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Abstract

In this paper, we develop a quantum theory of homogeneously curved tetrahed-
ron geometry, by applying the combinatorial quantization to the phase space
of tetrahedron shapes defined in Haggard et al (2016 Ann. Henri Poincaré 17
2001-48). Our method is based on the relation between this phase space and the
moduli space of SU(2) flat connections on a 4-punctured sphere. The quantiza-
tion results in the physical Hilbert space as the solution of the quantum closure
constraint, which quantizes the classical closure condition MyMs;M,M; =1,
M, € SU(2), for the homogeneously curved tetrahedron. The quantum group
U,(su(2)) emerges as the gauge symmetry of a quantum tetrahedron. The phys-
ical Hilbert space of the quantum tetrahedron coincides with the Hilbert space
of 4-valent intertwiners of U, (su(2)). In addition, we define the area operators
quantizing the face areas of the tetrahedron and compute the spectrum. The
resulting spectrum is consistent with the usual Loop-Quantum-Gravity area
spectrum in the large spin regime but is different for small spins. This work
closely relates to 341 dimensional Loop Quantum Gravity in presence of cos-
mological constant and provides a justification for the emergence of quantum
group in the theory.
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1. Introduction

Quantum tetrahedron is a key building block in the theory of Loop Quantum Gravity (LQG)
and plays a crucial role in the boundary states of the spinfoam amplitude of LQG. In LQG with
vanishing cosmological constant, the physical Hilbert space of the quantum flat tetrahedron is
the 4-valent SU(2) intertwiner space labeled by irreducible representation K,,’s, each assigned
to a face ¢, of the quantum flat tetrahedron. Furthermore, the space is the solution space of the
quantum flat closure condition, i.e. Zi:l J, =0, whereJ, = (] 1, .73),, are su(2) generators
acting on the vth copy of irreducible representation. The area spectrum of each face ¢, of the
quantum flat tetrahedron is discrete and is characterized by a spin label K.

The quantum flat closure condition is a quantization of the classical closure condition
Zi:l ayn, =0, where a,,n, are the area and unit normal to the face ¢, respectively.
Classically, the correspondence between a set of solutions of flat closure condition and flat
tetrahedron is guaranteed by the Minkowski theorem [1]. This theorem has been generalized to
the curved case [2], where a curved closure condition applies. The curved Minkowski theorem
allows us to reconstruct homogeneously curved tetrahedra (spherical or hyperbolic tetrahedra)
from a family of four SU(2) holonomies M, (v =1,---,4) that satisfy the curved closure
condition

MyM3MoM, = idgy (o). e))

Here, M, is the holonomy around the vth face of the homogeneously curved tetrahedron.
Although the quantization of the closure condition for a flat tetrahedron has been extensively
studied in LQG, the quantization of the curved closure condition and curved tetrahedron has
not been explored yet. The homogeneously curved tetrahedron has played an important role
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in the recent construction of the spinfoam model with cosmological constant [3-5] in 3+1
dimensional LQG. It is anticipated that the quantization of a curved tetrahedron should define
the building block for the boundary Hilbert space of the spinfoam model.

In this paper, we study the quantization of the curved closure condition and a homogen-
eously curved tetrahedron. At the classical level, the phase space corresponds to the solution
spaces of the curved closure condition. The solution space coincides with the moduli space
of SU(2) flat connections on a four-puncture sphere. In our approach, we adopt the Poisson
bracket on the moduli space inspired by [6], and then proceed with the quantization method
known as combinatorial quantization [7-9] as an approach of canonical quantization for the
moduli space of flat connections. A quantum algebra 9J% of observables for flat connections
is obtained on the four-puncture sphere. The quantum group ¢, (s1(2)) emerges naturally as
the gauge symmetry. It turns out that elements in 97 enjoy the invariance under the quantum
group action.

The curved closure condition, when quantized, becomes a quantum constraint that is
imposed on the quantum states to obtain the physical Hilbert space W (we use bold letters to
denote quantum operators) such that

M,M;M,M, ¥ = (U, Vo e w? )
where M,, is the quantum holonomy operator and the constant ¢ has the classical limit

¢ =l By using the representation theory of the quantum algebra t, we demonstrate that
the solution space W° of the quantum closure condition exists and coincides with the inter-
twiner space of the quantum group U, (su(2)). Our result s valid for all g = €’ with 6 € (0,27)

which includes g = it (k € N) being a root of unity. The intertwiner space depends on
four irreducible U, (su(2)) representations K,, € N/2 (and additionally K,, < k/2 for g root of
unity), v = 1,...,4 labeling the four punctures and corresponding to the quanta of the tetrahed-
ron’s areas. The quantization of the curved closure condition is equivalent to the quantization
of the curved tetrahedra, with the solution space of the quantum closure condition encoding
the geometric information of the quantum curved tetrahedra. The main result of this paper can
be summarized by the following commuting diagram:

solution space moduli space of flat connection

classical closure condition .
as the physical phase space

quantization quantization

solution space representation space of quantum algebra

t 1 diti . .
quantum closure condition as the physical Hilbert space

3

For g a root of unity with = /<2T7Tz (k € N), the solution space derived from solving the
quantum closure condition matches the physical Hilbert space of the Chern—Simons theory
with a compact Lie group SU(2) on a compact surface with zero genus and four punctures, and

k+2=12n(2y|A])~" relates the Chern-Simons level to the cosmological constant. Here, ~y

is the Barbero—Immirzi parameter, ¢, = /87 Gh/c?® is the Planck length and A is the cos-
mological constant. For generic g = ', the phase @ relates to the cosmological constant by
0= L2y|A|.

6°p
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One of the geometric information of the curved tetrahedra is the areas a,,’s of the faces of
a curved tetrahedron. The area a, relates to the holonomy M, in the closure condition (1) by
1Tr(M,) = cos (‘%‘au) [2], where A is the cosmological constant. The quantization relates the
area operator to the g-deformed Wilson loop. As a result, the area spectrum labeled by spin

K, in the case of ¢ = ¢ is given by

P 2 (K, +1), 0<K, < 3B 12
spec™” (av) = 9 12y 2 1 1 J = 2~Al )
W_PYEP(KV‘Fi)a §B<K1/<B p7| ‘
And the area spectrum in the case of g = exp(%) is given by
speck” (a,) = v¢2 Kl,+l 0<K,<A :67”—1 (5)
P 2)’ ’ €§7|A|

Where a,, is the quantum area operator for the vth face. The area spectrum is bounded above
and below. This formula is valid for both g root of unit and generic g as a phase. The cosmolo-
gical constant provides a cut-off to the area spectrum. For vanishing cosmological constant (so
the second case in (4) disappears) and large spin K, the area spectrum reduces to yél%K v, which

is consistent with the usual LQG area spectrum 'yég v/ K, (K, + 1) for large K,. However, for
small K, there is a significant difference from LQG with vanishing A. In particular, the area
spectrum here is restrictively positive, whereas the usual LQG spectrum gives a trivial area at
K, =0.

This paper is organized as follows. Section 2 reviews the main ideas regarding classical
curved closure conditions and its solution space, which is the moduli space of SU(2) flat con-
nections. In this section, we also collect the main theorem of [2]. In section 3, following Fock
and Rosly’s idea [10] that one can replace a 2-dimensional surface with a homotopically equi-
valent ‘fat graph’ with an additional structure called ciliation, the graph we choose is called
a simple graph which contains one base point and four loops that are generators of the fun-
damental group on the four-punctured sphere. With this setup, we give the Poisson bracket
of holonomies. The Poisson bracket is defined by the classical r-matrix, which is the solution
of the classical Yang—Baxter equation. In section 4, we prove that the solution space of the
quantum closure condition coincides with the intertwiner space of quantum group U, (su(2)),
which is the representation space of moduli algebra. The intertwiner space is characterized
by four irreducible representations of U, (su(2)) labeled by K,,,v = 1,...,4, labeling the four
punctures and corresponding to the quanta of the tetrahedron’s areas. In section 5, we define the
quantum area operator and calculate its spectrum. We also compare it with the area spectrum
obtained from standard LQG. We conclude the paper in section 6.

2. Classical closure condition of a curved tetrahedron

We start by reviewing the closure condition of a convex homogeneously curved tetrahedron
whose (Gaussian) curvature, identified with the cosmological constant A, can be either positive
or negative. That is each face of the tetrahedron is flatly embedded in a three-sphere S° or a
hyperbolic three-space H?. Tetrahedra in flat space are then obtained when A — 0 in both
cases. To unify the notations, we denote the sign of the curvature as s := sgn(A) and the n-
dimensional homogeneously curved space as E™* hence E>+ = 3 and E*~ = H?. Let us also
fix the notations for the simplices. For a tetrahedron, we label a vertex v and its opposite face
f by the same number and label an oriented edge connecting the target vertex v; and source
vertex v, by the number pair (viv;). The same edge with the opposite orientation is denoted

4
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(a) (b)

Figure 1. (a) A tetrahedron flatly embedded in s3. (b) A tetrahedron flatly embedded in
H>. For both tetrahedra, each one of the four numbers 1,2,3,4 labels a vertex as well as
the face opposite to the vertex. An edge is labelled by a pair of numbers. For instance,
the oriented edge connecting the source vertex 4 and the target vertex 2 is (24) and the
edge with the opposite orientation is (42) = (24)~!. The orientations of the edges are
not specified here.

as (viv2) ™! = (vav1). An illustration of spherical and hyperbolic tetrahedra and the notations
for simplices are given in figure 1. We focus on non-degenerate tetrahedra in this paper.

Each face of a tetrahedron is a triangle flatly embedded in a two-dimensional homogen-
eously curved subspace E>* of E>*. The convexity guarantees that each edge of the triangle
is the shortest geodesic on E>** connecting the two end vertices of the edge. For each face, we
choose a base point p on the boundary and consider the oriented loop ¢ along the boundary
starting and ending at p whose orientation is counterclockwise when seen from the outside of
the tetrahedron. Such an orientation generates an outward direction normal 7i¢(p) to the face
at p (and any other point within the face) by the right-hand rule, which is consistent with the
topological orientation of the tetrahedron. We also denote the same loop with the opposite
orientation as £~

Indeed, a vector at p tangent to the face gets rotated after parallel transport along ¢. The
rotation angle is proportional to the area a, of the face enclosed by ¢. We denote the holonomy
of the Levi-Civita connection along £ in the local frame of p as Oy(p). It is a group element
of SO(3) for both curved tetrahedra embedded in S® and H* and encodes the information of
ay by

0y (p) = exp {s%'am (») .f] €S0(3), |/?%‘az € [0,27] (6)

where J = {J,J5,J3} are the generators of so(3) and the sign s determines in which space
the tetrahedron is embedded. For the convenience of constructing geometrical variables such
as areas, dihedral angles and triple products, we lift the SO(3) holonomies O;’s to the SU(2)
ones M;’s encoding the face areas in a similar way [2]:

My (p) =exp |:S|/3\|agflg (p) ~7"} = cos <|/6\ag> id — isin <Vgag> FdeSu(2), ™

5
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where 7 = —£5 € su(2) and &@ = {01,0,03} are the Pauli matrices. Changing the base point
corresponds to a conjugation action on My(p) by an SU(2) group element, say g,
Mi(p) — Mi(p')=gMe(p)g~', geSU(2). ®)

In the rest of the paper, we only focus on SU(2) holonomies at the classical level and, when
the base point is not necessarily specified, one denotes the holonomy simply by M,.

We have seen that the holonomy is taken in both the fundamental representation and the
adjoint representation. In general, the holonomy can be expressed in an arbitrary irreducible
representation of SU(2). Every element of SU(2) is conjugated to an element in the abelian
subgroup (maximal torus) consisting of all diagonal matrices in SU(2). The holonomy M,
in (7) can be expressed as:

el a 0

g ~1 iBla,m 1
My=g o, |8 =ge g, geSU(2), )
0 e e

where H is the generator of the Cartan subalgebra of s1(2). The right-most expression can be
written in an arbitrary irreducible representation of SU(2). In particular, we are interested in
the trace Tr (M) of the holonomy, which stores the area information of the curved triangle
that £ encircles (see (Ala)). Considering the irreducible representation labeled by I € N /2, the
trace reads

T (Mé) -7 <g’ (ei‘%‘agH)I (g_1)1> _ sin (S(iil(jLAl)aSae) | (10
6

This result is the consequence of the conjugation-invariant property of the trace. We will see
in section 5 that equation (10) has a straightforward quantum counterpart when we express the
quantum version of M, in the I representation.

Changing the orientation of ¢ corresponds to changing My to its inverse, i.e. My—1 = le.
For each curved tetrahedron, there exists a closure condition expressed as
MuMsMoMy =id, M, € SU(2), (11)

where all four holonomies are defined at the same base point. Indeed, it is easy to find a com-
mon point for three of the four holonomies. One then has to parallel transport the base point
at least once through a specified path to define all the holonomies properly. As one of the
simplest examples, choosing vertex 4 in figure 1 as the base point, M;(4),M,(4),M3(4) can
all be defined directly by (7). To define M4(4), we first define M4(2) based on vertex 2 by (7)
and parallel transport it to vertex 4 through the edge (42). We would like to stress here that,
although holonomies in the closure condition (11) are written for the fundamental representa-
tion, they can be generalized to arbitrary irreducible representation / € N/2:

MLMEME M, = id" . (12)

A solution to (11) can be given by introducing the edge holonomy #4,,,, for each oriented
edge (viv2) with h, L = h,,,,. Then

Viva

My = hyzhszhyg
M> = hy1hi3hag
M3 = hyphoihig
My = hapMy (2) hos = hashyzhzihiohos

13)

is indeed a solution to (11). The paths for the solution (13) are illustrated in figure 2 for a
spherical tetrahedron as an example and are the same for a hyperbolic tetrahedron. These paths

6
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Figure 2. The set of simple paths (in red) for holonomies {M;,M>,M3,M4} defined
in (13) with vertex 4 as the base point and edge (42) as the special edge. They satisfy
the closure condition (11).

are called the simple paths as they are the simplest set of paths up to the choice of the base
point and the special edge [2].

Note that, given a curved tetrahedron whose curvature is A, the full geometrical inform-
ation can be described by the four holonomies M,’s. We collect these geometrical interpret-
ations in appendix A. What is important for the rest of the construction is the sign, denoted
by sgn(detGram(M,)), of the determinant of the Gram matrix Gram(Mp) := Gram(cos 6y, ¢, )
defined in (A3).

The key result of [2] is that, reversely, each closure condition written in the form of (11)
with a few extra restrictions identically defines a curved tetrahedron up to translation. This
is called the curved Minkowski theorem for tetrahedra. In the flat limit, it coincides with the
well-known Minkowski theorem for flat tetrahedra which was proven in 1897 [1]. The curved
Minkowski theorem is stated as follows.

