
Circular Flight Pa!erns for Dronevision
Shuqin Zhu

University of Southern California
Los Angeles, USA
shuqinzh@usc.edu

Shahram Ghandeharizadeh
University of Southern California

Los Angeles, USA
shahram@usc.edu

ABSTRACT
This paper presents the design and implementation of a circular
!ight pattern for use by a 3D multimedia display, a Dronevision
(DV). A DV uses drones con"gured with light sources, Flying Light
Specks (FLSs), that are battery powered. The !ight pattern enables
a swarm of FLSs to enter an opening, granting them access to the
charging coils to charge their batteries. We present two algorithms
for an FLS to travel from its current coordinate to rendezvous with
its assigned slot on the !ight pattern, Shortest Distance (SD) and
Fastest Rendezvous Time (FRT). In addition to quantifying the trade-
o# associated with these algorithms, we present an implementation
using a swarm of Crazy!ie drones with Vicon localization.

Holodecks Reference Format:
Shuqin Zhu and Shahram Ghandeharizadeh. Circular Flight Patterns for
Dronevision. Holodecks, 2(1): 1-11, 2024.
doi:10.61981/ZFSH2404

Holodecks Artifact Availability:
See https://github.com/!yinglightspeck/CircularFlightPattern for our open
source software implementation and its data set. A video demonstration
of our implementation using a swarm of Crazy!ie drones with Vicon is
available at https://youtu.be/H60r2oTPB4k.

1 INTRODUCTION
A Dronevision (DV) is a non-immersive 3D multimedia display
detailed in [4]. A swarm of cooperatingminiature drones con"gured
with RGB light sources, Flying Light Specks (FLSs), to illuminate 3D
point clouds and provide haptic interactions [30]. Figure 1 shows a
DV illuminating a rose with a falling petal captured using a depth
camera. The ceiling of the DV consists of wireless charging coils
used to charge the battery of FLSs with a "xed !ight time.

STAG [31] is an algorithm that continuously charges FLSs by
staggering their battery !ight time. It minimizes the number of
charging stations. In addition, it minimizes the number of FLSs
that are in transit from an illumination to the charging coils. This
number may range from 55 to 218 FLSs with today’s batteries and
the Rose point cloud requiring 65K FLSs [31].

A challenge is how a swarm of tens of FLSs may !y through
an opening of the DV to access the charging coils. This is non-
trivial for several reasons. First, the system must consider down-
wash [8, 14, 26, 66, 87, 94], a region of instability caused by the !ight
of one FLS that adversely impacts other FLSs entering this region,

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@holodecks.quest. Copyright is held by the owner/author(s). Publication
rights licensed to the Holodecks Foundation.
Proceedings of the Holodecks Foundation, Vol. 2, No. 1.
doi:10.61981/ZFSH2404

Figure 1: A Dronevision, DV [4].

e.g., loss of control or unpredictable behavior. Second, the !ight
pattern may be at an arbitrary angle 𝐿 relative to the z-axis. Third,
FLSs should occupy a moving slot in the !ight pattern while mini-
mizing either the traveled distance or the amount of time required
to occupy the slot for arbitrary 𝐿 angles. This paper presents the
design, simulation, and implementation of a circular !ight pattern.
Figures 2a and 2b show a horizontal and a vertical orientation of
a circular !ight pattern accessing an opening. With 2a (2b), the
opening at the top (back) provides FLSs with access to the charging
coils on top (back) of the Dronevision.

De!nition 1.1. A "ight pattern is a formation consisting of a
"xed number of slots where all slots maintain a general pattern or
shape with a "xed distance between two consecutive slots. This
is commonly termed a rigid formation [13, 81]. Slots travel at a
"xed speed and in the same direction. Once an FLS occupied slot is
below the opening, the occupying FLS !ies through the opening
and relinquishes its slot.

This paper focuses on circular !ight patterns with a "xed radius
R. The distance between the slots is dictated by downwash. For
example, with quadrotor representing an FLS, its downwash is rep-
resented as a sphere with a "xed radius 𝑀 [37, 50]. The sphere must
be inclusive of the drone. We set the distance between two consec-
utive slots to be 2r since two consecutive slots may be occupied by
an FLS. Slots move either clockwise or counter clockwise.

A centralized scheduler hosted on the Hub [31], see Figure 1,
of the DV may maintain the coordinates of the slots on the !ight
pattern and assign a vacant slot to an FLS. This raises the following
research questions: First, what algorithms enable an FLS to compute
a path from its current coordinate to rendezvous with its assigned

https://doi.org/10.61981/ZFSH2404
https://github.com/flyinglightspeck/CircularFlightPattern
https://youtu.be/H60r2oTPB4k
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@holodecks.quest
https://doi.org/10.61981/ZFSH2404

slot? Second, what are their tradeo#? This paper provides an answer
to these two questions.

We present two algorithms, Shortest Distance (SD) and Fastest
Rendezvous Time (FRT), for an FLS to rendezvous with its assigned
slot. As implied by their names, SD computes the shortest distance
while FRT computes the fastest time. We provide analytical models,
simulation studies, and an implementation of the circular !ight
pattern. We use the simulation model to quantify the tradeo# asso-
ciated with SD and FRT. The implementation consists of a swarm
of 5 Crazy!ie drones using the Vicon localization technique. Fig-
ures 3a and 3b show the opening of this implementation from a
corner and the bottom, respectively. It veri"es the correctness of
the analytical models and the simulation model that embodies them.
Its output is almost identical to that of the simulation model, see
Figure 4 and video demonstration.

Contributions of this study include:
• Design and implementation of circular !ight patterns at any

angle 𝐿 relative to the z-axis. It realizes horizontal (𝐿=0→),
vertical (𝐿=90→), and in-between 𝐿 values. (Section 2.)

• 𝐿 neutral algorithms to compute the Shortest Distance (SD)
and the Fastest Rendezvous Time (FRT) for an FLS to ren-
dezvous with its assigned slot. (Section 2).

• Analytical models, a simulation study, and an implementa-
tion of the !ight pattern and the SD and FRT algorithms.
The implementation uses a swarm of Crazy!ie drones with
the Vicon localization system. Click demonstration for a
video.

• An evaluation of SD and FRT, highlighting their tradeo#s.
(Section 4).

• We open source our software implementation and its data
set at https://github.com/!yinglightspeck/CircularFlightPattern.

The rest of this paper is organized as follows. Section 2 details
the design of a circular !ight pattern, and SD and FRT algorithms.
Section 3 presents an implementation using Crazy!ie drones. Sec-
tion 4 evaluates SD and FRT, quantifying their tradeo#s. Section 5
presents related work. Brief conclusions are presented in Section 6.

2 A CIRCULAR FLIGHT PATTERN SLANTED 𝐿
DEGREES

A single layer circular !ight pattern locates on a plane. It has a
"xed center 𝑁𝐿 , a radius 𝑂, and 𝑃 slots. The slots are rotating either
clockwise or counter-clockwise at the linear speed 𝑄𝑀𝑁𝑂𝑃 . A normal
vector

↑↑↑↑↑↓
𝑅𝑄𝑂𝑅𝑆 de"nes the angle 𝐿 between the !ight pattern and

the z-axis, see Figure 5. The normal vector may be perpendicular to
the ground (𝐿=0, horizontal, see Figure 2a), parallel to the ground
(𝐿=90, vertical, see Figure 2b), or slanted at 𝐿 degrees relative to the
z-axis. See Figure 5.

To accommodate downwash, the distance between two consecu-
tive slots𝑆𝑀 is required to be greater than or equal to twice the radius
𝑀 of the sphere that models a drone and its downwash, 𝑆𝑀 ↔ 2𝑀 . The
maximum number of slots is 𝑃 = 2𝑇𝑈

2𝑅 , 𝑆𝑀 = 2𝑀 . The numerator is
the circumference of the !ight pattern. The denominator 2𝑀 is the
minimum allowed distance between two slots. Obviously, a !ight
pattern may consist of fewer slots 𝑇, 𝑇 < 𝑃 . In this case the distance
between slots may be larger than the required minimum, 𝑆𝑀 = 2𝑇𝑈

𝑉 ,
𝑆𝑀 ↔ 2𝑀 .

(a) A horizontal !ight pattern,
𝑊 = 0.

(b) A vertical !ight pattern,
𝑊 = 90.

Figure 2: Dronevision with a circular Flight Pattern: the hori-
zontal (𝐿=0→) and vertical (𝐿=90→) alignment makes the charg-
ing coils accessible to FLSs.

(a) Corner view of the opening.

(b) Bottom view of the opening.

Figure 3: the opening of an implementation with a swarm of
Crazy!ie drones

Figure 4: Visualization of simulation.

2

https://youtu.be/H60r2oTPB4k
https://youtu.be/H60r2oTPB4k
https://github.com/flyinglightspeck/CircularFlightPattern

Figure 5: An FLS relative to a !ight pattern.

The slots on the !ight pattern are assigned to FLSs. An FLS travels
from its current coordinate 𝑁𝑋 to rendezvous with its assigned slot.
It matches the speed of the slot (!ight pattern) to occupy it. Meeting
these requirements is non-trivial because both the slot and the FLS
are moving. A design requires an answer to the following: What is
the coordinate of an assigned slot once the FLS arrives at the !ight
pattern? What is the shortest distance for the FLS to rendezvous
with its slot? What is the fastest time for the FLS to rendezvous
with it slot? An answer to these questions is a tradeo# between
distance and time. The following sections quantify this tradeo#.
Section 2.1 provides an algorithm that computes the location of
a slot after some time interval for any value of 𝐿 . Subsequently,
Sections 2.2.2 and 2.2.3 present SD and FRT algorithms that trade
distance for time. These algorithms depend on a velocity model.
One is presented in Section 2.2.4.

2.1 Slot Coordinate as a Function of Time
The slots of a !ight pattern are logical. Each is identi"ed by a unique
id. At its initialization time, the scheduler determines the radius
𝑂 of the !ight pattern, the number of slots 𝑃 , the coordinates of
each slots and assigns them a unique id, and the speed of the slots.
Algorithm 1 computes the coordinates of the Slot sID after 𝑈 time
units. It assumes each slot of the !ight pattern is indexed from 1 to

Algorithm 1: GetSlotPosition(𝑉𝑁, 𝑊𝑋𝑌, 𝑈)

1 [𝑌𝐿 , 𝑍𝐿 , 𝑎𝐿] ↗ 𝑀𝑁 .𝑂𝐿𝑃𝑄𝑅
↘𝑀𝑁 .𝑂𝐿𝑃𝑄𝑅 ↘

2 𝑏 ↗ 𝑀𝑁 .𝑆𝑇𝑈𝑃𝑉
𝑀𝑁 .𝑊 ≃ 𝑃

3 𝑐 ↗ cos(𝑏)
4 𝑑 ↗ sin(𝑏)
5 𝑒 ↗ 1 ↑ cos(𝑏)
6 𝑓𝑊𝑃𝑉𝑋𝑉𝑌𝑃𝑍 ↗

𝑐 + 𝑌2
𝐿 𝑒 𝑌𝐿 𝑍𝐿 𝑒 ↑ 𝑎𝐿𝑑 𝑌𝐿 𝑎𝐿 𝑒 + 𝑍𝐿𝑑

𝑍𝐿 𝑌𝐿 𝑒 + 𝑎𝐿𝑑 𝑐 + 𝑍2𝐿 𝑒 𝑍𝐿 𝑎𝐿 𝑒 ↑ 𝑌𝐿𝑑
𝑎𝐿 𝑌𝐿 𝑒 ↑ 𝑍𝐿𝑑 𝑎𝐿 𝑍𝐿 𝑒 + 𝑌𝐿𝑑 𝑐 + 𝑎2𝐿 𝑒


7 𝑔𝑇𝑈𝑃𝑉 ↗ 𝑕𝑔 .𝑀𝑁𝑂𝑃𝑀 [𝑀𝑖𝑗]
8
↑↓
𝑘𝑊 ↗ 𝑓𝑊𝑃𝑉𝑋𝑉𝑌𝑃𝑍

↑↑↑↑↑↑↑↑↓
𝑕𝑔 .𝑔𝑎𝑔𝑇𝑈𝑃𝑉 T

9 return 𝑔𝑎 + ↑↓
𝑘𝑊

𝑃 , 1 ⇐ 𝑊𝑋𝑌 ⇐ 𝑃 . Its input is a Flight Pattern object FP, the identity
of a slot sID, and 𝑈 time units from now. The object FP has a value
for the following variables:

↑↑↑↑↑↓
𝑅𝑄𝑂𝑅𝑆 that de"nes the angle 𝐿 , radius

𝑂, speed 𝑄𝑀𝑁𝑂𝑃 . The output of Algorithm 1 is the coordinate of the
slot sID after 𝑈 time units. The "rst step of this algorithm computes
a unit vector by dividing

↑↑↑↑↑↓
𝑅𝑄𝑂𝑅𝑆 with its length. Step 2 computes

the rotation angle 𝑍 of a slot after 𝑈 time units. Steps 3-6 calculate
the rotation matrix for the slot. Step 7 identi"es the current location
of slot sID. Step 8 applies the rotation matrix to the vector from the
slot to the center of the !ight pattern. The resulting vector

↑↓
𝑅𝑈 is

from the center of the !ight pattern to the location of the slot after
𝑈 time units. Step 9 converts the vector

↑↓
𝑅𝑈 to a 3D coordinate of the

Slot sID.

