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ABSTRACT
This paper presents the design and implementation of a circular
!ight pattern for use by a 3D multimedia display, a Dronevision
(DV). A DV uses drones con"gured with light sources, Flying Light
Specks (FLSs), that are battery powered. The !ight pattern enables
a swarm of FLSs to enter an opening, granting them access to the
charging coils to charge their batteries. We present two algorithms
for an FLS to travel from its current coordinate to rendezvous with
its assigned slot on the !ight pattern, Shortest Distance (SD) and
Fastest Rendezvous Time (FRT). In addition to quantifying the trade-
o# associated with these algorithms, we present an implementation
using a swarm of Crazy!ie drones with Vicon localization.
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1 INTRODUCTION
A Dronevision (DV) is a non-immersive 3D multimedia display
detailed in [4]. A swarm of cooperatingminiature drones con"gured
with RGB light sources, Flying Light Specks (FLSs), to illuminate 3D
point clouds and provide haptic interactions [30]. Figure 1 shows a
DV illuminating a rose with a falling petal captured using a depth
camera. The ceiling of the DV consists of wireless charging coils
used to charge the battery of FLSs with a "xed !ight time.

STAG [31] is an algorithm that continuously charges FLSs by
staggering their battery !ight time. It minimizes the number of
charging stations. In addition, it minimizes the number of FLSs
that are in transit from an illumination to the charging coils. This
number may range from 55 to 218 FLSs with today’s batteries and
the Rose point cloud requiring 65K FLSs [31].

A challenge is how a swarm of tens of FLSs may !y through
an opening of the DV to access the charging coils. This is non-
trivial for several reasons. First, the system must consider down-
wash [8, 14, 26, 66, 87, 94], a region of instability caused by the !ight
of one FLS that adversely impacts other FLSs entering this region,
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Figure 1: A Dronevision, DV [4].

e.g., loss of control or unpredictable behavior. Second, the !ight
pattern may be at an arbitrary angle 𝐿 relative to the z-axis. Third,
FLSs should occupy a moving slot in the !ight pattern while mini-
mizing either the traveled distance or the amount of time required
to occupy the slot for arbitrary 𝐿 angles. This paper presents the
design, simulation, and implementation of a circular !ight pattern.
Figures 2a and 2b show a horizontal and a vertical orientation of
a circular !ight pattern accessing an opening. With 2a (2b), the
opening at the top (back) provides FLSs with access to the charging
coils on top (back) of the Dronevision.

De!nition 1.1. A "ight pattern is a formation consisting of a
"xed number of slots where all slots maintain a general pattern or
shape with a "xed distance between two consecutive slots. This
is commonly termed a rigid formation [13, 81]. Slots travel at a
"xed speed and in the same direction. Once an FLS occupied slot is
below the opening, the occupying FLS !ies through the opening
and relinquishes its slot.

This paper focuses on circular !ight patterns with a "xed radius
R. The distance between the slots is dictated by downwash. For
example, with quadrotor representing an FLS, its downwash is rep-
resented as a sphere with a "xed radius 𝑀 [37, 50]. The sphere must
be inclusive of the drone. We set the distance between two consec-
utive slots to be 2r since two consecutive slots may be occupied by
an FLS. Slots move either clockwise or counter clockwise.

A centralized scheduler hosted on the Hub [31], see Figure 1,
of the DV may maintain the coordinates of the slots on the !ight
pattern and assign a vacant slot to an FLS. This raises the following
research questions: First, what algorithms enable an FLS to compute
a path from its current coordinate to rendezvous with its assigned
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slot? Second, what are their tradeo#? This paper provides an answer
to these two questions.

We present two algorithms, Shortest Distance (SD) and Fastest
Rendezvous Time (FRT), for an FLS to rendezvous with its assigned
slot. As implied by their names, SD computes the shortest distance
while FRT computes the fastest time. We provide analytical models,
simulation studies, and an implementation of the circular !ight
pattern. We use the simulation model to quantify the tradeo# asso-
ciated with SD and FRT. The implementation consists of a swarm
of 5 Crazy!ie drones using the Vicon localization technique. Fig-
ures 3a and 3b show the opening of this implementation from a
corner and the bottom, respectively. It veri"es the correctness of
the analytical models and the simulation model that embodies them.
Its output is almost identical to that of the simulation model, see
Figure 4 and video demonstration.

Contributions of this study include:
• Design and implementation of circular !ight patterns at any

angle 𝐿 relative to the z-axis. It realizes horizontal (𝐿=0→),
vertical (𝐿=90→), and in-between 𝐿 values. (Section 2.)

• 𝐿 neutral algorithms to compute the Shortest Distance (SD)
and the Fastest Rendezvous Time (FRT) for an FLS to ren-
dezvous with its assigned slot. (Section 2).

• Analytical models, a simulation study, and an implementa-
tion of the !ight pattern and the SD and FRT algorithms.
The implementation uses a swarm of Crazy!ie drones with
the Vicon localization system. Click demonstration for a
video.

• An evaluation of SD and FRT, highlighting their tradeo#s.
(Section 4).

• We open source our software implementation and its data
set at https://github.com/!yinglightspeck/CircularFlightPattern.

The rest of this paper is organized as follows. Section 2 details
the design of a circular !ight pattern, and SD and FRT algorithms.
Section 3 presents an implementation using Crazy!ie drones. Sec-
tion 4 evaluates SD and FRT, quantifying their tradeo#s. Section 5
presents related work. Brief conclusions are presented in Section 6.

2 A CIRCULAR FLIGHT PATTERN SLANTED 𝐿
DEGREES

A single layer circular !ight pattern locates on a plane. It has a
"xed center 𝑁𝐿 , a radius 𝑂, and 𝑃 slots. The slots are rotating either
clockwise or counter-clockwise at the linear speed 𝑄𝑀𝑁𝑂𝑃 . A normal
vector

↑↑↑↑↑↓
𝑅𝑄𝑂𝑅𝑆 de"nes the angle 𝐿 between the !ight pattern and

the z-axis, see Figure 5. The normal vector may be perpendicular to
the ground (𝐿=0, horizontal, see Figure 2a), parallel to the ground
(𝐿=90, vertical, see Figure 2b), or slanted at 𝐿 degrees relative to the
z-axis. See Figure 5.

To accommodate downwash, the distance between two consecu-
tive slots𝑆𝑀 is required to be greater than or equal to twice the radius
𝑀 of the sphere that models a drone and its downwash, 𝑆𝑀 ↔ 2𝑀 . The
maximum number of slots is 𝑃 = 2𝑇𝑈

2𝑅 , 𝑆𝑀 = 2𝑀 . The numerator is
the circumference of the !ight pattern. The denominator 2𝑀 is the
minimum allowed distance between two slots. Obviously, a !ight
pattern may consist of fewer slots 𝑇, 𝑇 < 𝑃 . In this case the distance
between slots may be larger than the required minimum, 𝑆𝑀 = 2𝑇𝑈

𝑉 ,
𝑆𝑀 ↔ 2𝑀 .

