
IncBoost: Scaling Incremental Graph Processing for
Edge Deletions and Weight Updates

Xizhe Yin
University of California, Riverside

Riverside, California, USA
xyin014@ucr.edu

Zhijia Zhao
University of California, Riverside

Riverside, California, USA
zhijia@cs.ucr.edu

Rajiv Gupta
University of California, Riverside

Riverside, California, USA
rajivg@ucr.edu

ABSTRACT

Incremental query evaluation is key to e�ciently processing
rapidly changing graph data. By focusing on the parts of
the query results a�ected by updates, it avoids unnecessary
computations, allowing for faster query evaluation. While
this technique works well in the cases of edge insertions,
its bene�t quickly diminishes when the volumes of edge
deletions and edge weight updates increases.

To address the above scalability issue, this work introduces
several techniques for handling large update batches that
include many edge deletions and weight updates. First, for
edge deletions, this work introduces a bottom-up dependency
tracing method to identify the a�ected vertices. Unlike the
existing top-down tracing, it completely avoids traversing
the underlying graph, thus more scalable for large deletion
batches. Second, for edge weight updates, existing graph
systems treat each weight change as an edge deletion (with
old weight) followed by an edge insertion (with new weight).
This “two-round” method is computationally excessive. This
work shows that it is, in fact, possible to handle weight
updates directly. Finally, this work shows the bene�ts of
adjusting the processing strategy according to the update
volume. We integrated the above ideas into a graph system
called IncBoost. Based on our evaluation, IncBoost can
scale incremental query evaluation to large update batches
that represent 30-60% of the graph size. By contrast, the
state-of-the-art streaming graph system (RisGraph) typically
fails to yield bene�ts when the batch size reaches 5-15%
of the graph size. Regarding the absolute processing time,
IncBoost consistently outperforms RisGraphwith 3.1× and
5.2× speedups for edge deletions andweight updates on large
batches, respectively.

This work is licensed under a Creative Commons Attribution International
4.0 License.
SoCC ’24, November 20–22, 2024, Redmond, WA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1286-9/24/11.
https://doi.org/10.1145/3698038.3698524

CCS CONCEPTS

•Theory of computation→Dynamic graph algorithms;
• Information systems→Computing platforms; •Comput-
ing methodologies→ Parallel computing methodologies.

KEYWORDS

graph processing, incremental query evaluation

ACM Reference Format:

Xizhe Yin, Zhijia Zhao, and Rajiv Gupta. 2024. IncBoost: Scaling In-

cremental Graph Processing for Edge Deletions andWeight Updates.

In ACM Symposium on Cloud Computing (SoCC ’24), November 20–

22, 2024, Redmond, WA, USA. ACM, New York, NY, USA, 18 pages.

https://doi.org/10.1145/3698038.3698524

1 INTRODUCTION

Graph processing is essential for many applications where
data naturally forms graph-like structures, such as social
networks and web analytics [18]. While most existing graph
system research has focused on static graphs, real-world
graphs are often dynamic. For example, on social networks,
users join, connect, and interact with each other over time.
New friendships, status updates, and interactions constantly
change the graph structure [6]. In online recommendation
systems, as users rate, review, or interact with items, the
graph that represents the user-item relationships evolves [46].
More obviously, transportation networks, like road networks
or airline networks, undergo constant changes due to factors
like tra�c patterns, road closures, and �ight schedules [25].

Motivated by the dynamic nature of real-world graphs, a
series of systems have been proposed recently for changing
graphs, such as Kineograph [5], Chronos [13], Tornado [40],
KickStarter [45], Aspen [7], GraphBolt [27], Ingress [11],
Tripoline [16], andmore recently RisGraph [10]. Instead of
re-evaluating the graph queries from scratch, most of these
systems incrementally update query results in response to
the changes to the graph.

For path-based algorithms like single-source shortest path
(SSSP), the state-of-the-art incremental approaches, such as
RisGraph [10], have shown great scalability—handling large
batches of edge insertions up to 30-50% of the graph size
(see Figure 1). However, it remains a fundamental challenge

915

SoCC ’24, November 20–22, 2024, Redmond, WA, USA Xizhe Yin, Zhijia Zhao, and Rajiv Gupta

0%

10%

20%

30%

40%

50%

60%

70%

SSSP SSWP SSSP SSWP

 RisGraph IncBoost

E
d

g
e

 u
p

d
a

te
 r

a
ti

o

Insertions Deletions Weight Updates

Figure 1: Scalability of Incremental Evaluation. The
maximum update batch relative to the full graph size, where
incremental evaluation is faster than full query evaluation, is
demonstrated using the single-source shortest/widest path
(SSSP/SSWP) algorithms and the LiveJournal graph.

to scale the incremental evaluation for edge deletions and
weight updates. As shown in Figure 1, the existing solution
can only scale the batches of edge deletions and weight
updates up to 10-15% of the graph size.

E�cient handling of substantial graph updates, especially
edge deletions and weight updates, is crucial for real-world
analytics. For example, in dynamic communication networks,
link weights signify key attributes like latency, bandwidth,
reliability, or cost. These attributes �uctuate over time based
on user demands and network conditions, causing frequent
graph updates [14, 17, 35]. In evolving graph analysis, when
comparing two temporally distant snapshots of the same
graph, the extent of changes between them can be huge,
leading to a large update batch (e.g., 30% edges of the Stack
Over�ow temporal network [24]).
A closer examination on the existing incremental graph

query processing systems highlighted a few challenges in
scaling up the handling of edge deletions and weight updates:

• Expensive dependency tracing. When edges are deleted,
the graph system needs to identify all a�ected vertices.
Intuitively, the system can maintain the dependencies
among vertices and trace down them from the deleted
edges [10, 45] (see Section 2.2). However, we �nd that
existing systems su�er from a mismatch between the
top-down dependency tracing and the commonly used
bottom-up representation of dependencies (e.g., parent
array), making it the dominating cost of edge deletion
handling (70-80%). Moreover, the overhead of top-down
tracing is exacerbated by the high communication cost
in a distributed environment.
• Two-round weight update handling. The existing graph
systems [10, 45] handle edge weight changes in two
rounds: delete the edges with their old weights, then

reinsert them with the new weights. While being an
intuitive workaround, this solution often involves a
large amount of unnecessary computations.
• Unawareness of workload. The state-of-the-art graph
systems employ a single processing strategy for batch
updates of varying sizes. However, large changes in
batch size lead to di�erent computation characteristics,
potentially resulting in sub-optimal performance.

To concur each of the aforementioned challenges, this
work introduces three new techniques correspondingly:

• First, to align with the bottom-up representation of
dependency data, this work introduces a novel bo�om-

up dependency tracing strategy. Unlike the top-down
tracing, this new strategy totally avoids accessing the
graph data during the dependency tracing.
• Second, this work proposes a direct weight change
handling method to avoid the two-round handling.
The key is to separate weight increases and decreases
and treat them like edge insertions and deletions. For
correctness, this work designs a monotonicity-based
test to �nd out the right treatment to a weight increase
or decrease across di�erent graph algorithms.
• Finally, workload-adaptive evaluation is introduced
to address the changing behaviors of computations due
to changes in the workload volume. It automatically
selects the dependency tracing strategy and the data
representation to realize the best performance.

To integrate the above techniques, we implemented a new
graph system for incremental query evaluation—IncBoost.
Our evaluation focuses on comparing the performance of
IncBoost against the state-of-the-art system, RisGraph. Our
results show that IncBoost can boost the update batch size
from 10-15% to 50-60% of the graph size for edge deletions
and weight changes (as shown in Figure 1) without losing
the bene�ts of incremental evaluation. More speci�cally, for
large update batches, our results indicate up to 1.6× speedup
in dependency tracing with the bottom-up approach, while
the direct weight update handling delivers 2.1× speedup over
the two-round approach. We also demonstrate that, in the
distributed environment, the bottom-up approach provides
more performance bene�ts by reducing communication costs.
Overall, IncBoost achieves up to 3.1× and 252× speedups
for edge deletions, 5.2× and 345× speedups for edge weight
updates over RisGraph and KickStarter, respectively.

2 BACKGROUND

2.1 Vertex-Centric Programming

In a directed weighted graph ă (Ē , ā), where Ē is a set of
vertices and ā is a set of edges, an edge ě is in the form of
(ī, Ĭ,ĭ), where ī is the source vertex, Ĭ is the destination

916

IncBoost: Scaling Incremental Graph Processing for Edge Deletions and Weight Updates SoCC ’24, November 20–22, 2024, Redmond, WA, USA

�

�
100

� E

�
�

5 5

100

30

100

7

5 5

7

1020

1

5

/* single-source shortest path */

� (�) {

for each out-neighbor � of � {

if (dist[�] > dist[�] + w(�,�)) {

dist[�] = dist[�] + w(�,�);

add � to frontier;

}

}

(a) vertex function (b) a directed graph

Iter# A B C D E F G Frontier

0 0 > > > > > > {A}

1 0 5 > 20 > > > {B, D}

2 0 5 25 20 27 > 105 {C, E, G}

3 0 5 25 20 27 32 105 {F}

4 0 5 25 20 27 32 105 {}

(c) iterative evaluation of SSSP(A) from scratch

�

Figure 2: Full Evaluation of Query SSSP(ý). Thick edges
are dependent edges for the given query.

vertex, and ĭ is edge weight. An undirected graph can be
represented by a directed graph with edges in both directions.
Thus, we only consider directed graphs in this paper.

In vertex-centric programming [41], Ĝ (Ĭ) is a vertex func-
tion that speci�es the logic to compute the property values
of vertex Ĭ . If Ĝ (Ĭ) computes the property value of Ĭ based
on values of Ĭ ’s in-neighbors, it is referred to as the pull
model; Otherwise, if Ĝ (Ĭ) computes the property values of
Ĭ ’s out-neighbors based on Ĭ ’s value, it is called the push
model. In this work, we assume the push model for its better
e�ciency for most iterative graph algorithms [41]. Taking
SSSP as an example, Figure 2-(a) shows the pseudocode of
its vertex function written using the push model.
Given a graph and a source vertex Ĭ0, the evaluation of

SSSP(Ĭ0) proceeds in iterations, as shown in Figure 2-(c). In
each iteration, the vertex function Ĝ (Ĭ) is applied to a subset
of vertices known as the frontier. Initially, only the source
vertex Ĭ0 is added to the frontier. The vertices whose values
are changed in the iterationwould be added to the frontier for
the next iteration. These iterations terminate once vertices
values have stopped changing. These converged values are
the shortest distances from vertex Ĭ0 to all the other vertices.

2.2 Existing Incremental Methods

To avoid the expensive full evaluation each time after the
graph is updated, incremental query evaluation has been
proposed [7, 10, 11, 16, 27, 40, 45]. Next, we present the basic
ideas of incremental query evaluation with respect to the

�

�

100

� E

�

�
�

5 5

100

30

100

7

10

5 5

7

1020

1

5

(a) after inserting edge AC (b) after removing edge AC

Iter# A B C D E F G Frontier

init 0 5 10 20 27 32 105 {C}

5 0 5 10 20 15 17 105 {E, F}

6 0 5 10 16 15 17 105 {D}

7 0 5 10 16 15 17 105 {}

(c) re-convergence of SSSP(A) after inserting edge AC

Iter# A B C D E F G Frontier

reset 0 5 > > > > 105 -

init 0 5 > 20 > > 105 {D}

8 0 5 25 20 27 > 105 {C, E}

9 0 5 25 20 27 32 105 {F}

10 0 5 25 20 27 32 105 {}

(d) re-convergence of SSSP(A) after removing edge AC

�

�

100

� E

�
�

5 5

100

30

100

7

5 5

7

1020

1

5

�

Figure 3: Incremental Evaluation of SSSP(ý). Vertices
a�ected by the deletion of edge ýÿ are in red.

three types of graph updates1: (i) edge insertions, (ii) edge
deletions, and (iii) weight updates. We will focus on the
widely studied monotonic path-based graph algorithms and
use the example in Figure 2 to help explain the ideas.

