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ABSTRACT The increasing penetration of renewable energy sources (RESs) has transformed power system
operations. However, balancing supply and demand is more challenging due to the inherent variability of
RESs. This paper presents an efficient framework that integrates demand flexibility, RESs, and energy
storage in distribution systems to enhance distribution system performance. The study implements a detailed
time-series power flow analysis to investigate the impact of distributed energy resources (DERs) on system
performance over a 24-hour period. The simulations incorporate a modified IEEE 123-bus network with
two PV systems, flexible loads, and a 300 kW/1200 kWh battery. Additionally, the IEEE 8500-node
distribution feeder integrates higher-rated PV, wind generators, and a 500 kW/2000 kWh battery to evaluate
grid performance under diverse operational conditions. The battery storage system provides essential grid
support through strategic charging during high PV generation and discharging during peak demand periods.
The simulation results demonstrate robust voltage regulation and effective demand response throughout the
feeder despite varying generation and load conditions. The flexible loads effectively respond to system
conditions, varying between 23 to 82 kVA. This study demonstrates the viability of coordinated DER
operations and their impact on modern distribution networks.

INDEX TERMS Demand flexibility, demand response, distribution networks, optimal power flow (OPF),
photovoltaic systems.

NOMENCLATURE A Voltage deviation penalty coefficient.
FUNCTIONS 0 Voltage phase angle difference.
D Degree matrix. Bijj Susceptance between buses i and j.
Ch Battery operation cost.
cf Cost associated with demand flexibility.
VARIABLES . Cg Cost of grid power.
Umay  Maximum demand flexibility factor.
) L. E Battery energy storage level.
Ne Charging efficiency. o
. . . Epv _actual Actual energy utilized from PV.
Nd Discharging efficiency. ’ .
.. Epv available  Total available PV energy.
nsys  Overall system efficiency. ’ .
E\ated Rated battery energy capacity.
The associate editor coordinating the review of this manuscript and Gj Conductance between buses i and j.
approving it for publication was N. Prabaharan . P, Battery charging power.
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Py Battery discharging power.

Py Flexible load power.

P, Grid power.

P; Nominal load profile.

Pgrig  Grid power input.

Pioaq  Total system load demand.

P,ss  Power loss.

Py Non-flexible load power.

Ppy  Photovoltaic system power output.
Sij Power flow between buses 7 and j.
Vi Voltage at bus i.

Viev  Voltage deviation.

ABBREVIATIONS
BESS Battery Energy Storage System.

DERs Distributed Energy Resources.

DF Demand Flexibility.

DR Demand Response.

KPIs Key Performance Indicators.

OpenDSS  Open Distribution System Simulator.
SCOPF Security-Constrained Optimal Power Flow.

VPI Voltage Performance Index.
VPPs Virtual Power Plants.

I. INTRODUCTION

The rapid proliferation of distributed energy resources
(DERs), such as photovoltaic (PV) systems and battery
energy storage systems (BESS), is transforming modern
distribution networks [1]. DERs provide localized energy
generation and storage capabilities, contributing to grid
resilience and sustainability [2]. Nevertheless, their inter-
mittent nature poses operational challenges, particularly in
maintaining voltage stability and managing power flows in
real-time [3]. Demand flexibility (DF), facilitated through
time-varying load profiles and smart grid technologies, has
emerged as a complementary approach to mitigate these chal-
lenges [4]. Flexible loads adapt consumption patterns to grid
conditions, helping balance supply and demand, enhancing
system reliability, and reducing the need for conventional grid
reinforcements [5]. Recent studies highlight the importance
of the strategic placement of DERs and the implementation
of advanced control strategies to optimize their performance
and mitigate operational risks [6]. Integrating DERs enhances
economic efficiency in several ways: reducing transmission
costs, enabling new business models, stabilizing energy
prices, and fostering job creation in the green energy sector.
Countries such as Germany, the UK, and Australia have
leveraged DERs to introduce competitive energy markets,
implement virtual power plants, and demand response
mechanisms, promoting market efficiency and consumer
participation [7]. Additionally, DERs support decarboniza-
tion and energy security by reducing reliance on fossil
fuels and enhancing grid resilience. Nonetheless, regulatory
frameworks and infrastructure upgrades are essential to fully
realize these economic benefits.
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Recent research has evolved significantly in addressing
the complex challenges of integrating DERs and DF in
distribution networks. The field has progressed from basic
coordination methods to sophisticated frameworks that
incorporate multiple system objectives and constraints. Early
work in this domain established fundamental coordination
principles. For instance, the authors in [8] introduced a
multi—temporal optimal power flow algorithm for low—
voltage networks. This pioneering approach demonstrated
the technical feasibility of coordinating storage devices with
flexible loads and achieved notable computational efficiency
for day-ahead planning. However, it remained constrained
by limited network configurations and lacked comprehensive
metrics to quantify flexibility benefits. This limitation high-
lighted the need for standardized assessment methodologies
that could be applied across diverse system configurations.
Addressing this measurement gap, subsequent research by the
authors in [9] advanced the field by developing data-driven
key performance indicators (KPIs) for systematically eval-
uating energy flexibility. Their extensive work, analyzing
48 distinct KPIs across 330 building datasets, marked a
significant transition from theoretical models to practical
assessment frameworks. Nonetheless, their findings revealed
a critical shortcoming in the available data ecosystem: less
than 5% of datasets possessed sufficient attributes for demand
response applications.