Theorem 2.1 (the curved Minkowski theorem for tetrahedron [2]). Given four SU(2) holo-
nomies My’s satisfying the non-degeneracy condition detGram(My) # 0 and the closure con-
dition MyMsM, M| = id, one can uniquely determine a non-degenerate curved tetrahedron in
the following way.

1. Label the sub-simplices of the tetrahedron as in figure 1. The tetrahedron is flatly embedded
in §° if sgn(detGram(M,)) > 0 and flatly embedded in H? if sgn(det Gram(M,;)) < 0;

2. The holonomies M,’s are associated to a set of simple paths with either the base point at
vertex 4 and special edge (42) or the base point at vertex 3 and special edge (31) and the
orientation of the paths determine the orientation of the face surrounded by the path;

3. Each holonomy My encodes the area ay of face £ and the outward direction normal iy (When

parallel transported to the base point) in its parametrization My = exp (sl%‘asz . 7"") with

s := sgn(detGram(M,)).

We refer interested readers to [2] for detailed proof of this theorem. Let us only make
two comments on the theorem. Firstly, the requirement of detGram(M,) # 0 is to exclude
the degenerate curved tetrahedra, which cannot be reconstructed uniquely with holonomies in
the above way. detGram(M;) = 0 does not correspond to a flat tetrahedron for nonzero |A|.
Indeed, the theorem is based on a constant A, while the flat limit corresponds to A — 0, and
the linearization of the closure condition recovers the closure condition for the flat tetrahed-
ron. Secondly, the two choices of pairs of (base point, special edge), i.e. (4, (42)) and (3, (31))

7
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reproduce the same curved tetrahedron. The solution of the four holonomies M,’s in terms of
the edge holonomies #,,,,’s for the first case is given in (13) and those for the second case is

My = hashyrhys
M> = h31hishgs
M3 = h3\M3 (1) hiz = hathishashaihys
My = hyshoihyi3

(14)

These holonomies will be used to describe the moduli space of flat connections on a four-
punctured sphere in the next section, which are closely related to the curved tetrahedron
encoded in {M,}.

3. Moduli space My, of flat connections

In the previous section, we have seen that a homogeneously curved tetrahedron can be one-
to-one described by four SU(2) holonomies satisfying the closure constraint (with some extra
conditions) as given in theorem 2.1. The closure constraint (11) appears in the same shape
as the defining equation for the moduli space of flat connection on a four-punctured sphere,
denoted as ¥ 4 (0 denoting the genus of a sphere). The goal of this section is to show that
the SU(2) holonomies fully describing a homogeneously curved tetrahedron are exactly those
describing the moduli space of su(2) flat connection on a 3 4.

Let us consider a simple graph on X 4 containing one node and four loops ¢, {5, {3, {4, each
of which starts and ends at the node and surrounds a puncture as illustrated in figure 3(a). The
orientations of the loops match that of the two-sphere. (The homotopy equivalence classes of)
these loops generate the fundamental group 7 (39 4) on the four-punctured sphere

71 (Bo,4) = {€1,02,03,04 : L4030l 00, =1} . (15)

The representation of 7 (X 4) can be used to define the moduli space of G flat connections
on X 4 as follows.

M, (0.4,G) := {flat G connection on 4} /gauge ~ Hom (7 ($04),G) /G, (16)

where the quotient in the last expression is by the conjugate action of G. This means the moduli
space of SU(2) flat connections can be represented as

M (£0.4,5U(2)) = {G1,G2,G3,Ga € SU(2) : G4G3G2Gy = idsy(a) } /SU(2),  (17)

where each G, (v = 1,2,3,4) is the SU(2) holonomy of the loop ¢, around the vth puncture.
One immediately observes the form of the closure condition in (17). Remarkably, if we identify
these holonomies {G, } with the holonomies {M,, } that identify a constant curved tetrahedron
as described in theorem 2.1, Mgy (20,4, SU(2)) can be one-to-one mapped to a constant curved
tetrahedron (up to orientation).

M, (£0,4,SU(2)) is equipped with a Poisson bracket induced from the Chern-Simons
theory on the three-manifold ¥ 4 x R

27
{Aia (xl) ,AJ[? (Xz)} = _?6ab€ij5(2) (xl —XQ) , X1,X2 € 20,4, (18)

where A is an su(2)-valued one-form, a, b are Lie algebra indices, i, are coordinate indices on
Yo 4, and the prefactor —27’7 is introduced here to relate to the Chern—Simons theory with
k € N being the Chern—Simons level. We are interested in the symplectic leaves obtained

from M, (3o.4,SU(2)) by fixing the conjugacy classes of the holonomies {G, },—1 23 4 each

8
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l3

(a) (b)

Figure 3. (a) A four-punctured sphere X 4 (surface in red) and the simple graph (loops
in black) on it. Every loop ¢, (v = 1,2,3,4) surrounding the vth puncture in the simple
graph is oriented counter-clockwise when seen outside X 4. (b) A ciliated graph based
on the simple graph in (a). A cilium (in blue) is added between loops ¢; and /4 to fix the
linear order ¢ < €y < #3 < ly4.

labelled by the eigenvalue \,, which relates to the area of the face v in the geometrical inter-
pretation of tetrahedron. We denote this symplectic space as My (X0.4,SU(2)). This is the
phase space of the Chern—Simons theory equipped with the symplectic form known as the
Atiyah-Bott—Goldmann two-form [11-13]:

Q:/ Tr(5A AGA) | (19)
0,4

where 0 is the exterior differential on the phase space and Tr is the non-degenerate Killing
form on su(2).

Quantizing (18) directly leads to an infinite-dimensional quantum algebra which is com-
plicated to deal with. An alternative approach is called the combinatorial quantization [7-9]
whose classical setup follows the description of Fock and Rosly [10]. The idea is to replace the
Riemann surface, here Xy 4, by a so-called ciliated fat graph and represent the moduli space
Miia(20,4,SU(2)) by a finite-dimensional space whose Poisson structure of graph connec-
tions is consistent with the one given in (18). The consistency is checked by the fact that the
Poisson brackets of observables recover those in the continuous theory.

To build the ciliated flat graph on X 4, we start with the simple graph as shown in figure 3(a).
The cyclic order of (half-)links incident to the node is set to be clockwise. On top of that, we
also (randomly) fix a linear order of these links. One can graphically add a cilium sitting at
the node to separate the first and the last links. We say that link /; is of a lower order than I,
denoted as [} < I, or [, > [}, if the cilium sweeps through /; before /; in the clockwise direction.
An example of linear order is illustrated in figure 3(b). The Poisson structure is represented
by the Poisson brackets of holonomies {U;} along the links I’s. The linear order on the node
is important to present the full Poisson algebra [10].

To express the Poisson bracket in a concise way, one makes use of the classical r-matrix
r=y, r((ll) ®rd) e su(2) ® su(2) which is a solution to the classical Yang—Baxter equation
(CYBE) [8, 14, 15]:

[ri2,r13] + [r2, 73] + [r13,723] =0, (20)
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where rp =), e r? @id, rn3=y_,ra ®1d®r§) and r23—z ider) @, We

also denote the transpose of the r-matrix by r':=>" rs ) ra . Under the basis 7, = ZiU“
of su(2), the r-matrix can be expressed as

Fr=rnn+2m. 7., r=nn+27- 0T, 1)

where 74 = 71 = i7,. The full algebra is rather complicated for a general Riemann surface.
Here we only give the two types of Poisson brackets relevant to us and refer interested readers

1 2
to [10] for other types>. Denote the holonomy along a loop ¢ by M, and M, := M, ® id, M, :=
id®M,.

i For a single loop ¢, the Poisson bracket of the holonomy M, reads
12 1 2 21 12 12
{Mg,Mg}—FMgMg‘FMﬂ‘/MgMN'M[M@MZF . (22)

ii For two loops £ and ¢’ with linear order £ < ¢’, the Poisson bracket of the holonomies M,
and M, reads

1 2 1 2 1 2 2 1 1 2
Mo, My p =rMiMy +MeMyrr — MyryrMy — MyorMy: . (23)

As in the lattice gauge theory, the gauge transformation acts at the nodes of the graph. For
a given oriented link /, denote the source and target as s(/) and #(I) respectively. The holonomy
U, transforms under gauge transformation as

u — Ug =8 sl ) Ui 81(D) - (24)

In the simple graph that we are interested in, only one node is relevant hence the gauge trans-
formation acts on the holonomies by conjugation

M, — M{=g 'Myg. (25)

To preserve the Poisson brackets of holonomies, the gauge transformation g, at each node v is
equipped with the following Poisson brackets

12 12 21 12
{gwgv}=gvgvr—rgvgv, {gwgw}=0, vy (26)

It shows that the symmetry group forms a Poisson Lie group. Observables are constructed by
functions of holonomies which are invariant under the gauge transformation. Examples are the
traces of products of holonomies as given in (A1). Our goal next is to quantize the holonomy
algebra given by (22) and (23) as well as the gauge symmetry (25) into quantum algebras and
construct the quantum observables.

Thanks to the expression with the classical r-matrix, the Poisson structure of
M (E0,4,SU(2)) possesses a natural quantization given by the commutation relations in

3 On a general graph embedded on a Riemann surface, a classical r-matrix is assigned to each node and only the
symmetric part of these r-matrices are required to be equal for all nodes [10]. The CYBE (20) ensures that the Poisson
brackets expressed in terms of the r-matrices satisfy the Jacobi identity.

10
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terms of quantum matrices and the quantum version of the r-matrix. The quantum theory is
described based on the so-called quasitriangular ribbon (quasi) Hopf algebra U, (su(2)) which
is a deformation of the universal enveloping algebra of su(2) with a deformation parameter
g € C and some extra algebraic structures, e.g. the *-structure. It is important to note that
U,(su(2)) has different algebraic as well as representation structures for different values of
g. We are in particular interested in the case that g is a root-of-unity, i.e. ¢” = 1 for some
p €N, ,p>2 and that ¢ is a phase but not a root-of-unity, i.e. |g| =1,¢" #1,Vg € N,.
(In this paper, we denote the case of g root-of-unity as ¢” = 1 and ¢ not a root-of-unity as
lg| = 1,¢4" # 1.) U,(su(2)) is a Hopf algebra in the latter case while it is a quasi Hopf algebra
in the former case (e.g. [14, 16]). We collect the necessary knowledge of U, (su(2)) for both
cases and their representation theory in appendix B.

The SU(2) gauge transformation is also quantized to the non-commutative quantum sym-
metry described by the (quasi) Hopf-* algebra I, (su(2)) in order to preserve the commuta-
tion relations. The Poisson brackets of holonomies are quantized into commutation relations of
quantum holonomies, the details can be found in [7-9] as well as appendix C.1. Following con-
struction of combinatorial quantization [7-9], the quantum observables are constructed, which
are conservative under the quantum symmetry on X 4. They are mathematically described by
the invariant algebra. These quantum observables are then used to build up the moduli algebra
which is recognized as the quantum version of Mg, (X0 4, SU(2)). In the moduli algebra, there
is a set of central elements denoted ¢!, for v = 1,...,4 and I runs through all (physical) irredu-
cible representations, from which we define the area operator and find its spectrum in the later
section. They are defined as

cl, = k'Tr) (M) , 27
where MIV is the quantum monodromy for the loop around the vth puncture and Tré is the
quantum trace defined in (B43). For the details of moduli algebra, we refer to appendix C.2,
where we collect the necessary knowledge of quantization of the moduli space ﬁﬁgz. The rep-
resentation of this moduli algebra are constructed in [9, 17]. The representation of the moduli
algebra is realized in the subspace of the tensor product space

T (K1, K>, K3,Ky) = VE' @ VE2 @ V& @ Vi (28)

The representations in the tensor product space are denoted as DX1:K2:K3.K4 for ¢ as a root
of unity and pX-%2KK4 for g as a generic phase, respectively. The representation of moduli
algebra can be obtained by using DX1-52:K5:K4 and pK1.K2:K3.Ke For explicit expressions of the
representation theory and details, we refer to appendix C.3, where we collect the necessary
theorems and knowledge. There in the appendix, it will be much clearer to see the distinctions
in notation for the different choices of q.

Both cases of |¢g| = 1,¢” # 1 and |g| = 1,¢” = 1 are considered without specifying unless
necessary and keeping in mind that admissible irreducible representations are 7 € N/2 in the
former case but only 7 € N/2, 0 < 21 < p — 2 in the latter case. g being a root of unity relates
to the SU(2) Chern—Simons theory by g = exp(%), i.e. p=k+ 2. Both cases can describe
the quantization of a curved tetrahedron.

4. Quantum closure condition and the solution space—the intertwiner space

We have seen in section 3 that, classically, the moduli space Mg (X0.4,SU(2)) of SU(2) flat
connection on Xy 4 is the solution space of the closure condition M4M3M,M; = id where the

1
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M, € SU(2) is the holonomy around the vth (v =1,---,4) puncture of 3 4. On the other
hand, the curved Minkowski theorem (theorem 2.1) states that a set of four holonomies {M, }
satisfying the closure condition uniquely maps to a homogeneously curved tetrahedron whose
faces {{, } carry areas {a, } corresponding to the eigenvalues of {M, }. Here, each face ¢, is
isomorphic to the loop around the vth puncture of ¥ 4. Inspired by LQG, the areas should be
quantized to operators with discrete spectra, each characterized by an irreducible representa-
tion of the underlying algebra, which is U, (su(2)) in our case.

In this spirit, given fixed {a, }, the moduli space is quantized to the moduli algebra Dﬁgz
where each representation label K,, € N/2 encodes the information of (quantum) area of face
¢, Tt is then natural to expect that the representation space of such moduli algebra can be
viewed as the solution space of some quantum version of the closure condition. We illustrate
in this section that this is the case. More precisely, we show that the quantum closure condition
is naturally read out from the construction of the moduli algebra as described in appendix C,
which realizes the left downward arrow of (3) hence closes the loop. Due to the different
definitions of moduli algebra for the |g| = 1,¢” # 1 and ¢” = 1 cases, we will need to define the
quantum closure conditions for the two cases separately. This section and the next contribute
the core of this paper.

Definition 4.1 (quantum closure condition for 14,(su(2))). For case ¢’ =1, given the
quantum holonomy M6 represented in V/ representation defined in (C24), the quantum closure
condition is

M = i, MM;MSM| = &, e, (29)
where ;= g~ 2/0+D is a central element and ¢! = p/(e) is the I representation of the identity
element of U, (su(2)).

