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Abstract: The increasing adoption of electric vehicles (EVs) by the general population creates an
opportunity to deploy the energy storage capability of EVs for performing peak energy shaving in
their households and ultimately in their neighborhood grid during surging demand. However, the
impact of the adoption rate in a neighborhood might be counterbalanced by the energy demand
of EVs during off-peak hours. Therefore, achieving optimal peak energy shaving is a product of
a sensitive balancing process that depends on the EV adoption rate. In this paper, we propose
EOS, an agent-based simulation model, to represent independent household energy usage and
estimate the real-time neighborhood energy consumption and peak shaving energy amount of a
neighborhood. This study uses Residential Energy Consumption Survey (RECS) and the American
Time Use Survey (ATUS) data to model realistic real-time household energy use. We evaluate the
impact of the EV adoption rates of a neighborhood on performing energy peak shaving during
sudden energy surges. Our findings reveal these trade-offs and, specifically, a reduction of up to
30% of the peak neighborhood energy usage for the optimal neighborhood EV adoption rate in a
1089 household neighborhood.
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Energies 2024, 17, 5110. https:// Cities around the globe face a continuously increasing demand for energy to power
doi.org/10.3390/en17205110 new devices. Consequently, energy generation and the power distribution grid must
adapt to meet the increasing demand. However, sudden surges of energy consumption
(or peak hours) not only challenge the grid infrastructure but also energy pricing [1] and

the metering accuracy [2] during such extraordinary events. Excessive peak demands may
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Fortunately, the adoption of electric vehicles (EVs) in households continues to increase,
raising the opportunity to repurpose their batteries as energy sources during peak hours.

Consumers may charge the EVs’ batteries during off-peak hours and use the stored energy
during peak hours [4]. This raises the question of what the trade-offs between peak shaving
This article is an open access article ~and the adoption rate of EVs in a neighborhood are.
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energy usage, leaving concerns about representing actual scenarios [7]. Access to actual
data can now be achieved so that other work on existing surveys, such as data from the
Residential Energy Consumption Survey (RECS) [8] and the American Time Use Survey
(ATUS) [9], can simulate the energy usage of a sample neighborhood for a given day
based on respondent data. Yet, the question of how a neighborhood EV adoption rate
affects the strategy of using EV batteries as alternative energy for peak shaving remains an
open question.

In this paper, we study the use of EV batteries to supply peak-hour energy demand
and examine the feasibility of and trade-off with the neighborhood EV adoption rate. For
this, we propose an agent-based model tool, EOS, to evaluate daily neighborhood energy
usage and test the effectiveness of peak-hour energy shaving for various EV adoption
rates and neighborhood energy demands. The energy demand profile of each agent is
derived from the RECS and ATUS survey data to provide realistic real-time neighborhood
energy use. This study aims to provide a tool which unveils the trade-offs between the
EV adoption rate in a neighborhood, helps alleviate strain on the grid infrastructure, and
satisfies the demand during peak hours based on actual consumption data.

EOS models each household as an individual agent which has its own unique daily
activity schedules based on respondent data from ATUS. The amount of energy used
by each household per minute of the day is determined from RECS data. EOS’s visual-
ization interface shows in real time the total amount of energy used by each household
in a 1089 household neighborhood. This sum is plotted to visualize the daily neighbor-
hood energy demand. A desired number of randomly chosen households are assigned
ownership of an EV. As the rate of household EV adoption increases, these households
may use the batteries of their EVs as a supplemental energy source during peak hours,
generating demand for recharging overnight. EOS was implemented in NetLogo 6.2.2
with a visualization interface which showed real-time energy usage of each household and
the neighborhood. The impact of various EV adoption rates and the levels of peak load
shaving are estimated through EOS large-scale simulations. These simulations also help
examine the method’s feasibility and trade-offs between the adjusted neighborhood peak
load demand and EV charging during off-peak hours. EOS allows us to evaluate real-time
neighborhood energy consumption based on actual household energy consumption survey
data for longer estimation periods. The results show a reduction of up to 30% peak shaving
from the daily neighborhood energy demand profile, with 35% household EV ownership
in the neighborhood providing a balanced energy profile.