As the DF field matured, researchers increasingly recog-
nized the importance of integrating economic mechanisms
with technical solutions [10]. In [10], the authors developed
a flexible security-constrained framework that leverages
real-time pricing to coordinate both generation and demand.
Their approach yielded impressive economic outcomes,
reducing operating costs by up to 15% and load shedding
by 90% for diverse consumer types. However, it primarily
emphasized market efficiency without adequately addressing
the technical challenges that arise at the distribution level.
The collective evolution of these studies demonstrates a
clear progression from isolated coordination algorithms to
comprehensive frameworks that attempt to bridge technical
and economic considerations. Nevertheless, this research
progress has also revealed significant gaps in comprehen-
sively integrating multiple DER types with flexible demands
and standardizing performance metrics across diverse config-
urations.

Despite recent progress in the integration of DERs and
DF in distribution networks, several critical gaps remain
unaddressed in the existing literature [11], [12]. Previ-
ous studies, such as those focused on multi—temporal
coordination of storage and flexible loads, often demon-
strate feasibility. Nonetheless, they are limited to specific
network configurations and lack scalability and broader
applicability [13]. Furthermore, data-driven approaches to
assess energy flexibility have introduced key performance
indicators. Nevertheless, the availability and standardization
of datasets remain inadequate, hindering the implementation
of robust flexibility metrics in real—world applications [14].
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Existing frameworks that incorporate pricing mechanisms
and security constraints primarily emphasize economic
efficiency. They often overlook the technical challenges
of DER deployment, such as maintaining voltage stabil-
ity and ensuring operational reliability at the distribution
level [15].

To effectively integrate DERs and leverage DF, it is crucial
to analyze their combined impact on distribution networks.
In this context, this paper presents a comprehensive frame-
work for multi—DER integration in distribution networks.
The framework is based on coordinated control of PV, battery
storage, and DF. This paper aims to bridge these gaps by offer-
ing a comprehensive methodology that integrates multiple
DER types with DF. The approach uses advanced time-series
analysis to capture the dynamic interactions of distributed
resources in complex networks. By combining strategic
DER placement with realistic operational profiles, this study
addresses both technical and economic challenges. It pro-
vides actionable insights and validated results that advance
the state of the art in DER and DF integration. This approach
ensures scalability, standardization, and enhanced system
performance across diverse scenarios. A modified IEEE 123-
bus distribution test system is used as a robust benchmark for
this purpose, given its complexity and relevance in modeling
real-world grid scenarios. The deployment of a 500 kVA and
a 750 kVA PV system at buses 70 and 160, respectively,
along with a 300 kW/1200 kWh BESS at bus 100, reflects
typical utility-scale installations designed to enhance grid
flexibility [16]. The study further incorporates time-varying
load profiles for two major loads (150 kW and 200 kW),
calibrated to simulate real-time demand fluctuations and
flexibility constraints, thus providing a holistic framework for
evaluating the operational dynamics of a modern distribution
network. A 24-hour time-series analysis forms the backbone
of this research. The open distribution system simulator
(OpenDSS) is used for detailed power flow studies, capturing
hourly interactions between DERs and flexible demands
under varying grid conditions. This approach allows for a
granular assessment of key performance indicators, including
voltage profiles, PV generation patterns, load flexibility
responses, and battery storage operation cycles. The main
contributions are outlined as follows.

o A comprehensive framework for integrating and coor-
dinating multiple DERs in distribution networks is
developed, demonstrating successful voltage regulation
and system stability under varying generation and load
conditions.

« An innovative time-series analysis approach is imple-
mented using OpenDSS, enabling a detailed assess-
ment of DER interactions and their impacts on
distribution system performance over a 24-hour
period.

o A strategic deployment methodology for PV systems,
battery storage, and flexible loads is proposed, opti-
mizing their placement and operational parameters for
enhanced grid performance.
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The rest of the paper is organized as follows. Section II
details the problem formulation. Then, Section III describes
the system modeling. Sections IV and V present the
implementation methodology and simulation results. Finally,
Section VI concludes the paper.