(a) A horizontal !ight pattern,
𝑊 = 0.

(b) A vertical !ight pattern,
𝑊 = 90.

Figure 2: Dronevision with a circular Flight Pattern: the hori-
zontal (𝐿=0→) and vertical (𝐿=90→) alignment makes the charg-
ing coils accessible to FLSs.

(a) Corner view of the opening.

(b) Bottom view of the opening.

Figure 3: the opening of an implementation with a swarm of
Crazy!ie drones

Figure 4: Visualization of simulation.
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Figure 5: An FLS relative to a !ight pattern.

The slots on the !ight pattern are assigned to FLSs. An FLS travels
from its current coordinate 𝑁𝑋 to rendezvous with its assigned slot.
It matches the speed of the slot (!ight pattern) to occupy it. Meeting
these requirements is non-trivial because both the slot and the FLS
are moving. A design requires an answer to the following: What is
the coordinate of an assigned slot once the FLS arrives at the !ight
pattern? What is the shortest distance for the FLS to rendezvous
with its slot? What is the fastest time for the FLS to rendezvous
with it slot? An answer to these questions is a tradeo# between
distance and time. The following sections quantify this tradeo#.
Section 2.1 provides an algorithm that computes the location of
a slot after some time interval for any value of 𝐿 . Subsequently,
Sections 2.2.2 and 2.2.3 present SD and FRT algorithms that trade
distance for time. These algorithms depend on a velocity model.
One is presented in Section 2.2.4.

2.1 Slot Coordinate as a Function of Time
The slots of a !ight pattern are logical. Each is identi"ed by a unique
id. At its initialization time, the scheduler determines the radius
𝑂 of the !ight pattern, the number of slots 𝑃 , the coordinates of
each slots and assigns them a unique id, and the speed of the slots.
Algorithm 1 computes the coordinates of the Slot sID after 𝑈 time
units. It assumes each slot of the !ight pattern is indexed from 1 to

Algorithm 1: GetSlotPosition(𝑉𝑁, 𝑊𝑋𝑌, 𝑈 )

1 [𝑌𝐿 , 𝑍𝐿 , 𝑎𝐿 ] ↗ 𝑀𝑁 .𝑂𝐿𝑃𝑄𝑅
↘𝑀𝑁 .𝑂𝐿𝑃𝑄𝑅 ↘

2 𝑏 ↗ 𝑀𝑁 .𝑆𝑇𝑈𝑃𝑉
𝑀𝑁 .𝑊 ≃ 𝑃

3 𝑐 ↗ cos(𝑏 )
4 𝑑 ↗ sin(𝑏 )
5 𝑒 ↗ 1 ↑ cos(𝑏 )
6 𝑓𝑊𝑃𝑉𝑋𝑉𝑌𝑃𝑍 ↗

𝑐 + 𝑌2
𝐿 𝑒 𝑌𝐿 𝑍𝐿 𝑒 ↑ 𝑎𝐿𝑑 𝑌𝐿 𝑎𝐿 𝑒 + 𝑍𝐿𝑑

𝑍𝐿 𝑌𝐿 𝑒 + 𝑎𝐿𝑑 𝑐 + 𝑍2𝐿 𝑒 𝑍𝐿 𝑎𝐿 𝑒 ↑ 𝑌𝐿𝑑
𝑎𝐿 𝑌𝐿 𝑒 ↑ 𝑍𝐿𝑑 𝑎𝐿 𝑍𝐿 𝑒 + 𝑌𝐿𝑑 𝑐 + 𝑎2𝐿 𝑒


7 𝑔𝑇𝑈𝑃𝑉 ↗ 𝑕𝑔 .𝑀𝑁𝑂𝑃𝑀 [𝑀𝑖𝑗 ]
8
↑↓
𝑘𝑊 ↗ 𝑓𝑊𝑃𝑉𝑋𝑉𝑌𝑃𝑍

↑↑↑↑↑↑↑↑↓
𝑕𝑔 .𝑔𝑎𝑔𝑇𝑈𝑃𝑉 T

9 return 𝑔𝑎 + ↑↓
𝑘𝑊

𝑃 , 1 ⇐ 𝑊𝑋𝑌 ⇐ 𝑃 . Its input is a Flight Pattern object FP, the identity
of a slot sID, and 𝑈 time units from now. The object FP has a value
for the following variables:

↑↑↑↑↑↓
𝑅𝑄𝑂𝑅𝑆 that de"nes the angle 𝐿 , radius

𝑂, speed 𝑄𝑀𝑁𝑂𝑃 . The output of Algorithm 1 is the coordinate of the
slot sID after 𝑈 time units. The "rst step of this algorithm computes
a unit vector by dividing

↑↑↑↑↑↓
𝑅𝑄𝑂𝑅𝑆 with its length. Step 2 computes

the rotation angle 𝑍 of a slot after 𝑈 time units. Steps 3-6 calculate
the rotation matrix for the slot. Step 7 identi"es the current location
of slot sID. Step 8 applies the rotation matrix to the vector from the
slot to the center of the !ight pattern. The resulting vector

↑↓
𝑅𝑈 is

from the center of the !ight pattern to the location of the slot after
𝑈 time units. Step 9 converts the vector

↑↓
𝑅𝑈 to a 3D coordinate of the

Slot sID.

2.2 FLS Rendezvous with a Slot: SD and FRT
An FLS 𝑎 in a Dronevison must rendezvous with its assigned slot,
i.e., arrive at the same coordinates and at the same time as its slot.
The Dronevision display space is well de"ned with no obstacles. It
is for use in an indoor setting with no environmental factors such
as wind. Here, we focus on a single layer circular !ight pattern,
consisting of a "xed number of slots 𝑃 that are rotating counter-
clockwise at a "xed speed. An FLS is provided with a slot, the
current coordinates of the slot, and the speed at which the slot
is moving. We present two rendezvous algorithms for use by the
FLSs. The "rst, Shortest Distance (SD), computes the path with
the shortest travel distance. The second, Fastest Rendezvous Time
(FRT), computes the path with the fastest travel time. Both assume
the current location of an FLS, 𝑁𝑋 , is a known coordinate. SD uses
analytical models with the point on the !ight pattern closest to 𝑁𝑋 .
FRT uses dynamic programming by searching the range between
the closest and the farthest point on the !ight pattern to 𝑁𝑋 . Both
techniques assume (a) the velocity model of Section 2.2.4 and (b)
an FLS is able to travel at either the same speed or a faster speed
than the speed of a slot, 𝑄𝑆𝑐𝑌 ↔ 𝑄𝑀𝑁𝑂𝑃 .