The remainder of this paper is organized as follows. Section 2 presents the existing
approaches to peak energy shaving. Section 3 introduces the proposed EOS agent-based
model. Section 4 presents the evaluation of the proposed EOS through simulation and
provides a detailed result analysis. Section 5 summarizes our findings, contributions, and
possible extensions of this work.

2. Related Work

In recent years, we have seen a greater penetration of distributed energy resources
(DERs) into the residential consumer market. There has been a rise in photovoltaic cell
installations [10,11] as well as implementations of wind and water turbines [12]. The
increased availability of energy storage devices, specifically modern household battery
packs, has made DERs even more practical [13-15]. Households have begun to utilize these
energy generation and storage devices to become less reliant on the local grid and move
toward self-sustainability [16,17]. Households which have satisfied their own immediate
needs can supply neighbors through transactional energy support, creating micro-grids
within a neighborhood [5,6,18]. These instances help alleviate demand on energy suppliers
but are not yet widespread enough to offer a full solution to peak-hour spikes.

Aside from the increased prevalence of DERs, we have also seen the adoption rate of
EVs rise significantly over the last decade [19]. Utility companies face a further demand
increase as the need for vehicle charging grows [20,21], but this increase in adoption may
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also result in the development of a new form of energy storage devices making its way into
many households. While less efficient than a home battery pack, the battery of an EV can
be adapted to be utilized in much the same way. In a time of extraordinary demand, the
energy currently stored in an EV’s battery could be used to power a household’s immediate
energy needs [22,23].

A major challenge faced in this project is using time series data on residential energy
consumption due to privacy and business concerns. In the absence of such data, agent-
based models were adopted to simulate user profiles [24,25]. The adoption of green energy
sources has also been extensively researched, and the results have shown that policy can
drive adoption rates to desirable levels [5,26]. While many markets face outages as demand
peaks surge, studies have demonstrated that transactional support markets based on energy
trading can help mitigate such high demand [6,27].

Agent-based modeling has been shown to be an effective framework for analyzing
the issues of energy demand profiles [28-30]. Working in a microgrid scenario, agent-
based models have been used to demonstrate how distributed energy sources such as solar
panels and battery packs can help sustain the energy demands of rural farms and small
neighborhoods [6,27]. How energy storage units in the form of household batteries can be
utilized to supplement energy from the grid during peak hours both within a household
and in local areas through neighborhood trading has also been exhibited [6,27].

The feasibility of utilizing EV batteries as an alternative power supply has been
shown [22], where a bidirectional EV charger was designed to enable vehicle-to-grid
services. Concerns regarding a potential increase in the degradation rate of EV batteries
resulting from vehicle-to-grid usage have been addressed [23]. It was shown that while
battery wear indeed increases when EVs offer vehicle-to-grid services, the increased wear
is inconsequential when compared with naturally occurring battery wear.

The viability of using EV batteries to supplement a shortage if power generation
falls below demand has been analyzed before under various scenarios [31]. In particular,
the studied scenarios were those where customers participated in power exchanges with
the electric power network, including smart home environments and SmartParks [32].
It was also shown that such arrangements can provide several essential grid services,
including load peak shaving, and maximum utilization of renewable sources of energy
while minimizing the cost of energy and reducing emissions [32].