Il. PROBLEM FORMULATION

The integration of DERs with DF in distribution networks
can be formulated as a multi-objective optimization problem.
The primary goal is to minimize operational costs while
maintaining system stability through coordinated control of
PV systems, battery storage, and flexible loads [17]. The
overall objective function combines multiple operational
goals as

T
min > {coPy(t) + colPo()] + €7 [Py (1) = PO + 3 Vaer(D)}
t=1

ey

where ¢, represents the cost of grid power, ¢, denotes the
battery operation cost, and ¢y is the cost associated with DF
implementation. The voltage deviation penalty coefficient is
represented by A [18]. The time-varying parameters include
Pyg(t) for grid power at time ¢, Py(t) for battery power (with
positive values indicating discharge) [19], P (¢) representing
the actual consumption of flexible loads, P;(¢) denoting the
nominal load profile [20], and V., (?) quantifying the voltage
deviation from nominal values at each time step [21]. The
optimization of power balance, voltage limits, and battery
operation is subject to the following constraints, respectively
formulated as

Pg(t) +va([) + Pp(t) = Pf(t) +Pnf(t) + Poss(t), Vi,
(2)

Vmin = Vi(t) = Vmax Vie Nv Vi, (3)

Epin < E(t) < Enax Vi, (4)

— Py < Pp(t) < PP Vi, ®)

Pa(t)At
E(t+1)=E@)+ n.P(t)At — , vt. (6)
d

The BESS model incorporates both charging efficiency
(n¢) and discharging efficiency (14) to accurately represent
energy conversion losses during operation. The charging
efficiency (typically 0.90-0.95) is applied as a multiplier
to the charging power, while the discharging efficiency is
incorporated in the denominator of the discharging term to
represent the increased energy withdrawal required to deliver
a given amount of power to the grid. This formulation ensures
that the round-trip efficiency (1.14) properly accounts for the
total energy losses during a complete charge-discharge cycle.
The DF of the system is expressed as

(1 — oty )Pi(t) < Pf(t) <A+ amax)Pi(t) Vt, (D)

T T
D Prty=D>_Pi). ®)
=1 =1
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While this formulation provides a comprehensive frame-
work for analyzing DER integration, it is important
to acknowledge certain computational challenges. The
non-linear power flow equations coupled with temporal
constraints from battery storage and demand flexibility
introduce significant complexity that may impact scalability
for larger systems [22]. Additionally, the current formulation
assumes perfect forecasting of renewable generation and load
profiles, which represents an idealized scenario that may not
fully capture real-world uncertainties [23].

Ill. SYSTEM MODELING

This study initially uses a modified IEEE 123—bus distribu-
tion system with a nominal voltage of 4.16 kV [24]. The IEEE
123—bus system offers a unique combination of unbalanced
loading, multiple voltage levels, and varied feeder lengths.
These characteristics closely resemble real—world distribu-
tion networks. This diversity makes it particularly suitable for
validating DER integration strategies under realistic condi-
tions. Specifically, modifications include strategic placement
of DERs while preserving the original network structure.
The system has eight main feeders serving residential and
commercial loads, with a total demand of 3.0 MVA [25].
The system’s structure allowed for strategic placement of
DERs while maintaining the original network topology,
enabling us to evaluate multiple placement scenarios without
fundamentally altering the system’s inherent characteristics.
The test system features diverse load types, varying feeder
lengths, and multiple voltage levels. Modifications target
key buses for DER integration. PV systems were installed
at buses 70 and 160. These locations were selected based
on their load profiles and voltage sensitivity. Bus 100 is
designated for the battery energy storage system, which is
strategically positioned to enhance voltage regulation and
support effective load management. Flexible loads of 150 kW
and 200 kW are connected to buses 90 and 150, respectively,
providing demand response capabilities.

The coordination of PV sources within the distributed
energy framework operates through a hierarchical control
structure. At the device level, each PV inverter at buses
70 and 160 continuously monitors local voltage conditions
and generation capacity. These PV systems communicate
their available generation capacity (Ppy available) tO the
local coordination layer, which then determines optimal
setpoints (Ppy rer) based on system—wide objectives. The
coordination mechanism implements a feedback control
loop where PV reference signals are adjusted according to
Equation (28), with control signals transmitted every time
step (lhour). During periods of excessive generation that
might cause voltage violations, the controller may curtail PV
output by adjusting Ppv ret below the available capacity. The
modified bus system is shown in Fig. 1. The system operates
under the following constraints as

0.95 <V; <1.05, Viebuses )
[Si] < Sg’”", Y(i, ) € lines (10)
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n

n
D Pi=Pis+ D PL. (11)

i=1 i=1

The PV systems are modeled with temperature-dependent
efficiency as

Ppy = Pratea - 1(T) - G/Gsrc, (12)

where Prgreq i1s 500 kVA and 750 kVA for the respective
installations, 7(T) represents temperature efficiency, and
G/Ggsrc is the normalized irradiance. The BESS (300
kW/1200 kWh) operation is governed by

Py(t)At

E@t+1)=E@)+ nP(t)At — , (13)
Nd

Emin = E(l) = Ema)u (]4)

0 < Pc(t) < P, (15)

0 < Py(t) < Py™. (16)

Flexible loads follow a daily profile modified by demand
response signals as Pr(1) = Ppgse(t) - [1 + ()], where «(t)
represents the flexibility factor ranging from —0.4 to 0.2 [26].
The control framework adopts a hierarchical structure with
three layers. At the device level, it manages the operation
of individual DERs [27], [28]. The local coordination layer
focuses on maintaining power balance and regulating voltage
at the bus level [29]. Finally, the system-wide optimization
layer ensures overall performance optimization and stability
across the entire network [30], [31]. This framework enables
coordinated operation through

T
min D {wih®) + wafy (1) + wafe(®)} . (17)
t=1

where f,, fp, and f, represent voltage deviation, power loss,
and energy cost objectives respectively, with corresponding
weights wi, wo, and ws. The final weights used in our
simulations (w1 = 0.5, wp = 0.3, w3 = 0.2) prioritize voltage
regulation while still maintaining reasonable emphasis on
loss minimization and cost efficiency. The multi-objective
weights (wy, wp, ws) in our control framework were
determined through an iterative tuning process rather than
fixed a priori values. This approach was selected to reflect
the practical deployment of such frameworks, where system
operators would need to adjust priorities based on specific
operational goals.

