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Abstract
In this paper, we construct the phase space of a constantly curved tetrahedron
with fixed triangle areas in terms of a pair of Darboux coordinates called the
length and twist coordinates, which are in analogy to the Fenchel–Nielsen
coordinates for flat connections, and their quantization. The curvature is iden-
tified to the value of the cosmological constant, either positive or negative. The
physical Hilbert space is given by the Uq(su(2)) intertwiner space. We show
that the quantum trace of quantum monodromies, defining the quantum length
operators, form a fusion algebra and describe their representation theory. We
also construct the coherent states in the physical Hilbert space labeled by the
length and twist coordinates. These coherent states describe quantum curved
tetrahedra and peak at points of the tetrahedron phase space. This work is
closely related to 3+1 dimensional loop quantum gravity with a non-vanishing
cosmological constant. The coherent states constructed herein serve as good
candidates for the application to the spinfoam model with a cosmological
constant.
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1. Introduction

The quantum tetrahedron serves as the fundamental building block in the theory of loop
quantum gravity (LQG). It plays a pivotal role in both the canonical and covariant formal-
isms, the latter also known as the spinfoam model [1, 2]. In the canonical formalism, quantum
tetrahedra constitute the spatial quantum geometries, which evolve dynamically under the
Wheeler–DeWitt equation. Spinfoam model, on the other hand, describes the transition amp-
litudes between boundary quantum states of tetrahedra.

In the 3+1 dimensional spinfoam model with zero cosmological constant (Λ = 0), par-
ticularly the Engle–Pereira–Rovelli–Livine/Freidel–Krasnov (EPRL/FK) model [3–6], these
boundary states are represented by coherent states. These states are designed to peak on
the geometric configurations of tetrahedra, providing a correct semi-classical interpretation
without overly constraining the second-class constraints. A natural extension of the EPRL
model to incorporate a nonzero cosmological constant (Λ ̸= 0) was proposed in [7]. This spin-
foam model not only yields finite amplitudes in a concise manner but also semi-classically
peaks on constantly curved 4-simplices, leveraging coherent states. The mathematical founda-
tion of this extension relies on the quantum SL(2,C) Chern–Simons theory, as developed in a
series of works [8–12]. Through the combinatorial quantization framework of Chern–Simons
theory [13–15], the quantum group structure of the spinfoam model with Λ ̸= 0 invites fur-
ther exploration. This is suggested by the analogy to the 3D spinfoam model, the Turaev–Viro
model [16].

To deepen this understanding, it is critical to represent both the Chern–Simons partition
function and the boundary states in the quantum group representation consistently. Progress
toward this goal was made in [17], where the Hilbert space for quantum states of constantly
curved tetrahedra, termed the quantum group intertwiner space, was constructed using com-
binatorial quantization. For applications to the spinfoam model, coherent states spanning this
Hilbert space are required to peak on the geometries of constantly curved tetrahedra. Different
constructions of these coherent states can arise depending on the symplectic coordinates
chosen for the classical phase space, e.g. the one demonstrated in the original spinfoam model
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Figure 1. A polygon with four vectors in R
3. Here, J⃗i = ain̂i, i = 1, . . .,4 and all the

four normals do not lie within the same plane. µ (in red) is the diagonal length and θ
(in blue) is the dihedral angle between the triangle f 123 bounded by vertices 1,2,3 and
triangle f 134 bounded by vertices 1,3,4.

withΛ ̸= 0 [7]. However, the coordinates used in [7] provide an indirect geometrical interpret-
ation of the tetrahedra. This motivates the search for new coherent states, constructed using
symplectic coordinates that correspond more directly to the geometrical quantities of a curved
tetrahedron. Such a construction would simplify the geometric interpretation and enhance the
applicability of the coherent states to the spinfoam model.

These coordinates have well-known counterparts in the flat case when Λ = 0. In this scen-
ario,Minkowski theorem [18] guarantees that a tetrahedron can be reconstructed from a set of
four vectors J⃗i = ain̂i, i = 1, . . .,4 satisfying flat closure condition, i.e.

∑4
i=1 J⃗i = 0⃗, in which

the information of the area ai and normal n̂i of each face of the tetrahedron are encoded. The
space of such vectors modulo rotation has the structure of a symplectic manifold [19, 20] and
is known as the Kapovich–Millson phase space S4(a1,a2,a3,a4) specified by four areas,

S4 (a1,a2,a3,a4) =

{
n̂i ∈

(
S2
)×4 |

4∑

i=1

J⃗i = 0⃗

}
/SO(3) , J⃗i := ain̂i ∈ R

3 , (1)

where the modulo SO(3) comes from the fact that the flat closure condition is invariant under
the simultaneous SO(3) rotation and those four normals do not lie within the same plane. It
is a two-dimensional real space parametrized by a pair of variables (µ,θ) with the Poisson
bracket {µ,θ}= 1. µ is called the diagonal length and θ is the dihedral angle between the
two triangles as illustrated in figure 1. We refer to it as the space of shapes of a tetrahedron
with fixed areas [20]. The quantization of the phase space is the 4-valent SU(2) intertwiner
space InvSU(2)(Vj1 ⊗Vj2 ⊗Vj3 ⊗Vj4), which is the solution space of the quantum flat closure
condition. The coherent intertwiners were constructed in [3] and further developed in [21],
which describe semiclassical tetrahedra. That is, each coherent intertwiner is labeled not only
by four spins fixed to be the areas of the faces of the tetrahedron but also by four normal
vectors to the faces, which automatically satisfy the closure condition. These states represent
the classical shape of a flat tetrahedron with fixed areas. (When Λ = 0, this can be generalized
to cases of a general polyhedron [20].) The expectation values of geometrical operators using
these states in the semi-classical limit peak at the point of the phase space [21].

The Kapovich–Millson description can be generalized to the shapes of constantly curved
tetrahedron, where the constant curvature is identified with a non-vanishingΛ and the polygon
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is on an S3 [17, 22]. This is the starting point of the construction of the intertwiner space for
a quantum curved tetrahedron as well as coherent states therein. For reader’s convenience, we
sketch the construction approach in the following.

The phase space of shapes of a constantly curved tetrahedron is parametrized by the diag-
onal length lnx and the bending angle lny (see (19) and figure 4). This phase space is identified
with the moduli space of SU(2) flat connections on a four-punctured sphere, which is the solu-
tion space of the classical curved closure condition

M4M3M2M1 = idSU(2), (2)

where Mν , ν = 1, . . .,4 is the SU(2) monodromy around the νth face of the homogeneously
curved tetrahedron.

The length and the twist coordinates are in analogy to the complex Fenchel–Nielsen
coordinates for flat connections, in that they have the same Poisson bracket given by
{lnx, lny}= 1. Inspired by this identification, the diagonal length should be related to the
Fenchel–Nielsen length, which, classically, is defined as theWilson loop along the loop enclos-
ing a pair of punctures.

The quantization of the phase space is the 4-valent intertwiner space W0(K1,K2,K3,K4)
of quantum group Uq(su(2)), which is proved to be the only solution space of the quantum
curved closure condition [17]. The quantum counterpart of the Wilson loop of the loop enclos-
ing single puncture is constructed by the combinatorial quantization [13–15] (see also [17]),
where the operator algebras, i.e. the graph algebra and loop algebra, on a four-punctured sphere
are constructed. To construct the quantum counterpart of Wilson loop along the loop enclosing
a pair of punctures, it is necessary to further investigate the algebraic structure of the quantum
monodromies of the loop enclosing a pair of punctures, which are shown to satisfy the defining
relations of a loop algebra, fromwhich one constructs the q-deformedWilson loop operator cIℓ,
where I spans all the physical irreducible representations of Uq(su(2)). However, the elements
cIℓ are no longer central elements, in contrast to those obtained from loops ℓν ,ν = 1, . . .,4
around each puncture. Nevertheless, the elements cIℓ still form a fusion algebra, and due
to the first-pinching theorem, the intertwiner space W0(K1,K2,K3,K4) is decomposed into⊕

JW
J(K1,K2)⊗WJ̄(K3,K4), where J̄ represents the dual representation to J and the eigen-

value of the element cIℓ in the intertwiner space is given by the unnormalized S-matrix, where
sIJ := TrIq⊗TrJq(R

′R).
Classically, the SU(2) monodromy matrix is a 2 by 2 matrix, i.e. the irreducible repres-

entation is taken to be the fundamental representation. In the quantum case, considering the
fundamental representation, the eigenvalue s 1

2 J
is taken a simple expression as

s 1
2 J
= e

iπ
k+2 (2J+1) + e−

iπ
k+2 (2J+1) , (3)

where k ∈ N. Inspired by the expression above, we define the quantum length operator x̃ such
that its action on the intertwiner space W0(K1,K2,K3,K4) is defined as

x̃|ΨJ⟩= e
iπ
k+2 (2J+1)|ΨJ⟩, ỹ|ΨJ⟩= |ΨJ+1⟩ , (4)

where ỹ is treated as the translational operator. x̃ and ỹ satisfy the commutation relation:

x̃ỹ= qỹx̃ . (5)
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To construct the coherent state in the physical Hilbert space H≡W0(K1,K2,K3,K4), we
firstly define the auxiliary space, Haux = C

2k+4, which carries the irreducible representation
of the Weyl algebra, xy= q

1
2 yx. Their actions are defined as

x|ΨJ⟩= e
iπ
k+2 (2J+1)|ΨJ⟩, y|ΨJ⟩= |ΨJ+ 1

2 ⟩ . (6)

Operators x and y can be treated as exponentials of position, ln(x)≡ i X̃0, and momentum,
ln(y)≡ i Ỹ0, respectively. The eigenvalues of both X̃0 and Ỹ0 are discrete, exhibiting period-
icity, and fall into the range of [0,2π), as can be inferred from the action (6). The irreducible
representations of the Weyl algebra (i.e. xy= q

1
2 yx) are naturally considered as quantizations

of the torus as the phase space. There is a set of well-defined coherent intertwiners, ψ(X̃0,Ỹ0)(x)
obtained from the standard harmonic oscillator coherent states by group averaging over the
discrete Weyl–Heisenberg group, respecting the periodicity of the torus [23]. (The derivation
of the coherent states can be found in appendix C.)

To get back to the physical Hilbert space, which is a subspace ofHaux, we define a projector
P :Haux →H. The coherent states ψ̃(X̃0,Ỹ0)(x) in the H then are the projected ones from the
auxiliary space. The quantum length operator x̃ and the quantum angle operator ỹ are related
to x and y through a projector as

x̃= PxP , ỹ= PyP . (7)

In the semi-classical limit, both k and representation labels Kν increase at the same rate (i.e.
k= λk, Kν = λKν). The expectation of x̃ and ỹ in the projected coherent states peak at a point
(X̃0, Ỹ0) of the phase space, with X̃0 being the logarithm of the length variable and Ỹ0 being
the logarithm of the bending angle (up to an imaginary number). More precisely,

⟨x̃⟩= eiX̃0 +O
(
e−λ/

√
λ
)
, ⟨ỹ⟩= e2iỸ0 +O

(
e−λ/

√
λ
)
, (8)

where the position coordinate X̃0 needs to satisfy the triangle inequality:

2max
(

|K1−K2|
k+2 , |K3−K4|

k+2

)
⩽

X̃0
π
⩽ 2min

(
u(K1,K2)
k+2 , u(K3,K4)

k+2

)
with u(Ki,Kj) =min(Ki+Kj,k−

Ki−Kj). Otherwise, the expectation values of x̃ and ỹ exponential decay by λ:

⟨x̃⟩= O
(
e−λ/

√
λ
)
, ⟨ỹ⟩= O

(
e−λ/

√
λ
)
. (9)

This paper is organized as follows: section 2 reviews the main ideas of the phase space
of a constantly curved tetrahedron, which can be described by length and twist coordin-
ates, analogous to complex Fenchel–Nielsen coordinates for flat connections. The length
and twist coordinates possess geometrical interpretations in the 4-gon on S3. In section 3,
we review some facts about the moduli algebra and its representation theory. For detailed
information, we refer to [13–15, 24] (see also [17]). In section 4, we prove that the quantum
monodromy of the loop around a pair of punctures satisfies the defining relations of a loop
algebra. The fusion algebra V(ℓ) generated by elements cIℓ can be constructed from these
quantum monodromies. However, all the elements cIℓ remain gauge-invariant; they are no
longer central elements. In section 5, the intertwiner space has the following decomposition:
W0(K1,K2,K3,K4) =

⊕
JW

J(K1,K2)⊗WJ̄(K3,K4), where J must satisfy the triangle inequal-
ity. We calculate the eigenvalue of the elements cIℓ in the intertwiner space. In section 6, we
define the quantum counterparts of the twist and length operators, which form a Weyl algebra,
and their actions on the intertwiner space. The commutation relation of theWeyl algebra serves
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as the quantization of the Poisson bracket of the length and twist coordinates. In section 7, we
introduce the auxiliary space, which carries the irreducible representations of theWeyl algebra
quantizing the torus. Here, we construct the coherent state in the auxiliary space. Moving on
to section 8, we define a set of projectors, and the coherent states in the intertwiner space are
obtained through projections. Lastly, we calculate the expectation values of the length and
twist operators in the semiclassical limit, which peak at phase space points.

2. Phase space of a tetrahedron and the length-twist coordinates

In this section, we briefly review the phase space of a convex constantly curved tetrahedron,
whichwewill denote as a curved tetrahedron for conciseness, as themoduli space of PSU(2)∼=
SO(3) flat connection on a four-punctured sphere and describe the length and twist coordinates
as a pair of Darboux coordinates of the phase space. More details of the former can be found
in [17] and references therein.

We identify the curvature of the curved tetrahedron, which could be positive or negative, to
be the cosmological constant Λ. Denote s= sgn(Λ) and the n-dimensional constantly curved
space asEn,s withEn,+ = Sn andEn,− =H

n. Each boundary triangle of the tetrahedron is flatly
embedded in a 2D subspace E2,s of the same E3,s, as illustrated in figure 2. A (non-degenerate)
curved tetrahedron can be uniquely reconstructed from the so-called closure condition. This is
described by the curved Minkowski Theorem [22]. In short, it states that, given a cosmological
constantΛ and four PSU(2) group elements {M̃1,M̃2,M̃3,M̃4} satisfying the closure condition

M̃4M̃3M̃2M̃1 = idPSU(2) , (10)

we interpret these group elements as holonomies based at the same vertex b of a curved tetra-
hedron and each M̃ν (ν = 1, · · ·4) is along a simple path1 around a triangle in the same orient-
ation of the triangle as a Riemann surface. Then these four holonomies uniquely determine a
curved tetrahedron up to isometry and

M̃ν = exp

(
Λ

3
aν n̂ν · τ⃗

)
(11)

encodes the area aν and the outward-pointing normal n̂ν of the νth triangle, where τ⃗ = 1
2i σ⃗ is

the vector of the su(2) generators. We refer to [22] (see also [17]) for a more detailed descrip-
tion of the curved Minkowski theorem.