For case |g| = 1,¢” # 1, given Lo 4 generators X{ = r; ' X (X(I),_)_1 defined in (C28),

the quantum closure condition is defined as

X! = I XOXEXEXD =k tel (30)

It is easy to see that the above expressions of the quantum closure conditions take a similar
form as the classical closure condition (11). Equations (29) and (30) are the quantized version
of (11) (restricted to V') under the following natural quantization map

ij, for ¢ =1

) . Yu=1,- 4. 31)
X,, for|g|=1,¢"#1

idSU(Z) — Iil_1€17 M, — {

Theorem 4.2 (solution to the quantum closure condition). Given the representation labels
Ki,K>,K3, K, assigned to the punctures of ¥ 4, the representation space WO(Kl,Kg,K3,K4)
of the moduli algebra Dﬁg Y for Uy (su(2)), or the intertwiner space, is and is the only solution
space to the quantum closure condition (29) or (30) in the sense that

My (WO (K1, K2, K3, Ka)) = i e (WO (K1, K2, K3, Ka)) , for ¢ =1, (32)
Xf) (WO (K17K27K37K4)) = Rfle’ (WO (K17K27K37K4)) ) fOl" |q| = 17qp # L. (33)

Proof. We first consider the case of g” = 1. The proof relies on the ‘flatness condition’*

XoM§ = xgr; el (34)

4 We remind the readers that the term ‘flatness’ here means the flatness of the Chern—Simons connection [7] and does
not refer to zero curvature as the flatness in gravity context.

12
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that is proven in [7] for both truncated and before-truncation cases, which we provide in
appendix F (Ilemmas F.2 and F.3).

The goal is to look for the subspace, say H, of T(K;,K»,K3,Ks)=D,V®
W (K,,K»,K3,Ky) s.t.

MyH = r; e/ H. (35)
By (34), it implies
XOMOH = MXOH = w; e XOH., (36)

where the first equality comes from the fact that x is a central element. We look for such H by
testing the action of M x§ on the multiplication space W’ (K, K2, K3, K4) = W of each V sep-
arately, which is simply the representation of M(I) X{ restricted on the space WY. Recalling (C45)
and (34), we immediately have

Mf)xg W = pKi-Ka.Ks.Ka (Mf)xg) lwer = 5omflelidwo = 5011{flelxg wo. (37)

This implies that H# C W°. Since W? is defined from a projection of x i.e. xj W = W?,
(37) also implies M W° = x; '/ W, which means the full space W is the solution of
to (35).

We next consider the case of |¢| = 1,¢” # 1. In this case, we can no longer define X8 but the

proof becomes simpler due to the isomorphism of Lo 4 and U, (su(2))®*. The representation
of X} in T (K, K>, K3,Ky) can be directly calculated:

pRRE R (X0) = k! (o' @ (08 @ 0" @ o @ %)) (RLRIRIR{sRisR14R13R12)
=k (09 (05 20 @ R @ 1)) (AO (R'R)) (38)
=r; ' (p'®15) (R'R),
whose restriction on each invariant subspace W of T (K, K>, K3,Ky) gives
PRI (X0) [we = w7 (' @ ") (R'R) . (39)
Only when J =0 the action of X)) gives us the closure condition. That is,
XoWO = pKr-KoKake (XOY |0 = k7! (0" @ €) (R'R) = k) el [yo = 1] ' WO (40)

This completes the proof that W? is and is the only solution to the quantum closure condition
for both cases of g. O

5. Area operator

Having found the eigenspace W of the quantum closure condition, it remains to show that the
representation labels K, K;, K3, K4 do represent the spectra of quantum areas for completing
the loop of (3). Classically, as described in section 2, the area a, of a face ¢, of a curved
tetrahedron is encoded in the trace of holonomy M, around the vth puncture written in the
fundamental representation (7):

1 _ Al
ETr(My) = cos (6(1”) . 41
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Noting that M, is quantized to the quantum holonomy M,,, we propose a quantization of
cos(%ay) with a natural spectrum labeled by K,, € N/2, denoted as specX” (Recall the geo-
metrical interpretation of the holonomies in (7)):

‘A| |A| Ky . KI/Z K, 172 1/2
Ccos (7&1/ — COs | ——spec (ay) L= 72 D (Irq (\/lu ))
D™ (C,I,/z) y for qp = (42)

v (Ci/z) , forlgl=1,4"#1

[ TE STE

We require that the area spectrum only takes value in a finite interval
Y spect a,) € 0,7) 43
It can also be understood by defining the area operator with the inverse function:

ng'specK” (@,) := arccos [%DK" (Tr}/2 (M}/z))] , (44)
where arccos(x) € [0,7) is single-valued. The area spectrum takes a simple form, which is

given in the following theorem.

Theorem 5.1 (spectrum of the area operator). Given q = ¢ being a phase with 6 € (0,27)
and K, € N/2 characterizing the area spectrum speckv(a,) defined in (42), speck”(a,) is
given by

6 6 1 (2n
~ 7(2Kl/+1)77 0<K1/<* -1
SpecKV(a”)_{ﬁ' C e e D s )
my 2m - QK+ D3], 5 (F-1) <K <3 (F-1)
Ifq= eits (k € N) is a root-of-unity and K,, < &,
specks (a,) = > (2K, +1)——, 0<K, <X 1, 4 (46)
viay) = — v y shvxz;, V=1, ,4.
P IA] k+2 2
Proof. The area spectrum comes from the direct calculation of DX» (c,l,/ 2) for the case ¢” =1

and pXv (c,l/ 2) for the other case, which has been revealed in (C31) and (C34) followed by the

substitution rule (C46) for the former case. Therefore,
1 1 1 1
DK (cs) =5 (Tr}/z ®Tr§”) (R'R), p& (cs) =5 (Tr}/z ®Tr§”) (R'R). (47

To proceed, we use the results in lemmas 5.2 and 5.3 below, which give the same result for K,
representation of ¢/, for any ¢ = ¢ For the case |g| = 1,47 # 1, we calculate that

1 1 V%VK” V%VK”
p1/2 ®pKU (R/R) — pKu"l‘i (R/R) +pKy_§ (R/R) = Ki_i_lld[(u""% + ﬁldku_% . (48)
vrt2 vro2

For the case ¢**2 = 1, on the other hand, the same expression holds only when K,, + % < %,

leading to u(K,,, %) = K, + 3. In this case,

1 1 1 V%VK” V%VK”
p? ®pKU (R/R> _ pKU+§ (R/R> +pKV—§ (R/R) = ﬁldl( 1+ 711(1,( _1. (49
V vt3 vTa VKU—§ vo2

14
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The irreducible representation of the ribbon element v takes the form v/ = g~/U+1) (see lemma
B.1). The quantum trace of the identity matrix simply gives the quantum dimension of the
representation space i.e. Trf{ (id;) = d; = [2I + 1],. Combining these facts, (47) reads

3 Ky (Ku+] —Ky (Ky+1
D) = (o) = L (TR e
d, \ g Rt Do) St T ) Mo

1 _K,—
(4 2K +2,+q ' 2K,

= 2K, +1], (50)
[2(2K}/+1)]q ei(zlg,-&-l)@ _e—i(ZKU-H)G n((ZKl,-i-l)@)
= 2K, +1], T JICK AN _ -k e T sin (1 (2K, +1)0)
=2cos (% (2K, +1) 9) ,
where we have used the definition of a quantum number [n], := "f —4 i and that ¢ is a pure
g2 —q 2
phase.
As a special case when ¢“*2 =1 and K, = k/2, u(K,, 2) = K, — 1/2 and hence only one
representation pX» 2 is left in the recouphng theory. This means, 1nstead of (49), we have
K,
ph @ (RR) = pft (R'R) = L ridy,
V 2
_1 _1 1
= g1+ K, =q 3 (k42) [k]q +k+2],4% = 2k +2], (51)

—1(k+2)
1 q 2" [k] k+1
= DKv (c2 ) =—— 9 =2cos[ ——7 |,

b k+1], k42
which is the same as the result of (50) when K,, = k/2 and 6 = k 5 - Adding the factor i AI , by
definition (44)—(46) are proven®. O
As described in section 2, the holonomies can be written in an arbitrary irreducible repres-
entation. This allows us to read the area spectrum from any irreducible representation. Recall

that, classically, the area a,, of a face £, of a curved tetrahedron is encoded in the trace of the
holonomy M), around the vth puncture written in an arbitrary representation (10):

sin mau
Tl’l( ) Tl’1< (e'(’a”H)I(gl)1> _ ((21+ 1) ) .

s1n<| | )

As a natural generalization of (42), we define the quantization of the r.h.s as

sin ((21+ 1) Alspect (a )) i D (), forg’ =1
siIl(lA| speckv (au)) P (Trq (My)) - P (ey) . forlgl=1,4"#1 " 43

(52)

With the results from the lemmas 5.2, 5.3, F.4 and E.5, when g = e?isa phase, we have

[(27+1) (2K, +1)],  sin((2141) (2K, + 1) 50)

DX~ (c;) = p* (c}) = (54)

2K, +1], ~ sin((2K, +1)10)
5 More generally, DXv (c ) (62) W for any ¢ € C, which is proved in lemma F.4.
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Therefore, the spectrum in (45) also satisfies (53). This shows that equation (45) defines the
quantization of area independent of the choice of representation I for the closure condition.
Below we prove the lemmas that are used in the proof of theorem 5.1.

Lemma 5.2. Let p' and p’ be two irreducible representations of Uy (su(2)) with ¢° # 1 with
highest weights I and J respectively. Let pX be the irreducible component with the highest
weight K in the decomposition of the tensor product of representations p' and p’. Then

1+J
(Wer)®RR) =Y Midg. (55)
k=1—s 'K

Proof. Since U,(su(2)) with g” # 1 possesses the semisimplicity property, for every admiss-
ible tuple (1,J,K), the tensor product of representations is decomposable, i.e. (p! X p’) (&) =
Z?J‘ 15 PX(€). Now, we will show that the action of p' ® p’(R'R) on each subspace V¥ is
given by V’Z’ idg, where idg represents the identity map of VX. It is important to note that R'R
commutes with A(§), V& € Uy (su(2)). By Schur’s lemma, the restriction of R’R onto the sub-
space VX is equal to the identity map idk up to a factor.

We now show that this factor is Vé—:’ Recall that the defining relation of the ribbon element v:
A(v) = (R'R)~!(v®v) or equivalently (R'R)A(v) = (v®v). Taking the presentation p’ @ p’
of the latter relation, we get

p'@p" (RRA(V)=p'@p" (R'R) p'@p" (AW) =p' @ p' (vav)=vy,(id;®id)) . (56)

This relation holds for each subspace VX, which gives

VK (R/R);‘(/ = V[VJidK — (R R)K = wld]{, (57)

VK
where (R'R)¥ denotes the p! @ p’ representation of R’R restricted to the subspace VK and
we have used the definition p!(v) = v;id; of the representation of the ribbon element and that
p' @ p’(A(v))|yx = vkidg. We have, therefore, completed the proof for the lemma. O

Lemma 5.3. For the truncated case U, (su(2)) with g = et consider two physical repres-
entations, p' and p’, of U} (su(2)), where I and J can take values in half-integers from 0 to
%. Let pX represent the irreducible component in the decomposition of the tensor product of
these representations, p' and p’. Applying the substitution rule (C46), we obtain the following
identity

u(l,J)
1 J / (] J oo 1\ Vivy.
(@ 0") (R'R) = (o' @ ") (¢ (R'R)" (") )—K_EHVK ide.  (58)

Proof. We follow the same idea as we used to prove the lemma 5.2. For the truncated algebra
L{qT (su(2)), the semisimplicity property holds, i.e.

u(1,J)

(PR = > P Vel (su(2)), (59)

K=|I—J|

where u(1,J) = Min(I+ J,k — I — J). Moreover, the defining relations for the ribbon element
and quasi-triangularity still hold [18]:

AW)=RR) " (vev) , (RR)AE)=AERR), (60)

16
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where R and R’ satisfy the quasi-Yang-Baxter equation. For ¢/ (su(2)), the action of p' ®
p’(R'R) on each subspace V¥ is given by "“id as

_ _ Vivy. _ Vivy.
(0" @ ") (P(R'R) (0™ ") lvx = E (R'RYZ (o™ )Y =<ﬂ5¥v'7:1d1<(<ﬂ hy =v’7’1dK. 61)

By combining the semisimplicity property of L{qT (su(2)), the proof is complete. O

We compare the area spectrum in (45) and (46) to the area spectrum in LQG. The stand-
ard area spectrum in 4D LQG without cosmological constant takes the form speck” (a) =
v62\/K, (K, 4 1), where K, is the SU(2) spin. Identifying K, to the 4, (su(2)) spin and requir-
ing (45) and (46) consistent with the standard LQG area in the limit 6, |A| — 0 and large K,

(i.e. the area grows linearly in K,,)° results in that 0 = ££2|Al, or k+2 = #"TA' € N in the
p
2mi

case of g = exp(m). k + 2 here equals to the integer level in 341 dimensional spinfoam
model with cosmological constant [3, 5, 19]. The area spectrum (45) in the case of ¢ = et
reduces to

A 76 Ky +3) s 0<K, <3;B 127
spech <ay>={u::( ekorl), B<k, <p PTmm ol @
W_Vp( vt3), 3B<K,< VIA]
And the area spectrum (46) in the case of g = exp(%) reduces to

1 6
speckr (ézl,):fyﬁg (Kl,+2> , 0<K, <A, A:WTM—I. (63)
P

As a key difference from LQG with vanishing A, the area spectrum is bounded from above,

6w

. 64
Al (64)

speck (a,) <

Although the resulting area spectrum is consistent with the standard LQG result for A — 0

and large K, a noticeable difference shows up in the regime of small K, . In particular, when

K, = 0, the area does not become trivial, in contrast to the area spectrum in the standard LQG.

Indeed, the area spectrum here is restrictively positive, and in both cases of g = exp(k%) and
i0

qg=e",

1
Min [spec®” (a,)] = 5765. (65)

Interestingly, our result (62) is the same as the area spectrum obtained in e.g. [20], which
suggests the value of v different from the standard LQG by the black hole microstate counting.

6. Conclusion and discussion

In this work, we show that the solution space of the quantum curved closure condition coincides
with the intertwiner space, W(K;,K»,K3,K4) of Uy (su(2)) with the quantum deformation
parameter ¢ being a phase for both cases |g| = 1,¢” # 1 and ¢” = 1, where K, is the U, (su(2))
spin. Inspired by the LQG, the geometrical quantities are quantized as the operators such that

6 The second case in (45) disappears in the limit 6 — 0.
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their actions on the Hilbert space give discrete spectra. Classically, the area a,, of the face ¢, of a
curved tetrahedron can be calculated from the holonomy M, surrounding ¢, in the fundamental
representation by %Tr(M,,) = oS (‘—[g‘a,,). Moreover, we generalize the holonomy M} in the
classical theory to arbitrary representation / and the area is also related to the trace of the
holonomy. In the quantum theory, the area spectrum is discrete and bounded from above and
below.

Recently, an improved spinfoam model was proposed [5]. This model formulates the 3+1
dimensional Lorentzian spinfoam amplitude with a non-zero cosmological constant in terms of
the Chern—Simons theory with the complex group SL(2,C). It has been demonstrated to pos-
sess finite spinfoam amplitudes and exhibit the correct semiclassical behavior. The amplitude
involves sum over quantum areas jr, and a natural cutoff is provided by the Chern—-Simons level
k. The space of boundary data can be identified as the phase space of shapes of a homogen-
eously curved tetrahedron, which is equivalent to the phase space of SU(2) flat connections
on a 4-punctured sphere. The quantization of the space of boundary data is then the moduli
algebra that we study in this paper. The corresponding Hilbert space is the intertwiner space
WO(K1,K2,K3,K4) ofl/lq(su(2)).