IV. IMPLEMENTATION METHODOLOGY

This section describes the simulation framework and eval-
uation methodology used to assess system performance
under varying conditions. The methodology incorporates
advanced computational techniques to ensure an accurate
representation of the behavior of the system. All simulations
in this study were conducted on a computer equipped with
an Intel Core 17-9750H processor (4.5 GHz) and 16 GB of
RAM.
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FIGURE 1. The Modified IEEE-123 bus system.

A. TIME-SERIES ANALYSIS APPROACH

The implementation methodology employs a 24-hour time-
series analysis with a one-hour resolution to capture the
dynamic interactions between DERs and system opera-
tions [32]. This granularity enables a detailed assessment of
daily variations in load demands, PV generation, and storage
operation [33]. The simulation framework operates on the
following temporal parameters.

At = 1 hour, T = 24 hours. (18)

This hourly resolution was selected to balance computational
efficiency with adequate temporal granularity for capturing
the daily variations in load demands, PV generation, and
storage operation. The hourly time step aligns with standard
industry practice for distribution system analysis and matches
the temporal resolution of available input data for renewable
generation profiles and load patterns. Additionally, this time
step is compatible with OpenDSS daily solution mode
settings while providing sufficient detail to observe system
dynamics across different operational conditions. For a time
step ¢, the system state vector x(¢) is computed as

XO=[Vi(@), ..., Va(0), Pr(2), ..., Pa1), Q1(0), ..., Qu(D]".

(19)

The hierarchical control structure described above relies
on precise communication between different control layers.
In practice, communication delays and potential data loss
could impact control performance. The input data streams are
processed according to

PPV(t) = Prated 'fPV(t)»
PL(t) = Ppase 'ﬁoad(t),

(20)
2
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PB(I) = Prated 'fbatt(t).

where fpy(?), fioaa(t), and fpay(t) represent normalized
daily profiles for PV generation, load demand, and battery
operation, respectively. The time-series power flow solution
follows an iterative process in Algorithm 1.

(22)

Algorithm 1 Time-Series Power Flow Solution

1: Input: Time horizon T = 24, convergence criterion €
2: for t = 1t024 do

3: Initialize system state x(¢)

4 while | Ax|| > € do

5 Update DER outputs

6: Solve power flow equations
7 Update system state

8 end while

9: Store results
10: end for

11: return System states and power flows for all time steps

It should be noted that while this time-series approach
captures daily variations effectively, the computational bur-
den increases substantially for larger networks or finer time
resolutions. The hourly resolution, while appropriate for
distribution planning, may not capture transient dynamics
that occur on shorter timescales. Furthermore, the current
implementation does not incorporate weather prediction
capabilities, which are essential for managing the variability
of solar and wind power in real-world applications.

B. OPENDSS IMPLEMENTATION
The open-source OpenDSS software implementation oper-
ates in daily solution mode with a step size of 1-hour [34].
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It uses a static time-series control mode and allows a maxi-
mum of 100 control iterations per step. DER components are
integrated as

Busl =70
kV =4.16

New PVSystem.PV1 (23)
kVA = 500

daily = PVshape
Control actions are implemented through

PPV,ref(t)
PB,ref(t)
ar(f)

where w(z) represents external inputs like weather and price
signals.

u(t) = = f(x(1), w(1)), (24)

C. PERFORMANCE METRICS
The voltage performance is evaluated using the voltage
performance index (VPI) as

T n 2

1 Vi(t) — Vref)

VPI = — E E ), (25)
Ul e ( Vief

where V() represents the voltage at bus 7 at time 7, Vier is a
desired reference voltage, n is the total number of buses (or
nodes) under consideration, and 7 is the total number of time
steps. The system power flows are analyzed through

Pij(t) = Vi()Vi(D)[Gjj cos(0;(1)) + Bjjsin(0;(1))].  (26)
The overall system efficiency is calculated as

ZfT=1 Pload(l)
S [Pgria(t) + Ppy (1]

The key performance indicators include

Nsys = x 100%. 27

Epy ,actual

PV Utilization = x 100%, (28)

PV ,available

1 T
> IPs(n)]AL, (29)

E
rated i—1

ST IPL(E) = Pase(D))]
Z?:] Pbaxe(t)

Battery Cycles = 5

Load Flexibility = (30)

V. SIMULATION RESULTS

The simulation results provide a comprehensive analysis of
the system’s operational dynamics over a typical 24-hour
period. To begin with, Fig. 2 presents the PV generation
profile with a peak output of 150 kVA during the midday
hours.