Edge Insertion Handling. Assume a new edge (ý,ÿ, 10) is
inserted to the graph in Figure 2-b. The edge creates a new
way to reachÿ throughý which may result in a better value
for ÿ . To �nd it out, we can apply the vertex function on ý
but limit its scope to only the out-neighbor ÿ (like an edge
function). Based on vertex ý’s prior result, which is 0 (see
Figure 2-c) and the weight of the new edge “10”, a new best
value “10” is found for ÿ . Next, we need to propagate this
new value ofÿ to the other vertices in the graph. To achieve
this, we can put ÿ to the frontier and resume the iterative
query evaluation, as illustrated by Figure 3-c. Once all values
are converged again, the latest shortest distances are found.

Edge Deletion Handling. To handle edge deletions, the
graph system needs to maintain the dependencies among
vertices that capture how the vertex values are computed.
Consider the example in Figure 3-a, thick edges re�ect the
dependencies among the �nal values of vertices. Take vertex

1A vertex deletion deletes all the edges of the vertex, while deleting/inserting

a vertex without any edges is usually a trivial case to compute.

917

SoCC ’24, November 20–22, 2024, Redmond, WA, USA Xizhe Yin, Zhijia Zhao, and Rajiv Gupta

Ā as an example, its �nal value “16” is computed based on
the �nal value of ā, “15”, so Ā depends on ā. For path-based
graph queries, the dependencies form a tree rooted at the
query’s source vertex (more details in Section 3). Figure 3-a
shows a dependency tree (thick edges) rooted at vertex ý. In
general, there are three steps in handling an edge deletion.

1© Dependency tracing. If a deleted edge does NOT dictate
any dependenices, then no vertices are a�ected; Otherwise, it
requires �nding the a�ected vertices. Consider the graph in
Figure 3-a, deleting edgeĀā has no e�ects on the value of any
vertex. However, deleting edge ýÿ may impact the values of
vertices that depend on this edge. First, the directly impacted
vertex isÿ . Without edgeýÿ ,ÿ’s prior value “10” is no longer
valid, so do the values of other vertices that depend on ÿ ,
including ā, Ă , and Ā (see Figure 3-a). To ensure correctness,
their values need to be reset to∞ (see Figure 3-d).

2© “Jump-start”. This step �nds a safe approximation value—
no better than the best value, for each reset vertex. One way
is to “pull” values from their in-neighbors and use them to
update the values of these reset vertices [10]. In Figure 3-d,
the “init” row shows the initial values of reset vertices after
applying a pull operation. Note that at the “init” iteration, a
pull operation is applied to each of four reset vertices (ÿ ,Ā , ā,
and Ă) to get a safe approximation. These pull operations are
performed in parallel. As some of the vertices are adjacent,
the approximation results depend on the order in which these
pull operations are performed. The example shows where
verticesÿ , ā, and Ă are evaluated before Ā , resulting in their
values being set to in�nity. However, alternative evaluation
orders are possible, such as when Ā is processed before ÿ ,
which would assign vertex ÿ an approximate value of 25 at
the “init” iteration.

3© Re-convergence. The graph system then resumes the
iterative evaluation until all values re-converge. During this
time, the value propagation only occurs to the reset vertices
as others do not depend on the deleted edge(s).
Among the above three steps, dependency tracing often

dominates the total handling time in the existing systems
(about 70-80% for large deletion batches).

For both edge insertion and deletion, the correctness is
ensured by the safe approximation of a�ected vertices’ values
and the monotonicity of the iterative graph algorithms [45].
Taking SSSP as an example, during an iterative evaluation of
SSSP(ī), the value of every vertex—the shortest path distance
from the source ī to this vertex—never increases.

EdgeWeight Change Handling. Existing graph systems [10,
27, 45] treat an edge weight change as two separate updates:
an edge deletion and an edge insertion and process them in
two rounds. While simplifying the design, the two-round
method may incur a lot of unnecessary computations.

Vtx A B C D E F G

Value 0 5 10 16 15 17 105

Value 0 5 25 20 27 32 105

Value 0 5 7 13 12 14 105

� �
10

Delete edge (A, C, 10)

Insert edge (A, C, 7)

3 iterations

3 iterations

� �
7

before update after update

Figure 4: Two-Round Handling of Weight Update.

At the high level, the two-round handling always “takes
a detour” to reach the �nal convergence. As illustrated by
the example in Figure 4, when the weight of edge ýÿ is
changed from 10 to 7, the two-round handling �rst makes
the values of a�ected vertices worse (larger values in SSSP)
in the �rst round, then re-converges them to better values in
the second round. This “detour” greatly limits the e�ciency
of incremental edge weight change handling.

One Con�guration for All Cases. Finally, existing graph
systemswith incremental evaluation [10, 27, 45] use the same
con�guration—the same representation of the frontier and
dependency tracing direction, regardless of the workload.
Based on our observation, the lack of workload adaption
often leads to sub-optimal performance.

In the upcoming sections, we address these limitations. In
Section 3, we introduce the new dependency tracing strategy
for large deletion batches. In Section 4, we present the direct
method for handling weight updates. Lastly, in Section 5, we
discuss the adaptive processing scheme based on batch size.

3 DEPENDENCY TRACING

Dependency tracing is necessary in handling edge deletions
for incremental query evaluation. It helps the graph system
identify vertices a�ected by the deletion of a set of edges. In
this section, we discuss the data representation options for
dependency, then introduce the strategies for dependency
tracing, including the existing top-down tracing and our new
design—bottom-up tracing. We �rst de�ne the dependency
in our context more formally:

Definition 1 (Dependency). Given a monotonic iterative
graph algorithm and a graph, when the algorithm converges,
if the value of a vertex Ĭğ is determined solely by the value of
one of its in-neighbors Ĭ Ġ

2, vertex Ĭğ depends on Ĭ Ġ . We refer
to Ĭğ as the dependent child while Ĭ Ġ as the parent.

2It is possible that multiple in-neighbors have the same value, but during

the iterative evaluation, only one of them will be used to update the value

of this vertex, hence, we still refer to it as one-to-one vertex dependency.

918

IncBoost: Scaling Incremental Graph Processing for Edge Deletions and Weight Updates SoCC ’24, November 20–22, 2024, Redmond, WA, USA

Table 1: Average-case Complexities (ĚğĤ and ĚĥīĪ are the
average in-degree and out-degree, respectively).

Children Parent Maint. Space
Representation (per vtx) (per vtx) (per vtx) (all)

Sparse children vec. ċ (1) ċ (ĚğĤ) ċ (ĚĥīĪ) ċ (|Ē |)
Dense children vec. ċ (ĚĥīĪ) ċ (ĚğĤ ∗ ĚĥīĪ) ċ (ĚĥīĪ) ċ (|ā |)
Children hashtable ċ (1) ċ (ĚğĤ) ċ (ĚĥīĪ) ċ (|Ē |)
Children in nbr. vec. ċ (1) ċ (ĚğĤ ∗ ĚĥīĪ) ċ (ĚĥīĪ) ċ (1)
Parent vec. ċ (ĚĥīĪ) ċ (1) ċ (ĚğĤ) ċ (|Ē |)

Depen. discovery3 ċ (ĚĥīĪ) ċ (ĚğĤ) - -

For vertex-centric graph queries, the dependency relations
among vertices form either a tree structure (e.g., in the case
of SSSP) or a forest (e.g., in weakly connected components).
Hereinafter, we assume a single dependency tree scenario
without loss of generality.

3.1 Dependency Representation

Although the data structure for dynamic graphs has been
widely discussed [7, 10, 45], there is limited discussion on
the data representation for vertex dependency.
Our discussion covers the lookup costs for dependent

children and parents, the maintenance cost, and the space
overhead. The children lookup is used for identifying a�ected
vertices during dependency tracing, while the parent lookup
could be used when changing the parent of a vertex. The
maintenance is to update the dependency tree to re�ect new
dependencies after the graph is updated and the query is
incrementally evaluated. In total, we examined six design
choices for storing dependency, under the assumption that
the dynamic graph is stored in an adjacency vector:

• Sparse children vector stores the dependent children
(their indices in the neighbor vector) in a vector.
• Dense children vector combines a boolean vector with
the neighbor vector to indicate dependent children.
• Children hashtable stores the dependent children of a
vertex in a separate hashtable (unordered set).
• Children in neighbor vector puts the dependent children
at the beginning of the neighbor vector, separated from
the rest neighbors with a pointer.
• Parent vector stores the dependent parent (index in the
vertex array) of each vertex in a vector.
• Dependency discovery discovers a vertex’s dependency
online by checking the values of in-neighbors and �nds
the one that determines its value.

Table 1 lists the average time and space complexities based
on the average in-degreeĚğĤ and out-degreeĚĥīĪ of the graph.
In general, children-based representations o�er constant
access time to the dependent children (except for the dense

3Unlike other cases where the operations are simple graph accesses, this

requires accessing the vertex values and perform re-computations.

children vector), but take longer to �nd the parent of a vertex
as they have to examine each in-neighbor of the vertex to
check if it has this vertex as a child (i.e., ċ (ĚğĤ ∗ ĚĥīĪ)). In
comparison, parent vector o�ers constant access time to the
parent of a vertex, but takes longer to �nd the children of a
vertex as it needs to scan the out-neighbors of the vertex and
check which one has this vertex as the parent. Dependency
discovery does not explicitly store the dependency, so its
maintenance and space costs are zero, but it requires extra
computations to �nd dependent children. Speci�cally, for
each vertex Ĭ , it needs to pull values from its in-neighbors
and identify the speci�c in-neighbor Ĭ∗Ĥ that determines the
current value of Ĭ (e.g., dist[Ĭ] == dist[Ĭ∗Ĥ] + w(Ĭ

∗
Ĥ , Ĭ) in SSSP)—

Ĭ∗Ĥ is the parent of Ĭ , and the complexity is ċ (ĚğĤ). Similarly,
the children of vertex Ĭ can be discovered by examining its
value relation with the values of its out-neighbors.

Besides complexities, another key factor for selecting the
dependency representation is the parallelization cost. Since
a vertex may have multiple dependent children, updating
the children of di�erent vertices may require the use of locks
when performed concurrently, which happens in the case of
children-based representations (except the dense one). By
contrast, the parent vector and dependency discovery require
no locks for parallel parent updating.

In addition, one may use two representations together to
address the disadvantages of each. For example, when using
children-based representations along with the parent vector,
the parent lookup cost could be reduced to ċ (1) at the cost
of more memory usage.

O�ine vs. Online Maintenance. The maintenance costs
listed in Table 1 assume an o�ine approach, that is, the
dependency tree is updated after the incremental evaluation
�nishes. For children-based representations, this can be done
by traversing the out-neighbors of each vertex to identify the
new dependent children. Likewise, for parent vector, it needs
to traverse the in-neighbors of each vertex to identify the
new dependent parent. In both cases, the o�ine approach
needs to access the graph structure which could be costly.

Alternatively, the dependency tree can be updated online
during the incremental evaluation. In this case, each time the
value of a vertex is updated, the parent-child dependency is
also updated. For children-based representations, it involves
removing a child from its old parent’s children list and adding
it to that of the new parent. Note that changing children for
di�erent vertices in parallel requires locks. For the parent
vector, the dependency update involves updating the parent
of the a�ected vertex.

3.2 Top-down Dependency Tracing

Existing systems, like KickStarter [45] and RisGraph [10],
follow a top-down dependency tracing strategy to identify

919

SoCC ’24, November 20–22, 2024, Redmond, WA, USA Xizhe Yin, Zhijia Zhao, and Rajiv Gupta

Algorithm 1 Top-down Dependency Tracing

1: function DepTracingTopDown(ă , ĦėĨěĤĪ , ď0)
2: ď = ď0
3: ĂĨĥĤĪğěĨęīĨ = ď0
4: ĂĨĥĤĪğěĨĤěĮĪ = ∅
5: while ĂĨĥĤĪğěĨęīĨ ≠ ∅ do
6: parfor ī in ĂĨĥĤĪğěĨęīĨ do
7: for Ĭ in ă [ī].outNeighbors do
8: if ĦėĨěĤĪ[Ĭ] == ī && Ĭ ∉ ď then
9: ĂĨĥĤĪğěĨĤěĮĪ = ĂĨĥĤĪğěĨĤěĮĪ ∪ {Ĭ}
10: ď = ď ∪ {Ĭ}

11: end parfor
12: swap(ĂĨĥĤĪğěĨęīĨ , ĂĨĥĤĪğěĨĤěĮĪ)
13: ĂĨĥĤĪğěĨĤěĮĪ = ∅

14: return ď

all the vertices a�ected by edge deletions, as outlined in
Algorithm 1. They use the parent vector as the dependency
representation for easier dependency maintenance and low
parallelization cost, as discussed in previous work [10].
When edges are deleted from the graph, there is a set of

vertices whose values are directly impacted, denoted as ď0.
Top-down tracing starts from vertices in ď0 and traverses
the dependency tree downwards till reaching its leaves. At
last, the algorithm outputs the visited vertices as the full set
of impacted vertices ď . Figure 6-a illustrates the top-down
dependency tracing, where ď0 = {B, D}. After the tracing, the
impacted vertex set ď = {þ,ÿ, Ā, ā}.

