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ABSTRACT

This paper presents the design and implementation of a circular
flight pattern for use by a 3D multimedia display, a Dronevision
(DV). ADV uses drones configured with light sources, Flying Light
Specks (FLSs), that are battery powered. The flight pattern enables
a swarm of FLSs to enter an opening, granting them access to the
charging coils to charge their batteries. We present two algorithms
for an FLS to travel from its current coordinate to rendezvous with
its assigned slot on the flight pattern, Shortest Distance (SD) and
Fastest Rendezvous Time (FRT). In addition to quantifying the trade-
off associated with these algorithms, we present an implementation
using a swarm of Crazyflie drones with Vicon localization.
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1 INTRODUCTION

A Dronevision (DV) is a non-immersive 3D multimedia display
detailed in [4]. A swarm of cooperating miniature drones configured
with RGB light sources, Flying Light Specks (FLSs), to illuminate 3D
point clouds and provide haptic interactions [30]. Figure 1 shows a
DV illuminating a rose with a falling petal captured using a depth
camera. The ceiling of the DV consists of wireless charging coils
used to charge the battery of FLSs with a fixed flight time.

STAG [31] is an algorithm that continuously charges FLSs by
staggering their battery flight time. It minimizes the number of
charging stations. In addition, it minimizes the number of FLSs
that are in transit from an illumination to the charging coils. This
number may range from 55 to 218 FLSs with today’s batteries and
the Rose point cloud requiring 65K FLSs [31].

A challenge is how a swarm of tens of FLSs may fly through
an opening of the DV to access the charging coils. This is non-
trivial for several reasons. First, the system must consider down-
wash [8, 14, 26, 66, 87, 94], a region of instability caused by the flight
of one FLS that adversely impacts other FLSs entering this region,

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@holodecks.quest. Copyright is held by the owner/author(s). Publication
rights licensed to the Holodecks Foundation.

Proceedings of the Holodecks Foundation, Vol. 2, No. 1.

doi:10.61981/ZFSH2404

Shahram Ghandeharizadeh

University of Southern California
Los Angeles, USA
shahram@usc.edu

Intel RealSense
Depth Camera D455

r

AN
AReal Rose | i
" /

Figure 1: A Dronevision, DV [4].

e.g., loss of control or unpredictable behavior. Second, the flight
pattern may be at an arbitrary angle 6 relative to the z-axis. Third,
FLSs should occupy a moving slot in the flight pattern while mini-
mizing either the traveled distance or the amount of time required
to occupy the slot for arbitrary 0 angles. This paper presents the
design, simulation, and implementation of a circular flight pattern.
Figures 2a and 2b show a horizontal and a vertical orientation of
a circular flight pattern accessing an opening. With 2a (2b), the
opening at the top (back) provides FLSs with access to the charging
coils on top (back) of the Dronevision.

Definition 1.1. A flight pattern is a formation consisting of a
fixed number of slots where all slots maintain a general pattern or
shape with a fixed distance between two consecutive slots. This
is commonly termed a rigid formation [13, 81]. Slots travel at a
fixed speed and in the same direction. Once an FLS occupied slot is
below the opening, the occupying FLS flies through the opening
and relinquishes its slot.

This paper focuses on circular flight patterns with a fixed radius
R. The distance between the slots is dictated by downwash. For
example, with quadrotor representing an FLS, its downwash is rep-
resented as a sphere with a fixed radius r [37, 50]. The sphere must
be inclusive of the drone. We set the distance between two consec-
utive slots to be 2r since two consecutive slots may be occupied by
an FLS. Slots move either clockwise or counter clockwise.

A centralized scheduler hosted on the Hub [31], see Figure 1,
of the DV may maintain the coordinates of the slots on the flight
pattern and assign a vacant slot to an FLS. This raises the following
research questions: First, what algorithms enable an FLS to compute
a path from its current coordinate to rendezvous with its assigned
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slot? Second, what are their tradeoff? This paper provides an answer
to these two questions.

We present two algorithms, Shortest Distance (SD) and Fastest
Rendezvous Time (FRT), for an FLS to rendezvous with its assigned
slot. As implied by their names, SD computes the shortest distance
while FRT computes the fastest time. We provide analytical models,
simulation studies, and an implementation of the circular flight
pattern. We use the simulation model to quantify the tradeoff asso-
ciated with SD and FRT. The implementation consists of a swarm
of 5 Crazyflie drones using the Vicon localization technique. Fig-
ures 3a and 3b show the opening of this implementation from a
corner and the bottom, respectively. It verifies the correctness of
the analytical models and the simulation model that embodies them.
Its output is almost identical to that of the simulation model, see
Figure 4 and video demonstration.