Given that the boundary data of the spinfoam model is semiclassical, to gain a clearer
understanding of the relationship between the quantization and the boundary data, it becomes
interesting to construct coherent states in W°(K;,K>,K3,K4) parameterized by phase space
variables. The result on this aspect will be reported elsewhere [21].

This paper makes the first step toward reformulating the LQG kinematics in order to make it
compatible with the spinfoam theory with nonzero cosmological constant. This work focuses
on the quantization of a curved tetrahedron, which is at the same level as a single intertwiner
in the LQG Hilbert space. We have to generalize the quantization to arbitrary 3D cellular
complexes to reformulate the entire LQG Hilbert space and geometrical operators. The res-
ult in [22] shows that the moduli space of SU(2) flat connections on higher-genus surfaces
closely relates to the LQG phase space on cellular complexes. Then we expect that applying
the combinatorial quantization to flat connections on higher-genus surfaces should lead to an
interesting reformulation of the LQG kinematics.
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Appendix A. Geometry of a homogeneously curved tetrahedron in terms of
holonomies

In this appendix, we collect the geometrical information of a homogeneously curved tetrahed-
ron stored in the holonomies M, M,, M3 and M4 which can be decomposed in the way of (13).
These materials can also be found in [2].

For convenience, let us first introduce the half-traces of the products of one, two and three
holonomies, respectively

1
<M¢> = ETI‘(M@) s (Ala)
(Mg Mes) = 3Tr (M Me,) = T (M) Tr(M) (A1b)

1 1 .
<M¢1M52Mg3> = ETI‘(M&M@M&) — Z [TI‘(M@I)TI‘(M&M(}) -‘rCyCllC] (Alc)

1
+ ZTI‘(M&)TI‘(M&)TI‘(M&).

The half-trace (Ala) of one holonomy M, around a face ¢ encodes the area ay of the face;
the half-trace (A1b) of two holonomies M/, and M/, encodes the dihedral angle 6,,¢, of the two
faces ¢; and /¢,; the half-trace (Alc) of three holonomies My, ,M,, and M/, encodes the triple
product of the normals (7ig, X 7ig, ) - fig, to the three faces £;,¢,,¢3 calculated at the common
vertex of the three faces. Explicitly,

cos (sag) = ep(My), (A2)
B €o,€0,(Mp, My, )

VAR A
€, €0,€0, (Mo, My, My;)

\/l - <Mll>2\/1 - <M52>2\/1 - <M€3>2 '

COS@glg2 L= flg] ~ﬁgz = (A3)

(flgl X fl@z) ~f153 = (A4)

The signs {e; = +} are fixed by requiring the following inequalities for triple products of the
normals evaluated at vertex 4 (referring to figure 1):

(m xmp)-n3 >0
(fl] X fl3) -ng >0
o . : (AS)
(nZan)-Mlm >0
(i3 X i) - M3 'y >0
These four inequalities pick four signs each associated to a face ¢ of the tetrahedron which
corresponds to €, = sgnsin(|s|ay). Therefore, the Gram matrix Gram(6y,,,) for a tetrahedron

given by the dihedral angles {cos 6y, ¢, }, hence Gram(M;) used in theorem 2.1, can be written
in terms of the holonomies using (A3).

Appendix B. Mathematical tools: I/, (su(2)) and representations

In this appendix, we review concisely U,(su(2)) for both cases |¢g| =1,¢" # 1 and ¢’ =1
algebraically and their representation theories.

19
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B.1. Uy(su(2)) with |q| = 1,9° # 1 as a quasitriangular ribbon Hopf-« algbera

Let us start by introducing the Hopf algebra U, (su(2)) with |g| = 1,¢” # 1. It is generated by
identity e and H, X, Y subject to relations:

wl—| NI
[SE ISR

[H.X|=2X, [HY=-2y, [x¥=2
q

The first two commutation relations can be equivalently written in terms of the q% (and its
. H
inverse g~ +):

9> —4q > (B1)
7q_

qiXqg ¥ = q%X, qiYq i =qy. (B2)

The definition of ¢, (su(2)) is completed by its co-algebra structure and an antipode. The co-
structure is defined as

Ale)=e®e, A(qi%):qi%(@qi
AY)=Y®qi+q7 @Y, cle)=c(d")=1, e(X)=e(¥)=0,

where € : U, (su(2)) — Cis the counit and A : U, (su(2)) — U, (su(2)) @ U, (su(2)) is the cop-
roduct satisfying the co-associativity,

YA =X04q" 147 X,
(B3)

(Aocid)oA=(idoA)o A. (B4)
The antipode S : U, (su(2)) — Uy(su(2)) acts on the generators as
S(a¥)=a7t, S =-g'X, S(=-q7tv. (BS)
It is compatible with the coproduct and counit through
SoS(e) e =D e (e2) =e(e), Vel (sh), (B6)
a a

where A(§) =3, iV @ ¢ Note that the antipode is not an involution. Instead, the follow-
ing relation holds

S2(€)=qeq™T VEEU,(su(2)). (B7)

The Hopf algebra U, (su(2)) is of quasitriangular type. The quasitriangularity is realized by
a quantum R-matrix R € U, (su(2)) ® Uy(su(2)) which is a solution to the quantum Yang—
Baxter equation (QYBE)

R12R13R»3 = Ro3Ri3R); . (B8)

Here we have used the same notation as for the classical r-matrix, i.e. Rjp = ZGRL(,U ®

R,(lz) QLR3z=), Rfll) ®1 ®R£2) andRy3 =5 1® Rél) ® Rflz). The permuted coproduct A’

is related to A through R:
A':=coA=RAR™', (B9)

where o is the permutation operator i.e. o(§ ®n) =n®E,VE,n € Uy(su(2)). Similarly, we
also denote the R-matrix with two vector subspace permuted as

R':=coR=> RPaRD. (B10)
a
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There are some properties of R-matrix that we use to derive the theorem of this paper:
(S®id)(R) = (id®S)(R)=R™", (S®S)(R) =R,
(e®id) (R) = (id®e€)(R) =e¢, (e®id)(R")=(id®e)(R")=e.

The deformation parameter g = e” in U, (su(2)) is inherited by R hence R = R(h). Taking the
h expansion of R(k), the classical r-matrix (21) is recovered in the first-7 order:

(B11)

R(h)=1+hr+0(R?). (B12)

In this sense, (B8) is the quantum version of the CYBE (20). The R-matrix for U, (su(2)) is
defined as

=

. n
(qi 7(/]7 ) —n(n 1 2 e—e n
R= %TC] (414 g (HOH)+ (He—eH) (xn ) yny (B13)
ne

(ST
(S

where [n] := 43=4—

q9%2—q
o=np=1.

U,(su(2)) is the Hopf *-algebra consisting of the Hopf algebra U/, (sl,) for |g| = 1, and the

x-structure defined as:

is called the g number and [n]!:=[1][2]...[n] for n>1 while

|

H'=H, X'=Y, Y =X. (B14)
It follows that (R)* = R~'. The *-operation is an anti-homomorphism and can be viewed
as analogous to the conjugate transpose operation for matrices in the sense that (A{n)* =
M*€F VA € C,€&,n € Uy (su(2)), where the bar denotes the complex conjugate. Therefore, in
the case of |g| = 1, H* = H can be equivalently written as (¢=2 )* = g¥2.

We also require that the -operation on U, (su(2)) ® U, (su(2)) behaves as [8]

E@n) =" 0, VEneU,(su(2). (B15)
Moreover, the following properties hold for a general element & € U, (su(2))
S(E) =S, () =c(©), A(E)=(A()". (B16)

Equations (B15) and (B16) lead to a simple result for R under the *-operation: R* = (S®
id)(R) =R, =R

To describe U, (su(2)) as a ribbon Hopf algebra, we also introduce a ribbon element v €
U,(su(2)) which is an invertible central element defined as

V=uSu), SO =v, ew)=1, AW =RR) " (vev)=(vev)(R'R)"" with
w:=>_s (RS”) RW. (B17)

It has been known that such a ribbon element exists for ¢, (s1(2)) [23]. The *-operation acts
on the ribbon element as v* = v~

In fact, the above construction can also be generalized to the case of a generic g € C. The
only difference is that x-operation is defined differently for the tensor products of U, (s1(2))
[7-9]. That s, for generic ¢, (£ ®n)* = &* @ n*,VE,n € Uy (su(2)) and the follow-up formulas
would be changed.
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The representation theory.
Let us also give the representation theory of U, (su(2)) with |g| = 1,4” # 1. In this case,
U,(su(2)) is a semi-simple Hopf algebra and its representation is a deformed version of
that for su(2). For a unitary representation p : U,(su(2)) — End(V) on a Hilbert space V,
(p(&))* = p(&*) holds for all £ € U, (su(2)).

The tensor product of two representations p; and p, is expressed in terms of the
coproduct A:

PR (&) =(pr@p2) (A(L)), VE€U,(su(2)). (B18)

Note that the tensor product of two unitary representations is not unitary due to our
choice (B15) of *-operation on U, (su(2)) ® U, (su(2)). Instead, we have

(p1@p2) (A (7)) = ((m @ p2) (A(E)))", (B19)

where A’ is the permuted coproduct defined in (B9).

For every equivalence class [J] of irreducible representations (with label J € N/2 being a
half-integer), there exists a unitary representation p’ with carrier space V.

The unitary representations of the 4, (su(2)) generators act on the basis of V/ as

o (at)en=at el (B20a)
P (X)el = \/[J—m]q[J+m+ 1,1 (B20b)
o (Ve = \/[J—i— ml, [ —m+1],¢_,. (B20c)

The representation of the unit element e in V/ gives the identity matrix of dimension 2J + 1,
ie. p’(e) =1id;.

Due to semi-simplicity, the tensor product p’ X p’ of unitary representations is decompos-
able into the direct sum of irreducible representations

+J
(=)= P o~ (B21)
K=|I-J]|

This decomposition determines the Clebsch-Gordon (CG) maps C[LJ|K]: VI @ V' — VE up to
normalization,

CIIIK] (o' ®p") (€) = p" (&) CUIIK], V€ € Uy (su(2)), (B22)
Taking the *-operation on both sides of (B22), on can define another CG maps C[IJ|K]*:VK —
Vie Vv,

(P @p’) A" (&) CIWIK]" = CIUIK]" p* (&), VE €Uy (su(2)). (B23)
Denote RV := " pf (Rgl)) ® p’ (Rff)) as the representation of R in End(V/) @ End(V). Define
RY .= o/ o RM with ¥ : V! @ V/ — V/ ® V! being the permutation operator. R is called the

braiding and it furnishes an intertwining relation between p! X p/(€) and p’ X p!(€) in the way
that

(0" ®p") (R =R (p"®p’) (€) . (B24)
It can be proven by taking the representation of the relation (B9), which gives
(P @p) A" (OR =R (p'@p")AE). (B25)

Permuting the two representation spaces for both sides, one obtains the relation (B24).
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Denote the representation of the ribbon element v in V as v/ := p/(v). Since v is a central
element, v/ is simply a complex number by Schur’s Lemma. By the definition of u defined
in (B17), the following relation holds [24]

(&) =utu™" VEeU,(su(2)). (B26)

Recalling the relation (B7), q*% u=gq- % u must be a central element. Its invertibility is obvi-

ous from the definition. The element v satisfies the defining relations of a ribbon element.
B H

Therefore, the ribbon element v =g~ 2 u.

Lemma B.1. The ribbon element v = quu in the irreducible representation p’ has value

g/,

ol

Proof. By Schurs’ lemma, the irreducible representation of the central element v =ug ™2 on
space V/ is proportional to the identity id’ times some complex factor. We can find the complex
factor by the actions of U, (su(2)) generators on the highest weight vector |/, J), which are the
special case of (B20) and read

QD =410y, X|J,J)=0, Y7, J) =\ /(2] 10,0 = 1). (B27)
Then
1 _1 !
H H_H i (qi—q E) 1 2 H
W) =ugT ) =g T | D RGRIAT 0 RIS Ob Ol IR R V)

=gV, (B28)

where we have used the definition of u given in (B17). The first term in the square bracket
is the /=0 term of the summation in the R and the second term acts on |J,J) trivially due
to (B27). O

Take its square root and define k; by k7 = v/. The expression of ; in the irreducible rep-
resentation p’:

Ky =g /U (B29)

Here, we have chosen &; to be the positive square root of v/ so that the formulas in the rest of
this section, e.g. (B34), take the forms that matches the literature [7-9]. The normalization of
the CG maps is given by a set of x;’s and we prove it (in a different way from the literature)
in the following proposition.