0%

20%

40%

60%

80%

100%

SSSP SSWP BFS WCC SSSP SSWP BFS WCC

6% Batch 30% Batch

T
im

e
 %

Dep. Tracing Iter. Comp.

Figure 5: Time Breakdown: Dependency Tracing and
Iterative Computation. RisGraph on TWgraph, batch sizes
are 6% and 30% of graph edges.

Scalability Issues. Top-down tracing works well when the
directly impacted vertex set ď0 is relatively small. When
ď0 becomes larger, we observed signi�cant performance
degradation—causing the dependency tracing to take up to
80% of the total handling time, as illustrated in Figure 5.

We found the key issue limiting the scalability of top-down
tracing is the mismatch between top-down tree traversal and

�

D

�

C

�miss impacted ones

(a) bottom-up tree tracing (b) bottom-up forest tracing

�

D

�

C

�

�

�

�

�

Figure 6: Complexities in Bottom-up Tracing. Vertices
directly impacted by edge deletions are highlighted.

the use of a parent vector. The former needs the dependent
children of vertices, but given the parent vector, it has to
access the graph—scanning the out-neighbors of a vertex to
�nd its dependent children (Line 7-8 in Algorithm 1), which
takes ċ (ĚĥīĪ) time, where ĚĥīĪ is the average out-degree of
the graph. When there are many directly impacted vertices,
the cost of graph traversing becomes signi�cant.
Children-based representations avoid the above issue by

explicitly storing dependent children for each vertex. While
this o�ers constant time to access the dependent children,
it takes more time to remove a dependent child from the
dependent children list, and requires locks during parallel
children updates. Overall, the costs outweigh the bene�ts,
hence the prior systems [10, 45] still chose to use the parent
vector despite the mismatch.

3.3 Bottom-up Dependency Tracing

To address the mismatch mentioned above, we propose a
bottom-up dependency tracing strategy that aligns well with
the parent vector-based dependency representation, and it
requires no accessing to the graph, making it a promising
solution for large edge deletion batches.

However, it is less intuitive to traverse from the leaves of
a dependency tree “backwards”. To achieve that, we need
to address two key questions: 1© how to identify the leaf
vertices of the dependency tree? 2© how to correctly �nd
impacted vertices starting from the leaves?

1© Identifying leaves. In fact, leaves are the vertices with
no dependent children. If we know the count of dependent
children for every vertex, it becomes trivial to identify the
leaves. However, to collect the dependent children count for
a vertex Ĭ , it seems that we may still need to know which
out-neighbors are the dependent children of Ĭ—going back
to the same situation as in the top-down dependency tracing.
The workaround for the above issue is to maintain the

dependent children counts of vertices incrementally, instead
of computing them from scratch. We keep a copy of the old

920

IncBoost: Scaling Incremental Graph Processing for Edge Deletions and Weight Updates SoCC ’24, November 20–22, 2024, Redmond, WA, USA

parent vector before graph updates and compare it with the
new parent vector afterwards. If the parent of a vertex Ĭ is
changed from Ħ1 to Ħ2, we decrement the count of Ħ1 and
increment the count of Ħ2. For parallel count updates, atomic
operations (like fetch_add and fetch_sub) are required.
The high-level idea of our solution may look similar to

children-based representations—instead of maintaining the
list of dependent children, our solution maintains the count
of dependent children. However, this di�erence brings a few
critical advantages for an e�cient implementation:

• First, the count is a single integer that can be easily
stored in a vector for all the vertices;
• Second, maintaining the counts of dependent children
does not need to access the graph;
• Lastly, the safety of parallel updates can be achieved
with atomic operations, instead of employing locks as
in the children-based representations.

With the leaves of the dependency tree, the next question is
to �nd all vertices impacted by the edge deletions.

2© Finding impacted vertices. An intuitive idea is to start
from the leaves of the dependency tree and traverse the
tree bottom up. A traversal path stops if it reaches a vertex
directly impacted by the edge deletions (i.e., a vertex from
ď0 in Algorithm 1) or the root of the tree.

However, there is a caveat to the above idea—along one
bottom-up traversal path, there could be multiple vertices
directly impacted by edge deletions, as shown in Figure 6-(a).
Stopping the traversal at the place where the �rst directly
impacted vertex is found might miss out other impacted ones
that appear even higher up in the path.
To address the above issue, we �rst remove the edges in

the dependency tree that correspond to the deleted edges
in the graph. As a consequence, the tree is broken into a
set of smaller trees—a forest, as illustrated by Figure 6-(b).
Meanwhile, we update the counts of dependent children
to re�ect the latest set of leaves—the leaves in the forest,
denoted as ďleaves. If we traverse the forest from ďleaves bottom
up, it would cover all the impacted vertices: ď = ∪Ĭ∈ďleavesďĬ
where ďĬ denotes the vertices along the path from Ĭ to a
directly impacted vertex in ď0.
There is another complexity in the bottom-up tracing: at

the beginning of the traversal, it is unknown if it will �nally
reach a directly impacted vertex in ď0 or the original root
of the dependency tree. As a result, it cannot decide if a
visited vertex should be marked (i.e., added to ďĬ). To address
this, we �rst assume every traversal path can eventually
reach the original root, so no visited vertices are marked
during this traversal. In cases where the assumption fails—
the traversal did encounter a directly impacted vertex, our
algorithm would re-traverse this path from the leaf, and

Algorithm 2 Bottom-up Dependency Tracing

1: function DepTracingBottomUp(parent, leaf, ď0)
2: removeDeletedEdges(parent)
3: /* leaf is represented using a boolean array */
4: updateLeaves(leaf)
5: ď = ď0 /* ď0 and ď are stored using boolean arrays */
6: parfor Ĭ in leaf do
7: Ħ = Ĭ /* keep a copy for potential re-traversing */
8: /* bottom-up traversal */
9: while hasParent(Ħ) and Ħ ∉ ď do
10: Ħ = parent[Ĭ]

11: if Ħ ∈ ď then /* stopped at an impacted vertex */
12: /* re-traverse */
13: while hasParent(Ĭ) and Ĭ ∉ ď do
14: ď = ď ∪ {Ĭ} /* it is an impacted vertex */
15: Ĭ = parent[Ĭ]

16: end parfor
17: return ď

this time it marks the vertices visited along the path as the
impacted ones. The process is outlined in Algorithm 2.

Correctness of Bottom-up Tracing. Assume that ĐĚěĦ is the
dependency tree before edge deletions and ďĪĥĦ is the set of
all impacted vertices by top-down dependency tracing. Then,
we have ďĪĥĦ = ∪Ĭ∈ď0ĊĬ , where ĊĬ consists of all the vertices
of a sub-tree in ĐĚěĦ rooted at Ĭ .
The bottom-up dependency tracing starts from all the

leaves in the ĐĚěĦ , denoted as ĈĪĨěě , and the new “leaves”
created by detaching the directly impacted vertices from
their parents, denoted as ĈĤěĭ . (i) If there is one and only one
directly impacted vertex appearing on the path from a leaf Ĭ ,
Ĭ ∈ ĈĪĨěě , to the root of ĐĚěĦ , the bottom-up tracing would
stop at Ĭ and a follow-up re-traversing would include all the
vertices along the path into the impacted vertex set ďĘĥĪĪĥģ .
(ii) If there are ć , ć > 1, directly impacted vertices on the
path from a leaf Ĭ , Ĭ ∈ ĈĪĨěě , to the root of ĐĚěĦ , the parent
detaching in bottom-up tracing would break the path into ć
path segments and include the bottom vertex of the last ć-1
segments into ĈĤěĭ , which is also covered by the bottom-up
tracing, similar to ĈĪĨěě . (iii) If there are no directly impacted
vertices on the path from a leaf Ĭ , Ĭ ∈ ĈĪĨěě , to the root of
ĐĚěĦ , the bottom-up tracing would traverse all the way back
to the root of ĐĚěĦ , leaving no impact on ďĘĥĪĪĥģ . In sum,
the impacted vertex set of bottom-up tracing ďĘĥĪĪĥģ covers
exactly the same vertices as in ďĪĥĦ .

4 WEIGHT UPDATES HANDLING

Existing graph systems [10, 11, 45] simulate an edge weight
update with an edge deletion followed by an edge insertion,
which takes a “detour” to reach the �nal convergence. In this

921

SoCC ’24, November 20–22, 2024, Redmond, WA, USA Xizhe Yin, Zhijia Zhao, and Rajiv Gupta

Iter# A B C D E F G

Init 0 5 7 16 15 17 105

1 0 5 7 16 12 14 105

2 0 5 7 13 12 14 105

3 0 5 7 13 12 14 105

� �
10

� �
7

before after

� �
10

� �
13

Iter# A B C D E F G

reset 0 5 > > > > 105

init 0 5 13 20 > > 105

1 0 5 13 20 18 20 105

2 0 5 13 19 18 20 105

3 0 5 13 19 18 20 105

(a) re-convergence of SSSP(A) after weight decrease

(b) re-convergence of SSSP(A) after weight increase

before after

Figure 7: Direct Handling of Weight Changes.

section, we show that it is possible to directly handle weight
changes in a single round. We will start the discussion using
SSSP, then generalize the ideas to other graph algorithms.

4.1 Case Study: SSSP

The key to directly handle weight updates is to distinguish
between “weight increases” and “weight decreases”. Let’s
revisit the example in Figure 3-a, if the weight of edge ýÿ is
decreased from 10 to 7, because ýÿ is a dependent edge, we
can tell that vertexÿ’s value should also be updated from 10

to 7. Then, we can propagateÿ’s new value to other vertices
in the graph by resuming the iterative evaluation from vertex
ÿ . Figure 7-a illustrates this process, which is similar to the
handling of an edge insertion (see Figure 3-c).
Using the same example, this time, assume the weight of

edge ýÿ is increased from 10 to 13. Again, because ýÿ is a
dependent edge, the old value of vertex ÿ becomes invalid.
Since the edge weight was increased, the new value ofÿ may
come from another di�erent in-neighbor. So, we check all the
in-neighbors of ÿ to �nd out the new best value. However,
some of its in-neighbors may also be impacted by this weight
increase, as a result, their values should not be valid at the
moment. In this case, to be safe, we need �rst to reset the
value of ÿ and the values of all the vertices depending on ÿ
to ∞. After this, for each reset vertex, we can safely “pull”
the values from its in-neighbors to get a new approximated
value. Finally, we need to resume the iterative evaluation
starting from all the a�ected vertices. Figure 7-b illustrates
this process, which, in fact, is similar to the 3-step handling

(tracing→jump-start→re-convergence) of an edge deletion
outlined in Section 2 (see Figure 3-d).
In summary, in the case of SSSP, edge weight decreases

can be handled similarly to edge insertions, whereas edge
weight increases can be addressed similarly to edge deletions.
Also, similar to how correctness was ensured in handling
edge insertions and edge deletions [45], the correctness of
handling weight increases and decreases is ensured by the
safe approximation of a�ected vertices’ values and the inherit
monotonicity of the SSSP algorithm. Next, we generalize this
insight to some other graph algorithms.

4.2 Generalization

While the insight from SSSP is intuitive, it is non-trivial to
generalize them to other graph algorithms. Taking Viterbi
as an example, it is not obvious whether weight increase or
decrease should be treated similarly to the edge deletion case.
To address this, we again turn to themonotonicity—a common
property shared by many iterative graph algorithms.

