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Abstract—Transient instability poses a critical challenge to the
reliable operation of modern power systems, often leading to
large-scale blackouts. Despite the success of data-driven Transient
Stability Assessment (TSA), its practical implementation remains
limited by challenges in processing high-speed real-time data
streams and preserving data privacy. To address these limita-
tions, this article develops a novel Federated Adaptive Random
Forest (FedARF) method that integrates federated learning
with the Adaptive Random Forest (ARF) model. The proposed
decentralized framework incorporates concept drift adaptation
mechanisms to accommodate the stochastic and dynamic charac-
teristics of modern power systems. FedARF facilitates distributed
knowledge aggregation learned from various heterogeneous local
data sensors (clients) to predict and evaluate the TSA status with
minimal communication overhead. Comprehensive experiments
on the New England 39-Bus system, the IEEE 68-Bus system,
and the large-scale ACTIVIgs 25k-Bus system demonstrate the
efficiency of the proposed method with an overall accuracy of
99.65%. Compared to traditional centralized forecasting meth-
ods, and state-of-the-art models, the proposed approach not
only maintains high prediction accuracy but also enhances data
privacy preservation while substantially reducing communication
bandwidth requirements.

Index Terms—Concept drift, data stream, federated learning,
smart cyber-physical grids, transient stability assessment.

NOMENCLATURE

Functions
L Inference Latency
Lavg Average Inference Latency
TSI Transient Stability Index
Variables
δmax Maximum rotor-angle deviation
η Learning rate
P Active power
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Q Reactive power
V Bus voltage vector
w Model weight vector
x State variable vector
N Number of trees
Abbreviations
ADWIN Adaptive Windowing
CCT Critical Clearing Time
CD Concept Drift
DAE Differential Algebraic Equation
DDM Drift Detection Method
EFDT Extremely Fast Decision Tree
FedARF Federated Adaptive Random Forest
FL Federated Learning
HDDM A Hellinger Distance Drift Detection A-test
HDDM W Hellinger Distance Drift Detection W-test
IAda Incremental AdaBoost
IL Inference Latency
KSWIN Kolmogorov–Smirnov Windowing
LSTM Long-Short-Term Memory
NADINE Neural Network with Dynamically Evolved Capac-

ity
OANN Online Artificial Neural Network
OTN Online Transformer Network
OTSA Online Transient Stability Assessment
PAC Passive-Aggressive Classifier
PageHinkley Page-Hinkley Test
PMU Phasor Measurement Unit
PS Power System
SEOA Selective Ensemble-based Online Adaptive DNN
t-SNE t-distributed Stochastic Neighbor Embedding

I. INTRODUCTION

THE increasing penetration of renewable energy sources
has significantly altered the structure and dynamic be-

havior of Power Systems (PS). Typically, these resources are
integrated through power electronic converters, which lack
the inherent inertia of conventional synchronous generators.
As a result, the PS’s ability to maintain stability following
disturbances has become harder to maintain. These fluctuations
in output power and rapid changes in generator power angles
can lead to transient instability and, in severe cases, system-
wide blackouts. Therefore, an accurate and fast Transient
Stability Assessment (TSA) has become essential to ensure
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the secure and reliable operation of modern power grids [1].
Real-time TSA evaluates a PS ability to recover after a severe
disturbance. TSA has received increasing attention to enable
early detection of transient instability, allowing preventive
control actions to be taken before loss of synchronism or
widespread system failure [2].

Time-domain simulation methods, while accurate, often
require hundreds of milliseconds to several seconds. As a
result, they cannot meet the time constraints of real-time
applications [3]. Direct methods, such as transient energy
function approaches, are faster but typically still take tens of
milliseconds. Even Phasor Measurement Unit (PMU)-based
assessments, limited by measurement and communication
delays, generally operate in the 20–100 ms range [4]. In
contrast, recent advances in Machine Learning (ML) have
demonstrated the ability to deliver highly accurate TSA results
with inference times measured in milliseconds [5]. This ultra-
fast response enables corrective actions to be initiated almost
instantaneously following a disturbance, offering a critical
advantage for power system security and reliability over con-
ventional methods.

Online TSA (OTSA) is a real-time evaluation technique
that continuously monitors the stability of the power grid
during normal operation and in response to disturbances. This
approach offers several advantages over offline and traditional
methods, which primarily rely on static or pre-computed
TSA [6]. While receiving limited attention in existing studies,
OTSA features real-time monitoring, adaptability, faster re-
sponse to contingencies, and enhanced situational awareness.
By continuously monitoring the grid, operators can detect
potential issues and take proactive measures before the system
collapses [7]. Online methods can adapt to rapid changes
in grid dynamics, offering an up-to-date assessment of grid
stability.

However, OTSA faces several challenges, such as handling
the high dimensionality of data, accurately modeling system
dynamics, dealing with Concept Drift (CD), and ensuring
computational efficiency [8]. CD occurs when TSA-based data
analytics encounter regular shifts in data distribution. This is
often prompted by the highly dynamic nature of traffic in
edge cloud environments, necessitating constant adjustments
to the ML model. There are four common types of CD: sudden
drift, gradual drift, incremental drift, and recurring drift con-
cepts [9]. CD adaptation is a significant challenge in OTSA,
as the underlying relationships between input features and
stability may change over time. Online assessment methods
must be able to detect and adapt to these changes, often using
adaptive or incremental learning techniques [10].

Data-driven approaches based on ML methods have gained
substantial attention from the research community. For in-
stance, Paper [11] proposed a transfer learning-based method
for TSA. The method, tested on various PSs, demonstrated
practical efficiency and scalability across different configura-
tions. However, improvements in feature extraction techniques
are required to handle thousands of variables. In [12], the
authors proposed a data-driven Long-Short-Term Memory
(LSTM) model for TSA in large-scale PSs. The model’s ar-
chitecture first employs leveraged time-delay neural networks.

These networks identify primary buses for PMU placement
and perform data-dimension reduction. It then uses bidi-
rectional LSTM layers to produce precise TSA. An online
self-check function is also added to ensure the validity of
the OTSA. Paper [13] introduced an active transfer learning
method for adaptive TSA using deep belief networks. The
method combines active learning and transfer learning to
reduce the time and cost of generating labeled samples and
improve evaluation performance. The proposed method is ef-
fective in reducing computation costs and enhancing the adapt-
ability of the model. Unfortunately, while these approaches
provide insights into adaptive learning, none of these methods
directly address CD in online data streams, particularly for
TSA. The existing models do not adequately handle the dy-
namic environments in which the online data diverges from of-
fline training data [14]. This results in tedious model updating
and deployment tasks. To the best of the authors’ knowledge,
studies explicitly focusing on CD detection in TSA remain
sparse in the literature, highlighting a significant research gap.
The swift OTSA under-CD issue is accompanied by escalating
privacy concerns related to electrical measurement data. These
two problems have been decoupled due to the complexity of
handling dynamic power flow behavior under the uncertainty
of renewable energy sources.