Proposition B.2. Let the CG maps C[1J|K| and C[IJ|K]* for U,(su(2)) (|q| =1,¢" # 1) act
on the vector space bases as

I J|K
C[l|K] (e, ®e)) Z( I ) ek, (B30a)
k q
* I J|K I J|K
ClUIK] (e,’f):z<m . k)e@@eﬁzZ(}ﬂ . k) € ©e,
m,n q m,n q-

(B30b)
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. I J|K I J|K . .
with ( m ol )q and < m ol )ql being complex coefficients. Assume the fol-
lowing normalization and symmetry of the coefficients:
I J|K I J|K
Z ( m n k ) ( m n kl ) = 5[(](/5](](/ ) (B31)
m,n q q
I J|K I J|K
Z( m nlk ) ( m' n' k > - mnz/511n/7 (B32)
k q q
I J| K _ o \HK J I | K
(m nk)l_( 1 <n mk)' (B33)
q q
Then the CG maps satisfy the following normalization relation
CIIK (R K] = 6k L id . (B34)
KK

Proof. We first prove that ( ’111 i I]j ) satisfying the conditions (B31)-(B33) takes the
q

same form of the CG coefficients for I, (su(2)) with g real.
Let o/ ® p’(A(X)) act on the basis vector e/, @ e} in V! ® V/. According to (B30a), one

obtains
cuns (¢ 000) (o)) =32 (o immiemiit uFy 1]
¢ q

_m [ 3 1 J K
+q 2 []—n]q[]+fl+”q( m onel |k > )e,’f.
q

(B35)

By the definition (B22), this is equivalent to

P (X) CIIK] (e, @e)) = \/[K—k}q [K+k+1], (

I J|K
- k)ef+1. (B36)
q

Similarly, replacing pX(X) by pX(Y), a similar identity can be obtained. These are exactly the
recursion relations of the CG coefficients of U, (su(2)) with ¢ real [25]:

I J K
n

_m 1 J K
K K 1 = 1
KT A, [K+k+ ]( o il > g \JUEn, TFn+ }q( m onEl | k )
q q

')

q
(B37)

1 J
mF*Fl n

+q;\/[1im]q[lq:m+1]q<

The recursion relation and the normalization (B31) and (B32) of the coefficients
I J|K
m n

k
with ¢ real:

J1 )2
m;  mp

> proves that it takes the same expression as the CG coefficient of U, (su(2))
q

1/2

1\14 ) = A(jjad) ([zJ+ 14+ M] T = M)A mal Gy —mal s A-ma] s — mzL,!)
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bt qi(j, +./':—J)(.i.+jz+l+l)+"'"'3%q%:(j‘ Ha D) (1)
z:; [s], LU+ = I = 5], Ly = mu = 8]y + mo = s] M — o +my = 8] U —ji —ma 5],
(B38)
where A(j,j2J) is defined as
. s 1/2
- Ui =i+ =i +il i+ =),
A(jud) = R <) (B39)
V+ji+j+1],!
The CG coefficients satisfy the following relation [26]
\"™" I J|\K\ _, -k SkE+D—10+)—ig+1) (I 1T | K

;(R )m/n/(m n k) = (=1 7 n m' |k q.(B40)

Combining (B40) and the normalization (B31) of the CG coefficients, one proves the nor-
malization relation (B34). O

From the normalization and A(e) = e ® e, we obtain completeness for CG maps:

S R CIK] ClK] = @ (B41)
ra

Due to the fact that the recoupling of CG coefficients produces the ‘6j-symbols’

{ II< Z g } of U,(su(2)) [25], the sequence of CG maps follow the identity
q
ClIPILICUKIP| = > { If Z S } C[QK|L] C[1J|Q] . (B42)
|[—J|<Q<I+I q

Such an identity takes the same shape as in the SU(2) recoupling theory but the CG maps and
the 6j-symbols are all g-deformed.
We define the quantum trace of any element X’ € End(V’) by

Tr) (X)) =T (X0 (2)) (B43)
where g := u~'v is a group-like element satisfying

Alg)=gog, g=g "', Sk=g¢" g5=5"¢s. (B44)

The antipode S of U, (su(2)) furnishes a conjugation in the set of equivalence classes of irre-
ducible representations. We use [J] to denote the class conjugate to [J]. Another definition of
quantum trace is to use the CG map C[JJ|0] : VW @ VW — 0 [7]

2 _
7l (X') = %C[7J|O] X (R cpo”. (B45)

This two definitions of quantum trace are equivalent. The proof is given in [7].
. . . H . H .
The group-like element g is simply ¢~ 2 since v = ug~ 2. The quantum trace of id; defines
the quantum dimension, denoted as d;, of the irreducible representation p’ :

1+J
dJ:Tré(id])Etr’(q’g):[2J+1]q, didy= Y dx. (B46)
K=|I-J]|

In general, quantum dimension d; is different from the dimension of the carrier space V. The
numbers V' and d; are symmetric under conjugation, i.e. v/ =/ and d; = d; [7].

25



Class. Quantum Grav. 41 (2024) 165008 M Han et al

B.2. L{qT (su(2)) as a weak quasitriangular ribbon quasi-Hopf-x algebra

When ¢ is a root-of-unity, say ¢” = 1 (p € N*,p > 2), U, (su(2)) is no longer a Hopf algebra
but a quasi-Hopf algebra. More importantly, the semi-simplicity is lost, bringing complexity
to its algebraic structure and the representation theory. However, one can construct a ‘trun-
cated algebra’, denoted as U] (su(2)), that is canonically associated with U, (su(2)) with ¢
a root-of-unity but is semi-simple. Even though the algebraic structure of Z/IqT (su(2)) is also
more complicated than that of U, (su(2)) with ¢” = 1, its representation theory is almost the
same as in the case of U, (su(2)) with ¢” # 1 as described in section B.1, which brings enorm-
ous benefits in constructing the quantum theory. Therefore, in this section, we only sketch its
algebraic structure as a weak quasitriangular ribbon quasi-Hopf-* algebra and focus on the
representation theory of Z/{qT (su(2)) (more precisely the difference in the representation theory
from U, (su(2)) with ¢” # 1).

Algebraically, UqT (su(2)) is a weak quasitriangular ribbon quasi-Hopf-x algebra generated
by the same generators as U, (su(2)). To distinguish notations from those of ¢, (su(2)), we
denote its coproduct, counit, antipode and quantum R-matrix as A7, €7, ST and R respectively.
As a quasi-Hopf algebra, the associativity is relaxed up to conjugation controlled by an element
@ €U (su(2)) @UJ (su(2)) @U (su(2)):

(i[de AT)AT (e = (AT@1)AT(E), VEeU] (su(2)). (B47)
Such ¢ satisfies the identity
([d®id® AT) (¢) (AT®@id®id) (p) = (e®¢) ([d® AT®id) (¢) (p@e) , (B48)

where e is the identity of ¢4/ (su(2)). Moreover, the compatibility of the antipode S with the
coproduct and counit is given additionally in terms of «, 3 € Z/IqT (su(2)):

> ST (e0)ag® = (©a,  DoeosT () = (€8, vEeu] (u(2)),
’ ’ (B49a)
> oelps (o2 )apld =e. N ST(60) aolsT (o)) =e, (B49b)

a

where we have used the standard notations A(§) = >, «551) ® @S”, o=> <p£1) ® 4,01(12) ® tpf(;)
and ¢ := p~' =37, 64 @ 9”@ 67,
Its quasitriangular structure is given by R” satisfying the quasi-QYBE
RL@0300R 3013 RY 0 = 031Ry; (0331) Rz 0013R; . (B30)

Here, @30 =), o @ oM @ P, ete. The compatibility of R” and AT is the following.

AT (ORT=RTAT(¢), (B51a)
(id® AT) (RT) = oo Rl3p213R 071, (B51b)
(AT®id) (R") = w312R139013R35% (BSlc)

where AT" =g o AT,
UJ (su(2)) is a weak quasi-Hopf algebra in the sense that A”(e) # e ® e. Instead, the cop-
roduct of e is given in terms of :

Al(e) = (€' ®id®id) (p) = ([d®@ € ®id) (¢) = ([d@id@ ") (¢) . (BS52)
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Moreover, we only have quasi-inverse for ¢ and R” such that

pe ! = (doAT)AT(e),  ¢lp=(AT®id)AT(e), (B33)
R'R™'=A""(e), R''R"=A4(e). (B34

The *-structure of U] (5u(2)) satisfies the same properties as in (B15) and (B16). In addi-
tion, one needs to define the x-operation for ¢, «, 3 so that it is consistent with all the above
relations:

= <Z<ﬂ§” ® o’ ®30§3)>* =3 (A) @ (4?) @ () =0, " =p. ®55)

Finally, the ribbon element of 4] (su(2)) is defined in the same way as in (B17) but with
ST €T AT and RT [18].

For our purpose, the precise formulas of ¢, a and 3 are not important hence the above defin-
ition of Z/IqT (su(2)) as a weak quasitriangular ribbon quasi-Hopf-x* algebra is only formal. What
is relevant to us is the representation theory of ¢4 (su(2)), which shares great similarity with
that of U, (su(2)) with ¢ # 1. In practice, we build up the representation theory of ¢4 (5u(2))
from that of U, (s1(2)), which we describe below.

To begin with, we define the physical representations p]{)hys among all the irreducible rep-

resentations p’ of U, (su(2)) as those with labels J = 0,3,---, % 7. Then

Uy (su(2)) =Uy (su(2))/T (B56)

where J is the ideal which is annihilated by all the physical representations pl{hys. k then
provides a cutoff for the physical representation which renders finiteness in the representation
theory of U, (su(2)).

In a tensor product space, such a cutoff can be described by a projector P € un (su(2)) ®
Uy (su(2)) such that PV := p' @ p’(P) projects on the physical representations pf ., [I —J| <
K <min{/+J,k—1—J}. The quantum R-matrix and the coproduct A” of 2] (su(2)) are
related to those of U, (su(2)) by this projector through

RT=RP, AT(§)=PA(E), VEeU](su(2)). (B57)
In the remaining, we only work on the physical representations and omit the subscript phys
for conciseness.

To recover semi-simplicity, one introduces the truncated tensor product X for two physical
representations which correspond to A”:

PR = P PF w@))=min{I+Jk—1-J}. (B58)

[T—JI<K<u(l,))
The uplifting fact is that, as long as we stay in the physical representation, the recoupling
theory for two representations remains the same as in U, (su(2)) with g” # 1. That is, the CG

maps C[IJ|K], C[1J|K]* described in section B.1 can be used safely in the representation theory
of U] (su(2)) for 0 < I,J,K < 4. When several CG maps are acted in a sequence, the order of

7 The positive integer k is the Chern-Simons level for Chern—Simons theory described by U, (su(2)) with ¢ = 1. In
general, p = k + n with n being the dual Coxeter number. For the case of SU(2) being the gauge group, n = 2.
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recouplings matters due to non-associativity. In this case, the representation of ¢ comes into
play. Define "X := p! @ p’ @ pX(ip). The following identity holds

CUPILICUKIPI" = {’I( IP } cloK|L]ClI|0], (B59)

L
[1=J|<O<u(l,J) e

I L O
This is a modification version of (B42). The proof and more details can be found in [27].

where { K-Jop } is the 6j-symbol of U, (su(2)) evaluated in physical representations.
q

Appendix C. Quantization of M, (Zo.4,SU(2))

C.1. Quantum holonomies and quantum symmetry

Denote the quantum holonomy for a loop ¢ as M. Given the quantum version of the r-matrix,
the Poisson brackets (22) and (23) can be naturally quantized to commutators of quantum
holonomies. Explicitly, (22) is quantized to
L 2 2
R M/RM;=M/R"M/R (C1)
and (23) is quantized to
1 2 2 1
R 'MyRMy; =My R 'MyR, (C2)
where R is the quantum R-matrix of U, (su(2)) defined in (B13). One can easily check that
they recover the Poisson brackets at the first-/ order by taking the expansion (B12) of R. We are
more interested in the irreducible representations p’ ® p’ of the above commutation relations:

u 1, 2, 2/ u 11 -n\¥
(R™")" MLRY M) = M (R') ML, (R’ ) , (C3a)
1 1 2 2 7 1
(R™Y)"MyR"My, =My, (R™')"MyRY, 1</, (C3b)
1 2 2 1
R ML (R M), =m, (R ML (R'=1)Y | 1. (C3c)

We demand that inverting the orientation of the loop £ — ¢~! maps M2 to Mé,] such that
MM, =M, M} =¢. (C4)

As the classical holonomies {M,} are in SU(2). A product of two holonomies for the same
loop in two different representations should admit the recoupling theory of SU(2) by means
of the CG maps. Explicitly,

1 2
MM} = Co[LJ|K)" MECo [LU[K] (C5)
K
where Co[lJ|K] : VI @ V/ — VK and Co[lJ|K]* : VK — VI @ V' are the CG maps of SU(2). Such
a recoupling relation needs to be deformed for M, in order to preserve the commutation rela-
tions (C3). The result is given in terms of the CG maps for U, (su(2)) (see (B22)) and (B23))
and reads

1 2
MRV My =Y C[1J|K]"M{CL|K] . (C6)
K
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Mathematically, the quantum holonomies {M}} of the simple graph on 2Jo,4 can be used to
define the graph algebra denoted as L 4.

Graph algebra Ly 4. The graph algebra L 4 for the simple graph I' on X 4 is generated by
the matrix elements of {M2 Hen /2,cer associated to loops £’s in I satisfying the commutation
relations (C3), the invertibility relation (C4) and the recoupling relations (C6) [7, 9]. Here, 1
runs through all the irreducible representations of 4, (su(2)). In this sense, one can understand
M} as an element in End(V') ® Lo 4 and each matrix element is in Lo 4. Consistently, the
Poisson bracket (26) of the gauge transformation elements is quantized to

12 21 12 2 1
Rgvgv = gvng7 2,8 =88, v 7é V/ ’ (C7)
where g, is the quantized version of g,. This commutation relation reveals that the underlying
quantum symmetry is U, (su(2)).
We define the action of a U4, (su(2)) element ¢ on the generators MY, of L 4 as follows

-3 (5(e)) i (). =

This is the quantization of the conjugacy action (25) and can be checked to preserve (C3)

subject to the commutation relation (C7) of the gauge symmetry. Take £ to be the generators
H . o .

{X,Y,q7 } of Uy(su(2)), the actions are explicitly

gt (M) = ( MMy (6F) (C9a)
X (M) = —g7p! (X)Mp ( %)erl (qg)Mép’(x)» (C9b)
Y(My) = V)Mo (q )+p (q%)Mﬁp’(Y% (C9¢)

The action can be generalized to the whole £ 4 by the property
B)=> &M (@)EP (B), Va,B€Loa. (C10)

Especially, for a one-punctured sphere, there is only one holonomy M, along the single
puncture. In this case, the graph algebra Ly ; generated by matrix elements of Mé is also called
the loop algebra. We denote the loop algebra corresponding to the vth puncture (v = 1,2,3,4)
of Yo 4 as £, and denote the matrix of its generators as M{, for notation conciseness. The
centers of these loop algebras (introduced below) will be shown to be important for defining
the moduli algebra.

As a graph algebra, L 4 is not equipped with a natural *-operation. However, to define the
observables later, it is necessary to define a *x-algebra. To this end, we consider the semi-direct
product of £ 4 and the gauge algebra U, (su(2)) and construct Sp 4 = U, (s1(2)) x Lo 4 [7, 9].
It is generated by generators of Lo 4 and 11/ (¢% ), 1 (X) and /(Y) defined in the following way

pl(€) = (p'@id) A(€), VEEcUy(su(2)). (C11)
The commutation relation between y/(£) and MY, is®
i (MG =My (€) (C12)

8 The commutation relation (C12) takes a simple form because we are studying a simple graph on % 4. For a general
graph with more nodes, the commutation relation of a gauge element, say &,, on node v and a quantum holonomy, say
U{ , on link [ also relies on the relative location between v and /. See [7, 8] for more details.
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which is also called the covariance property. One can now define the *-operation on Mg which
is now viewed as an element in End(V/) ® S 4:

(M)" = ('@ k") (RMf- (R™)') (¢! @) € End (V) S0 (C13)

Here, R := (p! ®1id)(R) and similarly for (R=!)’. x is the unitary (in the sense that x* = k')
element of 2/, (su(2)) obtained from the central element v = x> defined in (B17). Such a *-
operation preserves the commutation relation (C3) when extended to Sp 4.

C.2. Moduli algebra Dﬁgg as the quantization of My.(30,4,SU(2))

The graph algebra £ 4 contains the quantized Poisson structure of quantum holonomies in
the simple graph I" and it allows us to define the quantum gauge action. To proceed, we look
for the subalgebra of Ly 4 which is invariant under the quantum gauge action (C8) hence the
algebra of observables. It is called the invariant algebra, denoted as Ay 4 [7-9].

