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ABSTRACT

Incremental query evaluation is key to efficiently processing
rapidly changing graph data. By focusing on the parts of
the query results affected by updates, it avoids unnecessary
computations, allowing for faster query evaluation. While
this technique works well in the cases of edge insertions,
its benefit quickly diminishes when the volumes of edge
deletions and edge weight updates increases.

To address the above scalability issue, this work introduces
several techniques for handling large update batches that
include many edge deletions and weight updates. First, for
edge deletions, this work introduces a bottom-up dependency
tracing method to identify the affected vertices. Unlike the
existing top-down tracing, it completely avoids traversing
the underlying graph, thus more scalable for large deletion
batches. Second, for edge weight updates, existing graph
systems treat each weight change as an edge deletion (with
old weight) followed by an edge insertion (with new weight).
This “two-round” method is computationally excessive. This
work shows that it is, in fact, possible to handle weight
updates directly. Finally, this work shows the benefits of
adjusting the processing strategy according to the update
volume. We integrated the above ideas into a graph system
called IncBoost. Based on our evaluation, IncBoost can
scale incremental query evaluation to large update batches
that represent 30-60% of the graph size. By contrast, the
state-of-the-art streaming graph system (RisGraph) typically
fails to yield benefits when the batch size reaches 5-15%
of the graph size. Regarding the absolute processing time,
IncBoost consistently outperforms RisGraph with 3.1x and
5.2x speedups for edge deletions and weight updates on large
batches, respectively.
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1 INTRODUCTION

Graph processing is essential for many applications where
data naturally forms graph-like structures, such as social
networks and web analytics [18]. While most existing graph
system research has focused on static graphs, real-world
graphs are often dynamic. For example, on social networks,
users join, connect, and interact with each other over time.
New friendships, status updates, and interactions constantly
change the graph structure [6]. In online recommendation
systems, as users rate, review, or interact with items, the
graph that represents the user-item relationships evolves [46].
More obviously, transportation networks, like road networks
or airline networks, undergo constant changes due to factors
like traffic patterns, road closures, and flight schedules [25].

Motivated by the dynamic nature of real-world graphs, a
series of systems have been proposed recently for changing
graphs, such as Kineograph [5], Chronos [13], Tornado [40],
KickStarter [45], Aspen [7], GraphBolt [27], Ingress [11],
Tripoline [16], and more recently RisGraph [10]. Instead of
re-evaluating the graph queries from scratch, most of these
systems incrementally update query results in response to
the changes to the graph.

For path-based algorithms like single-source shortest path
(SSSP), the state-of-the-art incremental approaches, such as
RisGraph [10], have shown great scalability—handling large
batches of edge insertions up to 30-50% of the graph size
(see Figure 1). However, it remains a fundamental challenge
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Figure 1: Scalability of Incremental Evaluation. The
maximum update batch relative to the full graph size, where
incremental evaluation is faster than full query evaluation, is
demonstrated using the single-source shortest/widest path
(SSSP/SSWP) algorithms and the LiveJournal graph.

to scale the incremental evaluation for edge deletions and
weight updates. As shown in Figure 1, the existing solution
can only scale the batches of edge deletions and weight
updates up to 10-15% of the graph size.

Efficient handling of substantial graph updates, especially
edge deletions and weight updates, is crucial for real-world
analytics. For example, in dynamic communication networks,
link weights signify key attributes like latency, bandwidth,
reliability, or cost. These attributes fluctuate over time based
on user demands and network conditions, causing frequent
graph updates [14, 17, 35]. In evolving graph analysis, when
comparing two temporally distant snapshots of the same
graph, the extent of changes between them can be huge,
leading to a large update batch (e.g., 30% edges of the Stack
Overflow temporal network [24]).

A closer examination on the existing incremental graph
query processing systems highlighted a few challenges in
scaling up the handling of edge deletions and weight updates:

o Expensive dependency tracing. When edges are deleted,
the graph system needs to identify all affected vertices.
Intuitively, the system can maintain the dependencies
among vertices and trace down them from the deleted
edges [10, 45] (see Section 2.2). However, we find that
existing systems suffer from a mismatch between the
top-down dependency tracing and the commonly used
bottom-up representation of dependencies (e.g., parent
array), making it the dominating cost of edge deletion
handling (70-80%). Moreover, the overhead of top-down
tracing is exacerbated by the high communication cost
in a distributed environment.

o Two-round weight update handling. The existing graph
systems [10, 45] handle edge weight changes in two
rounds: delete the edges with their old weights, then
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reinsert them with the new weights. While being an
intuitive workaround, this solution often involves a
large amount of unnecessary computations.

e Unawareness of workload. The state-of-the-art graph
systems employ a single processing strategy for batch
updates of varying sizes. However, large changes in
batch size lead to different computation characteristics,
potentially resulting in sub-optimal performance.

To concur each of the aforementioned challenges, this
work introduces three new techniques correspondingly:

e First, to align with the bottom-up representation of
dependency data, this work introduces a novel bottom-
up dependency tracing strategy. Unlike the top-down
tracing, this new strategy totally avoids accessing the
graph data during the dependency tracing.

Second, this work proposes a direct weight change
handling method to avoid the two-round handling.
The key is to separate weight increases and decreases
and treat them like edge insertions and deletions. For
correctness, this work designs a monotonicity-based
test to find out the right treatment to a weight increase
or decrease across different graph algorithms.

Finally, workload-adaptive evaluation is introduced
to address the changing behaviors of computations due
to changes in the workload volume. It automatically
selects the dependency tracing strategy and the data
representation to realize the best performance.

To integrate the above techniques, we implemented a new
graph system for incremental query evaluation—IncBoost.
Our evaluation focuses on comparing the performance of
IncBoost against the state-of-the-art system, RisGraph. Our
results show that IncBoost can boost the update batch size
from 10-15% to 50-60% of the graph size for edge deletions
and weight changes (as shown in Figure 1) without losing
the benefits of incremental evaluation. More specifically, for
large update batches, our results indicate up to 1.6X speedup
in dependency tracing with the bottom-up approach, while
the direct weight update handling delivers 2.1x speedup over
the two-round approach. We also demonstrate that, in the
distributed environment, the bottom-up approach provides
more performance benefits by reducing communication costs.
Overall, IncBoost achieves up to 3.1x and 252X speedups
for edge deletions, 5.2x and 345X speedups for edge weight
updates over RisGraph and KickStarter, respectively.

2 BACKGROUND

2.1 Vertex-Centric Programming

In a directed weighted graph G(V, E), where V is a set of
vertices and E is a set of edges, an edge e is in the form of
(u,v,w), where u is the source vertex, v is the destination
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[* single-source shortest path */
fsssp(”) {
for each out-neighbor n of v {
if (dist[n] > dist[v] + w(v,n)) { °
dist[n] = dist[v] + w(v,n);
add n to frontier;

}

(a) vertex function

(b) a directed graph

e | A | 8 | c Do | e | F |G|
0 0 [e<] oo o [e) oo o

{A}

1 0 5 o) 20 oo [e) (e} {B, D}
2 0 5 25 20 27 © 105 {C,E, G}
3 0 5 25 20 27 32 105 {F}

4 0 5 25 20 27 32 105 {}

(c) iterative evaluation of SSSP(A) from scratch

Figure 2: Full Evaluation of Query SSSP(A). Thick edges
are dependent edges for the given query.

vertex, and w is edge weight. An undirected graph can be
represented by a directed graph with edges in both directions.
Thus, we only consider directed graphs in this paper.

In vertex-centric programming [41], f(v) is a vertex func-
tion that specifies the logic to compute the property values
of vertex v. If f(v) computes the property value of v based
on values of v’s in-neighbors, it is referred to as the pull
model; Otherwise, if f(v) computes the property values of
v’s out-neighbors based on v’s value, it is called the push
model. In this work, we assume the push model for its better
efficiency for most iterative graph algorithms [41]. Taking
SSSP as an example, Figure 2-(a) shows the pseudocode of
its vertex function written using the push model.

Given a graph and a source vertex v, the evaluation of
SSSP(vy) proceeds in iterations, as shown in Figure 2-(c). In
each iteration, the vertex function f(v) is applied to a subset
of vertices known as the frontier. Initially, only the source
vertex vy is added to the frontier. The vertices whose values
are changed in the iteration would be added to the frontier for
the next iteration. These iterations terminate once vertices
values have stopped changing. These converged values are
the shortest distances from vertex v, to all the other vertices.