In particular, to the author’s best knowledge, this paper
offers the first attempt to solve the aforementioned problem in
a coupled approach. This approach computes OTSA and Fed-
erated Learning (FL) simultaneously. FL provides decentral-
ized training, which preserves data privacy. In the meantime,
Adaptive Random Forest (ARF) mitigates the issues arising
from CD in real-time data streams. While prior works [11],
[12], [13] have advanced TSA methods, they differ signifi-
cantly from the proposed approach in CD handling. Existing
approaches exhibit limitations: transfer learning lacks explicit
drift detection (150-200 sample delays) [11], LSTM with self-
check requires centralized data (120 sample delays) [12], and
active transfer learning needs manual intervention (5-10 sec-
ond adaptation times) [13]. In contrast, the proposed method
features explicit drift detection with shorter delays, continuous
adaptation without manual intervention, data privacy through
FL, and superior accuracy (99.65% versus 96.2% for the work
in [12]). In summary, the main contributions of this paper are
listed as follows.

• A novel approach to TSA under CD is proposed. Unlike
existing methods that assume static data distributions,
this paper introduces an efficient data stream analytics
framework capable of detecting and adapting to CD. This
represents one of the first attempts to address CD in TSA
explicitly.

• An effective method for TSA that uses a FL environment
is proposed. The proposed model aims to preserve data
privacy by training the model on local servers.

• An online prediction model based on data streams is
proposed. The proposed method uses Adaptive Random
Forest (ARF) to generate classification results based on
the streams of data.

The rest of the paper is structured as follows. Section II
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provides detailed discussions about the problem statement. The
proposed architecture and the simulation results are outlined
in Section III and Section IV, respectively. Finally, the paper
is concluded in Section V.

II. PROBLEM FORMULATION

This section formulates the TSA problem for PSs under
uncertainty, considering the challenges of data streams and CD
in modern power networks. PSs are complex networks where
electrical stability is a key concern. This is especially true
under dynamic conditions and in the presence of uncertainty.
Transient stability, a critical aspect of PS analysis, evaluates
the system’s ability to maintain synchronism when subjected
to significant disturbances. This ability is crucial for ensuring
operational continuity and reliability. The dynamics of PSs can
be encapsulated by stochastic Differential Algebraic Equations
(DAEs), which forms the basis for transient stability analysis:

ẋ = f(x, V, t), (1)

0 = g(x, V, t), (2)

x = {xi|i = 1, 2, . . . , n}, x(t0) = x0, (3)

V = {Vb|b = 1, 2, . . . ,m}, Vb = [|Vb|,∠θb]T . (4)

The state variables, represented by x ∈ Rn, evolve according
to a set of differential equations, and their initial conditions
are denoted as x0. The time variable t spans an interval [t0, T ].
The algebraic variables, symbolized by V ∈ Rm, include
the nodal voltages of the system. The functions f(x) and
g(x) encapsulate the system’s nonlinear DAEs, respectively,
with n and m denoting the count of generators and buses.
The assessment of transient stability is determined by the
maximum phase angle deviation, δmax, which is derived from
the state vector x. The interaction between the state vector x
and the algebraic variable vector V is described by a nonlinear
system of DAEs.

x(t0 +∆t) = x0 +

∫ t0+∆t

t0

f(x, V, t) dt, (5)

0 = g(x(t0 +∆t), V (t0 +∆t), t). (6)

The goal of TSA is to evaluate whether the system can main-
tain stability, which is primarily determined by monitoring the
phase angle difference between generators. The largest phase
angle difference |δmax| is determined as

|δmax| = max {|δi(t)− δj(t)|, ∀i, j ∈ {1, ..., n}, t ∈ [t0, T ]} ,
(7)

where |δmax| symbolizes the utmost phase angle variation
between any two generators during the transient period. This
stability index provides a binary indication of the system’s
state, which is crucial for quick decision-making. If this
difference exceeds a certain threshold, the system is considered
unstable, as it cannot maintain synchronism. δmax serves as
the primary stability criterion because of its direct correlation
with synchronizing power between generators (proportional
to sin(δi − δj)). When this angle exceeds 90◦, synchroniz-
ing power decreases and instability becomes likely. While

alternative criteria exist, such as energy functions, equal
area criterion, and frequency metrics, δmax offers superior
computational efficiency for multi-generator systems. Energy
functions require complex modeling unsuitable for real-time
applications, equal area criterion becomes impractical beyond
two-machine systems, and frequency metrics are better for
post-event analysis than prediction. δmax thus provides both
physical relevance and practical implementation aligned with
established Lyapunov stability theory for PSs.

The Transient Stability Index (TSI) is a widely recognized
metric for gauging the transient stability of PSs. The TSI is
calculated as follows.

TSI = 100× 360− δmax

360 + δmax
, (8)

where δmax is the peak rotor angle difference between any
two generators throughout dynamic simulations. A TSI value
exceeding zero signifies system stability and is denoted by a
label of 1, while a negative TSI indicates potential instability,
which is marked with a label of -1. The TSI is formulated as

y =

{
1 (stable), TSI > 0

−1 (unstable), TSI ≤ 0.
(9)

This stability index provides a binary indication of the sys-
tem’s state, which is crucial for quick decision-making. The
transient stability evaluation function M(·), which correlates
TSI with the state vector ζ = [Pu

w , PL, QL, PG]
T , can be

articulated as TSI = M(ζ), where Pu
w , PL, QL, and PG

correspond to the stochastic active power of wind generation,
the active power of loads, the reactive power of loads, and
the active power of generators, respectively. To investigate
uncertainty’s effects on system stability, Monte Carlo simu-
lation is utilized to sample a multitude of potential outcomes
Y = {TSI1, TSI2, . . . , TSIN} based on a probability dis-
tribution function associated with the uncertain factors from
the sample space X = {ξ1, ξ2, . . . , ξN}. This probabilistic
approach allows assessing the robustness of the PS’s stability
under diverse operating conditions, addressing the inherent
uncertainty in renewable generation and fluctuating loads.
Building on this probabilistic assessment of system stability,
the next section introduces the components of the proposed
framework. It details the core learning architecture and its inte-
gration with federated processing and concept drift adaptation
mechanisms.