Invariant algebra Ay 4. The algebra Ay 4 is defined as a subalgebra of the graph algebra L 4
containing all elements in Lo 4 that are invariant with respect to the action (C8) of U, (su(2)),
ie.

Aoa={A € Loal§(A) =Ae(&)} . (C14)
The elements of Ay 4 are linear combinations of the form [9]
Tr! (CILLLLIIM MEMEM, C (L) (C15)

where TrZ7 is the quantum trace defined in (B43) and C[I,L,1514]]] is the intertwining map
for Uy (su(2)) action defined similarly as in (B22) and C[I,LI314|1]* is defined similarly as
in (B23). Explicitly, they are defined through the intertwining relations

CILLBLI (p" @ p" @ p" @ p) AP (&) = o/ (&) C[hLBL|T,  (C16)
(0" @ p" @ p" @ p") A" (&) CILLBLIN" = CILLBLI p'(€).  (C17)

C[I1 [L1514]]] can be separated into a series of three CG maps and different ways of separation
are related through the 6j-symbols of U, (su(2)) as in (B42) for the case |¢| = 1,4” # 1 and as
in (B59) for the case ¢” = 1. The *-operation on A 4 inherits from that of Sg 4.

For the loop algebra L, the invariant subalgebra is simply proportional to (the representa-
tion of) the quantum trace Tr;(Mf,) defined in (B43). We define the central elements {c!,}; of
L, as

ch, = kTr) (M) . (C18)
They are invariant elements of £, and they satisfy the fusion rule
oo = oK
v C19
el =clc. n#tv, .

which can be proved using the properties (B44) of the group-like element g, in particular
A(g) = g® g and gS(€) = S~1(¢)g, the recoupling (C6) of the quantum holonomies and the
normalization (B34) of the CG map. See also [7]. )

The central element has *-operation given as (c!)* = ¢!, where the 1 is the representation
conjugate to /. The element ¢/, commutes with holonomies around punctures other than v, i.e.
c,I,MfL = Mflc{, for p # v.
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The above concepts can be well-defined for both cases ¢” # 1 and ¢” = 1. To proceed, we
will have to consider these two cases separately in order to define the moduli algebra properly.

The case ¢’ = 1.
Since the root-of-unity case has finitely many physical representations, one can define a sym-
metric and invertible ‘S-matrix’ S;; in the following way.

1
Sy=N(Tt)®Tr]) (R'R), N=——F, (C20)
(Xid)?
where the summation runs through all the physical representations I = 0, %, e p%Z' Indeed, if
I can take up to co, which is the case for ¢” # 1, N' — 0 hence Sy, is ill-defined. The S-matrices
satisfy the following properties [7, 28]

u(l,J)

S,
Sy=S8u, Soy=Ndy, ZSIJSJK =, Z Sgr = /(?dZL ) (C21)
7 K=|I-J|

where u(1,J) = min(/+ J,p — 2 — I — J). The properties above show that the inverse element
of the S-matrix is Sy itself.

With the help of the S-matrix, the characters in Ay 4, denoted as !, with v =0,1,2,3,4,
can be defined as

X, =Nd; ) Sick. (C22)
K

A character is indeed a central element. It is also easy to prove that it is an orthogonal projector
in Ay 4 satisfying
*
Xoxh =oux,, (X)) =x}. (C23)

Specially, for v =0, Mé, cé and X" are defined as
M) = ]M{MEMEMY | )= 1T (Mg) =AY T (MﬁMéMﬁM{ ) . (C24)
J

We are now ready to give the definition of moduli algebra for the root-of-unity case.

Moduli algebra Sﬁfii for ¢” = 1. The moduli algebra DROK:;‘ of a four-punctured sphere, each
of which is associated with an irreducible physical representation K, (v = 1,2,3,4), is a x-
algebra defined as [9]

ME = xOXT XA X5 X Aoa- (C25)

The expression above means that each element in 95" is obtained by an element in the invari-
ant algebra A 4 multiplied by the five characters X(O) , Xfl , sz , X§3 , Xf € Ao a.

The case |¢g| =1, # 1.
For the case that g is not a root-of-unity, the unboundedness of representations results in an
ill-defined S-matrix (C20), then the moduli algebra needs to be defined separately. In fact, the
re-definition should start from the loop algebra and the graph algebra.

We first consider the loop algebra in this case. Define X = !X, (X_)~! with X, =R’
and X_ =R~'. Then its representation reads X' = ;' (R’R)' = (p' ®id)(R'R), where the

31



Class. Quantum Grav. 41 (2024) 165008 M Han et al

pre-factor n,_' depends on the normalization condition of the CG maps. One can easily check
that X/ satisfies the same properties (C3a) and (C6) as the generators {Mé} of the loop algebra.
This shows that the loop algebra L ; is isomorphic to U, (su(2)) in this case’ [9, 17].

The isomorphism can be extended to the graph algebra as Lo 4 = U, (su(2))®*. More pre-
cisely, we assign two elements X, y =R | and X, _ = Rflll 41 to the vth puncture and
define

X=X XX (X )T (X)) T (X))

€ End (V) @ U, (su(2))®" @2 (C26)

where e is the identity in U,(su(2)). They satisfy the commutation relations (C3) and the
recoupling relation (C6). (See the detailed proof in appendix E.) We also define

4
Xo=r""Xo+(Xo)"', whereXp s = [[ Xz, (C27)
v=1
and X{ is its representation in V/. X can also be viewed as an embedding U, (su(2)) —
®i:1 U,(su(2)). Then we observe the same expression as in (C24), i.e.

_ —1
Xo=r; X0, (X0_) = rXEXEXEXT (C28)

From the expression above, the X(I) is the holonomy of the biggest cycle. This will be related
to the quantum closure condition we define in section 4 below.

The element ¢/, := n,Tr;(Xf,) is defined in the same way as (C18) but with the new
holonomy definition (C26).

The quantum trace of any element ¥’ € End(V') @ e @ U, (su(2)) (e is the identity element
in U, (su(2))) satisfies the property

T, () =T, (R YRY) = o) (R'1Y (R'=1)') (C29)

It is proven in lemma F.1. One can then show that ¢!, is a central element of the copy of
U,(su(2)) corresponding to vth puncture. That is, it commutes with XL ,Vu=1,--- 4 as we
now prove. We consider . = v and p # v separately for any representation J € N/2,

1 1 2
o’ (c) X!, = kTt ((R")HX’VR”> X} = rTtl ((R—‘)”X’UR”X,C>
i 1 (C30a)
= /T, [ X (R)VX], (R’l)”) =X0'(c),

L

1 1 2
P (ch) X!, = Tt <(R‘)HX{,R”> X, = Tl (RI)UX’VR”X{L>
i 1 (C30b)
= wTY, (xg (R‘)UX{,R”> =X (), by <Ly,

9 Strictly speaking, the isomorphism is between Lo,; and U,(sl2) as proven in [17]. By such isomorphism, the x-
structure of U (s1»), leading to U, (su(2)), can induce a *-structure on Lo,;, which means that £,; is *-isomorphic
to U, (su(2)). For the same reason, Lo 4 is *-isomorphic to U, (su(2))®*.
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1 1 2
o’ (ch) X, = kiTt! <(R’)"X{, (R’l)") XY, = k[Tt ((R’)”X’V (R’l)"XfL>

2 1
:KITI’{] (X./ (R/)HX{/ (R/I)IJ> (C30c)

o

XL (L)) b,

where we have used (C29) for the first and last equalities and (C3) for the third equalities in
all three equations.

Due to the isomorphism with U, (s1(2)), one can define the moduli algebra for the case
|gl = 1,47 # 1 in terms of the central elements, instead of the characters, of the loop algebra
L,,. We define the representations of the central element c!» as

S . .
PR () = C’I"KK" idg,, withsy = (Tr! @ Tr)) (R'R) . (C31)

The moduli algebra can then be defined in the following way.

Moduli algebra i)ﬁgz for |q| =1,4" # 1. Let K,K>,K3,K4 be a set of 4 irreducible repres-
entations of U, (su(2)) with |g| = 1,¢” # 1 assigned to the four punctures of ¥ 4. The mod-

uli algebra Emg,’g is defined as the quotient of the invariant algebra Ay 4 by the relations

P(ch) . PN (1) " (e3) " (e3) 1™ (), e 19, 17]
My, = Aoa/ {0°(c0) .25 (1) " (3) P () PN ()}, » (C3D)

where I,1;,1>,13,1, run through all irreducible representation of U, (su(2)).

From the construction above, it is reasonable to view the invariant algebra A 4 as the quant-
ization of SU(2) flat connection space on ¥ 4 and the moduli algebra zm{f ", as the quantization
of the moduli space My (20,4,SU(2)) of SU(2) flat connections on 20741 with fixed eigenval-
ues of holonomies around all punctures. In the next subsection, we will construct the (irre-
ducible) representations of the moduli algebra which allows us to build the Hilbert space of
intertwiners.

C.3. Representation of the moduli algebra and the physical Hilbert space

Having defined the moduli algebra sm{f;, we now proceed to construct its representation the-
ory. The ‘representation labels’ K ,- - -, K4 defining the moduli algebra are representations of
holonomies around punctures of ¥ 4, which are fixed when defining the generators of £,,, Lo 4
and 93?{;2, and do not in priori denote the representation of the moduli algebra itself. We will
nevertheless find that only the irreducible representation space with the same labels can carry
the representation of the moduli algebra.

As the moduli algebra has a x-structure inherited from its generators, one can naturally
construct the x-representations of it, which compose a Hilbert space. We denote such Hilbert
space as the physical Hilbert space in the sense that states therein are invariant under the
quantum gauge transformations. We will start by constructing the representation of the loop
algebra L ;. Recall that the subalgebra £,, of the graph algebra £, 4 defined on each puncture v
is isomorphic to £,;. Then the representation of Ly 4 can be constructed by the tensor product
of four representations of Ly ; [9]. In this section, we will mainly focus on the case of ¢” = 1.
For |q| = 1,¢" # 1 case, the results turn out to be the same as the g” = 1 case hence we skip
the full derivations. We refer to [7, 17] and appendix D for details.
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When ¢ is a root-of-unity, I, (su(2)) is a finite-dimensional algebra whose total number of
irreducible representations is finite. However, it has no semi-simplicity property, which brings
obstacles in constructing the representation theory for the moduli algebra, which requires
semi-simplicity. In order to restore the semi-simplicity, one considers its truncated algebra
U, (su(2)) which has a simple representation theory despite a complex underlying algebraic
structure. The representation theory of moduli algebra with quantum symmetry Z/{qT (su(2)) is
constructed by applying the substitution rule (see (C46) below) [7, 9] on the representation
theory of moduli algebra constructed below. In the following, we construct the representation
theory of quantum algebra with quantum symmetry L{qT (su(2)), which can be easily general-
ized for semi-simple Hopf algebra with a finite number of irreducible representations [9].

Representation of Lo 1. The loop algebra Lo has a series of representations {D'} realized in
the representation spaces V! of U, (su(2)), I € N/2. The generator My € End(V/) ® Lo 1 can
be expressed in the representation D! as [9]

D' (M) :=r; (R'R)" . (C33)

This representation preserves the commutation relation (C12) due to the intertwining prop-

erty of R’R'°. It has been proven in [9] that the set of representations {D'} defined above is

faithful and, in the absence of truncation, each D' is an irreducible representation. Here faith-

fulness means that the dimension of loop algebra and the dimension of space of representation
matrices under D' are the same.

The representation of the central element ¢! (defined in (C18)) and the projector x’ (defined
in (C22)) of the loop algebra is given by'!

D' () =Zlidi, D'(xX') =4y, where sy = (Try@Te}) (R'R).  (C34)
1

Representation of Ly 4. The representation of each sub-algebra £,, can be realized in the space
Vv of U, (su(2)), where the label 1, is assigned at vth puncture. Denote the representation of
Lo.4 as D'2155:04 Tt is realized in the tensor product space 7 (I, 12,13, 1s) which is decompos-
able due to semi-simplicity:

T (I, L, I3, 1L) =V @ VE@ VE @ Vi = EB Vi W (I,h,15,1;) . (C35)
I
Here, I runs through all admissible irreducible representations of o, (su(2)) and
W!(I;,1,13,1;) is the multiplicity space whose dimension is KiKy Ngszgthz[“ with
N/K = 1if I,J,K satisfy the triangular inequality |[I —J| < K < I+J and N¥ = 0 otherwise.
The representation of the generators of £y 4 can be expressed as [9]

DIt (VL) = (o @1,) (R') Dl (MY,) (¢ @ 00) (R)) ") € End (V) @ <®End (vfu)) :

=1

v=1,2,3,4. (C36)

10 Take the J representation of (C12), one gets D (1! (§)M}) = (o' ® p") A(E)(R'R)Y = (R'R)V (p' ® p)A(€) =
D' (M, 1/ (€)) due to the definition (C11) of x/(€) and the property A(-)(R'R) = (R’R)A(:) of R'R. See the last
equality in (B17). This proves that the representation (C33) of the loop algebra generator preserves the commutation
relation (C12).

11 Notice that ¢’ is a central element, D'(c’) is proportional to id; by Schur’s lemma. The proportionality is obtained
by taking the trace of the representation.
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The notations above mean:
Dy (M]) =id, ®...®id;,_, ® D" (M) ®id;,,, ®...®id,,,
W) =(p"R..Kp ") () ®id, ®...id;,, VEEU,(su(2))
where p'' K... K p' (&) = (o} @ ... @ pl) A=D(&). Explicitly,

(C37)

JI -1,
D"”Z’“*’“(M{,):nj_l(RI’ZRI’3~-~R{VR1”V+1R17,,+]R;;1-~-R;3_1R;2_1>] @evti@...@e,  (C38)

In order to define the representation for (M)*, it is necessary to extend the representation
D150 o quantum symmetry U, (su(2)) by

DB () =1y (€) = (P R R R p") (€), VE U, (5u(2)). (C39)

Same as the representations {D'} of the L j, the representations {D"1+2:3:1+} are also faithful
and, in the absence of truncation, irreducible. However, different from the fact that D’ is a
*_representation, the x-property of D253+ "if exists, is not compatible with the standard
inner product of vector space T (11,15, 15,14). This is because the tensor product of two unitary
representations is in general not unitary. Nevertheless, we can define an inner product that
preserves the unitarity for the tensor product of two unitary representations. Such an inner
product was first proposed in [29] (see also [9]) to be

(g = (x(p@p") (RA(k) (k' ®@K™"))y), VxyeVeV (C40)

where p,p’ are two s-representations of U,(s1(2)) on Hilbert spaces V and V', and (-,
denotes the standard scalar product on V ® V’ 5.t (v @v{,va @v5) = (vi,m)(v{,v3), Yvi, 2 €
V,Yv{,v, e V.

The scalar product (x,y)r defined as such is positive definite, with respect to which D>+
are *x-representations. To show that the inner product (C40) is preserved under the same unitary
transformation, we consider x,y € V' ® V’ and £ € U, (su(2)). Then'?