The next section describes how to compute the closest and far-
thest rendezvous point to the coordinate 𝑁𝑋 of an FLS. These are
denoted as 𝑁𝑒𝑁𝑂𝑀𝑙 and 𝑁𝑋 𝑐𝑅 , respectively. While SD of Section 2.2.2
uses 𝑁𝑒𝑁𝑂𝑀𝑙 , FRT of Section 2.2.3 uses both 𝑁𝑒𝑁𝑂𝑀𝑙 and 𝑁𝑋 𝑐𝑅 .
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2.2.1 Closest & Farthest Point. Flight patterns may have di#erent
orientation in the global coordinate system. A general counter-
clockwise rotating !ight pattern, 𝑉𝑁 , lies on a plane ω. The included
angle between ω and the positive direction of the z-axis (vector
[0, 0, 1]) of the global coordinate system is 𝐿 degree. Let the nor-
mal vector of the !ight pattern be

↑↑↑↑↑↓
𝑅𝑄𝑂𝑅𝑆 = [𝑏𝑄 ,𝑐𝑄 , 𝑑𝑄 ], where

|↑↑↑↑↑↓𝑅𝑄𝑂𝑅𝑆 | = 1. Similar to previous, let 𝑁𝑋 = [𝑏 𝑋 ,𝑐𝑋 , 𝑑𝑋 ], and 𝑁𝐿 =

[𝑏𝑒 ,𝑐𝑒 , 𝑑𝑒 ]. See Figure 5. Then,
↑↑↑↑↓
𝑁𝑋 𝑁𝐿 = [𝑏𝐿 ↑ 𝑏 𝑋 ,𝑐𝐿 ↑𝑐𝑋 , 𝑑𝐿 ↑ 𝑑𝑋 ].

The distance from 𝑁𝑋 to ω can be described as the length of the

vector
↑↓
𝑅𝑚 , where

↑↓
𝑅𝑚 start from 𝑁𝑋 and end at a point on ω, and

↑↓
𝑅𝑚 is perpendicular to ω, meaning

↑↓
𝑅𝑚 ↘ ↑↑↑↑↑↓

𝑅𝑄𝑂𝑅𝑆 . Hence, 𝑅𝑚 =
|↑↑↑↑↓𝑁𝑋 𝑁𝐿 | ≃ cos(𝑒) ≃↑↑↑↑↑↓

𝑅𝑄𝑂𝑅𝑆 , where cosine value of the included angle

between
↑↑↑↑↓
𝑁𝑋 𝑁𝐿 and

↑↑↑↑↑↓
𝑅𝑄𝑂𝑅𝑆 , cos(𝑒) =

↑↑↑↓
𝑔𝑏 𝑔𝑎 ·↑↑↑↑↓𝑘𝐿𝑃𝑄𝑅

|↑↑↑↓𝑔𝑏 𝑔𝑎 |≃ |↑↑↑↑↓𝑘𝐿𝑃𝑄𝑅 |
. The projec-

tion of vector
↑↑↑↑↓
𝑁𝑋 𝑁𝐿 on the plane ω:

↑↑↑↑↓
𝑅𝑛𝑅𝑂 𝑜 =

↑↑↑↑↓
𝑁𝑋 𝑁𝐿 ↑ ↑↓

𝑅𝑚 , and the

closest point position 𝑁𝑒𝑁𝑂𝑀𝑙 = 𝑁𝐿 ↑ 𝑂 ≃
↑↑↑↓
𝑘𝑐𝑄𝑃 𝑑

|↑↑↑↓𝑘𝑐𝑄𝑃 𝑑 |
, the farthest point

position 𝑁𝑋 𝑐𝑅 = 𝑁𝐿 + 𝑂 ≃
↑↑↑↓
𝑘𝑐𝑄𝑃 𝑑

|↑↑↑↓𝑘𝑐𝑄𝑃 𝑑 |
The simple horizontal and vertical !ight patters of Figures 2a

and 2b are a special case with 𝐿 set to 0→ and 90→, respectively.

2.2.2 Shortest Distance (SD) Path. This technique minimizes the
distance 𝑆 traveled by an FLS to its assigned slot. It computes a
straight line with a starting point set to the FLS’s coordinates, an
end point set to the closest point 𝑁𝑒𝑁𝑂𝑀𝑙 on the !ight pattern, some
wait time 𝑓 at the starting point, and the FLS !ight duration. The
duration is dictated by the FLS velocity model to travel 𝑆 with the
time required to decelerate to match the speed of a slot in the !ight
pattern.

When 𝑆 is such that an FLS may reach its maximum speed, we
consider 3 variants of SD. Their key di#erence is the duration of
wait time 𝑓 and the speed used to travel. All variants consider the
time to either accelerate or decelerate to match the speed of a slot
in a !ight pattern.

Variant 1 requires an FLS to travel at its fastest speed 𝑄𝑆𝑐𝑌
by adjusting the duration of 𝑓 . When compared with the other
alternatives, it maximizes the wait time 𝑓𝑆𝑐𝑌 . Its highest speed
must be as fast as the speed of the slots (𝑄𝑀𝑁𝑂𝑃 ) in the !ight pattern
or faster, 𝑄𝑆𝑐𝑌 ↔ 𝑄𝑀𝑁𝑂𝑃 . When 𝑄𝑆𝑐𝑌 > 𝑄𝑀𝑁𝑂𝑃 , Variant 1 considers
the time to decelerate to match the speed of its assigned slot 𝑄𝑀𝑁𝑂𝑃 .

Variant 2 requires an FLS to leave its current coordinates as
soon as possible. This means it may travel at its slowest speed
𝑄𝑀𝑁𝑂𝑝 > 0 to rendezvous with its slot by adjusting the duration of
𝑓 . It minimizes the wait time 𝑓𝑆𝑞𝑉 when compared with the other
variants. If 𝑄𝑀𝑁𝑂𝑝 is faster or slower than 𝑄𝑀𝑁𝑂𝑃 , Variant 2 considers
the time to decelerate or accelerate to match the speed of its slot.

Variant 3 is a hybrid that uses a speed in between the minimum
𝑄𝑀𝑁𝑂𝑝 and the maximum 𝑄𝑆𝑐𝑌 speed. It is motivated by the observa-
tion that the !ight time of an FLS on its remaining battery lifetime
may be maximized if it travels at a pre-speci"ed speed 𝑄𝑟𝑐𝑃𝑃𝑙𝑅𝑍 .
Assuming this speed is somewhere between the minimum and max-
imum speed (𝑄𝑀𝑁𝑂𝑝 ⇐ 𝑄𝑟𝑐𝑃𝑃𝑙𝑅𝑍 ⇐ 𝑄𝑆𝑐𝑌 ) then, this technique’s wait
time 𝑓𝑠𝑍𝑑𝑅𝑞𝑡 is somewhere between the minimum and maximum

wait times, 𝑓𝑆𝑞𝑉 ⇐ 𝑓𝑠𝑍𝑑𝑅𝑞𝑡 ⇐ 𝑓𝑔𝑕𝑏 . Note that Variant 3 is the same
as Variants 1 and 2 when 𝑄𝑟𝑐𝑃 equals 𝑄𝑆𝑐𝑌 and 𝑄𝑀𝑁𝑂𝑝 , respectively.