Contributions of this study include:

o Design and implementation of circular flight patterns at any
angle 0 relative to the z-axis. It realizes horizontal (§=0°),
vertical (=90°), and in-between 6 values. (Section 2.)

o 0 neutral algorithms to compute the Shortest Distance (SD)
and the Fastest Rendezvous Time (FRT) for an FLS to ren-
dezvous with its assigned slot. (Section 2).

o Analytical models, a simulation study, and an implementa-
tion of the flight pattern and the SD and FRT algorithms.
The implementation uses a swarm of Crazyflie drones with
the Vicon localization system. Click demonstration for a
video.

e An evaluation of SD and FRT, highlighting their tradeoffs.
(Section 4).

e We open source our software implementation and its data

set at https://github.com/flyinglightspeck/CircularFlightPattern.

The rest of this paper is organized as follows. Section 2 details
the design of a circular flight pattern, and SD and FRT algorithms.
Section 3 presents an implementation using Crazyflie drones. Sec-
tion 4 evaluates SD and FRT, quantifying their tradeoffs. Section 5
presents related work. Brief conclusions are presented in Section 6.

2 A CIRCULAR FLIGHT PATTERN SLANTED 0
DEGREES

A single layer circular flight pattern locates on a plane. It has a
fixed center Pc, a radius R, and N slots. The slots are rotating either
clockwise or counter-clockwise at the linear speed Sgj,;. A normal

vector Vorm defines the angle 6 between the flight pattern and
the z-axis, see Figure 5. The normal vector may be perpendicular to
the ground (=0, horizontal, see Figure 2a), parallel to the ground
(6=90, vertical, see Figure 2b), or slanted at 6 degrees relative to the
z-axis. See Figure 5.

To accommodate downwash, the distance between two consecu-
tive slots d; is required to be greater than or equal to twice the radius
r of the sphere that models a drone and its downwash, dg > 2r. The
maximum number of slots is N = %?, ds = 2r. The numerator is
the circumference of the flight pattern. The denominator 2r is the
minimum allowed distance between two slots. Obviously, a flight
pattern may consist of fewer slots n, n < N. In this case the distance
between slots may be larger than the required minimum, ds = %,
ds > 2r.

Y,

(a) A horizontal flight pattern,  (b) A vertical flight pattern,
6=0. 6 =90.

Figure 2: Dronevision with a circular Flight Pattern: the hori-
zontal (0=0°) and vertical (/=90°) alignment makes the charg-
ing coils accessible to FLSs.

(b) Bottom view of the opening.

Figure 3: the opening of an implementation with a swarm of
Crazyflie drones
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Figure 4: Visualization of simulation.
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Figure 5: An FLS relative to a flight pattern.

The slots on the flight pattern are assigned to FLSs. An FLS travels
from its current coordinate Py to rendezvous with its assigned slot.
It matches the speed of the slot (flight pattern) to occupy it. Meeting
these requirements is non-trivial because both the slot and the FLS
are moving. A design requires an answer to the following: What is
the coordinate of an assigned slot once the FLS arrives at the flight
pattern? What is the shortest distance for the FLS to rendezvous
with its slot? What is the fastest time for the FLS to rendezvous
with it slot? An answer to these questions is a tradeoff between
distance and time. The following sections quantify this tradeoff.
Section 2.1 provides an algorithm that computes the location of
a slot after some time interval for any value of 6. Subsequently,
Sections 2.2.2 and 2.2.3 present SD and FRT algorithms that trade
distance for time. These algorithms depend on a velocity model.
One is presented in Section 2.2.4.

2.1 Slot Coordinate as a Function of Time

The slots of a flight pattern are logical. Each is identified by a unique
id. At its initialization time, the scheduler determines the radius
R of the flight pattern, the number of slots N, the coordinates of
each slots and assigns them a unique id, and the speed of the slots.
Algorithm 1 computes the coordinates of the Slot sID after ¢ time
units. It assumes each slot of the flight pattern is indexed from 1 to

Algorithm 1: GetSlotPosition(FP, sID, t)

-VNorm

1 [xN, YN, ZN ] — e
”FP~VNorm||

FP.S.

2 ¢« —FpRt Xt

3 a « cos(¢)

4 b« sin(¢)

5 ¢ — 1—cos(g)

6 MRotation <

a+x§vc XNYNC —2zZNb  xnznc+ ynD
YNXNC+2ZNb a+ yjz\,c ynznce — xNb
_ 2

ZNXNC— YNb zZNync+xND a+zyc

7 Pgjor < FP.slots[sID]

— —————1
8 VR < MRotationFP.PcPsjor

—
9 return Pc + Vg

N, 1 < sID < N.Its input is a Flight Pattern object FP, the identity
of a slot sID, and ¢ time units from now. The object FP has a value

for the following variables: Vo that defines the angle 0, radius
R, speed Sgj,;. The output of Algorithm 1 is the coordinate of the
slot sID after ¢ time units. The first step of this algorithm computes

a unit vector by dividing Vorm with its length. Step 2 computes
the rotation angle ¢ of a slot after t time units. Steps 3-6 calculate
the rotation matrix for the slot. Step 7 identifies the current location
of slot sID. Step 8 applies the rotation matrix to the vector from the

—
slot to the center of the flight pattern. The resulting vector Vg is
from the center of the flight pattern to the location of the slot after

N
t time units. Step 9 converts the vector Vx to a 3D coordinate of the
Slot sID.