On the other hand, the holonomies {M̃ν}ν=1,··· ,4 satisfying the closure condition can be
interpreted as the fundamental group of a four-punctured sphere, denoted as Σ0,4, represented
in PSU(2) group, which describes the moduli space of PSU(2) flat connection on Σ0,4:

M0
flat (Σ0,4,PSU(2)) =

{
M̃1,M̃2,M̃3,M̃4 ∈ PSU(2) : M̃4M̃3M̃2M̃1 = idPSU(2)

}
/PSU(2) ,

(12)

1 Given the closure condition (10), the simple path for M̃ν with ν = 1,2,3 is simply a path starting from b along the
boundary of the triangle M̃ν encloses. On the other hand, the simple path for M̃4 is made of three parts. It starts from
b along the edge shared by the simple paths for M̃1 and M̃3, called the special edge, and arrives at a vertex on the
remaining triangle, then along the boundary of the triangle, and finally going back to b along the special edge. See
e.g. figure 2 of [17] for an illustration.
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Figure 2. (a) A tetrahedron flatly embedded in S3. (b) A tetrahedron flatly embedded
in H

3.

where each M̃ν is now the holonomy of the loop ℓν around the νth puncture and the quotient
is by the conjugate action of PSU(2). M0

flat(Σ0,4,PSU(2)) is a Poisson manifold but not
a symplectic one. We fix the conjugacy classes of the holonomies {M̃ν}ν=1,2,3,4, each of
which is labelled by the eigenvalue λ̃ν . Then it defines a 2-dimensional symplectic space,
denoted as Mflat(Σ0,4,PSU(2)). Given the holonomies parametrized as in (11) in the geo-
metrical interpretation of a curved tetrahedron, λ̃ν encodes the area of the νth triangle by
1
2

(
λ̃ν + λ̃−1

ν

)
= cos

(
|Λ|
6 aν

)
. In this sense, we also callMflat(Σ0,4,PSU(2)) the phase space

of a curved tetrahedron with fixed triangle areas.
For convenience of quantization, we lift each M̃ν ∈ PSU(2) to Mν ∈ SU(2) whose eigen-

value λν = ϵν
√
λ̃ν is randomly chosen to be the positive (ϵν =+) or negative (ϵν =−) square

root of that of M̃ν . Then the corresponding symplectic space is

Mλ⃗
0,4 =

{
M1,M2,M3,M4 ∈ SU(2) :Mν = Gν

(
λν 0
0 λ−1

ν

)
G−1

ν ,

×Gν ∈ SU(2) ;M4M3M2M1 = idSU(2)

}
/SU(2) , (13)

with {λν}ν=1,··· ,4 fixed. The dimension of phase space Mλ⃗
0,4 is 2. We are interested in the

Darboux coordinates of this phase space, (at least some of) which have interpretations of
holonomies on the 4-punctured sphere. Such coordinates can be provided by the length-twist
coordinates based on the pants decomposition of Σ0,4.

A Σ0,4 can be decomposed into a pair of pants by cutting along a closed curve, say c,
enclosing (any) two punctures, as illustrated in figure 3.

An SU(2) flat connection onΣ0,4 defines a holonomyH along cwith an eigenvalue denoted
by x. x is called the length coordinate and can be used as the canonical coordinate of the
phase space Mλ⃗

0,4. Its conjugate momentum y, is called the twist coordinate. The Atiyah–

Bott–Goldman symplectic 2-form onMλ⃗
0,4 can be written in terms of (x, y) as

ω =
δy
y
∧ δx
x
, (14)
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Figure 3. A pants decomposition of a 4-punctured sphere by cutting a closed curve c
(in red) surrounding the 1st and 2nd (or the 3rd and 4th) punctures.

where δ denotes the standard differential on Mλ⃗
0,4. It induces a canonical Poisson bracket on

the logarithmic length-twist coordinates:

{lnx, lny}= 1 . (15)

The length-twist coordinates are the analogy of the Fenchel–Nielsen coordinates [25], which
are in general symplectic coordinates of the Techmüller space for a Riemann surface associated
to a pants decomposition.

In correspondence to a curved tetrahedron, which is described byMflat(Σ0,4,PSU(2)), we
choose the lifts of the logarithmic length-twist coordinates such that lnx2, lny2 ∈ i(0,2π) (zero
cannot be reached when the tetrahedron under consideration is non-degenerate), i.e. lnx, lny ∈
i(0,π). Then these coordinates possess a clear geometrical interpretation in the 4-gon on S3 ∼=
SU(2) whose edges are geodesic curves. Consider 4 points {vi}4i=1 on S

3 located at

v1 = idSU(2) , v2 =M1 , v3 =M2M1 , v4 =M3M2M1 . (16)

A 4-gon is formed by 4 geodesic curves ℓ1 ≡ e12 , ℓ2 ≡ e23 , ℓ3 ≡ e34 , ℓ4 ≡ e41 where eij is the
geodesic connecting vi and vj, as shown in figure 4. The geodesic length lν ∈ [0,π] of ℓν
satisfies

cos(lν) =
(
λν +λ−1

ν

)
/2, (17)

for ν = 1, · · · ,4. Denote θ ∈ [0,π] to be the length of the diagonal geodesic curve e13 con-
necting v1 and v3, which separates the 4-gon into two (curved) triangles f 123 bounded by
ℓ1, ℓ2,e13 and f 134 bounded by ℓ3, ℓ4,e13. On the other hand, ϕ ∈ [0,π] describes the bend-
ing angle between the two triangles. Adding the other diagonal geodesic curve, one forms a
curved tetrahedron in S3.

Given fixed lengths {l1, l2, l3, l4} of the four geodesic curves of the 4-gon, θ and ϕ uniquely
determine the shape of this convex curved tetrahedron embedded in S3 [26]. As side lengths
of two triangles, θ is restricted by the following triangular inequality

max(|l1 − l2|, |l3 − l4|)⩽ θ ⩽min(l1 + l2, l3 + l4) , (18)

while ϕ ∈ [0,π] can be freely chosen. When the curved tetrahedron constructed from the 4-gon
is non-degenerate, {lν},θ,ϕ ∈ (0,π). Interpret the length and twist coordinates as

lnx= iθ , lny= iϕ. (19)

Then the length and twist coordinates encode the Darboux coordinates (ϕ,θ) of the 4-gon. It is

shown in [17] that the phase spaceMλ⃗
0,4 can be quantized to be the Hilbert space of the moduli

8
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Figure 4. A 4-gon on SU(2)∼= S3 formed by geodesic curves {ℓi}4i=1 connecting four
points v1 = id,v2 =M1,v3 =M2M1,v4 =M3M2M1 in cyclic order. The geodesic curve
(in red) e13 connecting v1 and v3 has length θ. Further connecting v2 and v4 with a
geodesic curve e24 (dashed) forms a curved tetrahedron on S3 whose faces are geodesics.
n̂123 and n̂134 (one-way arrows in blue) are outward-pointing (relative to the tetrahed-
ron) normal vectors of the geodesic triangle f 123 bounded by ℓ1, ℓ2,e13 and the geodesic
triangle f 134 bounded by ℓ3, ℓ4,e13 respectively. ϕ ∈ [0,π] is the dihedral angle between
f 123 and f 134 hinged by e13.

algebra (see next section). In the remaining of this paper, we aim to quantize the length and
twist coordinates into operators in this Hilbert space and construct a coherent state with these
operators.

3. Moduli algebra M
K1,K2,K3,K4
0,4 and its representation

In this section, we provide a concise review of the mathematical tools, namely the moduli
algebra on Σ0,4, denoted by M

K1,K2,K3,K4
0,4 , and its representation theory, for constructing the

quantum theory of the classical phase spaceMflat(Σ0,4,SU(2)). We aim to give the necessary
formulas for the succeeding sections and skip details and derivations. For details, we refer to
the seminal works in [13–15, 24] and the companion paper [17].

Classically, the solution space of the classical closure condition, M4M3M2M1 = id, is the
moduli space of SU(2) flat connections on Σ0,4. The Poisson structure of Mflat(Σ0,4,SU(2))
is defined by the use of the so-called classical r-matrix. One assigns a classical r-matrix to
each vertex (base point). The idea behind the construction of the Poisson bracket is to replace
the Riemann surface, hereΣ0,4, with a so-called ciliated fat graph, and to represent the moduli
space Mflat(Σ0,4,SU(2)) by a finite-dimensional space. The Poisson structure of graph con-
nections in this space is consistent with the Atiyah–Bott–Goldmann two-form [27–29]. This
consistency is verified by the fact that the Poisson brackets of observables recover those in the
continuous theory. A ciliated graph, as shown in figure 5(b), is a simple graph generated by
the fundamental group on Σ0,4. It includes a cilium, which, combined with cyclic ordering,
fixes the linear order of links. We say that link l1 is of a lower order than l2, denoted as l1 ≺ l2
or l2 ≻ l1, if the cilium sweeps through l1 before l2 in the clockwise direction. An example
of this linear order is illustrated in figure 5(b). A natural quantization is given by quantizing
the classical monodromy Mν to the quantum monodromy operator Mν , quantizing the com-
mutation relations in terms of the quantum monodromies, which are operator matrices, and a
quantumR-matrix, which is the quantum version of the r-matrix. The quantum theory requires

9
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the notion of quasitriangular ribbon (quasi) Hopf algebra Uq(su(2)), which is a deformation
of the universal enveloping algebra of su(2) with a deformation parameter q ∈ C and some
extra algebraic structures, e.g. the ∗-structure. In this paper, we only focus on the case when
the deformation parameter qk+2 = 1 is a root-of-unity, where k ∈ N+ is the Chern–Simons
level. In this case, Uq(su(2)) has finitely many irreducible representations labeled by spins
I= 0, 12 , · · · , k2 . In other words, the Chern–Simons level produces a truncation on the repres-
entations I ∈ N/2. We call these representations after truncation the physical representations.

The collection of the matrix elements of the quantum monodromy around one single punc-
ture form an algebra called the loop algebra denoted by L0,1. When the quantum monodromy
is around the νth puncture, we also denote the loop algebra by Lν . Similarly, the collection of
the matrix elements of the {Mν}ν=1,··· ,4 form an algebra on the four-punctured sphere called
the graph algebra denoted by L0,4. In general, the graph algebra on m-punctured sphere is
denoted L0,m. On top of that, one can define a ‘quantum gauge action’ on the graph algebra.
The algebra of quantum observables, called the invariant algebra denoted asA0,4, is described
by the subalgebra of L0,4 that is invariant under the quantum gauge action. More precisely,
A0,4 is defined as the subalgebra of L0,4 containing all elements in L0,4 that are invariant with
respect to the action of Uq(su(2)), i.e.

A0,4 = {A ∈ L0,4|ξ (A) = Aϵ(ξ) , ξ ∈ Uq (su(2))} , (20)

where ϵ : Uq(su(2))→ C is the counit of Uq(su(2)). It can be shown that elements ofA0,4 are
linear combinations of the form [15]

TrIq
(
C [I1I2I3I4|I]MI1

1 M
I2
2 M

I3
3 M

I4
4 C [I1I2I3I4|I]∗

)
, (21)

where TrIq is the quantum trace and C[I1I2I3I4|I] is the intertwiner that maps the tensor
product of representation spaces of Uq(su(2)) to another representation space of Uq(su(2)),
i.e. C[I1I2I3I4|I] : VI1 ⊗VI2 ⊗VI3 ⊗VI4 → VI and C[I1I2I3I4|I]∗ : VI → VI1 ⊗VI2 ⊗VI3 ⊗VI4 is a
dual map2. As a special case, a central element cIν defined as

cIν := κITrIq
(
MI

ν

)
, κI = q−

1
2 I(I+1) , (22)

and it is an element in A0,4.
The moduli algebra MK1,K2,K3,K4

0,4 is defined from A0,4 with the help of the quantum char-
acter χIν , which we now define. Firstly, when q is a root-of-unity, one can define a sym-
metric and invertible ‘S-matrix’ SIJ in terms of the R-matrix of Uq(su(2)), denoted as R≡∑

aR
(1)
a ⊗R(2)

a ∈ Uq(su(2))⊗Uq(su(2)) and R ′ ≡∑aR
(2)
a ⊗R(1)

a :

SIJ :=N
(
TrIq⊗TrJq

)
(R ′R) , N =

1
(∑

I d
2
I

) 1
2

, (23)

where dI = [2I+ 1]q is the quantum dimension of VI with [n]q :=
q
n
2 −q−

n
2

q
1
2 −q−

1
2
being a quantum

number. The summation in (23) runs through all the physical representations I= 0, 12 , · · · , k2 .

2 C[I1I2I3I4|I]∗ is called the dual map of C[I1I2I3I4|I] only in a loose way. Strictly speaking, C[I1I2I3I4|I]∗ ◦
C[I1I2I3I4|I] 6= 1VI . See e.g. [17] for more details.

10
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Indeed, if I can take up to ∞, which is the case for q not a root-of-unity, N → 0 hence SIJ is
ill-defined. The S-matrices satisfy the following properties [14, 30].

SIJ = SJI , S0J =NdJ ,
∑

J

SIJSJK = δIK ,

u(I,J)∑

K=|I−J|

SKL =
SJLSIL
NdL

, (24)

where u(I,J) =min(I+ J,k− I− J). The properties above show that the inverse element of
the S-matrix is SIJ itself.

With the help of the S-matrix, the quantum characters χJν in A0,4 with ν = 0,1,2,3,4 is
defined as

χJν =NdJ
∑

K

SJKc
K̄
ν ≡NdJ

∑

K

SJK̄c
K
ν , (25)

where J̄ denotes the dual representation of representation J. A quantum character is indeed a
central element. It is also easy to prove that it is also an orthogonal projector inA0,4 satisfying

χIνχ
J
ν = δIJχ

I
ν ,

(
χJν
)∗

= χJν . (26)

Specially, for ν= 0,MJ
0 := κ3JM

J
4M

J
3M

J
2M

J
1 is the quantum monodromy around all four punc-

tures and cJ0 := κJTr
J
q(M

J
0). Then, the corresponding quantum character χ0

0 is.

χ0
0 :=Nd0

∑

J

S0Jc
J̄
0 =N 2

∑

J

dJκ
4
JTr

J
q

(
MJ

4M
J
3M

J
2M

J
1

)
. (27)

We are now ready to define the moduli algebra for the root-of-unity case. The moduli
algebraMKν

0,4 on a four-punctured sphere, each puncture of which is associated with a physical
representation Kν (ν = 1,2,3,4), is a ∗-algebra defined as [15]

M
Kν

0,4 := χ0
0χ

K1
1 χ

K2
2 χ

K3
3 χ

K4
4 A0,4 . (28)

The expression above means that each element inMKν

0,4 is obtained by an element in the invari-

ant algebra A0,4 multiplied by the five quantum characters χ0
0 , χ

K1
1 , χK2

2 , χK3
3 , χK4

4 ∈ A0,4.
The representation of L0,4 is realized on the tensor product space VK1 ⊗VK2 ⊗VK3 ⊗VK4

which admits a decomposition3

VK1 ⊗VK2 ⊗VK3 ⊗VK4 =
⊕

J

VJ⊗WJ (K1,K2,K3,K4) , (29)

where J runs through all the admissible physical representations andWJ(K1,K2,K3,K4) is the
multiplicity space, which can be shown to be the carrier space of A0,4 [15].

The representation of MKν

0,4 is realized in the invariant subspace W0(K1,K2,K3,K4) onto
which the five quantum characters project.

Importantly, given four punctures labeled by representations K1, · · · ,K4 respectively,
W0(K1,K2,K3,K4) is the only irreducible ∗-representation space of the moduli algebra MKν

0,4

3 The decomposition (29) is based on the semi-simplicity of the Hopf algebra, which is broken for q a root-of-
unity. However, in this case, Uq(su(2)) is canonically associated with a truncated Hopf algebra which admits semi-
simplicity. Equation (29) is realized through such the construction. See [15, 17, 31] for more details.
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[15]. The representation space of the moduli algebra can be understood as the quantization of
the moduli space of flat connections that satisfy the closure condition. In this sense, we call
the intertwiner space W0(K1,K2,K3,K4) the physical Hilbert space as it is the solution space
to the ‘quantum closure condition’.

4. Fusion algebra from quantum monodromies around two punctures

In the previous section, we have only considered the quantum monodromies around single
punctures. However, the length coordinate that we are interested in in this paper is the trace
of the monodromy around two punctures, whose quantization is still a quantum monodromy
but the algebra it forms needs to be further investigated. Quite neatly, we will see that the
matrix element of this quantum monodromy still forms a loop algebra and its gauge-invariant
elements form a fusion algebra, also called a Verlinde algebra.

To simplify the calculation, we fix a linear order on the loops around single punctures such
that ℓ1 ≺ ℓ2 ≺ ℓ3 ≺ ℓ4 by introducing a cilium between ℓ1 and ℓ4 as illustrated in figure 5(b).