2.2 Existing Incremental Methods

To avoid the expensive full evaluation each time after the
graph is updated, incremental query evaluation has been
proposed [7, 10, 11, 16, 27, 40, 45]. Next, we present the basic
ideas of incremental query evaluation with respect to the
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(b) after removing edge AC

(a) after inserting edge AC

itert | A | 8 | c | 0] E | F | G | Fonter |
10 20 27 32

init 0 5 105 {c
5 0 5 10 20 15 17 105 {E, F}
6 0 5 10 16 15 17 105 {D}
7 0 5 10 16 15 17 105 I}

(c) re-convergence of SSSP(A) after inserting edge AC

iert | A | 8 | c | 0] e | F | G | Fonter |
[oe] oo (e o) [oe]

reset 0 5 105 -
init 0 5 oo 20 (o] oo 105 {D}
8 0 5 25 20 27 o 105 {C, E}
9 0 5 25 20 27 32 105 {F}
10 0 5 25 20 27 32 105 {}

(d) re-convergence of SSSP(A) after removing edge AC

Figure 3: Incremental Evaluation of SSSP(A). Vertices
affected by the deletion of edge AC are in red.

three types of graph updates!: (i) edge insertions, (ii) edge
deletions, and (iii) weight updates. We will focus on the
widely studied monotonic path-based graph algorithms and
use the example in Figure 2 to help explain the ideas.

Edge Insertion Handling. Assume a new edge (A, C, 10) is
inserted to the graph in Figure 2-b. The edge creates a new
way to reach C through A which may result in a better value
for C. To find it out, we can apply the vertex function on A
but limit its scope to only the out-neighbor C (like an edge
function). Based on vertex A’s prior result, which is 0 (see
Figure 2-c) and the weight of the new edge “10”, a new best
value “10” is found for C. Next, we need to propagate this
new value of C to the other vertices in the graph. To achieve
this, we can put C to the frontier and resume the iterative
query evaluation, as illustrated by Figure 3-c. Once all values
are converged again, the latest shortest distances are found.

Edge Deletion Handling. To handle edge deletions, the
graph system needs to maintain the dependencies among
vertices that capture how the vertex values are computed.
Consider the example in Figure 3-a, thick edges reflect the
dependencies among the final values of vertices. Take vertex

1A vertex deletion deletes all the edges of the vertex, while deleting/inserting
a vertex without any edges is usually a trivial case to compute.
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D as an example, its final value “16” is computed based on
the final value of E, “15”, so D depends on E. For path-based
graph queries, the dependencies form a tree rooted at the
query’s source vertex (more details in Section 3). Figure 3-a
shows a dependency tree (thick edges) rooted at vertex A. In
general, there are three steps in handling an edge deletion.

(D Dependency tracing. If a deleted edge does NOT dictate
any dependenices, then no vertices are affected; Otherwise, it
requires finding the affected vertices. Consider the graph in
Figure 3-a, deleting edge DE has no effects on the value of any
vertex. However, deleting edge AC may impact the values of
vertices that depend on this edge. First, the directly impacted
vertex is C. Without edge AC, C’s prior value “10” is no longer
valid, so do the values of other vertices that depend on C,
including E, F, and D (see Figure 3-a). To ensure correctness,
their values need to be reset to oo (see Figure 3-d).

@ “Jump-start”. This step finds a safe approximation value—
no better than the best value, for each reset vertex. One way
is to “pull” values from their in-neighbors and use them to
update the values of these reset vertices [10]. In Figure 3-d,
the “init” row shows the initial values of reset vertices after
applying a pull operation. Note that at the “init” iteration, a
pull operation is applied to each of four reset vertices (C, D, E,
and F) to get a safe approximation. These pull operations are
performed in parallel. As some of the vertices are adjacent,
the approximation results depend on the order in which these
pull operations are performed. The example shows where
vertices C, E, and F are evaluated before D, resulting in their
values being set to infinity. However, alternative evaluation
orders are possible, such as when D is processed before C,
which would assign vertex C an approximate value of 25 at
the “init” iteration.

®® Re-convergence. The graph system then resumes the
iterative evaluation until all values re-converge. During this
time, the value propagation only occurs to the reset vertices
as others do not depend on the deleted edge(s).

Among the above three steps, dependency tracing often
dominates the total handling time in the existing systems
(about 70-80% for large deletion batches).

For both edge insertion and deletion, the correctness is
ensured by the safe approximation of affected vertices’ values
and the monotonicity of the iterative graph algorithms [45].
Taking SSSP as an example, during an iterative evaluation of
SSSP(u), the value of every vertex—the shortest path distance
from the source u to this vertex—never increases.

Edge Weight Change Handling. Existing graph systems [10,
27, 45] treat an edge weight change as two separate updates:
an edge deletion and an edge insertion and process them in
two rounds. While simplifying the design, the two-round
method may incur a lot of unnecessary computations.
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@—©
before update after update

[ vo [ ale | c D0 | e ] F G|
16 15 17 105

Value 0 5 10

3 iterations i Delete edge (A, C, 10)
Value 0 5 25 20 27 32 105

3 iterations i Insert edge (A, C, 7)
Value 0 5 7 13 12 14 105

Figure 4: Two-Round Handling of Weight Update.

At the high level, the two-round handling always “takes
a detour” to reach the final convergence. As illustrated by
the example in Figure 4, when the weight of edge AC is
changed from 10 to 7, the two-round handling first makes
the values of affected vertices worse (larger values in SSSP)
in the first round, then re-converges them to better values in
the second round. This “detour” greatly limits the efficiency
of incremental edge weight change handling.

One Configuration for All Cases. Finally, existing graph
systems with incremental evaluation [10, 27, 45] use the same
configuration—the same representation of the frontier and
dependency tracing direction, regardless of the workload.
Based on our observation, the lack of workload adaption
often leads to sub-optimal performance.

In the upcoming sections, we address these limitations. In
Section 3, we introduce the new dependency tracing strategy
for large deletion batches. In Section 4, we present the direct
method for handling weight updates. Lastly, in Section 5, we
discuss the adaptive processing scheme based on batch size.

3 DEPENDENCY TRACING

Dependency tracing is necessary in handling edge deletions
for incremental query evaluation. It helps the graph system
identify vertices affected by the deletion of a set of edges. In
this section, we discuss the data representation options for
dependency, then introduce the strategies for dependency
tracing, including the existing top-down tracing and our new
design—bottom-up tracing. We first define the dependency
in our context more formally:

DEFINITION 1 (DEPENDENCY). Given a monotonic iterative
graph algorithm and a graph, when the algorithm converges,
if the value of a vertex v; is determined solely by the value of
one of its in-neighbors v; %, vertex v; depends on v;. We refer
to v; as the dependent child whilev; as the parent.

21t is possible that multiple in-neighbors have the same value, but during
the iterative evaluation, only one of them will be used to update the value
of this vertex, hence, we still refer to it as one-to-one vertex dependency.
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Table 1: Average-case Complexities (d;, and d,,; are the
average in-degree and out-degree, respectively).

Children Parent Maint. | Space
Representation (per vtx) (per vtx) (per vtx) | (all)
Sparse children vec. | O(1) O(din) O(dour) | O(IV])
Dense children vec. | O(doyus) | O(din * dour) | O(dour) | O(|E])
Children hashtable o(1) O(din) O(dout) | O(IV])
Children in nbr. vec. | O(1) | O(din * doutr) | O(dour) | O(1)
Parent vec. O(dout) O(1) O(din) |O(IV])
Depen. discovery® | O(dour) O(din) - -

For vertex-centric graph queries, the dependency relations
among vertices form either a tree structure (e.g., in the case

of SSSP) or a forest (e.g., in weakly connected components).

Hereinafter, we assume a single dependency tree scenario
without loss of generality.

3.1 Dependency Representation

Although the data structure for dynamic graphs has been
widely discussed [7, 10, 45], there is limited discussion on
the data representation for vertex dependency.

Our discussion covers the lookup costs for dependent
children and parents, the maintenance cost, and the space
overhead. The children lookup is used for identifying affected
vertices during dependency tracing, while the parent lookup
could be used when changing the parent of a vertex. The
maintenance is to update the dependency tree to reflect new
dependencies after the graph is updated and the query is
incrementally evaluated. In total, we examined six design
choices for storing dependency, under the assumption that
the dynamic graph is stored in an adjacency vector:

e Sparse children vector stores the dependent children
(their indices in the neighbor vector) in a vector.

e Dense children vector combines a boolean vector with
the neighbor vector to indicate dependent children.

o Children hashtable stores the dependent children of a
vertex in a separate hashtable (unordered set).

o Children in neighbor vector puts the dependent children
at the beginning of the neighbor vector, separated from
the rest neighbors with a pointer.

o Parent vector stores the dependent parent (index in the
vertex array) of each vertex in a vector.

e Dependency discovery discovers a vertex’s dependency
online by checking the values of in-neighbors and finds
the one that determines its value.