Algorithm 2 implements SD by calculating the position and time
for an FLS 𝑎 to rendezvous with its assigned slot and its wait time
at its starting coordinate denoted 𝑓 . The three variants can be im-
plemented by using di#erent velocity models for an FLS. These
velocity models are presented in Section 2.2.4. Based on the coordi-
nate of the closest point to 𝑎 on the !ight pattern, this algorithm
computes the time for 𝑎 to arrive at this position and the time for
its assigned slot to arrive at the same coordinate. Algorithm 2 is a
sequence of analytical expressions with𝑖 (1) complexity. It outputs
the rendezvous time, and the amount of time 𝑓 that the FLS must
wait.

Algorithm 2: SD(𝑉𝑁, 𝑎 , 𝑁𝑒𝑁𝑂𝑀𝑙 )
1 𝑔𝑇𝑈𝑃𝑉 ↗ 𝑕𝑔 .𝑀𝑁𝑂𝑃𝑀 [ 𝑋 .𝑀𝑖𝑗 ]

2
↑↑↑↑↑↑↓
𝑘(𝑇𝑈𝑃𝑉 ,𝑎 ) =

↑↑↑↑↑↑↑↑↑↑↓
𝑁𝑇𝑈𝑃𝑉 𝑀𝑁 .𝑁𝑎

|↑↑↑↑↑↑↑↑↑↑↓𝑁𝑇𝑈𝑃𝑉 𝑀𝑁 .𝑁𝑎 |

3
↑↑↑↑↑↑↑↓
𝑘(𝑒𝑈𝑃𝑇𝑓,𝑎 ) =

↑↑↑↑↑↑↑↑↑↑↑↓
𝑁𝑒𝑈𝑃𝑇𝑓𝑀𝑁 .𝑁𝑎

|↑↑↑↑↑↑↑↑↑↑↑↓𝑁𝑒𝑈𝑃𝑇𝑓𝑀𝑁 .𝑁𝑎 |
4 𝑐𝑉𝑢𝑁𝑙𝑄𝑃𝑉𝑋𝑉𝑌𝑃𝑍 = arccos(↑↑↑↑↑↑↓𝑘(𝑇𝑈𝑃𝑉 ,𝑎 ) ·

↑↑↑↑↑↑↑↓
𝑘(𝑒𝑈𝑃𝑇𝑓,𝑎 ) )

5 if (↑↑↑↑↑↑↓𝑘(𝑇𝑈𝑃𝑉 ,𝑎 ) ≃
↑↑↑↑↑↑↑↓
𝑘(𝑒𝑈𝑃𝑇𝑓,𝑎 ) ) · 𝑕𝑔 .

↑↑↑↑↑↓
𝑘𝐿𝑃𝑄𝑅 < 0 then

6 𝑐𝑉𝑢𝑁𝑙𝑄𝑃𝑉𝑋𝑉𝑌𝑃𝑍 = 2𝑇 ↑ 𝑐𝑉𝑢𝑁𝑙𝑄𝑃𝑉𝑋𝑉𝑌𝑃𝑍
7 end
8 𝑃𝑇𝑈𝑃𝑉 = 𝑐𝑉𝑢𝑁𝑙𝑄𝑃𝑉𝑋𝑉𝑌𝑃𝑍 ÷ 𝑀𝑁 .𝑆𝑇𝑈𝑃𝑉

𝑀𝑁 .𝑊

9 𝑃𝑏 = M!"#T!$%V%&’(!)*M’+%&( |↑↑↑↑↑↑↑↑↓𝑋 .𝑔𝑏 𝑔𝑒𝑈𝑃𝑇𝑓 | )
10 if 𝑃𝑇𝑈𝑃𝑉 < 𝑃𝑏 then
11 𝑃𝑄𝑃𝑔𝑍𝑕 ↗ 2𝑖≃𝑀𝑁 .𝑊

𝑀𝑁 .𝑆𝑇𝑈𝑃𝑉

12 𝑃𝑇𝑈𝑃𝑉 ↗ 𝑃𝑇𝑈𝑃𝑉 +
⌈ 𝑉𝑏 ↑𝑉𝑇𝑈𝑃𝑉

𝑉𝑄𝑃𝑔𝑍𝑕

⌉
≃ 𝑃𝑄𝑃𝑔𝑍𝑕

13 end
14 if Variant 1 then
15 𝑣 = 𝑃𝑇𝑈𝑃𝑉 ↑ 𝑃𝑏
16 end
17 else if Variant 2 then
18 𝑣 = F!,#T!$%V%&’(!)*M’+%&( |↑↑↑↑↑↑↑↑↓𝑋 .𝑔𝑏 𝑔𝑒𝑈𝑃𝑇𝑓 |, 𝑃𝑇𝑈𝑃𝑉 )
19 end
20 else if Variant 3 then
21 𝑣𝑗𝑘𝑙𝑄𝑌𝑕 ↗ The speci"ed waiting time for Variant 3
22 𝑣 = 𝑣𝑗𝑘𝑙𝑄𝑌𝑕
23 end
24 return [𝑃𝑇𝑈𝑃𝑉 ,𝑣 ]

2.2.3 Fastest Rendezvous Time (FRT) Path. Algorithm 3 computes
the pathwith the Fastest Travel Time (FRT) for an FLS to rendezvous
with its assigned slot. The algorithm computes both the rendezvous
time and its coordinate on the !ight pattern by using the closest
𝑁𝑒𝑁𝑂𝑀𝑙 and farthest 𝑁𝑋 𝑐𝑅 points on the !ight pattern as a guide. Since
the distance traveled by the FLS will not be longer than the distance
from 𝑁𝑋 to 𝑁𝑋 𝑐𝑅 , and will not be shorter than the distance from 𝑁𝑋
to 𝑁𝑒𝑁𝑂𝑀𝑙 , then the upper and lower bound can be calculated with
the velocity model of the FLS using the fastest speed 𝑄𝑆𝑐𝑌 . This
de"nes an interval of time [𝑗𝑆𝑞𝑉 , 𝑗𝑆𝑐𝑌 ]. We break this interval
into 𝑘 slices, each with 𝑙 duration, 𝑘 = 𝑤𝑅𝑋𝑚↑𝑤𝑅𝑌𝑍

𝑥 . FRT uses binary
search to determine when the assigned slot will rendezvous with
the FLS in a time slice. It uses this slice as input to Algorithm 1 to
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determine a point on the !ight path. This is the coordinates of the
rendezvous location. The complexity of the algorithm is O(log 𝑘).