With the increasing EV adoption rate, the EV charging demand at off-peak hours
drawn from the neighborhood grid can be significant, but it also raises the possibility of
use at peak hours. In areas which experience daily outages during peak hours, this battery
could be used as a supplemental power source during outage windows and recharged
during hours of decreased activity. However, such extent of the impact on both scenarios
depends on the EV adoption rate in a neighborhood. Our study proposes an agent-based
model, EOS, as a tool to quantify realistic neighborhood energy demand in real time, test
strategies for peak energy shaving through EV batteries, and examine the effect of different
levels of EV adoption and the desired peak demand reduction on a sample neighborhood.
The unique feature of our approach is the use of an agent-based simulation model which
uses actual energy household use data that describes household consumption behavior
interpolated with actual data of neighborhood power expenditure. With such data, the
model generates a more realistic house energy expenditure which matches the profile of
the actual neighborhood data.

3. The Proposed Agent-Based Model: EOS

In this section, we introduce the design of the proposed EOS agent-based model
developed to simulate daily neighborhood energy usage. We also detail the process of how
EOS can be configured to test the impact that utilizing EV batteries for load peak shaving
has on the amount of energy demanded from the grid during peak hours.
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3.1. Agent-Based Model Design and Validation

EOS was implemented in NetLogo version 6.2.2, a multi-agent programmable model-
ing environment. NetLogo operates using mobile agents, known as turtles, which traverse
a grid of stationary agents known as patches. As the simulation progresses, both the turtle
and patch agents regularly make decisions based on any number of factors as they follow
programmed instructions. NetLogo collects data on the actions of every agent and allows
for the visualization of their interactions, the connections between them, and the evolution
of the overall environment space over time. This approach provides a real-time simulation
of the environment and the impact of the agents’ decisions on the environment.

EOS was established with a two-dimensional environment space with (x, y) coordinates,
each representing a household. To simulate a neighborhood comparable to an average US
suburb [33], we tested a neighborhood with a 33 x 33 grid for a total of 1089 households,
where —16 < x,y < 16. This interface ensembled a 33 x 33 grid of 1089 individual patches
representing our test neighborhood, yielding a sample size comparable to the average suburb
size in the US [33]. EOS has a time resolution of one minute to match the resolution of the
ATUS respondent data. Table 1 lists the variables used in our model. Here, t represents the
time in minutes, n represents the unique identification number for each household, where
1 <n < N, and N = 1089 is the number of households in the neighborhood. An N x T
(T = 2880) matrix D represents the processed neighborhood power usage data, with each
row representing a household and each column containing the household’s energy usage
data for every minute of the day. P, [t| denotes the amount of power used by household # at
time ¢, Py [t] represents the total amount of power being used by the neighborhood at time ¢,

N
where Py[t] = Y Py[t], Puax represents the maximum of Py [t], ¥ represents the percentage
1

of households inn the neighborhood that own EVs (i.e., the neighborhood EV adoption rate),
® is the cutoff power, which represents the percentage of the maximum neighborhood power
usage to shave down, and ¢ is a binary variable to indicate whether a household owns an
EV(s). In addition, B, [t] denotes the amount of power household #n draws from its battery at
time t, By [t] represents the amount of power being drawn from EV batteries by the entire
neighborhood at time 7, and B,qx represents the cumulative total of B t].

Table 1. Variables used for agent-based model design.

Variable Description
t Time (minutes); 1 < t < 2880.
N Number of households in the neighborhood.
n Household ID; 1 < n < N.
D Neighborhood household energy usage matrix.
Py [t The amount of power used by house # at time .
N
Pylt] Power used by the entire neighborhood at time t; Py[t] = Y Py[t].
n=1
Poiax The maximum power used by the neighborhood; Pyax = (Py [t])max-
b4 The percentage of households that own EVs.
e A binary option to designate if a household owns an EV (1 = owns an EV; 0 = does not own an EV).
P Cut-off power; the percentage of maximum neighborhood power usage to shave down.
Bx[t] The power drawn from an EV battery at time f.
N
Bult] The total neighborhood power drawn from EV batteries at time £; B [t] = ) Balt].
n=1
Bnax The total daily neighborhood EV battery usage.
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To initialize the simulation, the processed data file containing the daily energy usage
of each household was registered in D (P,[0] = 0, initially). The patches were assigned
colors based on a green-scale gradient, where a darker shade of green indicates higher
power usage. This experiment was run to represent a full day of responses from ATUS on a
by-minute basis. Each patch loaded the corresponding power usage Py [t] per minute from
the matrix D.