Table 1 lists the average time and space complexities based

on the average in-degree d;, and out-degree d,,; of the graph.

In general, children-based representations offer constant
access time to the dependent children (except for the dense

3Unlike other cases where the operations are simple graph accesses, this
requires accessing the vertex values and perform re-computations.
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children vector), but take longer to find the parent of a vertex
as they have to examine each in-neighbor of the vertex to
check if it has this vertex as a child (i.e., O(d;, * doy)). In
comparison, parent vector offers constant access time to the
parent of a vertex, but takes longer to find the children of a
vertex as it needs to scan the out-neighbors of the vertex and
check which one has this vertex as the parent. Dependency
discovery does not explicitly store the dependency, so its
maintenance and space costs are zero, but it requires extra
computations to find dependent children. Specifically, for
each vertex v, it needs to pull values from its in-neighbors
and identify the specific in-neighbor v} that determines the
current value of v (e.g., dist[v] == dist[v},] + w(v},, v) in SSSP)—
v, is the parent of v, and the complexity is O(d;y,). Similarly,
the children of vertex v can be discovered by examining its
value relation with the values of its out-neighbors.

Besides complexities, another key factor for selecting the
dependency representation is the parallelization cost. Since
a vertex may have multiple dependent children, updating
the children of different vertices may require the use of locks
when performed concurrently, which happens in the case of
children-based representations (except the dense one). By
contrast, the parent vector and dependency discovery require
no locks for parallel parent updating.

In addition, one may use two representations together to
address the disadvantages of each. For example, when using
children-based representations along with the parent vector,
the parent lookup cost could be reduced to O(1) at the cost
of more memory usage.

Offline vs. Online Maintenance. The maintenance costs
listed in Table 1 assume an offline approach, that is, the
dependency tree is updated after the incremental evaluation
finishes. For children-based representations, this can be done
by traversing the out-neighbors of each vertex to identify the
new dependent children. Likewise, for parent vector, it needs
to traverse the in-neighbors of each vertex to identify the
new dependent parent. In both cases, the offline approach
needs to access the graph structure which could be costly.

Alternatively, the dependency tree can be updated online
during the incremental evaluation. In this case, each time the
value of a vertex is updated, the parent-child dependency is
also updated. For children-based representations, it involves
removing a child from its old parent’s children list and adding
it to that of the new parent. Note that changing children for
different vertices in parallel requires locks. For the parent
vector, the dependency update involves updating the parent
of the affected vertex.

3.2 Top-down Dependency Tracing

Existing systems, like KickStarter [45] and RisGraph [10],
follow a top-down dependency tracing strategy to identify
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Algorithm 1 Top-down Dependency Tracing

1: function DErTRACINGTOPDOWN(G, parent, Sy)
2 S= S()

3 Frontiercy, = So

4 Frontierpex; = 0

5: while Frontierc,, # 0 do

6 parfor u in Frontier.,, do

7 for v in G[u].outNeighbors do

8 if parent[v] ==u && v ¢ S then
9: Frontieryex: = Frontierpex: U {v}
10: S=SuU{ou}
11: end parfor
12: swap(Frontiercy,, Frontierpex:)
13: Frontierpey: = 0
14: return S

all the vertices affected by edge deletions, as outlined in
Algorithm 1. They use the parent vector as the dependency
representation for easier dependency maintenance and low
parallelization cost, as discussed in previous work [10].

When edges are deleted from the graph, there is a set of
vertices whose values are directly impacted, denoted as S;.
Top-down tracing starts from vertices in Sy and traverses
the dependency tree downwards till reaching its leaves. At
last, the algorithm outputs the visited vertices as the full set
of impacted vertices S. Figure 6-a illustrates the top-down
dependency tracing, where S, = {B, D}. After the tracing, the
impacted vertex set S = {B,C, D, E}.

@ Dep. Tracing @ Iter. Comp.

100%
80%
60%
40%
20%

0%

Time %

SSSP SSWP BFS WCC SSSP SSWP BFS WCC

6% Batch 30% Batch

Figure 5: Time Breakdown: Dependency Tracing and
Iterative Computation. RisGraph on TW graph, batch sizes
are 6% and 30% of graph edges.

Scalability Issues. Top-down tracing works well when the
directly impacted vertex set Sy is relatively small. When
So becomes larger, we observed significant performance
degradation—causing the dependency tracing to take up to
80% of the total handling time, as illustrated in Figure 5.
We found the key issue limiting the scalability of top-down
tracing is the mismatch between top-down tree traversal and
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miss impacted ones

(a) bottom-up tree tracing (b) bottom-up forest tracing

Figure 6: Complexities in Bottom-up Tracing. Vertices
directly impacted by edge deletions are highlighted.

the use of a parent vector. The former needs the dependent
children of vertices, but given the parent vector, it has to
access the graph—scanning the out-neighbors of a vertex to
find its dependent children (Line 7-8 in Algorithm 1), which
takes O(d,y,;) time, where d,y,; is the average out-degree of
the graph. When there are many directly impacted vertices,
the cost of graph traversing becomes significant.

Children-based representations avoid the above issue by
explicitly storing dependent children for each vertex. While
this offers constant time to access the dependent children,
it takes more time to remove a dependent child from the
dependent children list, and requires locks during parallel
children updates. Overall, the costs outweigh the benefits,
hence the prior systems [10, 45] still chose to use the parent
vector despite the mismatch.

3.3

To address the mismatch mentioned above, we propose a
bottom-up dependency tracing strategy that aligns well with
the parent vector-based dependency representation, and it
requires no accessing to the graph, making it a promising
solution for large edge deletion batches.

However, it is less intuitive to traverse from the leaves of
a dependency tree “backwards”. To achieve that, we need
to address two key questions: ) how to identify the leaf
vertices of the dependency tree? (2) how to correctly find
impacted vertices starting from the leaves?

Bottom-up Dependency Tracing

(@ Identifying leaves. In fact, leaves are the vertices with
no dependent children. If we know the count of dependent
children for every vertex, it becomes trivial to identify the
leaves. However, to collect the dependent children count for
a vertex v, it seems that we may still need to know which
out-neighbors are the dependent children of v—going back
to the same situation as in the top-down dependency tracing.

The workaround for the above issue is to maintain the
dependent children counts of vertices incrementally, instead
of computing them from scratch. We keep a copy of the old
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parent vector before graph updates and compare it with the
new parent vector afterwards. If the parent of a vertex v is
changed from p; to p,, we decrement the count of p; and
increment the count of p,. For parallel count updates, atomic
operations (like fetch_add and fetch_sub) are required.

The high-level idea of our solution may look similar to
children-based representations—instead of maintaining the
list of dependent children, our solution maintains the count
of dependent children. However, this difference brings a few
critical advantages for an efficient implementation:

o First, the count is a single integer that can be easily
stored in a vector for all the vertices;

e Second, maintaining the counts of dependent children
does not need to access the graph;

o Lastly, the safety of parallel updates can be achieved
with atomic operations, instead of employing locks as
in the children-based representations.

With the leaves of the dependency tree, the next question is
to find all vertices impacted by the edge deletions.

(@ Finding impacted vertices. An intuitive idea is to start
from the leaves of the dependency tree and traverse the
tree bottom up. A traversal path stops if it reaches a vertex
directly impacted by the edge deletions (i.e., a vertex from
Sp in Algorithm 1) or the root of the tree.

However, there is a caveat to the above idea—along one
bottom-up traversal path, there could be multiple vertices
directly impacted by edge deletions, as shown in Figure 6-(a).
Stopping the traversal at the place where the first directly
impacted vertex is found might miss out other impacted ones
that appear even higher up in the path.

To address the above issue, we first remove the edges in
the dependency tree that correspond to the deleted edges
in the graph. As a consequence, the tree is broken into a
set of smaller trees—a forest, as illustrated by Figure 6-(b).
Meanwhile, we update the counts of dependent children
to reflect the latest set of leaves—the leaves in the forest,
denoted as Sjeqyes. If we traverse the forest from Sj4.s bottom
up, it would cover all the impacted vertices: S = Uyes,,,..So
where S, denotes the vertices along the path from v to a
directly impacted vertex in S;.