2.2 FLS Rendezvous with a Slot: SD and FRT

An FLS f in a Dronevison must rendezvous with its assigned slot,
i.e., arrive at the same coordinates and at the same time as its slot.
The Dronevision display space is well defined with no obstacles. It
is for use in an indoor setting with no environmental factors such
as wind. Here, we focus on a single layer circular flight pattern,
consisting of a fixed number of slots N that are rotating counter-
clockwise at a fixed speed. An FLS is provided with a slot, the
current coordinates of the slot, and the speed at which the slot
is moving. We present two rendezvous algorithms for use by the
FLSs. The first, Shortest Distance (SD), computes the path with
the shortest travel distance. The second, Fastest Rendezvous Time
(FRT), computes the path with the fastest travel time. Both assume
the current location of an FLS, Pf, is a known coordinate. SD uses
analytical models with the point on the flight pattern closest to Pg.
FRT uses dynamic programming by searching the range between
the closest and the farthest point on the flight pattern to Pr. Both
techniques assume (a) the velocity model of Section 2.2.4 and (b)
an FLS is able to travel at either the same speed or a faster speed
than the speed of a slot, Spax > Sgjo¢-

The next section describes how to compute the closest and far-
thest rendezvous point to the coordinate Py of an FLS. These are
denoted as Pcj5. and Pg,,, respectively. While SD of Section 2.2.2
uses Pejose, FRT of Section 2.2.3 uses both Pejpse and Prgy.



2.2.1 Closest & Farthest Point. Flight patterns may have different
orientation in the global coordinate system. A general counter-
clockwise rotating flight pattern, FP, lies on a plane IT. The included
angle between IT and the positive direction of the z-axis (vector
[0,0, 1]) of the global coordinate system is 6 degree. Let the nor-

—_—
mal vector of the flight pattern be Vxorm = [xN, YN, 2N ], where
|VNorm| = 1. Similar to previous, let Py = [xf,yr, zf], and Pc =
[%c, Yo, zc]- See Figure 5. Then, PrPc = [xc — xr, yc — yf, zc — 5]
The distance from Pg to II can be described as the length of the
vector V—)H where V_)H start from Pg and end at a point on II, and
— — P
Vi is perpendicular to II, meaning Vi || VNorm- Hence, Vg =
— —_—
|PrPc| X cos(B) X VNorm, where cosine value of the included angle
—
PfPC‘VNorm
P ——
‘PfPC'lxlvNurml

—_— _— —— —
tion of vector P¢Pc on the plane II: Vpyoj = PgPc — Vi, and the

_ _
between P¢Pc and VNorm, cos(f) = . The projec-

. s Voroj .
closest point position P.jys. = Pc — R X l":J, the farthest point
V; roj
- proj
position Pr,p = Pc + R X —Lrer
‘Vprojl

The simple horizontal and vertical flight patters of Figures 2a
and 2b are a special case with 0 set to 0° and 90°, respectively.

2.2.2  Shortest Distance (SD) Path. This technique minimizes the
distance d traveled by an FLS to its assigned slot. It computes a
straight line with a starting point set to the FLS’s coordinates, an
end point set to the closest point P}y, on the flight pattern, some
wait time 0 at the starting point, and the FLS flight duration. The
duration is dictated by the FLS velocity model to travel d with the
time required to decelerate to match the speed of a slot in the flight
pattern.

When d is such that an FLS may reach its maximum speed, we
consider 3 variants of SD. Their key difference is the duration of
wait time § and the speed used to travel. All variants consider the
time to either accelerate or decelerate to match the speed of a slot
in a flight pattern.

Variant 1 requires an FLS to travel at its fastest speed Spax
by adjusting the duration of §. When compared with the other
alternatives, it maximizes the wait time Jp,4x. Its highest speed
must be as fast as the speed of the slots (Sgj,;) in the flight pattern
or faster, Smax = Ssior- When Spmax > Sgjop, Variant 1 considers
the time to decelerate to match the speed of its assigned slot Sg;,;.

Variant 2 requires an FLS to leave its current coordinates as
soon as possible. This means it may travel at its slowest speed
Sslow > 0 to rendezvous with its slot by adjusting the duration of
4. It minimizes the wait time ;,;, when compared with the other
variants. If S, ., is faster or slower than Sgj,,;, Variant 2 considers
the time to decelerate or accelerate to match the speed of its slot.