2.2 FLS Rendezvous with a Slot: SD and FRT
An FLS 𝑎 in a Dronevison must rendezvous with its assigned slot,
i.e., arrive at the same coordinates and at the same time as its slot.
The Dronevision display space is well de"ned with no obstacles. It
is for use in an indoor setting with no environmental factors such
as wind. Here, we focus on a single layer circular !ight pattern,
consisting of a "xed number of slots 𝑃 that are rotating counter-
clockwise at a "xed speed. An FLS is provided with a slot, the
current coordinates of the slot, and the speed at which the slot
is moving. We present two rendezvous algorithms for use by the
FLSs. The "rst, Shortest Distance (SD), computes the path with
the shortest travel distance. The second, Fastest Rendezvous Time
(FRT), computes the path with the fastest travel time. Both assume
the current location of an FLS, 𝑁𝑋 , is a known coordinate. SD uses
analytical models with the point on the !ight pattern closest to 𝑁𝑋 .
FRT uses dynamic programming by searching the range between
the closest and the farthest point on the !ight pattern to 𝑁𝑋 . Both
techniques assume (a) the velocity model of Section 2.2.4 and (b)
an FLS is able to travel at either the same speed or a faster speed
than the speed of a slot, 𝑄𝑆𝑐𝑌 ↔ 𝑄𝑀𝑁𝑂𝑃 .

The next section describes how to compute the closest and far-
thest rendezvous point to the coordinate 𝑁𝑋 of an FLS. These are
denoted as 𝑁𝑒𝑁𝑂𝑀𝑙 and 𝑁𝑋 𝑐𝑅 , respectively. While SD of Section 2.2.2
uses 𝑁𝑒𝑁𝑂𝑀𝑙 , FRT of Section 2.2.3 uses both 𝑁𝑒𝑁𝑂𝑀𝑙 and 𝑁𝑋 𝑐𝑅 .

3

2.2.1 Closest & Farthest Point. Flight patterns may have di#erent
orientation in the global coordinate system. A general counter-
clockwise rotating !ight pattern, 𝑉𝑁 , lies on a plane ω. The included
angle between ω and the positive direction of the z-axis (vector
[0, 0, 1]) of the global coordinate system is 𝐿 degree. Let the nor-
mal vector of the !ight pattern be

↑↑↑↑↑↓
𝑅𝑄𝑂𝑅𝑆 = [𝑏𝑄 ,𝑐𝑄 , 𝑑𝑄], where

|↑↑↑↑↑↓𝑅𝑄𝑂𝑅𝑆 | = 1. Similar to previous, let 𝑁𝑋 = [𝑏 𝑋 ,𝑐𝑋 , 𝑑𝑋], and 𝑁𝐿 =

[𝑏𝑒 ,𝑐𝑒 , 𝑑𝑒]. See Figure 5. Then,
↑↑↑↑↓
𝑁𝑋 𝑁𝐿 = [𝑏𝐿 ↑ 𝑏 𝑋 ,𝑐𝐿 ↑𝑐𝑋 , 𝑑𝐿 ↑ 𝑑𝑋].

The distance from 𝑁𝑋 to ω can be described as the length of the

vector
↑↓
𝑅𝑚 , where

↑↓
𝑅𝑚 start from 𝑁𝑋 and end at a point on ω, and

↑↓
𝑅𝑚 is perpendicular to ω, meaning

↑↓
𝑅𝑚 ↘ ↑↑↑↑↑↓

𝑅𝑄𝑂𝑅𝑆 . Hence, 𝑅𝑚 =
|↑↑↑↑↓𝑁𝑋 𝑁𝐿 | ≃ cos(𝑒) ≃↑↑↑↑↑↓

𝑅𝑄𝑂𝑅𝑆 , where cosine value of the included angle

between
↑↑↑↑↓
𝑁𝑋 𝑁𝐿 and

↑↑↑↑↑↓
𝑅𝑄𝑂𝑅𝑆 , cos(𝑒) =

↑↑↑↓
𝑔𝑏 𝑔𝑎 ·↑↑↑↑↓𝑘𝐿𝑃𝑄𝑅

|↑↑↑↓𝑔𝑏 𝑔𝑎 |≃ |↑↑↑↑↓𝑘𝐿𝑃𝑄𝑅 |
. The projec-

tion of vector
↑↑↑↑↓
𝑁𝑋 𝑁𝐿 on the plane ω:

↑↑↑↑↓
𝑅𝑛𝑅𝑂 𝑜 =

↑↑↑↑↓
𝑁𝑋 𝑁𝐿 ↑ ↑↓

𝑅𝑚 , and the

closest point position 𝑁𝑒𝑁𝑂𝑀𝑙 = 𝑁𝐿 ↑ 𝑂 ≃
↑↑↑↓
𝑘𝑐𝑄𝑃 𝑑

|↑↑↑↓𝑘𝑐𝑄𝑃 𝑑 |
, the farthest point

position 𝑁𝑋 𝑐𝑅 = 𝑁𝐿 + 𝑂 ≃
↑↑↑↓
𝑘𝑐𝑄𝑃 𝑑

|↑↑↑↓𝑘𝑐𝑄𝑃 𝑑 |
The simple horizontal and vertical !ight patters of Figures 2a

and 2b are a special case with 𝐿 set to 0→ and 90→, respectively.

2.2.2 Shortest Distance (SD) Path. This technique minimizes the
distance 𝑆 traveled by an FLS to its assigned slot. It computes a
straight line with a starting point set to the FLS’s coordinates, an
end point set to the closest point 𝑁𝑒𝑁𝑂𝑀𝑙 on the !ight pattern, some
wait time 𝑓 at the starting point, and the FLS !ight duration. The
duration is dictated by the FLS velocity model to travel 𝑆 with the
time required to decelerate to match the speed of a slot in the !ight
pattern.

When 𝑆 is such that an FLS may reach its maximum speed, we
consider 3 variants of SD. Their key di#erence is the duration of
wait time 𝑓 and the speed used to travel. All variants consider the
time to either accelerate or decelerate to match the speed of a slot
in a !ight pattern.

Variant 1 requires an FLS to travel at its fastest speed 𝑄𝑆𝑐𝑌
by adjusting the duration of 𝑓 . When compared with the other
alternatives, it maximizes the wait time 𝑓𝑆𝑐𝑌 . Its highest speed
must be as fast as the speed of the slots (𝑄𝑀𝑁𝑂𝑃) in the !ight pattern
or faster, 𝑄𝑆𝑐𝑌 ↔ 𝑄𝑀𝑁𝑂𝑃 . When 𝑄𝑆𝑐𝑌 > 𝑄𝑀𝑁𝑂𝑃 , Variant 1 considers
the time to decelerate to match the speed of its assigned slot 𝑄𝑀𝑁𝑂𝑃 .

Variant 2 requires an FLS to leave its current coordinates as
soon as possible. This means it may travel at its slowest speed
𝑄𝑀𝑁𝑂𝑝 > 0 to rendezvous with its slot by adjusting the duration of
𝑓 . It minimizes the wait time 𝑓𝑆𝑞𝑉 when compared with the other
variants. If 𝑄𝑀𝑁𝑂𝑝 is faster or slower than 𝑄𝑀𝑁𝑂𝑃 , Variant 2 considers
the time to decelerate or accelerate to match the speed of its slot.

Variant 3 is a hybrid that uses a speed in between the minimum
𝑄𝑀𝑁𝑂𝑝 and the maximum 𝑄𝑆𝑐𝑌 speed. It is motivated by the observa-
tion that the !ight time of an FLS on its remaining battery lifetime
may be maximized if it travels at a pre-speci"ed speed 𝑄𝑟𝑐𝑃𝑃𝑙𝑅𝑍 .
Assuming this speed is somewhere between the minimum and max-
imum speed (𝑄𝑀𝑁𝑂𝑝 ⇐ 𝑄𝑟𝑐𝑃𝑃𝑙𝑅𝑍 ⇐ 𝑄𝑆𝑐𝑌) then, this technique’s wait
time 𝑓𝑠𝑍𝑑𝑅𝑞𝑡 is somewhere between the minimum and maximum

wait times, 𝑓𝑆𝑞𝑉 ⇐ 𝑓𝑠𝑍𝑑𝑅𝑞𝑡 ⇐ 𝑓𝑔𝑕𝑏 . Note that Variant 3 is the same
as Variants 1 and 2 when 𝑄𝑟𝑐𝑃 equals 𝑄𝑆𝑐𝑌 and 𝑄𝑀𝑁𝑂𝑝 , respectively.

Algorithm 2 implements SD by calculating the position and time
for an FLS 𝑎 to rendezvous with its assigned slot and its wait time
at its starting coordinate denoted 𝑓 . The three variants can be im-
plemented by using di#erent velocity models for an FLS. These
velocity models are presented in Section 2.2.4. Based on the coordi-
nate of the closest point to 𝑎 on the !ight pattern, this algorithm
computes the time for 𝑎 to arrive at this position and the time for
its assigned slot to arrive at the same coordinate. Algorithm 2 is a
sequence of analytical expressions with𝑖 (1) complexity. It outputs
the rendezvous time, and the amount of time 𝑓 that the FLS must
wait.

Algorithm 2: SD(𝑉𝑁, 𝑎 , 𝑁𝑒𝑁𝑂𝑀𝑙)
1 𝑔𝑇𝑈𝑃𝑉 ↗ 𝑕𝑔 .𝑀𝑁𝑂𝑃𝑀 [𝑋 .𝑀𝑖𝑗]

2
↑↑↑↑↑↑↓
𝑘(𝑇𝑈𝑃𝑉 ,𝑎) =

↑↑↑↑↑↑↑↑↑↑↓
𝑁𝑇𝑈𝑃𝑉 𝑀𝑁 .𝑁𝑎

|↑↑↑↑↑↑↑↑↑↑↓𝑁𝑇𝑈𝑃𝑉 𝑀𝑁 .𝑁𝑎 |

3
↑↑↑↑↑↑↑↓
𝑘(𝑒𝑈𝑃𝑇𝑓,𝑎) =

↑↑↑↑↑↑↑↑↑↑↑↓
𝑁𝑒𝑈𝑃𝑇𝑓𝑀𝑁 .𝑁𝑎

|↑↑↑↑↑↑↑↑↑↑↑↓𝑁𝑒𝑈𝑃𝑇𝑓𝑀𝑁 .𝑁𝑎 |
4 𝑐𝑉𝑢𝑁𝑙𝑄𝑃𝑉𝑋𝑉𝑌𝑃𝑍 = arccos(↑↑↑↑↑↑↓𝑘(𝑇𝑈𝑃𝑉 ,𝑎) ·

↑↑↑↑↑↑↑↓
𝑘(𝑒𝑈𝑃𝑇𝑓,𝑎))

5 if (↑↑↑↑↑↑↓𝑘(𝑇𝑈𝑃𝑉 ,𝑎) ≃
↑↑↑↑↑↑↑↓
𝑘(𝑒𝑈𝑃𝑇𝑓,𝑎)) · 𝑕𝑔 .