Let ℓ= ℓmℓ(m−1) with m= 2,3,4 be a composed loop formed by two loops neighboring in
the linear order. The (quantum) monodromy MI

ℓ along ℓ surrounds the mth and the (m− 1)th
punctures and it can be expressed in terms of monodromiesMI

ℓm
andMI

ℓm−1
as

MI
ℓ = κIM

I
ℓm
MI

ℓm−1
. (30)

Let us first study the properties ofMI
ℓ. In the following, we will use extensively the standard

notations that
1

MI
ℓ:=MI

ℓ ⊗ idVJ and
2

MJ
ℓ:= idVI ⊗MJ

ℓ and similarly for other quantum matrices
with a number above.

Proposition 4.1. The matrix elements of the quantum monodromy {MI
ℓ}I defined by (30),

where I runs through all the physical representations of Uq(su(2)), generate a loop algebra
L0,1 by satisfying the following defining exchange relations of L0,1

1

MI
ℓ R

IJ
2

MJ
ℓ =

∑

K

C [IJ|K]∗MK
ℓC [IJ|K] . (31a)

(
R−1

)IJ 1

MI
ℓ R

IJ
2

MJ
ℓ =

2

MJ
ℓ (R

′)
IJ

1

MI
ℓ

(
(R ′)

−1
)IJ

, (31b)
(
MI

ℓ

)∗
= σκ

(
RI
(
MI

ℓ

)−1 (
R−1

)I)
, (31c)

where σκ(M
I
ℓ) := κ−1MI

ℓκ with κ ∈ Uq(su(2)) defined by the ribbon element v ∈ Uq(su(2))
through κ2 = v and RI = (ρI⊗ id)R ∈ End(VI)⊗Uq(su(2)).
Proof. Note that the matrix elements of {MI

ℓm
,MI

ℓm−1
}I are generators of L0,4. By definition,

they satisfy the following exchange relations as ℓm−1 ≺ ℓm [14, 15] (see also [17] and lemma
B.2 in appendix B)

(
R−1

)IJ 1

MI
ℓm−1

RIJ
2

MJ
ℓm

=
2

MJ
ℓm

(
R−1

)IJ 1

MI
ℓm−1

RIJ , (32a)

(R ′)
IJ

1

MI
ℓm

(
R ′−1

)IJ 2

MJ
ℓm−1

=
2

MJ
ℓm−1

(R ′)
IJ

1

MI
ℓm

(
R ′1
)IJ
. (32b)

12
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Figure 5. (a) Two loops (in red), each enclosing a single puncture (black hollow circle).
Both loops ℓe and ℓe′ start and end in the same vertex x. ℓe and ℓe′ are decomposed into
curves C, C′, and C̃, C̃ ′ respectively with two additional vertices y′ and y added to the
loops. A cilium (in blue) is added to each vertex to fix the linear order, e.g. C̃ ′ ≺−C̃≺
C ′ ≺−C at vertex x. (b) A simple graph (loops in black) generated by the generators
{ℓν}ν=1,··· ,4 of fundamental group on a four-punctured sphere. A cilium (in blue) is
added between loops ℓ1 and ℓ4 to fix the linear order ℓ1 ≺ ℓ2 ≺ ℓ3 ≺ ℓ4, where the cyclic
order is set to be clockwise.

On the other hand, the matrix elements of {MI
ℓm
}I (resp. {MI

ℓm−1
}I) generate L0,1, so the

exchange relations (31) also hold when one replaces Mℓ to Mℓm or Mℓm−1 therein. Then (31)
can all be derived through direct calculation. Firstly, the l.h.s. of (31a) is expanded as

1

MI
ℓ R

IJ
2

MJ
ℓ = κIκJ

1

MI
ℓm

1

MI
ℓm−1

RIJ
2

MJ
ℓm

2

MJ
ℓm−1

= κIκJ
1

MI
ℓm
RIJ

2

MJ
ℓm

(
R−1

)IJ 1

MI
ℓm−1

RIJ
2

MJ
ℓm−1

= κIκJ
∑

K

C [IJ|K]∗MK
ℓm
C [IJ|K]

(
R−1

)IJ∑

L

C [IJ|L]∗ML
ℓm−1

C [IJ|L]

=
∑

K

C [IJ|K]∗κKMK
ℓm
MK

ℓm−1
C [IJ|K]

=
∑

K

C [IJ|K]∗MK
l C [IJ|K] ,

(33)

where (32a) is used to obtain the second line, (31a) is used twice to obtain the third line, one
for MI

ℓm
and one for MJ

ℓm−1
, and the normalization condition of Clebsch–Gordan maps, i.e.

C[IJ|K](R−1)IJC[IJ|L]∗ = κK
κIκJ

δKL is used to obtain the second last line.

13
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We next prove (31b). Explicitly,

(
R−1

)IJ 1

MI
ℓ R

IJ
2

MJ
ℓ = κIκJ

(
R−1

)IJ 1

MI
ℓm

1

MI
ℓm−1

RIJ
2

MJ
ℓm

2

MJ
ℓm−1

= κIκJ
(
R−1

)IJ 1

MI
ℓm
RIJ

2

MJ
ℓm

(
R−1

)IJ 1

MI
ℓm−1

RIJ
2

MJ
ℓm−1

= κIκJ
2

MJ
ℓm

(R ′)
IJ

1

MI
ℓm

(
(R ′)

−1
)IJ 2

MJ
ℓm−1

(R ′)
IJ

1

MI
ℓm−1

(
(R ′)

−1
)IJ

= κIκJ
2

MJ
ℓm

2

MJ
ℓm−1

(R ′)
IJ

1

MI
ℓm

(
(R ′)

−1
)IJ

(R ′)
IJ

1

MI
ℓm−1

(
(R ′)

−1
)IJ

=
2

MJ
ℓ (R

′)
IJ

1

MI
ℓ

(
(R ′)

−1
)IJ

,

(34)

where (32a) is used to obtain the second line, (31b) is used twice, one for MI
ℓm

and one for
MJ

ℓm−1
, to obtain the third line and (32b) is used to obtain the fourth line.

Lastly, we use the property of the ∗-structure that (AB)∗ = B∗A∗ to derive (31c) and get

(
κIM

I
ℓm
MI

ℓm−1

)∗
= κ−1

I

(
MI

ℓm−1

)∗ (
MI

ℓm

)∗

= κ−1κ−1
I RI

(
MI

ℓm−1

)−1 (
R−1

)I
RI
(
MI

ℓm

)−1 (
R−1

)I
κ

= σκ

(
RIMI

ℓ

(
R−1

)I)
, (35)

where (31c) is used for both MI
ℓm

andMI
ℓm−1

to obtain the second equation.

We can also define the quantum monodromy along ℓ in an inverse direction (relative to the
orientation of the manifold), denoted asM−ℓ, through

MℓM−ℓ =M−ℓMℓ = e , (36)

where e is the identity element of Uq(su(2)).
Moreover, the matrix elements of MI

ℓ together with those of the quantum monodromies
along loops not included in ℓ generate a graph algebra. If other loops are along single punctures,
the graph algebra is L0,3. This can be shown by the following proposition.

Proposition 4.2. The quantum monodromiesMI
ℓ around two punctures satisfy the following

defining relations of a graph algebra L0,3

(
R−1

)IJ 1

MI
ℓ R

IJ
2

MJ
ℓµ

=
2

MJ
ℓµ

(
R−1

)IJ 1

MI
ℓ R

IJ , if ℓ≺ ℓµ ,

(R ′)
IJ

1

MI
ℓ

(
R ′−1

)IJ 2

MJ
ℓµ

=
2

MJ
ℓµ

(R ′)
IJ

1

MI
ℓ

(
R ′−1

)IJ
, if ℓ≻ ℓµ . (37)

Proof. Since the loop ℓ contains both loops ℓm and ℓm−1, both ℓm and ℓm−1 have the same linear
order with respect to loop ℓµ. Both monodromies MI

ℓm
and MI

ℓm−1
satisfy the commutation

relations of L0,4. The commutation relation of MI
ℓ and MJ

ℓµ
can be derived by the use of the

14
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commutation relations of L0,4. That is, (37) holds when one replaces Mℓ to Mℓm or Mℓm−1 .
Therefore, when ℓ≺ ℓµ, ℓm ≺ ℓµ and ℓm−1 ≺ ℓµ, and hence

(
R−1

)IJ 1

MI
ℓ R

IJ
2

MJ
ℓµ

=
(
R−1

)IJ
κI

1

MI
ℓm

1

MI
ℓm−1

RIJ
2

MJ
ℓµ

=
(
R−1

)IJ
κI

1

MI
ℓm
RIJ

2

MJ
ℓµ

(
R−1

)IJ 1

MI
ℓm−1

RIJ

=
(
R−1

)IJ
κIR

IJ
2

MJ
ℓµ

(
R−1

)IJ 1

MI
ℓm
RIJ
(
R−1

)IJ 1

MI
ℓm−1

RIJ

=
2

MJ
ℓµ

(
R−1

)IJ
κI

1

MI
ℓm

1

MI
ℓm−1

RIJ

=
2

MJ
ℓµ

(
R−1

)IJ 1

MI
ℓ R

IJ .

(38)

The exchange relation for ℓ≻ ℓµ is derived in the same way. ℓ≻ ℓµ implies ℓm ≻ ℓµ and
ℓm−1 ≻ ℓµ. Then

(
R ′)IJ 1

MI
ℓ

((
R ′)−1

)IJ 2

MJ
ℓµ

=
(
R ′)IJκI

1

MI
ℓm

1

MI
ℓm−1

((
R ′)−1

)IJ 2

MJ
ℓµ

=
(
R ′)IJκI

1

MI
ℓm

(
R ′−1

)IJ 2

MJ
ℓµ

(
R ′)IJ 1

MI
ℓm−1

((
R ′)−1

)IJ

=
(
R ′)IJκI

(
R ′−1

)IJ 2

MJ
ℓµ

(
R ′)IJ 1

MI
ℓm

((
R ′)−1

)IJ (
R ′)IJ 1

MI
ℓm−1

((
R ′)−1

)IJ

=
2

MJ
ℓµ

(
R ′)IJκI

1

MI
ℓm

1

MI
ℓm−1

((
R ′)−1

)IJ

=
2

MJ
ℓµ

(
R ′)IJ 1

MI
ℓ

((
R ′)−1

)IJ
. (39)

Given the monodromy MI
ℓ, an element cIℓ := κITr

I
q(M

I
ℓ) can be constructed for each phys-

ical representation. Different from the central elements (22) for a quantummonodromy around
a single puncture, cIℓ is not central. Nevertheless, the set {cIℓ}I has similar properties as the
central elements, which are collected in lemma 4.3 and proposition 4.4 below.

Lemma 4.3. The element cIℓ is independent of the choice of starting point.

Proof. The loop ℓ is composed of loops ℓm and ℓm−1 as shown in figure 6(a). We break the
loop ℓm into C and C′′ and ℓm into−C ′ ′ and C′ by adding another (randomly chosen) vertex y
to ℓ as illustrated in figure 6(b). The quantum monodromiesMI

ℓm
andMI

ℓm−1
can be expressed

in terms of quantum holonomies along curves C,C ′ and C′′:MI
ℓm

= κ−1
I UI

CU
I
C′ ′ andMI

ℓm−1
=

κ−1
I UI

−C ′ ′UI
C′ . Combining these two expressions we have MI

ℓ = κ−1
I UI

C′UI
C if starting at y

whileMI
ℓ = κ−1

I UI
CU

I
C′ if starting at x. To prove that cIℓ is independent of the starting point, it

is adequate to prove that

TrIq
(
κ−1
I UI

C′UI
C

)
= TrIq

(
κ−1
I UI

CU
I
C′

)
. (40)

Classically, the Poisson bracket of holonomies UI
C and UI

C′ is [13],

{
1

UI
C,

2

UJ
C′}=

2

UJ
C′ (r ′)

II
x

1

UI
C −

1

UI
C r

II
y

2

UJ
C′ , (41)
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Figure 6. (a) Loop ℓ starting at vertex x as a composition of loops ℓm (in brown) and
ℓm−1 (in gray), which enclose the mth and the (m− 1)th punctures (illustrated as black
hollow circles) respectively. (b) Loops ℓm and ℓm−1 are decomposed into curves C (in
brown) and C′′ (in red), and −C ′ ′ (in red) and C′ (in gray) respectively by adding an
additional vertex y to the loop ℓ. A cilium (in blue) is added at each vertex, pointing out
of ℓ, to fix the linear order.

which is quantized to the commutation relation of UI
C and UJ

C′

2

UI
C′ (R ′)

II
x

1

UI
C=

1

UI
C R

II
y

2

UI
C′ . (42)

There is a group-like element g ∈ Uq(su(2)) with the intertwining property

gS(ξ) = S−1 (ξ)g, ∀ξ ∈ Uq (su(2)) , (43)

where S−1 is the inverse of the antipode such that S−1 ◦ S(ξ) = ξ. Moreover, g can be decom-
posed as [13, 14]

g= u−1v , u :=
∑

a

S
(
R(2)
a

)
R(1)
a , (44)

where v is the central element v of Uq(su(2)). Introduce g as a function of points on Σ0,4

and let gx = g(x) and gy = g(y). We multiply (42) by
1

gIx≡ ρI(gx)⊗ idVJ from the left and
1

gIy≡
ρI(gy)⊗ idVJ from the right, then obtain

1

gIx
2

UI
C′ (R ′)

II
x

1

UI
C

1

gIy=
1

gIx
1

UI
C R

II
y

2

UI
C′

1

gIy . (45)

Here we set R−1 =
∑

i R
1
i ⊗R2

i and (S⊗ id)(R) = R−1, (S−1 ⊗ id)(R ′) = R ′−1. Then

1

gIx
2

UI
C′

(
∑

i

S
(
R2
i

)
⊗R1

i

)II

x

1

UI
C

1

gIy=
1

gIx
1

UI
C



∑

j

S−1
(
R1
j

)
⊗R2

j




II

y

2

UI
C′

1

gIy . (46)

Using the intertwining relation (43) of the group-like element g, (46) becomes

2

UI
C′

(
∑

i

S−1
(
R2
i

)
⊗R1

i

)II

x

1

gIx
1

UI
C

1

gIy=
1

gIx
1

UI
C

1

gIy



∑

j

S
(
R1
j

)
⊗R2

j




II

y

2

UI
C′ . (47)
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Reordering the expression produces

2

UI
C′



∑

j

2(
R(1)
jx

)I 1(
S−1

(
R(2)
jx

))I



1

gIx
1

UI
C

1

gIy=
1

gIx
1

UI
C

1

gIy



∑

i

1(
S
(
R(1)
iy

))I 2(
R(2)
iy

)I



2

UI
C′ .

(48)

To proceed, we first multiply the two matrix components in the last equation and then multiply
both sides with v2I (which is merely a complex number), then take the trace TrI. Using the fact

that uI = v2I (R
(1)
jx S

−1(R(2)
jx ))I = v2I (S(R

(1)
iy )R(2)

iy )I, we get

TrI
(
UI
C′uIxg

I
xU

I
Cg

I
y

)
= TrI

(
gIxU

I
Cg

I
yu

I
yU

I
C′

)
. (49)

Finally, since gu= ug= v as v is central and the quantum trace is defined as TrIq(U
I) :=

Tr(UIgI), we multiply both side by κ−1
I and get (recall κ2I = vI)

TrIq
(
κ−1
I UI

C′UI
C

)
= TrIq

(
κ−1
I UI

CU
I
C′

)
. (50)

This is equivalent to

TrIq
(
κIM

I
ℓm−1

MI
ℓm

)
= TrIq

(
κIM

I
ℓm
MI

ℓm−1

)
. (51)

Proposition 4.4. cIℓ as an element of L0,4 satisfies the following properties.