Algorithm 3: FRT(𝑉𝑁, 𝑎 , 𝑁𝑒𝑁𝑂𝑀𝑙 , 𝑁𝑋 𝑐𝑅 , 𝑙)

1 𝑁𝑂 ↗ V%&’(!)*M’+%&( |↑↑↑↑↑↑↑↑↓𝑋 .𝑔𝑏 𝑔𝑒𝑈𝑃𝑇𝑓 | )
2 𝑠𝑞 ↗ V%&’(!)*M’+%&( |↑↑↑↑↑↑↑↓𝑋 .𝑔𝑏 𝑔𝑏 𝑋𝑄 | )
3 while 𝑁𝑂 ⇐ 𝑠𝑞 + 𝑥 do
4 𝑆𝑞𝑡 ↗ (lo + hi) ÷ 2
5 𝑔𝑇𝑈𝑃𝑉 ↗ G%)S&’)P’-!)!’"(𝑕𝑔, 𝑋 .𝑀𝑖𝑗,𝑆𝑞𝑡 )
6 𝑃𝑉𝑄𝑋𝑛𝑓𝑈 ↗ V%&’(!)*M’+%&( |↑↑↑↑↑↑↑↓𝑋 .𝑔𝑏 𝑔𝑇𝑈𝑃𝑉 | )
7 𝑃𝑕𝑌𝑏 𝑏 ↗ 𝑃𝑉𝑄𝑋𝑛𝑓𝑈 ↑𝑆𝑞𝑡

8 if 𝑃𝑕𝑌𝑏 𝑏 > 0 then
9 𝑁𝑂 ↗𝑆𝑞𝑡 + 𝑥

10 end
11 else
12 𝑠𝑞 ↗𝑆𝑞𝑡

13 end
14 end
15 return[G%)S&’)P’-!)!’"(𝑕𝑔, 𝑋 .𝑦𝑖𝑗, 𝑁𝑂 ), 𝑁𝑂 ]

Algorithm 3 shows the pseudo-code for FRT. Its input includes
a !ight pattern object FP, an FLS 𝑎 , the closest 𝑁𝑒𝑁𝑂𝑀𝑙 and farthest
𝑁𝑋 𝑐𝑅 points on the !ight pattern, and 𝑙 which is the duration of a
time slice. Its output is the coordinate of the rendezvous point and
its time. Steps 1 and 2 use the velocity model of Section 2.2.4 to
compute the time to travel to 𝑁𝑒𝑁𝑂𝑀𝑙 and 𝑁𝑋 𝑐𝑅 , respectively. Steps 3
to 14 implement the binary search technique to compute the FLS
rendezvous time with its assigned time slot. The complexity of
Algorithm 3 is O(ln 𝑘).

2.2.4 Velocity Model.

Assumption: An FLS has amaximum acceleration 𝑕⇒, a maximum
deceleration 𝑕⇑, and a maximum1 speed 𝑄𝑆𝑐𝑌 . At any time, the FLS
may not travel faster than 𝑄𝑆𝑐𝑌 , and the rate of which the FLS’s
speed changes cannot exceed 𝑕⇒ when accelerating or 𝑕⇑ when
decelerating. Note that all 𝑄𝑆𝑐𝑌 , 𝑕⇒ and 𝑕⇑ are scalar values larger
than 0, independent of the heading of an FLS.

Min-Time Velocity Model: SD (Variant 1) and FRT use the Min-
Time Velocity Model. The velocity model describes the acceleration,
deceleration, and a maximum speed 𝑄𝑆𝑐𝑌 that an FLS may use
to travel distance 𝑆 . This is the distance from the FLS’s current
coordinate 𝑁𝑋 to the coordinates of its assigned slot 𝑁𝑀 , 𝑆 = |𝑁𝑋 𝑁𝑀 |.
We assume the starting velocity of the FLS is zero and the maximum
FLS speed is higher than the speed of a slot, 𝑄𝑆𝑐𝑌 ↔ 𝑄𝑀𝑁𝑂𝑃 . Factors
such as gravity may cause 𝑕⇒ to not equal 𝑕⇑.

P.’/&%$ 1. Minimize the time to travel distance 𝑆 from 𝑁𝑋 to 𝑁𝑀
without exceeding the maximum speed 𝑄𝑆𝑐𝑌 , or exceeding either the
maximum acceleration 𝑕⇒ or maximum deceleration 𝑕⇑.

Three scenarios constitute the solution to this problem:

1The speed of a stationary FLS is zero. The minimum speed that an FLS may travel is
𝑦𝑇𝑈𝑃𝑜 . It is dictated by Variant 2 of SD. The velocity model tries to realize 𝑦𝑇𝑈𝑃𝑜 .

(1) 𝑆 requires the FLS to accelerate at rate 𝑕⇒ to reach 𝑄𝑆𝑐𝑌 ,
travel at speed 𝑄𝑆𝑐𝑌 until a well de"ned point, and decel-
erate at rate 𝑕⇑ to match the speed of its assigned slot at
𝑁𝑀 .

(2) 𝑆 requires the FLS to accelerate at rate 𝑕⇒ to reach 𝑄𝑆𝑐𝑌 .
However, the FLS must decelerate immediately at the rate
𝑕⇑ to match the speed of its assigned slot at 𝑁𝑀 .

(3) 𝑆 requires the FLS to accelerate to arrive at a well de"ned
point. Prior to reaching 𝑄𝑆𝑐𝑌 , the FLS must decelerate to
𝑄𝑀𝑁𝑂𝑃 , the speed of its assigned slot at 𝑁𝑀 .

(4) 𝑆 is too small, i.e., the FLS is too close to the slot, preventing
the FLS from accelerating to match the speed of its slot at
𝑁𝑀 .

An FLS detects the di#erent scenarios using distance 𝑆 to its des-
tination, distance ε𝑐 (ε𝑛 ) required to accelerate to 𝑄𝑆𝑐𝑌 (𝑄𝑀𝑁𝑂𝑃 ),
and distance ε𝑡 required to decelerate to match 𝑄𝑀𝑁𝑂𝑃 from 𝑄𝑆𝑐𝑌 .
The FLS is in Scenario 1 when ε𝑐+ε𝑡 is less than 𝑆 , Scenario 2
when ε𝑐 + ε𝑡 equals 𝑆 , Scenario 3 when ε𝑐 + ε𝑡 is greater than 𝑆 ,
Scenario 4 when ε𝑛 is greater than 𝑆 . Note that the ideal scenario
(not listed) is when ε𝑛 equals to 𝑆 as it enables an FLS to accelerate
from rest to occupy its slot at speed 𝑄𝑀𝑁𝑂𝑃 .

Below, we describe how an FLS computes ε𝑐 and ε𝑡 . Subse-
quently, we detail each scenario in turn.
Detection of alternative scenarios: The velocity of an FLS at time𝑗 +𝑈
is a function of its speed at time 𝑗 and acceleration or deceleration
the afterwards 𝑈 :𝑅𝑞+1 = 𝑅𝑞 +𝑕𝑓 . Where 𝑓 is the duration of the step.
𝑅𝑞 is a value between 0 and 𝑄𝑆𝑐𝑌 , 𝑅𝑞 ⇓ [0, 𝑄𝑆𝑐𝑌 ]. The distance an
FLS travels while accelerating or decelerating in time 𝑈 is:

ε = 𝑅𝑞𝑈 +
1
2
𝑕(𝑈)2 (1)

Where𝑅𝑞 is the starting speed and 𝑕 is set to either 𝑕⇒ or -𝑕⇑ depend-
ing on whether the FLS is accelerating or decelerating, respectively.