↑↑↑↑↑↓
𝑘𝐿𝑃𝑄𝑅 < 0 then

6 𝑐𝑉𝑢𝑁𝑙𝑄𝑃𝑉𝑋𝑉𝑌𝑃𝑍 = 2𝑇 ↑ 𝑐𝑉𝑢𝑁𝑙𝑄𝑃𝑉𝑋𝑉𝑌𝑃𝑍
7 end
8 𝑃𝑇𝑈𝑃𝑉 = 𝑐𝑉𝑢𝑁𝑙𝑄𝑃𝑉𝑋𝑉𝑌𝑃𝑍 ÷ 𝑀𝑁 .𝑆𝑇𝑈𝑃𝑉

𝑀𝑁 .𝑊

9 𝑃𝑏 = M!"#T!$%V%&’(!)*M’+%&(|↑↑↑↑↑↑↑↑↓𝑋 .𝑔𝑏 𝑔𝑒𝑈𝑃𝑇𝑓 |)
10 if 𝑃𝑇𝑈𝑃𝑉 < 𝑃𝑏 then
11 𝑃𝑄𝑃𝑔𝑍𝑕 ↗ 2𝑖≃𝑀𝑁 .𝑊

𝑀𝑁 .𝑆𝑇𝑈𝑃𝑉

12 𝑃𝑇𝑈𝑃𝑉 ↗ 𝑃𝑇𝑈𝑃𝑉 +
⌈ 𝑉𝑏 ↑𝑉𝑇𝑈𝑃𝑉

𝑉𝑄𝑃𝑔𝑍𝑕

⌉
≃ 𝑃𝑄𝑃𝑔𝑍𝑕

13 end
14 if Variant 1 then
15 𝑣 = 𝑃𝑇𝑈𝑃𝑉 ↑ 𝑃𝑏
16 end
17 else if Variant 2 then
18 𝑣 = F!,#T!$%V%&’(!)*M’+%&(|↑↑↑↑↑↑↑↑↓𝑋 .𝑔𝑏 𝑔𝑒𝑈𝑃𝑇𝑓 |, 𝑃𝑇𝑈𝑃𝑉)
19 end
20 else if Variant 3 then
21 𝑣𝑗𝑘𝑙𝑄𝑌𝑕 ↗ The speci"ed waiting time for Variant 3
22 𝑣 = 𝑣𝑗𝑘𝑙𝑄𝑌𝑕
23 end
24 return [𝑃𝑇𝑈𝑃𝑉 ,𝑣]

2.2.3 Fastest Rendezvous Time (FRT) Path. Algorithm 3 computes
the pathwith the Fastest Travel Time (FRT) for an FLS to rendezvous
with its assigned slot. The algorithm computes both the rendezvous
time and its coordinate on the !ight pattern by using the closest
𝑁𝑒𝑁𝑂𝑀𝑙 and farthest 𝑁𝑋 𝑐𝑅 points on the !ight pattern as a guide. Since
the distance traveled by the FLS will not be longer than the distance
from 𝑁𝑋 to 𝑁𝑋 𝑐𝑅 , and will not be shorter than the distance from 𝑁𝑋
to 𝑁𝑒𝑁𝑂𝑀𝑙 , then the upper and lower bound can be calculated with
the velocity model of the FLS using the fastest speed 𝑄𝑆𝑐𝑌 . This
de"nes an interval of time [𝑗𝑆𝑞𝑉 , 𝑗𝑆𝑐𝑌]. We break this interval
into 𝑘 slices, each with 𝑙 duration, 𝑘 = 𝑤𝑅𝑋𝑚↑𝑤𝑅𝑌𝑍

𝑥 . FRT uses binary
search to determine when the assigned slot will rendezvous with
the FLS in a time slice. It uses this slice as input to Algorithm 1 to

4

determine a point on the !ight path. This is the coordinates of the
rendezvous location. The complexity of the algorithm is O(log 𝑘).

Algorithm 3: FRT(𝑉𝑁, 𝑎 , 𝑁𝑒𝑁𝑂𝑀𝑙 , 𝑁𝑋 𝑐𝑅 , 𝑙)

1 𝑁𝑂 ↗ V%&’(!)*M’+%&(|↑↑↑↑↑↑↑↑↓𝑋 .𝑔𝑏 𝑔𝑒𝑈𝑃𝑇𝑓 |)
2 𝑠𝑞 ↗ V%&’(!)*M’+%&(|↑↑↑↑↑↑↑↓𝑋 .𝑔𝑏 𝑔𝑏 𝑋𝑄 |)
3 while 𝑁𝑂 ⇐ 𝑠𝑞 + 𝑥 do
4 𝑆𝑞𝑡 ↗ (lo + hi) ÷ 2
5 𝑔𝑇𝑈𝑃𝑉 ↗ G%)S&’)P’-!)!’"(𝑕𝑔, 𝑋 .𝑀𝑖𝑗,𝑆𝑞𝑡)
6 𝑃𝑉𝑄𝑋𝑛𝑓𝑈 ↗ V%&’(!)*M’+%&(|↑↑↑↑↑↑↑↓𝑋 .𝑔𝑏 𝑔𝑇𝑈𝑃𝑉 |)
7 𝑃𝑕𝑌𝑏 𝑏 ↗ 𝑃𝑉𝑄𝑋𝑛𝑓𝑈 ↑𝑆𝑞𝑡

8 if 𝑃𝑕𝑌𝑏 𝑏 > 0 then
9 𝑁𝑂 ↗𝑆𝑞𝑡 + 𝑥

10 end
11 else
12 𝑠𝑞 ↗𝑆𝑞𝑡

13 end
14 end
15 return[G%)S&’)P’-!)!’"(𝑕𝑔, 𝑋 .𝑦𝑖𝑗, 𝑁𝑂), 𝑁𝑂]

Algorithm 3 shows the pseudo-code for FRT. Its input includes
a !ight pattern object FP, an FLS 𝑎 , the closest 𝑁𝑒𝑁𝑂𝑀𝑙 and farthest
𝑁𝑋 𝑐𝑅 points on the !ight pattern, and 𝑙 which is the duration of a
time slice. Its output is the coordinate of the rendezvous point and
its time. Steps 1 and 2 use the velocity model of Section 2.2.4 to
compute the time to travel to 𝑁𝑒𝑁𝑂𝑀𝑙 and 𝑁𝑋 𝑐𝑅 , respectively. Steps 3
to 14 implement the binary search technique to compute the FLS
rendezvous time with its assigned time slot. The complexity of
Algorithm 3 is O(ln 𝑘).

2.2.4 Velocity Model.

Assumption: An FLS has amaximum acceleration 𝑕⇒, a maximum
deceleration 𝑕⇑, and a maximum1 speed 𝑄𝑆𝑐𝑌 . At any time, the FLS
may not travel faster than 𝑄𝑆𝑐𝑌 , and the rate of which the FLS’s
speed changes cannot exceed 𝑕⇒ when accelerating or 𝑕⇑ when
decelerating. Note that all 𝑄𝑆𝑐𝑌 , 𝑕⇒ and 𝑕⇑ are scalar values larger
than 0, independent of the heading of an FLS.

Min-Time Velocity Model: SD (Variant 1) and FRT use the Min-
Time Velocity Model. The velocity model describes the acceleration,
deceleration, and a maximum speed 𝑄𝑆𝑐𝑌 that an FLS may use
to travel distance 𝑆 . This is the distance from the FLS’s current
coordinate 𝑁𝑋 to the coordinates of its assigned slot 𝑁𝑀 , 𝑆 = |𝑁𝑋 𝑁𝑀 |.
We assume the starting velocity of the FLS is zero and the maximum
FLS speed is higher than the speed of a slot, 𝑄𝑆𝑐𝑌 ↔ 𝑄𝑀𝑁𝑂𝑃 . Factors
such as gravity may cause 𝑕⇒ to not equal 𝑕⇑.

P.’/&%$ 1. Minimize the time to travel distance 𝑆 from 𝑁𝑋 to 𝑁𝑀
without exceeding the maximum speed 𝑄𝑆𝑐𝑌 , or exceeding either the
maximum acceleration 𝑕⇒ or maximum deceleration 𝑕⇑.

Three scenarios constitute the solution to this problem:

1The speed of a stationary FLS is zero. The minimum speed that an FLS may travel is
𝑦𝑇𝑈𝑃𝑜 . It is dictated by Variant 2 of SD. The velocity model tries to realize 𝑦𝑇𝑈𝑃𝑜 .

(1) 𝑆 requires the FLS to accelerate at rate 𝑕⇒ to reach 𝑄𝑆𝑐𝑌 ,
travel at speed 𝑄𝑆𝑐𝑌 until a well de"ned point, and decel-
erate at rate 𝑕⇑ to match the speed of its assigned slot at
𝑁𝑀 .

(2) 𝑆 requires the FLS to accelerate at rate 𝑕⇒ to reach 𝑄𝑆𝑐𝑌 .
However, the FLS must decelerate immediately at the rate
𝑕⇑ to match the speed of its assigned slot at 𝑁𝑀 .

(3) 𝑆 requires the FLS to accelerate to arrive at a well de"ned
point. Prior to reaching 𝑄𝑆𝑐𝑌 , the FLS must decelerate to
𝑄𝑀𝑁𝑂𝑃 , the speed of its assigned slot at 𝑁𝑀 .

(4) 𝑆 is too small, i.e., the FLS is too close to the slot, preventing
the FLS from accelerating to match the speed of its slot at
𝑁𝑀 .

An FLS detects the di#erent scenarios using distance 𝑆 to its des-
tination, distance ε𝑐 (ε𝑛) required to accelerate to 𝑄𝑆𝑐𝑌 (𝑄𝑀𝑁𝑂𝑃),
and distance ε𝑡 required to decelerate to match 𝑄𝑀𝑁𝑂𝑃 from 𝑄𝑆𝑐𝑌 .
The FLS is in Scenario 1 when ε𝑐+ε𝑡 is less than 𝑆 , Scenario 2
when ε𝑐 + ε𝑡 equals 𝑆 , Scenario 3 when ε𝑐 + ε𝑡 is greater than 𝑆 ,
Scenario 4 when ε𝑛 is greater than 𝑆 . Note that the ideal scenario
(not listed) is when ε𝑛 equals to 𝑆 as it enables an FLS to accelerate
from rest to occupy its slot at speed 𝑄𝑀𝑁𝑂𝑃 .

Below, we describe how an FLS computes ε𝑐 and ε𝑡 . Subse-
quently, we detail each scenario in turn.
Detection of alternative scenarios: The velocity of an FLS at time𝑗 +𝑈
is a function of its speed at time 𝑗 and acceleration or deceleration
the afterwards 𝑈 :𝑅𝑞+1 = 𝑅𝑞 +𝑕𝑓 . Where 𝑓 is the duration of the step.
𝑅𝑞 is a value between 0 and 𝑄𝑆𝑐𝑌 , 𝑅𝑞 ⇓ [0, 𝑄𝑆𝑐𝑌]. The distance an
FLS travels while accelerating or decelerating in time 𝑈 is:

ε = 𝑅𝑞𝑈 +
1
2
𝑕(𝑈)2 (1)

Where𝑅𝑞 is the starting speed and 𝑕 is set to either 𝑕⇒ or -𝑕⇑ depend-
ing on whether the FLS is accelerating or decelerating, respectively.

Consider the scenario when an FLS accelerates from a starting
velocity of zero to reach the maximum speed. The amount of time
required to reach the maximum speed 𝑄𝑆𝑐𝑌 is 𝑦𝑅𝑋𝑚

𝑐⇒
. During this

time, the FLS travels distance ε𝑐 to reach 𝑄𝑆𝑐𝑌 , ε𝑐= 1
2𝑕

⇒𝑈2. When
decelerating from the maximum speed with the objective to match
𝑄𝑀𝑁𝑂𝑃 then 𝑅𝑞 is 𝑄𝑆𝑐𝑌 and the required time is 𝑈 = 𝑦𝑅𝑋𝑚↑𝑦𝑇𝑈𝑃𝑉

𝑐⇑
. The

traveled distance ε𝑡=𝑄𝑆𝑐𝑌 𝑈 ↑ 1
2𝑕

⇑ (𝑦𝑅𝑋𝑚↑𝑦𝑇𝑈𝑃𝑉
𝑐⇑

)2, see Equation 1.
Alternative scenarios: In Scenario 1, the FLS cruises at speed 𝑄𝑆𝑐𝑌

for a distance equivalent to ε𝑒=d-(ε𝑐 + ε𝑡). Its duration is ε𝑒
𝑦𝑅𝑋𝑚

.
In Scenario 2, once the FLS speed is 𝑄𝑆𝑐𝑌 , it starts to decelerate
at the rate 𝑕⇑ to arrive at its slot with speed 𝑄𝑀𝑁𝑂𝑃 . With Scenario
3, the FLS uses the following equation to compute the amount of

time to arrive at its slot:

√
2𝑐⇒ 𝑋⇑

𝑋⇒+𝑋⇑
𝑡

𝑐⇒
+

√
2𝑐⇒ 𝑋⇑

𝑋⇒+𝑋⇑
𝑡

𝑐⇑
. With the last

scenario, the FLS must move ε𝑛 ↑ 𝑆 away from its slot. Now, it is
in the ideal scenario to accelerate to match 𝑄𝑀𝑁𝑂𝑃 .