III. PROPOSED ARCHITECTURE

This section explores the ARF model, followed by an
examination of FL implementation. The intricacies of CD
detection are then discussed. The proposed FL-based ARF
(FedARF) model integrates the preceding elements to form
a robust and adaptable OTSA system.

A. Adaptive Random Forest

The ARF method is an ML algorithm that combines the
principles of both Random Forest (RF) and online learn-
ing [15]. For any given instance i in a data stream, the ARF
model constructs an ensemble of decision trees {Tj}Nj=1 [16].
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Each tree Tj is trained on a bootstrap sample Dj drawn from
the data stream. The bootstrapping process ensures that the
trees are exposed to different subsets of the data, promoting
diversity within the ensemble. The ARF algorithm evaluates
the predictive performance of each tree Tj through a metric
Acc(Tj), which represents the accuracy of tree Tj on a holdout
set Hj that is not used during the tree’s training. When
new data arrives, the ARF algorithm updates the performance
metric and determines if a tree should be replaced. If Acc(Tj)
falls below a threshold θ, tree Tj is pruned from the ensemble
and replaced with a new tree Tj′ trained on recent data.

When replacing underperforming trees in the ARF ensem-
ble, diversity is explicitly maintained through several mech-
anisms. First, each new replacement tree is trained on a
bootstrap sample with randomly selected features, following
the standard RF approach. The bootstrap sampling ensures
different training data distributions, while the random feature
selection (typically using

√
d features, where d is the total

feature dimension) prevents new trees from converging to
similar decision boundaries. Additionally, a stratified feature
sampling approach is employed, where the feature space is
partitioned and replacement trees are assigned different feature
subsets based on their position in the ensemble. This strategy
ensures that even after multiple tree replacements due to
concept drift, the ensemble maintains heterogeneity in the
data samples and feature spaces used by individual trees.
This diversity is crucial for preserving the collective predictive
power of the ensemble.

Adaptation to the evolving data is achieved by updating the
tree ensemble dynamically. When an instance i is misclassified
by a tree Tj , a drift detection method DriftDet(i, Tj) is
invoked, which may trigger the replacement of Tj if the CD
is detected. The output of the ARF for a new instance x is
given by the majority vote or the average prediction across the
ensemble, defined as [15]

Decision Tree: Tj(x; Θj) =
I∑

i=1

γij(x; Θj), (10)

Random Forest: RF(x) =
1

N

N∑
j=1

Tj(x; Θj), (11)

ARF: ARF(x) =
1

N

N∑
j=1

Tj(x; Θj), (12)

where Tj(x; Θj) is a decision tree indexed by j with parame-
ters Θj , and γij(x; Θj) is the prediction of the i-th leaf node
in tree j. The ensemble prediction ARF(x) is the average
prediction of the ARF with N trees at a given time. The
parameters Θj are optimized to minimize a loss function L
across the data stream.

B. Federated Learning

At the onset of the comprehensive training regimen, all or
a subset of clients are selected and furnished with the most
recent global model parameters [17]. Each client Ck carries
out multiple optimization epochs (for instance, using the

Adaptive Moment Estimation or Adam) utilizing the amassed
local data Dk. It is important to note that in the proposed
FL implementation, local client variability can impact global
model convergence. The Adam optimizer’s adaptive learning
rates help mitigate the effects of non-IID (Independent and
Identically Distributed) data distributions across clients, which
is common in PSs where different operators may experience
distinct operational patterns. To further address convergence
challenges, a momentum-based aggregation approach is im-
plemented, weighting client updates based on both their data
volume and historical contribution patterns. This approach
helps prevent model bias toward clients with larger datasets
or more frequent updates. Additionally, a synchronization
coefficient β is employed to control the influence of local
updates on the global model, allowing a balance between fast
convergence and stability: wt+1 ← wt − β

∑k
k=1

nk

n wk
t+1.

Through empirical testing on the PS datasets, it was found that
β = 0.8 provides the optimal trade-off between convergence
speed and model stability, especially when handling the CD
scenarios discussed in Section III.C.

The local model parameters are subsequently adjusted as
follows [18].

wk
t+1 ← wt − η▽ ℓ(wt). (13)

Here, η symbolizes the learning rate and η▽ ℓ(wt) represents
the batch gradient. These updates are dispatched to the server
where the secure aggregation is conducted. The underlying
computation process is formulated as [18]

wt+1 ← wt −
k∑

k=1

nk

n
wk

t+1, (14)

where nk = |Dk| and n = |D1∪ . . .∪Dk|. The whole process
is then initiated once more, repeating the previous steps.

C. Drift Detection Methods

Consider a data stream represented as S = {(xt, yt)}Tt=1,
where each xt ∈ Rd is a feature vector from a d-dimensional
space and yt is the corresponding label from a set of categories
{c1, c2, . . . , cn}, with n > 1 signifying the count of distinct
categories. At each time step, a new data instance (X,Y ) is
observed and a predictive model is tasked to infer the label of
xt utilizing the prior instances {(x1, y2), . . . , (xt−1, yt−1)}.
Subsequently, the true label of xt is disclosed by the envi-
ronment. A scenario where ∃td : Ptd(X,Y ) ̸= Ptd+1

(X,Y )
indicates the occurrence of CD within the stream S [19].
Ref. [20] introduced an enhancement to the prevailing defi-
nition of CD by stipulating that Pt(X,Y ) = Pt+1(X,Y ) for
t ∈ {td + 1, td + τ}, with τ > 2, signifying that the data
distribution sustains consistency across at least two time points
and thus, can be identified as CD, which is distinguishable
from mere stochastic fluctuations.

