗ id⊗ id

)
(ϕ) = (e⊗ϕ)

(
id⊗∆T⊗ id

)
(ϕ)(ϕ⊗ e) , (B48)

where e is the identity of UT
q (su(2)). Moreover, the compatibility of the antipode ST with the

coproduct and counit is given additionally in terms of α,β ∈ UT
q (su(2)):

∑

a

ST
(
ξ(1)a

)
αξ(2)a = εT (ξ)α,

∑

a

ξ(1)a βST
(
ξ(2)a

)
= εT (ξ)β , ∀ξ ∈ UT

q (su(2)) ,

(B49a)
∑

a

ϕ(1)
a βST

(
ϕ(2)
a

)
αϕ(3)

a = e ,
∑

a

ST
(
φ(1)
a

)
αφ(2)

a βST
(
φ(3)
a

)
= e , (B49b)

where we have used the standard notations∆(ξ) =
∑

a ξ
(1)
a ⊗ ξ

(2)
a ,ϕ =

∑
aϕ

(1)
a ⊗ϕ

(2)
a ⊗ϕ

(3)
a

and φ := ϕ−1 =
∑

aφ
(1)
a ⊗φ

(2)
a ⊗φ

(3)
a .

Its quasitriangular structure is given by RT satisfying the quasi-QYBE

RT12ϕ312R
T
13ϕ

−1
132R

T
23ϕ = ϕ321R

T
23

(
ϕ−1
231

)
RT13ϕ213R

T
12 . (B50)

Here, ϕ312 =
∑

aϕ
(3)
a ⊗ϕ

(1)
a ⊗ϕ

(2)
a , etc. The compatibility of RT and ∆T is the following.

∆T ′

(ξ)RT = RT∆T (ξ) , (B51a)
(
id⊗∆T

)(
RT
)
= ϕ−1

231R
T
13ϕ213R

T
12ϕ

−1 , (B51b)
(
∆T⊗ id

)(
RT
)
= ϕ312R

T
13ϕ

−1
132R

T
23ϕ , (B51c)

where ∆T ′

= σ ◦∆T.
UT
q (su(2)) is a weak quasi-Hopf algebra in the sense that ∆T(e) ̸= e⊗ e. Instead, the cop-

roduct of e is given in terms of ϕ:

∆T (e) =
(
εT⊗ id⊗ id

)
(ϕ) =

(
id⊗ εT⊗ id

)
(ϕ) =

(
id⊗ id⊗ εT

)
(ϕ) . (B52)
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Moreover, we only have quasi-inverse for ϕ and RT such that

ϕϕ−1 =
(
id⊗∆T

)
∆T (e) , ϕ−1ϕ =

(
∆T⊗ id

)
∆T (e) , (B53)

RTRT−1 =∆T ′

(e) , RT−1RT =∆T (e) . (B54)

The ∗-structure of UT
q (su(2)) satisfies the same properties as in (B15) and (B16). In addi-

tion, one needs to define the ∗-operation for ϕ,α,β so that it is consistent with all the above
relations:

φ
∗ =

(
∑

a

φ
(1)
a ⊗φ

(2)
a ⊗φ

(3)
a

)∗

=
∑

a

(
φ
(3)
a

)∗
⊗
(
φ
(2)
a

)∗
⊗
(
φ
(1)
a

)∗
= φ, α

∗ = β . (B55)

Finally, the ribbon element of UT
q (su(2)) is defined in the same way as in (B17) but with

ST, εT,∆T and RT [18].
For our purpose, the precise formulas ofϕ,α and β are not important hence the above defin-

ition of UT
q (su(2)) as a weak quasitriangular ribbon quasi-Hopf-∗ algebra is only formal. What

is relevant to us is the representation theory of UT
q (su(2)), which shares great similarity with

that of Uq(su(2)) with qp ̸= 1. In practice, we build up the representation theory of UT
q (su(2))

from that of Uq(su(2)), which we describe below.
To begin with, we define the physical representations ρJphys among all the irreducible rep-

resentations ρJ of Uq(su(2)) as those with labels J= 0, 12 , · · · ,
k
2

7. Then

UT
q (su(2))≡ Uq (su(2))/J , (B56)

where J is the ideal which is annihilated by all the physical representations ρJphys. k then
provides a cutoff for the physical representation which renders finiteness in the representation
theory of UT

q (su(2)).
In a tensor product space, such a cutoff can be described by a projector P ∈ UT

q (su(2))⊗
UT
q (su(2)) such that PIJ := ρI⊗ ρJ(P) projects on the physical representations ρKphys, |I− J|⩽

K⩽min{I+ J,k− I− J}. The quantum R-matrix and the coproduct ∆T of UT
q (su(2)) are

related to those of Uq(su(2)) by this projector through

RT = RP , ∆T (ξ) = P∆(ξ) , ∀ξ ∈ UT
q (su(2)) . (B57)

In the remaining, we only work on the physical representations and omit the subscript phys
for conciseness.

To recover semi-simplicity, one introduces the truncated tensor product⊠ for two physical
representations which correspond to ∆T:

ρI⊠ρJ =
⊕

|I−J|⩽K⩽u(I,J)

ρK , u(I,J) =min{I+ J,k− I− J} . (B58)

The uplifting fact is that, as long as we stay in the physical representation, the recoupling
theory for two representations remains the same as in Uq(su(2)) with qp ̸= 1. That is, the CG
maps C[IJ|K],C[IJ|K]∗ described in section B.1 can be used safely in the representation theory
of UT

q (su(2)) for 0⩽ I,J,K⩽ k
2 . When several CG maps are acted in a sequence, the order of

7 The positive integer k is the Chern–Simons level for Chern–Simons theory described by Uq(su(2)) with qp = 1. In
general, p= k+ n with n being the dual Coxeter number. For the case of SU(2) being the gauge group, n= 2.
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recouplings matters due to non-associativity. In this case, the representation of ϕ comes into
play. Define ϕIJK := ρI⊗ ρJ⊗ ρK(ϕ). The following identity holds

C [IP|L]C [JK|P]ϕIJK =
∑

|I−J|⩽Q⩽u(I,J)

{
K J P
I L Q

}

q

C [QK|L]C [IJ|Q] , (B59)

where

{
K J P
I L Q

}

q

is the 6j-symbol of Uq(su(2)) evaluated in physical representations.

This is a modification version of (B42). The proof and more details can be found in [27].

Appendix C. Quantization of Mflat(Σ0,4,SU(2))

C.1. Quantum holonomies and quantum symmetry

Denote the quantum holonomy for a loop ` asMℓ. Given the quantum version of the r-matrix,
the Poisson brackets (22) and (23) can be naturally quantized to commutators of quantum
holonomies. Explicitly, (22) is quantized to

R−1
1
MℓR

2
Mℓ =

2
MℓR

′
1
MℓR

′−1 (C1)

and (23) is quantized to

R−1
1
MℓR

2
Mℓ′ =

2
Mℓ′ R

−1
1
MℓR , (C2)

where R is the quantum R-matrix of Uq(su(2)) defined in (B13). One can easily check that
they recover the Poisson brackets at the first-ℏ order by taking the expansion (B12) ofR. We are
more interested in the irreducible representations ρI⊗ ρJ of the above commutation relations:

(
R−1

)IJ 1

MI
ℓR

IJ
2

MJ
ℓ =

2

MJ
ℓ (R

′)
IJ

1

MI
ℓ

(
R ′−1

)IJ
, (C3a)

(
R−1

)IJ 1

MI
ℓR

IJ
2

MJ
ℓ′ =

2

MJ
ℓ′
(
R−1

)IJ 1

MI
ℓR

IJ , `≺ `′ , (C3b)

(R ′)
IJ

1

MI
ℓ (R

′−1)IJ
2

MJ
ℓ′ =

2

MJ
ℓ′ (R

′)
IJ

1

MI
ℓ (R

′−1)IJ , `≻ `′. (C3c)

We demand that inverting the orientation of the loop `→ `−1 mapsMI
ℓ toM

I
ℓ−1 such that

MI
ℓM

I
ℓ−1 =MI

ℓ−1MI
ℓ = eI . (C4)

As the classical holonomies {Mℓ} are in SU(2). A product of two holonomies for the same
loop in two different representations should admit the recoupling theory of SU(2) by means
of the CG maps. Explicitly,

1

MI
ℓ

2

MJ
ℓ =

∑

K

C0 [IJ|K]
∗MK

ℓC0 [IJ|K] , (C5)

where C0[IJ|K] : VI⊗VJ → VK and C0[IJ|K]∗ : VK → VI⊗VJ are the CGmaps of SU(2). Such
a recoupling relation needs to be deformed forMℓ in order to preserve the commutation rela-
tions (C3). The result is given in terms of the CG maps for Uq(su(2)) (see (B22)) and (B23))
and reads

1

MI
ℓR

IJ
2

MJ
ℓ =

∑

K

C [IJ|K]∗MK
ℓC [IJ|K] . (C6)
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Mathematically, the quantum holonomies {MI
ℓ} of the simple graph on Σ0,4 can be used to

define the graph algebra denoted as L0,4.

Graph algebra L0,4. The graph algebra L0,4 for the simple graph Γ on Σ0,4 is generated by
the matrix elements of {MI

ℓ}I∈N/2,ℓ∈Γ associated to loops `’s in Γ satisfying the commutation
relations (C3), the invertibility relation (C4) and the recoupling relations (C6) [7, 9]. Here, I
runs through all the irreducible representations of Uq(su(2)). In this sense, one can understand
MI

ℓ as an element in End(VI)⊗L0,4 and each matrix element is in L0,4. Consistently, the
Poisson bracket (26) of the gauge transformation elements is quantized to

R
1
gv

2
gv =

2
gv

1
gvR ,

1
gv

2
gv′ =

2
gv′

1
gv , v ̸= v ′ , (C7)

where gv is the quantized version of gv. This commutation relation reveals that the underlying
quantum symmetry is Uq(su(2)).