1. They are gauge-invariant but not central elements.
2. They form a fusion algebra V(ℓ):

cIℓc
J
ℓ =

∑

K

NIJKc
K
ℓ ,

(
cIℓ
)∗

= cĪℓ . (52)

Proof. The gauge-invariant property can be proved by showing that cIℓ is in the invariant sub-
algebra A0,4. Recall that any element in A0,4 can be expressed as a linear combination of the
form (21). In the following, we are going to show that

κJTr
J
q

(
κJM

J
ℓm−1

MJ
ℓm

)
= κJTr

J
q

(
C [I0|J]κIMI

ℓm−1
MI

ℓm
C [I0|J]∗

)
, (53)

which is a special case of (21) when Mℓm and Mℓm−1 take the same representation while the
other two quantum holonomies take trivial representations.

The Clebsh–Gordon maps C[I0|J] and C[I0|L]∗ are intertwiners and commute with
ρI(ξ),∀ξ ∈ Uq(su(2)):

C [I0|J]ρI (ξ) = C [I0|J]
(
ρI⊗ ϵ

)
∆(ξ) = ρJ (ξ)C [I0|J] ,

C [I0|L]∗ ρL (ξ) =
(
ρI⊗ ϵ

)
∆ ′ (ξ)C [I0|L]∗ = ρI

(
ξ
(2)
i

)
ϵ
(
ξ
(1)
i

)
C [I0|L]∗

= ρI
(
ξ
(2)
i ϵ

(
ξ
(1)
i

))
C [I0|L]∗ = ρI (ξ)C [I0|L]∗ . (54)
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By Schur’s lemma, bothC[I0|L] andC[I0|L]∗ are equal to identity eI up to some complex factor.
To be consistent with the normalization condition we set for CG maps, the factor must be
compatible with the normalization condition. Suppose C[I0|J] = λδI,J and C[I0|L]∗ = λ ′δL,I,

C [I0|J] (R ′)
I0
C [I0|L]∗ = C [I0|J]C [I0|L]∗ = δJ,L , (55)

where the first equality is obtained by using quasi-triangularity, i.e. (id⊗ ϵ)(R ′) = e. From the
derivation above we then have λλ ′ = 1, which shows

C [I0|J]κIMI
ℓm−1

MI
ℓm
C [I0|J]∗ = κJM

J
ℓm−1

MJ
ℓm
. (56)

Combining the derivation above with lemma 4.3, it is confirmed that cIℓ is indeed an element
of A0,4.

It can be proved by using lemma B.1 in appendix B that elements cIℓ still commute withML
ν ,

for ν ̸= m, m− 1. However, they are not central elements of L0,4 and can be verified by the
fact that cIℓ = κITr

I
q(κIM

I
ℓm
MI

ℓm−1
) does not commute with MJ

ℓm
or MK

ℓm−1
, using the defining

relations (31) of a loop algebra and those (37) of a graph algebra.
Lastly, the matrix elements ofMI

ℓ = κIM
I
ℓm
MI

ℓm−1
are the generators of the loop algebra as

shown in proposition 4.1. Then the fusion rule can be derived with the help of the functionality
condition of MI

ℓ:

1

MI
ℓ R

IJ
2

MJ
ℓ=
∑

K

C [IJ|K]∗MK
ℓC [IJ|K] . (57)

The derivation and proof for the fusion rule and ∗-structure of cIℓ are the same as those shown
in [14] hence we skip it here.

To construct the quantum character of the loop ℓ, we use the S-matrix defined in (23) to
define the quantum character χIℓ:

χIℓ :=NdISIJc
J̄
ℓ =NdISĪJc

J
ℓ . (58)

It also satisfies the projecting property just as the quantum character for quantummonodromies
around single loops. That is,

χIℓχ
J
ℓ = δIJχ

J
ℓ ,

(
χIℓ
)∗

= χIℓ . (59)

The detailed proof can also be found in [14].
Let us clarify that, although we are working on Uq(su(2)) with q a root-of-unity in this

paper, the above derivations were done firstly in an unrealistic case by assuming that there is
no truncation for representations and then truncating away the unphysical representation. This
means the representations we use above are for the truncated Hopf algebra UT

q (su(2)), which is
canonically associated with Uq(su(2))with q a root-of-unity, ensuring that the irreducible rep-
resentations precisely correspond to the physical representations ofUq(su(2)) [14, 15]. Thanks
to the semi-simplicity of UT

q (su(2)), the derivations are neat as above. Nevertheless, one can
directly work on the representations of Uq(su(2)) then the above results are still valid with the
so-called substitution rule (see (A1)) applied. We refer to appendix A for this approach.

To end this section, we would like to comment on the case when q is a phase but not a
root-of-unity, i.e. |q|= 1,qk+2 ̸= 1. Almost all the proofs and defining relations we gave in this
section still hold in this case except that the quantum character χIℓ is not well-defined due to the
fact that the S-matrix is ill-defined for |q|= 1,qk+2 ̸= 1. More details about |q|= 1,qk+2 ̸= 1
case can be found in [17].
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5. Representation of the fusion algebra V(ℓ)

Having defined the fusion algebra V(ℓ), we proceed to construct the representation of V(ℓ).
To be concrete and with no loss of generality, we set ℓ to be the loop that encloses the first and
second punctures, i.e. ℓ= ℓ2ℓ1. ThenM

I
ℓ = κIM

I
ℓ2
MI

ℓ1
. As mentioned in the preceding section,

{cIℓ}I form a fusing algebra V(ℓ) but they are not central elements. This means the commutant
of V(ℓ) in the MK1,K2,K3,K4

0,4 is non-trivial, unlike that of V(ℓν), and that the representations of
V(ℓ) in the multiplicity space W0(K1,K2,K3,K4) are reducible. In this section, we describe
the representation theory of V(ℓ) (theorem 5.2) which is based on the first pinching theorem
(lemma 5.1) [15] and study the corresponding representation space.

Lemma 5.1. The commutant C(V(ℓ),MK1,K2,K3,K4
0,4 ) of V(ℓ) inMK1,K2,K3,K4

0,4 can be split into the
direct sum of products of two moduli algebras, each corresponding to a 3-punctured sphere

C
(
V (ℓ) ,MK1,K2,K3,K4

0,4

)
=
⊕

J

M
K1,K2,J
0,3 ⊗M

J̄,K3,K4
0,3 , (60)

where J runs through all the physical irreducible representations of Uq(su(2)), i.e.
max(|K1 −K2|, |K3 −K4|)⩽ J⩽min(u(K1,K2),u(K3,K4)) with spacing 1, and J̄ is the dual
representation of J. However, for non-admissible J, the algebra is trivial since NK1K2

J = 0.

A proof of lemma 5.1 can be found in [15]. According to the first pinching theorem, to study
the representation theory of V(ℓ), one can separate Σ0,4 into a pair of 3-punctured spheres
Σ0,3’s by doing a pants decomposition as illustrated in figure 3, and study the representation
theories of the moduli algebra on a Σ0,3 individually. We make it precise in the following
theorem.

Theorem 5.2. Given any set of physical representations K1,K2,K3,K4, each labeling a punc-
ture ofΣ0,4, there exists a unique irreducible ∗-representation of the fusion algebra V(ℓ) on the
space WJ(K1,K2)⊗WJ̄(K3,K4) for each admissible physical representation J of Uq(su(2)).

Proof. The crucial part of the proof is to show that MK1,K2,K3,K4
0,4 is isomorphic to the algebra

χK4
0

∏3
ν=1χ

Kν
ν A0,3, i.e.

M
K1,K2,K3,K4
0,4

∼= χK4
0

3∏

ν=1

χKν
ν A0,3 , (61)

which we now establish. Firstly, we realize that WK4(K1,K2,K3) is isomorphic to
W0(K1,K2,K3,K4) as they are both multiplicity spaces and have the same dimension∑

JN
K1K2
J NJK3

K4
with NIJK = 1 if I,J,K are all physical representations and they satisfy the trian-

gular inequality while NIJK = 0 otherwise. The former is the representation space of the algebra
χK4
0

∏3
ν=1χ

Kν
ν A0,3 while the latter is the representation space of MK1,K2,K3,K4

0,4 . The isomorph-
ism of the two representation spaces then leads to the isomorphism of the two algebras because
the representations of a moduli algebra are irreducible and faithful. Since the representation
of moduli algebra is realized in only one space, the faithfulness and irreducibility of repres-
entation do guarantee the isomorphism of moduli algebra [15]. This establishes the validity
of (61).

The unit of the moduli algebra MK1,K2,K3,K4
0,4 is defined as χ0

0

∏4
ν=1χ

Kν
ν [14]. Similarly, the

unit ofMK1,K2,J andMJ̄,K3,K4 is expressed as χJ0χ
K1
1 χ

K2
2 and χJ̄0χ

K3
3 χ

K4
4 respectively. By the first
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pinching theorem, the decomposition of the commutant of the fusion algebra determines the
following decomposition of the unit

eK1,K2,K3,K4
0,4 =

∑

J

eK1,K2,J
0,3 ⊗ eJ̄,K3,K4

0,3 . (62)

The decomposition is the consequence of the completeness of the characters
∑

Jχ
J
ℓ = id.

We now show the decomposition (62). Denote the mapping ϕ : L0,3 ⊗L0,3 →L0,4. Then
the embedding χ0

0ϕ as defined in [15] maps every matrix algebra M
K1,K2,J⊗M

J̄,K3,K4 into
M

K1,K2,K3,K4
0,4 . For the l.h.s. of the decomposition (62), the unit is χ0

0

∏4
ν=1χ

Kν
ν , for the r.h.s. of

the decomposition, the embedded unit becomes
∑

J

χ0
0χ

J
ℓχ

K1
1 χ

K2
2 χ

J̄
−ℓχ

K3
3 χ

K4
4 =

∑

J

χ0
0χ

J
ℓχ

K1
1 χ

K2
2 χ

J
ℓχ

K3
3 χ

K4
4 =

∑

J

χJℓχ
J
ℓχ

0
0χ

K1
1 χ

K2
2 χ

K3
3 χ

K4
4

=
∑

J

χJℓχ
0
0χ

K1
1 χ

K2
2 χ

K3
3 χ

K4
4 = χ0

0χ
K1
1 χ

K2
2 χ

K3
3 χ

K4
4 ,

(63)

where we have used the completeness property of quantum characters
∑

Jχ
J
ℓ = id. This val-

idates (62).
The element χJℓ =NdJSJLcL̄ℓ is constructed from cIℓ. Based on the representation theory

of the moduli algebra constructed in [15], there is a unique irreducible ∗-representation of
M

K1,K2,K3,K4
0,4 on the space W0(K1,K2,K3,K4), which is the space projected by the unit of

M
K1,K2,K3,K4
0,4 . By the isomorphism (61), there is also a unique irreducible ∗-representation of

the commutant on the space projected by χJ0χ
K1
1 χ

K2
2 ⊗χJ̄0χ

K3
3 χ

K4
4 for each J. This irreducible

representation of the commutant is realized on the multiplicity spaceWJ(K1,K2)⊗WJ̄(K3,K4)
for every J. The element cI is a central element inMK1,K2,J if it is constructed from the contract-
ible loop, as discussed in [14]. In our case, the element cIℓ is constructed from the contractible
loop that encloses the first and second punctures after pants decomposition hence it is a cent-
ral element inMK1,K2,J. This means cIℓ commutes with

∑
JM

K1,K2,J
0,3 ⊗M

J̄,K3,K4
0,3 . Therefore, the

representation of cIℓ should also be realized in the multiplicity spaceWJ(K1,K2)⊗WJ̄(K3,K4)
for every J.

The representation of {cIℓ}I, as it is realized in the space
⊕

JW
J(K1,K2)⊗WJ̄(K3,K4), can

be expressed in terms of a basis of the space. We define the basis in the space WJ(K1,K2)⊗
WJ̄(K3,K4) as

B
J ≡

∑

m

eJm⊗ eJ̄m :=
∑

m

(−1)J−m qmeJm⊗ eJ−m, max{|K1 −K2|, |K3 −K4|}

⩽ J⩽min{u(K1,K2) ,u(K3,K4)} , (64)

where eJm is the orthonormal basis of VJ and eJ̄m ≡ (−1)J−mqmeJ−m is the orthonormal basis of
VJ̄. The definition of eJ̄m is motivated by the scalar product between two orthonormal bases

of VJ, which is in terms of the q-deformed Clebsh–Gordon coefficient

(
J K 0
m n 0

)

q

:=

δKJδm,−n
(−1)J−mqm√

[2K+1]q
and maps two vectors to a scalar. More precisely, the scalar product of

eJm ∈ VJ and eKn ∈ VK is ⟨eKn ,eJm⟩ :=
√

[2J+ 1]q

(
J K 0
m n 0

)

q

eJme
K
n = (−1)J−mqmδKJδn,−m.
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This scalar product can also be treated as a map from the tensor product space VJ⊗VK to the
invariant subspace. This motivates us to define eJ̄m = (−1)J−mqmeJ−m so that the scalar product
can be expressed as the ‘direct product’ of eK̄n and eJm. The same way to define a basis in the
dual representation was used in [32], where the scalar product is further made symmetric for
integer J and antisymmetric for half-integer J. This is consistent with the case when q→ 1.

Lemma 5.3. The basisBJ of WJ(K1,K2)⊗WJ̄(K3,K4) as defined in (64) is an invariant state,
i.e.

ρJ⊠ ρJ (ξ)BJ = ϵ(ξ)BJ , ∀ξ ∈ Uq (su(2)) , (65)

where ϵ is the counit of Uq(su(2)), which is also the trivial representation of Uq(su(2)), and
ρJ⊠ ρJ (ξ) := ρJ⊗ ρJ (∆(ξ)).

Proof. To prove (65) for all ξ ∈ Uq(su(2)), it is enough to prove its validity when ξ is any
generator of Uq(su(2)), i.e. for any ξ ∈ {q H

2 ,X,Y}. We first note that

ϵ
(
q

H
2

)
= 1 , ϵ(X) = 0= ϵ(Y) , (66)

and that the actions of the generators on the basis read

ρJ
(
q

H
2

)
eJm = qm eJm , ρJ (X)eJm =

√
[J−m]q [J+m+ 1]q e

J
m+1 ,

ρJ (Y)eJm =
√
[J+m]q [J−m+ 1]q e

J
m−1 . (67)

We first consider ξ = q
H
2 . Then

ρJ⊠ ρJ
(
q

H
2

)
B

J =
∑

m

(−1)J−m qmρJ
(
q

H
2

)
eJm⊗ ρJ

(
q

H
2

)
eJ−m

=
∑

m

qmq−m (−1)J−m qmeJm⊗ eJ−m ≡
∑

m

(−1)J−m qmeJm⊗ eJ−m ,
(68)

which satisfies (65). We next consider ξ = X:

ρJ⊠ ρJ (X)BJ =
∑

m

(−1)J−m qm
(
ρJ (X)⊗ ρJ

(
q

H
2

)
+ ρJ

(
q−

H
2

)
⊗ ρJ (X)

)(
eJm⊗ eJ−m

)

=
J−1∑

m=−J

√
[J−m]q [J+m+ 1]qq

−m (−1)J−m qmeJm+1 ⊗ eJ−m

+
J∑

m=−J+1

q−m
√

[J+m]q [J−m+ 1]q (−1)J−m qmeJm⊗ eJ−m+1 .

(69)

Replacing the second summation for m in the last expression to m ′ := m+ 1, the two terms
in the last expression cancel. Then ρJ⊠ ρJ (X)BJ = 0≡ ϵ(X)BJ.