Several methods have been proposed to tackle this issue,
each with its unique approach and mathematical founda-
tions. Particularly, this paper discusses Adaptive Windowing
(ADWIN), Drift Detection Method (DDM), Hellinger Dis-
tance Drift detection Method - A-test (HDDM A), Hellinger
Distance Drift detection Method - W-test (HDDM W ),
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Kolmogorov-Smirnov Windowing (KSWIN), and Page-
Hinkley test (PageHinkley). The following subsections provide
a brief description of each data drift method.
1) Adaptive Windowing (ADWIN): ADWIN, which was
designed to identify shifts in the distribution’s mean of xt,
operates on the presumption that each data point xt (where
1 ≤ t ≤ n) is confined to the range [0, 1], where n is the length
of the window. The process begins with ADWIN initializing
an empty window ω. Each new xt is then added to the end
of the window in the form ω ← ω · xt. Subsequently, the
algorithm calculates the test statistics as [21]

U(ω) Max
ω1·ω2=ω

{|µ̂(ω1)− µ̂(ω2)| − ϵcut}, (15)

here, the maximum allowed error is calculated as [21]

ϵcut =

√
1

|ω1| +
1

|ω2|

2
log

(
4n

δ

)
, (16)

with µ̂(ω) signifies the mean value of the data within window
ω. The algorithm proceeds to discard the earliest element in the
window, persisting in this manner until U(ω) ≤ 0 is satisfied,
at which point it continues with the addition of new data.
The ADWIN method uses the Hoeffding bound to decide the
length of the window. Let the Φ be the difference between the
empirical average and the true average. The Hoeffding bound
is computed as [21]

P [|Φ| > ϵ] ≤ 2exp(−2nϵcut). (17)

For prompt detection, it is crucial that the actual value yt of
the instance xt be readily accessible right after the prediction
output before moving to the instance xt+1. Nevertheless, if
immediate access to the ground truth is not possible, the
effectiveness of the ADWIN in detecting drifts could be
significantly diminished.
2) Drift Detection Method (DDM): To detect CD and changes
in data distribution, DDM controls the number of errors
produced by the learning model during prediction. It compares
the statistics of two windows: one with all the data, and a
smaller one with the recent data. When the error rate in the
small window is higher, a warning level is triggered. If the
error increases further, a drift is detected. The DDM method
employs the Binomial distribution and standard deviation to
calculate error rates and detect drifts. If pi is the error rate,
n is the number of samples, and si is the standard deviation
calculated as [22]

si =

√
pi(1− pi)

i
. (18)

3) Hellinger Distance Drift Detection Methods (HDDM A
and HDDM W ): These are unsupervised CD detection meth-
ods that measure the distance between two probability distri-
butions of the current and the reference time windows. The
A-test is for nominal attributes, and the W-test is for numeric
attributes. The Hellinger distance between two probability
distributions P and Q is defined as [23]

H(P,Q) =
1√
2

√√√√ n∑
i

(
√
pi −

√
qi)

2
, (19)

where pi and qi are the discrete distributions of P and Q.
The choice between HDDM A and HDDM W is determined
by the nature of the input data. HDDM A is specifically de-
signed for categorical (nominal) attributes, making it suitable
for discrete features such as bus statuses or circuit breaker
positions. It uses a frequency-based estimation approach to
calculate probability distributions. In contrast, HDDM W
employs a windowing scheme with kernel density estimation,
optimized for continuous numerical data such as power flows,
voltage magnitudes, and phase angles. In the implementation
of the proposed methodology, HDDM A is applied to dis-
crete topology-related features and HDDM W to continuous
measurement variables from PMUs. When both detectors are
used in combination, a more robust detection capability is
enabled that can capture drift in both the categorical system
configuration parameters and the continuous state variables.
4) Kolmogorov-Smirnov Windowing (KSWIN): KSWIN is a
CD detection method based on the Kolmogorov-Smirnov test.
KSWIN does not maintain a window, rather a statistic based
on the maximum distance between the empirical cumulative
data distribution function of the reference window and the test
window. The Kolmogorov-Smirnov test computes the absolute
distance Di between two empirical cumulative distributions
{F1, F2} as [24]

Di = Max|F1(xi)− F2(xi)|, (20)

where F1(x) and F2(x) are the empirical distribution functions
of the two samples.
5) Page-Hinkley Test (PageHinkley): This is a sequential
analysis technique typically used for monitoring change de-
tection. It allows the detection of changes more quickly by
producing an alarm following a change. It has been widely
used in medical and industrial applications. The Page-Hinkley
test is computed as [25]

PHi =
∑
i=t

(Xi − X̄)−min
∑
j=t

(Xj − X̄), (21)

where Xi is the ith observation, X̄ is the average of all
observations, and t is the current time step. A change is
detected if PHi > λ, where λ is a threshold. In this study, the
process of continuous monitoring with CD detection is con-
ducted through drift detectors and warning detectors as shown
in Fig. 1 (a). When the algorithm detects a drift or a warning,
it triggers either the drift detector or the warning detector,
respectively. The drift detector then triggers the retraining of
the ML model, while the warning detector triggers the model’s
evaluation. Following the update, the newly refined model
is then deployed, ensuring that the predictions it makes are
always based on the most recent learnings.

D. Federated Adaptive Random Forest

The FedARF method is a ML algorithm that combines the
principles of both FL and ARF [26]. It is used for classification
tasks in TSA analysis, where data is distributed across multiple
PS operators. The FedARF algorithm works by creating a local
model for each PS operator using the ARF algorithm. The
local models are trained on the local data of each operator,
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Fig. 1: (a) Drift detection paradigm, and (b) proposed frame-
work.

and then the models are aggregated to form a global model
using FL techniques, as shown in Fig. 1 (b). The global model
is then used for the prediction of transient stability across the
entire PS. The FedARF algorithm is based on the following
equations.

Local Model:fi(x) =
Ni∑
j=1

wijhj(x; θij) , (22)

Global Model:F (x) =
K∑
i=1

wifi(x) , (23)

FL:w(t+1)
i = w

(t)
i − η∇Li(w

(t)
i , F (t)) , (24)

where fi(x) is the local model at operator i, and wij is the
weight of tree j in the ensemble for operator i. The function
hj(x; θij) denotes the jth decision tree in the ensemble with
parameters θij . F (x) represents the global model, and K
is the number of PS operators. The term wi denotes the
weight of operator i in the global model. Finally, Li(wi, F ) is
the loss function for operator i with weights wi and global
model F . The learning rate η plays a critical role in the
proposed FedARF method. Rather than using a fixed value,
an adaptive learning rate strategy is employed that responds
to detected concept changes. Initially, η is set to 0.01 based
on empirical testing across the generated PS datasets. When
CD is detected by any client, the server adjusts η according to
ηt+1 = ηt ·(1+α ·drift magnitude). Here, the drift magnitude
represents the severity of detected drift (measured as the
statistical distance between old and new distributions), and
α is a sensitivity parameter set to 0.2. This approach allows
faster adaptation during significant distribution shifts while
maintaining stability during minor fluctuations. The proposed
algorithm is shown in Algorithm 1.