We define the action of a Uq(su(2)) element ξ on the generators MI
ℓ of L0,4 as follows

ξ
(
MI

ℓ

)
=
∑

a

ρI
(
S
(
ξ(1)a

))
MI

ℓ ρ
I
(
ξ(2)a

)
. (C8)

This is the quantization of the conjugacy action (25) and can be checked to preserve (C3)
subject to the commutation relation (C7) of the gauge symmetry. Take ξ to be the generators
{X,Y,q

H
2 } of Uq(su(2)), the actions are explicitly

q
H
4
(
MI

ℓ

)
= ρI

(
q−

H
4

)
MI

ℓ +MI
ℓρ

I
(
q

H
4

)
, (C9a)

X
(
MI

ℓ

)
=−q

1
2 ρI (X)MI

ℓρ
I
(
q

H
4

)
+ ρI

(
q

H
4

)
MI

ℓρ
I (X) , (C9b)

Y
(
MI

ℓ

)
=−q−

1
2 ρI (Y)MI

ℓρ
I
(
q

H
4

)
+ ρI

(
q

H
4

)
MI

ℓρ
I (Y) . (C9c)

The action can be generalized to the whole L0,4 by the property

ξ (αβ) =
∑

a

ξ(1)a (α)ξ(2)a (β) , ∀α,β ∈ L0,4 . (C10)

Especially, for a one-punctured sphere, there is only one holonomy Mℓ along the single
puncture. In this case, the graph algebraL0,1 generated by matrix elements ofMI

ℓ is also called
the loop algebra. We denote the loop algebra corresponding to the νth puncture (ν = 1,2,3,4)
of Σ0,4 as Lν and denote the matrix of its generators as MI

ν for notation conciseness. The
centers of these loop algebras (introduced below) will be shown to be important for defining
the moduli algebra.

As a graph algebra, L0,4 is not equipped with a natural ∗-operation. However, to define the
observables later, it is necessary to define a ∗-algebra. To this end, we consider the semi-direct
product of L0,4 and the gauge algebra Uq(su(2)) and construct S0,4 = Uq(su(2))⋉L0,4 [7, 9].
It is generated by generators of L0,4 and µI(q

H
4 ),µI(X) and µI(Y) defined in the following way

µI (ξ) :=
(
ρI⊗ id

)
∆(ξ) , ∀ξ ∈ Uq (su(2)) . (C11)

The commutation relation between µI(ξ) and MI
ℓ is

8

µI (ξ)MI
ℓ =MI

ℓµ
I (ξ) , (C12)

8 The commutation relation (C12) takes a simple form because we are studying a simple graph onΣ0,4. For a general
graph with more nodes, the commutation relation of a gauge element, say ξv, on node v and a quantum holonomy, say
UI
l , on link l also relies on the relative location between v and l. See [7, 8] for more details.
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which is also called the covariance property. One can now define the ∗-operation onMI
ℓ which

is now viewed as an element in End(VI)⊗S0,4:
(
MI

ℓ

)∗
:=
(
eI⊗κ−1

)(
RIMI

ℓ−1

(
R−1

)I) (
eI⊗κ

)
∈ End

(
VI
)
⊗S0,4 . (C13)

Here, RI := (ρI⊗ id)(R) and similarly for (R−1)I. κ is the unitary (in the sense that κ∗ = κ−1)
element of Uq(su(2)) obtained from the central element v≡ κ2 defined in (B17). Such a ∗-
operation preserves the commutation relation (C3) when extended to S0,4.

C.2. Moduli algebra M
Kν

0,4 as the quantization of Mflat(Σ0,4,SU(2))

The graph algebra L0,4 contains the quantized Poisson structure of quantum holonomies in
the simple graph Γ and it allows us to define the quantum gauge action. To proceed, we look
for the subalgebra of L0,4 which is invariant under the quantum gauge action (C8) hence the
algebra of observables. It is called the invariant algebra, denoted as A0,4 [7–9].

Invariant algebra A0,4. The algebra A0,4 is defined as a subalgebra of the graph algebra L0,4

containing all elements in L0,4 that are invariant with respect to the action (C8) of Uq(su(2)),
i.e.

A0,4 = {A ∈ L0,4|ξ (A) = Aε(ξ)} . (C14)

The elements of A0,4 are linear combinations of the form [9]

TrIq
(
C [I1I2I3I4|I]M

I1
1 M

I2
2 M

I3
3 M

I4
4 C [I1I2I3I4|I]

∗)
, (C15)

where TrIq is the quantum trace defined in (B43) and C[I1I2I3I4|I] is the intertwining map
for Uq(su(2)) action defined similarly as in (B22) and C[I1I2I3I4|I]∗ is defined similarly as
in (B23). Explicitly, they are defined through the intertwining relations

C [I1I2I3I4|I]
(
ρI1 ⊗ ρI2 ⊗ ρI3 ⊗ ρI4

)
∆(3) (ξ) = ρJ (ξ)C [I1I2I3I4|I] , (C16)

(
ρI1 ⊗ ρI2 ⊗ ρI3 ⊗ ρI4

)
∆

′(3) (ξ)C [I1I2I3I4|I]
∗
= C [I1I2I3I4|I]

∗
ρI (ξ) . (C17)

C[I1I2I3I4|I] can be separated into a series of three CG maps and different ways of separation
are related through the 6j-symbols of Uq(su(2)) as in (B42) for the case |q|= 1,qp ̸= 1 and as
in (B59) for the case qp = 1. The ∗-operation on A0,4 inherits from that of S0,4.

For the loop algebra Lν , the invariant subalgebra is simply proportional to (the representa-
tion of) the quantum trace Tr Iq(M

I
ν) defined in (B43). We define the central elements {cIν}I of

Lν as

cIν = κITr Iq
(
MI

ν

)
. (C18)

They are invariant elements of Lν and they satisfy the fusion rule

cIνc
J
ν = cKν ,

cIνc
J
µ = cJµc

I
ν , µ ̸= ν ,

(C19)

which can be proved using the properties (B44) of the group-like element g, in particular
∆(g) = g⊗ g and gS(ξ) = S−1(ξ)g, the recoupling (C6) of the quantum holonomies and the
normalization (B34) of the CG map. See also [7].

The central element has ∗-operation given as (cIν)
∗ = cĪν , where the Ī is the representation

conjugate to I. The element cIν commutes with holonomies around punctures other than ν, i.e.
cIνM

J
µ =MJ

µc
I
ν for µ ̸= ν.
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The above concepts can be well-defined for both cases qp ̸= 1 and qp = 1. To proceed, we
will have to consider these two cases separately in order to define the moduli algebra properly.

The case qp = 1.
Since the root-of-unity case has finitely many physical representations, one can define a sym-
metric and invertible ‘S-matrix’ SIJ in the following way.

SIJ :=N
(
Tr Iq⊗TrJq

)
(R ′R) , N =

1
(∑

I d
2
I

) 1
2

, (C20)

where the summation runs through all the physical representations I= 0, 12 , · · · ,
p−2
2 . Indeed, if

I can take up to∞, which is the case for qp ̸= 1,N → 0 hence SIJ is ill-defined. The S-matrices
satisfy the following properties [7, 28]

SIJ = SJI , S0J =NdJ ,
∑

J

SIJSJK = δIK ,

u(I,J)∑

K=|I−J|

SKL =
SJLSIL
NdL

, (C21)

where u(I,J) =min(I+ J,p− 2− I− J). The properties above show that the inverse element
of the S-matrix is SIJ itself.

With the help of the S-matrix, the characters in A0,4, denoted as χJν with ν = 0,1,2,3,4,
can be defined as

χJν =NdJ
∑

K

SJKc
K̄
ν . (C22)

A character is indeed a central element. It is also easy to prove that it is an orthogonal projector
in A0,4 satisfying

χIνχ
J
ν = δIJχ

I
ν ,

(
χJν
)∗

= χJν . (C23)

Specially, for ν= 0, MJ
0, c

J
0 and χ0 are defined as

MJ
0 := κ

3
JM

J
4M

J
3M

J
2M

J
1 , cJ0 := κJTr

J
q

(
MJ

0

)
, χ

0
0 =N 2

∑

J

dJκ
4
JTr

J
q

(
MJ

4M
J
3M

J
2M

J
1

)
. (C24)

We are now ready to give the definition of moduli algebra for the root-of-unity case.

Moduli algebra M
Kν

0,4 for q
p = 1. The moduli algebra MKν

0,4 of a four-punctured sphere, each
of which is associated with an irreducible physical representation Kν (ν = 1,2,3,4), is a ∗-
algebra defined as [9]

M
Kν

0,4 := χ0
0χ

K1
1 χK2

2 χK3
3 χK4

4 A0,4 . (C25)

The expression above means that each element inMKν

0,4 is obtained by an element in the invari-

ant algebra A0,4 multiplied by the five characters χ0
0 , χ

K1
1 , χK2

2 , χK3
3 , χK4

4 ∈ A0,4.

The case |q| = 1,qp ̸= 1.
For the case that q is not a root-of-unity, the unboundedness of representations results in an
ill-defined S-matrix (C20), then the moduli algebra needs to be defined separately. In fact, the
re-definition should start from the loop algebra and the graph algebra.

We first consider the loop algebra in this case. Define X= κ−1X+(X−)
−1 with X+ ≡ R ′

and X− ≡ R−1. Then its representation reads XI = κ−1
I (R ′R)I ≡ (ρI⊗ id)(R ′R), where the
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pre-factor κ−1
I depends on the normalization condition of the CG maps. One can easily check

thatXI satisfies the same properties (C3a) and (C6) as the generators {MI
ℓ} of the loop algebra.