Variant 3 is a hybrid that uses a speed in between the minimum
Sslow and the maximum Sy, 4 speed. It is motivated by the observa-
tion that the flight time of an FLS on its remaining battery lifetime
may be maximized if it travels at a pre-specified speed Spastery-
Assuming this speed is somewhere between the minimum and max-
imum speed (Ssjow < SBattery < Smax) then, this technique’s wait
time 8 priq is somewhere between the minimum and maximum

wait times, Smin < Spypria < dmax. Note that Variant 3 is the same
as Variants 1 and 2 when Sgg,; equals Spax and Sy, respectively.

Algorithm 2 implements SD by calculating the position and time
for an FLS f to rendezvous with its assigned slot and its wait time
at its starting coordinate denoted &. The three variants can be im-
plemented by using different velocity models for an FLS. These
velocity models are presented in Section 2.2.4. Based on the coordi-
nate of the closest point to f on the flight pattern, this algorithm
computes the time for f to arrive at this position and the time for
its assigned slot to arrive at the same coordinate. Algorithm 2 is a
sequence of analytical expressions with O(1) complexity. It outputs
the rendezvous time, and the amount of time § that the FLS must
wait.

Algorithm 2: SD(FP, f, P.jose)

1 Pgjor < FP.slots[f.sID]
)
Psi10: FP.Pc
|Ps1or FP.PC|
—
Perose FP-Pc
—_———
[Pcrose FP-Pcl
4 angleroration = arCCOS(V(slot,C) : V(close,C))
if (V(slot,C) X V(close,C)) - FP.VNorm < 0 then

anglerotation = 271 — angleroration

R —
2 Vistor,c) =

—_—
V(close,C) =

(™)

o o

7 end

_ FP.S
tsior = angleroration + #

o

—_—
9 ty = MIN-TIMEVELOCITYMODEL (| f.PfPcjose )

10 if ts0; <ty then
2nxFP.R
11 t — ST
round FP.Ssior
ty—tsior

tround

12 tsiot < lslot +’V -‘ X tround

13 end

14 if Variant 1then

15 ‘ S = tsior — ty

16 end

17 else if Variant 2 then

18 ‘ 8 = Frx-TIMEVELOCITYMODEL(| f.P£Pejose s tstor)
19 end

20 else if Variant 3 then

21 Snybria < The specified waiting time for Variant 3

22 5= 5hybrid
23 end

24 return [tgos, 5]

2.2.3 Fastest Rendezvous Time (FRT) Path. Algorithm 3 computes
the path with the Fastest Travel Time (FRT) for an FLS to rendezvous
with its assigned slot. The algorithm computes both the rendezvous
time and its coordinate on the flight pattern by using the closest
Pejose and farthest Pg,, points on the flight pattern as a guide. Since
the distance traveled by the FLS will not be longer than the distance
from Py to Pfgy, and will not be shorter than the distance from Py
to P.jose- then the upper and lower bound can be calculated with
the velocity model of the FLS using the fastest speed Sy,ax. This
defines an interval of time [Tinin, Tmax]. We break this interval
into y slices, each with e duration, y = %T””" FRT uses binary
search to determine when the assigned slot will rendezvous with
the FLS in a time slice. It uses this slice as input to Algorithm 1 to



determine a point on the flight path. This is the coordinates of the
rendezvous location. The complexity of the algorithm is O(log p).

Algorithm 3: FRT(FP, f, Pciose, Prars €)

ey
1 lo « VELOCITYMODEL(| f.PfPciosel)

P —
2 hi < VELocITYMODEL(|f.PrPrar|)
3 while lo < hi+ e do

4 mid « (lo+ hi) +2

5 Psior < GETSLOTPOSITION(FP, f.sID, mid)
6 ttravel < VELOCITYMODEL(|f.PfPsior|)
7 tdiff — travel — mid

8 if taiff >0 then

9 ‘ lo «— mid+e€

10 end

11 else

12 ‘ hi «— mid

13 end
14 end

15 return[GETSLOTPOSITION (FP, f.SID, lo), lo]

Algorithm 3 shows the pseudo-code for FRT. Its input includes
a flight pattern object FP, an FLS f, the closest P.j,¢. and farthest
P4y points on the flight pattern, and e which is the duration of a
time slice. Its output is the coordinate of the rendezvous point and
its time. Steps 1 and 2 use the velocity model of Section 2.2.4 to
compute the time to travel to P;jy5, and Py, respectively. Steps 3
to 14 implement the binary search technique to compute the FLS
rendezvous time with its assigned time slot. The complexity of
Algorithm 3 is O(In p).

2.24 Velocity Model.

Assumption: An FLS has a maximum acceleration aT, amaximum
deceleration a!, and a maximum! speed Spax. At any time, the FLS
may not travel faster than Sy,4x, and the rate of which the FLS’s
speed changes cannot exceed a! when accelerating or al when
decelerating. Note that all Syax, a' and a! are scalar values larger
than 0, independent of the heading of an FLS.