0 @) =g B (€8 1 07) M)
= g T (o @ ") A ) RY (0 @ p') A(r)y)
= g2 T (¢ (o @ p”) A (€ RY (o @ ") Ak)y) (C41)
= DT RY (o @ p”) A (k€7 y)
= (x,p'®p’ () y)r = (x, (p@p(f)) )&

where we have used the representation ! = g~ D of g (see (B29)), which is a scalar hence
can be extracted out of the inner product, on the first line, the identity A’(£)R = RA(§),VE €
U, (su(2)) to obtain the second line, and the fact that « is a central element, i.e. K =&k ,VE €
U, (su(2)), to obtain the third line.

12 The inner product (-,-)g is preserved under unitary transformation even without the insertion of A(x)(k~!' ®
£~1) in (C40). Such an insertion is there for a normallzatlon purpose. In particular, given x = (R")YC[IJ|K]*z,y =
(RHVCIIK]*z' € VI @ VW = @k VK such that z,z” € VK. The inner product defined as in (C40) realizes a simple
decomposition (x,y)r = Pk (z,z’) with no extra factors [29].
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Representation of Ay 4. The *-algebra A 4 of gauge invariant elements is the subalgebra of
Lo.4. Therefore, the representations D'12/3/4 can be restricted to A 4 directly. Since Ay 4 is an
invariant algebra, its representation restricted to V/ in the decomposition (C35) must be carried
in the multiplicity space W/ (I, 5, 15,1). On the other hand, the dimension of .4y 4, counted
from the number of its generators (C15), is Z“l bl dim(C[111213I4|I])2, which matches
exactly the dimension of the representation space carried by @, ; , 1. ;, W1, 12,13,14). The
faithfulness of the representations of A 4, inherited from the faithfulness of the representa-
tion of L 4, guarantees that the full multiplicity space w! (I, I, 13,14) for each admissible set
(11,1, 13,14) carries an irreducible *-representation of A 4.

Representation of amg‘;. Recall that the moduli algebra (C25) is defined as X(O) Hi xXEv Ag 4.
Given the representation of the invariant algebra above, the only extra ingredients to obtain the
representation of the moduli algebra are the representation of the characters x8 and X v =
1,---,4. We first consider the latter one. Using the same definition (C36) of the representation,
it is easy to compute

plikds.ls (Xf”) =0 k,id;, ®---®id;,, VYv=1,---,4. (C42)
Now that Hi:l &1, k, is imposed, we consider the following representation of x{:

DRAKs Ky (3 0) = N2 dgry Tk DR FKo ks (MEMEMEME) | . (C43)
K

Using the definition (C36) (or directly the explicit expression (C38)), one gets

KK\ K>K3K.
DK K2Ks Ky (Xg) — A2 ZdKTrf [A“) (R’R)] ! 4
K

E_/\/'z;dKTrf]< [(pK(X)Ls) (R'R)] , (C44)

where t5 = 144 is defined in (C39). Since 9 4 is a subalgebra of Ay 4, its J representation
lives in the multiplicity space W’ (K, K>, K3, Ky ). For this reason, we are only interested in the
representation restricted to w (K1,K>,K3,Ky), which we denote as W for conciseness:

DK K (30 [y = N2 " diTeE (o5 @ p”) (R'R) =N " de Nii’“ idys
K K K&K

SokS
=> " 2 idy, = dosidy, (C45)
% I{de

where we have used the representation (C34) of the central element and the property (C21) of
the S-matrix.

We finally conclude that, given four punctures labeled by representations Ki,---,K4
respectively, there exists only one irreducible *-representation space of the moduli algebra
Emgg, which is WO(K 1,K2,K3,K4). Because of the faithfulness of the representations theory,
other representations cannot exist.
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Up to now, we have dealt with the representation theory of Lo 1, Lo 4, A4 and 9)107';1 for
U,(su(2)) with g a root-of-unity assuming the semi-simplicity of the quasi Hopf algebra.
However, semi-simplicity is there only for the truncated algebra Z/IqT (su(2)) for ¢ = 1. The
representation theory of U] (su(2)) is achieved from the one described above followed by
applying the certain substitution rule'? [7, 9]:

C K] = C K] == CIIK] (¢ )Y, CU[WK]* — CIIK]* = (pays)" CIIIK]®

RY 5 RY .= (o' ®@p' ®id) (p213Rp™"), di—dr:=Tr (p' (gS(B) ) ,

R =R = () ®id) R, T, (X) — Tr, (X) :== T (m'Xw'g') ,  with m' = ' (s (¢<‘>) a¢<2>) FION (C46)
w = (¢@s57 (p18)) e,

where ¢, ¢ = ¢~ € U] (su(2)) @ U] (su(2)) @ U] (su(2)) and o, B € U] (su(2)) are the defin-
ing elements for U] (su(2)) (see section B.2). Upon the imposition of the substitution rule, all
the formulas of representation theory above in this section work for 24 (su(2)). Due to the
theorem in [27], the physical representations of 4] (su(2)) and U, (su(2)) with ¢” = 1 are the
same, hence the representation theory of Z/IqT (su(2)) constructed above can also represent the
physical representation of U, (su(2)) with ¢” = 1.

Let us now briefly go through the case for U, (su(2)) with |¢| = 1,4” # 1 (see appendix D
for some details). Since the loop algebra Lo ; is isomorphic to U, (su(2)) in this case, its irre-
ducible representation is the same as the one of U, (su(2)), in particular, we choose the *-
irreducible representations that preserve the %-structure of U, (su(2)) for |¢| = 1,4” # 1labeled
by J € N/2. The representation of the generator X/ = K‘,I_l (R'R)" of Ly, in the space V/ can
be directly calculated to be

o (X)) =k (R'R)Y (C47)
which matches the definition (C33) for the case ¢” = 1. It turns out naturally that the repres-
entation theories of Lo 1, £o.4, Ag4 and zm{)‘; for case ¢” = 1 discussed above before applying
the substitution rule are the same for the case |¢| = 1,4” # 1. In particular, (C38) can be dir-
ectly used to express the representation of generators for £y 4, and the representation spaces
for Ao 4 and S)ﬁg)il are @, s W!(I\,I,,15,1,) and WO (K}, K>, K3, Ky) respectively'?.

The analysis for |g| = 1,¢” # 1 can be directly generalized to || # 1 and the same results
follow except for the ones related to *-structure (hence we are dealing with U, (sl») instead of
U,(su(2))). We therefore conclude that the representation space of the U, (sl>) moduli algebra
on Yo 4 for with any ¢ € C is WO(K{,K>, K3,Ky4), given that the four punctures carry the irre-
ducible representations K, K5, K3, K4 respectively. WO(K1 ,K2,K3,Ky) is nothing but the space
of intertwiner C[K;K,K3K4|0].

13 Due to some subtlety, the substitution rule (C46) cannot be applied to formulas containing the grouplike element
g (see (B44)) except for computing the quantum trace Tr,, which is the only places in this paper where we encounter
g. We refer to [7] for dealing with this subtlety.

14 Indeed, since the definitions of Aop,4 and img Y vary for the cases ¢” =1 and |g| = 1,4” # 1 as described in
section C.2, their representations are also defined differently. Nevertheless, the resulting representation spaces for
both cases are the same. We refer interested readers to [7] for the explicit construction of the representations for case
|gl = 1,4” # 1. See also appendix D.
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Appendix D. Representation theory of loop algebra £y for |g| =1,¢” # 1

Since the loop algebra L ; is isomorphic to U, (su(2)) for |g| = 1,¢” # 1, its irreducible rep-
resentation is the same as the one of ¢/, (su(2)), in particular, we focus on the unitary irredu-
cible representations of U, (su(2)) labeled by J € N/2. The representation of the generator X’
of Lo, in the space V/ is given by:

_ u
o’ (XI) =r; "(R'R)" . (D1
Moreover, the isomorphism can be extended to Ly 4. The representations of Lo 4 are enumer-

ated by tuples (K;,K,,K3,K4) of irreducible representations of U, (su(2)), where K,, is the
representation assigned to the vth puncture realized in the vector space

VK1K2K3K4 _ VK] ® VK2 ® VK3 ® VK4 . (D2)

The expression of the generator X, of £ 4 in the representation space VK152K:K+ i given by:
K\ K>K3Ky (&l —1 Y Y /1 F 1 -1 KKy Ky Ky
p (X)) =, <R12R13"'RlVR17V+|R1vV+1RlV Rz Ry, ) @efvrig...ge.  (D3)

The invariant sub-algebra Ay 4 equivalently can be defined as a commutant of the image of
U, (su(2)) under the embedding, i.e. Ao 4 = {A|X)A = AX{,, VX{, € Lo 4}. The representation
pK1K2KsKs can be naturally restricted to invariant sub-algebra Ay 4 of £ 4. Such representation
is reducible. The tensor product of representations is decomposable due to the semi-simplicity
of U, (su(2)) for ¢ # 1:

VK1K2K3K4 — @ VJ ® WJ (KI,K27K3)K4) . (D4)

J admissible

Take the representation VK1K2K3Ks (X7 of X{ which can be decomposed into irreducible rep-
resentations as above. In each subspace V/, the commutant of V/(X{)), which gives the J rep-
resentation of Ay 4, must live in the multiplicity space W’ (K1, K2, K3, Ky).

In addition, by the definition (C32) of the moduli algebra, the representation of the moduli
algebra is further restricted to wo (K1,K>,K3,Ky). So we obtain the irreducible representation
of moduli algebra realized in the space [17]

W (Ky, K>, K3, Ky) = Inv,, (VEIEARK) (D5)

To endow the representation space with the structure of Hilbert space, one needs to define the
inner product, which we choose to be the same as (C40)'° since we focus on |g| = 1,¢” # 1.

Appendix E. Isomorphism between graph algebra £, 4 and qu(su(z))®4

Recall that the isomorphism between loop algebra and U, (su(2)) described in section C.2
allows one to set X' = x; 'X!, (XZ")!, where X/, = (R’)’ and X" = (R™")/ [17]. We have the
following commutation relation for Xﬂr, ) o

2

1 2 2 1 1 2 1
XX, RY - RYXLXL, (R XLXL = XLXL (R))”

1 2 2 1 (El)

1 2 2 1
XI_X{;'_ RIJ :RU X{‘,-X[—7 (R/)U X{‘FX]_ _ XJ_X:_ (R/)IJ

15 In general, the inner product will be different than the one we choose here when one changes the star structure of
the algebra.
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The element /@,_]Xﬁr (X~")! satisfies both the commutation relation (C3a) and the functionality
condition (C6) of loop algebra. With the isomorphism defined above, we see that the matrix
elements of M’ for any I are generated by the generators g2 , X, Y of U,(su(2)). This specifies
the isomorphism between loop algebra and U, (su(2)) for g not a root of unity. (We remind the
readers that this isomorphism is, strictly speaking, between Lo ; and U, (sl>) not necessarily
with a #-structure to give U, (su(2)), but it does not affect the discussion here as the *-structure
is not involved when we use the isomorphism at the algebraic level. See footnote 10.)

Lemma E.1. The isomorphism X! = KI_IXIJF (XYY satisfies the ‘loop equation’:

N 11 [ 2J 21 INY 11 -\
(RTH"X'RYX/=X’ (R")" X' (R")" . (E2)

Proof. Let us start from the [.A.s. of the equation, which can be explicitly written as

e 1\’ 2 2\ ul 2 1\ / 2\
) ()t (e
=x, X! (R)"(R'=1)" [ XZ X~
e () (xr) ()
=X, X! (R")" | XC X“') (R'-1)
21 2—1 ! n 11 1—1 ! ’ 14
=x\ (xZ'] ®)"X,[xZ) (R'-1)", (E3)
where the last expression is the rh.s. of (E2). We apply relation (E1) several times to obtain

the final result. O

Lemma E.2. The isomorphism X' = nle{F (X:l)’ satisfies the functoriality condition
1 2
X'RYX'= " Cl1I|K]" X C[1J|K] . (E4)
K

Proof. Let us start from the [A.s. of the equation:

wy 'Ky R'IRRGR TaRos = ki ' k) ' R'IR T3 RGR 3 RY,
=w; 'k (A ®id) (R') RGGR13RY
=w; 'Ky 'RISR D3R J13R13R%
= ' 'R ('@ 0’ @id) (A @id) (R'R)
(E5)

=r k! K;—TJC[IAL}* Cl|L] (p’ ®p'® id) (A®id) (R'R)
L

=S ke (R'R)" CluiL)

=Y _ClL]* X CluL] .
L
In the first equality, we have used the quasi-triangularity (id ® A)(R) = Ry3R1, and (B9).

Then we have applied several times of the quasi-triangularity and (B8). For the fifth equality,
we have rewritten RY, in terms of the CG maps, i.e.
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3 %C [W|L]* C[U|L] = RY, . (E6)
L
L

The second to the last line of (E5) is obtained by using the definitions (B22) of CG maps. [

The *-structure of loop algebra is defined as:
(XI)* — ! (RI(XI)*I (R_I)I)H, E7)

where « is the central element of U/, (su(2)). This *-structure is induced by the *-structure
of U,(su(2)) for |g| = 1,4” # 1 in the sense that the *-operation on the matrix elements of
X! is closed. Here, we illustrate this induction in the fundamental representation. Recall that
X! = kXL (X2 with X!, =R and X_ = (R™')". Then

1 qg <q% _q_%>q_%q%HY
X2 = HII 1 1 1 1 1 1 2 1 H (ES)
’ (q7*q*5>qizxqzli (q5*q*5> q XY+q 2
We then calculate the LA.s. of (E7) that
* @ ()
(X%> =K1 1 1 1 1 * 1 1\ 2 *
2 ((qi —q7§>q 4X(]5H) (<q2 7‘172) q 2XY+q 2)
(E9)

where we have used the fact that (x;)* = m,‘l. On the other hand, the rh.s. of (E7) at the
fundamental representation reads

In the last step, we have eliminated by the fact that « is a central element of U, (su(2))

and thus commutes with all the generators of U, (su(2)). Comparing (E9) and (E10), we see
1

that (X2,)* = k= (R} (X?) " (R™")2)per with a,b = 47, which means that the -operation

is closed in the fundamental representation. This can be generalized to any other irreducible

representation by using the recoupling relation (C6) of the generators of loop algebra.
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The isomorphism between loop algebra and U, (su(2)) can also be generalized to graph
algebra, which we now describe. The graph algebra L 4 is isomorphic to I, (su(2))®* by the

following relations [17]

1 -1 1 —1 1 I —1\/
X, =r KX, K7 X, =X, (X)),

v v

(E11)
Ki=X{,-X_,,, K=e.

These definitions are used in (C26). The matrix elements of X!  subject to the following

relations [17].

U 1 2 2
(R°Y)"X!,RVX], =X

1
7, (RYxE, (R (E12)
1

1 2 2
X0 X =X Xy (E13)

which also apply for all representations.