This shows that the loop algebra L0,1 is isomorphic to Uq(su(2)) in this case9 [9, 17].
The isomorphism can be extended to the graph algebra as L0,4

∼= Uq(su(2))
⊗4. More pre-

cisely, we assign two elements Xν,+ ≡ R ′
1,ν+1 and Xν,− ≡ R−1

1,ν+1 to the νth puncture and
define

XI
ν : = κ−1

I XI
1,+X

I
2,+ · · ·XI

ν,+

(
XI

ν,−

)−1
· · ·
(
XI

2,+

)−1 (
XI

1,+

)−1

∈ End
(
VI
)
⊗Uq (su(2))

⊗ν ⊗ e⊗(4−ν) , (C26)

where e is the identity in Uq(su(2)). They satisfy the commutation relations (C3) and the
recoupling relation (C6). (See the detailed proof in appendix E.) We also define

X0 = κ−1X0,+ (X0,−)
−1

, where X0,± :=
4∏

ν=1

Xν,± , (C27)

and XI
0 is its representation in VI. X0 can also be viewed as an embedding Uq(su(2)) ↪→⊗4

ν=1Uq(su(2)). Then we observe the same expression as in (C24), i.e.

XI
0 = κ−1

I XI
0,+

(
XI

0,−

)−1
= κ3

IX
I
4X

I
3X

I
2X

I
1 . (C28)

From the expression above, the XI
0 is the holonomy of the biggest cycle. This will be related

to the quantum closure condition we define in section 4 below.
The element cIν := κITr

I
q(X

I
ν) is defined in the same way as (C18) but with the new

holonomy definition (C26).
The quantum trace of any element YI ∈ End(VI)⊗ e⊗Uq(su(2)) (e is the identity element

in Uq(su(2))) satisfies the property

TrIq
(
YI
)
= TrIq

((
R−1

)I
YIRI

)
= TrIq

(
R ′IYI (R ′−1)I

)
. (C29)

It is proven in lemma F.1. One can then show that cIν is a central element of the copy of
Uq(su(2)) corresponding to νth puncture. That is, it commutes with XJ

µ , ∀µ= 1, · · · ,4 as we
now prove. We consider µ= ν and µ ̸= ν separately for any representation J ∈ N/2,

ρJ
(

cIν
)

XJ
ν = κITrIq

(

(

R−1
)IJ

1

XI
νR

IJ

)

XJ
ν ≡ κITrIq

(

(

R−1
)IJ

1

XI
νR

IJ
2

XJ
ν

)

= κITrIq

(

2

XJ
ν

(

R ′
)IJ

1

XI
ν

(

R ′−1
)IJ

)

= XJ
νρ

J
(

cIν
)

,

(C30a)

ρJ
(

cIν
)

XJ
µ = κITrIq

(

(

R−1
)IJ

1

XI
νR

IJ

)

XJ
µ ≡ κITrIq

(

(

R−1
)IJ

1

XI
νR

IJ
2

XJ
µ

)

= κITrIq

(

2

XJ
µ

(

R−1
)IJ

1

XI
νR

IJ

)

= XJ
µρ

J
(

cIν
)

, ℓν ≺ ℓµ ,

(C30b)

9 Strictly speaking, the isomorphism is between L0,1 and Uq(sl2) as proven in [17]. By such isomorphism, the ∗-
structure of Uq(sl2), leading to Uq(su(2)), can induce a ∗-structure on L0,1, which means that L0,1 is ∗-isomorphic
to Uq(su(2)). For the same reason, L0,4 is ∗-isomorphic to Uq(su(2))

⊗4.
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ρJ
(

cIν
)

XJ
µ = κITrIq

(

(

R ′
)IJ

1

XI
ν

(

R ′−1
)IJ

)

XJ
µ ≡ κITrIq

(

(

R ′
)IJ

1

XI
ν

(

R ′−1
)IJ

2

XJ
µ

)

= κITrIq

(

2

XJ
µ

(

R ′
)IJ

1

XI
ν

(

R ′−1
)IJ

)

= XJ
µρ

J
(

cIν
)

, ℓν ≻ ℓµ ,

(C30c)

where we have used (C29) for the first and last equalities and (C3) for the third equalities in
all three equations.

Due to the isomorphism with Uq(su(2)), one can define the moduli algebra for the case
|q|= 1,qp ̸= 1 in terms of the central elements, instead of the characters, of the loop algebra
Lν . We define the representations of the central element cIνν as

ρKν
(
cIνν
)
=
sIνKν

dKν

idKν
, with sIJ :=

(
TrIq⊗TrJq

)
(R ′R) . (C31)

The moduli algebra can then be defined in the following way.

Moduli algebra M
Kν

0,4 for |q|= 1,qp ̸= 1. Let K1,K2,K3,K4 be a set of 4 irreducible repres-
entations of Uq(su(2)) with |q|= 1,qp ̸= 1 assigned to the four punctures of Σ0,4. The mod-
uli algebra M

Kν

0,4 is defined as the quotient of the invariant algebra A0,4 by the relations

ρ0(cI0) ,ρ
K1
(
cI11
)
,ρK2

(
cI22
)
,ρK3

(
cI33
)
,ρK4

(
cI44
)
, i.e. [9, 17]

M
Kν

0,4 =A0,4/
{
ρ0
(
cI0
)
,ρK1

(
cI11
)
,ρK2

(
cI22
)
,ρK3

(
cI33
)
,ρK4

(
cI44
)}

I,Iν
, (C32)

where I, I1, I2, I3, I4 run through all irreducible representation of Uq(su(2)).
From the construction above, it is reasonable to view the invariant algebraA0,4 as the quant-

ization of SU(2) flat connection space onΣ0,4 and the moduli algebraMKν

0,4 as the quantization
of the moduli spaceMflat(Σ0,4,SU(2)) of SU(2) flat connections on Σ0,4 with fixed eigenval-
ues of holonomies around all punctures. In the next subsection, we will construct the (irre-
ducible) representations of the moduli algebra which allows us to build the Hilbert space of
intertwiners.

C.3. Representation of the moduli algebra and the physical Hilbert space

Having defined the moduli algebra MKν

0,4, we now proceed to construct its representation the-
ory. The ‘representation labels’ K1, · · · ,K4 defining the moduli algebra are representations of
holonomies around punctures ofΣ0,4, which are fixed when defining the generators ofLν ,L0,4

and M
Kν

0,4, and do not in priori denote the representation of the moduli algebra itself. We will
nevertheless find that only the irreducible representation space with the same labels can carry
the representation of the moduli algebra.

As the moduli algebra has a ∗-structure inherited from its generators, one can naturally
construct the ∗-representations of it, which compose a Hilbert space. We denote such Hilbert
space as the physical Hilbert space in the sense that states therein are invariant under the
quantum gauge transformations. We will start by constructing the representation of the loop
algebraL0,1. Recall that the subalgebraLν of the graph algebraL0,4 defined on each puncture ν
is isomorphic to L0,1. Then the representation of L0,4 can be constructed by the tensor product
of four representations of L0,1 [9]. In this section, we will mainly focus on the case of qp = 1.
For |q|= 1,qp ̸= 1 case, the results turn out to be the same as the qp = 1 case hence we skip
the full derivations. We refer to [7, 17] and appendix D for details.
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When q is a root-of-unity, Uq(su(2)) is a finite-dimensional algebra whose total number of
irreducible representations is finite. However, it has no semi-simplicity property, which brings
obstacles in constructing the representation theory for the moduli algebra, which requires
semi-simplicity. In order to restore the semi-simplicity, one considers its truncated algebra
UT
q (su(2)) which has a simple representation theory despite a complex underlying algebraic

structure. The representation theory of moduli algebra with quantum symmetry UT
q (su(2)) is

constructed by applying the substitution rule (see (C46) below) [7, 9] on the representation
theory of moduli algebra constructed below. In the following, we construct the representation
theory of quantum algebra with quantum symmetry UT

q (su(2)), which can be easily general-
ized for semi-simple Hopf algebra with a finite number of irreducible representations [9].

Representation of L0,1. The loop algebra L0,1 has a series of representations {DI} realized in
the representation spaces V I of Uq(su(2)), I ∈ N/2. The generator MJ

ℓ ∈ End(VJ)⊗L0,1 can
be expressed in the representation DI as [9]

DI
(
MJ

ℓ

)
:= κ−1

J (R ′R)
JI
. (C33)

This representation preserves the commutation relation (C12) due to the intertwining prop-
erty of R ′R10. It has been proven in [9] that the set of representations {DI} defined above is
faithful and, in the absence of truncation, each DI is an irreducible representation. Here faith-
fulness means that the dimension of loop algebra and the dimension of space of representation
matrices under DI are the same.