The environment space provides visualization of the neighborhood’s real-time energy
usage as a heat map, as shown in Figure 1b. The figure depicts how much energy each
household uses at that minute. Figure 1a shows the total amount of instantaneous energy
used by all households per minute () _ P, [t]). This figure also shows that spikes in energy

n
usage occurred around 8:00 a.m., when households likely use electric devices before leaving
for work, and at 5:00 p.m., when people return home from work. These are the spikes that
need to be mitigated using EV batteries in this study.
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b) Heat map of neighborhood energy consumption (each
block indicates a household in this neighborhood and the
darker the block the higher the energy consumption).

a) Instantaneous neighborhood power consumption.

Figure 1. EOS graphical interface, showing visualization of neighborhood energy usage.

3.2. Data Preparation

In this section, we introduce the data sets used in this project and the data preparation
process. Due to the unavailability of daily residential energy usage data, we needed
to combine information found in the ATUS and RECS using the methods described in
Section 3.2.2 to simulate a daily energy usage profile for our sample neighborhood.

3.2.1. Data Sets

RECS is administered by the US Energy Information Administration (EIA) every
4 years [9]. It is designed to analyze the energy usage habits of respondent US households
over the course of a given year. The survey collects data from a nationally representative
sample of housing units, including household demographics, energy use patterns, and
housing unit characteristics. These data are used by EIA to estimate energy consumption
and expenditure [8]. While RECS provides an in-depth analysis of a household’s yearly
energy usage, it lacks time series data which can be used to model how energy is consumed
by households throughout the day.

ATUS is a survey administered by the Bureau of Labor Statistics every year. It collects
nationally representative estimates of how, where, and with whom Americans spend their
time, and it is the only federal survey providing data on the full range of non-market
activities, from childcare to volunteering [9].
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ATUS uses a three-tiered activity coding system to sort possible daily tasks, an example
of which is shown in Table 2. Here, the ATUS code for Browsing the Internet is 120308, which
is the aggregate of the code for the major, second-, and third-tier categories it falls under.
While ATUS provides a comprehensive analysis of how respondents spend their time
throughout the day, it does not provide information about the amount of energy used
during different activities. To obtain this information, we needed to consider both RECS
and ATUS, simultaneously.

Table 2. Sample three-tiered activity code lexicon.

Major Categories 2nd Tier 3rd Tier Examples
Computer Use
(Unspecified)
Browsing the
08 Computer Internet
Use for Downloading Files,
12 Socializing, 03 Relaxing Leisure Music, Images
Relaxing, and Leisure Designing Website
and Leisure
Videotaping
09 Arts and Taking Pictures
Crafts as Artistic Painting
a Hobby Making Pottery

3.2.2. Data Processing

Owing to the nature of privacy laws and business concerns within the energy sector,
genuine household daily energy usage data are difficult to obtain. In the absence of such
information, past studies have examined many ways to simulate daily energy consumption
profiles from data which are publicly available. Diao et al. [34] modeled the energy con-
sumption in residential buildings using a bottom-up analysis based on occupant behavior
pattern clustering and stochastic simulation. This study introduces a useful approach
which links data from the RECS and ATUS surveys. Here, the authors identified the tasks in
ATUS, which required electrical devices, and then used the RECS data to find the average
amount of power these devices consumed while in use. Following this method, we obtained
an average power consumption value for each ATUS activity category and the constant
background power being consumed by appliances which run 24 h, such as refrigerators.
We obtained an energy usage profile for each ATUS respondent over a given day. In this
project, we built on this approach, utilizing the daily energy usage profiles created to model
an entire neighborhood based on the daily activity data of ATUS respondents.