Consider the scenario when an FLS accelerates from a starting
velocity of zero to reach the maximum speed. The amount of time
required to reach the maximum speed 𝑄𝑆𝑐𝑌 is 𝑦𝑅𝑋𝑚

𝑐⇒
. During this

time, the FLS travels distance ε𝑐 to reach 𝑄𝑆𝑐𝑌 , ε𝑐= 1
2𝑕

⇒𝑈2. When
decelerating from the maximum speed with the objective to match
𝑄𝑀𝑁𝑂𝑃 then 𝑅𝑞 is 𝑄𝑆𝑐𝑌 and the required time is 𝑈 = 𝑦𝑅𝑋𝑚↑𝑦𝑇𝑈𝑃𝑉

𝑐⇑
. The

traveled distance ε𝑡=𝑄𝑆𝑐𝑌 𝑈 ↑ 1
2𝑕

⇑ ( 𝑦𝑅𝑋𝑚↑𝑦𝑇𝑈𝑃𝑉
𝑐⇑

)2, see Equation 1.
Alternative scenarios: In Scenario 1, the FLS cruises at speed 𝑄𝑆𝑐𝑌

for a distance equivalent to ε𝑒=d-(ε𝑐 + ε𝑡 ). Its duration is ε𝑒
𝑦𝑅𝑋𝑚

.
In Scenario 2, once the FLS speed is 𝑄𝑆𝑐𝑌 , it starts to decelerate
at the rate 𝑕⇑ to arrive at its slot with speed 𝑄𝑀𝑁𝑂𝑃 . With Scenario
3, the FLS uses the following equation to compute the amount of

time to arrive at its slot:

√
2𝑐⇒ 𝑋⇑

𝑋⇒+𝑋⇑
𝑡

𝑐⇒
+

√
2𝑐⇒ 𝑋⇑

𝑋⇒+𝑋⇑
𝑡

𝑐⇑
. With the last

scenario, the FLS must move ε𝑛 ↑ 𝑆 away from its slot. Now, it is
in the ideal scenario to accelerate to match 𝑄𝑀𝑁𝑂𝑃 .

Example 1.
Consider a horizontal !ight pattern, FP.𝐿=0, rotating at a speed

of 0.7 m/second, FP.𝑄𝑀𝑁𝑂𝑃=0.7 m/second. The radius of this circular
!ight pattern is 1 meter, FP.𝑂=1 m, and the coordinate of its cen-
ter is [0,0,0.8]. An FLS with a starting coordinate [1, 1, 0] must
rendezvous with its assigned slot. The maximum FLS speed is
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𝑄𝑆𝑐𝑌=1.5 m/second. Its maximum acceleration and deceleration are
1 m/second2. Hence,𝑗𝑆𝑞𝑉 = 0.901 seconds and𝑗𝑆𝑐𝑌= 2.543 seconds.
Assume the duration of a time slice is 1

30 seconds, 𝑙=0.033 seconds.
The number of time slots is 36, 𝑘=36. Hence, FRT of Algorithm 3
requires ⇔log2 36↖ = 6 iterations. It computes a straight line path
for the FLS to rendezvous with its assigned slot 0.83 seconds from
the current time and travel 0.963 m with the fastest speed.

With the same settings, SD of Algorithm 2 (adjusted for Variant
2) requires a !ight time of 2.574 seconds. This is more than 3x longer
than FRT. However, its traveled distance (0.9 m) is 7% shorter than
FRT. One reason for SD’s long !ight time is its wait time 𝑓 = 7.526
second to rendezvous with its slot.

Fix-Time Velocity Model: Variants 2 and 3 use the Fix-Time Veloc-
ity Model. This velocity model describes how an FLS may achieve
rendezvous speed 𝑄𝑀𝑁𝑂𝑃 after traveling distance 𝑆 during time 𝑗 .
The value of 𝑗 is determined by the time to rendezvous with 𝑈𝑀𝑁𝑂𝑃
(see Algorithm 2) and the waiting time 𝑓 , 𝑗 = 𝑈𝑀𝑁𝑂𝑃 ↑ 𝑓 . Similar to
the Min-Time Velocity Model, d=|𝑁𝑋 𝑁𝑀 |, and we assume the FLS
starts from the velocity zero and 𝑄𝑆𝑐𝑌 > 𝑄𝑀𝑁𝑂𝑃 .

P.’/&%$ 2. Travel distance 𝑆 from 𝑁𝑋 to 𝑁𝑀 in a !xed time 𝑗
without exceeding the maximum speed 𝑄𝑆𝑐𝑌 , or exceeding either the
maximum acceleration 𝑕⇒ or maximum deceleration 𝑕⇑.

Four scenarios constitute the solution to this problem:

(1) 𝑆 requires the FLS to continuously accelerate for a duration
𝑗 to reach 𝑄𝑀𝑁𝑂𝑃 , so to match the speed of its assigned slot
𝑁𝑀 .

(2) 𝑆 requires the FLS to accelerate to reach 𝑄𝑀𝑁𝑂𝑃 , then travel
at speed 𝑄𝑀𝑁𝑂𝑃 until it rendezvous with its slot at 𝑁𝑀 .

(3) 𝑆 requires the FLS to accelerate to reach 𝑄 ↙𝑆𝑐𝑌 , travel at
speed 𝑄 ↙𝑆𝑐𝑌 until a well de"ned point, and decelerate to
match the speed of its assigned slot at 𝑁𝑀 . Note that 𝑄𝑀𝑁𝑂𝑃 <
𝑄 ↙𝑆𝑐𝑌 < 𝑄𝑆𝑐𝑌 .

(4) 𝑆 is too small, i.e., the FLS is too close to the slot, preventing
the FLS from accelerating to match the speed of its slot at
𝑁𝑀 .

The acceleration and deceleration of an FLS may not be "xed
constant. Multiple optimization approaches can be adapted to cal-
culate a smooth change in acceleration (deceleration) [41, 60]. Here,
we describe the simplest version using a constant acceleration and
deceleration. An FLS detects di#erent scenarios using distance 𝑆 to
its destination, speed of its assigned slot 𝑄𝑀𝑁𝑂𝑃 and travel time 𝑗 .

Detection of alternative scenarios: If
𝑦2𝑇𝑈𝑃𝑉
2𝑐⇒ is greater than 𝑆 , the FLS

is in Scenario 4. Otherwise, the FLS is in Scenario 1 when 𝑤𝑦𝑇𝑈𝑃𝑉
2 is

greater than or equal to 𝑆 , Scenario 2 when 𝑤𝑦𝑇𝑈𝑃𝑉
2 is smaller than 𝑆

and
𝑦2𝑇𝑈𝑃𝑉
2𝑐⇒ + (𝑗 ↑ 𝑦𝑇𝑈𝑃𝑉

𝑐⇒
)𝑄𝑀𝑁𝑂𝑃 is greater than or equal to 𝑆 , Scenario 3

when
𝑦2𝑇𝑈𝑃𝑉
2𝑐⇒ + (𝑗 ↑ 𝑦𝑇𝑈𝑃𝑉

𝑐⇒
)𝑄𝑀𝑁𝑂𝑃 is smaller than 𝑆 . Note that there is one

special case in Scenario 3, where 𝑄 ↙𝑆𝑐𝑌 = 𝑄𝑆𝑐𝑌 , the acceleration is
𝑕⇒, and the deceleration is 𝑕⇑. In this case, Fix-Time Velocity Model
generates the same moving pattern as the Min-Time Velocity Model.
This may happen when 𝑓𝑆𝑞𝑉 and 𝑓𝑠𝑍𝑑𝑅𝑞𝑡 in Variant 2 and 3 of SD
and 𝑓𝑆𝑐𝑌 of Variant 1 of SD are all limited to 0 by 𝑆 and 𝑗

Below, we "ll in the detailed acceleration and deceleration of
an FLS in di#erent scenarios based on a constant acceleration and
deceleration model.