The representation of the central element cI (defined in (C18)) and the projector χI (defined
in (C22)) of the loop algebra is given by11

DI
(
cJ
)
=
sJI
dI

idI , DI
(
χJ
)
= δIJ , where sJI =

(
TrJq⊗TrIq

)
(R ′R) . (C34)

Representation of L0,4. The representation of each sub-algebra Lν can be realized in the space
VIν of Uq(su(2)), where the label Iν is assigned at νth puncture. Denote the representation of
L0,4 as DI1,I2,I3,I4 . It is realized in the tensor product space T (I1, I2, I3, I4) which is decompos-
able due to semi-simplicity:

T (I1, I2, I3, I4) := VI1 ⊗VI2 ⊗VI3 ⊗VI4 =
⊕

I

VI⊗WI (I1, I2, I3, I4) . (C35)

Here, I runs through all admissible irreducible representations of Uq(su(2)) and
WI(I1, I2, I3, I4) is the multiplicity space whose dimension is

∑
K1K2

NI1I2K1
NK1I3
K2

NK2I4
I with

NJKI = 1 if I,J,K satisfy the triangular inequality |I− J|⩽ K⩽ I+ J and NIJK = 0 otherwise.
The representation of the generators of L0,4 can be expressed as [9]

DI1,I2,I3,I4
(

MJ
ν

)

=
(

ρJ ⊗ ιν
)(

R ′
)

DIν
ν

(

MJ
ℓν

)(

ρJ ⊗ ιν
)

(

(

R ′
)−1
)

∈ End
(

VJ
)

⊗





4
⊗

µ=1

End
(

VIµ
)



 ,

ν = 1,2,3,4 . (C36)

10 Take the J representation of (C12), one gets DJ(µI(ξ)MI
ℓ) = (ρI ⊗ ρJ)∆(ξ)(R ′R)IJ = (R ′R)IJ(ρI ⊗ ρJ)∆(ξ) =

DJ(MI
ℓµ

I(ξ)) due to the definition (C11) of µI(ξ) and the property ∆(·)(R ′R) = (R ′R)∆(·) of R ′R. See the last
equality in (B17). This proves that the representation (C33) of the loop algebra generator preserves the commutation
relation (C12).
11 Notice that cJ is a central element, DI(cJ) is proportional to idI by Schur’s lemma. The proportionality is obtained
by taking the trace of the representation.
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The notations above mean:

DIν
ν

(
MJ

ν

)
= idI1 ⊗ . . .⊗ idIν−1 ⊗DIν

(
MJ

ν

)
⊗ idIν+1 ⊗ . . .⊗ idI4 ,

ιν (ξ) =
(
ρI1 ⊠ . . .⊠ ρIν−1

)
(ξ)⊗ idIν ⊗ . . .idI4 , ∀ξ ∈ Uq (su(2))

(C37)

where ρI1 ⊠ . . .⊠ ρIm(ξ) = (ρI1 ⊗ . . .⊗ ρIm)∆(m−1)(ξ). Explicitly,

DI1,I2,I3,I4
(

MJ
ν

)

= κ−1
J

(

R ′
12R

′
13 · · ·R

′
1νR

′
1,ν+1R1,ν+1R

′−1
1ν · · ·R

′−1
13 R

′−1
12

)JI1···Iν
⊗ eIν+1 ⊗ . . .⊗ eI4 , (C38)

In order to define the representation for (MJ
ν)

∗, it is necessary to extend the representation
DI1,I2,I3,I4 to quantum symmetry Uq(su(2)) by

DI1,I2,I3,I4 (ξ) = ι4+1 (ξ)≡
(
ρI1 ⊠ ρI2 ⊠ ρI3 ⊠ ρI4

)
(ξ) , ∀ξ ∈ Uq (su(2)) . (C39)

Same as the representations {DI} of the L0,1, the representations {DI1,I2,I3,I4} are also faithful
and, in the absence of truncation, irreducible. However, different from the fact that DI is a
∗-representation, the ∗-property of DI1,I2,I3,I4 , if exists, is not compatible with the standard
inner product of vector space T (I1, I2, I3, I4). This is because the tensor product of two unitary
representations is in general not unitary. Nevertheless, we can define an inner product that
preserves the unitarity for the tensor product of two unitary representations. Such an inner
product was first proposed in [29] (see also [9]) to be

⟨x,y⟩R := ⟨x,(ρ⊗ ρ ′)
(
R∆(κ)

(
κ−1 ⊗κ−1

))
y⟩ , ∀x,y ∈ V⊗V ′ (C40)

where ρ,ρ ′ are two ∗-representations of Uq(su(2)) on Hilbert spaces V and V ′, and ⟨·, ·⟩
denotes the standard scalar product on V⊗V ′ s.t. ⟨v1 ⊗ v ′1,v2 ⊗ v ′2⟩= ⟨v1,v2⟩⟨v ′1,v

′
2⟩, ∀v1,v2 ∈

V, ∀v ′1,v
′
2 ∈ V

′.
The scalar product ⟨x,y⟩R defined as such is positive definite, with respect to whichDI1,...,I4

are ∗-representations. To show that the inner product (C40) is preserved under the same unitary
transformation, we consider x,y ∈ VI⊗VJ and ξ ∈ Uq(su(2)). Then12

⟨ρI⊠ ρJ (ξ)x,y⟩R = q
1
2 I(I+1)+ 1

2 J(J+1)⟨ρI⊠ ρJ (ξ)x,RIJ
(
ρI⊗ ρJ

)
∆(κ)y⟩

= q
1
2 I(I+1)+ 1

2 J(J+1)⟨x,
((
ρI⊗ ρJ

)
∆(ξ)

)∗
RIJ
(
ρI⊗ ρJ

)
∆(κ)y⟩

= q
1
2 I(I+1)+ 1

2 J(J+1)⟨x,
(
ρI⊗ ρJ

)
∆ ′ (ξ∗)RIJ

(
ρI⊗ ρJ

)
∆(κ)y⟩

= q
1
2 I(I+1)+ 1

2 J(J+1)⟨x,RIJ
(
ρI⊗ ρJ

)
∆(κξ∗)y⟩

= ⟨x,ρI⊠ ρJ (ξ∗)y⟩R ≡ ⟨x,
(
ρI⊠ ρJ(ξ)

)∗
y⟩R ,

(C41)

where we have used the representation κI = q−
1
2 I(I+1) of κ (see (B29)), which is a scalar hence

can be extracted out of the inner product, on the first line, the identity∆ ′(ξ)R= R∆(ξ) ,∀ξ ∈
Uq(su(2)) to obtain the second line, and the fact that κ is a central element, i.e. κξ = ξκ,∀ξ ∈
Uq(su(2)), to obtain the third line.

12 The inner product ⟨·, ·⟩R is preserved under unitary transformation even without the insertion of ∆(κ)(κ−1 ⊗
κ−1) in (C40). Such an insertion is there for a normalization purpose. In particular, given x= (R ′)IJC[IJ|K]∗z , y=
(R ′)IJC[IJ|K]∗z ′ ∈ VI ⊗VJ =⊕KVK such that z, z ′ ∈ VK. The inner product defined as in (C40) realizes a simple
decomposition ⟨x,y⟩R =⊕K⟨z, z ′⟩ with no extra factors [29].
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Representation of A0,4. The ∗-algebra A0,4 of gauge invariant elements is the subalgebra of
L0,4. Therefore, the representationsDI1,I2,I3,I4 can be restricted toA0,4 directly. SinceA0,4 is an
invariant algebra, its representation restricted to VI in the decomposition (C35) must be carried
in the multiplicity space WI(I1, I2, I3, I4). On the other hand, the dimension of A0,4, counted
from the number of its generators (C15), is

∑
I,I1,I2,I3,I4

dim(C[I1I2I3I4|I])
2, which matches

exactly the dimension of the representation space carried by
⊕

I,I1,I2,I3,I4
WI(I1, I2, I3, I4). The

faithfulness of the representations of A0,4, inherited from the faithfulness of the representa-
tion of L0,4, guarantees that the full multiplicity spaceWI(I1, I2, I3, I4) for each admissible set
(I, I1, I2, I3, I4) carries an irreducible ∗-representation of A0,4.

Representation of MKν

0,4. Recall that the moduli algebra (C25) is defined as χ0
0

∏4
ν χ

Kν
ν A0,4.

Given the representation of the invariant algebra above, the only extra ingredients to obtain the
representation of the moduli algebra are the representation of the characters χ0

0 and χKν
ν , ν =

1, · · · ,4. We first consider the latter one. Using the same definition (C36) of the representation,
it is easy to compute

DI1,I2,I3,I4
(
χKν
ν

)
= δIνKν

idI1 ⊗ ·· · ⊗ idI4 , ∀ν = 1, · · · ,4 . (C42)

Now that
∏4

ν=1 δIνKν
is imposed, we consider the following representation of χ0

0:

DK1,K2,K3,K4
(
χ0
0

)
=N 2

∑

K

dKκ
4
KTr

K
q

[
DK1,K2,K3,K4

(
MK

4M
K
3M

K
2M

K
1

)]
. (C43)

Using the definition (C36) (or directly the explicit expression (C38)), one gets

DK1,K2,K3,K4

(

χ
0
0

)

=N 2
∑

K

dKTr
K
q

[

∆(3) (R ′R
)

]KK1K2K3K4

≡N 2
∑

K

dKTr
K
q

[(

ρ
K⊗ ι5

)

(

R ′R
)

]

, (C44)

where ι5 = ι4+1 is defined in (C39). Since M0,4 is a subalgebra of A0,4, its J representation
lives in the multiplicity spaceWJ(K1,K2,K3,K4). For this reason, we are only interested in the
representation restricted to WJ(K1,K2,K3,K4), which we denote as WJ for conciseness:

DK1,K2,K3,K4
(
χ0
0

)
|WJ =N 2

∑

K

dKTr
K
q

(
ρK⊗ ρJ

)
(R ′R)≡N 2

∑

K

dK
SKJ

NκKdK
idWJ

=
∑

K

S0KSKJ
κJdJ

idWJ = δ0JidW 0 , (C45)

where we have used the representation (C34) of the central element and the property (C21) of
the S-matrix.