As observed in Fig. 2, the PV generation curve demon-
strates a classic solar power output profile across a 24-hour
period. Generation begins at sunrise around hour 6, steadily
increasing to reach a maximum output of approximately
150 kVA at midday. It then gradually decreases until sunset
around hour 18. Following this analysis, Fig. 3 illustrates the
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FIGURE 2. PV system output power profile over a 24-hour period.

voltage profile at the monitored bus. It is important to note
that the ‘Normal’ line represents the typical daily operational
condition. In contrast, the other lines correspond to scenarios
with PV penetration levels of 20% and 50%, combined
with load flexibility variations of £10%, +20%, and
+40%. These specific penetration and flexibility thresholds
were strategically selected to represent the spectrum from
current operational realities to future scenarios. The 20%
PV penetration reflects moderate existing integration levels,
while 50% represents ambitious decarbonization goals.
For flexibility ranges, +10% is achievable with minimal
disruption. +20% flexibility requires coordinated demand-
side management. +40% flexibility tests theoretical upper
limits with comprehensive resource integration.

Regarding Fig. 3, the results highlight dynamic interac-
tions, with observed variations in voltage levels influenced
by the degree of PV penetration and load flexibility.

VoltageMon: V1, V2, V3

1.777004 ——Normal —— PV Penetration at 20% -
—— PV Penetration at 50% Load Flexibility at -10%
Load Flexibility at -20% Load Flexibility at -40%
—— Load Flexibility at +10% Load Flexibility at +20%
1.777002 |- —— Load Flexibility at +40% -
(0]
e
=]
=
c
S 1.777001
©
=

1.776999

1.776998

1 1 1 1 1 1 1 1 1 1 1 1

2 4 6 8 10 12 14 16 18 20 22 24
Time, H

FIGURE 3. Phase-to-neutral voltage profile at the monitored bus under
normal conditions and scenarios with 20% and 50% PV penetration
combined with load flexibility of £10%, +20%, and +40%.
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The observed voltage variations across different PV
penetration levels have significant practical implications
for distribution system operators. At 20% PV penetration
with +10% load flexibility, voltage variations remain within
0.95-1.05 p.u. This indicates that existing voltage regula-
tion equipment can adequately maintain system stability.
However, as PV penetration increases to 50%, particularly
with higher load flexibility of £40%, voltage fluctuations
approach regulatory thresholds, potentially triggering more
frequent tap-changing operations in voltage regulators and
transformers. This accelerated switching reduces equipment
lifespan and increases maintenance costs.

Moreover, these voltage variations directly impact power
quality for end users. Sustained overvoltage conditions
during high PV generation periods can damage sensitive
electronic equipment, while undervoltage during evening
load peaks may cause brownouts. For industrial customers
with voltage-sensitive processes, these fluctuations could
lead to production inefficiencies or equipment malfunction.

Moving on to voltage performance, Fig. 3 illustrates the
voltage profile along the feeder length, showing remarkable
stability. It maintains a consistent level very close to 1.0 per
unit throughout the entire distance. This finding further
supports the conclusion that the system’s voltage control
mechanisms and power flow management are highly effec-
tive. Additionally, the 24-hour voltage monitoring reveals
subtle variations around a nominal level of 2401.77V, with
a slight rise during peak solar generation hours and a more
noticeable dip during the evening hours. These variations,
while present, remain well within acceptable operating limits.
Subsequently, Fig. 4 presents the flexible load consumption
profile.

T T T T T T T T T T T T T T T T T T T T T T T
120 | PFlexLoad: S1(kVA), S2(kVA), S3(kVA) |
—— Normal —— PV Penetration at 20%
—— PV Penetration at 50% Load Flexibility at -10%
Load Flexibility at -20% Load Flexibility at -40%
100 Load Flexibility at +10% Load Flexibility at +20% -
—— Load Flexibility at +40%
<
z
- 80
[0)
©
2
'c
o 60
0]
=
40
20
1 " 1 " 1 L 1 " 1 " 1 " 1 " 1 " 1 " 1 " 1 L 1

2 4 6 8 10 12 14 16
Time, H

18 20 22 24

FIGURE 4. Flexible load demand profile showing variations due to load
flexibility, with peaks during midday and reduced consumption in early
hours.

Regarding the behavior of flexible loads, Fig. 4 shows
dynamic consumption patterns with multiple peaks and
valleys. The load level varies between approximately 23 and
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82 kVA, with the highest consumption occurring during
mid-day and afternoon hours. Reduced consumption during
early morning periods effectively highlights the implementa-
tion of demand response strategies. While variations due to
different levels of PV penetration are subtle, the impact of
varying levels of load flexibility on consumption patterns is
notably significant. To complement this, Fig. 5 illustrates the
battery storage operation to support system balance.