The same analysis for the action of ∆(Y)≡ Y⊗ q
H
2 + q−

H
2 ⊗ Y on B gives that ρJ⊠

ρJ (Y)BJ = 0≡ ϵ(Y)BJ. Therefore, (65) is valid for all the generators of Uq(su(2)) hence any
ξ ∈ Uq(su(2)).
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Theorem 5.4. The representation of cIℓ in the subspace W
J(K1,K2)⊗WJ̄(K3,K4) of VK1 ⊗

VK2 ⊗VK3 ⊗VK4 is expressed as

DK1,K2,K3,K4
(
cIℓ
)
|WJ(K1,K2)⊗WJ̄(K3,K4)

=
[(2I+ 1)(2J+ 1)]q

dJ
idWJ(K1,K2) ⊗ idWJ̄(K3,K4)

. (70)

Here the range of J is max(|K1 −K2|, |K3,K4|)⩽ J⩽min(u(K1,K2),u(K3,K4)).

Proof. We first derive the representation DK1,K2,K3,K4 of cIℓ in the larger space VK1 ⊗VK2 ⊗
VK3 ⊗VK4 . We make use of the representation of quantum monodromies around single
punctures [15] (see also [17]):

DK1,K2,K3,K4

(
MI

ν

)
= κ

−1
I

(
R ′
12R

′
13 · · ·R ′

1νR
′
1,ν+1R1,ν+1R

′−1
1ν · · ·R

′−1
13 R

′−1
12

)IK1···Kν

⊗ eKν+1 ⊗ ·· · ⊗ eK4 .

(71)

Then a direct calculation gives

DK1,K2,K3,K4

(
cIℓ
)
= DK1,K2,K3,K4

(
κITr

I
q

(
κIM

I
ℓ2M

I
ℓ1

))
= κITr

I
q

(
κID

K1,K2,K3,K4

(
MI

ℓ2M
I
ℓ1

))

= κ
2
ITr

I
q

(
DK1,K2,K3,K4

(
MI

ℓ2

)
DK1,K2,K3,K4

(
MI

ℓ1

))

= TrIq

[((
R ′
12R

′
13R13R

′−1
12

)IK1K2

⊗ eK3 ⊗ eK4

)((
R ′
12R12

)IK1K2 ⊗ eK3 ⊗ eK4

)]

= TrIq

[(
R ′
12R

′
13R13R

′−1
12 R ′

12R12

)IK1K2

⊗ eK3 ⊗ eK4

]

= TrIq
[
ρ
I⊗ ρ

K1 ⊗ ρ
K2 (id⊗∆)

(
R ′R

)]
⊗ eK3 ⊗ eK4

≡ TrIq
[
ρ
I⊗
(
ρ
K1 ⊠ ρ

K2

)(
R ′R

)]
⊗
(
ρ
K3 ⊠ ρ

K3

)
(e) .

(72)

This expression is written in a non-truncated, or unrealistic, version. As we are nowworking
on Uq(su(2)) with q a root-of-unity, we need to use the substitution rule R→R and R ′ →R ′

(see (A1)) from the beginning of the derivation and the result is given [15]:

DK1,K2,K3,K4
(
cIℓ
)
= TrIq

[
ρI⊗

(
ρK1 ⊠ ρK2

)
(R ′R)

]
⊗
(
ρK3 ⊠ ρK3

)
(e) , (73)

where R ′,R satisfy quasi-Yang Baxter equation instead of Yang–Baxter equation as for the
non-truncated case. The calculation with substitution rule (A1) gives the same result

DK1,K2,K3,K4
(
cIℓ
)

= DK1,K2,K3,K4
(
κITr

I
q

(
κIM

I
ℓ2
MI

ℓ1

))
= κITr

I
q

(
κID

K1,K2,K3,K4
(
MI

ℓ2
MI

ℓ1

))

= κ2ITr
I
q

(
DK1,K2,K3,K4

(
MI

ℓ2

)
DK1,K2,K3,K4

(
MI

ℓ1

))

= TrIq
[((

φ123R
′
12φ

−1
213R

′
13R13φ213R

′−1
12 φ−1

)IK1K2 ⊗ eK3 ⊗ eK4

)

×
((
φ123R

′
12φ

−1
213φ213R12φ

−1
)IK1K2 ⊗ eK3 ⊗ eK4

)]

= TrIq
[(
φ123R

′
12φ

−1
213R

′
13R13φ213R

′−1
12 φ−1φ123R

′
12φ

−1
213φ213R12φ

−1
)IK1K2 ⊗ eK3 ⊗ eK4

]

= TrIq
[(
φ123R

′
12φ

−1
213R

′
13R13φ213R12φ

−1
)IK1K2 ⊗ eK3 ⊗ eK4

]

= TrIq
[
ρI⊗ ρK1 ⊗ ρK2 (id⊗∆)(R ′R)

]
⊗ eK3 ⊗ eK4

≡ TrIq
[
ρI⊗

(
ρK1 ⊠ ρK2

)
(R ′R)

]
⊗ eK3 ⊗ eK4 .

(74)
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The sixth equality is obtained by using the quasi-inverse property, φφ−1φ = φ.4 The detailed
calculation of the fifth and sixth lines can be found in lemmas B.4 and B.3.

The representation is now for the truncated algebra UT
q (su(2)) and the semi-simplicity is

admitted:

ρK1 ⊠ ρK2 =

u(K1,K2)∑

J=|K1−K2|

ρJ , ρK3 ⊠ ρK4 =

u(K3,K3)∑

J=|K3−K4|

ρJ ∼=
u(K3,K3)∑

J=|K3−K4|

ρJ̄ . (75)

We also use the following results proven in [17] (lemma E.5 therein):

ρI⊗ ρJ (R ′R) =
u(I,J)∑

K=|I−J|

vIvJ
vK

idK , (76)

u(I,J)∑

K=|I−J|

vIvJ
vK

TrKq (idK) = [(2I+ 1)(2J+ 1)]q . (77)

Combining these facts, it is easy to see that

DK1,K2,K3,K4
(
cIℓ
)
|WJ(K1,K2)⊗WJ̄(K3,K4)

= TrIq
[(
ρI⊗ ρJ

)
(R ′R)

]
⊗ idWJ̄(K3,K4)

=
[(2I+ 1)(2J+ 1)]q

dJ
idWJ(K1,K2) ⊗ idWJ̄(K3,K4)

.
(78)

TheHilbert spaceH ofmoduli algebra on the four-punctured sphere is themultiplicity space
H≡W0(K1,K2,K3,K4) [15]. When we consider the cycle ℓ= ℓ2ℓ1 and the fusion algebra
constructed from ℓ, according to lemma 5.1, the Hilbert space has the following decomposi-
tion H=

⊕
JW

J(K1,K2)⊗WJ̄(K3,K4), where J runs through all the representations satisfy-
ing the triangle inequality, max(|K1 −K2|, |K3 −K4|)⩽ J⩽min(u(K1,K2),u(K3,K4)) with
spacing 1. The eigenvalue of element cIℓ is calculated in the theorem 5.4.

If the label I is taken to be the fundamental representation and q being a root of unity,
q= e

2π i
k+2 , where k is an integer, the case is further simplified. The eigenvalue becomes

s 1
2 J

dJ
=

[2(2J+ 1)]q
[2J+ 1]q

=
sin 2π

k+2 (2J+ 1)

sin π
k+2 (2J+ 1)

= 2cos

(
π

k+ 2
(2J+ 1)

)

=
(
e

π i
k+2 (2J+1) + e−

π i
k+2 (2J+1)

)
. (79)

6. Quantization of the length and twist coordinates

We define operators x̃ and ỹ such that their actions on the basis of the Hilbert space H are as
follows.

x̃

(
∑

m

eJm⊗ eJ̄m

)
= e

π i
k+2 (2J+1)

(
∑

m

eJm⊗ eJ̄m

)
, ỹ

(
∑

m

eJm⊗ eJ̄m

)
=
∑

m

eJ+1
m ⊗ eJ̄+1

m .

(80)

4 For the truncated algebra UT
q (su(2)), the underlying structure is a weak Hopf algebra, in which the coassociator φ

is no longer invertible, i.e. φφ−1 6= e⊗ e⊗ e, but is quasi-invertible.
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From the definitions above, we observe that the operators x̃ and ỹ satisfy the following com-
mutation relation:

x̃ỹ= qỹx̃ . (81)

Equation (81) is equivalent to the following expression:

[ln x̃, ln ỹ] = i
2π
k+ 2

. (82)

We now claim that the commutation relation (81) can be considered as a natural quant-
ization of the length-twist coordinate. To this end, we define an auxiliary Hilbert space
Haux =

⊕
JW

J(K1,K2)⊗WJ̄(K3,K4) where J ∈ N/2 satisfies the triangular inequality as in
H but the spacing of neighboring J’s is 1/2 instead of 1. This means, the dimension ofHaux is
larger than that ofH. The use ofHaux will come in handy in the next section for the construc-
tion of the coherent state in H. We also define operators x and y that acts the basis of Haux

by

x

(
∑

m

eJm⊗ eJ̄m

)
= e

π i
k+2 (2J+1)

(
∑

m

eJm⊗ eJ̄m

)
, y

(
∑

m

eJm⊗ eJ̄m

)
=
∑

m

e
J+ 1

2
m ⊗ e

J̄+ 1
2

m .

(83)

Operators x and y then satisfy the following commutation relation:

xy= q
1
2 yx . (84)

Comparison of (81) with (83) intuitively motivates us to set x̃= x and ỹ= y2. However, the
actual relation, which will be clear in the next section, turns out to be x̃= PxP and ỹ= Py2P,
where P is the projector that maps a state inHaux into one inH. The definition of the projector
P will be given in proposition 8.2 in the next section.

An immediate observation from (84) is that it is equivalent to the expression:

[lnx, lny] = iℏ , (85)

where ℏ is identified with π
k+2 when q= ei2ℏ is regarded as a quantum deformation parameter.

Therefore, equation (84) is natural quantization of the Poisson bracket of length-twist coordin-
ates (15).

By the comparison of (84) with (81), we can identify ln x̃= lnx and ln ỹ= lny2. These
identifications provide all the ingredients we need to show that (81) can be considered as the
quantization of the length-twist coordinates. Define classical coordinates x̃ := x and ỹ := y2,
then the semi-classical limit of (82) recovers the Poisson bracket (15) as

{ln x̃, ln ỹ}=
{
lnx, lny2

}
= 2 . (86)

Let us stress that the Hilbert spaceH only allows the existence of operators x̃, ỹ. The reason
for the introduction of Haux is for our convenience in constructing the coherent state in H,
which we will illustrate in the next section.

The strategy of coherent state’s construction is that we first use operators x and y to construct
the coherent state inHaux then define a set of projectors that map the coherent state intoH.
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The ∗-operation of x and y can be induced from the ∗-operation of cIℓ. The action of x∗ and
y∗ on the basis are given as:

x∗
(
∑

m

eJm⊗ eJ̄m

)
= e−

π i
k+2

(2J+1)

(
∑

m

eJm⊗ eJ̄m

)
, y∗

(
∑

m

eJm⊗ eJ̄m

)
=

(
∑

m

e
J− 1

2
m ⊗ e

J̄− 1
2

m

)
.

(87)

The commutation relation between x∗ and y∗ is the same as that between x and y:

x∗y∗ = qy∗x∗. (88)

To end this section, let us point out an observation: the eigenvalue of x has a periodicity condi-
tion. This implies that the quantum states in the auxiliary Hilbert spaceHaux are those defined
on the torus. This motivates our construction of coherent states in the next section.

7. Coherent states in the auxiliary Hilbert space

We list the action of operators x,y and x∗,y∗ on states in the sub-space of each representation
label J:

x(ΨJ) = e
π i
k+2 (2J+1)ΨJ , y(ΨJ) = ΨJ+ 1

2
,

x∗ (ΨJ) = e−
π i
k+2 (2J+1)ΨJ , y∗ (ΨJ) = ΨJ− 1

2
,

(89)

where ΨJ is any state in the sub-space WJ(K1,K2)⊗WJ̄(K3,K4) for each representation label
J. It is easy to check that (84) and (88) are indeed realized.

As mentioned in the end of the preceding section, the auxiliary space is the quantization of
the torus as the phase space. Classically, a torus is viewed as a two-dimensional phase space
with canonical coordinates (q,p) ∈ [0,a)× [0,b). Since they are on the torus, it is naturally
equipped them with periodic conditions. In quantum theory, the periodic condition yields the
quantization condition for any states on the torus:

ab= 2πℏN , (90)

where N ∈ N. For more details on quantum states on the torus, we refer to [23] as well as
appendix C.

For the auxiliary Hilbert space, the irreducible representations J ∈ N/2 fall within the range
of 0 and (k+ 3

2 ), as this range corresponds to the periodicity of the eigenvalue of the operator
x as shown in (83).

Following [23], we define a set of coherent states, denoted as ψ(X̃0,Ỹ0), as an L
2(R) function

on a torus T2 = S1 × S1 with parameters (X̃0, Ỹ0) ∈ [0,2π)× [0,2π) being the angle coordin-
ates on T2. (The derivation of the coherent states can be found in appendix C.) When viewing
T2 as a phase space, (X̃0, Ỹ0) is a pair of canonical coordinates. ψ(X̃0,Ỹ0)(x) is defined as the
superposition of basis el(x) with coefficient ξ(X̃0,Ỹ0)(l):

ψ(X̃0,Ỹ0) (x) :=
2k+3∑

l=0

ξ(X̃0,Ỹ0) (l)el (x) , (91)
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where

ξ(X̃0,Ỹ0) (l) :=

(
1

k+ 2

) 1
4

e−
ĩY0 X̃0(k+2)

2π

∑

m′∈Z

e−
i(k+2)

π
Ỹ0(l π

k+2−2πm ′−X̃0)e−
k+2
2π (l π

k+2−2πm ′−X̃0)
2

,

el (x) :=
∑

j∈Z

√
π

k+ 2
δ

(
x− 2π

(
l

2(k+ 2)
− j

))
.

(92)

Here δ(x− 2π( l
2(k+2) − j)) is a Dirac distribution and the basis el(x) is given by the Dirac

combs and is an orthonormal basis in C. Therefore, ψ(X̃0,Ỹ0)(x) takes non-trivial value only at
discrete x’s. The resolution of identity for coherent states is [23]

k+ 2
2π2

ˆ

T2

dX̃0dỸ0|ψ(X̃0,Ỹ0)⟩⟨ψ(X̃0,Ỹ0)|= idHaux , (93)

where |ψ(X̃0,Ỹ0)⟩ is defined as in (91) and ⟨ψ(X̃0,Ỹ0)|=
∑2k+3

l=0 ξ̄(X̃0,Ỹ0)(l)el(x). By definition, the
inner product of the coherent state is defined as

⟨ψ(X̃0,Ỹ0)|ψ
′

(X̃ ′
0 ,Ỹ

′
0 )
⟩=

2k+3∑

l,̃l=0

ξ̄(X̃0,Ỹ0) (l)ξ(X̃ ′
0 ,Ỹ

′
0 )

(
l̃
)
. (94)

The final expression of the coherent state ψ(X̃0,Ỹ0) in the Haux ≃ C
2(k+2) is:

2k+3∑

l=0

ξ(X̃0,Ỹ0) (l) |l⟩ , (95)

where we have used |l⟩ ≡ eℓ(x) to denote the orthonormal basis in C
2(k+2). This notation

will be used in the next section. From our construction of coherent states on the torus,
the 2(k+ 2)−dimensional auxiliary Hilbert space Haux is decomposed as follows: Haux =⊕2k+3

l=0 Vl.