We finally conclude that, given four punctures labeled by representations K1, · · · ,K4

respectively, there exists only one irreducible ∗-representation space of the moduli algebra
M

Kν

0,4, which is W0(K1,K2,K3,K4). Because of the faithfulness of the representations theory,
other representations cannot exist.
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Up to now, we have dealt with the representation theory of L0,1, L0,4, A0,4 and M
Kν

0,4 for
Uq(su(2)) with q a root-of-unity assuming the semi-simplicity of the quasi Hopf algebra.
However, semi-simplicity is there only for the truncated algebra UT

q (su(2)) for q
p = 1. The

representation theory of UT
q (su(2)) is achieved from the one described above followed by

applying the certain substitution rule13 [7, 9]:

Ca [IJ|K]→ C̃a [IJ|K] := C [IJ|K]
(
φ−1)IJ , Ca [IJ|K]∗ → C̃a [IJ|K]∗ :=

(
φ ′
213

)IJC [IJ|K]∗ ,

RIJ →RIJ :=
(
ρI ⊗ ρJ ⊗ id

)(
φ213Rφ−1) , dI → d̃I := TrI

(
ρI (gS(β)α)

)
,

RI → RI ≡
(
ρI ⊗ id

)
R , TrIq (X)→ T̃r

I
q (X) := TrI

(
mIXwIgI

)
, with mI = ρI

(
S
(
ϕ(1)

)
αϕ(2)

)
ϕ(3) ,

wI = ρI
(
φ(2)S−1

(
φ(1)β

))
φ(3) ,

(C46)

where ϕ,φ≡ ϕ−1 ∈ UT
q (su(2))⊗UT

q (su(2))⊗UT
q (su(2)) and α,β ∈ UT

q (su(2)) are the defin-
ing elements for UT

q (su(2)) (see section B.2). Upon the imposition of the substitution rule, all
the formulas of representation theory above in this section work for UT

q (su(2)). Due to the
theorem in [27], the physical representations of UT

q (su(2)) and Uq(su(2)) with qp = 1 are the
same, hence the representation theory of UT

q (su(2)) constructed above can also represent the
physical representation of Uq(su(2)) with qp = 1.

Let us now briefly go through the case for Uq(su(2)) with |q|= 1,qp ̸= 1 (see appendix D
for some details). Since the loop algebra L0,1 is isomorphic to Uq(su(2)) in this case, its irre-
ducible representation is the same as the one of Uq(su(2)), in particular, we choose the ∗-
irreducible representations that preserve the ∗-structure ofUq(su(2)) for |q|= 1,qp ̸= 1 labeled
by J ∈ N/2. The representation of the generator XI ≡ κ−1

I (R ′R)I of L0,1 in the space VJ can
be directly calculated to be

ρJ
(
XI)= κ−1

I (R ′R)
IJ
, (C47)

which matches the definition (C33) for the case qp = 1. It turns out naturally that the repres-
entation theories ofL0,1 , L0,4 ,A0,4 andM

Kν

0,4 for case q
p = 1 discussed above before applying

the substitution rule are the same for the case |q|= 1,qp ̸= 1. In particular, (C38) can be dir-
ectly used to express the representation of generators for L0,4, and the representation spaces
for A0,4 andM

Kν

0,4 are
⊕

I,I1,I2,I3,I4
WI(I1, I2, I3, I4) and W0(K1,K2,K3,K4) respectively14.

The analysis for |q|= 1,qp ̸= 1 can be directly generalized to |q| ̸= 1 and the same results
follow except for the ones related to ∗-structure (hence we are dealing with Uq(sl2) instead of
Uq(su(2))). We therefore conclude that the representation space of the Uq(sl2)moduli algebra
on Σ0,4 for with any q ∈ C is W0(K1,K2,K3,K4), given that the four punctures carry the irre-
ducible representations K1,K2,K3,K4 respectively.W0(K1,K2,K3,K4) is nothing but the space
of intertwiner C[K1K2K3K4|0].

13 Due to some subtlety, the substitution rule (C46) cannot be applied to formulas containing the grouplike element
g (see (B44)) except for computing the quantum trace Trq, which is the only places in this paper where we encounter
g. We refer to [7] for dealing with this subtlety.
14 Indeed, since the definitions of A0,4 and M

Kν
0,4 vary for the cases qp = 1 and |q|= 1,qp ̸= 1 as described in

section C.2, their representations are also defined differently. Nevertheless, the resulting representation spaces for
both cases are the same. We refer interested readers to [7] for the explicit construction of the representations for case
|q|= 1,qp ̸= 1. See also appendix D.
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Appendix D. Representation theory of loop algebra L0,1 for |q| = 1,qp ̸= 1

Since the loop algebra L0,1 is isomorphic to Uq(su(2)) for |q|= 1,qp ̸= 1, its irreducible rep-
resentation is the same as the one of Uq(su(2)), in particular, we focus on the unitary irredu-
cible representations of Uq(su(2)) labeled by J ∈ N/2. The representation of the generator XI

of L0,1 in the space VJ is given by:

ρJ
(
XI)= κ−1

I (R ′R)
IJ
. (D1)

Moreover, the isomorphism can be extended to L0,4. The representations of L0,4 are enumer-
ated by tuples (K1,K2,K3,K4) of irreducible representations of Uq(su(2)), where Kν is the
representation assigned to the νth puncture realized in the vector space

VK1K2K3K4 = VK1 ⊗VK2 ⊗VK3 ⊗VK4 . (D2)

The expression of the generator XI
ν of L0,4 in the representation space VK1K2K3K4 is given by:

ρK1K2K3K4
(

XI
ν

)

= κ−1
I

(

R ′
12R

′
13 · · ·R

′
1νR

′
1,ν+1R1,ν+1R

′−1
1ν · · ·R

′−1
13 R

′−1
12

)IK1..Kν
⊗ eKν+1 ⊗ . . .⊗ eK4 . (D3)

The invariant sub-algebra A0,4 equivalently can be defined as a commutant of the image of
Uq(su(2)) under the embedding, i.e.A0,4 = {A|XI

0A= AXI
0 , ∀X

I
0 ∈ L0,4}. The representation

ρK1K2K3K4 can be naturally restricted to invariant sub-algebraA0,4 of L0,4. Such representation
is reducible. The tensor product of representations is decomposable due to the semi-simplicity
of Uq(su(2)) for qp ̸= 1:

VK1K2K3K4 =
⊕

J admissible

VJ⊗WJ (K1,K2,K3,K4) . (D4)

Take the representation VK1K2K3K4(XI
0) of X

I
0 which can be decomposed into irreducible rep-

resentations as above. In each subspace VJ, the commutant of VJ(XI
0), which gives the J rep-

resentation of A0,4, must live in the multiplicity space WJ(K1,K2,K3,K4).
In addition, by the definition (C32) of the moduli algebra, the representation of the moduli

algebra is further restricted toW0(K1,K2,K3,K4). So we obtain the irreducible representation
of moduli algebra realized in the space [17]

W0 (K1,K2,K3,K4) = Invq
(
VK1K2K3K4

)
. (D5)

To endow the representation space with the structure of Hilbert space, one needs to define the
inner product, which we choose to be the same as (C40)15 since we focus on |q|= 1,qp ̸= 1.

Appendix E. Isomorphism between graph algebra L0,4 and Uq(su(2))
⊗4

Recall that the isomorphism between loop algebra and Uq(su(2)) described in section C.2
allows one to set XI = κ−1

I XI
+(X

−1
− )I, where XI

+ = (R ′)I and XI
− = (R−1)I [17]. We have the

following commutation relation for XI
+,X

J
−

1

XI
±

2

XJ
± RIJ = RIJ

2

XJ
±

1

XI
±, (R ′)

IJ
1

XI
±

2

XJ
± =

2

XJ
±

1

XI
± (R ′)

IJ
,

1

XI
−

2

XJ
+ RIJ = RIJ

2

XJ
+

1

XI
−, (R ′)

IJ
1

XI
+

2

XJ
− =

2

XJ
−

1

XI
+ (R ′)

IJ
.

(E1)

15 In general, the inner product will be different than the one we choose here when one changes the star structure of
the algebra.
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The element κ−1
I XI+(X

−1
− )I satisfies both the commutation relation (C3a) and the functionality

condition (C6) of loop algebra. With the isomorphism defined above, we see that the matrix
elements of MI for any I are generated by the generators q

H
2 ,X,Y of Uq(su(2)). This specifies

the isomorphism between loop algebra and Uq(su(2)) for q not a root of unity. (We remind the
readers that this isomorphism is, strictly speaking, between L0,1 and Uq(sl2) not necessarily
with a ∗-structure to give Uq(su(2)), but it does not affect the discussion here as the ∗-structure
is not involved when we use the isomorphism at the algebraic level. See footnote 10.)

Lemma E.1. The isomorphism XI = κ−1
I XI

+(X
−1
− )I satisfies the ‘loop equation’:

(
R−1

)IJ 1

XI RIJ
2

XJ=
2

XJ (R ′)
IJ

1

XI (R ′−1
)IJ

. (E2)

Proof. Let us start from the l.h.s. of the equation, which can be explicitly written as

(
R−1)IJ

(
1

XI
+

(
1

X−1
−

)I)
RIJ
(

2

XI
+

(
2

X−1
−

)I)
=
(
R−1)IJ 1

XI
+

(
2

XI
+

)
RIJ
(

1

X−1
−

)I( 2

X−1
−

)I

=
2

XI
+

1

XI
+

(
R ′
)IJ (R ′−1

)IJ
(

1

X−1
−

)I( 2

X−1
−

)I

=
2

XI
+

1

XI
+

(
R ′
)IJ
(

2

X−1
−

)I( 1

X−1
−

)I (
R ′−1

)IJ

=
2

XI
+

(
2

X−1
−

)I (
R ′
)IJ 1

XI
+

(
1

X−1
−

)I (
R ′−1

)IJ
, (E3)

where the last expression is the r.h.s. of (E2). We apply relation (E1) several times to obtain
the final result.