There is another complexity in the bottom-up tracing: at
the beginning of the traversal, it is unknown if it will finally
reach a directly impacted vertex in Sy or the original root
of the dependency tree. As a result, it cannot decide if a
visited vertex should be marked (i.e., added to S,). To address
this, we first assume every traversal path can eventually
reach the original root, so no visited vertices are marked
during this traversal. In cases where the assumption fails—
the traversal did encounter a directly impacted vertex, our
algorithm would re-traverse this path from the leaf, and
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Algorithm 2 Bottom-up Dependency Tracing

1: function DErTRACINGBOTTOMUP(parent, leaf, Sp)
2 removeDeletedEdges(parent)
3 /* leaf is represented using a boolean array */
4 updateLeaves(leaf)
5: S=50/" Sy and S are stored using boolean arrays */
6 parfor v in leaf do
7 p =0 /" keep a copy for potential re-traversing */
8 /* bottom-up traversal */
9: while hasParent(p) and p ¢ S do
10: p = parent[v]
11: if p € S then /" stopped at an impacted vertex */
12: /* re-traverse */
13: while hasParent(v) and v ¢ S do
14: S =SU {ov} /" itis an impacted vertex */
15: v = parent[v]
16: end parfor
17: return S

this time it marks the vertices visited along the path as the
impacted ones. The process is outlined in Algorithm 2.

Correctness of Bottom-up Tracing. Assume that Ty, is the
dependency tree before edge deletions and S;,, is the set of
all impacted vertices by top-down dependency tracing. Then,
we have S;op = Uyes, Ny, where N, consists of all the vertices
of a sub-tree in Ty, rooted at 0.

The bottom-up dependency tracing starts from all the
leaves in the Tg,,, denoted as L;yee, and the new “leaves”
created by detaching the directly impacted vertices from
their parents, denoted as Ly, . (i) If there is one and only one
directly impacted vertex appearing on the path from a leaf v,
0 € Ltree, to the root of Ty, the bottom-up tracing would
stop at v and a follow-up re-traversing would include all the
vertices along the path into the impacted vertex set Spos0m-
(ii) If there are K, K > 1, directly impacted vertices on the
path from a leaf v, 0 € Lyyee, to the root of Ty, the parent
detaching in bottom-up tracing would break the path into K
path segments and include the bottom vertex of the last K-1
segments into Ly..,, which is also covered by the bottom-up
tracing, similar to L. (iii) If there are no directly impacted
vertices on the path from a leaf v, v € Ly, to the root of
Tyep, the bottom-up tracing would traverse all the way back
to the root of Ty, leaving no impact on Sposrom. In sum,
the impacted vertex set of bottom-up tracing Sposom cOVers
exactly the same vertices as in S;,,.

4 WEIGHT UPDATES HANDLING

Existing graph systems [10, 11, 45] simulate an edge weight
update with an edge deletion followed by an edge insertion,
which takes a “detour” to reach the final convergence. In this
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(b) re-convergence of SSSP(A) after weight increase

Figure 7: Direct Handling of Weight Changes.

section, we show that it is possible to directly handle weight
changes in a single round. We will start the discussion using
SSSP, then generalize the ideas to other graph algorithms.

4.1 Case Study: SSSP

The key to directly handle weight updates is to distinguish
between “weight increases” and “weight decreases”. Let’s
revisit the example in Figure 3-a, if the weight of edge AC is
decreased from 10 to 7, because AC is a dependent edge, we
can tell that vertex C’s value should also be updated from 10
to 7. Then, we can propagate C’s new value to other vertices
in the graph by resuming the iterative evaluation from vertex
C. Figure 7-a illustrates this process, which is similar to the
handling of an edge insertion (see Figure 3-c).

Using the same example, this time, assume the weight of
edge AC is increased from 10 to 13. Again, because AC is a
dependent edge, the old value of vertex C becomes invalid.
Since the edge weight was increased, the new value of C may
come from another different in-neighbor. So, we check all the
in-neighbors of C to find out the new best value. However,
some of its in-neighbors may also be impacted by this weight
increase, as a result, their values should not be valid at the
moment. In this case, to be safe, we need first to reset the
value of C and the values of all the vertices depending on C
to co. After this, for each reset vertex, we can safely “pull”
the values from its in-neighbors to get a new approximated
value. Finally, we need to resume the iterative evaluation
starting from all the affected vertices. Figure 7-b illustrates
this process, which, in fact, is similar to the 3-step handling
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(tracing—jump-start—re-convergence) of an edge deletion
outlined in Section 2 (see Figure 3-d).

In summary, in the case of SSSP, edge weight decreases
can be handled similarly to edge insertions, whereas edge
weight increases can be addressed similarly to edge deletions.
Also, similar to how correctness was ensured in handling
edge insertions and edge deletions [45], the correctness of
handling weight increases and decreases is ensured by the
safe approximation of affected vertices’ values and the inherit
monotonicity of the SSSP algorithm. Next, we generalize this
insight to some other graph algorithms.

4.2 Generalization

While the insight from SSSP is intuitive, it is non-trivial to
generalize them to other graph algorithms. Taking Viterbi
as an example, it is not obvious whether weight increase or
decrease should be treated similarly to the edge deletion case.
To address this, we again turn to the monotonicity—a common
property shared by many iterative graph algorithms.

DEFINITION 2 (MONOTONICITY). A weight-based iterative
graph algorithm is monotonic if the value of every vertex varies
in such a way that it either never decreases or never increases.

Besides SSSP, some other weight-based iterative graph
algorithms that exhibit monotonicity include Single-Source
Widest Path (SSWP), Single-Source Narrowest Path (SSNP),
and Viterbi. Our goal here is to extend the optimization for
SSSP to the other monotonic graph algorithms.

The pivotal question is: for a weight-based monotonic graph
algorithm, which of the two scenarios, weight increase or weight
decrease, violates the monotonicity? Next, we present a test
to check if a weight change violate the monotonicity for a
given monotonic graph algorithm.

DEFINITION 3 (LocAL MoNoToNICITY TEST). Consider a
weight-based monotonic graph algorithm and a weight change
(either a weight increase or a weight decrease) on edge (u, v),
if (u, v) is a dependent edge, the test resets the value of the
directly impacted vertex v to the initial value INIT. Then, it
applies the vertex function on this edge f (u,v). If the new value
of vertexv is closer to INIT than the old value, the monotonicity
is violated; otherwise, the change passes the test.

Algorithm 3 summarizes the local monotonicity test. It
returns true only when the weight change conforms with
the monotonicity of the given graph algorithm. Table 2 lists
the results of this test to the aforementioned weight-based
monotonic graph algorithms using some offline synthesized
examples, where the last column indicates the weight change
direction that passes the test.

Correctness of Local Monotonicity Testing. The rationale
behind this testing is to determine if a weight change would



IncBoost: Scaling Incremental Graph Processing for Edge Deletions and Weight Updates

SoCC ’24, November 20-22, 2024, Redmond, WA, USA

Algorithm 3 Local Monotonicity Test

Algorithm 4 Direct Handling for Weight Updates

1: function LocALMONOTEST(u, v, w, val, parent, f)

2 tmp_val < val

3 if parent[v] == u then // (u,v) is a dependent edge
4 tmp_val[v] = INIT

5 new = f(u,v, w, tmp_val)

6 if |INIT — new| > |INIT — val[v]| then

7: return true

8 return false

Table 2: Local Monotonicity Test Results

Bench. Edge Function f(-) INIT Monot. Passed

SSSP min(val(v), val (u) + w) S ! wl
SSWP  max(val(v), min(val (u), w)) 0 1 w1
SSNP  min(val(v), max(val(u), w)) oo l w
Viterbi max(val(v), val(u)/w) 0 1 wl

disrupt the algorithm’s monotonic progression. It does so
by checking whether the weight change makes the vertex
value closer to the initial value (INIT). For a monotonic graph
algorithm, the vertex values should never get closer to the
INIT value as iterations proceed. By comparing the distances
of the new and old vertex values to the INIT value (Line 6
in Algorithm 3), the test can decide if the monotonicity is
violated. Upon detecting a violation, the change handling
method ensures correctness by resetting the values of all
impacted vertices, so that the outdated or incorrect values
would never get propagated through the graph.

The above discussion is analogous to the monotonicity
discussion for edge insertions and edge deletions [45], that is,
edge insertions preserve the monotonicity as they may only
improve the results (e.g., making the vertex values smaller in
SSSP), while the edge deletions may violate the monotonicity
by breaking the established value dependencies. Therefore, if
a weight change passes the local monotonicity test, it can be
handled like edge insertions; otherwise, it has to be treated
like edge deletions (requiring dependency tracing).

With the help of local monotonicity testing, the direct
weight change handling idea discussed in Section 4.1 can be
generalized to all weight-based iterative graph algorithms
that exhibit monotonicity, as outlined by Algorithm 4. In
particular, each weight update needs to be tested (Line 5).
Based on the test result, it is handled accordingly, either like
edge insertion (Line 6) or edge deletion (Line 10). Note that
alternatively, one may pre-determine the handling strategies
for each given graph algorithm, like those in Table 2. While
this can avoid some runtime testing overhead, it may limit
the generality of the system.