8. Projection into H and the expectation value

In the preceding section, we have constructed the coherent state in the auxiliary Hilbert
space Haux, which can be decomposed into subspace Vl, and where the eigenvector of x is
associated to the eigenvalue e

iπ
k+2 (l+1). However, the coherent state that corresponds to our

quantum system are in the H rather than Haux. The physical Hilbert space H is decomposed
into

∑
JW

J⊗WJ̄, where J can only fall within the range of max(|K1 −K2|, |K3 −K4|)⩽ J⩽
min(u(K1,K2),u(K3,K4)) and the difference between closest J’s is 1 instead of 1

2 .
Let us recall that the action of operators x and y on the sub-space Vl, where l ∈ N falls

within the range of 0 and 2k+ 3, is defined as:

x(Ψl) = e
π i
k+2 (l+1)Ψl , y(Ψl) = Ψl+1 , ∀Ψl ∈ Vl . (96)

The actions of x and y indeed admit the commutation relation (84). Denote u(Kν)≡
min(u(K1,K2),u(K3,K4)) and m(Kν)≡max(|K1 −K2|, |K3 −K4|). The physical Hilbert
space H is the subspace of Haux as each J subspace of H is identical to the subspace V2J
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of Haux due to the fact that
⊕u(Kν)

J=m(Kν)
VJ is isomorphic to

⊕2u(Kν)
2J=2m(Kν)

V2J and both have the

same eigenvalue as e
π i
k+2 (2J+1). We define a projection map Pn :Haux →H

Pn =
2u(Kν)∑

2J=2m(Kν)

|2J⟩⟨2J| , (97)

where n denotes the dimension of H, i.e. n= u(Kν)−m(Kν)+ 1 and |2J⟩ is an orthonormal
basis in Haux.

Proposition 8.1. Pn are the projectors that project the space Haux onto H, they satisfy the
following relations:

PnPn′ = Pmin(n,n ′) , (Pn)
∗
= Pn . (98)

Proof.

PnPn′ =
∑

2J

∑

2J′

|2J⟩⟨2J|2J ′⟩⟨2J ′|= δJ,J ′
∑

2J

|2J⟩⟨2J|= Pmin(n,n ′) ,

(Pn)
∗
=

(
∑

2J

|2J⟩⟨2J|
)∗

=
∑

2J

|2J⟩⟨2J|= Pn . (99)

Given a coherent state |ψ(X̃0,Ỹ0)⟩=
∑2k+3

l=0 ξ(X̃0,Ỹ0)(l)|l⟩ ∈ Haux, the projected coherent state

|ψ̃(X̃0,Ỹ0)⟩ ≡ Pn|ψ(X̃0,Ỹ0)⟩ is defined as

|ψ̃(X̃0,Ỹ0)⟩=
2u(Kν)∑

2J=2m(Kν)

|2J⟩⟨2J|ψ(X̃0,Ỹ0)⟩=
2u(Kν)∑

2J=2m(Kν)

ξ(X̃0,Ỹ0) (2J) |2J⟩ . (100)

Proposition 8.2. Given elements x and y that form a Weyl algebra that quantizes a torus
satisfying xy= q

1
2 yx, the projected elements x̃ := PnxPn and ỹ := Pny2Pn satisfy the same

commutation relation of a Weyl algebra with q
1
2 → q. That is,

x̃ỹ= qỹx̃ . (101)

Proof. We prove it by direct calculation for both sides of (101). For the l.h.s., we have

x̃ỹ := PnxPnPny2Pn = PnxPny2Pn =
∑

J,J ′,J ′ ′

|2J⟩⟨2J|x|2J ′⟩⟨2J ′|y2|2J ′ ′⟩⟨2J ′ ′|

= e
π i
k+2 (2J

′+1)
∑

J,J ′,J ′ ′

|2J⟩⟨2J|2J ′⟩⟨2J ′|2J ′ ′ + 2⟩⟨2J ′ ′|

= qe
π i
k+2 (2J

′+1)
∑

J,J ′,J ′ ′

δJ,J ′δJ′ ′+1,J ′ |2J ′ ′ + 2⟩⟨2J ′ ′|e π i
k+2 (2J

′ ′+3)
∑

J′ ′

|2J ′ ′ + 2⟩⟨2J ′ ′|

≡ qe
π i
k+2 (2J

′ ′+1)
∑

J′ ′

|2J ′ ′ + 2⟩⟨2J ′ ′| ,

(102)
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where the summations are from m(Kν) to u(Kν). For the r.h.s.,

qỹx̃ := qPny2PnPnxPn = qPny2PnxPn = q
∑

J,J ′,J ′ ′

|2J⟩⟨2J|y2|2J ′⟩⟨2J ′|x|2J ′ ′⟩⟨2J ′ ′|

= qe
π i
k+2 (2J

′ ′+1)
∑

J,J ′,J ′ ′

|2J⟩⟨2J|2J ′ + 2⟩⟨2J ′|2J ′ ′⟩⟨2J ′ ′|

= qe
π i
k+2 (2J

′ ′+1)
∑

J,J ′,J ′ ′

δJ,J ′+1δJ′,J ′ ′ |2J ′ ′ + 2⟩⟨2J ′ ′|

= qe
π i
k+2 (2J

′ ′+1)
∑

J′ ′

|2J ′ ′ + 2⟩⟨2J ′ ′| ≡ l.h.s. .

(103)

This shows that the operators x̃ and ỹ introduced in 6 can be defined by projection of oper-
ators x and y, which is the reason why we use the same notation to denote these operators
here.

The resolution of identity (93) for coherent states inHaux induces the resolution of identity
for coherent states inH, which reads

k+ 2
2π2

ˆ

T2

dX̃0dỸ0|ψ̃(X̃0,Ỹ0)⟩⟨ψ̃(X̃0,Ỹ0)|= idH . (104)

This identity can be shown by sandwiching both sides by the projector Pn: The l.h.s. of
equation (104) is the result of equation (100) and proposition 8.2. Note that the auxiliary space
is C2k+4, the identity of which can be expressed as

idHaux =

2k+3∑

l=0

|l⟩⟨l| , (105)

where |l⟩ is the orthonormal basis in auxiliary space. Equation (104) can be shown by direct
calculation below.

PnidHauxPn =
2k+3∑

l=0

2u(Kν)∑

2J=2m(Kν)

2u(Kν)∑

2K=2m(Kν)

|2J⟩⟨2J|l⟩⟨l|2K⟩⟨2K|

=
2k+3∑

l=0

2u(Kν)∑

2J=2m(Kν)

2u(Kν)∑

2K=2m(Kν)

|2J⟩δ2J,lδl,2K⟨2K|

=

2u(Kν)∑

2J=2m(Kν)

|2J⟩⟨2J| ≡ idH ,

(106)

where |2J⟩, |2K⟩ are the orthonormal basis in Haux and the final result maps all the bases of
the physical Hilbert space Hn ≃ C

n to itself, where n= u(Kν)−m(Kν)+ 1 is the dimension
of the subspace.

The coherent state labels (X̃0, Ỹ0) encode the classical length-twist coordinates, which can
be seen by calculating the expectation values of the operators x̃ and ỹ in the coherent state
representation as shown in the following proposition.
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Proposition 8.3. In the semi-classical limit, where k and the four representations
K1,K2,K3,K4 increase at the same rate (i.e. k= λk, Kν = λKν , and λ→∞), the expectation
values of x̃ and ỹ in the projected coherent state representation behave as

⟨x̃⟩= eiX̃0 +O
(
e−λ/

√
λ
)
, ⟨ỹ⟩= e2iỸ0 +O

(
e−λ/

√
λ
)
, (107)

given that the position coordinate X̃0 labeling the coherent state ψ̃(X̃0,Ỹ0) satisfies the tri-

angle inequality: 2max
(

|K1−K2|
k+2 , |K3−K4|

k+2

)
⩽

X̃0
π
⩽ 2min

(
u(K1,K2)
k+2 , u(K3,K4)

k+2

)
with u(K1,K2) =

min(K1 +K2,k−K1 −K2). Otherwise, the expectation values of x̃ and ỹ exponential decay
as

⟨x̃⟩= O
(
e−λ/

√
λ
)
, ⟨ỹ⟩= O

(
e−λ/

√
λ
)
. (108)

Proof. We first calculate that

〈x̃〉 := 〈ψ̃(X̃0,Ỹ0)|x̃|ψ̃(X̃0,Ỹ0)〉=
∑

2J,2J ′

ξ̄(X̃0,Ỹ0) (2J)ξ(X̃0,Ỹ0)
(
2J ′
)
〈2J|x̃|2J ′〉

=
∑

2J

e
π i
k+2

(2J+1)
ξ̄(X̃0,Ỹ0) (2J)ξ(X̃0,Ỹ0) (2J) =

√
1

k+ 2

∑

s,s ′∈Z

e−i2(k+2)Ỹ0(s−s ′)

×
∑

2J

e
π i
k+2

(2J+1)e
− k+2

2π

[(
π 2J

k+2
−2π s−X̃0

)2
+
(
π 2J

k+2
−2π s ′−X̃0

)2]

,

(109)

where the summation over 2J is from 2m(Kν) to 2u(Kν) as before. To proceed, we first apply
the Poisson resummation formula

lf∑

l=li

f(l) =
∑

n∈Z

ˆ lf+1−δ

li−δ

dl f(l)e2π inl , δ > 0 arbitrarily small (110)

to rewrite
∑

2J in (109) in into an integral. Denote m := 2m(Kν) and u := 2u(Kν)+ 1 for sim-
plicity. Then (109) becomes

⟨x̃⟩= 1√
(k+ 2)

∑

s,s ′∈Z

e−i2(k+2)Ỹ0(s−s ′)

×
∑

n∈Z

ˆ u−δ

m−δ

d(2J) e
π i
k+2 (2J+1)+4π iJne

− k+2
2π

[
(π 2J

k+2−2π s−X̃0)
2
+(π 2J

k+2−2π s ′−X̃0)
2
]

. (111)

We observe that the integration can be written in terms of the error function whose asymp-
totic expansion behaves as

erf(x) :=
2√
π

ˆ x

0
e−t2dt= 1− e−x2

√
πx

(
1+O

(
1/x2

))
, x≫ 1 . (112)

Therefore, the asymptotic expansion of the integration
´ a
b e

−cx2dx with a> b and c> 0 decays

exponentially unless a,b have different signs, or equivalently, the integrand e−cx
2
peaks within
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the range [a,b]. More precisely,

ˆ b

a
e−cx2dx=





√
π

4c (erf(b
√
c)− erf((a

√
c))

a→λa, b→λb−−−−−−−−→
λ→∞

O

(
e−λ2

√
πλ

)
if 0⩽ a< b

√
π

4c (erf(b
√
c)+ erf((a

√
c))

a→λa, b→λb−−−−−−−−→
λ→∞

√
π

c +O

(
e−λ2

√
πλ

)
if a< 0< b

−
√

π

4c (erf(b
√
c)− erf((a

√
c))

a→λa, b→λb−−−−−−−−→
λ→∞

O

(
e−λ2

√
πλ

)
if a< b⩽ 0

.

(113)

The integrand of (111) peaks at 2J
k+2 =

i(n(k+2)+ 1
2 )

k+2 +(s+ s ′)+ x
π
, where it reads

exp

[
(k+ 2)

(
−πn2 −π

(
s− s ′

)2
+ 2in

(
π
(
s+ s ′

)
+ X̃0

))
−
π
(
1
4 − i 12

)

k+ 2
+
(
−πn+ i

(
π
(
s+ s ′

)
+ X̃0

))
]
.

(114)

At large k, the dominant contribution comes from the term n= 0,s ′ = s of the summation. In

this case, the peak is 2J
k+2 =

X̃0
π
+ 2s+ i 1

2(k+2)
k→λk−−−−→
λ→∞

X̃0
π
+ 2s, which is within the range [m̃, ũ]

only if s= 0. Therefore, (111) can be simplified at the λ→∞ approximation (taking into
account that the constant c takes the value π (k+ 2) when using (113))

⟨x̃⟩ Kν→λKν ,k→λk−−−−−−−−−→
λ→∞

eiX̃0 +O
(
e−λ/

√
λ
)

(115)

where 2max
(

|K1−K2|
k+2 , |K3−K4|

k+2

)
⩽

X̃0
π
⩽ 2min

(
u(K1,K2)
k+2 , u(K3,K4)

k+2

)
. Otherwise, ⟨x̃⟩=

O
(
e−λ/

√
λ
)
.

The expectation value of ỹ is calculated in the same way:

〈ỹ〉 := 〈ψ̃(X̃0,Ỹ0)|ỹ|ψ̃(X̃0,Ỹ0)〉=
∑

2J,2J ′

ξ̄(X̃0,Ỹ0) (2J
′)ξ(X̃0,Ỹ0) (2J)〈2J|ỹ|2J

′〉=
∑

2J

ξ̄(X̃0,Ỹ0) (2J+ 2)ξ(X̃0,Ỹ0) (2J)

=

(
1

k+ 2

) 1
2 ∑

s,s ′∈Z

e−i2(k+2)Ỹ0(s−s ′)ei2Ỹ0
∑

2J

e
−

k+2
2π

[(
π

2J+2
k+2

−2π s−X̃0

)
2
+
(
π 2J

k+2
−2π s ′−X̃0

)
2
]

=

(
1

k+ 2

) 1
2 ∑

s,s ′∈Z

e−i2(k+2)Ỹ0(s−s ′)+i2Ỹ0
∑

n∈Z

ˆ 2u−δ

2m−δ

d(2J) e
−

k+2
2π

[(
π

2J+2
k+2

−2π s−X̃0

)
2
+
(
π 2J

k+2
−2π s ′−X̃0

)
2
]

,

(116)

where we have used the Poisson resummation in the third line. The peak of the integrand in

the last line is at 2J
k+2 = (s+ s ′)+ X̃0

π
− 1

k+2
k→λk−−−−→
λ→∞

(s+ s ′)+ X̃0
π
, which is within the range

[ m
k+2 ,

u
k+2 ] only if s+ s ′ = 0 then the peak is at 2J

k+2 =
X̃0
π
. At the peak, the integrand takes the

form

e
− k+2

2π

[(
π 2J

k+2
+ 2π

k+2
−2π s−X̃0

)2
+
(
π 2J

k+2
−2π s ′−X̃0

)2] 2J
k+2

=
X̃0
π

−−−−−→ e
− k+2

2π

[(
X̃0+

2π
k+2

−2π s−X̃0

)2
+(X̃0−2π s ′−X̃0)

2
]

k→∞
−−−−→ e−

k+2
2π [(2π s)2+(2π s ′)2] ,

(117)

which decays exponentially at large k unless s= s ′ = 0. We therefore conclude that

⟨ỹ⟩ Kν→λKν ,k→λk−−−−−−−−−→
λ→∞

e2iỸ0 +O
(
e−λ/

√
λ
)
, (118)
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when 2max
(

|K1−K2|
k+2 , |K3−K4|

k+2

)
⩽

X̃0
π
⩽ 2min

(
u(K1,K2)
k+2 , u(K3,K4)

k+2

)
. Otherwise, ⟨ỹ⟩=

O
(
e−λ/

√
λ
)
.

So far, we have only calculated the expectation values of x̃ and ỹ. However, in general, one
can find the expectation value of a polynomial in x̃ and ỹ. The fact that the sum

∑2u(Kν)
2J=2m(Kν)

has an upper limit restricts the power order µ that ỹ can have. Acting ỹµ on |ψ̃(X̃0,Ỹ0)⟩, we have

ỹµ|ψ̃(X̃0,Ỹ0)⟩= Pny2µPn|ψ(X̃0,Ỹ0)⟩=
∑

2J,2J ′

|2J ′⟩⟨2J ′|y2µ|2J⟩⟨2J|ψ(X̃0,Ỹ0)⟩

=
∑

2J,2J ′

|2J ′⟩⟨2J ′|2J+ 2µ⟩⟨2J|ψ(X̃0,Ỹ0)⟩ , (119)

where sums are from m(Kν)≡max(|K1 −K2|, |K3 −K4|) to u(Kν)≡min(u(K1,K2),
u(K3,K4)). From the calculation above, we obtain the range that µ must fall within:

0⩽ µ⩽ u(Kν)−m(Kν) . (120)

The state is set to 0 if µ is greater than the allowed value.
We have, therefore, seen that the coherent state |ψ̃(X̃0,Ỹ0)⟩ provides a complete basis

spanning the intertwiner space of a quantum curved tetrahedron as a Hilbert space, and
that the operators x̃ and ỹ quantize the length coordinate x and twist coordinate y respect-
ively as multiplication and derivative operators on the Hilbert space. Let the coherent state
labels X̃0 = θ, Ỹ0 = ϕ defined in (19). Then the expectation values of x̃ and ỹ correspond
to their classical counterparts, eiθ ≡ x and ei2ϕ ≡ y2 respectively. Both X̃0 and Ỹ0 indeed
fall within the range from 0 to π, considering that the triangle inequality is satisfied. This

inequality, 2π max
(

|K1−K2|
k+2 , |K3−K4|

k+2

)
⩽ X̃0 ⩽ 2π min

(
u(K1,K2)
k+2 , u(K3,K4)

k+2

)
, where u(K1,K2) =

min(K1 +K2,k−K1 −K2), is considered as the quantum counterpart of (18).