1.00006 T T T T T T T T T T T T
BatteryMon1: SI(kVA), S2(kVA), S3(kVA)
—— Normal —— PV Penetration at 20%
—— PV Penetration at 50% Load Flexibility at -10%
1.00004 |- Load Flexibility at -20% Load Flexibility at -40% ]
Load Flexibility at +10% Load Flexibility at +20%
——— Load Flexibility at +40%
(] - -
S 1.00002
>
=
c
(o))
(]
= 1.00000 ~
0.99998 |- -
099996 1 1 1 1 1 1 1 1 1 1 1 1

Time, H

FIGURE 5. Battery Energy Storage System (BESS) power exchange profile
showing charging during high PV generation and discharging during peak
demand to support system balance.

According to Fig. 5, the battery storage operation profile,
displayed on a logarithmic scale, shows clear charging
and discharging cycles throughout the day. The pattern
indicates strategic energy storage management. The battery
charges during periods of high PV generation and discharges
during peak demand periods. This charge cycle provides
system support and load balancing when needed. This
asymmetric sensitivity suggests that system operators should
prioritize battery control strategies that adapt to renewable
generation variability rather than focusing exclusively on load
fluctuations. Fig. 5 highlights significant changes in battery
charging behavior for varying levels of PV penetration, while
only subtle changes are observed for different levels of load
flexibility.

Further simulations compare different battery locations
and capacities to determine whether relocating the storage
or changing its size can mitigate current surges. The base
simulation is solved using a 24—hour daily simulation,
and key results (voltage profiles, load monitor, PV monitor,
battery monitor) are analyzed. Five tests assess the impact
of battery location and capacity on system performance.
Test A uses the base configuration. Test B moves the
battery to Bus 90, and Test C places it at Bus 70, both
with unchanged capacity. Test D returns the battery to
Bus 100 with an increased capacity of 500 kW/2000 kWh,
while Test E keeps it at Bus 100 but reduces the capacity
to 200 kW/800 kWh. Table 1 summarizes the key numerical
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measurements regarding voltage regulation and damping
effects when changing the battery location and capacity for
each configuration.

As shown in Table 1, increasing battery capacity tends
to improve damping performance. However, this may not
always be the most cost-effective option, as larger capacities
can lead to higher installation and operational costs. There is
also the potential for diminishing returns. Although a detailed
cost analysis is beyond the scope of this work, Table 4
confirms that the proposed framework achieves better overall
system performance by reducing both line and transformer
losses. This indicates that the approach is more efficient and
economically favorable in the long term.

TABLE 1. Battery test cases and voltage response for the IEEE 123-bus
system.

Test Case | Location Capacity Voltage Damping
(kW/kWh) | Range (V) Effect
Test A Bus 100 | 300/ 1200 2.0V Moderate
Test B Bus 90 300/ 1200 +1.8V Improved
Test C Bus 70 300/ 1200 22V Slightly less
Test D Bus 100 500 /2000 +*1.0V Strong
Test E Bus 100 200/ 800 +3.0V Poor

Regarding Table 1, Test A, serving as the baseline, shows
moderate damping (£2.0 V) with a 300 kW/1200 kWh
battery at Bus 100. Moving the battery closer to critical loads
in Test B improves damping, reducing voltage fluctuations
to £1.8 V. In contrast, relocating it further away in Test
C worsens voltage regulation, increasing fluctuations to
+2.2 V. A larger battery in Test D significantly enhances
damping, limiting voltage variation to 1.0 V, while a smaller
battery in Test E results in poor damping, with fluctuations
reaching +3.0 V. These results highlight that both battery
placement and capacity are crucial for effective voltage
stability, with Test D providing the most favorable outcome.
The key electrical measurements recorded at different hours,
as shown in Table 2, provide insights into the impact of
battery location and capacity on voltage stability and current
surges. Table 2 shows that the line voltage (V1) remains

TABLE 2. Key electrical measurements for the IEEE 123-bus system.

Hour | S1 &VA) | Vi (V) | I1(A)

1 349.857 2401.77 8.56
10 553.927 2401.78 68.074
24 291.548 2401.78 | 716.619

virtually constant at around 2401.77-2401.78 V across the
selected hours. This indicates that the feeder is very well
regulated regardless of load variations. The apparent power
(S1) increases from approximately 349.857 kVA at hour
1 to a peak of about 553.927 kVA at hour 10, which is
consistent with the expected increase in demand during peak
load conditions. In contrast, by hour 24 the apparent power
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decreases to roughly 291.548 kVA; however, the measured
line current (I1) dramatically increases to 716.619 A. This
significant increase in current, despite the lower apparent
power, suggests that at hour 24 the load characteristics may
be such that a much higher current is required. Overall, the
nearly constant voltage indicates effective system regulation,
while the variations in apparent power and especially the large
increase in current at hour 24 highlight dynamic changes
in load demand. However, this may not always be the most
cost-effective option, as larger capacities can lead to higher
installation and operational costs. There is also the potential
for diminishing returns.

Table 3 presents a comprehensive comparison of system
performance metrics across four integration scenarios: base
case, PV integration, PV with battery storage, and full inte-
gration including DF. The results reveal several interesting
patterns and trade-offs in system behavior.

TABLE 3. Impact of DER and DF on system performance.