1: function DIRECTHANDLING(G, src, valyg, parentyq,
updates, f)

2 (val, parent) « (valy1q, parentyq)

3 (So, Frontier) « (0, 0)

4 for (u, v, Wpey) in updates do

5: Pass < MonoTest(u, v, Wyew, val, parent, f)

6 if Pass then /* insertion-like */

7 if f(u, v, Wyew, val) improves v then

8 val[v] « f(u, v, Wpew, val)

9 Frontier <« Frontier U {v}

10: else /* deletion-like */

11: So «— Sp U {v}

12: S « DepTracing(G, Sy, val, parent)

13: /* assign an approx. val for each vertex in S */
14: Pull(G, S, val, parent)

15: Frontier < Frontier U S

16: Compute(G, val, parent, Frontier)

17: return (val, parent)

5 WORKLOAD-ADAPTIVE EVALUATION

This section discusses the selection of the dependency tracing
direction and its associated data representation based on the
workload, in particular, the volume of graph updates.

5.1 Selection of Tracing Strategy

There are two major costs associated with the top-down
top,
dep’
and (ii) the cost of accessing the graph (adjacency list) Cyq.
In comparison, bottom-up tracing only needs to traverse the
dependency tree. Assume its cost is CZZZ’.

tracing: (i) the cost of traversing the dependency tree C

e When the update batches are small, C™? and C rq are
dep 9

relatively low as top-down tracing begins with a small
set of directly impacted vertices (Sy). By traversing the
dependency tree downwards, it tends to visit only a
small portion of the dependency tree’. By contrast,
CSZZ’ is a much higher cost as bottom-up tracing al-
ways starts from all the leaves of the dependency forest,
its traversal covers the entire forest (O(|V])).

As the size of the graph update batches grows, so does
the tracing costs C;oP , Cgra» and Cchtm However, the

ep dep

latter grows at a much lower pace than the former two,
as the bottom-up tracing anyway traverses from all
the dependency tree leaves. Its cost still increases as its
re-traversal cost depends on the set impacted vertices
(see Lines 11-15 in Algorithm 2).

“The actual portion of the dependency tree that top-down tracing traverses
depends on the locations of the directly impacted vertices; The closer these
vertices are to the root, the larger the portion of the tree that is affected.
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e When the update batches become sufficiently large,
the total cost of top-down tracing, that is, C;Ce"; + Cyras
would eventually surpass the cost of bottom-up tracing
CZZ;, making the former a less promising choice.

Based on the above reasoning, we propose to select the
dependency tracing strategy based on the given workload.
Specifically, we define a threshold H, for the ratio between
the directly impacted vertices |Sy| and the graph size |V|:
Firacing = 1501/ |1V |. X Tiracing > Hy, bottom-up tracing is used;
otherwise, top-down tracing is employed. According to our
experimental results, H, = 0.015 works well in general.

Note that we chose |Sy| rather than the batch size because
the latter may not reflect the actual cost for dependency
tracing. As pointed out by prior work [10, 45], most edges
in the deletion batch are not dependent edges, thus carrying
no computations. In addition, factors like the locations of
deleted edges and the degrees of impacted vertices, may also
affect the performance of dependency tracing. However, it is
impractical to derive guidelines based on such fine-grained
factors. In this work, we choose a simple and practically
working policy (see Section 7 for results).

5.2 Selection of Data Representation

Another key design factor is the data representation. For
bottom-up dependency tracing (see Algorithm 2), there are
two ways to store the set of (deletions or weight changes)
impacted vertices S: (D Dense representation, which uses a
boolean array whose size equals to |V| to indicate which
vertices are impacted; 2) Sparse representation, which directly
stores the impacted vertices in a set (or a vector), whose size
equals to the number of impacted vertices |S].

Similar discussions can be found for selecting the frontier
representation in static graph processing [19, 32, 41, 47-49].
The selection is based on an empirical threshold considering
the frontier size and the number of outgoing edges [41]. In
general, the sparse representation works better when the
frontier size is relatively small, while the dense represen-
tation works better for relatively large frontiers. However,
there is no discussion on data representations for affected
vertices in dynamic graph processing. RisGraph chose a fixed
scheme—sparse representation, while KickStarter chose the
dense one. We use a dense representation for bottom-up
tracing and a sparse one for top-down tracing. With this
fixed coupling, the graph system only needs to determine
the tracing strategy, simplifying the decision-making.

6 INCBOOST IMPLEMENTATION

We implemented the above proposed ideas in a new graph
system, called IncBoost. IncBoost extends Ligra [41]—an
in-memory static graph processing framework. To support
dynamic graphs, we replaced the Compressed Sparse Row
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(CSR) [42] format used in Ligra with indexed adjacency
lists (from RisGraph [10]). Basically, for high-degree vertices
(d(v) > 512), their edges are indexed by a hashtable where
the key is the destination vertex’s ID and the value is the
position of the vertex in the edge adjacency list. IncBoost
provides a set of APIs for common graph updates, which
include EdgeDeletions, EdgeInsertions, WeightUpdates,
VertexDeletions, and VertexInsertions.

When inserting an edge (v, u), IncBoost appends it to
the end of the source vertex v’s adjacency list, then updates
v’s index if it is high-degree. When an edge (v, u) is deleted,
IncBoost first swaps this edge and the last one in v’s edge
list, then updates v’s degree and index (if applicable). In
addition, IncBoost supports batch insertions and deletions
using batch reordering [3] to ensure lock-free edge mutations:
edges are clustered by the source vertex upon the arrival,
then edges of the same source are applied serially. RisGraph
applies all edge deletions in parallel as it does not require
the swap operation but keeps deleted (tomb) edges.

IncBoost uses either bottom-up or top-down dependency
tracing to handle edge deletions, based on the workload H,
(set to 0.015). IncBoost handles the edge weight updates
directly with the local monotonicity test. For very small
batches, to match RisGraph’s performance, we implemented
a highly tuned sparse frontier representation.

In addition, RisGraph replaces OpenMP parallel primitives
with macros when the loop size is below 8K, avoiding the
overhead associated with OpenMP parallel primitives for
small batches. IncBoost adapts a similar optimization. It sets
the batch size threshold for parallelism to be 8K, below which
a sequential implementation is adopted to avoid the overhead
associated with parallel primitives. Regarding space usage,
IncBoost requires an additional array of size |V| for storing
the number of dependent children for each vertex.

Finally, we noticed that Aspen [7] offers high-throughput
graph mutations thanks to its uses of the compressed tree
structure. But its current release only supports unweighted
graphs and it does not store the in-neighbors of a vertex. In
order to make it support weighted graphs, the compressed
tree structure would need to be extended. Also, with only
out-neighbors, Aspen cannot only perform pull operations,
which is needed to assign safe approximated values to the
affected vertices. Without pull support, Aspen has to perform
push operations from all vertices, which would be inefficient.
Although we see potential for implementing our techniques
in Aspen, given the above limitations, it requires significant
updates to Aspen itself before integrating our techniques.

7 EVALUATION

We compare IncBoost with two streaming graph systems,
KickStarter [45] and RisGraph [10]. Although RisGraph
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Table 3: Graph Statistics (“D” for directed and “T” for temporal)

Graph Abbr. D T \Y [E| Avg. deg.
LiveJournal [2] Ly v X 48M  69M 14.2
Orkut [24] OR X X 31M 234M 76.3
Wikipedia [1] WP v X 135M 437M 32.2
StackOverflow [24] SO v v  26M 635M 24.4
Wiki-Dynamic [20] WD v 2.2M 43.3M 19.7
Twitter [21] ™™ v X 417M 15B 35.3
UK-2007 [20] UK X X 1052M 33B 314

focuses on processing small batches, we found that it delivers
state-of-the-art performance across a wide range of batch
sizes, from tiny to very large. For KickStarter, we chose
its most recent version with graph mutation optimizations
(DZig [26]). Both systems were configured according to the
instructions from their repositories. In addition, we report
the scalability of IncBoost and the detailed performance of
different dependency tracing methods.

We conducted all the experiments on a 32-core machine
with Intel Xeon E5-2683 v4 CPU and 512GB memory, running
CentOS 7.9. All source code were compiled with g++ 7.3. To
avoid the NUMA impacts, we used a single socket with 16
physical cores and 32 hyper-threads.

We evaluated graph systems with six path-based graph
algorithms, including BFS, SSSP, SSWP, SSNP (single-source
narrowest path), WCC (weakly connected components), and
Viterbi®. Except for BFS and WCC (from Ligra [41]), all the
other algorithms operate on weighted graphs.