With Scenario 1, an FLS may accelerate with the rate of 𝑕⇒↙,

𝑕⇒↙ =
𝑦2𝑇𝑈𝑃𝑉
2𝑡 . It will reach speed of 𝑄𝑀𝑁𝑂𝑃 by the time it rendezvous

with its assigned slot.
With Scenario 2, the time that an FLS may accelerate is 𝑈⇒,

𝑈⇒ = 2(𝑗 ↑ 𝑡
𝑦𝑇𝑈𝑃𝑉

). Hence the acceleration 𝑕⇒↙ can be calculated
accordingly, 𝑕⇒↙ = 𝑦𝑇𝑈𝑃𝑉

𝑃⇒
. Once it reach the speed of 𝑄𝑀𝑁𝑂𝑃 , it will

move with this constant speed and
For Scenario 3, there are multiple ways an FLS can do to achieve

the goal. An FLS maximize its accelerating time 𝑈⇒ and later have
a longer decelerating time 𝑈⇑, or the opposite, or choose a balance
between these two. There are three constraints on 𝑈⇒ and 𝑈⇑:

𝑗 ↔ 𝑈⇒ + 𝑈⇑ (2)

𝑆 =
𝑄 ↙𝑆𝑐𝑌 𝑈

⇒

2
+ (𝑄 ↙𝑆𝑐𝑌 + 𝑄𝑀𝑁𝑂𝑃 )𝑈⇑

2
+ (𝑗 ↑ 𝑈⇒ ↑ 𝑈⇑)𝑄 ↙𝑆𝑐𝑌 (3)

{
𝑄 ↙𝑆𝑐𝑌 ⇐ 𝑕⇒𝑈⇒

𝑄 ↙𝑆𝑐𝑌 ⇐ 𝑕⇑𝑈⇑ + 𝑄𝑦𝑁𝑂𝑃
(4)

Here, we provide the equation for calculation with a focus on min-
imizing the accelerating time 𝑈⇒ and the decelerating time 𝑈⇑ by
using 𝑕⇒ and 𝑕⇑ for acceleration and deceleration. Equation 3 can
be re-formalized as:

𝑆 =
𝑄 ↙2𝑆𝑐𝑌

2𝑕⇒
+ (𝑄 ↙2𝑆𝑐𝑌 + 𝑄𝑀𝑁𝑂𝑃 )

2𝑕⇑
+ (𝑗 ↑ 𝑄 ↙𝑆𝑐𝑌

𝑕⇒
↑ 𝑄 ↙𝑆𝑐𝑌

𝑕⇑
)𝑄 ↙𝑆𝑐𝑌 (5)

and 𝑄 ↙𝑆𝑐𝑌 can be calculated accordingly:

𝑄 ↙𝑆𝑐𝑌 =
𝑗 ↑

√
𝑗 2 ↑ ( 1

𝑐⇒
+ 1

𝑐⇑
) ( 𝑦𝑇𝑈𝑃𝑉2𝑐⇑ ↑ 𝑆)

1
𝑐⇒

+ 1
𝑐⇑

(6)

3 IMPLEMENTATION
We developed a simulation model of the techniques and imple-
mented them using a swarm of Crazy!ie drones. We speci"ed a
horizontal circular !ight pattern with a radius of 1 meter, 𝑂=1, 𝐿=0.
It rotates counter-clockwise. The speed of its slots is 0.7𝑔/𝑊𝑚𝑛𝑜𝑇𝑆 .
The slots are separated by a distance of 125.66 cm ( 2𝑇≃1𝑆5 ) and are
1.79 seconds apart. The diameter of a Crazy!ie is 15 cm (including
span of propellers).We set its maximum speed 𝑄𝑆𝑐𝑌 at 1.5 m/second,
and maximum acceleration and deceleration at 1𝑔/𝑊𝑚𝑛𝑜𝑇𝑆2. The
dimensions of the space is 3𝑔 ≃ 3𝑔 ≃ 1.5𝑔, and the opening is
27𝑛𝑔 ≃ 27𝑛𝑔. Figures 3a and 3b show the side and bottom view of
the opening of our implementation. A visualization of the simula-
tion model is shown in Figure 4.

Our implementation starts with 5 Crazy!ies at a stationary state
on the ground. They !y to 5 random initial coordinate. Each drone
is assigned with available slots using a Round Robin policy. We use
the equations of Section 2.2.2 to compute the shortest path for each
FLS to occupy its assigned slot, starting with the speed of zero.

The sudden turns when FLSs are rendezvousing with their as-
signed slots are handled by crazyswarm platform [66].

6



Once an FLS rendezvous with its assigned slot, it occupies the
slot and !ies at the speed of the slot until it is below the opening.
Subsequently, it enters the opening an relinquishes its slot. The
FLS !ies to a corner of the display space, descends to the !oor, and
!ies to its newly assigned random starting position to repeat the
process. An experiment has a duration of one minute. It terminates
by landing the 5 FLSs on the ground. See implementation.

4 EVALUATION
We used the experimental setup of Figure 6 to quantify the tradeo#
associated with SD and FRT, Algorithms 2 and 3, respectively. The
important con"guration parameters of the !ight pattern include its
radius 𝑂=1 meter, the speed of slots 0.7 m/second, and the number
of slots 5. We simulated starting point for one FLS along a line
that is a "xed distance below the center of the !ight pattern. This
distance is a function of the radius of the !ight pattern, 𝑝 ≃ 𝑂. We
vary the value of 𝑝 from 1 to 1000 including in between values.
The distance between the points on the line is "xed at 1 meter, i.e.,
Point 10 is 9 meters away from Point 1 which is aligned below the
center of the !ight pattern. See Figure 6.

Figure 6: Experimental setup.

Summary of lessons: We conducted many experiments. A summary
of lessons learned include: First, SD results in a shorter travel dis-
tance compared to FRT while FRT results in a faster rendezvous
time when compared with SD. Second, the di#erence between SD
and FRT becomes insigni"cant as we increase the distance between
an FLS and its assigned slot, i.e., 𝑝 ↔ 100. Third, minimizing the
time for a slot to make a rotation on the !ight pattern expedites
the FLS rendezvous time with an FLS. Similarly, increasing the FLS
speed, its acceleration and deceleration expedites its rendezvous
time with an FLS. Fourth, with SD, the shortest distance may be
such that an FLS arrives at the rendezvous point and misses its
assigned slot. In this case, the FLS must wait for one rotation of the
slot, delaying the rendezvous time. See Figure 7b.