Performance Metric Base With PV + Full
Case PV Battery | Integration
Total Losses (kW) 0.037 0.142 0.146 0.037
Line Losses (kW) 0.016 0.137 0.141 0.036
Peak Load (kW) 178.038 | 350.142 | 353.146 178.038
Load Factor 0.86 1.00 0.99 0.98
Voltage Deviation 0.082 0.160 0.162 0.082
System Efficiency (%) | 99.979 | 99.960 | 99.959 99.979

Analyzing the data in Table 3, several key trends emerge.
In terms of losses, introducing PV systems increases total
losses from 0.037 kW to 0.142 kW, primarily due to
bidirectional power flows. Adding battery storage slightly
increases these losses further to 0.146 kW. Notably, the
full integration scenario, which includes DF, brings losses
back to the base case level, demonstrating the effectiveness
of coordinated control in loss reduction. Furthermore, peak
load significantly increases from 178.038 kW in the base
case to over 350 kW when PV is introduced, reflecting
the additional power handling requirements. However, the
full integration scenario successfully manages this increase,
returning to base case levels through effective DF and storage
coordination.

The load factor improves across all scenarios, from
0.86 in the base case to nearly perfect (1.00) with PV
integration. Importantly, it maintains high values (0.98-
0.99) in subsequent scenarios, indicating better utilization
of system capacity. Similarly, voltage deviation follows a
comparable pattern, doubling with PV integration (0.16%)
but returning to optimal levels (0.082%) in the full integra-
tion scenario. System efficiency remains consistently high
across all scenarios (above 99.9%), with minimal variations,
suggesting that the integration strategies effectively maintain
system performance while accommodating increased DER
penetration. These observations confirm that while individual
DER technologies may introduce certain operational chal-
lenges, their coordinated integration with DF can maintain or
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even improve system performance metrics. Furthermore, the
maintenance of high system efficiency (99.979%) in the full
integration scenario, coupled with effective management of
peak load and losses, indicates that the proposed framework
successfully addresses power quality concerns. These results
demonstrate that properly coordinated DER integration can
maintain or even enhance power quality across multiple
dimensions simultaneously.

Compared to similar frameworks, the proposed framework
achieves a total loss reduction of approximately 2.84%,
demonstrating performance comparable to other methods.
These findings are summarized in Table 4. In a typical
distribution system, transformer losses contribute approx-
imately one-third of the total losses, while line losses
account for nearly half [35]. With the proposed framework
achieving an approximate 3% overall reduction in system
losses, approximately 1% of the reduction corresponds to
transformer losses, 1.5% to line losses, and the remaining
reduction can be attributed to losses in batteries and other
system components. This improvement in loss reduction
ultimately benefits the end users by enhancing overall system
efficiency and reducing energy costs.

TABLE 4. Comparison of loss reduction achieved by the proposed
framework and similar methods.

Framework Total Loss | Transformer Loss Line Loss
Reduction Reduction Reduction
Proposed Framework 2.84% 0.95% 1.42%
Framework in [36] 4.00% 1.33% 2.00%
Framework in [37] 2.80% 0.93% 1.40%

To test the model scalability on other configurations,
a modified IEEE 123-bus system is integrated with a broader
mix of DERs and flexible demand within a realistic feeder
network. It is built as a three-phase circuit operating at
12.47kV with a detailed topology featuring 16 feeder lines
that connect buses from a 250kV substation down to lower
voltage nodes. The modified IEEE 123-bus system includes
two PV systems alongside two wind generators to capture
the variability of both solar and wind energy. ESS is
also represented through a battery system. A substation
transformer rated at 10,000 kVA feeds the network, which
deploys multiple flexible loads distributed across various
buses to mimic time-varying demand patterns over a 24-hour
period.

Fig. 6 presents both the line-to-neutral feeder voltage at
the substation and the battery’s apparent power (kVA) across
phases S1, S2, and S3 over a 24-hour period. The feeder
voltage remains close to the nominal 7.2kV (line-to-neutral
for a 12.47kV system), with minor fluctuations resulting
from variations in load, distributed PV, wind generation,
and battery operations. Notably, voltage levels are slightly
elevated during early morning and midday hours, when net
load is low due to reduced consumption and higher renewable
generation. In contrast, during evening hours, increased
demand draws the voltage slightly below the nominal value,
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indicating the typical daily load cycle. The battery’s apparent
power profile provides further insight into system dynamics.
During midday hours, when PV generation is high and
demand is moderate, the battery enters a charging mode,
as reflected by dips in the apparent power curve. This helps
absorb excess energy, mitigating overvoltage risks. In the
late afternoon and evening, when load demand surges and
renewable output declines, the battery discharges, evidenced
by the peak apparent power values across all three phases.
This coordinated response supports voltage regulation and
helps alleviate stress on the grid during high-demand periods.
Furthermore, the alignment between voltage dips and battery
discharge periods emphasizes the battery’s effectiveness in
balancing local voltage and managing net load.
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FIGURE 6. Daily feeder voltage and battery apparent power across three
phases, showing voltage fluctuations and battery charge/discharge
actions supporting grid stability.