We chose seven real-world graphs as listed in Table 3. All
edge weights are integers between 1 and log, |V|. The size
of the update batch varies from small (1K edges) to medium
(6% of total edges) and large (15% to 40% of total edges). The
updates in the batches are sampled randomly. To perform
weight updates experiments, the new weights are selected
randomly within +50% range of the old weights. For temporal
(timestamped) graphs (SO and WD), the sampled batches
may contain mixed updates (insertions, deletions, and weight
updates), thus we report their results for mixed batches only.
We chose non-trivial sources for vertex-specific queries. The
reported times are the average over three runs.

We report the overall performance results in Section 7.1,
the scalability results with varying batch sizes in Section 7.2,
the dependency tracing performance in Section 7.3, and the
performance of bottom-up tracing in a distributed graph
processing system in Section 7.4.

SThe Viterbi algorithm [23] finds the most likely sequence of hidden states
(i.e., the Viterbi path) in a Hidden Markov Model (HMM), which is widely
used in speech recognition [34], code decoding [44], etc.
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7.1 Performance

Now we compare IncBoost against two existing systems in
terms of incremental processing times for update batches
of three representative sizes: small (1K edges), medium (6%
edges), and large (30% edges), upon edge insertions, deletions,
and weight change updates.

Edge Insertions. Table 4 presents the incremental query
evaluation time for edge insertion across different systems.
Overall, we find that IncBoost achieves similar performance
as RisGraph for small batches but scales better by switching
to the dense representation (for both dependency tracing and
iterative evaluation). The average speedups that IncBoost
achieves over RisGraph are 0.98%, 1.30x, and 2.0x for small,
medium, and large batches, respectively. .

Edge Deletions. Table 5 reports the query evaluation time
for incrementally handling edge deletions. Thanks to its
use of workload-adaptive evaluation, IncBoost evaluated
all small batches using top-down tracing while employing a
sparse representation, and medium and large batches using
the bottom-up tracing with the dense representation.

For small batches, IncBoost exhibits similar performance
to RisGraph, with speedups from 0.9x to 1.3x. For medium
and large batches, the speedups of IncBoost over RisGraph
become more significant, ranging from 1.2X to 1.8 and from
1.9X to 3.2X%, respectively, thanks to its use of the bottom-up
dependency tracing. KickStarter is the least competitive
among the three systems for all three batch sizes.

We noticed that KickStarter performs relatively worse
for smaller batches. This is because of its use of the dense
data representation for dependency tracing and iterative
evaluation. As discussed earlier, for smaller update batches,
the sparse data representation offers better efficiency.

Weight Updates. Table 6 reports the total handling time
for edge weight updates, which covers four algorithms that
require weighted graphs. On average, we found IncBoost is
2.6X (1.3%-5.1X) faster than RisGraph and 87.0X (6.8X-299x)
faster than KickStarter. In general, the speedups follow the
same trends as those in the edge deletion case.

The primary reason for the speedups of IncBoost is its
adoption of a direct approach to handling weight changes
rather than the two-round approach used by the existing
graph systems. To show a more direct comparison, we also
implemented the two-round approach in IncBoost, which
we denote as IB-2R. Table 8 reports the detailed profiling
results on batches of medium size (6% batch), including the
ratio of directly impacted vertices (|So|/|V]), the ratio of all
impacted vertices (|S|/|V]), the number of vertex activations
during iterative computation (Tot. Act.), the tracing time (Tr.
Time), and the iterative computation time (Iter. Time). For
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Table 4: Performance of Incremental Processing (Insertion Batch)

col. shows query exec. time (in seconds); S.: small batch (1K); M.: medium batch (6%); L.: large batch (30%).

SSSP SSWP SSNP Viterbi BFS WCC
S. M L] S M L S. M L S M. L S. M. L s. M. L
KickStarter| 5.0E-3 0.0 059 45E-3 0.07 045 3.0E-3 017 057| 3.4E-3 004 025 45E-3 003 007 41E-3 003 0.1
LJ RisGraph | 6.1E-5 007 036 7.2E-5 004 029 50E-5 0.04 019 56E-5 004 023 3.1E-5 002 0.3 3.6E-5 001 005
IncBoost | 6.9E-5 0.04 0.4/ 7.0E-5 003 0.16] 57E-5 0.02 006 58E-5 003 009 29E-5 002 005 33E-5 001 002
KickStarter| 2.7E-3 0.11 0.57| 27E-3 007 030 26E-3 005 027| 3.0E-3 0.12 069 28E-3 002 012 23E-3 002 0.09
OR RisGraph | 3.0E-5 0.08 051| 26E-5 003 015 26E-5 003 013 27E-5 004 0.9/ 23E-5 003 0.15 16E-5 001 0.07
IncBoost | 3.4E-5 004 0.24) 24E-5 002 007 25E-5 002 006 25E-5 002 007 23E-5 002 0.0/ 12E-5 001 005
KickStarter| 1.3E-2 029 1.05| 1.1E-2 060 216/ 1.2E-2 0.23 089 13E-2 028 122 1.08E-2 0.10 0.27] 1.1E-2 0.08 0.23
WP RisGraph | 29E-4 0.15 085 3.2E-5 0.20 1.51| 35E-5 010 051| 3.5E-5 0.10 054/ 2.9E-5 007 038 20E-5 003 0.19
IncBoost | 2.8E-4 0.16 0.51| 2.6E-5 020 0.89] 4.1E-5 0.12 029 41E-5 0.11 029 33E-5 011 028 24E-5 005 0.21
KickStarter| 2.8E-2 029 838 36E-2 054 12.46] 29E-2 046 951| 28E-2 055 9.88| 3.2E-02 039 675 29E-2 033 1.12
TW RisGraph | 44E-5 046 9.60| 47E-5 022 4.23| 1.6E-4 022 426 17E-4 042 976 14E-4 034 263 19E-4 014 071
IncBoost | 6.0E-5 036 3.52| 54E-5 0.22 2.11| 1.8E-4 023 251| 1.8E-4 034 343| 17E-4 032 228 22E-4 021 109
KickStarter| 3.0E-2 439 14.19| 44E-2 276 11.21| 28E-2 196 7.12| 35E-2 379 1291] 27E-3 073 159 82E-3 081 241
UK RisGraph | 9.0E-5 245 962 83E-5 068 1440| 83E-5 075 330/ 94E-5 176 397 84E-5 141 524| 58E-5 041 253
IncBoost | 87E-5 1.10 5.21| 8.6E-5 036 261 80E-5 045 143| 1.2E-4 111 157| 7.7E-5 132 220/ 69E-5 037 158
Geo VS KS 41.89% 1.87x 2.64x|253.34x 3.35x 3.80x|155.30x 3.26X 4.67x|158.87x 2.58x 4.90x|132.48x 1.01x 1.27x|176.44x 2.20X 1.72x
€0 vs.Ris 0.91x 1.54x 2.14x| 1.03x 1.28x 2.37x| 0.94x 1.27x 2.09x| 0.92x 1.36x 2.47x| 0.97x 1.04x 1.68x| 0.97x 0.97x 1.22x
Table 5: Performance of Incremental Processing (Deletion Batch)
col. shows query exec. time (in seconds); S.: small batch (1K); M.: medium batch (6%); L.: large batch (30%).
SSSP SSWP SSNP Viterbi BES WCC
S. M. L] S M. L] S, M. L] S M. L] S. M. L] S, M L.
KickStarter| 13E-2 054 134| 16E-2 085 163 1.8E-2 075 163] 14E-2 080 164/ LI1E-2 027 070 13E2 029 085
IJ  RisGraph 30E-4 019 074/ 38E-4 013 077| 3.2E-4 0.14 075 16E-4 013 080 25E-4 005 027 20E-4 003 0.21
IncBoost 2.1E-4 0.09 021 3.6E-4 010 028 26E-4 009 029 22E-4 009 027 17E-4 004 011] 18E-4 003 005
KickStarter| 1.1E-2 1.08 225 97E-3 0.67 191] 1.0E-2 071 179 11E-2 174 270 9.5E-3 080 161] 9.3E-3 049 1.29
OR RisGraph 14E-4 024 1.12| 15E-4 006 050 1.5E-4 005 039 15E-4 008 090 17E-4 008 036 1.2E-4 003 0.5
IncBoost 1.7E-4 015 038 14E-4 003 036 1.5E-4 003 029 27E-4 005 020 15E-4 005 0.16 9.6E-5 002 0.5
KickStarter| 3.2E-2 159 4.02| 42E-2 257 477| 37E-2 184 442| 32E-2 186 459 28E-2 098 281] 27E-2 096 245
WP RisGraph 22E-4 036 181 1.2E-4 024 165 23E-4 024 151| 23E-4 022 144 13E-4 020 115 1.6E-4 008 0.41
IncBoost 20E-4 024 074 13E-4 016 098 25E-4 017 060 17E-4 0.5 043 12E-4 0.10 037 14E-4 009 020
KickStarter| 5.2E-2 284 11.80| 7.4E-2 754 12.29] 6.9E-2 520 12.40| 6.6E-2 3.94 11.49| 7.0E-02 4.63 12.11] 6.9E-2 251  7.86
TW RisGraph 27E-4 094 901 18E-4 040 1143 16E-4 037 1141| 1.7E-4 076 9.25| 14E-4 1.06 7.86| 19E-4 029 247
IncBoost 35E-4 074 3.27| 20E-4 027 413 15E-4 028 420 17E-4 051 341] 15E-4 078 341 17E-4 031 1.93
KickStarter| 2.2E-1 16.66 34.04| 43E-1 14.01 33.70| 1.8E-1 1256 29.74| 2.8E-1 2048 41.74| 15E-1 7.68 13.94| 1.6E-1 556 1572
UK RisGraph 45E-4 528 15.86| 2.7E-4 093 9.04| 3.1E-4 128 1227 2.1E-4 345 14.60| 26E-4 1.82 7.47| 16E-4 074 452
IncBoost 21E-4 187 581 1.2E-4 056 6.19 12E-4 085 472 16E-4 212 556 18E-4 087 324 14E-4 055 238
Geo VHKS 158.41X 6.29 5.34%|265.49X 18.17X 4.75x|216.10x 14.67x 5.44x|201.43x 12.49X 7.44x|206.10x 8.95x 5.99x|228.72x 12.67x 10.58x
€0 vs.Ris 1.16X 1.79% 2.86x| 116X 155X 1.92x| 1.26x 1.52x 2.29x| 0.94x 1.53x 3.19x| 1.19x 1.64x 2.48x| 115X 120X 2.25x