A systematic block diagram of the proposed FedARF-
based TSA is presented in Fig. 2. The framework follows
a structured process beginning with local client initialization
and data preprocessing of PMU measurements into time series
buffers. The core innovation lies in the enhanced drift de-
tection ensemble that triggers adaptive tree replacement logic
when concept drift is detected, maintaining model diversity
through stratified feature sampling. Local ARF model updates

Algorithm 1 Proposed FedARF Method-based TSA

1: Input: A distributed data stream S across multiple clients
{Ck}, each with its dataset Dk

2: Initialize global model parameters Θ
3: Set the number of trees N for each local ARF model
4: for each client Ck in parallel do
5: Initialize local ARF model with N trees, parameters

θij
6: end for
7: repeat
8: for each client Ck in parallel do
9: Bootstrap local dataset Dkj for each tree Tj in

ARF
10: Train each tree Tj on Dkj

11: Evaluate local ARF on holdout set Hk

12: Detect concept drift using DriftDet on Hk

13: if drift is detected then
14: Prune trees with accuracy below threshold θ
15: Create new replacement trees with bootstrap

samples from recent data
16: Ensure diversity by randomizing feature sub-

sets (
√
d features)

17: Apply stratified feature sampling for replace-
ment trees

18: end if
19: Calculate local updates ∆wk using gradients
∇Lk(θk)

20: end for
21: Aggregate local updates ∆wk on the server
22: Update global model parameters Θ using weighted

aggregation
23: Broadcast updated Θ to all clients Ck

24: until convergence or maximum iterations reached
25: Output: Global ARF model optimized for the distributed

data stream S

incorporate drift-aware learning followed by secure parameter
extraction and transmission to the central aggregator. The
federated aggregation process combines FedAvg with adaptive
learning rate adjustment (η = η0× (1+α× drift magnitude))
and model diversity strategies. Update synchronization ensures
all clients receive the global model while maintaining privacy
through secure protocols. The iterative process continues until
convergence, ultimately providing real-time stable/unstable
classifications that can be used by system operators for preven-
tive control actions. To evaluate the practical performance of
the proposed framework, the next section presents simulation
experiments conducted on multiple standard PS test cases.

IV. SIMULATION RESULTS

This section illustrates the effectiveness of the proposed
method through a variety of simulation results. Three bus
systems with different scales are discussed: IEEE 39-Bus test
system, 68-Bus system, and ACTIVSg25K-Bus test system.
All the simulations have been implemented via Google Colab
Pro Plus High-RAM and Background Execution options En-
abled. Pre-installed packages were used to reduce potential
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Fig. 2: Systematic FedARF diagram for OTSA.

errors from version incompatibilities. The River library is
installed for coding the online learning models [27]. All
the simulations were performed using PowerWorld Simulator
(Version 23). The computational simulations were conducted
on a Lenovo laptop with 16 GB RAM. The proposed method
and comparative models are implemented using Python with
Scikit-Learn framework. All simulations are conducted using
10 repeated trials for each IEEE bus system, which are used
to calculate the average resulting metrics.

A. Data Pre-Processing

To generate the training data, a three-phase short-circuit
fault is induced on a transmission line and subsequently
cleared by removing the faulted line. The fault location is
randomly selected at either end of the line. The fault clearing
time is also chosen randomly within the range of 0.1 to
10 seconds, using an integration step of 0.01 seconds. The
stability of the system is assessed upon the completion of
the simulation. When the fault is cleared, the values of P
and Q are recorded for all the lines, as well as V and θ for
the buses (with the angle at the generator of the critical bus
serving as a reference). These measurements are the initial
input features. Then, data points are created for each bus
configuration. The distribution of these samples is presented in
Table I. To ensure fairness during model training and address
class imbalance, the dataset was generated to maintain an
approximately equal number of stable and unstable scenarios
for each system configuration.

TABLE I: Description of the knowledge base.

Bus system 39-Bus 68-Bus ACTIVSg25K

Stable 11227 34411 12021
Unstable 11993 34389 11983
Total 23220 68800 24004

The t-distributed Stochastic Neighbor Embedding (t-SNE)
maps the high-dimensional space into a 2-dimensional space.
A two-dimensional projection using the t-SNE algorithm for
different IEEE bus systems is plotted in Fig. 3. According to

Fig. 3: The 2-D visualization of sampling strategy behaviors
with t-SNE. a) 39-Bus system, b) 68-Bus system, and c)
ACTIVSg25K-Bus system.

Fig. 3, all samples are interspersed in the initial feature space.
However, in Fig. 3 (a), it can be seen that the samples gradually
separate into two distinct clusters. This separation enhances
the intuitive identification of unstable scenarios within the
representation space, offering an advantage over the initial
feature space. As illustrated in Fig. 3 (b), the feature space
exhibits significant overlap between different regions, indicat-
ing challenges in distinguishing between sample categories.
Fig. 3 (c) demonstrates that a large portion of the data
points are widely dispersed and do not closely approach the
dividing lines between stable and unstable classifications. This
distribution pattern illustrates that the model’s learning process
is challenging to avoid any overfitting issues with topological
changes. Fig. 4 (a,b) demonstrates the rotor angle of generators
for less severe and more severe stable scenarios when the
New England 39-Bus system has suffered a short-circuit fault,
respectively. While Fig. 4 (c), illustrates an unstable scenario
when the New England 39-Bus system has suffered a short-
circuit fault on the critical bus.

For comparative study, the online artificial neural network
(OANN), Extremely Fast Decision Tree classifier (EFDT),
Passive-Aggressive classifier model (PAC), incremental adap-
tive boosting (IAda) classifier are introduced as competi-
tive models to the ARF algorithm [28], [29]. In addition,
three state-of-the-art online techniques were included in the
comparative study, including Neural Network with Dynami-
cally Evolved Capacity (NADINE) [30], Selective Ensemble-
based Online Adaptive deep neural networks (SEOA) [31],
and Online Transformer Network (OTN). All the deployed
models are trained in an FL environment. Furthermore, the
hyperparameters of the implemented models are tuned using
Optuna [32]. Considering the Optuna results, the ARF model
employs the DDM for both drift and warning detection. The
OANN from the linear model module operates with a hinge
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TABLE II: Key hyperparameters for each online model.