9. Conclusion and discussion

In this work, we have constructed the algebra generated by the quantum monodromies MI
ℓ,

where the loop ℓ encloses a pair of punctures. We have proved that the algebra generated by
MI

ℓ forms a loop algebra and that the q-deformed Wilson loop operators cIℓ constructed from

the MI
ℓ form a fusion algebra. The quantum diagonal length operator is obtained from c

1
2
ℓ . A

set of coherent states is constructed directly in the intertwiner space and the expectation value
of length and twist operators in the semi-classical limit peak at points of the phase space,
each describing the shape of a constantly curved tetrahedron. We have also shown that not all
coherent states are geometrical states for technical reasons. Firstly, the coherent state labels
X̃0 and Ỹ0 label a point on the torus, but the phase space of the shape of a tetrahedron is only
the subspace of the torus phase space. Furthermore, the integration of the resolution of the
identity is over the entire torus, which means that the coherent intertwiner is not in one-to-one
correspondence with the classical tetrahedron.

The coherent states constructed in this paper may be adapted to construct the spinfoam
model with a non-zero cosmological constant Λ similar to the one introduced in [7], where the
coherent state labels were chosen to be the Fock–Goncharov coordinates. These coordinates
are also coordinates of the tetrahedron shape phase space, but are not Darboux coordinates and

31



Class. Quantum Grav. 42 (2025) 065005 C-H Hsiao and Q Pan

do not have natural holonomy interpretation as the length variables used in this paper, which
makes it more difficult to connect to the canonical quantization approach of LQG (with Λ).
We expect that the adjustment of coherent state coupling to the partition function in building
the spinfoam model could lead to a more feasible model, which is easier for applications.

The Guillemin–Sternberg theorem [33] guarantees that the quantization commutes with
reduction as illustrated in the following commuting diagram:

(SU(2))⊗4 quantization−−−−−−−−−−→ VK1 ⊗VK2 ⊗VK3 ⊗VK4

y
symplectic reduction

y
quantum reduction

Mflat (Σ0,4,SU(2))
quantization−−−−−−−−−−→ Invq (K1,K2,K3,K4) .

(121)

In our approach, we proceed the quantization first, and the reduction after. However, we
may try the other route as in [21], i.e. to proceed the geometric quantization directly on
Mflat(Σ0,4,SU(2)). The Hilbert space should be the conformal blocks of the WZW model,
which is identified with the Hilbert space constructed by the combinatorial quantization [15].
One may define the coherent intertwiners in this manner. It would be interesting to investigate
the isomorphism between those states and the coherent states we constructed in this paper.
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Appendix A. Defining relations for MI
ℓ with the substitution rules

For the truncated case, UT
q (su(2)) is a weak Hopf algebra, we apply the substitution rule over

all defining relations of the lattice algebra B, which is generated by the matrix elements of
quantum holonomies of oriental edges in a lattice. The substitution rules are listed below [14,
15]

C [IJ|K] → C̃ [IJ|K] := C [IJ|K]
(
φ

−1
)IJ

, C [IJ|K]∗ → C̃ [IJ|K]∗ := (φ213)
IJC [IJ|K]∗ ,

RIJ → R
IJ
:=

(
ρ
I
⊗ ρ

J
⊗ id

)(
φ213Rφ

−1
)
, dI → d̃I := TrI

(
ρ
I
(gS(β)α)

)
, RI → RI ≡

(
ρ
I
⊗ id

)
R ,

TrIq (X) → T̃r
I
q (X) := TrI

(
mIXwIgI

)
, with mI

= ρ
I
(
S
(
ϕ
(1)

)
αϕ

(2)
)
ϕ
(3)

, wI = ρ
I
(
φ

(2)S−1
(
φ

(1)
β
))

φ
(3)

,

(A1)
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whereφ,ϕ≡ φ−1 ∈ UT
q (su(2))⊗UT

q (su(2))⊗UT
q (su(2)) andα,β ∈ UT

q (su(2)) are the defin-
ing elements for UT

q (su(2)). Note that ϕφ ̸= e⊗ e⊗ e but ϕφ = (∆⊗ id)∆(e).
By using the exchange relations of the quantum holonomies, we can derive all the com-

mutation relations of the quantum monodromies MI
ℓ from the commutation relations of the

quantum holonomies. The quantum monodromies MI
ℓ can be expressed as matrix product of

quantum holonomies, e.g. MI
ℓ = κ−1

I UI
CU

I
C ′ .

The functoriality condition of MI
ℓ can be derived from the functoriality condition of

quantum holonomies, i.e.
1

UI
C

2

UJ
C=
∑

K C̃[IJ|K]∗UK
CC̃[IJ|K] and the commutation relation

1

UI
C ′

RIJ
x

2

UJ
C=

2

UJ
C R ′IJ

y

1

UI
C ′ :

1

MI
ℓ RIJ

x

2

MJ
ℓ = κ−1

I κ−1
J

1

UI
C

1

UI
C ′ RIJ

x

2

UJ
C

2

UJ
C ′

= κ−1
I κ−1

J

1

UI
C

2

UJ
C R ′IJ

y

1

UI
C ′

2

UJ
C ′

= κ−1
I κ−1

J

∑

K,K ′

C̃ [IJ|K]∗UK
CC̃ [IJ|K]R ′IJ

x C̃ [IJ|K ′]
∗
UK′

C ′ C̃ [IJ|K ′]

= κ−1
K

∑

K

C̃ [IJ|K]∗UK
CU

K
C ′ C̃ [IJ|K]

=
∑

K

C̃ [IJ|K]∗MK
ℓ C̃ [IJ|K] .

(A2)

The commutation relation of quantum monodromyMI
ℓ can be derived from exchange relation

of quantum holonomies:

(
R−1

)IJ
x

1

MI
ℓ RIJ

x

2

MJ
ℓ = κ−1

I κ−1
J

(
R−1

)IJ
x

1

UI
C

1

UI
C ′ RIJ

x

2

UJ
C

2

UJ
C ′

= κ−1
I κ−1

J

(
R−1

)IJ
x

1

UI
C

2

UJ
C R ′IJ

y

1

UI
C ′

2

UJ
C ′

= κ−1
I κ−1

J

(
R−1

)IJ
x
RIJ
x

2

UJ
C

1

UI
C

(
R ′−1

)IJ
y
R ′IJ

y

1

UI
C ′

2

UJ
C ′

= κ−1
I κ−1

J

2

UJ
C

1

UI
C (R)

IJ
y

2

UJ
C ′

1

UI
C ′

(
R ′−1

)IJ
x

= κ−1
I κ−1

J

2

UJ
C

2

UJ
C ′ (R ′)

IJ
x

1

UI
C

1

UI
C ′

(
R ′−1

)IJ
x

=
2

MI
ℓ R ′IJ

x

1

MJ
ℓ

(
R ′−1

)IJ
x
.

(A3)

For any cycle ℓµ such that ℓ≺ ℓµ, the monodromy along the cycle ℓµ can also be expressed
in terms of quantum holonomies i.e. MI

ℓµ
= κ−1

I UI
C̃
UI

C̃ ′
by separating ℓµ into C̃ ◦ C̃ ′. The
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commutation relation between MI
ℓ and MI

ℓµ
can be derived from the commutation relations

of quantum holonomies:

(
R−1

)IJ
x

1

MI
ℓ RIJ

x

2

MJ
ℓµ

= κ−1
I κ−1

J

(
R−1

)IJ
x

1

UI
C

1

UI
C ′ RIJ

x

2

UJ
C̃

2

UJ
C̃ ′

= κ−1
I κ−1

J

(
R−1

)IJ
x

1

UI
C

2

UJ
C̃

1

UI
C ′

2

UJ
C̃ ′

= κ−1
I κ−1

J

(
R−1

)IJ
x
RIJ
x

2

UJ
C̃

1

UI
C

2

UJ
C̃ ′

1

UI
C ′ RIJ

x

= κ−1
I κ−1

J

2

UJ
C̃

2

UJ
C̃ ′

(
R−1

)IJ
x

1

UI
C

1

UI
C ′ RIJ

x

=
2

MJ
ℓµ

(
R−1

)IJ
x

1

MI
ℓ RIJ

x .

(A4)

On the other hand, for any cycle ℓµ such that ℓ≻ ℓµ, we have

R ′IJ
x

1

MI
ℓ

(
R ′−1

)IJ
x

2

MJ
ℓµ

= κ−1
I κ−1

J R ′IJ
x

1

UI
C

1

UI
C ′

(
R ′−1

)IJ
x

2

UJ
C̃

2

UJ
C̃ ′

= κ−1
I κ−1

J R ′IJ
x

1

UI
C

2

UJ
C̃

1

UI
C ′

2

UJ
C̃ ′

= κ−1
I κ−1

J R ′IJ
x

(
R ′−1

)IJ
x

2

UJ
C̃

1

UI
C

2

UJ
C̃ ′

1

UI
C ′

(
R ′−1

)IJ
x

= κ−1
I κ−1

J

2

UJ
C̃

2

UJ
C̃ ′

R ′IJ
x

1

UI
C

1

UI
C ′

(
R ′−1

)IJ
x

=
2

MJ
ℓµ

R ′IJ
x

1

MI
ℓ

(
R ′−1

)IJ
x
.

(A5)

The element cIℓ is subject to change with the substitution rule (A1) applied and they satisfy
fusion rule (52) [14]. The element cIℓ is expressed as

κIT̃r
I
q

(
MI

ℓ

)
= κITr

I
(
mIMI

ℓw
IgI
)
, (A6)

where mI and wI can be found in (A1). The quantum character χIℓ can be constructed by using
S-matrix and elements cIℓ [14]:

SIJ =N
(
T̃r

I
q⊗ T̃r

J
q

)
(R ′R) , (A7)

whereR ′,R satisfy the quasi-Yang–Baxter equation. The S-matrix satisfies the properties listed
in (24). Then the quantum character χIℓ is defined as:

χIℓ =NdISIJc
J̄ =NdISĪJc

J . (A8)

Appendix B. Some detailed calculation

In this appendix, we collect some detailed calculations used in the main text, which are formu-
lated into lemmas. Lemmas B.2 and B.1 are used in the proof of the propositions 4.1 and 4.4
respectively. Lemmas B.3 and B.4 are used in the proof of the theorem 5.4 as the substitution
rule (A1) applied.
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Lemma B.1. Suppose MI
ℓ is the monodromy around the mth and the (m− 1)th punctures,

where m= 2,3,4. The quantum trace of MI
ℓ has the same two identities as the quantum trace

of monodromies around one puncture, i.e.

TrIq
(
MI

ℓ

)
= TrIq

((
R−1

)IJ
MI

ℓR
IJ
)
= TrIq

(
(R ′)

IJ
MI

ℓ

(
(R ′)

−1
)IJ)

. (B1)

Proof. Let’s prove the two quantum trace identities with the help of Sweedler’s notation and
quasi-triangularity:

TrIq
((
R−1

)IJ
MI

ℓR
IJ
)

= TrI





∑

j

S
(
R1
j

)
⊗R2

j




IJ

MI
ℓ

(
∑

i

R1
i ⊗R2

i

)IJ

ρI (g)




= TrI


MI

ℓ



∑

ij

(
R1
i

)I (
S−1

(
R1
j

))I (
R2
j

)J (
R2
i

)J
ρI(g)




= TrI


MI

ℓ

(
S−1 ⊗ id

)


∑

ij

(R1
j )
I
(
S(R1

i )
)I
(R2

j )
J(R2

i )
JρI(g)




= TrI


MI

ℓ

(
S−1 ⊗ id

)


∑

j

(R1
j )
I(R2

j )
J
∑

i

(S(R1
i ))

I(R2
i )
JρI(g)






= TrI
(
MI

ℓ(S
−1 ⊗ id)(R)IJ(R−1)IJρI(g)

))
= TrIq(M

I
ℓ) , (B2)

TrIq
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R ′)IJMI

ℓ

((
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= TrI
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)IJ
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J)MI
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
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(
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(R ′)IJMI
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= TrIq(M

I
ℓ). (B3)

The quantum trace identities still hold in the truncated case with substitution rule (A1)
applied [14].

Lemma B.2. Given a linear order at the base point of the standard graph, the exchange rela-
tion of monodromies for ℓe ≻ ℓe′ is given as

(R ′)
IJ

1

MI
ℓe

(
(R ′)

−1
)IJ 2

MJ
ℓe′
=

2

MJ
ℓe′

(R ′)
IJ

1

MI
ℓe

(
(R ′)

−1
)IJ

. (B4)

Proof. One can break loops ℓe and ℓe′ into curves C,C ′ and C̃, C̃ ′ respectively by adding two
additional vertices y′ an y to the loops ℓe and ℓe′ respectively as illustrated in figure 5(a). At the
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vertex x, the linear order is given as C̃ ′ ≺−C̃≺ C ′ ≺−C. The quantum monodromyMI
ℓe
can

be decomposed into the product of quantum holonomies UI
C and U ′I

C as MI
ℓe
= κ−1

I UI
CU

I
C′ . In

the sameway, the quantummonodromyMJ
ℓe′

can be expressed in terms of quantum holonomies

UJ
C̃
and UJ

C̃ ′
asMJ

ℓe′
= κ−1

J UJ
C̃
UJ
C̃ ′
. The commutation relation ofMI

ℓe
andMI

ℓe′
can be derived

from the commutation relation of quantum holonomies
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)IJ
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(B5)

Using commutation relations of holonomies at vertex x, the derivation above is straightforward.

Lemma B.3. For R and R′ satisfying the quasi-Yang–Baxter equation and φ≡ φ123 being
quasi-invertible, the following relation holds

φ123R
′
12φ

−1
213R

′
13R13φ213R

′−1
12 φ

−1
φ123R

′
12φ

−1
213φ213R12φ

−1 = φ123R
′
12φ

−1
213R

′
13R13φ213R12φ

−1
. (B6)

Proof.
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′−1
12 φ

−1
φ123R

′
12R12φ

−1

= φ213R
′−1
12 (∆⊗ id)∆(e)R ′

12R12φ
−1

= φ213
(
∆ ′ ⊗ id

)
∆(e)R ′−1

12 R ′
12R12φ

−1

= P12 [φ123 (∆⊗ id)∆(e)]R ′−1
12 R ′

12R12φ
−1

= φ213R
′−1
12 R ′

12R12φ
−1

= φ213R12φ
−1

.

(B7)

The first and fifth lines are obtained by quasi-triangularity, and the third and seventh lines
are derived by the quasi-inverse property, φφ−1φ = φ:

(id⊗∆)∆(e)φ = φ(∆⊗ id)∆(e) = φ . (B8)

The notation P12 used in the sixth equality of (B7) represents the permutation of the first and
second elements.
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Figure 7. The action of the graph on both sides is read from bottom to top. On the left-
hand side, the first action is given by R and the second one is given by R′. On the right-
hand side, the actions are given by φ213Rφ

−1, R13, R ′
13, and φ123Rφ

−1
213 respectively.