3.3. Hypothesis Testing: Using EV's to Supplement Peak Neighborhood Power

To test our hypothesis, we tuned the parameters of the model to show that the spikes
in peak hour energy usage could be reduced by utilizing the EV batteries. We analyzed
the results of neighborhood energy consumption from two consecutive days of household
activities by repeating the ATUS data for each day.

The updated model allows the user to input desired values for & and ¥ and establish
the neighborhood energy usage cutoff value and the percentage of households that own
EVs, respectively. Similar initiation steps to those in the original model are followed as
described in Section 3.1. Here, the initial power usage of each household Px[0], as well
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as the initial amount of power that each household draws from the battery of its EV
Bx[0], were set to zero. This experiment was run to evaluate the EV charging needs for a
two-day period.

Figure 2 shows the algorithm the agent follows to determine their energy usage from
the grid and the EV battery at each minute. During the first day, if a household owns an
EV, then when Py [t] is greater than ®, they draw power from their batteries rather than
from the grid. They accomplish this by setting 8[| equal to D[n, t] and Py [t] equal to zero.
When Py [t] is not greater than @, they instead continuously draw power from the grid and
set P,[t] equal to Dn, t] and B, [t] to zero. At the end of the first day (t = 1440), Byax is set

equal to
1440

; Brlt] (1)

which is the total amount of energy drawn from the batteries of all EVs during the first day.
The depleted batteries of these EVs are recharged overnight between 12:00 a.m. and
4:00 a.m. To accomplish this, the patches are set to

o ,Bmax
This process resulted in additional demand to recharge the EV batteries during off-
peak hours. The model repeated the same procedure for the following days. Households
that did not own EVs had
Py[t] = Din, 1] ©)

and B,[t] = 0.

Figure 3 shows the interface of EOS. Here, four graphs are presented to highlight the
different features of the simulation. Graph 1 shows the natural two-day neighborhood
energy usage profile without the updates to our model, similar to the output graph in
Figure 1. Graph 3 shows the impact the updates to our model had on this energy usage
profile. Graph 2 shows how much energy was drawn from EV batteries each minute, and
Graph 4 shows the cumulative amount of energy drawn from EVs in the neighborhood up
until that time. The value was returned to zero overnight during the recharge phase. At
the completion of the simulation, the output window displays the maximum amount of
power used by the neighborhood without having EVs present, the maximum amount of
power with EVs present, our model adjustments in place, and the difference between the
two values.

3.4. Behavior Space Set-Up

To observe how this tool performs under different starting conditions, we utilized
NetLogo’s Behavior Space to create experiments that ran the simulation under our desired
parameters. Each experiment used a constant cutoff power value ®, which ranged from
100 to 60% of the maximum neighborhood power usage in 5% decrements. Each experiment
with a ¥ ranging from 0 to 50% of households in 5% increments was run 10,000 times.
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Figure 3. EOS graphical interface.

4. Results and Analysis

In this section, we present the results of the model run under different parameters
and provide insight into the implications of these results. The parameters used to test our
hypothesis included ¥, which increased from 0 to 50%, and &, which decreased from 95 to
60% of the maximum value of neighborhood power usage in 5% decrements. Within these
ranges, the full scope of potential benefits and eventual drawbacks were observed, and
values beyond those selected offered no further insight. For each of these 88 unique sets
of parameters, each experiment was run 10,000 times and recorded the obtained Py;x. We
plotted the means and standard deviations of these values for each set of data.

4.1. Simulation Results

Figure 4 shows the simulation results of the neighborhood power demand under
various cutoff power and EV adoption rates. Here, we see a trend manifested throughout
the first six of them, with ® ranging from 95 to 70%. For these cutoff values, the maximum
neighborhood power usage decreased linearly as the percentage of households owning EVs
increased. This linear regression continued until the maximum power usage equaled P, at
which point it remained constant. Figure 4a—f show the resultant maximum neighborhood
power demand for these first six cutoff values.