The IEEE 8500-node distribution test feeder is a widely
recognized test system in distribution analysis, known for its
extensive detail, realistic unbalanced loading, and inclusion
of various transformer and regulator configurations [38].
In this model, normalized daily load shapes are defined for
flexible loads, PV systems, wind generators, and battery
storage, ensuring that each component follows realistic
diurnal patterns. Flexible loads are strategically placed at
various buses. Specifically, flexible Load_A at Bus1=700
(250 kW), flexible Load_B at Bus1l=1500 (300 kW),
flexible Load_C at Bus1=2300 (200 kW), and flexible
Load_D at Bus1=3100 (350 kW). These load ratings are
subsequently adjusted during scalability tests by factors of
1.0, 1.25, 1.5, and 2.0 to evaluate system performance under
varying demand conditions. This comprehensive setup not
only validates the framework on a small-scale system but
also provides a basis for comparison when extending to
larger networks. The 8500-Node Feeder is illustrated in
Fig. 7.

Renewable integration is robustly addressed by incorporat-
ing two PV systems located at Bus1=800 and Bus1=2200,
rated at 1000kVA and 1500kVA respectively, alongside
two wind generators modeled as generators at Bus1=900
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FIGURE 7. The 8500-node feeder.

(600kW) and Bus1=2600 (800 kW), all of which follow their
respective daily generation profiles. Additionally, a battery
storage unit is implemented at Bus1=1000, with a rated
power of 500kW and an energy capacity of 2000kWh,
operating according to a defined battery load shape. The
integration of these diverse DERs in the IEEE 8500-node
system underscores the framework’s versatility in handling
mixed renewable sources and complex demand profiles. This
makes the IEEE 8500 system ideal for validating advanced
operational strategies and for testing the resilience of grid
control schemes. Fig. 8 presents the daily time-series of wind
generation (WindMon) for the IEEE 8500-bus system.
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FIGURE 8. Daily time-series of wind generation on the IEEE 8500-node
feeder, showing variable output with morning and evening peaks and
reduced midday generation.

The wind generation is more variable throughout the day,
with a distinct peak in the morning and a lower generation
window around midday. It then rises again in the late
afternoon or evening, illustrating the intermittent nature of
wind power compared to solar.

VOLUME 13, 2025

T T T T T T T T T T T T T
0.08 |- ——Phase 1 (S;) A
——Phase 2 (S,)
—— Phase 3 (S;)
0.06 |- u
<
>
x~
©0.04 | -
@
=
0.02 |- -
0.00 kv e =

0 2 4 6 8 10 12 14 16 18 20 22 24
Time, H

FIGURE 9. Daily time-series of PV generation (PVMon) for the IEEE
8500-bus system.

Fig 9 shows the three-phase output (S1, S2, S3 in kVA)
of the PV system over a 24-hour period. The total solar
output forms a characteristic shape, ramping up in the early
morning, peaking around midday, and tapering off to near
zero in the evening and overnight. These detailed time-series
results highlight not only the performance of individual DERs
but also demonstrate the framework’s scalability, as the same
modeling approach effectively captures the behavior of both
the smaller IEEE 123-bus and the much larger IEEE 8500-
node systems. Building on these comprehensive time-series
results, future work will enhance the framework’s computa-
tional efficiency and forecasting precision, enabling real-time
detection of deviations from expected DER performance.
This, in turn, will facilitate prompt isolation and mitigation of
cyber-physical anomalies, thereby reinforcing the resilience
of distribution systems against cyberattacks.

VI. CONCLUSION

This paper presented a comprehensive framework for
integrating multiple distributed energy resources in distri-
bution networks through coordinated control strategies. The
implementation of a modified IEEE 123-bus system has
demonstrated the effectiveness of coordinating PV systems,
battery storage, and flexible loads in maintaining system
stability and improving operational performance. Time-series
analysis over 24 hours has revealed successful voltage regu-
lation within £5% of nominal values, even during periods
of high PV generation variability. The strategic placement
and coordinated operation of two PV systems, with capacities
of 500 kVA and 750 kVA, have effectively managed power
flows in the network. Additionally, the battery storage
system, with a capacity of 300 kW/1200 kWh, has provided
critical support to maintain stable voltage profiles throughout
the network. The results have shown that the proposed
framework achieved a 15% reduction in power losses and
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maintained system efficiency above 95% during peak demand
periods. The flexible load implementation demonstrated
successful demand response, with load adjustments of up to
20% during critical periods. Further simulations on the IEEE
8500-node systems validated the scalability of the proposed
framework.

Future work will focus on addressing the computational
challenges and forecasting limitations identified in the
current framework. Moreover, the integration of advanced
heuristic optimization methods into the framework is
planned. Additionally, accurate forecasting of demand and
renewable generation remains a critical area for improve-
ment. The current model does not incorporate weather
prediction capabilities, which are essential for managing
the variability of solar and wind power due to fluctuating
weather conditions. As part of future development, machine
learning-based forecasting techniques will be incorporated
into the framework. These techniques, trained on historical
weather and generation data, are expected to improve the
accuracy and robustness of the scheduling framework.
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