Definition 2 (Monotonicity). A weight-based iterative
graph algorithm is monotonic if the value of every vertex varies
in such a way that it either never decreases or never increases.

Besides SSSP, some other weight-based iterative graph
algorithms that exhibit monotonicity include Single-Source
Widest Path (SSWP), Single-Source Narrowest Path (SSNP),
and Viterbi. Our goal here is to extend the optimization for
SSSP to the other monotonic graph algorithms.

The pivotal question is: for a weight-based monotonic graph
algorithm, which of the two scenarios, weight increase or weight
decrease, violates the monotonicity? Next, we present a test
to check if a weight change violate the monotonicity for a
given monotonic graph algorithm.

Definition 3 (Local Monotonicity Test). Consider a
weight-based monotonic graph algorithm and a weight change
(either a weight increase or a weight decrease) on edge (ī, Ĭ),
if (ī, Ĭ) is a dependent edge, the test resets the value of the
directly impacted vertex Ĭ to the initial value INIT. Then, it
applies the vertex function on this edge Ĝ (ī, Ĭ). If the new value
of vertex Ĭ is closer to INIT than the old value, the monotonicity
is violated; otherwise, the change passes the test.

Algorithm 3 summarizes the local monotonicity test. It
returns true only when the weight change conforms with
the monotonicity of the given graph algorithm. Table 2 lists
the results of this test to the aforementioned weight-based
monotonic graph algorithms using some o�ine synthesized
examples, where the last column indicates the weight change
direction that passes the test.

Correctness of Local Monotonicity Testing. The rationale
behind this testing is to determine if a weight change would

922

IncBoost: Scaling Incremental Graph Processing for Edge Deletions and Weight Updates SoCC ’24, November 20–22, 2024, Redmond, WA, USA

Algorithm 3 Local Monotonicity Test

1: function LocalMonoTest(ī, Ĭ ,ĭ , val, parent, Ĝ)
2: ĪģĦ_ĬėĢ ← ĬėĢ

3: if parent[Ĭ] == ī then // (ī, Ĭ) is a dependent edge
4: ĪģĦ_ĬėĢ[Ĭ] = ąĊ ąĐ

5: new = Ĝ (ī, Ĭ,ĭ , ĪģĦ_ĬėĢ)
6: if |ąĊ ąĐ − new| ≥ |ąĊ ąĐ − val[v] | then
7: return true
8: return false

Table 2: Local Monotonicity Test Results

Bench. Edge Function Ĝ (·) ąĊ ąĐ Monot. Passed

SSSP ģğĤ (ĬėĢ (Ĭ), ĬėĢ (ī) + ĭ) ∞ ↓ ĭ ↓

SSWP ģėĮ (ĬėĢ (Ĭ),ģğĤ (ĬėĢ (ī), ĭ)) 0 ↑ ĭ ↑

SSNP ģğĤ (ĬėĢ (Ĭ),ģėĮ (ĬėĢ (ī), ĭ)) ∞ ↓ ĭ ↓

Viterbi ģėĮ (ĬėĢ (Ĭ), ĬėĢ (ī)/ĭ) 0 ↑ ĭ ↓

disrupt the algorithm’s monotonic progression. It does so
by checking whether the weight change makes the vertex
value closer to the initial value (INIT). For a monotonic graph
algorithm, the vertex values should never get closer to the
INIT value as iterations proceed. By comparing the distances
of the new and old vertex values to the INIT value (Line 6
in Algorithm 3), the test can decide if the monotonicity is
violated. Upon detecting a violation, the change handling
method ensures correctness by resetting the values of all
impacted vertices, so that the outdated or incorrect values
would never get propagated through the graph.

The above discussion is analogous to the monotonicity
discussion for edge insertions and edge deletions [45], that is,
edge insertions preserve the monotonicity as they may only
improve the results (e.g., making the vertex values smaller in
SSSP), while the edge deletions may violate the monotonicity
by breaking the established value dependencies. Therefore, if
a weight change passes the local monotonicity test, it can be
handled like edge insertions; otherwise, it has to be treated
like edge deletions (requiring dependency tracing).

With the help of local monotonicity testing, the direct
weight change handling idea discussed in Section 4.1 can be
generalized to all weight-based iterative graph algorithms
that exhibit monotonicity, as outlined by Algorithm 4. In
particular, each weight update needs to be tested (Line 5).
Based on the test result, it is handled accordingly, either like
edge insertion (Line 6) or edge deletion (Line 10). Note that
alternatively, one may pre-determine the handling strategies
for each given graph algorithm, like those in Table 2. While
this can avoid some runtime testing overhead, it may limit
the generality of the system.

Algorithm 4 Direct Handling for Weight Updates

1: function DirectHandling(ă , ĩĨę , ĬėĢĥĢĚ , ĦėĨěĤĪĥĢĚ ,
īĦĚėĪěĩ , Ĝ)

2: (ĬėĢ , ĦėĨěĤĪ)← (ĬėĢĥĢĚ , ĦėĨěĤĪĥĢĚ)
3: (ď0, ĂĨĥĤĪğěĨ)← (∅, ∅)
4: for (ī, Ĭ,ĭĤěĭ) in īĦĚėĪěĩ do
5: Čėĩĩ ←MonoTest(ī, Ĭ ,ĭĤěĭ , ĬėĢ , ĦėĨěĤĪ , Ĝ)
6: if Čėĩĩ then /* insertion-like */
7: if Ĝ (ī, Ĭ,ĭĤěĭ, ĬėĢ) improves Ĭ then
8: ĬėĢ[Ĭ]← Ĝ (ī, Ĭ,ĭĤěĭ, ĬėĢ)

9: ĂĨĥĤĪğěĨ ← ĂĨĥĤĪğěĨ ∪ {Ĭ}

10: else /* deletion-like */
11: ď0 ← ď0 ∪ {Ĭ}

12: ď ← DepTracing(ă , ď0, ĬėĢ , ĦėĨěĤĪ)
13: /* assign an approx. val for each vertex in S */
14: Pull(ă , ď , ĬėĢ , ĦėĨěĤĪ)
15: ĂĨĥĤĪğěĨ ← ĂĨĥĤĪğěĨ ∪ ď

16: Compute(ă , ĬėĢ , ĦėĨěĤĪ , ĂĨĥĤĪğěĨ)
17: return (ĬėĢ , ĦėĨěĤĪ)

5 WORKLOAD-ADAPTIVE EVALUATION

This section discusses the selection of the dependency tracing
direction and its associated data representation based on the
workload, in particular, the volume of graph updates.

5.1 Selection of Tracing Strategy

There are two major costs associated with the top-down

tracing: (i) the cost of traversing the dependency tree ÿ
ĪĥĦ

ĚěĦ
;

and (ii) the cost of accessing the graph (adjacency list) ÿĝĨė .
In comparison, bottom-up tracing only needs to traverse the
dependency tree. Assume its cost is ÿĘĪģ

ĚěĦ
.

• When the update batches are small, ÿ
ĪĥĦ

ĚěĦ
and ÿĝĨė are

relatively low as top-down tracing begins with a small
set of directly impacted vertices (ď0). By traversing the
dependency tree downwards, it tends to visit only a
small portion of the dependency tree4. By contrast,
ÿĘĪģ
ĚěĦ

is a much higher cost as bottom-up tracing al-

ways starts from all the leaves of the dependency forest,
its traversal covers the entire forest (ċ (|Ē |)).
• As the size of the graph update batches grows, so does

the tracing costs ÿ
ĪĥĦ

ĚěĦ
, ÿĝĨė , and ÿ

ĘĪģ
ĚěĦ

. However, the

latter grows at a much lower pace than the former two,
as the bottom-up tracing anyway traverses from all
the dependency tree leaves. Its cost still increases as its
re-traversal cost depends on the set impacted vertices
(see Lines 11-15 in Algorithm 2).

4The actual portion of the dependency tree that top-down tracing traverses

depends on the locations of the directly impacted vertices; The closer these

vertices are to the root, the larger the portion of the tree that is a�ected.

923

SoCC ’24, November 20–22, 2024, Redmond, WA, USA Xizhe Yin, Zhijia Zhao, and Rajiv Gupta

• When the update batches become su�ciently large,

the total cost of top-down tracing, that is, ÿ
ĪĥĦ

ĚěĦ
+ ÿĝĨė ,

would eventually surpass the cost of bottom-up tracing
ÿĘĪģ
ĚěĦ

, making the former a less promising choice.

Based on the above reasoning, we propose to select the
dependency tracing strategy based on the given workload.
Speci�cally, we de�ne a threshold ĄĨ for the ratio between
the directly impacted vertices |ď0 | and the graph size |Ē |:
Ĩtracing = |ď0 |/|Ē |. If Ĩtracing > ĄĨ , bottom-up tracing is used;
otherwise, top-down tracing is employed. According to our
experimental results, ĄĨ = 0.015 works well in general.

Note that we chose |ď0 | rather than the batch size because
the latter may not re�ect the actual cost for dependency
tracing. As pointed out by prior work [10, 45], most edges
in the deletion batch are not dependent edges, thus carrying
no computations. In addition, factors like the locations of
deleted edges and the degrees of impacted vertices, may also
a�ect the performance of dependency tracing. However, it is
impractical to derive guidelines based on such �ne-grained
factors. In this work, we choose a simple and practically
working policy (see Section 7 for results).

5.2 Selection of Data Representation

Another key design factor is the data representation. For
bottom-up dependency tracing (see Algorithm 2), there are
two ways to store the set of (deletions or weight changes)
impacted vertices ď : 1© Dense representation, which uses a
boolean array whose size equals to |Ē | to indicate which
vertices are impacted; 2© Sparse representation, which directly
stores the impacted vertices in a set (or a vector), whose size
equals to the number of impacted vertices |ď |.

Similar discussions can be found for selecting the frontier
representation in static graph processing [19, 32, 41, 47–49].
The selection is based on an empirical threshold considering
the frontier size and the number of outgoing edges [41]. In
general, the sparse representation works better when the
frontier size is relatively small, while the dense represen-
tation works better for relatively large frontiers. However,
there is no discussion on data representations for a�ected
vertices in dynamic graph processing. RisGraph chose a �xed
scheme—sparse representation, while KickStarter chose the
dense one. We use a dense representation for bottom-up
tracing and a sparse one for top-down tracing. With this
�xed coupling, the graph system only needs to determine
the tracing strategy, simplifying the decision-making.

6 INCBOOST IMPLEMENTATION

We implemented the above proposed ideas in a new graph
system, called IncBoost. IncBoost extends Ligra [41]—an
in-memory static graph processing framework. To support
dynamic graphs, we replaced the Compressed Sparse Row

(CSR) [42] format used in Ligra with indexed adjacency
lists (from RisGraph [10]). Basically, for high-degree vertices
(Ě (Ĭ) > 512), their edges are indexed by a hashtable where
the key is the destination vertex’s ID and the value is the
position of the vertex in the edge adjacency list. IncBoost
provides a set of APIs for common graph updates, which
include EdgeDeletions, EdgeInsertions, WeightUpdates,
VertexDeletions, and VertexInsertions.

When inserting an edge (Ĭ,ī), IncBoost appends it to
the end of the source vertex Ĭ ’s adjacency list, then updates
Ĭ ’s index if it is high-degree. When an edge (Ĭ,ī) is deleted,
IncBoost �rst swaps this edge and the last one in Ĭ ’s edge
list, then updates Ĭ ’s degree and index (if applicable). In
addition, IncBoost supports batch insertions and deletions
using batch reordering [3] to ensure lock-free edge mutations:
edges are clustered by the source vertex upon the arrival,
then edges of the same source are applied serially. RisGraph
applies all edge deletions in parallel as it does not require
the swap operation but keeps deleted (tomb) edges.
IncBoost uses either bottom-up or top-down dependency

tracing to handle edge deletions, based on the workload ĄĨ

(set to 0.015). IncBoost handles the edge weight updates
directly with the local monotonicity test. For very small
batches, to match RisGraph’s performance, we implemented
a highly tuned sparse frontier representation.