Example 1.
Consider a horizontal !ight pattern, FP.𝐿=0, rotating at a speed

of 0.7 m/second, FP.𝑄𝑀𝑁𝑂𝑃=0.7 m/second. The radius of this circular
!ight pattern is 1 meter, FP.𝑂=1 m, and the coordinate of its cen-
ter is [0,0,0.8]. An FLS with a starting coordinate [1, 1, 0] must
rendezvous with its assigned slot. The maximum FLS speed is

5

𝑄𝑆𝑐𝑌=1.5 m/second. Its maximum acceleration and deceleration are
1 m/second2. Hence,𝑗𝑆𝑞𝑉 = 0.901 seconds and𝑗𝑆𝑐𝑌= 2.543 seconds.
Assume the duration of a time slice is 1

30 seconds, 𝑙=0.033 seconds.
The number of time slots is 36, 𝑘=36. Hence, FRT of Algorithm 3
requires ⇔log2 36↖ = 6 iterations. It computes a straight line path
for the FLS to rendezvous with its assigned slot 0.83 seconds from
the current time and travel 0.963 m with the fastest speed.

With the same settings, SD of Algorithm 2 (adjusted for Variant
2) requires a !ight time of 2.574 seconds. This is more than 3x longer
than FRT. However, its traveled distance (0.9 m) is 7% shorter than
FRT. One reason for SD’s long !ight time is its wait time 𝑓 = 7.526
second to rendezvous with its slot.

Fix-Time Velocity Model: Variants 2 and 3 use the Fix-Time Veloc-
ity Model. This velocity model describes how an FLS may achieve
rendezvous speed 𝑄𝑀𝑁𝑂𝑃 after traveling distance 𝑆 during time 𝑗 .
The value of 𝑗 is determined by the time to rendezvous with 𝑈𝑀𝑁𝑂𝑃
(see Algorithm 2) and the waiting time 𝑓 , 𝑗 = 𝑈𝑀𝑁𝑂𝑃 ↑ 𝑓 . Similar to
the Min-Time Velocity Model, d=|𝑁𝑋 𝑁𝑀 |, and we assume the FLS
starts from the velocity zero and 𝑄𝑆𝑐𝑌 > 𝑄𝑀𝑁𝑂𝑃 .

P.’/&%$ 2. Travel distance 𝑆 from 𝑁𝑋 to 𝑁𝑀 in a !xed time 𝑗
without exceeding the maximum speed 𝑄𝑆𝑐𝑌 , or exceeding either the
maximum acceleration 𝑕⇒ or maximum deceleration 𝑕⇑.

Four scenarios constitute the solution to this problem:

(1) 𝑆 requires the FLS to continuously accelerate for a duration
𝑗 to reach 𝑄𝑀𝑁𝑂𝑃 , so to match the speed of its assigned slot
𝑁𝑀 .

(2) 𝑆 requires the FLS to accelerate to reach 𝑄𝑀𝑁𝑂𝑃 , then travel
at speed 𝑄𝑀𝑁𝑂𝑃 until it rendezvous with its slot at 𝑁𝑀 .

(3) 𝑆 requires the FLS to accelerate to reach 𝑄 ↙𝑆𝑐𝑌 , travel at
speed 𝑄 ↙𝑆𝑐𝑌 until a well de"ned point, and decelerate to
match the speed of its assigned slot at 𝑁𝑀 . Note that 𝑄𝑀𝑁𝑂𝑃 <
𝑄 ↙𝑆𝑐𝑌 < 𝑄𝑆𝑐𝑌 .

(4) 𝑆 is too small, i.e., the FLS is too close to the slot, preventing
the FLS from accelerating to match the speed of its slot at
𝑁𝑀 .

The acceleration and deceleration of an FLS may not be "xed
constant. Multiple optimization approaches can be adapted to cal-
culate a smooth change in acceleration (deceleration) [41, 60]. Here,
we describe the simplest version using a constant acceleration and
deceleration. An FLS detects di#erent scenarios using distance 𝑆 to
its destination, speed of its assigned slot 𝑄𝑀𝑁𝑂𝑃 and travel time 𝑗 .

Detection of alternative scenarios: If
𝑦2𝑇𝑈𝑃𝑉
2𝑐⇒ is greater than 𝑆 , the FLS

is in Scenario 4. Otherwise, the FLS is in Scenario 1 when 𝑤𝑦𝑇𝑈𝑃𝑉
2 is

greater than or equal to 𝑆 , Scenario 2 when 𝑤𝑦𝑇𝑈𝑃𝑉
2 is smaller than 𝑆

and
𝑦2𝑇𝑈𝑃𝑉
2𝑐⇒ + (𝑗 ↑ 𝑦𝑇𝑈𝑃𝑉

𝑐⇒
)𝑄𝑀𝑁𝑂𝑃 is greater than or equal to 𝑆 , Scenario 3

when
𝑦2𝑇𝑈𝑃𝑉
2𝑐⇒ + (𝑗 ↑ 𝑦𝑇𝑈𝑃𝑉

𝑐⇒
)𝑄𝑀𝑁𝑂𝑃 is smaller than 𝑆 . Note that there is one

special case in Scenario 3, where 𝑄 ↙𝑆𝑐𝑌 = 𝑄𝑆𝑐𝑌 , the acceleration is
𝑕⇒, and the deceleration is 𝑕⇑. In this case, Fix-Time Velocity Model
generates the same moving pattern as the Min-Time Velocity Model.
This may happen when 𝑓𝑆𝑞𝑉 and 𝑓𝑠𝑍𝑑𝑅𝑞𝑡 in Variant 2 and 3 of SD
and 𝑓𝑆𝑐𝑌 of Variant 1 of SD are all limited to 0 by 𝑆 and 𝑗

Below, we "ll in the detailed acceleration and deceleration of
an FLS in di#erent scenarios based on a constant acceleration and
deceleration model.

With Scenario 1, an FLS may accelerate with the rate of 𝑕⇒↙,

𝑕⇒↙ =
𝑦2𝑇𝑈𝑃𝑉
2𝑡 . It will reach speed of 𝑄𝑀𝑁𝑂𝑃 by the time it rendezvous

with its assigned slot.
With Scenario 2, the time that an FLS may accelerate is 𝑈⇒,

𝑈⇒ = 2(𝑗 ↑ 𝑡
𝑦𝑇𝑈𝑃𝑉

). Hence the acceleration 𝑕⇒↙ can be calculated
accordingly, 𝑕⇒↙ = 𝑦𝑇𝑈𝑃𝑉

𝑃⇒
. Once it reach the speed of 𝑄𝑀𝑁𝑂𝑃 , it will

move with this constant speed and
For Scenario 3, there are multiple ways an FLS can do to achieve

the goal. An FLS maximize its accelerating time 𝑈⇒ and later have
a longer decelerating time 𝑈⇑, or the opposite, or choose a balance
between these two. There are three constraints on 𝑈⇒ and 𝑈⇑:

𝑗 ↔ 𝑈⇒ + 𝑈⇑ (2)

𝑆 =
𝑄 ↙𝑆𝑐𝑌 𝑈

⇒

2
+ (𝑄 ↙𝑆𝑐𝑌 + 𝑄𝑀𝑁𝑂𝑃)𝑈⇑

2
+ (𝑗 ↑ 𝑈⇒ ↑ 𝑈⇑)𝑄 ↙𝑆𝑐𝑌 (3)

{
𝑄 ↙𝑆𝑐𝑌 ⇐ 𝑕⇒𝑈⇒

𝑄 ↙𝑆𝑐𝑌 ⇐ 𝑕⇑𝑈⇑ + 𝑄𝑦𝑁𝑂𝑃
(4)

Here, we provide the equation for calculation with a focus on min-
imizing the accelerating time 𝑈⇒ and the decelerating time 𝑈⇑ by
using 𝑕⇒ and 𝑕⇑ for acceleration and deceleration. Equation 3 can
be re-formalized as:

𝑆 =
𝑄 ↙2𝑆𝑐𝑌

2𝑕⇒
+ (𝑄 ↙2𝑆𝑐𝑌 + 𝑄𝑀𝑁𝑂𝑃)

2𝑕⇑
+ (𝑗 ↑ 𝑄 ↙𝑆𝑐𝑌

𝑕⇒
↑ 𝑄 ↙𝑆𝑐𝑌

𝑕⇑
)𝑄 ↙𝑆𝑐𝑌 (5)

and 𝑄 ↙𝑆𝑐𝑌 can be calculated accordingly:

𝑄 ↙𝑆𝑐𝑌 =
𝑗 ↑

√
𝑗 2 ↑ (1

𝑐⇒
+ 1

𝑐⇑
) (𝑦𝑇𝑈𝑃𝑉2𝑐⇑ ↑ 𝑆)

1
𝑐⇒

+ 1
𝑐⇑

(6)

3 IMPLEMENTATION
We developed a simulation model of the techniques and imple-
mented them using a swarm of Crazy!ie drones. We speci"ed a
horizontal circular !ight pattern with a radius of 1 meter, 𝑂=1, 𝐿=0.
It rotates counter-clockwise. The speed of its slots is 0.7𝑔/𝑊𝑚𝑛𝑜𝑇𝑆 .
The slots are separated by a distance of 125.66 cm (2𝑇≃1𝑆5) and are
1.79 seconds apart. The diameter of a Crazy!ie is 15 cm (including
span of propellers).We set its maximum speed 𝑄𝑆𝑐𝑌 at 1.5 m/second,
and maximum acceleration and deceleration at 1𝑔/𝑊𝑚𝑛𝑜𝑇𝑆2. The
dimensions of the space is 3𝑔 ≃ 3𝑔 ≃ 1.5𝑔, and the opening is
27𝑛𝑔 ≃ 27𝑛𝑔. Figures 3a and 3b show the side and bottom view of
the opening of our implementation. A visualization of the simula-
tion model is shown in Figure 4.

Our implementation starts with 5 Crazy!ies at a stationary state
on the ground. They !y to 5 random initial coordinate. Each drone
is assigned with available slots using a Round Robin policy. We use
the equations of Section 2.2.2 to compute the shortest path for each
FLS to occupy its assigned slot, starting with the speed of zero.

The sudden turns when FLSs are rendezvousing with their as-
signed slots are handled by crazyswarm platform [66].

6

Once an FLS rendezvous with its assigned slot, it occupies the
slot and !ies at the speed of the slot until it is below the opening.
Subsequently, it enters the opening an relinquishes its slot. The
FLS !ies to a corner of the display space, descends to the !oor, and
!ies to its newly assigned random starting position to repeat the
process. An experiment has a duration of one minute. It terminates
by landing the 5 FLSs on the ground. See implementation.

4 EVALUATION
We used the experimental setup of Figure 6 to quantify the tradeo#
associated with SD and FRT, Algorithms 2 and 3, respectively. The
important con"guration parameters of the !ight pattern include its
radius 𝑂=1 meter, the speed of slots 0.7 m/second, and the number
of slots 5. We simulated starting point for one FLS along a line
that is a "xed distance below the center of the !ight pattern. This
distance is a function of the radius of the !ight pattern, 𝑝 ≃ 𝑂. We
vary the value of 𝑝 from 1 to 1000 including in between values.
The distance between the points on the line is "xed at 1 meter, i.e.,
Point 10 is 9 meters away from Point 1 which is aligned below the
center of the !ight pattern. See Figure 6.

Figure 6: Experimental setup.

Summary of lessons: We conducted many experiments. A summary
of lessons learned include: First, SD results in a shorter travel dis-
tance compared to FRT while FRT results in a faster rendezvous
time when compared with SD. Second, the di#erence between SD
and FRT becomes insigni"cant as we increase the distance between
an FLS and its assigned slot, i.e., 𝑝 ↔ 100. Third, minimizing the
time for a slot to make a rotation on the !ight pattern expedites
the FLS rendezvous time with an FLS. Similarly, increasing the FLS
speed, its acceleration and deceleration expedites its rendezvous
time with an FLS. Fourth, with SD, the shortest distance may be
such that an FLS arrives at the rendezvous point and misses its
assigned slot. In this case, the FLS must wait for one rotation of the
slot, delaying the rendezvous time. See Figure 7b.