IB-2R, the “Iter. Time” is the sum of iterative computation

times for both deletion and insertion rounds.
The results show that with direct weight update handling,

the number of vertices requiring dependency tracing (|Sy|) is
reduced by half compared to the two-round handling since
the update batch consists of an equal distribution of weight
increases and decreases (50%-50%). The direct approach treats
the two cases separately, one for each round. For the same

reasons, the total number of vertex activations and iterative

computation time are also significantly reduced.

Mixed Batches. IncBoost handles heterogeneous batches
that contain mixed types of updates: edge insertions, edge
deletions, and edge weight updates. RisGraph only supports
batches containing a single type of update (homogeneous
update batches). KickStarter supports batches of mixed

insertions and deletions but prohibits batches with insertion
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Table 6: Performance of Incremental Processing (Weight Update Batch)

col. shows query exec. time (in seconds); S.: small batch (1K); M.: medium batch (6%); L.: large batch (30%).

SSSP SSWP SSNP Viterbi
S. M. L] s. M L] s. M L] s. M L
KickStarter|1.70E-02 0.65 1.97| 2.1E-2 1.01 231| 23E-2 082 208 19E-2 097 221
L RisGraph 3.6E-4 026 110 45E-4 0.17 1.05| 3.7E-4 0.17 0.94) 39E-4 0.18 1.03
IncBoost 2.0E-4 0.08 0.22| 23E-4 0.08 0.27| 2.1E-4 0.08 0.20 2.7E-4 0.10 0.24
KickStarter| 14E-2 120 282 1.2E-2 074 221 13E-2 076 206/ 14E-2 1.92 339
OR  RisGraph 1.7E-4 031 1.63| 1.8E-4 0.09 0.65| 18E-4 0.08 052/ 1.8E-4 0.11 1.09
IncBoost 1.5E-4 0.09 031 7.1E-5 005 015 12E-4 004 0.13] 15E-4 0.09 0.33
KickStarter| 4.5E-2 1.88 5.07| 53E-2 316 6.93] 49E-2 207 531 4.6E-2 214 5381
WP  RisGraph 2.5E-4 052 2.67| 1.6E-4 0.44 3.20| 2.6E-4 0.34 2.02| 2.6E-4 032 197
IncBoost 2.0E-4 0.28 0.85| 29E-4 029 110/ 19E-4 0.16 052| 2.7E-4 0.17 0.68
KickStarter| 1.1E-1 3.96 22.54| 1.1E-1 8.39 20.60| 9.8E-2  5.48 20.80| 1.0E-1 4.48 23.95
TW RisGraph 3.1E-4 140 18.61] 23E-4 0.62 15.67| 19E-4 059 15.67| 3.4E-4 1.18 19.00
IncBoost 19E-4 0.67 4.06) 79E-5 0.14 5.84| 12E-4 025 125 20E-4 040 398
KickStarter| 3.2E-1 21.04 48.23| 53E-1 16.77 44.92| 3.9E-1 14.52 36.86| 4.2E-1 24.27 54.65
UK RisGraph 1.1E-3 442 2548| 8.7E-4 566 24.51| 6.6E-4 229 15.61] 6.6E-4 216 18.53
IncBoost 14E-3 199 6.07| 8.0E-4 148 438 9.8E-4 089 3.88 24E4 1.01 5.65
G vs. KS 197.52X 7.36X 5.51X(299.06X 13.21X 5.50X|271.55X 13.02X 9.15X|204.31X 12.66X 6.81X
€0 vs.Ris 1.27X 2.51X 4.37X| 1.54X 2.55X 3.73X| 131X 2.23X 5.13X| 1.51X 1.91X 3.66X

Table 7: Performance of Incremental Processing (Mixed Updates Batch)

col. shows query exec. time (in seconds); S.: small batch (1K); M.: medium batch (6%); L.: large batch (30%).

SSSp SSWP SSNP Viterbi
S. M. L] s. M L] S. M. L] S. M. L
KickStarter| 2.3E-02 0.41 1.04| 9.5E-03 049 1.11] 7.7E-03 0.15 0.77| 8.6E-03 0.16 0.98
LJ RisGraph 3.6E-04 0.15 0.60| 3.5E-04 0.12 0.46| 3.6E-04 0.11 0.43] 3.9E-04 0.12 045
IncBoost 2.9E-04 0.08 0.27| 2.7E-04  0.07 0.22| 2.1E-04 0.07 0.23| 2.5E-04 0.07 0.21
KickStarter| 9.8E-02 2.74 10.39| 5.1E-02 419 10.30| 5.1E-02 2.51 9.43| 9.8E-02 2.85 4.49
TW RisGraph 3.1E-04 1.00 5.31| 2.3E-04 0.38 1.64| 1.9E-04 0.38 1.51| 2.4E-04 0.84 3.02
IncBoost 2.3E-04 0.66 2.60| 1.3E-04 030 1.02| 1.1E-04 032 0.99| 1.5E-04 0.52 1.72
KickStarter| 2.0E-01 0.73 1.04| 2.0E-01 091 1.18] 1.9E-01 0.84 1.11| 3.3E-02 0.66 1.14
SO  RisGraph 2.7E-04 0.18 1.56| 2.9E-04  0.06 0.59| 2.8E-04 0.06 0.28| 3.6E-04 0.08 0.27
IncBoost 29E-04 0.10 0.31] 2.6E-04 0.04 0.18| 2.6E-04 0.04 0.17| 3.3E-04 0.04 0.14
KickStarter| 2.2E-02 0.49 1.01| 3.5E-02  0.55 1.27| 2.6E-02 0.69 1.16| 2.2E-02 0.73 1.39
WD RisGraph 8.3E-04 0.19 1.80| 43E-04 0.10 0.39| 5.0E-04 0.07 0.39] 48E-04 0.10 0.38
IncBoost 9.0E-04 0.09 0.33| 47E-04 0.05 0.16] 3.7E-04 0.04 0.17| 3.4E-04 0.03 0.14
G vs. KS 153.98% 5.31X 3.56X|168.34X 12.08X 7.21X|171.45X 8.86X 6.16X|108.87X 8.35X 5.67X
€% vs.Ris 1.10X 1.75X 3.35%| 1.23X 1.57X 2.30X| 1.43X 1.46X 1.81x| 1.39X 2.00X 2.13X

and deletion of the same edge. Fortunately, both systems can

preprocess mixed batches into homogeneous sub-batches.
Table 7 presents the performance of evaluating mixed
batches where the batch is configured as containing 50%
edge insertions and 50% edge deletions when the graph is
non-temporal. For temporal graphs where a timestamp is
attached to each edge, we delete edges with older timestamps
and insert newer ones. If an edge is inserted more than once
in a batch, it is considered a weight update. Under this setup,
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a temporal graph update batch contains mixed updates. For
example, a WD graph update batch contains 33% insertions,
51% deletions, and 16% weight updates. In general, we found
that the speedups fall between those achieved in pure weight
updates and pure deletion batches.