When the cutoff value became smaller than 70% of the maximum, a different trend
emerges. As shown in Figure 4g, with ® = 65%, there is a linear regression for percentages
of ¥ from 0 to 20%. However, at 25% EV adoption, Py, began to trend upward, and its
value increased for a period before becoming constant at 30% EV adoption. At this cutoff
value, the lowest result for the maximum neighborhood energy usage seen is approximately
0.92 megawatts, similar to the results seen for & = 70% and ¥ = 20%. However, whereas
Pyax continues to decrease as ¥ rises beyond 20% for & = 70%, this is not exhibited for
® = 65%. Instead, the amount of energy required to recharge the batteries of the EVs here
become so great that it creates a new maximum peak between 12:00 a.m. and 4:00 a.m.

For ® = 60%, the regression stops at 15% of EV adoption and then sharply increases,
as shown in Figure 4h. For ¥ > 25%, the new peak maximum values seen overnight during
the EV recharge cycle become greater than Py,,» seen under normal conditions. Figure 5
compares the performance of the neighborhood energy demand under different EV adop-
tion rates and cutoff powers. It shows the optimal peak-shaving strategy a neighborhood
can implement at a certain EV adoption rate.



Energies 2024, 17, 5110

10 of 14

1e6

114 114
1125
113 112
1.100
= 5 5
g 112 ° s £ 1075
o © ©
S T 2 1050
H ] 3
Q_E 110 Q_E 1.06 QI.E 1.025
1.000
109 104
° o
[ 0975
108 102
0 5 1 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 4 45 50 0 5 10 15 20 25 30 35 40 45 50
W (%) VY (%) W (%)
0, 0, o,
(a) ® = 95%. (b) @ = 90%. () @ = 85%
1e6 1e6
1e6 115 15
\i 110 \I‘
110
110 T\i
. N‘ 105
—_ W 105 “»
% 105 % g 1.00 I\i‘
1.00 o
E E T ? 37 I\i
x
% 100 T 3
n:g" o Q_E 095 Q_E 0.90 l—;\i
095 0.90 ° 0.85 M
oss{  HS—e—e——oa—— 0.80 -—o—06—0
T s 0 5 » % % s 0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
V(%) Y (%) W (%)
- O, - 0, _ O,
(d) @ = 80%. (&) D = 75%. () ® = 70%.
115 <8 1e6
A 120 %/' o
110
115 i/;‘
) i
% 1o 8 S 110
©
= S
g e e
o« 3
095 % 100
095
090

0 5 10 15 20 25 30 35 40 45 50

W (%) W (%)
(g) ® = 65%. (h) ® = 60%.

Figure 4. Statistical results of neighborhood power demand with increasing EV adoption rate for
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various peak shaving scenarios.

Figure 6 shows the effect that different cutoff powers of maximum neighborhood
power demand have on the neighborhood energy demand for a constant EV adoption
rate. Figure 6a shows the normal two-day demand based on ATUS respondents without
any usage of EV batteries. Figure 6b shows the results for a neighborhood with ® = 70%
and ¥ = 35%. Here, load peak shaving helps lower peak-hour spikes and stabilize the
overall demand.

Figure 6¢ shows the effect that lowering ® to 65% and leaving ¥ at 35% have on the
neighborhood demand. While the demand during the day is lower than that in Figure 6b,
a new peak appears during the recharge cycle overnight. Although greater than the
desired cutoff value, this peak is still smaller than the maximum power usage seen under
normal conditions.