Table 1 shows the numerical results of distance traveled and
time spent by FLS starting at point 1, assigned with Slot 2, di#erent
values of 𝑝 .
Detailed Results: The experimental results presented in this section
use a !ight pattern with the speci"cation of Example 1 and our
Crazy!ie implementation of Section 3.

Figure 7a shows the percentage improvement in distance pro-
vided by SD when compared with FRT. The x-axis of this "gure

Table 1: Traveled distance and rendezvous time, SD and FRT.

𝑝
Dist Traveled (m) Time (second)
SD FRT SD FRT

1R 1.00 1.40 9.43 1.87
5R 5.00 5.38 9.43 4.57
10R 10.00 10.06 9.43 7.70
100R 100.00 100.02 72.27 67.67
1000R 1,000.00 1,000.00 673.67 673.67

(a) SD’s % improvement in distance when compared with FRT.

(b) FRT’s % improvement in time when compared with SD.

(c) Rendezvous time with di"erent slot assignments, SD, 𝑧=5.

Figure 7: An evaluation of SD and FRT.

7

https://youtu.be/H60r2oTPB4k

denotes the points on the line below the !ight pattern. An FLS is
assigned Slot 2. (We discuss other slots at the end of this section.)
SD’s highest percentage improvement is observed with low values
of 𝑝 (e.g., 𝑝=1), i.e., when the line is closest to the !ight pattern.
This improvement decreases as we increase 𝑝 . Beyond 𝑝 ↔ 10, the
percentage improvement provided by SD is insigni"cant because
the traveled distance is large. This distance dominates to make the
di#erence between the closest 𝑁𝑒𝑁𝑂𝑀𝑙 and farthest 𝑁𝑋 𝑐𝑅 point ("xed
at 2R) on the !ight pattern insigni"cant.

Figure 7b shows the percentage improvement in time by FRT
when compared with SD as a function of the points on the line. The
di#erent lines correspond to the di#erent values of 𝑝 .The percent-
age improvement provided by FRT decreases as a function of𝑝 with
a few exceptions. The percentage decrease is due to an increase in
the distance traveled by the FLS. SD requires the FLS to !y at the
fastest speed similar to FRT. With su$ciently large distances, the
rendezvous time to the closest point versus to a point between the
closest and farthest points on the !ight pattern becomes insigni"-
cant. This explains the decrease in percentage improvement as a
function of 𝑝 . This explanation also applies to the general decrease
of a line, say 𝑝 = 1, as a function of the points on the line. Point
10 is 10x farther away than Point 1, rendering the aforementioned
di#erent insigni"cant.

Figure 7b shows sudden jumps in the percentage improvement
with 𝑝 values 7 and 10. This is due to an FLS arriving at its ren-
dezvous point 𝑁𝑒𝑁𝑂𝑀𝑙 only to miss its assigned slot. The FLS waits
for the slot to make a full rotation. This results in a signi"cant
increase in rendezvous time with SD. Note that SD requires the FLS
to travel at its fastest speed. Reducing its speed will only increase
the percentage improvement provided by FRT.

The slot assigned to an FLS dictates whether it must wait for a
rotation of the slot. Figure 7c highlights this by focusing on 𝑝=5.
It shows the time to rendezvous for di#erent slots on the !ight
pattern as a function of the FLS location on the line, i.e., points
shown in Figure 6. While with Slots 1, 2, and 5, the rendezvous
time is a line that decreases smoothly and tends to !atten out, it
increases with Slots 3 and 4 due to an FLS waiting for either a full
or a partial rotation of its slot.

Figure 8: 97 collision avoidance/handling studies.

Table 2: A summary of FRT and variants of SD.

Distance Flight Battery
Traveled Time Flight Time

SD:V1 Optimizes Optimizes
SD:V2 Optimizes
SD:V3 Optimizes Optimizes
FRT Optimizes

5 RELATEDWORK
The concept of !ight patterns for use by a Dronevision is "rst
introduced in [107]. It presents alternative shapes for a !ight pattern,
e.g., square, circle, and ellipsoid. It also describes !ight patterns
that are either single layer or hierarchical. We focus on the circular
pattern of [107] and extend it by presenting di#erent angles 𝐿 for
a !ight pattern relative to the Z-axis, and algorithms SD and FRT
that enable an FLS to rendezvous with its assigned slot on the !ight
pattern. We present analytical models, simulation studies, and an
implementation using a swarm of Crazy!ie drones. These novel
extensions are absent from [107].

Our novel extensions are absent from prior studies in collision
handling techniques. This is based on our survey of 97 studies that
were published from 1983-2024 . Figure 8 shows the six forms of
collisions as a function of the publication year. The size of a circle
and its darkness denotes the number of studies, ranging from 1 to 6.
48 studies compute an alternative path [10, 11, 14, 18, 19, 22, 23, 28–
32, 34–36, 38, 40, 42, 45, 47–49, 52, 57, 58, 62, 68, 72, 74, 78, 80, 82,
84, 85, 87, 90, 92, 95–97, 99, 100, 102–105, 108], 21 studies !y around
the collision point [3, 12, 15, 17, 21, 23, 24, 27, 43, 44, 53, 66, 67, 71,
76, 77, 83, 86, 91, 93], 26 studies adjust velocity [17, 20, 21, 23, 27, 28,
30, 38, 43–45, 51, 52, 54, 64, 67, 72, 76, 79, 80, 83, 86, 91, 93, 97, 99],
27 studies employ a swarming technique [1, 2, 5–8, 12, 16, 20, 25, 30,
31, 33, 39, 55, 59, 63, 65, 66, 73, 88, 89, 98, 101, 105–107], 6 studies
use controlled collision [46, 51, 54, 56, 61, 64], and 1 study switches
destination of the colliding agents [76] 2.

We also analyzed more recent papers related to drone swarm
managements [9, 69, 70, 75]. None have the concept of a !ight
pattern, SD and FRT algorithms.

6 CONCLUSION
This paper presents the design and implementation of a circular
!ight pattern that enables a swarm of FLSs to enter an opening of
a 3D multimedia display, Dronevision. This opening provides FLSs
with access to charging coils. We presented two novel algorithms,
SD and FRT, that enable an FLS to occupy its assigned slot with the
!ight pattern at an arbitrary angle 𝐿 relative to the z-axis. The 3
variants of SD optimize for di#erent metrics as shown in Table 2.
One may view Variant 1 of SD as a hybrid of FRT that prioritizes
optimizing traveled distance followed with travel time. Experimen-
tal results show SD minimizes the distance traveled by an FLS
while FRT minimize the time traveled. Our implementation using a
swarm of Crazy!ie drones validates the correctness of our designs.
Both our design and implementation scale to a large number of
drones and slots. While we focused on a 3D multimedia display, the

2Total is 129 since a study overlaps multiple categories.

8

https://youtu.be/H60r2oTPB4k

concept of a !ight pattern and our algorithms are !exible for use
by other applications that require a swarm of drones to !y through
an opening.

ACKNOWLEDGMENTS
This research was supported in part by the NSF grants IIS-2232382
and CMMI-2425754.

REFERENCES
[1] Hanif Zaini Abdul. 2020. UAV Swarming with Collision Avoidance and Commu-

nication Constraints. Ph.D. Dissertation. Nanyang Technological University.
https://doi.org/10.32657/10356/137101

[2] Afzal Ahmad, Viktor Walter, Pavel Petracek, Matej Petrlik, Tomas Baca, David
Zaitlik, and Martin Saska. 2021. Autonomous Aerial Swarming in GNSS-denied
Environments with High Obstacle Density. In 2021 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, Xi’an, China, 570–576. https://doi.
org/10.1109/ICRA48506.2021.9561284

[3] Shibbir Ahmed, Baijing Qiu, Chun-Wei Kong, Huang Xin, Fiaz Ahmad, and
Jinlong Lin. 2022. A Data-Driven Dynamic Obstacle Avoidance Method for
Liquid-Carrying Plant Protection UAVs. Agronomy 12, 4 (April 2022), 873.
https://doi.org/10.3390/agronomy12040873

[4] Hamed Alimohammadzadeh, Rohit Bernard, Yang Chen, Trung Phan, Prashant
Singh, Shuqin Zhu, Heather Culbertson, and Shahram Ghandeharizadeh. 2023.
Dronevision: An Experimental 3D Testbed for Flying Light Specks. In The First
International Conference on Holodecks (Los Angeles, California) (Holodecks ’23).
Mitra LLC, Los Angeles, CA, USA, 1–9. https://doi.org/10.61981/ZFSH2301

[5] Hamed Alimohammadzadeh and Shahram Ghandeharizadeh. 2023. SwarMer:
A Decentralized Localization Framework for Flying Light Specks. In The First
International Conference on Holodecks (Los Angeles, California) (Holodecks ’23).
Mitra LLC, Los Angeles, CA, USA, 10–22. https://doi.org/10.61981/ZFSH2302

[6] Hamed Alimohammadzadeh, Shuqin Zhu, Jiadong Bai, and Shahram Ghande-
harizadeh. 2024. Reliability Groups with Standby Flying Light Specks. In ACM
Multimedia Systems (Bari, Italy).

[7] Guillermo Angeris, Kunal Shah, and Mac Schwager. 2019. Fast reciprocal colli-
sion avoidance under measurement uncertainty. In The International Symposium
of Robotics Research. Springer, 191–207.

[8] Senthil Hariharan Arul and D. Manocha. 2020. DCAD: Decentralized Collision
Avoidance With Dynamics Constraints for Agile Quadrotor Swarms. IEEE
Robotics and Automation Letters 5 (2020), 1191–1198. https://doi.org/10.1109/
LRA.2020.2967281

[9] Godwin Asaamoning, Paulo Mendes, Denis Rosário, and Eduardo Cerqueira.
2021. Drone swarms as networked control systems by integration of networking
and computing. Sensors 21, 8 (2021), 2642.

[10] Federico Augugliaro, Angela P. Schoellig, and Ra#aello D’Andrea. 2012. Gen-
eration of Collision-free Trajectories for a Quadrocopter Fleet: A Sequential
Convex Programming Approach. In 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE, Vilamoura-Algarve, Portugal, 1917–1922.
https://doi.org/10.1109/IROS.2012.6385823

[11] Tomas Baca, Daniel Hert, Giuseppe Loianno, Martin Saska, and Vijay Kumar.
2018. Model Predictive Trajectory Tracking and Collision Avoidance for Re-
liable Outdoor Deployment of Unmanned Aerial Vehicles. In 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). IEEE, Madrid,
6753–6760. https://doi.org/10.1109/IROS.2018.8594266

[12] Saptarshi Bandyopadhyay, Francesca Baldini, Rebecca Foust, Amir Rahmani,
Jean-Pierre De La Croix, Soon-Jo Chung, and Fred Hadaegh. 2017. Distributed
Spatiotemporal Motion Planning for Spacecraft Swarms in Cluttered Envi-
ronments. In AIAA SPACE and Astronautics Forum and Exposition. American
Institute of Aeronautics and Astronautics, Orlando, FL. https://doi.org/10.2514/
6.2017-5323

[13] Jan Carlo Barca, A Sekercioglu, and Adam Ford. 2013. Controlling Formations
of Robots with Graph Theory. In Intelligent Autonomous Systems 12: Volume 2
Proceedings of the 12th International Conference IAS-12, held June 26-29, 2012,
Jeju Island, Korea. Springer, 563–574.

[14] Daman Bareiss and Joran van den Berg. 2013. Reciprocal Collision Avoidance
for Robots with Linear Dynamics using LQR-Obstacles. In Proceedings - IEEE
International Conference on Robotics and Automation. IEEE, USA, 3847–3853.
https://doi.org/10.1109/ICRA.2013.6631118

[15] Rodney A. Brooks. 1983. Solving the Find-path Problem by Good Representation
of Free Space. IEEE Trans. Syst., Man, Cybern. SMC-13, 2 (March 1983), 190–197.
https://doi.org/10.1109/TSMC.1983.6313112

[16] Anthony J Calise and Daniel Preston. 2008. Swarming/Flocking and Collision
Avoidance for Mass Airdrop of Autonomous Guided Parafoils. Journal of
guidance, control, and dynamics 31, 4 (2008), 1123–1132.