Min-Time Velocity Model: SD (Variant 1) and FRT use the Min-
Time Velocity Model. The velocity model describes the acceleration,
deceleration, and a maximum speed Sp4x that an FLS may use
to travel distance d. This is the distance from the FLS’s current
coordinate Py to the coordinates of its assigned slot Ps, d = |P¢Ps|.
We assume the starting velocity of the FLS is zero and the maximum
FLS speed is higher than the speed of a slot, Spax = Ssjoz- Factors
such as gravity may cause al to not equal at.

ProBLEM 1. Minimize the time to travel distance d from Py to Ps
without exceeding the maximum speed Spqyx, or exceeding either the
maximum acceleration al or maximum deceleration at.

Three scenarios constitute the solution to this problem:

The speed of a stationary FLS is zero. The minimum speed that an FLS may travel is
Sslow- It is dictated by Variant 2 of SD. The velocity model tries to realize Sso1y-

(1) d requires the FLS to accelerate at rate a' to reach Simaxs
travel at speed Spqx until a well defined point, and decel-
erate at rate al to match the speed of its assigned slot at
Ps.

(2) d requires the FLS to accelerate at rate a' to reach Smax-
However, the FLS must decelerate immediately at the rate
at to match the speed of its assigned slot at Ps.

(3) d requires the FLS to accelerate to arrive at a well defined
point. Prior to reaching Sy4x, the FLS must decelerate to
Ssiots the speed of its assigned slot at Ps.

(4) distoo small, ie., the FLS is too close to the slot, preventing
the FLS from accelerating to match the speed of its slot at
Ps.

An FLS detects the different scenarios using distance d to its des-
tination, distance A, (Ap) required to accelerate to Smax (Ssior)s
and distance Ay required to decelerate to match Sgj,; from Spgyx.
The FLS is in Scenario 1 when Ag+A is less than d, Scenario 2
when A, + Ay equals d, Scenario 3 when A, + Ay is greater than d,
Scenario 4 when A, is greater than d. Note that the ideal scenario
(not listed) is when A, equals to d as it enables an FLS to accelerate
from rest to occupy its slot at speed Sgj,;-

Below, we describe how an FLS computes A, and Aj. Subse-
quently, we detail each scenario in turn.
Detection of alternative scenarios: The velocity of an FLS at time T +¢
is a function of its speed at time T and acceleration or deceleration
the afterwards t: Vi;1 = V; + ad. Where § is the duration of the step.
V; is a value between 0 and Sp,4x, Vi € [0, Smax]. The distance an
FLS travels while accelerating or decelerating in time ¢ is:

A=Vit+ %a(t)z (1)

Where V; is the starting speed and a is set to either al or-al depend-
ing on whether the FLS is accelerating or decelerating, respectively.

Consider the scenario when an FLS accelerates from a starting
velocity of zero to reach the maximum speed. The amount of time

required to reach the maximum speed Spqx is S’;‘;”‘ . During this

time, the FLS travels distance A, to reach Sy4x, Aa=%aTt2. When
decelerating from the maximum speed with the objective to match

Sslo¢ then V; is Spgx and the required time is t = W The

traveled distance A =Spmgxt — %al(wy, see Equation 1.

Alternative scenarios: In Scenario 1, the FLS cruises at speed Syqx

for a distance equivalent to Ac=d-(Ag + Ay). Its duration is Sﬁ;{.
In Scenario 2, once the FLS speed is Spax, it starts to decelerate
at the rate al to arrive at its slot with speed Sgjo;. With Scenario
3, the FLS uses the following equation to compute the amount of
\/ZaTa“jald \/ZaTﬁd .

7 + ) . With the last
scenario, the FLS must move A, — d away from its slot. Now, it is
in the ideal scenario to accelerate to match Sgj,;.

time to arrive at its slot:

Example 1.

Consider a horizontal flight pattern, FP.0=0, rotating at a speed
of 0.7 m/second, FP.S;,,=0.7 m/second. The radius of this circular
flight pattern is 1 meter, FP.R=1 m, and the coordinate of its cen-
ter is [0,0,0.8]. An FLS with a starting coordinate [1,1,0] must
rendezvous with its assigned slot. The maximum FLS speed is



Smax=1.5 m/second. Its maximum acceleration and deceleration are
1 m/second?. Hence, Tynin = 0.901 seconds and Tyax = 2.543 seconds.
Assume the duration of a time slice is % seconds, €=0.033 seconds.
The number of time slots is 36, y=36. Hence, FRT of Algorithm 3
requires [log, 36] = 6 iterations. It computes a straight line path
for the FLS to rendezvous with its assigned slot 0.83 seconds from
the current time and travel 0.963 m with the fastest speed.