Lemma E.2. The isomorphism XI = κ−1
I XI

+(X
−1
− )I satisfies the functoriality condition

1

XI RIJ
2

XJ=
∑

K

C [IJ|K]∗XKC [IJ|K] . (E4)

Proof. Let us start from the l.h.s. of the equation:

κ
−1
I κ

−1
J R ′I13R

I
13R

IJ
12R

′J23R
J
23 = κ

−1
I κ

−1
J R ′I13R

′J23R
IJ
12R

I
13R

J
23

= κ
−1
I κ

−1
J

(

∆ ′ ⊗ id
)(

R ′)RIJ12R
I
13R

J
23

= κ
−1
I κ

−1
J RIJ12R

′I23R
′J13R

I
13R

J
23

= κ
−1
I κ

−1
J RIJ12

(

ρ
I⊗ ρ

J⊗ id
)

(∆⊗ id)
(

R ′R
)

= κ
−1
I κ

−1
J

∑

L

κIκJ

κL
C [IJ|L]∗C [IJ|L]

(

ρ
I⊗ ρ

J⊗ id
)

(∆⊗ id)
(

R ′R
)

=
∑

L

κ
−1
L C [IJ|L]∗

(

R ′R
)L
C [IJ|L]

=
∑

L

C [IJ|L]∗XLC [IJ|L] .

(E5)

In the first equality, we have used the quasi-triangularity (id⊗∆)(R) = R13R12 and (B9).
Then we have applied several times of the quasi-triangularity and (B8). For the fifth equality,
we have rewritten RIJ12 in terms of the CG maps, i.e.
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∑

L

κIκJ
κL

C [IJ|L]∗C [IJ|L] = RIJ12 . (E6)

The second to the last line of (E5) is obtained by using the definitions (B22) of CG maps.

The ∗-structure of loop algebra is defined as:

(
XI)∗ = κ−1

(
RI
(
XI)−1 (

R−1
)I)

κ , (E7)

where κ is the central element of Uq(su(2)). This ∗-structure is induced by the ∗-structure
of Uq(su(2)) for |q|= 1,qp ̸= 1 in the sense that the ∗-operation on the matrix elements of
XI is closed. Here, we illustrate this induction in the fundamental representation. Recall that
XI = κ−1

I XI
+(X

−1
− )I with XI

+ = R ′I and X− = (R−1)I. Then

X
1
2 = κ−1

1
2




q
H
2

(
q

1
2 − q−

1
2

)
q−

1
4 q

1
4HY

(
q

1
2 − q−

1
2

)
q−

1
4Xq

1
4H

(
q

1
2 − q−

1
2

)2
q−

1
2XY+ q−

H
2


 . (E8)

We then calculate the l.h.s. of (E7) that

(
X

1
2

)∗
= κ 1

2




(
q

H
2

)∗ ((
q

1
2 − q−

1
2

)
q−

1
4 q

1
4HY
)∗

((
q

1
2 − q−

1
2

)
q−

1
4Xq

1
4H
)∗ ((

q
1
2 − q−

1
2

)2
q−

1
2XY+ q−

H
2

)∗




= κ 1
2




q−
H
2

(
q−

1
2 − q

1
2

)
q

1
4Xq−

H
4

(
q−

1
2 − q

1
2

)
q

1
4 q−

H
4 Y

(
q−

1
2 − q

1
2

)2
q

1
2XY+ q

H
2


 ,

(E9)

where we have used the fact that (κI)∗ = κ−1
I . On the other hand, the r.h.s. of (E7) at the

fundamental representation reads

κ−1

(
R

1
2

(
X

1
2

)−1 (
R−1) 1

2

)
κ= κ−1κ 1

2


 q−

1
4
H 0(

q−
1
2 − q

1
2

)
q

1
4 X q

1
4
H




 q−

1
4
H

(
q−

1
2 − q

1
2

)
q

1
4 Y

0 q
1
4
H


κ

= κ−1κ 1
2




q−
H
2

(
q−

1
2 − q

1
2

)
q

1
4 q−

H
4 Y

(
q−

1
2 − q

1
2

)
q

1
4 Xq−

H
4

(
q−

1
2 − q

1
2

)2
q

1
2 XY+ q

H
2


κ

= κ 1
2




q−
H
2

(
q−

1
2 − q

1
2

)
q

1
4 q−

H
4 Y

(
q−

1
2 − q

1
2

)
q

1
4 Xq−

H
4

(
q−

1
2 − q

1
2

)2
q

1
2 XY+ q

H
2


 .

(E10)

In the last step, we have eliminated κ by the fact that κ is a central element of Uq(su(2))
and thus commutes with all the generators of Uq(su(2)). Comparing (E9) and (E10), we see

that (X
1
2
ab)

∗ = κ−1(R
1
2 (X

1
2 )−1(R−1)

1
2 )baκ with a,b=± 1

2 , which means that the ∗-operation
is closed in the fundamental representation. This can be generalized to any other irreducible
representation by using the recoupling relation (C6) of the generators of loop algebra.
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The isomorphism between loop algebra and Uq(su(2)) can also be generalized to graph
algebra, which we now describe. The graph algebra L0,4 is isomorphic to Uq(su(2))

⊗4 by the
following relations [17]

XI
ν = κ−1

I KIνX
I
ννK

I−1
ν , XI

νν = XI
ν,+

(
X−1

ν,−

)I
,

KIi = XI
1,+ · · ·XI

i−1,+, K1 = e .
(E11)

These definitions are used in (C26). The matrix elements of XI
νν subject to the following

relations [17].

(
R−1

)IJ 1

XI
νν R

IJ
2

XJ
νν =

2

XJ
νν (R ′)

IJ
1

XI
νν

(
R ′−1

)IJ
, (E12)

1
Xνν

2
Xµµ =

2
Xνν

1
Xµµ , (E13)

which also apply for all representations.

Lemma E.3. The isomorphism between L0,4 and Uq(su(2))
⊗4 preserves the commutation

relation of the graph algebra.

(
R−1

)IJ 1

XI
ν R

IJ
2

XJ
ν =

2

XJ
ν ,(R

′)
IJ

1

XI
ν

(
R ′−1

)IJ
,

(
R−1

)IJ 1

XI
ν R

IJ
2

XJ
µ =

2

XJ
µ

(
R−1

)IJ 1

XI
ν R

IJ , `ν ≺ `µ,

(R ′)
IJ

1

XI
ν ,(R

′−1)IJ
2

XJ
µ =

2

XJ
µ (R ′)

IJ
1

XI
ν (R ′−1)IJ , `ν ≻ `µ.

(E14)

Proof. Let us start from the l.h.s. of the equation for `ν ≺ `µ:

(
R−1)IJ 1

XI
ν R

IJ
2

XJ
µ =

(
R−1)IJ 1

(X1,+)I · · ·
1

(Xν−1,+)I
1

(Xν,+)I
1(

X−1
ν,−

)I 1(
X−1
ν−1,+

)I
· · ·

1(
X−1

1,+

)I
·

· (R)IJ
2

(X1,+)J · · ·
2

(Xµ−1,+)J
2

(Xµ,+)J
2(

X−1
µ,−

)J 2(
X−1
µ,+

)J
· · ·

2(
X−1

1,+

)J

=
(
R−1)IJ 1

(X1,+)I
2

(X1,+)J · · ·
1

(Xν−1,+)I
1

(Xν,+)I
1(

X−1
ν,−

)I 1(
X−1
ν−1,+

)I
· · ·

1(
X−1

2,+

)I
·

· (R)IJ
2

(X2,+)J · · ·
2

(Xµ−1,+)J
2

(Xµ,+)J
2

(X−1
µ,−)J

2

(X−1
µ,+)J · · ·

1

(X−1
1,+)I

2

(X−1
1,+)J .

(E15)

The second equality is obtained by using relations (E13) and (E1). And continuing to use both
relations several times and adding (R−1)IJRIJ in the derivation, we have

(

R−1
)IJ

1

XI
ν R

IJ
2

XJ
µ =

2
(

X1,+
)J

1
(

X1,+
)I

2
(

X2,+
)J

1
(

X2,+
)I

· · ·

2
(

Xν−1,+
)J

1
(

Xν−1,+
)I

2

(Xν,+)J
1

(Xν,+)I

×
(

R−1
)IJ
RIJ · · ·

2
(

Xµ−1,+
)J

2

(Xµ,+)J ·

2
(

X−1
µ,−

)J
2

(

X−1
µ−1,+

)J
· · ·
(

R−1
)IJ

×RIJ
1

(

X−1
ν,−

)I
2

(

X−1
ν,+

)J
1

(

X−1
ν−1,+

)I
2

(

X−1
ν−1,+

)J
· · ·

1
(

X−1
2,+

)I

×

2
(

X−1
2,+

)J
1

(

X−1
1,+

)I
2

(

X−1
1,+

)J
.

(E16)
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Continue to use relations (E13) and (E1) several times, we obtain the desired result:

(

R−1
)IJ

1

XI
ν R

IJ
2

XJ
µ =

2
(

X1,+
)J

· · ·

2
(

Xµ−1,+
)J

2

(Xµ,+)J
2

(

X−1
µ,−

)J
2

(

X−1
µ,+

)J
· · ·

2
(

X−1
1,+

)J (
R−1

)IJ
·

·

1
(

X1,+
)I

· · ·

1
(

Xν−1,+
)I

1

(Xν,+)I
1

(

X−1
ν,−

)I
1

(

X−1
ν−1,+

)I
· · ·

1
(

X−1
1,+

)I
(R)IJ

=
2

XJ
µ

(

R−1
)IJ

1

XI
ν R

IJ .

(E17)

For `ν ≻ `µ and `ν = `µ, the proofs are similar.