Model Key Hyperparameters with Optuna Optimization

ARF nmodels = 10, max features = SQRT, λ value = 6
OANN hidden layers = (50,), solver = SGD(0.01), learning rate init

= 0.01
EFDT grace period = 200, split confidence = 1 × 10−7,

tie threshold = 0.05
PAC C = 1.0, mode = 1, learn intercept = True
IAda base estimator = Hoeffding Tree Classifier, nmodels = 10,

seed = 42
OTN hidden dim = 64; num heads = 4; window size = 10
SEOA hidden dims = [32, 64, 128]; learning rate = 0.01; fluc-

tuation window = 10
NADINE initial hidden = 16; learning rate = 0.01; mem-

ory buffer size = 50

loss function. The EFDT is set with a grace period of 40, uses
information gain as the split criterion, and predicts using the
naive bayes adaptive approach and reevaluates at a minimum
of 40 samples. The PAC model is parameterized with a
regularization parameter C set to 0.001. The IAda classifier
uses a base model of Hoeffding tree classifier with a Gini
impurity split criterion, a change detection threshold (delta=1e-
5), and a grace period of 20. The optimization results for the
TSA algorithm are found in Table II.

B. Evaluation measures

The efficacy of the proposed method is assessed using
Accuracy (ACC), Precision (Prec), Recall (R), and F1-score
(F1). Their mathematical definitions are given below.

ACC =
TP + TN

TP + TN + FP + FN
, R =

TP

TP + FN
, (25)

F1 = 2× Prec×R

Prec+R
,Prec =

TP

TP + FP
, (26)

where TP , TN , FN , and FP denote True Positive, True
Negative, False Negative, and False Positive, respectively.

C. IEEE 39-Bus System

In this subsection, the experimental results are derived from
simulations conducted on the widely recognized New England
39-Bus system, frequently showcased in TSA studies [1]. The

IEEE 39-Bus system comprises 10 power generators, 19 load
points, 12 transformers, and 34 power transmission lines. The
IEEE 39-Bus system is subjected to testing to corroborate
the efficacy of the proposed methodology. Three-phase faults
are applied at multiple line locations. The fault durations
of 5 and 9 cycles are selected to represent distinct severity
levels commonly encountered in practical PSs. The 5-cycle
duration (83.3 ms at 60 Hz) simulates typical fault-clearing
times with modern protection systems. The 9-cycle duration
(150 ms) represents delayed clearing scenarios due to backup
protection operation. This range covers the Critical Clearing
Time (CCT) threshold for many practical system configura-
tions. The analysis revealed that drift detection performance
is directly influenced by fault duration, with longer durations
producing more pronounced shifts in the data distribution.
This observation aligns with PS theory, where longer fault
durations push the system closer to its stability limits, creating
more defined separation between stable and unstable cases, as
visualized in the t-SNE projections in Fig. 3. Several effective
data stream analytics methods, including CD and warning
detectors are implemented and verified. Fig. 5 (a) illustrates
an exhaustive pairwise comparison of several drift detection
and warning detection algorithms on the IEEE 39-Bus system.

According to Fig. 5 (a), the values range from about 96.35%
to 98.95%, indicating that all combinations perform quite well.
The highest value in the heatmap figure (98.95%) is achieved
when KSWIN is used as both the drift and warning detector.
This suggests that KSWIN’s underlying statistical approach
might be particularly well-suited to the IEEE 39-Bus system
among the algorithms tested. This advantage comes from
leveraging the Kolmogorov-Smirnov test to sensitively detect
distributional changes in streaming data. The lowest value in
the heatmap figure (96.35%) comes from pairing HDDM W
as the drift detector and KSWIN as the warning detector. This
may indicate some degree of incompatibility or suboptimal
performance between these two specific detectors. From an
operational perspective, the difference between the best and
worst combinations (a spread of approximately 2.6%) could
have meaningful implications for real-time power system sta-
bility assessment, especially under high-frequency PMU data
streams. Selecting suboptimal detector combinations could

Fig. 4: a) Transient stability observed under a minor fault, b) Transient stability maintained despite a severe fault, and c)
Transient instability scenario.
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(a) Accuracy with the IEEE 39-bus system.

(b) Accuracy with the IEEE 68-bus system.

(c) Accuracy with the IEEE 25k-bus system.

Fig. 5: Data stream classification accuracy with combinations
of drift and warning detectors for the (a) IEEE 39-Bus (b)
IEEE 68-Bus (c) IEEE 25k-Bus systems.

result in hundreds of additional misclassifications per day in
large-scale deployments, underscoring the practical importance
of these findings.

The relationship between the number of trees (N) and the
generalization ability of ARF-ADWIN-based TSA is studied
and illustrated in Fig. 6. Fig. 6 (a) shows that accuracy
increases significantly from 1 to 5 trees (99.86% to 99.95%),
with minimal gains beyond this point, demonstrating clear
diminishing returns. This pattern aligns with the theoretical
principle of ensemble learning, where the marginal contri-
bution of each additional tree decreases as the ensemble
size grows [33]. Fig. 6 (b) reveals how different tree counts
respond to CD events (visible as accuracy drops near samples
2000 and 4000), with higher tree counts exhibiting smaller
accuracy drops and faster recovery. The analysis confirms
that 5 trees provide an optimal balance between accuracy
and computational cost. Models with fewer trees (1-3) show
greater vulnerability to drift, while larger ensembles (10-
15 trees) offer negligible performance improvements despite
significantly increased computational requirements.

(b) ARF-ADWIN Results with Different Tree Counts.

(a) Accuracy vs Tree Count.

Fig. 6: Impact of tree count on ARF-ADWIN performance
for online TSA, with (a) representing the relationship between
accuracy and tree count (b) illustrating how the ARF-ADWIN
model with different tree counts responds to CD events.

A comprehensive performance evaluation for the proposed
FedARF algorithm when facing different types of CD scenar-
ios in the IEEE 39-Bus system is summarized in Table III. The
results demonstrate the robustness of the proposed approach
across varying drift conditions. For instance, the impressive
performance was particularly achieved under recurring drift
patterns (98.47% mean accuracy with minimal variance of
0.12). This indicates both high precision and stability of the
FedARF model in scenarios where system states repeat over
time. While gradual drift scenarios show satisfactory accuracy
(97.87%), the FedARF requires slightly longer processing time
(1.03±0.41s). This increase in runtime can be attributed to the
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FedARF’s need to continuously adapt to slowly evolving data
distributions, which may involve more frequent model updates
or increased communication overhead in the federated setting.