[17] D. Cappello, S. Garcin, Z. Mao, M. Sassano, A. Paranjape, and T. Mylvaganam.
2021. AHybrid Controller forMulti-Agent Collision Avoidance via a Di#erential

Game Formulation. IEEE Trans. Contr. Syst. Technol. 29, 4 (July 2021), 1750–1757.
https://doi.org/10.1109/TCST.2020.3005602

[18] Clement Chahbazian, Karim Dahia, Nicolas Merlinge, Benedicte Winter-Bonnet,
Kevin Honore, and Christian Musso. 2022. Improved Kalman-Particle Kernel
Filter on Lie Groups Applied to Angles-Only UAV Navigation. (2022).

[19] Han Chen and Peng Lu. 2020. Computationally E$cient Obstacle Avoidance
Trajectory Planner for UAVs Based on Heuristic Angular Search Method. In
2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
IEEE, Las Vegas, NV, USA, 5693–5699. https://doi.org/10.1109/IROS45743.2020.
9340778

[20] Ji Chen, Hanlin Wang, Michael Rubenstein, and Hadas Kress-Gazit. 2020. Au-
tomatic Control Synthesis for Swarm Robots from Formation and Location-
based High-level Speci"cations. In 2020 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, Las Vegas, NV, USA, 8027–8034.
https://doi.org/10.1109/IROS45743.2020.9341466

[21] Yuda Chen, Haoze Dong, and Zhongkui Li. 2023. Asynchronous Spatial Alloca-
tion Protocol for Trajectory Planning of Heterogeneous Multi-Agent Systems.
http://arxiv.org/abs/2309.07431 arXiv:2309.07431 [cs].

[22] Ziyang Chen, Fei Luo, and Chunjie Zhai. 2019. Obstacle Avoidance Strategy for
Quadrotor UAV based on Improved Particle Swarm optimization Algorithm. In
2019 Chinese Control Conference (CCC). IEEE, Guangzhou, China, 8115–8120.
https://doi.org/10.23919/ChiCC.2019.8865866

[23] Kai Cui, Mengguang Li, Christian Fabian, and Heinz Koeppl. 2023. Scalable Task-
Driven Robotic Swarm Control via Collision Avoidance and Learning Mean-
Field Control. In 2023 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, London, United Kingdom, 1192–1199. https://doi.org/10.1109/
ICRA48891.2023.10161498

[24] Ema Falomir, Serge Chaumette, and Gilles Guerrini. 2018. A Mobility Model
Based on Improved Arti"cial Potential Fields for Swarms of UAVs. In 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE,
Madrid, 8499–8504. https://doi.org/10.1109/IROS.2018.8593738

[25] Malintha Fernando. 2021. Online Flocking Control of UAVs with Mean-Field
Approximation. In 2021 IEEE International Conference on Robotics and Automa-
tion (ICRA). IEEE, Xi’an, China, 8977–8983. https://doi.org/10.1109/ICRA48506.
2021.9560899

[26] Eduardo Ferrera, Alfonso Alcántara, J. Capitán, Á. R. Castaño, P. Marrón, and
A. Ollero. 2018. Decentralized 3D Collision Avoidance for Multiple UAVs in
Outdoor Environments. Sensors (Basel, Switzerland) 18 (2018).

[27] Mael Feurgard, Gautier Hattenberger, and Simon Lacroix. 2024. Extending
Guiding Vector Field to track unbounded UAV paths. (2024).

[28] Paolo Fiorini and Zvi Shiller. 1998. Motion Planning in Dynamic Environments
Using Velocity Obstacles. The International Journal of Robotics Research 17, 7
(July 1998), 760–772. https://doi.org/10.1177/027836499801700706

[29] D. Fox, W. Burgard, and S. Thrun. 1997. The Dynamic Window Approach
to Collision Avoidance. IEEE Robot. Automat. Mag. 4, 1 (March 1997), 23–33.
https://doi.org/10.1109/100.580977

[30] Shahram Ghandeharizadeh. 2021. Holodeck: Immersive 3D Displays Using
Swarms of Flying Light Specks. In ACMMultimedia Asia (Gold Coast, Australia).
ACM Press, New York, NY, 1–7. https://doi.org/10.1145/3469877.3493698

[31] Shahram Ghandeharizadeh. 2022. Display of 3D Illuminations using Flying
Light Specks. In ACMMultimedia. ACM Press, New York, NY, 2996–3005. https:
//doi.org/10.1145/3503161.3548250

[32] Manaram Gnanasekera and Jay Katupitiya. 2020. A Time Optimal Reactive
Collision Avoidance Method for UAVs Based on a Modi"ed Collision Cone
Approach. In 2020 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, Las Vegas, NV, USA, 5685–5692. https://doi.org/10.1109/
IROS45743.2020.9341259

[33] Michael Hamer, Lino Widmer, and Ra#aello D’andrea. 2019. Fast Generation of
Collision-Free Trajectories for Robot Swarms Using GPU Acceleration. IEEE
Access 7 (2019), 6679–6690. https://doi.org/10.1109/ACCESS.2018.2889533

[34] Lei He, Nabil Aouf, James F. Whidborne, and Bifeng Song. 2020. Integrated
Moment-based LGMD and Deep Reinforcement Learning for UAV Obstacle
Avoidance. In 2020 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, Paris, France, 7491–7497. https://doi.org/10.1109/ICRA40945.
2020.9197152

[35] JacobHiggins, NicholasMohammad, and Nicola Bezzo. 2023. AModel Predictive
Path Integral Method for Fast, Proactive, and Uncertainty-Aware UAV Planning
in Cluttered Environments. http://arxiv.org/abs/2308.00914 arXiv:2308.00914
[cs].

[36] Wolfgang Hoenig, T. K. Kumar, Liron Cohen, Hang Ma, Hong Xu, Nora Ayanian,
and Sven Koenig. 2016. Multi-Agent Path Finding with Kinematic Constraints.
ICAPS 26 (March 2016), 477–485. https://doi.org/10.1609/icaps.v26i1.13796

[37] Wolfgang Hönig, James A Preiss, TK Satish Kumar, Gaurav S Sukhatme, and
Nora Ayanian. 2018. Trajectory planning for quadrotor swarms. IEEE Transac-
tions on Robotics 34, 4 (2018), 856–869.

[38] Huaxing Huang, Guijie Zhu, Zhun Fan, Hao Zhai, Yuwei Cai, Ze Shi, Zhaohui
Dong, and Zhifeng Hao. 2022. Vision-based Distributed Multi-UAV Collision
Avoidance via Deep Reinforcement Learning for Navigation. In 2022 IEEE/RSJ

9

https://doi.org/10.32657/10356/137101
https://doi.org/10.1109/ICRA48506.2021.9561284
https://doi.org/10.1109/ICRA48506.2021.9561284
https://doi.org/10.3390/agronomy12040873
https://doi.org/10.61981/ZFSH2301
https://doi.org/10.61981/ZFSH2302
https://doi.org/10.1109/LRA.2020.2967281
https://doi.org/10.1109/LRA.2020.2967281
https://doi.org/10.1109/IROS.2012.6385823
https://doi.org/10.1109/IROS.2018.8594266
https://doi.org/10.2514/6.2017-5323
https://doi.org/10.2514/6.2017-5323
https://doi.org/10.1109/ICRA.2013.6631118
https://doi.org/10.1109/TSMC.1983.6313112
https://doi.org/10.1109/TCST.2020.3005602
https://doi.org/10.1109/IROS45743.2020.9340778
https://doi.org/10.1109/IROS45743.2020.9340778
https://doi.org/10.1109/IROS45743.2020.9341466
http://arxiv.org/abs/2309.07431
https://doi.org/10.23919/ChiCC.2019.8865866
https://doi.org/10.1109/ICRA48891.2023.10161498
https://doi.org/10.1109/ICRA48891.2023.10161498
https://doi.org/10.1109/IROS.2018.8593738
https://doi.org/10.1109/ICRA48506.2021.9560899
https://doi.org/10.1109/ICRA48506.2021.9560899
https://doi.org/10.1177/027836499801700706
https://doi.org/10.1109/100.580977
https://doi.org/10.1145/3469877.3493698
https://doi.org/10.1145/3503161.3548250
https://doi.org/10.1145/3503161.3548250
https://doi.org/10.1109/IROS45743.2020.9341259
https://doi.org/10.1109/IROS45743.2020.9341259
https://doi.org/10.1109/ACCESS.2018.2889533
https://doi.org/10.1109/ICRA40945.2020.9197152
https://doi.org/10.1109/ICRA40945.2020.9197152
http://arxiv.org/abs/2308.00914
https://doi.org/10.1609/icaps.v26i1.13796

International Conference on Intelligent Robots and Systems (IROS). IEEE, Kyoto,
Japan, 13745–13752. https://doi.org/10.1109/IROS47612.2022.9981803

[39] Jialei Huang, Fakui Wang, and Tianjiang Hu. 2023. CoFlyers: A Universal
Platform for Collective Flying of Swarm Drones. In 2023 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, Detroit, MI, USA,
8808–8813. https://doi.org/10.1109/IROS55552.2023.10342485

[40] Ahmed Hussein, Abdulla Al-Ka#, Arturo De La Escalera, and Jose Maria
Armingol. 2015. Autonomous indoor navigation of low-cost quadcopters. In
2015 IEEE International Conference on Service Operations And Logistics, And
Informatics (SOLI). IEEE, Yassmine Hammamet, Tunisia, 133–138. https:
//doi.org/10.1109/SOLI.2015.7367607

[41] Wolfgang Hönig, James A. Preiss, T. K. Satish Kumar, Gaurav S. Sukhatme,
and Nora Ayanian. 2018. Trajectory Planning for Quadrotor Swarms. IEEE
Transactions on Robotics 34, 4 (2018), 856–869. https://doi.org/10.1109/TRO.
2018.2853613

[42] Werner Alexander Isop and Friedrich Fraundorfer. 2019. Force Field-Based
Indirect Manipulation Of UAV Flight Trajectories. In 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, Macau, China, 2775–
2782. https://doi.org/10.1109/IROS40897.2019.8967813

[43] Iswanto Iswanto, Al"an Ma’arif, Oyas Wahyunggoro, and Adha Imam. 2019. Ar-
ti"cial Potential Field Algorithm Implementation for Quadrotor Path Planning.
IJACSA 10, 8 (2019). https://doi.org/10.14569/IJACSA.2019.0100876

[44] Ravinder Kumar Jyoti, Mohit Kumar Malhotra, and Debasish Ghose. 2021.
Rogue Agent Identi"cation and Collision Avoidance in Formation Flights using
Potential Fields. In 2021 International Conference on Unmanned Aircraft Systems
(ICUAS). IEEE, Athens, Greece, 1080–1088. https://doi.org/10.1109/ICUAS51884.
2021.9476866

[45] Yasuhiko Kamiyama. 2023. Perspective Chapter: On the Morse Property for
the Distance Function of a Robot Arm. In Motion Planning for Dynamic Agents.
IntechOpen.

[46] Sertac Karaman and Emilio Frazzoli. 2011. Sampling-based Algorithms for
Optimal Motion Planning. The International Journal of Robotics Research 30, 7
(June 2011), 846–894. https://doi.org/10.1177/0278364911406761

[47] L.E. Kavraki, P. Svestka, J.-C. Latombe, and M.H. Overmars. 1996. Probabilistic
Roadmaps for Path Planning in High-Dimensional Con"guration Spaces. IEEE
Trans. Robot. Automat. 12, 4 (Aug. 1996), 566–580. https://doi.org/10.1109/70.
508439

[48] Moslem Kazemi, Kamal K. Gupta, and Mehran Mehrandezh. 2013. Randomized
Kinodynamic Planning for Robust Visual Servoing. IEEE Trans. Robot. 29, 5
(Oct. 2013), 1197–1211. https://doi.org/10.1109/TRO.2013.2264865

[49] O. Khatib. 1985. Real-time Obstacle Avoidance for Manipulators and Mobile
Robots. In Proceedings. 1985 IEEE International Conference on Robotics and Au-
tomation, Vol. 2. Institute of Electrical and Electronics Engineers, St. Louis, MO,
USA, 500–505. https://doi.org/10.1109/ROBOT.1985.1087247

[50] Anoop Kiran, Nora Ayanian, and Kenneth Breuer. 2023. In!uence of quadrotor
downwash on close proximity !ight. Bulletin of the American Physical Society
(2023).