Figure 6d shows the resultant neighborhood energy demand for ® = 60% and
Y = 35%. In this case, the amount of energy needed to recharge the EVs overnight cre-
ates a peak greater than the one we are trying to mitigate. This result indicates that with
this EV adoption rate, shaving the peak energy by 40% is no longer a viable option for
this neighborhood.
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Figure 5. Neighborhood power demand with varying EV adoption rate and peak shaving scenarios.
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Figure 6. Impact of EV adoption rate on peak demand shaving: (a) no EVs in the neighborhood,
(b) ® =70% and ¥ = 35%, (c) ® = 65% and ¥ = 35% and (d) ® = 60% and ¥ = 35%.

4.2. Results Analysis

The results show that utilizing the batteries of EVs to supplement household energy
demands can have a significant impact on the reduction in energy demand during peak
hours. For a 1089 household neighborhood, we successfully reduced the maximum energy
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usage value by 30% when 35% of the neighborhood adopted EVs. This was the largest
achieved reduction in our sample neighborhood, as adding more EVs or attempting to shift
demand further would result in new spikes being created.

For this size neighborhood, when attempting to achieve a cutoff of more than 30%
of the maximum usage value, the new energy usage peak was created overnight, when
the EV battery recharge began to overtake the reduction seen during normal peak hours.
Figure 6¢, as a case of Figure 4g, shows a case of mild EV saturation, where the reduction
stopped at 20% EV adoption and the maximum values seen from there increased rather
than decreased. As a result, when attempting to cut the maximum power usage by 35%, it
is advisable to keep the EV adoption rate at 20% for this neighborhood. As the EV adoption
rate increased, the energy demand increased during off-peak hours to charge the EVs.

Figure 6d, as a case of Figure 4h, shows a case of extreme EV saturation. Here, the
maximum values of power usage obtained eventually overtook the original maximum
value of 1.13 megawatts. In this scenario, as the level of EV adoption rose, the amount of
energy needed to recharge the EVs overnight became so large that the amount of drawn
power became greater than the original peak we were aiming to reduce. At this point,
EVs were no longer helping to reduce the maximum values of power usage seen and
were rather creating peaks which were greater than what the supplier previously needed
to provide, thus further straining the utility. Figure 6 shows this effect, depicting the
normal neighborhood energy demand, the demand when operating under the optimal
parameters, demand with a case of mild EV saturation, and finally demand with a case of
EV oversaturation.

5. Conclusions

In this paper, we analyzed the impact of the ratio of EV adoption versus their use in
a smart city for peak power shaving during surging demand and the cost of the energy
demand for recharging EVs from the same grid. The contributions of this paper are twofold:
(a) the proposal of EOS, an agent-based model simulator, to test the effect of using EV
batteries to supplement a neighborhood peak hour energy demand and (b) the modeling of
peak shaving as a function of the EV adoption rate in a neighborhood grid. EOS permits
the testing of power usage strategies based on the agent’s behavior with synthesized
public survey data for modeling a realistic household energy usage profile. EOS accurately
represented the cumulative power consumption profile of our sample neighborhood and
visually displayed how each household’s energy usage changed over time and how the
neighborhood'’s total energy usage evolved. With EOS, we showed how the batteries of EVs
supplement household energy demands, alleviating the grid supply during peak usage
hours without overloading the grid at the time of EV recharge. With the integration of 2009
ATUS and RECS data into EOS, we observed a 30% reduction in the peak neighborhood
energy usage reached during such surges. This reduction was obtained under the optimal
35% of the neighborhood owning EVs and the desired cutoff level for neighborhood energy
usage at 70% of its peak (i.e., shaving of 30% of the power peak). EOS can be adapted to
test peak shaving strategies of different sizes of neighborhoods and EV adoption rates. It
can be used by energy suppliers, municipalities, policymakers, as well as communities to
visualize and analyze their strategies for renewable energy adoption and their impacts on
the current grid systems. For future work, more extensive data on neighborhood energy
expenditure, social behavior, and tests with larger regions or grids remain of interest to
demonstrate the scalability and robustness of EOS.
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