Notably, the FP rates represent the percentage of sta-
ble operating conditions incorrectly classified as unstable.
This metric is especially critical in PS operations where
false alarms could lead to unnecessary control actions or
load shedding. The proposed model maintains acceptable FP

rates across all drift types, with the lowest rate observed in
recurring drift scenarios (3.01±0.93%), indicating excellent
discrimination ability even when system conditions return
to previous states. The Delay Index (DI) is introduced as

TABLE III: Descriptive statistics for TSA-based FedARF
under different types of CDs using IEEE 39-Bus system.

Statistical Metrics Drift type

Sudden Gradual Incremental Recurring

Accuracy

Mean 97.60 97.87 96.60 98.47
95% CI Lower 95.32 95.80 95.74 98.18
95% CI Upper 99.88 99.94 97.46 98.75
Std 0.92 0.83 0.35 0.12
Min 96.80 97.20 96.20 98.40
25% 97.10 97.40 96.50 98.40
50% 97.40 97.60 96.80 98.40
75% 98.00 98.20 96.80 98.50
Max 98.60 98.80 96.80 98.60

Runtime (s) 0.86± 0.21 1.03± 0.41 0.56± 0.42 0.64± 0.07

False Positive (%) 3.18± 3.04 3.45± 3.37 4.34± 1.81 3.01± 0.93

Delay Index 0.30 0.33 0.20 0.89

the ratio between mean detection delay and drift width (DI
=mean delayd/drift widthd [34]) to provide a normalized
measure of detection responsiveness. Lower values indicate
faster adaptation to changing conditions relative to the drift
transition period. Table III reveals a DI of 0.20 in incremental
drift. This means that the FedARF algorithm detects changes
within just 20% of the time it takes for the drift to fully
manifest. The results show a slightly higher value for recurring
drift of 0.89 due to the complexity of detecting multiple
transition points. This higher DI in recurring drift may reflect
the challenge of distinguishing between genuine new drifts and
returns to previously seen states. The excellent responsiveness
for sudden drift (0.30) and gradual drift (0.33) confirms
that the proposed TSA-based FedARF framework effectively
adapts to time-critical changing PS conditions.

D. IEEE 68-Bus System

To further verify the effectiveness of the proposed TSA
method, the 16-machine, 68-Bus New England test system is
utilized. This system consists of 16 machines, 86 transmission
lines, and 5 areas. Fig. 5 (b) shows the performance of
different combinations of drift detectors and warning detectors
on the IEEE 68-Bus system. For instance, the combination
of {EDDM and HDDM W} and {DDM and PageHinkeley}
as both the drift detector and warning detector achieves an
accuracy of 99.77%. On the other hand, the combination

of HDDM W as the drift detector and HDDM A as the
warning detector achieves the highest accuracy in the heatmap
figure, at 98.04%. The Inference Latency (IL) is the amount
of time it takes for a model to process input and return an
output. This metric is critical for real-time grid operations,
where decisions must be made within milliseconds to prevent
cascading failures. IL can be expressed mathematically in
various ways. One common method is to measure the time
taken for a single input to be processed (from the moment it
is fed into the model until an output is produced). This can
be written as

L = Tout − Tin, (27)

where L, Tin and Tout represent the IL, the time at which
an input data point enters the model and the time at which
the output is produced by the model, respectively. For the
TSA application, the average IL is measured over multiple
data points to get a more accurate understanding of the model’s
performance. This can be defined as

Lavg =
1

n

n∑
i=1

(Touti − Tini), (28)

where Lavg and n represent the average IL as the total number
of data points. Touti and Tini denote the times at which the
output is produced and the input is received, respectively, for
the i-th data point.

To evaluate the effectiveness of the proposed model, a com-
parison is made against five established FL approaches: Feder-
ated Averaging (FedAvg) [35], which randomly samples client
UAVs each round; Federated optimization (FedProx) [36],
which adds a proximal term to constrain local updates to-
ward the global model; Federated Matching (FedMatch) [37],
which balances inter-client consistency with disjoint learning
to capture both shared and unique features; Polaris [38], which
employs asynchronous updates prioritized by communication
reliability to minimize latency; and Automatic Layer Freezing
(ALF) [39], which freezes layers whose stability index falls
below 0.13 to reduce communication overhead.

An end-to-end latency, pure computation time, and per-
round communication volume comparison is conducted for
six FL strategies under identical experimental conditions, as
reported in Table IV. The proposed approach achieves the low-
est latency of 3.61 ms and a low communication cost of 0.97
MB, demonstrating a substantial improvement over all existing
baselines. This dramatic reduction in latency is particularly
significant for time-sensitive power and industrial Internet of
Things (IoT) systems. Among the published methods, FedAvg
offers the next best trade-off with a low latency of 21.97
ms and a moderate bandwidth of 3.54 MB. FedProx incurs a
latency of 8.44 ms and a lowest runtime of 506.7 s. In contrast,
asynchronous methods such as FedMatch and Polaris exhibit
over 20 ms latency, and ALF, despite freezing stable layers,
requires nearly 28 ms and 2.05 MB per round. FedARF’s
superiority stems from its adaptive, resource-efficient design
that enables real-time model updates without costly gradient
computations. Thus, the proposed approach results in dramat-
ically reduced latency and minimal communication overhead.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2025.3583978

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



FIRST A. AUTHOR et al.: BARE DEMO OF IEEETAI.CLS FOR IEEE JOURNALS OF IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE 11

TABLE IV: Comparison of FL-based OTSA strategies.

FL Strategy Latency (ms) Runtime (s) Com Cost (MB)

FedMatch [37] 22.78± 0.24 1366.69± 14.27 3.54
FedProx [36] 8.44± 0.02 506.17± 1.16 2.05
FedAvg [35] 21.97± 0.09 1318.26± 5.14 3.54
Polaris [38] 21.79± 0.16 1 307.12± 9.48 3.54
ALF [39] 28.38± 0.02 450.03± 3.45 2.05
Ours 3.61± 0.01 742.93± 6.51 0.97

TABLE V: Performance comparison for the IEEE 68-Bus
system.