In addition, RisGraph replaces OpenMP parallel primitives
with macros when the loop size is below 8ć , avoiding the
overhead associated with OpenMP parallel primitives for
small batches. IncBoost adapts a similar optimization. It sets
the batch size threshold for parallelism to be 8ć , belowwhich
a sequential implementation is adopted to avoid the overhead
associated with parallel primitives. Regarding space usage,
IncBoost requires an additional array of size |Ē | for storing
the number of dependent children for each vertex.

Finally, we noticed that Aspen [7] o�ers high-throughput
graph mutations thanks to its uses of the compressed tree
structure. But its current release only supports unweighted
graphs and it does not store the in-neighbors of a vertex. In
order to make it support weighted graphs, the compressed
tree structure would need to be extended. Also, with only
out-neighbors, Aspen cannot only perform pull operations,
which is needed to assign safe approximated values to the
a�ected vertices. Without pull support, Aspen has to perform
push operations from all vertices, which would be ine�cient.
Although we see potential for implementing our techniques
in Aspen, given the above limitations, it requires signi�cant
updates to Aspen itself before integrating our techniques.

7 EVALUATION

We compare IncBoost with two streaming graph systems,
KickStarter [45] and RisGraph [10]. Although RisGraph

924

IncBoost: Scaling Incremental Graph Processing for Edge Deletions and Weight Updates SoCC ’24, November 20–22, 2024, Redmond, WA, USA

Table 3: Graph Statistics (“D” for directed and “T” for temporal)

Graph Abbr. D T |V| |E| Avg. deg.

LiveJournal [2] LJ 6 : 4.8M 69M 14.2
Orkut [24] OR : : 3.1M 234M 76.3
Wikipedia [1] WP 6 : 13.5M 437M 32.2
StackOver�ow [24] SO 6 6 2.6M 63.5M 24.4
Wiki-Dynamic [20] WD 6 6 2.2M 43.3M 19.7
Twitter [21] TW 6 : 41.7M 1.5B 35.3
UK-2007 [20] UK : : 105.2M 3.3B 31.4

focuses on processing small batches, we found that it delivers
state-of-the-art performance across a wide range of batch
sizes, from tiny to very large. For KickStarter, we chose
its most recent version with graph mutation optimizations
(DZig [26]). Both systems were con�gured according to the
instructions from their repositories. In addition, we report
the scalability of IncBoost and the detailed performance of
di�erent dependency tracing methods.
We conducted all the experiments on a 32-core machine

with Intel Xeon E5-2683 v4 CPU and 512GBmemory, running
CentOS 7.9. All source code were compiled with g++ 7.3. To
avoid the NUMA impacts, we used a single socket with 16
physical cores and 32 hyper-threads.
We evaluated graph systems with six path-based graph

algorithms, including BFS, SSSP, SSWP, SSNP (single-source
narrowest path), WCC (weakly connected components), and
Viterbi5. Except for BFS and WCC (from Ligra [41]), all the
other algorithms operate on weighted graphs.

We chose seven real-world graphs as listed in Table 3. All
edge weights are integers between 1 and log2 |Ē |. The size
of the update batch varies from small (1K edges) to medium
(6% of total edges) and large (15% to 40% of total edges). The
updates in the batches are sampled randomly. To perform
weight updates experiments, the new weights are selected
randomlywithin±50% range of the oldweights. For temporal
(timestamped) graphs (SO and WD), the sampled batches
may contain mixed updates (insertions, deletions, and weight
updates), thus we report their results for mixed batches only.
We chose non-trivial sources for vertex-speci�c queries. The
reported times are the average over three runs.
We report the overall performance results in Section 7.1,

the scalability results with varying batch sizes in Section 7.2,
the dependency tracing performance in Section 7.3, and the
performance of bottom-up tracing in a distributed graph
processing system in Section 7.4.

5The Viterbi algorithm [23] �nds the most likely sequence of hidden states

(i.e., the Viterbi path) in a Hidden Markov Model (HMM), which is widely

used in speech recognition [34], code decoding [44], etc.

7.1 Performance

Now we compare IncBoost against two existing systems in
terms of incremental processing times for update batches
of three representative sizes: small (1K edges), medium (6%
edges), and large (30% edges), upon edge insertions, deletions,
and weight change updates.

Edge Insertions. Table 4 presents the incremental query
evaluation time for edge insertion across di�erent systems.
Overall, we �nd that IncBoost achieves similar performance
as RisGraph for small batches but scales better by switching
to the dense representation (for both dependency tracing and
iterative evaluation). The average speedups that IncBoost
achieves over RisGraph are 0.98×, 1.30×, and 2.0× for small,
medium, and large batches, respectively. .

Edge Deletions. Table 5 reports the query evaluation time
for incrementally handling edge deletions. Thanks to its
use of workload-adaptive evaluation, IncBoost evaluated
all small batches using top-down tracing while employing a
sparse representation, and medium and large batches using
the bottom-up tracing with the dense representation.

For small batches, IncBoost exhibits similar performance
to RisGraph, with speedups from 0.9× to 1.3×. For medium
and large batches, the speedups of IncBoost over RisGraph
become more signi�cant, ranging from 1.2× to 1.8× and from
1.9× to 3.2×, respectively, thanks to its use of the bottom-up
dependency tracing. KickStarter is the least competitive
among the three systems for all three batch sizes.
We noticed that KickStarter performs relatively worse

for smaller batches. This is because of its use of the dense
data representation for dependency tracing and iterative
evaluation. As discussed earlier, for smaller update batches,
the sparse data representation o�ers better e�ciency.

Weight Updates. Table 6 reports the total handling time
for edge weight updates, which covers four algorithms that
require weighted graphs. On average, we found IncBoost is
2.6× (1.3×-5.1×) faster than RisGraph and 87.0× (6.8×-299×)
faster than KickStarter. In general, the speedups follow the
same trends as those in the edge deletion case.
The primary reason for the speedups of IncBoost is its

adoption of a direct approach to handling weight changes
rather than the two-round approach used by the existing
graph systems. To show a more direct comparison, we also
implemented the two-round approach in IncBoost, which
we denote as IB-2R. Table 8 reports the detailed pro�ling
results on batches of medium size (6% batch), including the
ratio of directly impacted vertices (|ď0 |/|Ē |), the ratio of all
impacted vertices (|ď |/|Ē |), the number of vertex activations
during iterative computation (Tot. Act.), the tracing time (Tr.
Time), and the iterative computation time (Iter. Time). For

925

SoCC ’24, November 20–22, 2024, Redmond, WA, USA Xizhe Yin, Zhijia Zhao, and Rajiv Gupta

Table 4: Performance of Incremental Processing (Insertion Batch)

col. shows query exec. time (in seconds); S.: small batch (1K); M.: medium batch (6%); L.: large batch (30%).

SSSP SSWP SSNP Viterbi BFS WCC
S. M. L. S. M. L. S. M. L. S. M. L. S. M. L. S. M. L.

LJ
KickStarter 5.0E-3 0.10 0.59 4.5E-3 0.07 0.45 3.0E-3 0.17 0.57 3.4E-3 0.04 0.25 4.5E-3 0.03 0.07 4.1E-3 0.03 0.11
RisGraph 6.1E-5 0.07 0.36 7.2E-5 0.04 0.29 5.0E-5 0.04 0.19 5.6E-5 0.04 0.23 3.1E-5 0.02 0.13 3.6E-5 0.01 0.05
IncBoost 6.9E-5 0.04 0.14 7.0E-5 0.03 0.16 5.7E-5 0.02 0.06 5.8E-5 0.03 0.09 2.9E-5 0.02 0.05 3.3E-5 0.01 0.02

OR
KickStarter 2.7E-3 0.11 0.57 2.7E-3 0.07 0.30 2.6E-3 0.05 0.27 3.0E-3 0.12 0.69 2.8E-3 0.02 0.12 2.3E-3 0.02 0.09
RisGraph 3.0E-5 0.08 0.51 2.6E-5 0.03 0.15 2.6E-5 0.03 0.13 2.7E-5 0.04 0.19 2.3E-5 0.03 0.15 1.6E-5 0.01 0.07
IncBoost 3.4E-5 0.04 0.24 2.4E-5 0.02 0.07 2.5E-5 0.02 0.06 2.5E-5 0.02 0.07 2.3E-5 0.02 0.10 1.2E-5 0.01 0.05

WP
KickStarter 1.3E-2 0.29 1.05 1.1E-2 0.60 2.16 1.2E-2 0.23 0.89 1.3E-2 0.28 1.22 1.08E-2 0.10 0.27 1.1E-2 0.08 0.23
RisGraph 2.9E-4 0.15 0.85 3.2E-5 0.20 1.51 3.5E-5 0.10 0.51 3.5E-5 0.10 0.54 2.9E-5 0.07 0.38 2.0E-5 0.03 0.19
IncBoost 2.8E-4 0.16 0.51 2.6E-5 0.20 0.89 4.1E-5 0.12 0.29 4.1E-5 0.11 0.29 3.3E-5 0.11 0.28 2.4E-5 0.05 0.21

TW
KickStarter 2.8E-2 0.29 8.38 3.6E-2 0.54 12.46 2.9E-2 0.46 9.51 2.8E-2 0.55 9.88 3.2E-02 0.39 6.75 2.9E-2 0.33 1.12
RisGraph 4.4E-5 0.46 9.60 4.7E-5 0.22 4.23 1.6E-4 0.22 4.26 1.7E-4 0.42 9.76 1.4E-4 0.34 2.63 1.9E-4 0.14 0.71
IncBoost 6.0E-5 0.36 3.52 5.4E-5 0.22 2.11 1.8E-4 0.23 2.51 1.8E-4 0.34 3.43 1.7E-4 0.32 2.28 2.2E-4 0.21 1.09

UK
KickStarter 3.0E-2 4.39 14.19 4.4E-2 2.76 11.21 2.8E-2 1.96 7.12 3.5E-2 3.79 12.91 2.7E-3 0.73 1.59 8.2E-3 0.81 2.41
RisGraph 9.0E-5 2.45 9.62 8.3E-5 0.68 14.40 8.3E-5 0.75 3.30 9.4E-5 1.76 3.97 8.4E-5 1.41 5.24 5.8E-5 0.41 2.53
IncBoost 8.7E-5 1.10 5.21 8.6E-5 0.36 2.61 8.0E-5 0.45 1.43 1.2E-4 1.11 1.57 7.7E-5 1.32 2.20 6.9E-5 0.37 1.58

Geo
vs. KS 41.89× 1.87× 2.64× 253.34× 3.35× 3.80× 155.30× 3.26× 4.67× 158.87× 2.58× 4.90× 132.48× 1.01× 1.27× 176.44× 2.20× 1.72×
vs. Ris 0.91× 1.54× 2.14× 1.03× 1.28× 2.37× 0.94× 1.27× 2.09× 0.92× 1.36× 2.47× 0.97× 1.04× 1.68× 0.97× 0.97× 1.22×

Table 5: Performance of Incremental Processing (Deletion Batch)

col. shows query exec. time (in seconds); S.: small batch (1K); M.: medium batch (6%); L.: large batch (30%).

SSSP SSWP SSNP Viterbi BFS WCC
S. M. L. S. M. L. S. M. L. S. M. L. S. M. L. S. M. L.