[51] Takamasa Kominami, Zou Liang, Ricardo Rosales Martinez, Hannibal Paul, and
Kazuhiro Shimonomura. 2023. Physical Contact with Wall using a Multirotor
UAV Equipped with Add-On Thruster for Inspection Work. In 2023 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). IEEE, Detroit,
MI, USA, 6955–6961. https://doi.org/10.1109/IROS55552.2023.10341576

[52] Laura Krick, Mireille Broucke, and Bruce Francis. 2008. Getting Mobile
Autonomous Robots to Form a Prescribed Geometric Arrangement. In Re-
cent Advances in Learning and Control, Vincent D. Blondel, Stephen P. Boyd,
and Hidenori Kimura (Eds.). Vol. 371. Springer London, London, 149–159.
https://doi.org/10.1007/978-1-84800-155-8_11 ISSN: 0170-8643 Series Title:
Lecture Notes in Control and Information Sciences.

[53] Bjorn Lindqvist, Pantelis Sopasakis, and George Nikolakopoulos. 2021. A Scal-
able Distributed Collision Avoidance Scheme for Multi-agent UAV systems. In
2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
IEEE, Prague, Czech Republic, 9212–9218. https://doi.org/10.1109/IROS51168.
2021.9636293

[54] Cheng Liu and Roberto Tron. 2021. Sensing via Collisions: a Smart Cage for
Quadrotors with Applications to Self-Localization. In 2021 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, Xi’an, China, 4033–4039.
https://doi.org/10.1109/ICRA48506.2021.9561896

[55] C. Lin Liu, Israel L. Donato Ridgley, Matthew L. Elwin, Michael Rubenstein,
Randy A. Freeman, and Kevin M. Lynch. 2024. Self-Healing Distributed Swarm
Formation Control Using Image Moments. IEEE Robot. Autom. Lett. 9, 7 (July
2024), 6216–6223. https://doi.org/10.1109/LRA.2024.3401171

[56] Zhichao Liu and Konstantinos Karydis. 2021. Toward Impact-resilient Quadrotor
Design, Collision Characterization and Recovery Control to Sustain Flight after
Collisions. In 2021 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, Xi’an, China, 183–189. https://doi.org/10.1109/ICRA48506.2021.
9561089

[57] Yixing Luo, Yijun Yu, Zhi Jin, Yao Li, Zuohua Ding, Yuan Zhou, and Yang Liu.
2020. Privacy-Aware UAV Flights through Self-Con"guring Motion Planning.

In 2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE,
Paris, France, 1169–1175. https://doi.org/10.1109/ICRA40945.2020.9197564

[58] Luís Martins, Carlos Cardeira, and Paulo Oliveira. 2019. Linear Quadratic
Regulator for Trajectory Tracking of a Quadrotor. IFAC-PapersOnLine 52, 12
(2019), 176–181. https://doi.org/10.1016/j.ifacol.2019.11.195

[59] Silvia Mastellone, Du%an M. Stipanovi&, Christopher R. Graunke, Koji A.
Intlekofer, and Mark W. Spong. 2008. Formation Control and Collision Avoid-
ance for Multi-agent Non-holonomic Systems: Theory and Experiments. The
International Journal of Robotics Research 27, 1 (Jan. 2008), 107–126. https:
//doi.org/10.1177/0278364907084441

[60] Daniel Mellinger and Vijay Kumar. 2011. Minimum snap trajectory generation
and control for quadrotors. In 2011 IEEE International Conference on Robotics
and Automation. 2520–2525. https://doi.org/10.1109/ICRA.2011.5980409

[61] Yash Mulgaonkar, Anurag Makineni, Luis Guerrero-Bonilla, and Vijay Kumar.
2018. Robust Aerial Robot Swarms Without Collision Avoidance. IEEE Robot.
Autom. Lett. 3, 1 (Jan. 2018), 596–603. https://doi.org/10.1109/LRA.2017.2775699

[62] Marcin Odelga, Paolo Stegagno, Nicholas Kochanek, and Heinrich H. Bultho#.
2018. A Self-contained Teleoperated Quadrotor: On-Board State-Estimation and
Indoor Obstacle Avoidance. In 2018 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, Brisbane, QLD, 7840–7847. https://doi.org/10.
1109/ICRA.2018.8463185

[63] R. Olfati-Saber. 2006. Flocking for Multi-Agent Dynamic Systems: Algorithms
and Theory. IEEE Trans. Automat. Contr. 51, 3 (March 2006), 401–420. https:
//doi.org/10.1109/TAC.2005.864190

[64] Karishma Patnaik, Shatadal Mishra, Zachary Chase, and Wenlong Zhang. 2021.
Collision Recovery Control of a Foldable Quadrotor. In 2021 IEEE/ASME In-
ternational Conference on Advanced Intelligent Mechatronics (AIM). 418–423.
https://doi.org/10.1109/AIM46487.2021.9517341 arXiv:2105.12273 [cs, eess].

[65] Peng Peng, Wei Dong, Gang Chen, and Xiangyang Zhu. 2022. Obstacle
Avoidance of Resilient UAV Swarm Formation with Active Sensing System
in the Dense Environment. In 2022 IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS). IEEE, Kyoto, Japan, 10529–10535. https:
//doi.org/10.1109/IROS47612.2022.9981858

[66] James Preiss, Wolfgang Honig, Gaurav Sukhatme, and Nora Ayanian. 2017.
Crazyswarm: A Large Nano-Quadcopter Swarm. In IEEE International Confer-
ence on Robotics and Automation (ICRA). IEEE, 3299–3304. https://doi.org/10.
1109/ICRA.2017.7989376

[67] Martin Ru!i, Javier Alonso-Mora, and Roland Siegwart. 2013. Reciprocal Colli-
sion Avoidance With Motion Continuity Constraints. IEEE Trans. Robot. 29, 4
(Aug. 2013), 899–912. https://doi.org/10.1109/TRO.2013.2258733

[68] Markus Ryll, John Ware, John Carter, and Nick Roy. 2019. E$cient Trajectory
Planning for High Speed Flight in Unknown Environments. In 2019 International
Conference on Robotics and Automation (ICRA). IEEE, Montreal, QC, Canada,
732–738. https://doi.org/10.1109/ICRA.2019.8793930

[69] Rashid A Saeed, Mohamed Omri, Sayed Abdel-Khalek, Elmustafa Sayed Ali,
and Maged Faihan Alotaibi. 2022. Optimal path planning for drones based on
swarm intelligence algorithm. Neural Computing and Applications 34, 12 (2022),
10133–10155.

[70] Fabrice Sa#re, Hanno Hildmann, and Hannu Karvonen. 2021. The design chal-
lenges of drone swarm control. In International conference on human-computer
interaction. Springer, 408–426.

[71] Daniel Schleich and Sven Behnke. 2022. Predictive Angular Potential Field-based
Obstacle Avoidance for Dynamic UAV Flights. In 2022 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, Kyoto, Japan, 13618–
13625. https://doi.org/10.1109/IROS47612.2022.9981677

[72] Brent Schlotfeldt, Dinesh Thakur, Nikolay Atanasov, Vijay Kumar, and George J.
Pappas. 2018. Anytime Planning for Decentralized Multirobot Active In-
formation Gathering. IEEE Robot. Autom. Lett. 3, 2 (April 2018), 1025–1032.
https://doi.org/10.1109/LRA.2018.2794608

[73] Rajnikant Sharma and D Ghose. 2007. Swarm Intelligence based Collision
Avoidance Between Realistically Modelled UAV Clusters. In 2007 American
Control Conference. IEEE, New York, NY, 3892–3897. https://doi.org/10.1109/
ACC.2007.4282177

[74] Guni Sharon, Roni Stern, Ariel Felner, and Nathan Sturtevant. [n.d.]. Con!ict-
Based Search For Optimal Multi-Agent Path Finding. ([n. d.]).

[75] Enrica Soria, Fabrizio Schiano, andDario Floreano. 2020. SwarmLab: AMATLAB
drone swarm simulator. In 2020 IEEE/RSJ international conference on intelligent
robots and systems (IROS). IEEE, 8005–8011.

[76] Hang Sun, Juntong Qi, Chong Wu, and Mingming Wang. 2020. Path Planning
for Dense Drone Formation Based on Modi"ed Arti"cial Potential Fields. In
2020 39th Chinese Control Conference (CCC). IEEE, Shenyang, China, 4658–4664.
https://doi.org/10.23919/CCC50068.2020.9189345

[77] Jiayi Sun, Jun Tang, and Songyang Lao. 2017. Collision Avoidance for Coopera-
tive UAVs With Optimized Arti"cial Potential Field Algorithm. IEEE Access 5
(2017), 18382–18390. https://doi.org/10.1109/ACCESS.2017.2746752

[78] Wen Sun, Jur Van Den Berg, and Ron Alterovitz. 2016. Stochastic Extended
LQR for Optimization-Based Motion Planning Under Uncertainty. IEEE Trans.
Automat. Sci. Eng. 13, 2 (April 2016), 437–447. https://doi.org/10.1109/TASE.

10

https://doi.org/10.1109/IROS47612.2022.9981803
https://doi.org/10.1109/IROS55552.2023.10342485
https://doi.org/10.1109/SOLI.2015.7367607
https://doi.org/10.1109/SOLI.2015.7367607
https://doi.org/10.1109/TRO.2018.2853613
https://doi.org/10.1109/TRO.2018.2853613
https://doi.org/10.1109/IROS40897.2019.8967813
https://doi.org/10.14569/IJACSA.2019.0100876
https://doi.org/10.1109/ICUAS51884.2021.9476866
https://doi.org/10.1109/ICUAS51884.2021.9476866
https://doi.org/10.1177/0278364911406761
https://doi.org/10.1109/70.508439
https://doi.org/10.1109/70.508439
https://doi.org/10.1109/TRO.2013.2264865
https://doi.org/10.1109/ROBOT.1985.1087247
https://doi.org/10.1109/IROS55552.2023.10341576
https://doi.org/10.1007/978-1-84800-155-8_11
https://doi.org/10.1109/IROS51168.2021.9636293
https://doi.org/10.1109/IROS51168.2021.9636293
https://doi.org/10.1109/ICRA48506.2021.9561896
https://doi.org/10.1109/LRA.2024.3401171
https://doi.org/10.1109/ICRA48506.2021.9561089
https://doi.org/10.1109/ICRA48506.2021.9561089
https://doi.org/10.1109/ICRA40945.2020.9197564
https://doi.org/10.1016/j.ifacol.2019.11.195
https://doi.org/10.1177/0278364907084441
https://doi.org/10.1177/0278364907084441
https://doi.org/10.1109/ICRA.2011.5980409
https://doi.org/10.1109/LRA.2017.2775699
https://doi.org/10.1109/ICRA.2018.8463185
https://doi.org/10.1109/ICRA.2018.8463185
https://doi.org/10.1109/TAC.2005.864190
https://doi.org/10.1109/TAC.2005.864190
https://doi.org/10.1109/AIM46487.2021.9517341
https://doi.org/10.1109/IROS47612.2022.9981858
https://doi.org/10.1109/IROS47612.2022.9981858
https://doi.org/10.1109/ICRA.2017.7989376
https://doi.org/10.1109/ICRA.2017.7989376
https://doi.org/10.1109/TRO.2013.2258733
https://doi.org/10.1109/ICRA.2019.8793930
https://doi.org/10.1109/IROS47612.2022.9981677
https://doi.org/10.1109/LRA.2018.2794608
https://doi.org/10.1109/ACC.2007.4282177
https://doi.org/10.1109/ACC.2007.4282177
https://doi.org/10.23919/CCC50068.2020.9189345
https://doi.org/10.1109/ACCESS.2017.2746752
https://doi.org/10.1109/TASE.2016.2517124

2016.2517124
[79] Camilla Tabasso, Venanzio Cichella, Syed Bilal Mehdi, Thiago Marinho, and

Naira Hovakimyan. 2021. Time Coordination and Collision Avoidance Using
Leader-Follower Strategies in Multi-Vehicle Missions. Robotics 10, 1 (Feb. 2021),
34. https://doi.org/10.3390/robotics10010034

[80] Ardalan Tajbakhsh, Lorenz T. Biegler, and Aaron M. Johnson. 2024. Con!ict-
Based Model Predictive Control for Scalable Multi-Robot Motion Planning.
http://arxiv.org/abs/2303.01619 arXiv:2303.01619 [cs].