Figure 8. (a) The actions of the graph on both sides are read from bottom to top. On the
left-hand side, the action is given by R. On the right-hand side, the actions are given by
φ213Rφ

−1, R13, andφ
−1
231 respectively. (b) The actions of the graph on both sides are read

from bottom to top. On the left-hand side, the action is given by R. On the right-hand
side, the actions are given by φ−1

132R23φ, R13, and φ312 respectively.

Lemma B.4. For R and R′ obeying the quasi-Yang–Baxter equation, the following relation
holds

(id⊗∆)(R ′R) = φ123R
′
12φ

−1
213R

′
13R13φ213R12φ

−1. (B9)

Proof. We first check the quasi-triangularity of the quasi-Hopf algebra. One can directly read
out the isomorphisms of representations from the graphical illustrations shown in figures 7
and 8. Firstly, from figure 8(a), the expression for (ρI⊗ ρJ⊗ ρK)(id⊗∆)(R) that is the iso-
morphism between (VI⊗ (VJ⊗VK)) and ((VJ⊗VK)⊗VI) is read as
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(
ρI⊗ ρJ⊗ ρK

)(
φ−1
231R13φ213R12φ

−1
123

)
. (B10)

From the figure 8(b), the expression for (ρI⊗ ρJ⊗ ρK)(∆⊗ id)(R) that is the isomorphism
between ((VI⊗VJ)⊗VK)) and (VK⊗ (VI⊗VJ)) is read as

(
ρI⊗ ρJ⊗ ρK

)(
φ312R13φ

−1
132R23φ123

)
, (B11)

where φIJK maps ((VI⊗VJ)⊗VK) to (VI⊗ (VJ⊗VK)) and (φ−1)IJK maps (VI⊗ (VJ⊗VK))
to ((VI⊗VJ)⊗VK) for both cases.φKIJ ≡ (φ312)

IJK maps (VK⊗VI)⊗VJ) to (VK⊗ (VI⊗VJ))
and (φ−1)IKJ ≡ (φ−1

132)
IJK maps (VI⊗ (VK⊗VJ)) to ((VI⊗VK)⊗VJ).

The isomorphism (ρI⊗ ρJ⊠ ρK)(R ′R)≡ (ρI⊗ ρJ⊗ ρK)(id⊗∆)(R ′R) maps (VI⊗ (VJ⊗
VK)) to (VI⊗ (VJ⊗VK)). From the figure 7, the expression for (ρI⊗ ρJ⊗ ρK)(id⊗∆)(R ′R)
is read as

(
ρI⊗ ρJ⊗ ρK

)(
φ123R

′
12φ

−1
213R

′
13R13φ213R12φ

−1
)
. (B12)

Appendix C. Quantum state on the torus and coherent state

In this appendix, we briefly review the construction and features of the generic quantum states
and coherent states on the torus [23] and give the derivation explicitly. The auxiliary spaceHaux

is the quantization of the torus as the phase space. Suppose that we have a pair of operators
(Q,P) with the commutation relation [Q,P] = iℏ. Since they are on the torus it is natural to
impose the periodic condition. The periodic condition is defined in [23] as

U(a,0)Ψ = e−iκ1aΨ , U(0,b)Ψ = e−iκ2bΨ, (C1)

where the operator is defined as U(α,β) = e
i
ℏ
(βQ−αP) and (κ1,κ2) ∈ [0, 2πa )× [0, 2πb ). A state

on the torus can be obtained from arbitrary Schwarz function by the map Pκ [23]. Given any
Schwarz function ψ(x), x ∈ R, one can construct a state on the torus from it as [23]:

ψ (x) 7→ Pκψ (x) =
∑

m,n∈Z

(−1)Nmn ei(κ1ma−κ2nb)U(ma,nb)ψ (x)

=
∑

m,n∈Z

(−1)Nmn ei(κ1ma−κ2nb)e−
i

2ℏ
mnabe

i
ℏ
nbxψ (x−ma)

=
∑

m∈Z

eiκ1maψ (x−ma)
∑

n∈Z

e
i
ℏ
nb(x−κ2ℏ− 1

2
ma)+iπNmn

=
∑

m∈Z

eiκ1maψ (x−ma)
∑

n∈Z

ei2π n( N
a (x−κ2ℏ− 1

2
ma)+ 1

2
Nm)

=
∑

m∈Z

eiκ1maψ (x−ma)
∑

l∈Z

δ

(
N
a

(
x−κ2ℏ−

1
2
ma

)
+

1
2
Nm− l

)

=
∑

m∈Z

eiκ1maψ (x−ma)
∑

l∈Z

a
N
δ

(
x−κ2ℏ+

1
2
ma−

1
2
ma− l

a
N

)

=
∑

l∈Z

∑

m∈Z

eiκ1maψ

(
ab
2πN

κ2 + l
a
N

−ma

)
a
N
δ

(
x−

ab
2πN

κ2 − l
a
N

)

=
∑

l∈Z

(
∑

m∈Z

√
a
N
eiκ1maψ

(
ab
2πN

κ2 + l
a
N

−ma

))(√
a
N
δ

(
x−

ab
2πN

κ2 − l
a
N

))

=
∑

l∈Z

cl(ψ)δl(x) ,

(C2)
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where cl(ψ) :=
∑

m∈Z

√ a
Ne

iκ1maψ( ab
2πNκ2 + l aN −ma) and δl(x) :=

√ a
Nδ
(
x− ab

2πNκ2 − l aN
)
.

The state Pκψ(x) is in an N dimensional vector space denoted as S ′(κ,N) [23]. By defini-
tion, the inner product is defined as

⟨Pκψ|Pκψ ′⟩=
N−1∑

l=0

c̄l (ψ)cl (ψ
′) . (C3)

By applying the periodicity condition on the state, one has the periodicity condition for the
coefficients cl(ψ), which we now show. Firstly,

U(a,0)δl (x) = U(a,0)

√
a
N
δ

(
x− ab

2πN
κ2 − l

a
N

)
= e−

i
ℏ
aP

√
a
N
δ

(
x− ab

2πN
κ2 − l

a
N

)

=

√
a
N
δ

(
x− ab

2πN
κ2 − (l+N)

a
N

)
.

(C4)

Let l ′ = l+N, then

U(a,0)δl (x) =
∑

l∈Z

(
∑

m∈Z

√
a

N
eiκ1maψ

(
ab

2πN
κ2 + l

a

N
−ma

))(√
a

N
δ

(
x−

ab

2πN
κ2 − (l+N)

a

N

))

=
∑

l′∈Z

(
∑

m∈Z

√
a

N
eiκ1maψ

(
ab

2πN
κ2 +(l ′ −N)

a

N
−ma

))(√
a

N
δ

(
x−

ab

2πN
κ2 − (l ′)

a

N

))

=
∑

l∈Z

cl−N (ψ)δl (x) .

(C5)

Therefore,

U(a,0)ψ = e−iκ1aψ =
∑

l∈Z

e−iκ1acl (ψ)δl (x) . (C6)

We then obtain the periodicity condition on the coefficients themselves:

cl−N (ψ) = e−iκ1acl (ψ) , cl+N (ψ) = eiκ1acl (ψ) . (C7)

Since we are dealing with the N-dimensional Hilbert space, one can establish
a one-to-one correspondence between S ′(κ,N) and C

N with the canonical basis
eκj =

√ a
N

∑
l∈Z

e−imaκ1δ(x− xjl) ∈ C
N, where xjl =

ab
2πNκ2 + j aN − la [23].

The coherent states on the torus can be defined by the displacement operator U(α,β) act-
ing on the ground state. To construct the displacement operator, it is necessary to define the
Weyl–Heisenberg group. In our setup, we can choose (lnx, lny, i id) to be the generators of the
Weyl–Heisenberg Lie algebra, with the Lie bracket defined in (85), i.e. [lnx, lny] = iℏ≡ i π

k+2 .
Since lnx, lny are anti-self-adjoint, one can set lnx= iQ and lny= iP, where Q and P are
self-adjoint operators with the commutation as [Q,P] =−iℏ. This commutation relation is
derived from the commutation relation of lnx, lny. We then have (iQ,−iP, i id) as gener-
ators of the Weyl–Heisenberg Lie algebra. To follow the construction in [23], we define
X̃0 =Q− π

k+2 , Ỹ0 = P− p0, maintaining the same commutation relation [X̃0, Ỹ0] =−iℏ, and
the position X̃0 is now in the range of (0,2π).
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The exponential map of them gives us the Weyl–Heisenberg group elements, which are
unitary operators and defines unitary irreducible representations. Since the quantum states are
defined on the torus, they must satisfy the quantization condition (90). Following [23], the
displacement operator in our case is defined as U(α,β) = e

i
ℏ
(βX̃0+αỸ0).

The Schwartz function we choose is the standard coherent state for harmonic oscillator in
the position representation, where the ground state is defined as

ψZ
(0,0) (x) =

(
IZ
πℏ

) 1
4

e−
JZ

2ℏ x2 . (C8)

Here we use the same notation as in [23] and I and Z are −i and i respectively. The regular
coherent state is then obtained from the action of the displacement operator on the ground
state:

ψZ

(X̃0,Ỹ0)
(x) := e

i
ℏ (Ỹ0X̃0+X̃0Ỹ0)ψZ

(0,0) (x) =

(
IZ
πℏ

) 1
4

e−
ĩY0 X̃0
2ℏ e

i
ℏ
Ỹ0xei

Z

2ℏ (x−X̃0)
2

. (C9)

The coherent state on the torus is defined as [23]:

ψ
Z,κ

(X̃0,Ỹ0)
(x) := Pkψ

Z

(X̃0,Ỹ0)
(x) =

∑

m,n∈Z

(−1)Nmn ei(κ1ma−κ2nb)U(ma,nb)ψZ

(X̃0,Ỹ0)
(x)

=
∑

m,n∈Z

(−1)Nmn ei(κ1ma−κ2nb)e
i
ℏ
(nbX̃0+maỸ0)

((
IZ

πℏ

) 1
4

e−
ĩY0 X̃0
2ℏ e

i
ℏ
Ỹ0xei

Z
2ℏ (x−X̃0)2

)

=
∑

m,n∈Z

(−1)Nmn ei(κ1ma−κ2nb)e−
i

2ℏ
(mnab)e

i
ℏ
(nbx)

((
IZ

πℏ

) 1
4

e−
ĩY0 X̃0
2ℏ e

i
ℏ
Ỹ0(x−ma)ei

Z
2ℏ (x−ma−X̃0)2

)

=

(
IZ

πℏ

) 1
4

e−
ĩY0 X̃0
2ℏ

∑

m

ei(κ1ma)e
i
ℏ
Ỹ0(x−ma)ei

Z
2ℏ

(x−ma−X̃0)
2∑

n

e
i
ℏ
nb(x− 1

2
ma−ℏκ2)+iπNmn

=

(
IZ

πℏ

) 1
4

e−
ĩY0 X̃0
2ℏ

∑

m

ei(κ1ma)e
i
ℏ
Ỹ0(x−ma)ei

Z
2ℏ

(x−ma−X̃0)
2∑

n

ei2π n( N
a
(x− 1

2
ma−ℏκ2)+

1
2
Nm)

=

(
IZ

πℏ

) 1
4

e−
ĩY0 X̃0
2ℏ

∑

m

ei(κ1ma)e
i
ℏ
Ỹ0(x−ma)ei

Z
2ℏ

(x−ma−X̃0)
2 a

N

∑

l

δ

(
x−

ab

2πN
κ2 − l

a

N

)

=

(
IZ

πℏ

) 1
4

e−
ĩY0 X̃0
2ℏ

∑

m

∑

l

ei(κ1ma)e
i
ℏ
Ỹ0( ab

2π N
κ2+l a

N
−ma)ei

Z
2ℏ

( ab
2π N

κ2+l a
N
−ma−X̃0)

2 a

N
δ

(
x−

ab

2πN
κ2 − l

a

N

)
.

(C10)

In the fourth equality, we obtain the result by inserting (−1)Nmn = (eiπ)Nmn. We can choose
the sum of l to be within one fixed periodicity by introducing another sum over j ∈ Z
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=

(
IZ
πℏ

) 1
4
√

a
N
e−

ĩY0 X̃0
2ℏ

N−1∑

l=0

∑

j∈Z

∑

m∈Z

e
i
ℏ
Ỹ0( ab

2π N
κ2+( jN+l) a

N
−ma)ei

Z
2ℏ (

ab
2π N

κ2+( jN+l) a
N
−ma−X̃0)

2

×
√

a
N
eiκ1maδ

(
x− ab

2πN
κ2 − ( jN+ l)

a
N

)

=

(
IZ
πℏ

) 1
4
√

a
N
e−

ĩY0 X̃0
2ℏ

N−1∑

l=0

∑

j∈Z

∑

m∈Z

e
i
ℏ
Ỹ0( ab

2π N
κ2+(l) a

N
−(m−j)a)ei

Z
2ℏ (

ab
2π N

κ2+(l) a
N
−(m−j)a−X̃0)

2

×
√

a
N
eiκ1(m−j)aeiκ1jaδ

(
x− ab

2πN
κ2 − ( jN+ l)

a
N

)

=

(
IZ
πℏ

) 1
4
√

a
N
e−

ĩY0 X̃0
2ℏ

N−1∑

l=0

∑

m′∈Z

e
i
ℏ
Ỹ0( ab

2π N
κ2+(l) a

N
−(m ′)a)ei

Z
2ℏ (

ab
2π N

κ2+(l) a
N
−(m ′)a−X̃0)

2

eiκ1(m
′)a

×
∑

j∈Z

√
a
N
eiκ1jaδ

(
x− ab

2πN
κ2 − ( jN+ l)

a
N

)

=

(
IZ
πℏ

) 1
4
√

a
N
e−

ĩY0 X̃0
2ℏ

N−1∑

l=0

∑

m′∈Z

e
i
ℏ
Ỹ0( ab

2π N
κ2+(l) a

N
−(m ′)a)ei

Z
2ℏ

( ab
2π N

κ2+(l) a
N
−(m ′)a−X̃0)

2

eiκ1(m
′)a

×
∑

j∈Z

√
a
N
e−iκ1jaδ

(
x− ab

2πN
κ2 − (−jN+ l)

a
N

)

=

(
IZ
πℏ

) 1
4
√

a
N
e−

ĩY0 X̃0
2ℏ

N−1∑

l=0

∑

m′∈Z

e
i
ℏ
Ỹ0( ab

2π N
κ2+(l) a

N
−(m ′)a)ei

Z
2ℏ

( ab
2π N

κ2+(l) a
N
−(m ′)a−X̃0)

2

eiκ1(m
′)a

×
∑

j∈Z

√
a
N
e−iκ1jaδ

(
x− ab

2πN
κ2 − l

a
N
+ ja

)

=

N−1∑

l=0

c(q ′,p ′)(l)e
κ

l (x) .

(C11)

In our convention, we set: a= 2π = b, κ1 = 0= κ2, N= 2(k+ 2), X̃0 = X̃0, Ỹ0 = Ỹ0, ℏ=
π
k+2 , I=−i, Z = i. The final expressions become:

ξ(q ′,−p ′) (l) = ξl (q ′,p ′) = c(q ′,p ′) (l) =

(
1

k+ 2

) 1
4

e
ip ′q ′(k+2)

2π

×
∑

m′∈Z

e
i(k+2)

π
p ′(l 2π

k+2−2πm ′−q ′)e−
k+2
2π (l 2π

k+2−2πm ′−q ′)
2

ξ(q ′,p ′) (l) = c(q ′,p ′) (l) =

(
1

k+ 2

) 1
4

e
−ip ′q ′(k+2)

2π

×
∑

m′∈Z

e
−i(k+2)

π
p ′(l 2π

k+2−2πm ′−q ′)e−
k+2
2π (l 2π

k+2−2πm ′−q ′)
2

el (x) =
∑

j∈Z

√
π

k+ 2
δ

(
x− l

π

k+ 2
+ j2π

)
.

(C12)
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