LJ
KickStarter 1.3E-2 0.54 1.34 1.6E-2 0.85 1.63 1.8E-2 0.75 1.63 1.4E-2 0.80 1.64 1.1E-2 0.27 0.70 1.3E-2 0.29 0.85
RisGraph 3.0E-4 0.19 0.74 3.8E-4 0.13 0.77 3.2E-4 0.14 0.75 1.6E-4 0.13 0.80 2.5E-4 0.05 0.27 2.0E-4 0.03 0.21
IncBoost 2.1E-4 0.09 0.21 3.6E-4 0.10 0.28 2.6E-4 0.09 0.29 2.2E-4 0.09 0.27 1.7E-4 0.04 0.11 1.8E-4 0.03 0.05

OR
KickStarter 1.1E-2 1.08 2.25 9.7E-3 0.67 1.91 1.0E-2 0.71 1.79 1.1E-2 1.74 2.70 9.5E-3 0.80 1.61 9.3E-3 0.49 1.29
RisGraph 1.4E-4 0.24 1.12 1.5E-4 0.06 0.50 1.5E-4 0.05 0.39 1.5E-4 0.08 0.90 1.7E-4 0.08 0.36 1.2E-4 0.03 0.15
IncBoost 1.7E-4 0.15 0.38 1.4E-4 0.03 0.36 1.5E-4 0.03 0.29 2.7E-4 0.05 0.20 1.5E-4 0.05 0.16 9.6E-5 0.02 0.05

WP
KickStarter 3.2E-2 1.59 4.02 4.2E-2 2.57 4.77 3.7E-2 1.84 4.42 3.2E-2 1.86 4.59 2.8E-2 0.98 2.81 2.7E-2 0.96 2.45
RisGraph 2.2E-4 0.36 1.81 1.2E-4 0.24 1.65 2.3E-4 0.24 1.51 2.3E-4 0.22 1.44 1.3E-4 0.20 1.15 1.6E-4 0.08 0.41
IncBoost 2.0E-4 0.24 0.74 1.3E-4 0.16 0.98 2.5E-4 0.17 0.60 1.7E-4 0.15 0.43 1.2E-4 0.10 0.37 1.4E-4 0.09 0.20

TW
KickStarter 5.2E-2 2.84 11.80 7.4E-2 7.54 12.29 6.9E-2 5.20 12.40 6.6E-2 3.94 11.49 7.0E-02 4.63 12.11 6.9E-2 2.51 7.86
RisGraph 2.7E-4 0.94 9.01 1.8E-4 0.40 11.43 1.6E-4 0.37 11.41 1.7E-4 0.76 9.25 1.4E-4 1.06 7.86 1.9E-4 0.29 2.47
IncBoost 3.5E-4 0.74 3.27 2.0E-4 0.27 4.13 1.5E-4 0.28 4.20 1.7E-4 0.51 3.41 1.5E-4 0.78 3.41 1.7E-4 0.31 1.93

UK
KickStarter 2.2E-1 16.66 34.04 4.3E-1 14.01 33.70 1.8E-1 12.56 29.74 2.8E-1 20.48 41.74 1.5E-1 7.68 13.94 1.6E-1 5.56 15.72
RisGraph 4.5E-4 5.28 15.86 2.7E-4 0.93 9.04 3.1E-4 1.28 12.27 2.1E-4 3.45 14.60 2.6E-4 1.82 7.47 1.6E-4 0.74 4.52
IncBoost 2.1E-4 1.87 5.81 1.2E-4 0.56 6.19 1.2E-4 0.85 4.72 1.6E-4 2.12 5.56 1.8E-4 0.87 3.24 1.4E-4 0.55 2.38

Geo
vs. KS 158.41× 6.29× 5.34× 265.49× 18.17× 4.75× 216.10× 14.67× 5.44× 201.43× 12.49× 7.44× 206.10× 8.95× 5.99× 228.72× 12.67× 10.58×
vs. Ris 1.16× 1.79× 2.86× 1.16× 1.55× 1.92× 1.26× 1.52× 2.29× 0.94× 1.53× 3.19× 1.19× 1.64× 2.48× 1.15× 1.20× 2.25×

IB-2R, the “Iter. Time” is the sum of iterative computation
times for both deletion and insertion rounds.

The results show that with direct weight update handling,
the number of vertices requiring dependency tracing (|ď0 |) is
reduced by half compared to the two-round handling since
the update batch consists of an equal distribution of weight
increases and decreases (50%-50%). The direct approach treats
the two cases separately, one for each round. For the same

reasons, the total number of vertex activations and iterative
computation time are also signi�cantly reduced.

Mixed Batches. IncBoost handles heterogeneous batches
that contain mixed types of updates: edge insertions, edge
deletions, and edge weight updates. RisGraph only supports
batches containing a single type of update (homogeneous
update batches). KickStarter supports batches of mixed
insertions and deletions but prohibits batches with insertion

926

IncBoost: Scaling Incremental Graph Processing for Edge Deletions and Weight Updates SoCC ’24, November 20–22, 2024, Redmond, WA, USA

Table 6: Performance of Incremental Processing (Weight Update Batch)

col. shows query exec. time (in seconds); S.: small batch (1K); M.: medium batch (6%); L.: large batch (30%).

SSSP SSWP SSNP Viterbi
S. M. L. S. M. L. S. M. L. S. M. L.

LJ
KickStarter 1.70E-02 0.65 1.97 2.1E-2 1.01 2.31 2.3E-2 0.82 2.08 1.9E-2 0.97 2.21
RisGraph 3.6E-4 0.26 1.10 4.5E-4 0.17 1.05 3.7E-4 0.17 0.94 3.9E-4 0.18 1.03
IncBoost 2.0E-4 0.08 0.22 2.3E-4 0.08 0.27 2.1E-4 0.08 0.20 2.7E-4 0.10 0.24

OR
KickStarter 1.4E-2 1.20 2.82 1.2E-2 0.74 2.21 1.3E-2 0.76 2.06 1.4E-2 1.92 3.39
RisGraph 1.7E-4 0.31 1.63 1.8E-4 0.09 0.65 1.8E-4 0.08 0.52 1.8E-4 0.11 1.09
IncBoost 1.5E-4 0.09 0.31 7.1E-5 0.05 0.15 1.2E-4 0.04 0.13 1.5E-4 0.09 0.33

WP
KickStarter 4.5E-2 1.88 5.07 5.3E-2 3.16 6.93 4.9E-2 2.07 5.31 4.6E-2 2.14 5.81
RisGraph 2.5E-4 0.52 2.67 1.6E-4 0.44 3.20 2.6E-4 0.34 2.02 2.6E-4 0.32 1.97
IncBoost 2.0E-4 0.28 0.85 2.9E-4 0.29 1.10 1.9E-4 0.16 0.52 2.7E-4 0.17 0.68

TW
KickStarter 1.1E-1 3.96 22.54 1.1E-1 8.39 20.60 9.8E-2 5.48 20.80 1.0E-1 4.48 23.95
RisGraph 3.1E-4 1.40 18.61 2.3E-4 0.62 15.67 1.9E-4 0.59 15.67 3.4E-4 1.18 19.00
IncBoost 1.9E-4 0.67 4.06 7.9E-5 0.14 5.84 1.2E-4 0.25 1.25 2.0E-4 0.40 3.98

UK
KickStarter 3.2E-1 21.04 48.23 5.3E-1 16.77 44.92 3.9E-1 14.52 36.86 4.2E-1 24.27 54.65
RisGraph 1.1E-3 4.42 25.48 8.7E-4 5.66 24.51 6.6E-4 2.29 15.61 6.6E-4 2.16 18.53
IncBoost 1.4E-3 1.99 6.07 8.0E-4 1.48 4.38 9.8E-4 0.89 3.88 2.4E-4 1.01 5.65

Geo
vs. KS 197.52× 7.36× 5.51× 299.06× 13.21× 5.50× 271.55× 13.02× 9.15× 204.31× 12.66× 6.81×
vs. Ris 1.27× 2.51× 4.37× 1.54× 2.55× 3.73× 1.31× 2.23× 5.13× 1.51× 1.91× 3.66×

Table 7: Performance of Incremental Processing (Mixed Updates Batch)

col. shows query exec. time (in seconds); S.: small batch (1K); M.: medium batch (6%); L.: large batch (30%).

SSSP SSWP SSNP Viterbi
S. M. L. S. M. L. S. M. L. S. M. L.

LJ
KickStarter 2.3E-02 0.41 1.04 9.5E-03 0.49 1.11 7.7E-03 0.15 0.77 8.6E-03 0.16 0.98
RisGraph 3.6E-04 0.15 0.60 3.5E-04 0.12 0.46 3.6E-04 0.11 0.43 3.9E-04 0.12 0.45
IncBoost 2.9E-04 0.08 0.27 2.7E-04 0.07 0.22 2.1E-04 0.07 0.23 2.5E-04 0.07 0.21

TW
KickStarter 9.8E-02 2.74 10.39 5.1E-02 4.19 10.30 5.1E-02 2.51 9.43 9.8E-02 2.85 4.49
RisGraph 3.1E-04 1.00 5.31 2.3E-04 0.38 1.64 1.9E-04 0.38 1.51 2.4E-04 0.84 3.02
IncBoost 2.3E-04 0.66 2.60 1.3E-04 0.30 1.02 1.1E-04 0.32 0.99 1.5E-04 0.52 1.72

SO
KickStarter 2.0E-01 0.73 1.04 2.0E-01 0.91 1.18 1.9E-01 0.84 1.11 3.3E-02 0.66 1.14
RisGraph 2.7E-04 0.18 1.56 2.9E-04 0.06 0.59 2.8E-04 0.06 0.28 3.6E-04 0.08 0.27
IncBoost 2.9E-04 0.10 0.31 2.6E-04 0.04 0.18 2.6E-04 0.04 0.17 3.3E-04 0.04 0.14

WD
KickStarter 2.2E-02 0.49 1.01 3.5E-02 0.55 1.27 2.6E-02 0.69 1.16 2.2E-02 0.73 1.39
RisGraph 8.3E-04 0.19 1.80 4.3E-04 0.10 0.39 5.0E-04 0.07 0.39 4.8E-04 0.10 0.38
IncBoost 9.0E-04 0.09 0.33 4.7E-04 0.05 0.16 3.7E-04 0.04 0.17 3.4E-04 0.03 0.14

Geo
vs. KS 153.98× 5.31× 3.56× 168.34× 12.08× 7.21× 171.45× 8.86× 6.16× 108.87× 8.35× 5.67×
vs. Ris 1.10× 1.75× 3.35× 1.23× 1.57× 2.30× 1.43× 1.46× 1.81× 1.39× 2.00× 2.13×

and deletion of the same edge. Fortunately, both systems can
preprocess mixed batches into homogeneous sub-batches.
Table 7 presents the performance of evaluating mixed

batches where the batch is con�gured as containing 50%
edge insertions and 50% edge deletions when the graph is
non-temporal. For temporal graphs where a timestamp is
attached to each edge, we delete edges with older timestamps
and insert newer ones. If an edge is inserted more than once
in a batch, it is considered a weight update. Under this setup,

a temporal graph update batch contains mixed updates. For
example, a WD graph update batch contains 33% insertions,
51% deletions, and 16% weight updates. In general, we found
that the speedups fall between those achieved in pure weight
updates and pure deletion batches.

Graph Mutations. For completeness, we brie�y compare
the cost of graph mutations with RisGraph and Aspen [7].
Table 9 reports the throughput of the edge-related updates.
While IncBoost and RisGraph show similar throughput for

927

SoCC ’24, November 20–22, 2024, Redmond, WA, USA Xizhe Yin, Zhijia Zhao, and Rajiv Gupta

Table 8: Pro�ling of Direct and Two-round on SSSP.

|ď0 |/|Ē | |ď |/|Ē | Tot. Act. Tr. Time Iter. Time

LJ
IB-2R 5.33% 29.60% 3.6E+06 0.054 0.086
IncBoost 2.73% 13.20% 1.6E+06 0.037 0.043

WP
IB-2R 3.37% 15.09% 4.6E+06 0.144 0.305
IncBoost 1.78% 7.77% 2.4E+06 0.104 0.167

TW
IB-2R 4.85% 15.05% 1.1E+07 0.456 0.646
IncBoost 2.42% 7.10% 5.2E+06 0.317 0.352

Table 9: Graph Mutation Throughput (graph TW)

Values are numbers of edge updates per second

Insertions Deletions Weight Updates

RisGraph 1.1E+07 1.2E+07 5.8E+06
Aspen 3.9E+07 3.7E+07 Not Suported
IncBoost 1.4E+07 1.3E+07 1.5E+07

edge insertions and deletions, both exhibit signi�cantly lower
throughput than Aspen, mainly because that Aspen utilizes
the compressed tree data structure for the graph.
As to weight changes, Aspen does not support weighted

graphs. IncBoost achieves a throughput roughly 2.6× higher
than that of RisGraph, which is mainly due to its avoidance
of the two-round handling.