Lemma E.3. The isomorphism between Lo 4 and Uq(su(Z))®4 preserves the commutation
relation of the graph algebra.

—n\V 11 17 2J 2] INY 11 1\
(R X! RY X! = X! (R X!, (R ) :

1 2 2 1
(R XLRVX, =X, (R XLRY 4, <4, (E1D
1 2 2 1
N T ’ U i _ ~J N T / J
(R X,,,(R"—1) X, =X, (R)" X, R'=1)", £, >1,.
Proof. Let us start from the L h.s. of the equation for £, < £,
SN ot it — (o= I NP —]1 ! —1] r —11 r

(R ) X, R XM* (R ) (leJr) (XV*1,+) (XVHr) (Xy,—> (Xy71,+) (X1,+)

2 2 2 21 7 21 7 21 7
W ) () () e

1 1 1
1 2 1 1 I I I
= (R7)" (X1 X1+ Koo ) Ko) (X1 ) (X004 ) - (Xah)
2 2 2 21 21 11 21
R (Kot )+ (Kumr ) Kt (G L) () (XD (X4

The second equality is obtained by using relations (E13) and (E1). And continuing to use both
relations several times and adding (R~!)”R¥ in the derivation, we have

1 2 2 1 2 1 2 1 2 1
(R) X0 R X, = (%1 (%00 (%) (%) o (K1) (K1) (K (Ko’

2 2 2 2
% (R*l)”R”n- (XH71,+>J(X‘L,+)1 . (X;’l—)J<X;ily+>J ...(R*')”
1 2 1 2 1

I J 1 J 1
—1 —1 —1 —1 —1
R (L) () () () (6

2 1 2
oV Yot N o VY
X (X2,+> <X1,+) <X1,+) :
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Continue to use relations (E13) and (E1) several times, we obtain the desired result:

—111111121 21 ? 121—21J—1/ f11_111
(R XL RIX, = (X14) (K)o (X1 ) (X0 ) - (K1) (')

1 1 i NN, iy (E17)
(X)) (xy,w)’(xw)’(X;’L) (x;lw) (Xfl) RV
2 1
=X/, (R™")"XLRV.
For £, = ¢, and {,, = £, the proofs are similar. O

Lemma E.4. The embedding Xo=r; X4 (X0 )" =r;  ([T,21 XL )T, XL, )"
satisfies the defining relations of loop algebra:

4

1 2 2 1
(R X4 RY X} =X4 (RN X5 (R'™)" (E18)

1 2
XoRY X =" C[LI|K]" X§CLI|K] . (E19)
K

Proof. The proof is similar to that of lemma E.3. Starting from the LA.s. of the equation, we
have

1 1 1
! 2 u 1 1 1 I I I
(R xR X5 = (R7) ' (Xu ) (%) - (o) (X1 ) (30 2) o (L) R

2 2
2 2 2 7 7 7
(X)) (o) (X01) (00 ) (X0)

o 2 2 2 1 1 1 (E20)
=y (X) (Xe) - (Xo) (X)) (Xes) - (X))

x (R*‘)”R” R (R'=1)"

l1 L S R L : ’
— — — — —1 N\ /y—1\J
(L) el o'ect e ea Ly

To get the second equality, one needs to apply relations (E13) and (E1) several times and inserts
(R")Y(R'—1)¥ in the equation. At this point, we apply relations (E13) and (E1) several times
again

(R KR XD = w7 (XY (Ko ) () (X0 (%) (o) (R
2 2 2
) et ) () ) () () e

2 2 2

e e T 2 Ulet Vw1 Y 1Y (ol
nt ! (X)) o) (XL ) (X5 2) o (X0L) (R

1 1
~(XL+Y(X1+Yv~(XJ+J%X£L)RX:JL_V~~(foV<Rﬂ—n”

2 1
=X} (R X (R (E21)
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To prove the second relation, we again start from the LA.s.:

1 2 1 1 1 1 1 1

_ B - I - 1 _ 1
X RY X =7y (X ) (e ) o (K ) (1) (0 ) o (x1) RV

2 el 2 N, C o Y
. e 71 71 “ e 71
(X1 (Xe) - () (D) (X2 2) - (XL )
_ _ : 1 2 J ! 1 2 J ! 1 2 J plJ
=R (X ) (X ) (Xo ) (Xog) - (Xog) (Xuq ) RY -

] : : 1 : J : 1 g J
D L (Gt L) () e () ()

We have applied the relations (E13) and (E1) several times to obtain the second equality. At
this point, we use the definitions of X,'j 4 and X! _, then apply the quasi-triangularity several

v,—>

times and rewrite R, in terms of the CG maps, which gives

1 2
X} RY X
= ’fl_l"?/_] (R1/3)I (Rz/s)J (R1/4)I (R2/4)]' o (RI/V+2)I (R2/u+2)JquzR{u+2R£u+z- . -R{4R£4R{3Ré3
=ny 'y (P @0 ®id) (A ®id) (R)) (' @ p' @id) (A" ®id) (R;) . (0 © p' @id) (A @id) (R[, 4) -
“RY, (P @ p' @id) (A ®@id) (Riv41) -+ (p' @ p’ ®@id) (A ®id) (R13) (p' @ p’ ®@id) (A ®id) (R12)
=r; 'k RS (P @' ®@id) (A ®id)(R),) (P ®@ p) @1d)(A®id)(Rf3) - (o @ p’ ©id)(A @id) (R, 4,) -
(P @0 ®id)(A®id)(Riv41) -+ (0" @ p' ®id)(A ®id)(Ri3)(p © p’ @id)(A @ id)(R12)

-1 - RIK, . .
=r; 'y ;LJC[U\L]* CIL (p' ® p’ @1d)(A @id)(RR{3 - R{, 1R w1+ RisRi2)

(E23)

L

= k' CIWIL (RORy -+ R], 4 Riutr - RisR2) C[L]L]
L

=> CWIL*XECLL] .

We have, therefore, completed all the proofs. O

Appendix F. Some detailed calculations

In this appendix, we collect some detailed calculations used in the main text, which are formu-
lated into lemmas. Lemma F.1 is the proof of (C29). Lemmas F.2 and F.3 are the proofs of (34)
first for U, (su(2)) with ¢” = 1 assuming semi-simplicity, which we call the non-truncated case,
then for 4] (su(2)) with semi-simplicity property, which we call the truncated case. Lemmas
F.4 and F.5 are useful in the discussion of the area operator in section 5.

Lemma F.A. The quantum trace has the following property
I
™, (Y’) ~Tr, ((R_1> Y’R’) =T/, (R’IY’ (R'—l)1> , VY cEnd (V') ©e@Uy(5u(2)),
(F1)

where e is the identity element in Uy (su(2)).
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Proof. Let ¥ =)' ® e ® ¢ where y' € End(V') and £ € U, (su(2)). We start from the r/h.s.
of the first equation and take the J representation for the second tensor space which gives
(V) :=y ®e’ ®&. Then we calculate

14

J
T, ((Rfl)uﬂj(Yl)R”) =T <ZS<R§1)) ®R§2>> Y1<ZR,(,1)®R,§2)> ()
’ b
1
= E Tr (S <R£1)> y[RIEI)’Ipl <g)> ®R‘(12),JRZ(,2),1®€
ab

— ZTr (yIRIEI),IS1 (Rz(zl)>1pl(g)) ®R((l2)7JR[()2),J®€
—ZTr(yIS (ROYs(R)DY) pl(g) ) 0 RAVRD ¢

:Trg( (Y)(S™ @id)(RY (R™)M)) = Trl (' (V1))

(F2)

where we have used the cyclic property of trace and the intertwining property, i.e.
S71(€)g = gS(£), V€ € Uy(su(2)), of the group-like element g (the third equation of (B44))
to obtain the third line and used the anti-homomorphism property S~!(¢n) = S~1(n)S~1(¢)
of the antipode to obtain the fourth line. As (F2) is true for all representation J, the first equality
in (F.1) is true.

The second equality follows the same logic

Tr, (R’IJpJ (yl) R _ ) ZTr( ()1 \1g (R(z) 1) (g )) ®R((11),JR1(71),J®€
= ZTr (yIS s ! (R,(zz)’l) o (g71>R,(}2)71)) ®R(gl),JRI(71),J®§
b

a

(
S ( ) (1) ) R e
(

ab

=S e (s (SREHRP) () @ ROVRD ¢
= e, (J/(Y)s@id)(R™)RY)) = Trj(s' (),

where we have used the cyclic property of trace, the anti-homomorphism property of antipode
and the property S(g) = g~ ! (the second equation of (B44)) of g to obtain the second line and
the intertwining property of g to obtain the third line. 0

Lemma F.2 (flatness for the non-truncated case [7]). The elements X and M}, satisfy the
following relation

XoM§ = k7' xge’ (F4)

where the complex number /-@,_1 gives a quantum correction. When q — 1, equation (F4) recov-
ers the classical closure condition (11).

Proof. We start from the functoriality relations of holonomies, i.e.

1 2
M (R)Y My="> " C[1J|K]" M§C[I]|K] . (F5)
K
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Acting with the character cg on Mé, we calculate that

oM} = /Tt (M) My

— k/Tr. (Z (R—l)”c[mlq*M§c[11|lq>

K

—/{12 cmo] ()" cik MEc k) (R c[irjo)*
(Fo6)
dr vi dvpdivy PR N < ST
= & Yk AT 0 (RK|0 K|I* ClUK|T ME (R KK|0
nzwwdwmd 0 (R")" C LKD" € [IKID M (') C[KK[0)
%,Z

where we have used the quantum trace identity (F1) in the second line. The fourth line is
obtained by using ;% (R")” C[IJ|K]* = (R~")" C[1J|K]* and the following relations given and
proved in [7]:

CIKK|0] (R ClUK{T)" CJUK]T) 1\2{5 (R c[kK|0]"

IVJVK

cliK) (R o) = " () ek (R CRKI0]"
dIVK ) (F7)
c[mo) (R clinK]” = va’ (A=Y C[KK|0] (R"Y™ c K"

where A is a number. With x§ = >~ N 2djcl, it follows that

2 _ 3 _
oM/ :N2Zn,@c[k1<|o1 (RYX CURT* c kI MK (R ¢ [Rk]0]*

VjVK
—NZZ/@— LS ( J@e’) MK (R c[kK]0]*
ViVK
- 2\ L RK 1o (F8)
= N2 K CRK0] (¢ @) M (') CIRKI)
X RJRK
_ J R ik
=Ky le ZMdK— [KK|0] X MK (R")* C[kK]|0]*
e,
The second line is obtained by the completeness of the CG maps:
S (RY UK CURT = & @ X (F9)
7 RJRg
O

Lemma F.3 (flatness for the truncated case). With the truncation, the elements x8 and M),
still satisfy the following relation:

XOMD = (1)) Qe . (F10)

The complex number K;l gives a quantum correction, one can see when g — 1 we recover the
classical closure condition.
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Proof. The proof follows [7]. All proofs in (F6) can be translated to the truncated case with the
substitution rules (C46) rather straightforwardly. The only difference is that we do not have the
completeness of the CG maps for the truncated case. The quasi-associativity of tensor product
of representations gives [7]:

C[KK]|0] = Z]—' (LJK) C[IK|J) C[JK|T] , (F11)

where F(IJK) is a coefficient obtained from a subset of 6j-symbols. With the normalization
of the CG maps, the expression above can be reformulated as

'CIRK|0] (R"Y' ClUK|L]* Z}‘ LK) C[IK|J| CJKIT) (R ClIK|L]*

- Z]—' (LK) C Ik = TS ke (F12)

KJ]KJK

= F (LIK) CILK|J) ™

Using this property, the LA.s. of (F10) can be written as

d2 = K STk T 3 K - *
XOMg = N2 kK- CKK|0) (R")Y™ C UK CLIKIT ME (R C[KK]0]
VjVK
1K

K/.]K/k T 3[( / kK = *
K c UK ME (R"Y C[KK|0]
1

2
=N m,if(m() C[IK|J]
kK (F13)

= Y K o] M (R C[RKIO]
I VJVK K,]
e,

which completes the proof and all proofs can be translated to the truncated case with the help
of the substitution rules (C46). O

Lemma F.4. Let p'' and p be two irreducible representations of Uy(su(2)). The matrix s is
defined as s;; = Tt @ Tt ((R'RY'2) and it is evaluated as [(2j; + 1)(22 4 1)],.

Proof. A direct calculation gives

Jitj2

Tr! @ Trl2 ((R’R)"“) _ Z g UHD= G =Gt D [y 1,
J=j1—j2
Ji+ji2 i ;
Z qJ(J—H)—jl(jl+])_j2(j2+1)qz(zf-‘rl)_q L27+1)
T 1
J=j1—j2 q: —q 2

Ny (F14)
Jiti2
_ 1 Z g VD =R G+ = 12(12+1)(q%(21+1)_q—%<21+1))

- 1

T
P -

=

Jiti2

1 - 1 1 JH+1)2—1 L
— T : Z q ]1(/]+ ) /2(]2"" )(q("‘ ) z_q 2) .
=49 2,57
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Lemma 5.2 and the decomposition TrJ '® Trf2 =>,M ‘” TrJ due to the semi-simplicity prop-
erty of U,(su(2)), are used to get the first equahty The multlphclty is 1 for the admissible
tuple (j, ,jg,J) in U, (su(2)) case. Therefore,

. . . —h G =plp+t) [ttt it
o omg () - O (S e S
q q 1
q* —q * J’:j,—jz+l J=ji—h
_ 2 (jy1
_ Mq—% (q<jl+jz+1>2 B qul—jz)z) (F15)
q% —q7%
1 o 2P
- : (q2/1/z+/1+/z+§ . (2/1/z+11+/z+;)) =21+ 1) (22 +1)],
qi —q7§
O

LemmaF.5. Forld](su(2)), the tensor product of two representations p' X p’ is decomposable
and its irreducible components pX are all physical representations, i.e. |I —J| < K < u(l,J)

u(l,J)
Vivy K /- o
KXI:J e T (idk) = [(21+ 1) (2T +1)],- (F16)

Proof. For the case |/ —J| < K < I+J, the derivation of the s;; = Tr, @ Tr; ((R'R)”) is the
same as g generic case. For the case || —J| < K<p—2—1—J, the proof in the (F14) can
be directly translated to the truncated case. Based on the (F14), we continue the proof for the
truncated case:

1 p—2—I1—J+1 p—2—1—J
ET (Ww ) o Z 2 Z S
q9*—q * K'=I—J+1 K=1-J
= 1 ,1‘1_1(]+1>_J(J+1) (q(pz—Zp(H-.H-l)+(I+J+1)2)—% _q(l—])z—%)
o (F17)
S - N P
q: —
S ( (2tr+14+7+1 q(—ZlJ—I—J—%))
= [(21 + 1)( +1)], -
The third equality is due to g = 1. O
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