Lemma E.4. The embedding XI
0 = κ−1

I XI
0,+(X

I
0,−)

−1 = κ−1
I (
∏

ν=1X
I
ν,+)(

∏
ν=1X

I
ν,−)

−1

satisfies the defining relations of loop algebra:

(
R−1

)IJ 1

XI
0 R

IJ
2

XJ
0 =

2

XJ
0 (R

′)
IJ

1

XI
0

(
R ′−1

)IJ
, (E18)

1

XI
0 R

IJ
2

XJ
0 =

∑

K

C [IJ|K]∗XK
0C [IJ|K] . (E19)

Proof. The proof is similar to that of lemma E.3. Starting from the l.h.s. of the equation, we
have

(

R−1
)IJ 1

XI
0 R

IJ
2

XJ
0 =

(

R−1
)IJ

κ
−1
I

1

(X1,+)
I

1

(X2,+)
I · · ·

1

(Xν,+)
I

1
(

X−1
ν,−

)I
1

(

X−1
ν−1,−

)I
· · ·

1
(

X−1
1,−

)I
RIJ ·

· κ−1
J

2

(X1,+)
J

2

(X2,+)
J · · ·

2

(Xν,+)
J

2
(

X−1
ν,−

)J
2

(

X−1
ν−1,−

)J
· · ·

2
(

X−1
1,−

)J

= κ
−1
I κ

−1
J

2

(X1,+)
J

2

(X2,+)
J · · ·

2

(Xν,+)
J

1

(X1,+)
I

1

(X2,+)
I · · ·

1

(Xν,+)
I

×
(

R−1
)IJ

RIJ
(

R ′)IJ (R ′−1
)IJ

·

1
(

X−1
ν,−

)I 2

(X−1
ν,−)

J
1

(X−1
ν−1,−)

I
2

(X−1
ν−1,−)

J · · ·
1

(X−1
1,−)

I
2

(X−1
1,−)

J
.

(E20)

To get the second equality, one needs to apply relations (E13) and (E1) several times and inserts
(R ′)IJ(R ′−1)IJ in the equation. At this point, we apply relations (E13) and (E1) several times
again

(

R−1
)IJ

1

XI
0 R

IJ
2

XJ
0 = κ−1

I κ−1
J

2
(

X1,+
)J

2
(

X2,+
)J

· · ·
2

(Xν,+)J
1

(

X1,+
)I

1
(

X2,+
)I

· · ·
1

(Xν,+)I
(

R ′
)IJ

·

·

2
(

X−1
ν,−

)J
2

(

X−1
ν−1,−

)J
· · ·

2
(

X−1
1,−

)J
1

(

X−1
ν,−

)I
1

(

X−1
ν−1,−

)I
· · ·

1
(

X−1
1,−

)I (
R ′−1

)IJ

= κ−1
I κ−1

J

2
(

X1,+
)J

2
(

X2,+
)J

· · ·
2

(Xν,+)J
2

(

X−1
ν,−

)J
2

(

X−1
ν−1,−

)J
· · ·

2
(

X−1
1,−

)J (
R ′
)IJ

·

·

1
(

X1,+
)I

1
(

X2,+
)I

· · ·
1

(Xν,+)I
1

(X−1
ν,−)I

1

(X−1
ν−1,−)I · · ·

1

(X−1
1,−)I (R ′−1)IJ

=
2

XJ
0 (R

′)IJ
1

XI
0 (R

′−1)IJ . (E21)
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To prove the second relation, we again start from the l.h.s.:

1

XI
0 R

IJ
2

XJ
0 = κ−1

I κ−1
J

1

(X1,+)
I

1

(X2,+)
I · · ·

1

(Xν,+)
I

1(
X−1

ν,−

)I
1(

X−1
ν−1,−

)I
· · ·

1(
X−1
1,−

)I
RIJ ·

·
2

(X1,+)
J

2

(X2,+)
J · · ·

2

(Xν,+)
J

2(
X−1

ν,−

)J
2(

X−1
ν−1,−

)J
· · ·

2(
X−1

1,−

)J

= κ−1
I κ−1

J

1

(X1,+)
I

2

(X1,+)
J

1

(X2,+)
I

2

(X2,+)
J · · ·

1

(Xν,+)
I

2

(Xν,+)
J RIJ ·

·

1(
X−1

ν,−

)I 2(
X−1

ν,−

)J
1(

X−1
ν−1,−

)I 2(
X−1
ν−1,−

)J
· · ·

1(
X−1
1,−

)I 2(
X−1
1,−

)J
.

(E22)

We have applied the relations (E13) and (E1) several times to obtain the second equality. At
this point, we use the definitions of XI

ν,+ and XI
ν,−, then apply the quasi-triangularity several

times and rewrite RIJ12 in terms of the CG maps, which gives

1

XI
0 R

IJ
2

XJ
0

= κ−1
I κ−1

J

(
R ′
13

)I (R ′
23

)J (R ′
14

)I (R ′
24

)J
· · ·
(
R ′
1ν+2

)I (R ′
2ν+2

)JRIJ12RI1ν+2R
J
2ν+2. . .R

I
14R

J
24R

I
13R

J
23

= κ−1
I κ−1

J

(
ρI ⊗ ρJ ⊗ id

)(
∆ ′ ⊗ id

)(
R ′
12

)(
ρI ⊗ ρJ ⊗ id

)(
∆ ′ ⊗ id

)(
R ′
13

)
. . .
(
ρI ⊗ ρJ ⊗ id

)(
∆ ′ ⊗ id

)(
R ′
1ν+1

)
·

· RIJ12
(
ρI ⊗ ρJ ⊗ id

)
(∆⊗ id)(R1ν+1) · · ·

(
ρI ⊗ ρJ ⊗ id

)
(∆⊗ id)(R13)

(
ρI ⊗ ρJ ⊗ id

)
(∆⊗ id)(R12)

= κ−1
I κ−1

J RIJ12(ρ
I ⊗ ρJ ⊗ id)(∆⊗ id)(R ′

12)(ρ
I ⊗ ρJ ⊗ id)(∆⊗ id)(R ′

13) · · ·(ρ
I ⊗ ρJ ⊗ id)(∆⊗ id)(R ′

1ν+1) ·

· (ρI ⊗ ρJ ⊗ id)(∆⊗ id)(R1ν+1) · · ·(ρ
I ⊗ ρJ ⊗ id)(∆⊗ id)(R13)(ρ

I ⊗ ρJ ⊗ id)(∆⊗ id)(R12)

= κ−1
I κ−1

J

∑

L

κIκJ

κL
C [IJ|L]∗C [IJ|L] (ρI ⊗ ρJ ⊗ id)(∆⊗ id)(R ′

12R
′
13 · · ·R

′
1ν+1R1,ν+1 · · ·R13R12)

=
∑

L

κ−1
L C [IJ|L]∗ (R ′

12R
′
13 · · ·R

′
1ν+1R1,ν+1 · · ·R13R12)

LC [IJ|L]

=
∑

L

C [IJ|L]∗XL
0C [IJ|L] .

(E23)

We have, therefore, completed all the proofs.

Appendix F. Some detailed calculations

In this appendix, we collect some detailed calculations used in the main text, which are formu-
lated into lemmas. Lemma F.1 is the proof of (C29). Lemmas F.2 and F.3 are the proofs of (34)
first forUq(su(2))with qp = 1 assuming semi-simplicity, whichwe call the non-truncated case,
then for UT

q (su(2)) with semi-simplicity property, which we call the truncated case. Lemmas
F.4 and F.5 are useful in the discussion of the area operator in section 5.

Lemma F.1. The quantum trace has the following property

TrIq
(
YI
)
= TrIq

((
R−1

)I
YIRI

)
= TrIq

(
R ′IYI

(
R ′−1

)I)
, ∀ YI ∈ End

(
VI
)
⊗ e⊗Uq (su(2)) ,

(F1)

where e is the identity element in Uq(su(2)).
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Proof. Let YI = yI⊗ e⊗ ξ where yi ∈ End(VI) and ξ ∈ Uq(su(2)). We start from the r.h.s.
of the first equation and take the J representation for the second tensor space which gives
ρJ(YI) := yI⊗ eJ⊗ ξ. Then we calculate

TrIq
((
R−1

)IJ
ρJ
(
YI
)
RIJ
)
= TrI



(
∑

a

S
(
R(1)
a

)
⊗R(2)

a

)IJ

YI
(
∑

b

R(1)
b ⊗R(2)

b

)IJ

ρI (g)




=
∑

ab

Tr

(
S
(
R(1)
a

)I
yIR(1),I

b ρI (g)

)
⊗R(2),J

a R(2),J
b ⊗ ξ

=
∑

ab

Tr

(
yIR(1),I

b S−1
(
R(1)
a

)I
ρI (g)

)
⊗R(2),J

a R(2),J
b ⊗ ξ

=
∑

ab

Tr
(
yIS−1

(
(R(1)

a )IS(Rb)
(1),I
)
ρI(g)

)
⊗R(2),J

a R(2),J
b ⊗ ξ

= TrIq
(
ρJ(YI)(S−1 ⊗ id)(RIJ(R−1)IJ)

)
≡ Tr Iq(ρ

J(YI)) ,

(F2)

where we have used the cyclic property of trace and the intertwining property, i.e.
S−1(ξ)g= gS(ξ) ,∀ξ ∈ Uq(su(2)), of the group-like element g (the third equation of (B44))
to obtain the third line and used the anti-homomorphism property S−1(ξη) = S−1(η)S−1(ξ)
of the antipode to obtain the fourth line. As (F2) is true for all representation J, the first equality
in (F.1) is true.

The second equality follows the same logic

TrIq
(
R ′IJρJ

(
YI
)(
R ′−1

)IJ)
=
∑

ab

Tr
(
R(2),Ia yIS

(
R(2),Ib

)
ρ
I (g)

)
⊗R(1),Ja R(1),Jb ⊗ ξ

=
∑

ab

Tr
(
yIS
(
S−1

(
R(2),Ia

)
ρ
I
(
g−1
)
R(2),Ib

))
⊗R(1),Ja R(1),Jb ⊗ ξ

=
∑

ab

Tr
(
yIS
(
ρ
I
(
g−1
)
S
(
R(2),Ia

)
R(2),Ib

))
⊗R(1),Ja R(1),Jb ⊗ ξ

=
∑

ab

Tr
(
yIS
(
S(R(2),Ia )R(2),Ib

)
ρ
I(g)
)
⊗R(1),Ja R(1),Jb ⊗ ξ

= Tr Iq
(
ρ
J(YI)(S⊗ id)((R−1)IJRIJ)

)
≡ Tr Iq(ρ

J(YI)) ,

(F3)

where we have used the cyclic property of trace, the anti-homomorphism property of antipode
and the property S(g) = g−1 (the second equation of (B44)) of g to obtain the second line and
the intertwining property of g to obtain the third line.