Performance on Road Networks. We evaluated IncBoost

on a non-power-law graph: roadNet-USA [38] (|Ē |: 24M, |ā |:
58M). Unlike power-law graphs, road networks often have a
higher vertex-to-edge ratio, and their edges are distributed
more evenly across vertices. These properties lead to a high
ratio of dependent edges. Thus, graph updates tend to a�ect
a larger portion of the vertices.

Our results show that IncBoost and RisGraph are capable
of handling up to 80K edge insertions and 20K edge deletions
for SSSP before becoming slower than the full evaluation.
To put it in context, 20K edge deletions (0.03% of the total
edges) a�ect 73% vertices in roadNet-USA.

7.2 Workload Scalability

Figure 8 reports the processing time for di�erent batch sizes.
The horizontal dotted lines are the full query evaluation
times. Both systems deliver fast incremental evaluation when
the batch size is relatively small (below 500K). IncBoost
scales better than RisGraph—its incremental computation
remains faster than the full query evaluation even for batches
of sizes 30% - 40%. In contrast, RisGraph struggles to yield
performance bene�ts when the batch size gets close to 20%
for SSSP edge deletions and 15% for weight updates.

Note that although RisGraph shows superlinear behavior
when processing batch sizes ranging from 6% to 30%, this

Table 10: Dependency Tracing Time in Gemini.

Small(1K) Medium (6%) Large (30%)

Top-down 0.03s 0.47s 1.27s

Bottom-up 0.07s 0.10s 0.18s

does not imply that the system becomes more e�cient by
splitting a large batch into smaller ones. Evaluating multiple
smaller sub-batches is more costly than processing a single
large batch, as the former can cause many vertices to con-
verge to unnecessary states, resulting in increased vertex
activations. Additionally, a large batch may a�ect a signi�-
cant number of vertices due to edge deletions, which do not
scale linearly with the batch size.

7.3 Dependency Tracing

Figure 9 shows the dependency tracing costs of IncBoost
and RisGraph across di�erent con�gurations. Overall, we
observed the performance trend of IncBoost (top-down)
mirrors that of RisGraph as both use top-down tracing.

For update batches with sizes less than 1% of the graph, we
found IncBoost (bottom-up) performs the poorest. However,
as the batch size approaches approximately 1.5% of the total
graph size, a signi�cant shift occurs—IncBoost (bottom-up)
transforms into the fastest method. These results validate the
necessity of workload-adaptive evaluation (see Section 5).

7.4 Bottom-up Tracing in a Distributed
System

IncBoost is implemented as a shared memory graph system.
Adapting the idea of IncBoost to a distributed environment
does not require algorithmic changes. In fact, thanks to its
avoidance of graph access, bottom-up dependency tracing
can be e�ciently performed on a single node.

With a moderate level of e�ort, we integrated bottom-up
dependency tracing into a state-of-the-art distributed graph
processing system Gemini [48], which clearly demonstrates
the applicability of our techniques in the distributed setting.

Gemini uses the master-mirror notion to partition vertices
across nodes. Every active vertex broadcasts its vertex value
as well as the parent information from the master to its
mirrors. This introduces extra communication overhead for
top-down dependency tracing as it may visit multiple graph
partitions on di�erentmachine nodes. The bottom-up tracing
saves the graph traversal and communication overhead by
performing the dependency tracing on a single node and
then broadcasting the parent array to other nodes in the end.

Table 10 reports the costs of dependency tracing in Gemini
for SSSP on TW graph. The results cover three batch sizes
(1k, 6%, and 30%). For larger batches, the bottom-up tracing

928

IncBoost: Scaling Incremental Graph Processing for Edge Deletions and Weight Updates SoCC ’24, November 20–22, 2024, Redmond, WA, USA

0.0

2.0

4.0

6.0

8.0

10.0

12.0

1K 20K 60K 100K 1% 4% 8% 15% 25% 40%

T
im

e
 (

s)

Batch Size

RisGraph RisGraph-Full

IncBoost IncBoost-Full

(a) SSSP Edge Insertions

0.0

2.0

4.0

6.0

8.0

10.0

12.0

1K 20K 60K 100K 1% 4% 8% 15% 25% 40%

T
im

e
 (

s)

Batch Size

RisGraph RisGraph-Full

IncBoost IncBoost-Full

(b) SSWP Edge Insertions

0.0

2.0

4.0

6.0

8.0

10.0

12.0

1K 20K 60K 100K 1% 4% 8% 15% 25% 40%

T
im

e
 (

s)

Batch Size

RisGraph RisGraph-Full

IncBoost IncBoost-Full

(c) SSSP Edge Deletions

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

1K 20K 60K 100K 1% 4% 8% 15% 25% 40%

T
im

e
 (

s)

Batch Size

RisGraph RisGraph-Full

IncBoost IncBoost-Full

(d) SSWP Edge Deletions

0.0

5.0

10.0

15.0

20.0

25.0

1K 20K 60K 100K 1% 4% 8% 15% 25% 40%

T
im

e
 (

s)

Batch Size

RisGraph RisGraph-Full

IncBoost IncBoost-Full

(e) SSSP Weight Updates

0.0

5.0

10.0

15.0

20.0

25.0

1K 20K 60K 100K 1% 4% 8% 15% 25% 40%

T
im

e
 (

s)

Batch Size

RisGraph RisGraph-Full

IncBoost IncBoost-Full

(f) SSWP Weight Updates

Figure 8: Scalability with Varying Batch Sizes on TW Graph.

0.0

0.2

0.4

0.6

1K 20K 60K 100K 1% 4% 8% 15% 25% 40%

T
im

e
 (

s)

Batch Size

RisGraph

IncBoost-Top-down

IncBoost-Bottom-up

(a) LJ-SSSP

0.0

2.0

4.0

6.0

8.0

1K 20K 60K 100K 1% 4% 8% 15% 25% 40%

T
im

e
 (

s)

Batch Size

RisGraph

IncBoost-Top-down

IncBoost-Bottom-up

(b) TW-SSSP

0.0

0.2

0.4

0.6

0.8

1K 20K 60K 100K 1% 4% 8% 15% 25% 40%

T
im

e
 (

s)

Batch Size

RisGraph

IncBoost-Top-down

IncBoost-Bottom-up

(c) LJ-SSWP

0.0

2.0

4.0

6.0

8.0

10.0

1K 20K 60K 100K 1% 4% 8% 15% 25% 40%

T
im

e
 (

s)

Batch Size

RisGraph

IncBoost-Top-down

IncBoost-Bottom-up

(d) TW-SSWP

0.0

0.2

0.4

1K 20K 60K 100K 1% 4% 8% 15% 25% 40%

T
im

e
 (

s)

Batch Size

RisGraph

IncBoost-Top-down

IncBoost-Bottom-up

(e) LJ-BFS

0.0

2.0

4.0

6.0

8.0

1K 20K 60K 100K 1% 4% 8% 15% 25% 40%

T
im

e
 (

s)

Batch Size

RisGraph

IncBoost-Top-down

IncBoost-Bottom-up

(f) TW-BFS

Figure 9: Dependency Tracing Performance.

929

SoCC ’24, November 20–22, 2024, Redmond, WA, USA Xizhe Yin, Zhijia Zhao, and Rajiv Gupta

in Gemini delivers more performance improvements (4.7× to
7.1× speedup over the top-down one) than it does in a shared
memory environment thanks to the additional savings in
communication cost. On the other hand, top-down tracing
outperforms bottom-up one when the batch size is small.

8 RELATED WORK

This section summarizes the existing systems, algorithms,
and data structures relevant to querying dynamic graphs.

Graph Systems. Many existing systems for dynamic graphs
employ incremental query evaluation. Earlier systems either
only support incremental query evaluation in the presence of
edge insertions (e.g., Chronous [13]) or compute approximate
query results (e.g., Kineograph [5]). To handle edge deletions
for incremental query evaluation, systems like KickStarter,
RisGraph, and Tornado [40] record the value dependency for
monotonic path-based algorithms (KickStarter also tracks
each vertex’s level in the dependency tree). Tornado uti-
lizes Lamport Clocks [22] to guarantee consistency and cor-
rectness in a distributed environment. GraphBolt [27] and
DZig [26] support both edge insertions and deletions for
accumulative graph algorithms. Tripoline [16] proposes a
generalized model to incrementally evaluate queries that are
di�erent from the standing queries. Ingress [11] is a system
that automatically incrementalizes graph algorithms. The
above systems do not address weight updates and cannot
e�ciently support large update batches.

Hardware accelerators for incremental computations have
also been proposed [3, 36]. Di�erential Data�ow [28, 29] and
Naiad [30] are generalized incremental computation models
which are also capable of processing graph workloads.

Incremental Algorithms. To the best of our knowledge, the
�rst incremental algorithm for handling SSSP edge deletions
was described by Ramalingam et al. [37], which brie�y points
out the connection between the handling of weight changes
and the handling of edge insertions and deletions. In this
work, we generalize this connection and expand it to a wider
range of path-based graph algorithms. Moreover, our work
actually implemented these ideas in a graph system. Some
recent works have focused on �nding theoretical bounds
for various incremental graph algorithms [8, 9], particularly
when link weights undergo slow changes [14], and when
incorporating temporal information [4].

Data Structures for Changing Graphs. There have been
works for enhancing graph mutation performance. Aspen [7]
supports low latency graph mutation by using a compressed
tree-based graph representation. VCSR [15] leverages packed
memory array (PMA) to enable graph mutation on CSR. In
addition, the indexing method has been employed to improve
graph mutation performance [10, 43]. Recently, Terrace [33]

proposed to use a hierarchical data structure to store edges
based on the vertex degree.

Handling Edge Weight Updates. Sallinen et al. [39] dis-
cussed supports for edge weight updating in SSSP, but the
solution is limited only to reducing edge weight. Henzinger
et al. [14] provided theoretical lower bounds for recomputing
several algorithms (SSSP, maximum �ow, matchings, etc.)
with weight changes. It tried to answer if incremental com-
putation can be signi�cantly faster than recomputing from
scratch given a small change of weights. Nasre et al. [31]
studied the incremental betweenness centrality (BC) algo-
rithms in graphs where edge weights are updated (decreases)
or new edges are added. Gruenheid et al. [12] studied the
record linkage clustering problem on changing graphs where
insertion, deletion, and change (weight decreasing or increas-
ing) operations are supported. The authors proposed that
directly considering change could be more e�cient than
deletion and insertion for linkage clustering.

9 CONCLUSIONS

This work targets the scalability limitations in handling edge
deletions and weight updates for incremental graph query
evaluation. For edge deletions, it introduces a bottom-up
dependency tracing strategy for handling very large update
batches. For weight changes, it avoids simulating them with
pairs of edge deletion and insertion by presenting a direct
approach based on the monotonicity of graph algorithms. In
addition, this work discusses an adaptive evaluation scheme
that changes the tracing strategy based on the update volume.
Finally, it demonstrates the e�ectiveness of the proposed
ideas with a new graph system IncBoost. The evaluation
results show that IncBoost is able to scale to very large
update batches with sizes of 30% to 60% of the graph size.

ACKNOWLEDGMENT

We thank our paper shepherd Dr. Mingyu Gao for helping
with the paper revision. This work was supported in part
by National Science Foundation Grants CCF-2226448, CCF-
2106383, CCF-2028714, CCF-2002554 and CCF-1813173 to
the University of California, Riverside.

REFERENCES
[1] 2013. Wikipedia links, english network dataset. http://konect.cc/

networks/wikipedia_link_en/. Accessed: 2022-01-02.

[2] Lars Backstrom, Dan Huttenlocher, Jon Kleinberg, and Xiangyang Lan.

2006. Group formation in large social networks: membership, growth,

and evolution. In Proceedings of the 12th ACM SIGKDD international

conference on Knowledge discovery and data mining. 44–54.

[3] Abanti Basak, Zheng Qu, Jilan Lin, Alaa R Alameldeen, Zeshan Chishti,

Yufei Ding, and Yuan Xie. 2021. Improving streaming graph process-

ing performance using input knowledge. In MICRO-54: 54th Annual

IEEE/ACM International Symposium on Microarchitecture. 1036–1050.