With the same settings, SD of Algorithm 2 (adjusted for Variant
2) requires a flight time of 2.574 seconds. This is more than 3x longer
than FRT. However, its traveled distance (0.9 m) is 7% shorter than
FRT. One reason for SD’s long flight time is its wait time § = 7.526
second to rendezvous with its slot.

Fix-Time Velocity Model: Variants 2 and 3 use the Fix-Time Veloc-
ity Model. This velocity model describes how an FLS may achieve
rendezvous speed Sgj,; after traveling distance d during time T.
The value of T is determined by the time to rendezvous with g,
(see Algorithm 2) and the waiting time §, T = tg,; — J. Similar to
the Min-Time Velocity Model, d=|P¢Ps|, and we assume the FLS
starts from the velocity zero and Spax > Sgo¢-

ProBLEM 2. Travel distance d from Py to Ps in a fixed time T
without exceeding the maximum speed Spayx, or exceeding either the
maximum acceleration al or maximum deceleration at.

Four scenarios constitute the solution to this problem:

(1) d requires the FLS to continuously accelerate for a duration
T to reach Sgj,;, so to match the speed of its assigned slot
P.

(2) d requires the FLS to accelerate to reach Sgj,;, then travel
at speed Sgj,; until it rendezvous with its slot at Ps.

(3) d requires the FLS to accelerate to reach S, travel at
speed Sy, ., until a well defined point, and decelerate to
match the speed of its assigned slot at Ps. Note that Sg;,; <
Shax < Smax-

(4) distoo small, i.e., the FLS is too close to the slot, preventing
the FLS from accelerating to match the speed of its slot at
P.

The acceleration and deceleration of an FLS may not be fixed
constant. Multiple optimization approaches can be adapted to cal-
culate a smooth change in acceleration (deceleration) [41, 60]. Here,
we describe the simplest version using a constant acceleration and
deceleration. An FLS detects different scenarios using distance d to
its destination, speed of its a551gned slot Ssi1o¢ and travel time T.

Detection of alternative scenarios: If *"" is greater than d, the FLS
TSsior
2

is in Scenario 4. Otherwise, the FLS is in Scenario 1 when is

greater than or equal to d, Scenario 2 when TS;’”‘ is smaller than d

SZ
and M +(T - Ss"" )Ssios is greater than or equal to d, Scenario 3

when SS"" +(T- Sl“t )Ssos is smaller than d. Note that there is one
special case in Scenario 3, where S},,,x = Smax, the acceleration is
aT, and the deceleration is a!. In this case, Fix-Time Velocity Model
generates the same moving pattern as the Min-Time Velocity Model.
This may happen when min and 8pyprig in Variant 2 and 3 of SD
and Sy of Variant 1 of SD are all limited to 0 by d and T

Below, we fill in the detailed acceleration and deceleration of
an FLS in different scenarios based on a constant acceleration and
deceleration model.

With Scenario 1, an FLS may accelerate with the rate of al’,

SZ
al’ = 3%5’ It will reach speed of Sgj,; by the time it rendezvous
with its assigned slot.
With Scenario 2, the time that an FLS may accelerate is tT,
1= 2(T - SL“) Hence the acceleration a!” can be calculated
(o}

—Sst’T‘”, Once it reach the speed of Sgj,;, it will

move with this constant speed and
For Scenario 3, there are multiple ways an FLS can do to achieve

accordingly, a!” =

the goal. An FLS maximize its accelerating time ¢! and later have
a longer decelerating time t}, or the opposite, or choose a balance
between these two. There are three constraints on ¢! and t!:

T> T+ @)

s t!

d= maxt

2

Shax + Ssior)tt
i ( max +2 slot)t + (T _ tT _ tl)S;nax (3)

{S%“x o 4)

S;nax = altl +Sslot

Here, we provide the equation for calculation with a focus on min-
imizing the accelerating time tT and the decelerating time tt by
using al and a! for acceleration and deceleration. Equation 3 can

be re-formalized as:
d= S;gax + (S;)%ax + Sslot)
24l 2al
and S, ,, can be calculated accordingly:

T - ,JTZ—( +1)(Ster )

’
Smax - 1 1

S S
+ (T ’Z?x - rgfx )Smax (5)

(6)

3 IMPLEMENTATION

We developed a simulation model of the techniques and imple-
mented them using a swarm of Crazyflie drones. We specified a
horizontal circular flight pattern with a radius of 1 meter, R=1, 6=0.
It rotates counter-clockwise. The speed of its slots is 0.7m/second.
The slots are separated by a distance of 125.66 cm (nglm) and are
1.79 seconds apart. The diameter of a Crazyflie is 15 cm (including
span of propellers). We set its maximum speed Sy, 4x at 1.5 m/second,
and maximum acceleration and deceleration at 1m/second?. The
dimensions of the space is 3m X 3m X 1.5m, and the opening is
27cm X 27cm. Figures 3a and 3b show the side and bottom view of
the opening of our implementation. A visualization of the simula-
tion model is shown in Figure 4.