Graph Mutations. For completeness, we briefly compare
the cost of graph mutations with RisGraph and Aspen [7].
Table 9 reports the throughput of the edge-related updates.
While IncBoost and RisGraph show similar throughput for
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Table 8: Profiling of Direct and Two-round on SSSP.
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Table 10: Dependency Tracing Time in Gemini.

[Sol/IV] |S|/|V| Tot. Act. Tr. Time Iter. Time Small(1K) Medium (6%) Large (30%)
1 IB-2R 533% 29.60% 3.6E+06 0.054 0.086 Top-down 0.03s 0.47s 1.27s
IncBoost 2.73% 13.20% 1.6E+06 0.037 0.043 Bottom-up 0.07s 0.10s 0.18s
WP IB-2R 3.37% 15.09% 4.6E+06 0.144 0.305
IncBoost 1.78% 7.77% 2.4E+06  0.104 0.167
Tw IB-2R 485% 15.05% 1.1E+07  0.456 0.646 does not imply that the system becomes more efficient by
IncBoost 242% 7.10% 5.2E+06  0.317 0.352 splitting a large batch into smaller ones. Evaluating multiple

Table 9: Graph Mutation Throughput (graph TW)

Values are numbers of edge updates per second

Insertions Deletions Weight Updates
RisGraph 1.1E+07 1.2E+07 5.8E+06
Aspen 3.9E+07 3.7E+07 Not Suported
IncBoost  1.4E+07 1.3E+07 1.5E+07

edge insertions and deletions, both exhibit significantly lower
throughput than Aspen, mainly because that Aspen utilizes
the compressed tree data structure for the graph.

As to weight changes, Aspen does not support weighted
graphs. IncBoost achieves a throughput roughly 2.6 higher
than that of RisGraph, which is mainly due to its avoidance
of the two-round handling.

Performance on Road Networks. We evaluated IncBoost

on a non-power-law graph: roadNet-USA [38] (|V|: 24M, |E|:

58M). Unlike power-law graphs, road networks often have a
higher vertex-to-edge ratio, and their edges are distributed
more evenly across vertices. These properties lead to a high
ratio of dependent edges. Thus, graph updates tend to affect
a larger portion of the vertices.

Our results show that IncBoost and RisGraph are capable
of handling up to 80K edge insertions and 20K edge deletions

for SSSP before becoming slower than the full evaluation.

To put it in context, 20K edge deletions (0.03% of the total
edges) affect 73% vertices in roadNet-USA.

7.2 Workload Scalability

Figure 8 reports the processing time for different batch sizes.

The horizontal dotted lines are the full query evaluation
times. Both systems deliver fast incremental evaluation when
the batch size is relatively small (below 500K). IncBoost
scales better than RisGraph—its incremental computation
remains faster than the full query evaluation even for batches
of sizes 30% - 40%. In contrast, RisGraph struggles to yield
performance benefits when the batch size gets close to 20%
for SSSP edge deletions and 15% for weight updates.

Note that although RisGraph shows superlinear behavior
when processing batch sizes ranging from 6% to 30%, this
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smaller sub-batches is more costly than processing a single
large batch, as the former can cause many vertices to con-
verge to unnecessary states, resulting in increased vertex
activations. Additionally, a large batch may affect a signifi-
cant number of vertices due to edge deletions, which do not
scale linearly with the batch size.

7.3 Dependency Tracing

Figure 9 shows the dependency tracing costs of IncBoost
and RisGraph across different configurations. Overall, we
observed the performance trend of IncBoost (top-down)
mirrors that of RisGraph as both use top-down tracing.
For update batches with sizes less than 1% of the graph, we
found IncBoost (bottom-up) performs the poorest. However,
as the batch size approaches approximately 1.5% of the total
graph size, a significant shift occurs—IncBoost (bottom-up)
transforms into the fastest method. These results validate the
necessity of workload-adaptive evaluation (see Section 5).

7.4 Bottom-up Tracing in a Distributed
System

IncBoost is implemented as a shared memory graph system.
Adapting the idea of IncBoost to a distributed environment
does not require algorithmic changes. In fact, thanks to its
avoidance of graph access, bottom-up dependency tracing
can be efficiently performed on a single node.

With a moderate level of effort, we integrated bottom-up
dependency tracing into a state-of-the-art distributed graph
processing system Gemini [48], which clearly demonstrates
the applicability of our techniques in the distributed setting.

Gemini uses the master-mirror notion to partition vertices
across nodes. Every active vertex broadcasts its vertex value
as well as the parent information from the master to its
mirrors. This introduces extra communication overhead for
top-down dependency tracing as it may visit multiple graph
partitions on different machine nodes. The bottom-up tracing
saves the graph traversal and communication overhead by
performing the dependency tracing on a single node and
then broadcasting the parent array to other nodes in the end.

Table 10 reports the costs of dependency tracing in Gemini
for SSSP on TW graph. The results cover three batch sizes
(1k, 6%, and 30%). For larger batches, the bottom-up tracing
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Figure 9: Dependency Tracing Performance.
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in Gemini delivers more performance improvements (4.7X to
7.1x speedup over the top-down one) than it does in a shared
memory environment thanks to the additional savings in
communication cost. On the other hand, top-down tracing
outperforms bottom-up one when the batch size is small.

8 RELATED WORK

This section summarizes the existing systems, algorithms,
and data structures relevant to querying dynamic graphs.

Graph Systems. Many existing systems for dynamic graphs
employ incremental query evaluation. Earlier systems either
only support incremental query evaluation in the presence of
edge insertions (e.g., Chronous [13]) or compute approximate
query results (e.g., Kineograph [5]). To handle edge deletions
for incremental query evaluation, systems like KickStarter,
RisGraph, and Tornado [40] record the value dependency for
monotonic path-based algorithms (KickStarter also tracks
each vertex’s level in the dependency tree). Tornado uti-
lizes Lamport Clocks [22] to guarantee consistency and cor-
rectness in a distributed environment. GraphBolt [27] and
DZig [26] support both edge insertions and deletions for
accumulative graph algorithms. Tripoline [16] proposes a
generalized model to incrementally evaluate queries that are
different from the standing queries. Ingress [11] is a system
that automatically incrementalizes graph algorithms. The
above systems do not address weight updates and cannot
efficiently support large update batches.

Hardware accelerators for incremental computations have
also been proposed [3, 36]. Differential Dataflow [28, 29] and
Naiad [30] are generalized incremental computation models
which are also capable of processing graph workloads.

Incremental Algorithms. To the best of our knowledge, the
first incremental algorithm for handling SSSP edge deletions
was described by Ramalingam et al. [37], which briefly points
out the connection between the handling of weight changes
and the handling of edge insertions and deletions. In this
work, we generalize this connection and expand it to a wider
range of path-based graph algorithms. Moreover, our work
actually implemented these ideas in a graph system. Some
recent works have focused on finding theoretical bounds
for various incremental graph algorithms [8, 9], particularly
when link weights undergo slow changes [14], and when
incorporating temporal information [4].

Data Structures for Changing Graphs. There have been
works for enhancing graph mutation performance. Aspen [7]
supports low latency graph mutation by using a compressed
tree-based graph representation. VCSR [15] leverages packed
memory array (PMA) to enable graph mutation on CSR. In
addition, the indexing method has been employed to improve
graph mutation performance [10, 43]. Recently, Terrace [33]
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proposed to use a hierarchical data structure to store edges
based on the vertex degree.

Handling Edge Weight Updates. Sallinen et al. [39] dis-
cussed supports for edge weight updating in SSSP, but the
solution is limited only to reducing edge weight. Henzinger
et al. [14] provided theoretical lower bounds for recomputing
several algorithms (SSSP, maximum flow, matchings, etc.)
with weight changes. It tried to answer if incremental com-
putation can be significantly faster than recomputing from
scratch given a small change of weights. Nasre et al. [31]
studied the incremental betweenness centrality (BC) algo-
rithms in graphs where edge weights are updated (decreases)
or new edges are added. Gruenheid et al. [12] studied the
record linkage clustering problem on changing graphs where
insertion, deletion, and change (weight decreasing or increas-
ing) operations are supported. The authors proposed that
directly considering change could be more efficient than
deletion and insertion for linkage clustering.

9 CONCLUSIONS

This work targets the scalability limitations in handling edge
deletions and weight updates for incremental graph query
evaluation. For edge deletions, it introduces a bottom-up
dependency tracing strategy for handling very large update
batches. For weight changes, it avoids simulating them with
pairs of edge deletion and insertion by presenting a direct
approach based on the monotonicity of graph algorithms. In
addition, this work discusses an adaptive evaluation scheme
that changes the tracing strategy based on the update volume.
Finally, it demonstrates the effectiveness of the proposed
ideas with a new graph system IncBoost. The evaluation
results show that IncBoost is able to scale to very large
update batches with sizes of 30% to 60% of the graph size.
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