[81] Wenbo Tan and Na Huang. 2022. Event-based Rigid Formation Sys-
tem with Cooperative Finite-time Control. IMA Journal of Mathe-
matical Control and Information 39, 1 (01 2022), 235–253. https://doi.
org/10.1093/imamci/dnab041 arXiv:https://academic.oup.com/imamci/article-
pdf/39/1/235/42682698/dnab041.pdf

[82] Pratap Tokekar, Joshua Vander Hook, David Mulla, and Volkan Isler. 2016.
Sensor Planning for a Symbiotic UAV and UGV System for Precision Agriculture.
IEEE Trans. Robot. 32, 6 (Dec. 2016), 1498–1511. https://doi.org/10.1109/TRO.
2016.2603528

[83] Jesus Tordesillas, Brett T. Lopez, John Carter, John Ware, and Jonathan P. How.
2019. Real-Time Planning with Multi-Fidelity Models for Agile Flights in
Unknown Environments. In 2019 International Conference on Robotics and Au-
tomation (ICRA). IEEE, Montreal, QC, Canada, 725–731. https://doi.org/10.
1109/ICRA.2019.8794248

[84] Matthew Turpin, Nathan Michael, and Vijay Kumar. 2014. Concurrent As-
signment and Planning of Trajectories for Multiple Robots. The International
Journal of Robotics Research 33, 1 (Jan. 2014), 98–112. https://doi.org/10.1177/
0278364913515307

[85] Jur Van Den Berg, Ming Lin, and Dinesh Manocha. 2008. Reciprocal Veloc-
ity Obstacles for real-time multi-agent navigation. In 2008 IEEE International
Conference on Robotics and Automation. IEEE, Pasadena, CA, USA, 1928–1935.
https://doi.org/10.1109/ROBOT.2008.4543489

[86] Jur Van Den Berg, Jamie Snape, Stephen J. Guy, and Dinesh Manocha. 2011.
Reciprocal Collision Avoidance with Acceleration-Velocity Obstacles. In 2011
IEEE International Conference on Robotics and Automation. IEEE, Shanghai,
China, 3475–3482. https://doi.org/10.1109/ICRA.2011.5980408

[87] Jur van den Berg, David Wilkie, Stephen Guy, Marc Niethammer, and Dinesh
Manocha. 2012. LQG-obstacles: Feedback Control with Collision Avoidance for
Mobile Robots withMotion and Sensing Uncertainty. In International Conference
on Robotics and Automation. IEEE, 346–353. https://doi.org/10.1109/ICRA.2012.
6224648

[88] Matthieu Verdoucq, Clément Sire, Ramón Escobedo, Guy Theraulaz, and Gautier
Hattenberger. 2023. Bio-Inspired 3D Flocking Algorithm with Minimal Infor-
mation Transfer for Drones Swarms. In 2023 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE, Detroit, MI, USA, 8833–8838.
https://doi.org/10.1109/IROS55552.2023.10341413

[89] Matthieu Verdoucq, Guy Theraulaz, Ramon Escobedo, Clement Sire, and Gautier
Hattenberger. 2022. Bio-inspired Control for Collective Motion in Swarms of
Drones. In 2022 International Conference on Unmanned Aircraft Systems (ICUAS).
IEEE, Dubrovnik, Croatia, 1626–1631. https://doi.org/10.1109/ICUAS54217.
2022.9836112

[90] Glenn Wagner and Howie Choset. 2013. M*: A Complete Multirobot Path
Planning Algorithmwith Optimality Bounds. Redundancy in Robot Manipulators
and Multi-Robot Systems (2013), 167–181.

[91] Li Wang, Aaron D. Ames, and Magnus Egerstedt. 2017. Safety Barrier Certi"-
cates for Collisions-Free Multirobot Systems. IEEE Trans. Robot. 33, 3 (June
2017), 661–674. https://doi.org/10.1109/TRO.2017.2659727

[92] Jonas Westheider, Julius Rückin, and Marija Popovi&. 2023. Multi-UAV Adaptive
Path Planning Using Deep Reinforcement Learning. In 2023 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS). IEEE, Detroit, MI,
USA, 649–656. https://doi.org/10.1109/IROS55552.2023.10342516

[93] Michael T. Wolf and Joel W. Burdick. 2008. Arti"cial Potential Functions
for Highway Driving with Collision Avoidance. In 2008 IEEE International
Conference on Robotics and Automation. IEEE, Pasadena, CA, USA, 3731–3736.

https://doi.org/10.1109/ROBOT.2008.4543783
[94] Yang Xu, Shupeng Lai, Jiaxin Li, Delin Luo, and Yancheng You. 2019. Concurrent

Optimal Trajectory Planning for Indoor Quadrotor Formation Switching. Jour-
nal of Intelligent & Robotic Systems 94 (05 2019). https://doi.org/10.1007/s10846-
018-0813-9

[95] Zhefan Xu, Di Deng, Yiping Dong, and Kenji Shimada. 2022. DPMPC-Planner:
A real-time UAV trajectory planning framework for complex static environ-
ments with dynamic obstacles. In 2022 International Conference on Robot-
ics and Automation (ICRA). IEEE, Philadelphia, PA, USA, 250–256. https:
//doi.org/10.1109/ICRA46639.2022.9811886

[96] Zhefan Xu, Yumeng Xiu, Xiaoyang Zhan, Baihan Chen, and Kenji Shimada.
2023. Vision-aided UAV Navigation and Dynamic Obstacle Avoidance using
Gradient-based B-spline Trajectory Optimization. In 2023 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, London, United Kingdom,
1214–1220. https://doi.org/10.1109/ICRA48891.2023.10160638

[97] A. Yamashita, T. Arai, Jun Ota, and H. Asama. 2003. Motion Planning of Multiple
Mobile Robots for Cooperative Manipulation and Transportation. IEEE Trans.
Robot. Automat. 19, 2 (April 2003), 223–237. https://doi.org/10.1109/TRA.2003.
809592

[98] Ziwei Yan, Liang Han, Xiaoduo Li, Jinjie Li, and Zhang Ren. 2023. Event-
Triggered Optimal Formation Tracking Control Using Reinforcement Learning
for Large-Scale UAV Systems. In 2023 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, London, United Kingdom, 3233–3239. https:
//doi.org/10.1109/ICRA48891.2023.10160532

[99] Guang Yang, Mingyu Cai, Ahmad Ahmad, Amanda Prorok, Roberto Tron,
and Calin Belta. 2023. LQR-CBF-RRT*: Safe and Optimal Motion Planning.
http://arxiv.org/abs/2304.00790 arXiv:2304.00790 [cs, eess].

[100] Esen Yel and Nicola Bezzo. 2020. GP-based Runtime Planning, Learning, and
Recovery for Safe UAV Operations under Unforeseen Disturbances. In 2020
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
IEEE, Las Vegas, NV, USA, 2173–2180. https://doi.org/10.1109/IROS45743.
2020.9341641

[101] Eiichi Yoshida and Ko Ayusawa. 2020. Towards Uni"ed Framework for Tra-
jectory Optimization Using General Di#erential Kinematics and Dynamics. In
Robotics Research: The 18th International Symposium ISRR. Springer, 217–232.

[102] Jingjin Yu and Steven M. LaValle. 2016. Optimal Multirobot Path Planning on
Graphs: Complete Algorithms and E#ective Heuristics. IEEE Trans. Robot. 32, 5
(Oct. 2016), 1163–1177. https://doi.org/10.1109/TRO.2016.2593448

[103] Eyal Zehavi and Noa Agmon. 2021. Hybrid Path Planning for UAV Tra$c
Management. In 2021 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). IEEE, Prague, Czech Republic, 6427–6433. https://doi.org/
10.1109/IROS51168.2021.9636390

[104] Ji Zhang, Chen Hu, Rushat Gupta Chadha, and Sanjiv Singh. 2019. Maximum
Likelihood Path Planning for Fast Aerial Maneuvers and Collision Avoidance.
In 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, Macau, China, 2805–2812. https://doi.org/10.1109/IROS40897.
2019.8967828

[105] Boyu Zhou, Fei Gao, Jie Pan, and Shaojie Shen. 2020. Robust Real-time UAV
Replanning Using Guided Gradient-based Optimization and Topological Paths.
In 2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE,
Paris, France, 1208–1214. https://doi.org/10.1109/ICRA40945.2020.9196996

[106] Dingjiang Zhou and Mac Schwager. 2016. Assistive collision avoidance for
quadrotor swarm teleoperation. In 2016 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, Stockholm, 1249–1254. https://doi.org/10.1109/
ICRA.2016.7487256

[107] Shuqin Zhu and Shahram Ghandeharizadeh. 2023. Flight Patterns for Swarms
of Drones. In The First International Conference on Holodecks (Los Angeles,
California) (Holodecks ’23). Mitra LLC, Los Angeles, CA, USA, 29–33. https:
//doi.org/10.61981/ZFSH2303

[108] Baskın ’enba(lar, Wolfgang Hönig, and Nora Ayanian. 2023. RLSS: Real-Time,
Decentralized, Cooperative, Networkless Multi-robot Trajectory Planning using
Linear Spatial Separations. Auton Robot 47, 7 (Oct. 2023), 921–946. https:
//doi.org/10.1007/s10514-023-10104-w

11

https://doi.org/10.1109/TASE.2016.2517124
https://doi.org/10.3390/robotics10010034
http://arxiv.org/abs/2303.01619
https://doi.org/10.1093/imamci/dnab041
https://doi.org/10.1093/imamci/dnab041
https://arxiv.org/abs/https://academic.oup.com/imamci/article-pdf/39/1/235/42682698/dnab041.pdf
https://arxiv.org/abs/https://academic.oup.com/imamci/article-pdf/39/1/235/42682698/dnab041.pdf
https://doi.org/10.1109/TRO.2016.2603528
https://doi.org/10.1109/TRO.2016.2603528
https://doi.org/10.1109/ICRA.2019.8794248
https://doi.org/10.1109/ICRA.2019.8794248
https://doi.org/10.1177/0278364913515307
https://doi.org/10.1177/0278364913515307
https://doi.org/10.1109/ROBOT.2008.4543489
https://doi.org/10.1109/ICRA.2011.5980408
https://doi.org/10.1109/ICRA.2012.6224648
https://doi.org/10.1109/ICRA.2012.6224648
https://doi.org/10.1109/IROS55552.2023.10341413
https://doi.org/10.1109/ICUAS54217.2022.9836112
https://doi.org/10.1109/ICUAS54217.2022.9836112
https://doi.org/10.1109/TRO.2017.2659727
https://doi.org/10.1109/IROS55552.2023.10342516
https://doi.org/10.1109/ROBOT.2008.4543783
https://doi.org/10.1007/s10846-018-0813-9
https://doi.org/10.1007/s10846-018-0813-9
https://doi.org/10.1109/ICRA46639.2022.9811886
https://doi.org/10.1109/ICRA46639.2022.9811886
https://doi.org/10.1109/ICRA48891.2023.10160638
https://doi.org/10.1109/TRA.2003.809592
https://doi.org/10.1109/TRA.2003.809592
https://doi.org/10.1109/ICRA48891.2023.10160532
https://doi.org/10.1109/ICRA48891.2023.10160532
http://arxiv.org/abs/2304.00790
https://doi.org/10.1109/IROS45743.2020.9341641
https://doi.org/10.1109/IROS45743.2020.9341641
https://doi.org/10.1109/TRO.2016.2593448
https://doi.org/10.1109/IROS51168.2021.9636390
https://doi.org/10.1109/IROS51168.2021.9636390
https://doi.org/10.1109/IROS40897.2019.8967828
https://doi.org/10.1109/IROS40897.2019.8967828
https://doi.org/10.1109/ICRA40945.2020.9196996
https://doi.org/10.1109/ICRA.2016.7487256
https://doi.org/10.1109/ICRA.2016.7487256
https://doi.org/10.61981/ZFSH2303
https://doi.org/10.61981/ZFSH2303
https://doi.org/10.1007/s10514-023-10104-w
https://doi.org/10.1007/s10514-023-10104-w

	Abstract
	1 Introduction
	2 A Circular Flight Pattern Slanted Degrees
	2.1 Slot Coordinate as a Function of Time
	2.2 FLS Rendezvous with a Slot: SD and FRT

	3 Implementation
	4 Evaluation
	5 Related Work
	6 Conclusion
	Acknowledgments
	References