Our implementation starts with 5 Crazyflies at a stationary state
on the ground. They fly to 5 random initial coordinate. Each drone
is assigned with available slots using a Round Robin policy. We use
the equations of Section 2.2.2 to compute the shortest path for each
FLS to occupy its assigned slot, starting with the speed of zero.

The sudden turns when FLSs are rendezvousing with their as-
signed slots are handled by crazyswarm platform [66].




Once an FLS rendezvous with its assigned slot, it occupies the
slot and flies at the speed of the slot until it is below the opening.
Subsequently, it enters the opening an relinquishes its slot. The
FLS flies to a corner of the display space, descends to the floor, and
flies to its newly assigned random starting position to repeat the
process. An experiment has a duration of one minute. It terminates
by landing the 5 FLSs on the ground. See implementation.

4 EVALUATION

We used the experimental setup of Figure 6 to quantify the tradeoff
associated with SD and FRT, Algorithms 2 and 3, respectively. The
important configuration parameters of the flight pattern include its
radius R=1 meter, the speed of slots 0.7 m/second, and the number
of slots 5. We simulated starting point for one FLS along a line
that is a fixed distance below the center of the flight pattern. This
distance is a function of the radius of the flight pattern, » X R. We
vary the value of w from 1 to 1000 including in between values.
The distance between the points on the line is fixed at 1 meter, i.e.,
Point 10 is 9 meters away from Point 1 which is aligned below the
center of the flight pattern. See Figure 6.

VNorm Z

w= {1, 10, 100, 1000} |

Point 1

Figure 6: Experimental setup.

Summary of lessons: We conducted many experiments. A summary
of lessons learned include: First, SD results in a shorter travel dis-
tance compared to FRT while FRT results in a faster rendezvous
time when compared with SD. Second, the difference between SD
and FRT becomes insignificant as we increase the distance between
an FLS and its assigned slot, i.e., @ > 100. Third, minimizing the
time for a slot to make a rotation on the flight pattern expedites
the FLS rendezvous time with an FLS. Similarly, increasing the FLS
speed, its acceleration and deceleration expedites its rendezvous
time with an FLS. Fourth, with SD, the shortest distance may be
such that an FLS arrives at the rendezvous point and misses its
assigned slot. In this case, the FLS must wait for one rotation of the
slot, delaying the rendezvous time. See Figure 7b.

Table 1 shows the numerical results of distance traveled and
time spent by FLS starting at point 1, assigned with Slot 2, different
values of w.

Detailed Results: The experimental results presented in this section
use a flight pattern with the specification of Example 1 and our
Crazyflie implementation of Section 3.

Figure 7a shows the percentage improvement in distance pro-

vided by SD when compared with FRT. The x-axis of this figure

Point3 Point 10

Table 1: Traveled distance and rendezvous time, SD and FRT.

° Dist Traveled (m) | Time (second)

SD FRT SD FRT
1R 1.00 1.40 9.43 1.87
5R 5.00 5.38 9.43 4.57
10R 10.00 10.06 9.43 7.70

100R 100.00 100.02 72.27 67.67
1000R | 1,000.00 1,000.00 | 673.67 673.67

% Improvement in Distance by SD
100%

80%
60%
40%

20%

0,
0% 2 4 6 8 10

Starting Point of the FLS

(a) SD’s % improvement in distance when compared with FRT.

% Improvement in Time by FRT
100%

80%
60%
40%

20%

0
0% 3 4 6 g 10

Starting Point of the FLS
(b) FRT’s % improvement in time when compared with SD.
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(c) Rendezvous time with different slot assignments, SD, ©w=5.

Figure 7: An evaluation of SD and FRT.
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denotes the points on the line below the flight pattern. An FLS is
assigned Slot 2. (We discuss other slots at the end of this section.)
SD’s highest percentage improvement is observed with low values
of w (e.g., w=1), i.e., when the line is closest to the flight pattern.
This improvement decreases as we increase . Beyond w > 10, the
percentage improvement provided by SD is insignificant because
the traveled distance is large. This distance dominates to make the
difference between the closest P}y, and farthest Pg,, point (fixed
at 2R) on the flight pattern insignificant.

Figure 7b shows the percentage improvement in time by FRT
when compared with SD as a function of the points on the line. The
different lines correspond to the different values of w.The percent-
age improvement provided by FRT decreases as a function of w with
a few exceptions. The percentage decrease is due to an increase in
the distance traveled by the FLS. SD requires the FLS to fly at the
fastest speed similar to FRT. With sufficiently large distances, the
rendezvous time to the closest point versus to a point between the
closest and farthest points on the flight pattern becomes insignifi-
cant. This explains the decrease in percentage improvement as a
function of w. This explanation also applies to the general decrease
of a line, say w = 1, as a function of the points on the line. Point
10 is 10x farther away than Point 1, rendering the aforementioned
different insignificant.