930

IncBoost: Scaling Incremental Graph Processing for Edge Deletions and Weight Updates SoCC ’24, November 20–22, 2024, Redmond, WA, USA

[4] Matthew Baxter, Tarek Elgindy, Andreas T Ernst, Thomas Kalinowski,

and Martin WP Savelsbergh. 2014. Incremental network design with

shortest paths. European Journal of Operational Research 238, 3 (2014),

675–684.

[5] Raymond Cheng, Ji Hong, Aapo Kyrola, Youshan Miao, Xuetian Weng,

Ming Wu, Fan Yang, Lidong Zhou, Feng Zhao, and Enhong Chen. 2012.

Kineograph: taking the pulse of a fast-changing and connected world.

In Proceedings of the 7th ACM european conference on Computer Systems.

85–98.

[6] Avery Ching, Sergey Edunov, Maja Kabiljo, Dionysios Logothetis, and

Sambavi Muthukrishnan. 2015. One trillion edges: Graph processing

at facebook-scale. Proceedings of the VLDB Endowment 8, 12 (2015),

1804–1815.

[7] Laxman Dhulipala, Guy E Blelloch, and Julian Shun. 2019. Low-latency

graph streaming using compressed purely-functional trees. In Proceed-

ings of the 40th ACM SIGPLAN conference on programming language

design and implementation. 918–934.

[8] Wenfei Fan and Chao Tian. 2022. Incremental graph computations:

Doable and undoable. ACM Transactions on Database Systems (TODS)

47, 2 (2022), 1–44.

[9] Wenfei Fan, Chao Tian, Ruiqi Xu, Qiang Yin, Wenyuan Yu, and Jingren

Zhou. 2021. Incrementalizing graph algorithms. In Proceedings of the

2021 International Conference on Management of Data. 459–471.

[10] Guanyu Feng, Zixuan Ma, Daixuan Li, Shengqi Chen, Xiaowei Zhu,

Wentao Han, and Wenguang Chen. 2021. RisGraph: A Real-Time

Streaming System for Evolving Graphs to Support Sub-millisecond

Per-update Analysis at Millions Ops/s. In Proceedings of the 2021 Inter-

national Conference on Management of Data. 513–527.

[11] Shufeng Gong, Chao Tian, Qiang Yin, Wenyuan Yu, Yanfeng Zhang,

Liang Geng, Song Yu, Ge Yu, and Jingren Zhou. 2021. Automating

incremental graph processing with �exible memoization. Proceedings

of the VLDB Endowment 14, 9 (2021), 1613–1625.

[12] Anja Gruenheid, Xin Luna Dong, and Divesh Srivastava. 2014. Incre-

mental record linkage. Proceedings of the VLDB Endowment 7, 9 (2014),

697–708.

[13] Wentao Han, Youshan Miao, Kaiwei Li, Ming Wu, Fan Yang, Lidong

Zhou, Vijayan Prabhakaran, Wenguang Chen, and Enhong Chen. 2014.

Chronos: a graph engine for temporal graph analysis. In Proceedings

of the Ninth European Conference on Computer Systems. 1–14.

[14] Monika Henzinger, Ami Paz, and Stefan Schmid. 2021. On the Complex-

ity of Weight-Dynamic Network Algorithms. In 2021 IFIP Networking

Conference (IFIP Networking). IEEE, 1–9.

[15] Abdullah Al Raqibul Islam, Dong Dai, and Dazhao Cheng. 2022. VCSR:

Mutable CSR Graph Format Using Vertex-Centric Packed Memory

Array. In 2022 22nd IEEE International Symposium on Cluster, Cloud

and Internet Computing (CCGrid). IEEE, 71–80.

[16] Xiaolin Jiang, Chengshuo Xu, Xizhe Yin, Zhijia Zhao, and Rajiv Gupta.

2021. Tripoline: generalized incremental graph processing via graph

triangle inequality. In Proceedings of the Sixteenth European Conference

on Computer Systems. 17–32.

[17] Wolfgang Kellerer, Patrick Kalmbach, Andreas Blenk, Arsany Basta,

Martin Reisslein, and Stefan Schmid. 2019. Adaptable and data-driven

softwarized networks: Review, opportunities, and challenges. Proc.

IEEE 107, 4 (2019), 711–731.

[18] Jon M Kleinberg, Ravi Kumar, Prabhakar Raghavan, Sridhar Ra-

jagopalan, and Andrew S Tomkins. 1999. The web as a graph: Mea-

surements, models, and methods. In International Computing and Com-

binatorics Conference. Springer, 1–17.

[19] Pradeep Kumar and H Howie Huang. 2020. Graphone: A data store for

real-time analytics on evolving graphs. ACM Transactions on Storage

(TOS) 15, 4 (2020), 1–40.

[20] Jérôme Kunegis. 2013. Konect: the koblenz network collection. In

Proceedings of the 22nd international conference on world wide web.

1343–1350.

[21] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. 2010.

What is Twitter, a social network or a news media?. In Proceedings of

the 19th international conference on World wide web. 591–600.

[22] Leslie Lamport. 2019. Time, clocks, and the ordering of events in

a distributed system. In Concurrency: the Works of Leslie Lamport.

179–196.

[23] Jüri Lember, Dario Gasbarra, Alexey Koloydenko, and Kristi Kuljus.

2019. Estimation of Viterbi path in Bayesian hidden Markov models.

Metron 77 (2019), 137–169.

[24] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford large

network dataset collection.

[25] Dennis Luxen and Christian Vetter. 2011. Real-time routing with

OpenStreetMap data. In Proceedings of the 19th ACM SIGSPATIAL in-

ternational conference on advances in geographic information systems.

513–516.

[26] Mugilan Mariappan, Joanna Che, and Keval Vora. 2021. DZiG: sparsity-

aware incremental processing of streaming graphs. In Proceedings of

the Sixteenth European Conference on Computer Systems. 83–98.

[27] Mugilan Mariappan and Keval Vora. 2019. Graphbolt: Dependency-

driven synchronous processing of streaming graphs. In Proceedings of

the Fourteenth EuroSys Conference 2019. 1–16.

[28] Frank McSherry, Andrea Lattuada, Malte Schwarzkopf, and Timothy

Roscoe. [n. d.]. Shared Arrangements: practical inter-query sharing

for streaming data�ows. Proceedings of the VLDB Endowment 13, 10

([n. d.]).

[29] Frank McSherry, Derek Gordon Murray, Rebecca Isaacs, and Michael

Isard. 2013. Di�erential Data�ow.. In CIDR.

[30] Derek G Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul

Barham, and Martín Abadi. 2013. Naiad: a timely data�ow system.

In Proceedings of the Twenty-Fourth ACM Symposium on Operating

Systems Principles. 439–455.

[31] Meghana Nasre, Matteo Pontecorvi, and Vijaya Ramachandran. 2014.

Betweenness centrality–incremental and faster. In International Sym-

posium on Mathematical Foundations of Computer Science. Springer,

577–588.

[32] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. 2013. A light-

weight infrastructure for graph analytics. In Proceedings of the twenty-

fourth ACM symposium on operating systems principles. 456–471.

[33] Prashant Pandey, Brian Wheatman, Helen Xu, and Aydin Buluc. 2021.

Terrace: A hierarchical graph container for skewed dynamic graphs.

In Proceedings of the 2021 International Conference on Management of

Data. 1372–1385.

[34] Joseph Picone. 1990. Continuous speech recognition using hidden

Markov models. IEEE Assp magazine 7, 3 (1990), 26–41.

[35] Enric Pujol, Ingmar Poese, Johannes Zerwas, Georgios Smaragdakis,

and Anja Feldmann. 2019. Steering hyper-giants’ tra�c at scale. In Pro-

ceedings of the 15th International Conference on Emerging Networking

Experiments And Technologies. 82–95.

[36] Sha�ur Rahman, Mahbod Afarin, Nael Abu-Ghazaleh, and Rajiv Gupta.

2021. JetStream: Graph analytics on streaming data with event-driven

hardware accelerator. In MICRO-54: 54th Annual IEEE/ACM Interna-

tional Symposium on Microarchitecture. 1091–1105.

[37] Ganesan Ramalingam and Thomas Reps. 1996. An incremental algo-

rithm for a generalization of the shortest-path problem. Journal of

Algorithms 21, 2 (1996), 267–305.

[38] Ryan A. Rossi and Nesreen K. Ahmed. 2015. The Network Data Repos-

itory with Interactive Graph Analytics and Visualization. In AAAI.

https://networkrepository.com

931

SoCC ’24, November 20–22, 2024, Redmond, WA, USA Xizhe Yin, Zhijia Zhao, and Rajiv Gupta

[39] Scott Sallinen, Roger Pearce, and Matei Ripeanu. 2019. Incremental

graph processing for on-line analytics. In 2019 IEEE International Par-

allel and Distributed Processing Symposium (IPDPS). IEEE, 1007–1018.

[40] Xiaogang Shi, Bin Cui, Yingxia Shao, and Yunhai Tong. 2016. Tornado:

A system for real-time iterative analysis over evolving data. In Pro-

ceedings of the 2016 International Conference on Management of Data.

417–430.

[41] Julian Shun and Guy E Blelloch. 2013. Ligra: a lightweight graph pro-

cessing framework for shared memory. In Proceedings of the 18th ACM

SIGPLAN symposium on Principles and practice of parallel programming.

135–146.

[42] William F Tinney and John WWalker. 1967. Direct solutions of sparse

network equations by optimally ordered triangular factorization. Proc.

IEEE 55, 11 (1967), 1801–1809.

[43] Alexander van der Grinten, Maria Predari, and Florian Willich. 2022.

A fast data structure for dynamic graphs based on hash-indexed adja-

cency blocks. In 20th International Symposium on Experimental Algo-

rithms (SEA 2022). Schloss Dagstuhl-Leibniz-Zentrum für Informatik.

[44] Andrew Viterbi. 1967. Error bounds for convolutional codes and an

asymptotically optimum decoding algorithm. IEEE transactions on

Information Theory 13, 2 (1967), 260–269.

[45] Keval Vora, Rajiv Gupta, and Guoqing Xu. 2017. Kickstarter: Fast and

accurate computations on streaming graphs via trimmed approxima-

tions. In Proceedings of the twenty-second international conference on

architectural support for programming languages and operating systems.

237–251.

[46] Shoujin Wang, Liang Hu, Yan Wang, Xiangnan He, Quan Z Sheng,

Mehmet A Orgun, Longbing Cao, Francesco Ricci, and Philip S Yu.

2021. Graph learning based recommender systems: A review. arXiv

preprint arXiv:2105.06339 (2021).

[47] Yunming Zhang, Mengjiao Yang, Riyadh Baghdadi, Shoaib Kamil,

Julian Shun, and Saman Amarasinghe. 2018. Graphit: A high-

performance graph dsl. Proceedings of the ACM on Programming

Languages 2, OOPSLA (2018), 1–30.

[48] Xiaowei Zhu,Wenguang Chen,Weimin Zheng, and XiaosongMa. 2016.

Gemini: A computation-centric distributed graph processing system..

In OSDI, Vol. 16. 301–316.

[49] Xiaowei Zhu, Guanyu Feng, Marco Sera�ni, Xiaosong Ma, Jiping Yu,

Lei Xie, Ashraf Aboulnaga, and Wenguang Chen. [n. d.]. LiveGraph: A

Transactional Graph Storage Systemwith Purely Sequential Adjacency

List Scans. Proceedings of the VLDB Endowment 13, 7 ([n. d.]).

932

	Abstract
	1 Introduction
	2 Background
	2.1 Vertex-Centric Programming
	2.2 Existing Incremental Methods

	3 Dependency Tracing
	3.1 Dependency Representation
	3.2 Top-down Dependency Tracing
	3.3 Bottom-up Dependency Tracing

	4 Weight Updates Handling
	4.1 Case Study: SSSP
	4.2 Generalization

	5 Workload-Adaptive Evaluation
	5.1 Selection of Tracing Strategy
	5.2 Selection of Data Representation

	6 IncBoost Implementation
	7 Evaluation
	7.1 Performance
	7.2 Workload Scalability
	7.3 Dependency Tracing
	7.4 Bottom-up Tracing in a Distributed System

	8 Related Work
	9 Conclusions
	References