Table 1 shows the numerical results of distance traveled and
time spent by FLS starting at point 1, assigned with Slot 2, di#erent
values of 𝑝 .
Detailed Results: The experimental results presented in this section
use a !ight pattern with the speci"cation of Example 1 and our
Crazy!ie implementation of Section 3.

Figure 7a shows the percentage improvement in distance pro-
vided by SD when compared with FRT. The x-axis of this "gure

Table 1: Traveled distance and rendezvous time, SD and FRT.

𝑝
Dist Traveled (m) Time (second)
SD FRT SD FRT

1R 1.00 1.40 9.43 1.87
5R 5.00 5.38 9.43 4.57
10R 10.00 10.06 9.43 7.70
100R 100.00 100.02 72.27 67.67
1000R 1,000.00 1,000.00 673.67 673.67

(a) SD’s % improvement in distance when compared with FRT.

(b) FRT’s % improvement in time when compared with SD.

(c) Rendezvous time with di"erent slot assignments, SD, 𝑧=5.

Figure 7: An evaluation of SD and FRT.
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denotes the points on the line below the !ight pattern. An FLS is
assigned Slot 2. (We discuss other slots at the end of this section.)
SD’s highest percentage improvement is observed with low values
of 𝑝 (e.g., 𝑝=1), i.e., when the line is closest to the !ight pattern.
This improvement decreases as we increase 𝑝 . Beyond 𝑝 ↔ 10, the
percentage improvement provided by SD is insigni"cant because
the traveled distance is large. This distance dominates to make the
di#erence between the closest 𝑁𝑒𝑁𝑂𝑀𝑙 and farthest 𝑁𝑋 𝑐𝑅 point ("xed
at 2R) on the !ight pattern insigni"cant.

Figure 7b shows the percentage improvement in time by FRT
when compared with SD as a function of the points on the line. The
di#erent lines correspond to the di#erent values of 𝑝 .The percent-
age improvement provided by FRT decreases as a function of𝑝 with
a few exceptions. The percentage decrease is due to an increase in
the distance traveled by the FLS. SD requires the FLS to !y at the
fastest speed similar to FRT. With su$ciently large distances, the
rendezvous time to the closest point versus to a point between the
closest and farthest points on the !ight pattern becomes insigni"-
cant. This explains the decrease in percentage improvement as a
function of 𝑝 . This explanation also applies to the general decrease
of a line, say 𝑝 = 1, as a function of the points on the line. Point
10 is 10x farther away than Point 1, rendering the aforementioned
di#erent insigni"cant.

Figure 7b shows sudden jumps in the percentage improvement
with 𝑝 values 7 and 10. This is due to an FLS arriving at its ren-
dezvous point 𝑁𝑒𝑁𝑂𝑀𝑙 only to miss its assigned slot. The FLS waits
for the slot to make a full rotation. This results in a signi"cant
increase in rendezvous time with SD. Note that SD requires the FLS
to travel at its fastest speed. Reducing its speed will only increase
the percentage improvement provided by FRT.

The slot assigned to an FLS dictates whether it must wait for a
rotation of the slot. Figure 7c highlights this by focusing on 𝑝=5.
It shows the time to rendezvous for di#erent slots on the !ight
pattern as a function of the FLS location on the line, i.e., points
shown in Figure 6. While with Slots 1, 2, and 5, the rendezvous
time is a line that decreases smoothly and tends to !atten out, it
increases with Slots 3 and 4 due to an FLS waiting for either a full
or a partial rotation of its slot.

Figure 8: 97 collision avoidance/handling studies.

Table 2: A summary of FRT and variants of SD.

Distance Flight Battery
Traveled Time Flight Time

SD:V1 Optimizes Optimizes
SD:V2 Optimizes
SD:V3 Optimizes Optimizes
FRT Optimizes

5 RELATEDWORK
The concept of !ight patterns for use by a Dronevision is "rst
introduced in [107]. It presents alternative shapes for a !ight pattern,
e.g., square, circle, and ellipsoid. It also describes !ight patterns
that are either single layer or hierarchical. We focus on the circular
pattern of [107] and extend it by presenting di#erent angles 𝐿 for
a !ight pattern relative to the Z-axis, and algorithms SD and FRT
that enable an FLS to rendezvous with its assigned slot on the !ight
pattern. We present analytical models, simulation studies, and an
implementation using a swarm of Crazy!ie drones. These novel
extensions are absent from [107].

Our novel extensions are absent from prior studies in collision
handling techniques. This is based on our survey of 97 studies that
were published from 1983-2024 . Figure 8 shows the six forms of
collisions as a function of the publication year. The size of a circle
and its darkness denotes the number of studies, ranging from 1 to 6.
48 studies compute an alternative path [10, 11, 14, 18, 19, 22, 23, 28–
32, 34–36, 38, 40, 42, 45, 47–49, 52, 57, 58, 62, 68, 72, 74, 78, 80, 82,
84, 85, 87, 90, 92, 95–97, 99, 100, 102–105, 108], 21 studies !y around
the collision point [3, 12, 15, 17, 21, 23, 24, 27, 43, 44, 53, 66, 67, 71,
76, 77, 83, 86, 91, 93], 26 studies adjust velocity [17, 20, 21, 23, 27, 28,
30, 38, 43–45, 51, 52, 54, 64, 67, 72, 76, 79, 80, 83, 86, 91, 93, 97, 99],
27 studies employ a swarming technique [1, 2, 5–8, 12, 16, 20, 25, 30,
31, 33, 39, 55, 59, 63, 65, 66, 73, 88, 89, 98, 101, 105–107], 6 studies
use controlled collision [46, 51, 54, 56, 61, 64], and 1 study switches
destination of the colliding agents [76] 2.

We also analyzed more recent papers related to drone swarm
managements [9, 69, 70, 75]. None have the concept of a !ight
pattern, SD and FRT algorithms.

6 CONCLUSION
This paper presents the design and implementation of a circular
!ight pattern that enables a swarm of FLSs to enter an opening of
a 3D multimedia display, Dronevision. This opening provides FLSs
with access to charging coils. We presented two novel algorithms,
SD and FRT, that enable an FLS to occupy its assigned slot with the
!ight pattern at an arbitrary angle 𝐿 relative to the z-axis. The 3
variants of SD optimize for di#erent metrics as shown in Table 2.
One may view Variant 1 of SD as a hybrid of FRT that prioritizes
optimizing traveled distance followed with travel time. Experimen-
tal results show SD minimizes the distance traveled by an FLS
while FRT minimize the time traveled. Our implementation using a
swarm of Crazy!ie drones validates the correctness of our designs.
Both our design and implementation scale to a large number of
drones and slots. While we focused on a 3D multimedia display, the

2Total is 129 since a study overlaps multiple categories.
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concept of a !ight pattern and our algorithms are !exible for use
by other applications that require a swarm of drones to !y through
an opening.
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