Figure 7b shows sudden jumps in the percentage improvement
with w values 7 and 10. This is due to an FLS arriving at its ren-
dezvous point P, only to miss its assigned slot. The FLS waits
for the slot to make a full rotation. This results in a significant
increase in rendezvous time with SD. Note that SD requires the FLS
to travel at its fastest speed. Reducing its speed will only increase
the percentage improvement provided by FRT.

The slot assigned to an FLS dictates whether it must wait for a
rotation of the slot. Figure 7c highlights this by focusing on w=5.
It shows the time to rendezvous for different slots on the flight
pattern as a function of the FLS location on the line, i.e., points
shown in Figure 6. While with Slots 1, 2, and 5, the rendezvous
time is a line that decreases smoothly and tends to flatten out, it
increases with Slots 3 and 4 due to an FLS waiting for either a full
or a partial rotation of its slot.

Collision Avoidance Technique Literature Survey

Switch Destination
Controlled Collision L] (]
Swarm e o 00
Adjust Velocity . e 0 0 o o
Fly around collision ° e o0 00
Compute Alternative Path ° ® o ] ©c00 00

L O PN HFL P HFN LI O LD O DDA D>
S I R R I I NI NI N N N N I SN TN BN SN AN
FFEE FFTP TS SRS

Publication Year

Figure 8: 97 collision avoidance/handling studies.

Table 2: A summary of FRT and variants of SD.

Distance Flight Battery

Traveled Time Flight Time
SD:V1 | Optimizes Optimizes X
SD:V2 | Optimizes X X
SD:V3 | Optimizes X Optimizes
FRT X Optimizes X

5 RELATED WORK

The concept of flight patterns for use by a Dronevision is first
introduced in [107]. It presents alternative shapes for a flight pattern,
e.g., square, circle, and ellipsoid. It also describes flight patterns
that are either single layer or hierarchical. We focus on the circular
pattern of [107] and extend it by presenting different angles 6 for
a flight pattern relative to the Z-axis, and algorithms SD and FRT
that enable an FLS to rendezvous with its assigned slot on the flight
pattern. We present analytical models, simulation studies, and an
implementation using a swarm of Crazyflie drones. These novel
extensions are absent from [107].

Our novel extensions are absent from prior studies in collision
handling techniques. This is based on our survey of 97 studies that
were published from 1983-2024 . Figure 8 shows the six forms of
collisions as a function of the publication year. The size of a circle
and its darkness denotes the number of studies, ranging from 1 to 6.
48 studies compute an alternative path [10, 11, 14, 18, 19, 22, 23, 28—
32, 34-36, 38, 40, 42, 45, 47-49, 52, 57, 58, 62, 68, 72, 74, 78, 80, 82,
84, 85, 87,90, 92, 95-97, 99, 100, 102-105, 108], 21 studies fly around
the collision point [3, 12, 15, 17, 21, 23, 24, 27, 43, 44, 53, 66, 67, 71,
76,717, 83, 86, 91, 93], 26 studies adjust velocity [17, 20, 21, 23, 27, 28,
30, 38, 43-45, 51, 52, 54, 64, 67, 72, 76, 79, 80, 83, 86, 91, 93, 97, 99],
27 studies employ a swarming technique [1, 2, 5-8, 12, 16, 20, 25, 30,
31, 33, 39, 55, 59, 63, 65, 66, 73, 88, 89, 98, 101, 105-107], 6 studies
use controlled collision [46, 51, 54, 56, 61, 64], and 1 study switches
destination of the colliding agents [76] 2.

We also analyzed more recent papers related to drone swarm
managements [9, 69, 70, 75]. None have the concept of a flight
pattern, SD and FRT algorithms.

6 CONCLUSION

This paper presents the design and implementation of a circular
flight pattern that enables a swarm of FLSs to enter an opening of
a 3D multimedia display, Dronevision. This opening provides FLSs
with access to charging coils. We presented two novel algorithms,
SD and FRT, that enable an FLS to occupy its assigned slot with the
flight pattern at an arbitrary angle 0 relative to the z-axis. The 3
variants of SD optimize for different metrics as shown in Table 2.
One may view Variant 1 of SD as a hybrid of FRT that prioritizes
optimizing traveled distance followed with travel time. Experimen-
tal results show SD minimizes the distance traveled by an FLS
while FRT minimize the time traveled. Our implementation using a
swarm of Crazyflie drones validates the correctness of our designs.
Both our design and implementation scale to a large number of
drones and slots. While we focused on a 3D multimedia display, the

2Total is 129 since a study overlaps multiple categories.
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concept of a flight pattern and our algorithms are flexible for use
by other applications that require a swarm of drones to fly through
an opening.
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