Lemma F.2 (flatness for the non-truncated case [7]). The elements χ0
0 and M

I
0 satisfy the

following relation

χ0
0M

I
0 = κ−1

I χ0
0e
I , (F4)

where the complex number κ−1
I gives a quantum correction. When q→ 1, equation (F4) recov-

ers the classical closure condition (11).

Proof. We start from the functoriality relations of holonomies, i.e.

1

MI
0 (R)

IJ
2

MI
0=
∑

K

C [IJ|K]∗MK
0C [IJ|K] . (F5)
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Acting with the character cI0 on MJ
0, we calculate that

cI0M
J
0 = κITr

I
q

(
MI

0

)
MJ

0

= κITr
I
q

(
∑

K

(
R−1

)IJ
C [IJ|K]∗MK

0C [IJ|K]

)

= κI
∑

K

dI
vI
C [̄II|0]

(
R−1

)IJ
C [IJ|K]∗MK

0C [IJ|K] (R ′)
ĪI
C [̄II|0]∗

= κI
∑

K

dI
vI

vk
vIvJ

dkvI
dIvk

dkvI
dIvk

C [K̄K|0] (R ′)
JK̄
C [JK̄|̄I]∗C [JK̄|̄I]

3

MK
0 (R ′)

K̄K
C [K̄K|0]∗

= κI
∑

K

d2K
dIvJvK

C [K̄K|0] (R ′)
JK̄
C [JK̄|̄I]∗C [JK̄|̄I]

3

MK
0 (R ′)

K̄K
C [K̄K|0]∗ ,

(F6)

where we have used the quantum trace identity (F1) in the second line. The fourth line is
obtained by using vK

vIvJ
(R ′)IJC[IJ|K]∗ = (R−1)IJC[IJ|K]∗ and the following relations given and

proved in [7]:

C [IJ|K] (R ′)
ĪI
C [̄II|0]∗ =

dKvI
dIvK

(A)C [JK̄|I] (R ′)
K̄K
C [K̄K|0]∗ ,

C [̄II|0] (R ′)
IJ
C [IJ|K]∗ =

dKvI
dIvK

(
A−1

)
C [K̄K|0] (R ′)

JK̄
C [JK̄|̄I]∗ ,

(F7)

where A is a number. With χ0
0 =

∑
IN

2dIcI0, it follows that

χ0
0M

J
0 =N 2

∑

I,K

κI
d2K
vJvK

C [K̄K|0] (R ′)
JK̄
C [JK̄|̄I]∗C [JK̄|̄I]

3

MK
0 (R ′)

K̄K
C [K̄K|0]∗

=N 2
∑

I,K

κI
d2K
vJvK

C [K̄K|0]
κJκK̄
κĪ

(
eJ⊗ eK̄

) 3

MK
0 (R ′)

K̄K
C [K̄K|0]∗

=N 2
∑

K

d2K
κJκK

C [K̄K|0]
(
eJ⊗ eK̄

) 3

MK
0 (R ′)

K̄K
C [K̄K|0]∗

= κ−1
J eJ

∑

K

N 2dK
dK
κK
C [K̄K|0]eK̄

2

MK
0 (R ′)

K̄K
C [K̄K|0]∗

= κ−1
J eJχ0

0 .

(F8)

The second line is obtained by the completeness of the CG maps:
∑

Ī

κĪ
κJκK̄

(R ′)
JK̄
C [JK̄|̄I]∗C [JK̄|̄I] = eJ⊗ eK̄ . (F9)

Lemma F.3 (flatness for the truncated case). With the truncation, the elements χ0
0 and M

I
0

still satisfy the following relation:

χ0
0M

I
0 = (κI)

−1
χ0
0e
I . (F10)

The complex number κ−1
I gives a quantum correction, one can see when q→ 1 we recover the

classical closure condition.
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Proof. The proof follows [7]. All proofs in (F6) can be translated to the truncated case with the
substitution rules (C46) rather straightforwardly. The only difference is that we do not have the
completeness of the CG maps for the truncated case. The quasi-associativity of tensor product
of representations gives [7]:

eJC [K̄K|0] =
∑

Ī

F (IJK)C [̄IK|J]C [JK̄|̄I] , (F11)

where F(IJK) is a coefficient obtained from a subset of 6j-symbols. With the normalization
of the CG maps, the expression above can be reformulated as

eJC [K̄K|0] (R ′)
JK̄
C [JK̄|L̄]∗ =

∑

Ī

F (IJK)C [̄IK|J]C [JK̄|̄I] (R ′)
JK̄
C [JK̄|L̄]∗

=
∑

Ī

F (IJK)C [̄IK|J]
κJκK̄
κL̄

δ̄I,L̄

= F (LJK)C [L̄K|J]
κJκK̄
κL̄

.

(F12)

Using this property, the l.h.s. of (F10) can be written as

χ0
0M

J
0 =N 2

∑

I,K

κI
d2K
vJvK

C [K̄K|0] (R ′)
JK̄
C [JK̄|̄I]∗C [JK̄|̄I]

3

MK
0 (R ′)

K̄K
C [K̄K|0]∗

=N 2
∑

I,K

κI
d2K
vJvK

F (IJK)C [̄IK|J]
κJκK̄
κĪ

C [JK̄|̄I]
3

MK
0 (R ′)

K̄K
C [K̄K|0]∗

=N 2
∑

K

κI
d2K
vJvK

κJκK̄
κĪ

eJC [K̄K|0]
2

MK
0 (R ′)

K̄K
C [K̄K|0]∗

= κ−1
J eJχ0

0 ,

(F13)

which completes the proof and all proofs can be translated to the truncated case with the help
of the substitution rules (C46).

Lemma F.4. Let ρj1 and ρj2 be two irreducible representations of Uq(su(2)). The matrix s is
defined as sIJ = Trj1q ⊗Trj2q ((R

′R)j1j2) and it is evaluated as [(2j1 + 1)(2j2 + 1)]q.

Proof. A direct calculation gives

Trj1q ⊗Trj2q
((
R ′R

)j1j2)
=

j1+j2∑

J=j1−j2

qJ(J+1)−j1( j1+1)−j2( j2+1) [2J+ 1]q

=

j1+j2∑

J=j1−j2

qJ(J+1)−j1( j1+1)−j2( j2+1) q
1
2 (2J+1) − q−

1
2 (2J+1)

q
1
2 − q−

1
2

=
1

q
1
2 − q−

1
2

j1+j2∑

J=j1−j2

qJ(J+1)−j1( j1+1)−j2( j2+1)
(
q

1
2 (2J+1) − q−

1
2 (2J+1)

)

=
1

q
1
2 − q−

1
2

j1+j2∑

J=j1−j2

q−j1( j1+1)−j2( j2+1)
(
q(J+1)2− 1

2 − qJ
2− 1

2

)
.

(F14)
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Lemma 5.2 and the decomposition Trj1q ⊗Trj2q =
∑

JN
j1j2
J TrJq, due to the semi-simplicity prop-

erty of Uq(su(2)), are used to get the first equality. The multiplicity is 1 for the admissible
tuple ( j1, j2,J) in Uq(su(2)) case. Therefore,

Trj1q ⊗Trj2q
(

(

R ′R
)j1j2
)

=
q−j1( j1+1)−j2( j2+1)

q
1
2 − q−

1
2





j1+j2+1
∑

J′=j1−j2+1

qJ
′2− 1

2 −

j1+j2
∑

J=j1−j2

qJ
2− 1

2





=
q−j1( j1+1)−j2( j2+1)

q
1
2 − q−

1
2

q−
1
2

(

q( j1+j2+1)2 − q( j1−j2)
2
)

=
1

q
1
2 − q−

1
2

(

q2j1j2+j1+j2+ 1
2 − q−(2j1j2+j1+j2+ 1

2 )
)

= [(2j1 + 1)(2j2 + 1)]q .

(F15)

Lemma F.5. ForUT
q (su(2)), the tensor product of two representations ρ

I⊠ ρJ is decomposable
and its irreducible components ρK are all physical representations, i.e. |I− J|⩽ K⩽ u(I,J)

u(I,J)∑

K=|I−J|

vIvJ
vK

TrKq (idK) = [(2I+ 1)(2J+ 1)]q . (F16)

Proof. For the case |I− J|⩽ K⩽ I+ J, the derivation of the sIJ = TrIq⊗TrJq((R
′R)IJ) is the

same as q generic case. For the case |I− J|⩽ K⩽ p− 2− I− J, the proof in the (F14) can
be directly translated to the truncated case. Based on the (F14), we continue the proof for the
truncated case:

∑

K

TrKq

(

vIvJ
vK

idK

)

=
1

q
1
2 − q−

1
2

q−I(I+1)−J(J+1)





p−2−I−J+1
∑

K′=I−J+1

qK
′2− 1

2 −

p−2−I−J
∑

K=I−J

qK
2− 1

2





=
1

q
1
2 − q−

1
2

q−I(I+1)−J(J+1)
(

q(p
2−2p(I+J+1)+(I+J+1)2)− 1

2 − q(I−J)2− 1
2

)

=
1

q
1
2 − q−

1
2

q−I(I+1)−J(J+1)
(

q(I+J+1)2− 1
2 − q(I−J)2− 1

2

)

=
1

q
1
2 − q−

1
2

(

q(2IJ+I+J+ 1
2 )− q(−2IJ−I−J− 1

2 )
)

= [(2I+ 1)(2J+ 1)]q .

(F17)

The third equality is due to qp = 1.
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