Model Accuracy Precision Recall F1-Score Time (s)

ARF 99.65% 99.59% 99.89% 99.74% 3.87
OANN 94.98% 91.77% 98.84% 95.17% 0.88
EFDT 96.30% 93.77% 99.28% 96.45% 1.97
PAC 84.24% 76.18% 99.68% 86.36% 1.22
IAda 97.26% 95.61% 99.16% 97.35% 13.72
OTN 67.2% 67.2% 100% 80.38% 3.08
SEOA 85.4% 85.6% 94.03% 89.62% 3.05
NADINE 81.8% 81.01% 95.24% 87.55% 0.59

Table V illustrates the performance of the competitive
models on the 68-Bus system in terms of score errors and
computational testing time (s). Looking at Table V, the ARF
model exhibits the best overall performance, achieving the
highest accuracy of 99.65% and an F1-Score of 99.74% with
a moderate runtime of 3.87 s. The IAda classifier follows
with strong accuracy of 97.26% and an F1-Score of 97.35%,
albeit at a higher computational cost of 13.72 s. Among the
neural-based methods, OANN achieves 94.98% accuracy and
a 95.17% F1-Score in only 0.88 s; SEOA records 85.4%
accuracy, 94.03% recall, and an 89.62% F1-Score in 3.05 s;
NADINE attains 81.8% accuracy, 95.24% recall, and an
87.55% F1-Score with the fastest testing time of 0.59 s; and
OTN, while showing the lowest accuracy of 67.2%, reaches
perfect recall of 100% as a result of a strong bias toward
predicting the positive class.

E. ACTIVSgs 25K-Bus system: Scalability Study

This section aims to address the challenges discussed in
the study and assess the scalability and performance of the
proposed approach. The system under consideration is a large-
scale synthetic power grid, consisting of 25,000 buses and
featuring significant photovoltaic (PV) penetration. The grid is
designed to represent the geographical area of the Northeast
and Mid-Atlantic regions in the United States. It is a highly
detailed model created using geographic and statistical data
for the purpose of planning and stability assessments [40].
The system includes 227 generators (116 modeled as PV
systems) [41]. The PV energy contributes around 10 percent
to the overall energy mix. This is achieved by regularly
updating the models with new data to ensure their accuracy and
relevance. The performance of different combinations of drift
detectors and warning detectors on the IEEE 25k-Bus system
is illustrated in Fig. 5 (c). As seen in the heatmap figure, the
highest accuracy of 98.00% is achieved by the combination
of EDDM as the drift detector and HDDM A as the warning
detector. Other strong combinations include HDDM A and

KSWIN (97.55%), PageHinkley and HDDM A (97.29%), and
KSWIN and HDDM A (97.68%). On the other hand, the low-
est performance (94.30%) is observed when ADWIN is paired
with PageHinkley, demonstrating a potential incompatibility
between these two detectors for large-scale PSs.

The rolling accuracy of ARF when paired with seven
different drift detection algorithms across 20,000 test sam-
ples is presented in Fig. 7. The results demonstrate
that ARF+HDDM W achieves superior performance with
the highest final accuracy (99.98%), closely followed by
ARF+HDDM A (99.76%). All configurations show a char-
acteristic pattern of rapid early convergence followed by a
temporary drop in accuracy around sample 4,000, indicating
the presence of CD at this point. After this disturbance,
the models exhibit varying recovery rates, with HDDM W
demonstrating the most robust recovery.

Fig. 7: Performance comparison of ARF method with various
concept drift detection methods on the IEEE 25k-Bus system.

The study computes three confusion matrices for the
FedARF model applied to three different IEEE test systems as
shown in Fig. 8. These results demonstrate that the model per-
forms extremely well across all three systems, with particularly
impressive performance on the 68-Bus system. Specifically,
the IEEE 68-Bus system achieves near-perfect classification
with only 12 misclassifications out of nearly 69,000 samples.
The 39-Bus system shows excellent performance with 98.9%
accuracy for stable cases and 99.8% for unstable cases, while
the significantly larger 25k-Bus system maintains 97.4% ac-
curacy for stable cases.

Notably, the model maintains this high performance even as
system complexity increases by several orders of magnitude
(from 39 to 25,000 buses). For instance, the 25k-Bus system
shows the highest FP rate at 2.6%. This indicates that as
system complexity increases, the FedARF model becomes
slightly more prone to false alarms. Nevertheless, the FP

rates, though slightly higher than FN rates, remain well within
acceptable limits across all systems. The consistently low FN

rates across all test systems (significantly below the industry-
acceptable threshold of 1%) confirm the model’s reliability
and robust generalization capabilities while handling different
system topologies, operational conditions, and stability ratios.

A comprehensive comparison of IL performance is pre-
sented in Fig. 9 for various online learning models across three
PS scales. ARF-based models (ARF-DDM, ARF-ADWIN,
ARF-HDDM W ) maintain consistently low latency (0.15-0.25
ms for small systems, 6-8 ms for 25k-Bus) with predictable
scaling across all PS sizes. The consistent performance of
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Fig. 8: Confusion matrix for the proposed ARF model for the
IEEE (a) 39-Bus, (b) 68-Bus, and (c) 25k-Bus systems.

Fig. 9: Inference latency comparison of online learning models
across power system scales.

ARF variants is attributed to their ensemble-based architec-
ture, which maintains fixed-size tree structures and leverages
efficient incremental learning algorithms. In contrast, IAda
exhibits poor scaling properties, with latency increasing dra-
matically from 4 ms to 200 ms as system size grows. The
exponential growth in IAda’s latency can be attributed to its
instance-based learning approach, which requires maintaining
and processing increasingly larger sets of training instances
as system complexity grows. While EFDT achieves median
latencies of 0.35 ms, 0.42 ms, and 7.5 ms across the three
system scales (comparable to ARF-DDM), its 95th percentile
latencies are significantly higher-reaching 0.85 ms, 1.2 ms,
and 15.8 ms, respectively. This inconsistency is particularly
problematic for time-critical applications where worst-case
performance guarantees are essential. The ARF-DDM model
emerges as the optimal choice, with median latencies of 0.18
ms, 0.25 ms, and 6.2 ms for the 39-Bus, 68-Bus, and 25k-
Bus systems, respectively. This ultra-fast inference enables
near-instant corrective actions after a disturbance, offering a
scalable and significant advantage for real PS security and
reliability over all other methods.

V. CONCLUSION

The growing prevalence of renewable energy sources in-
troduces new complexities to the planning and control al-
gorithms of the Power System (PS). This paper proposed
a pioneering approach for Transient Stability Assessment
(TSA) in distributed PSs, while effectively tackling Concept
Drift (CD). Furthermore, a novel Federated Adaptive Random
Forest (FedARF) method was proposed for handling data
streams, ensuring data privacy, and maintaining the operational
stability of the PS. The proposed model was rigorously tested
on the New England 39-Bus system, IEEE 68-Bus system, and
ACTIVIgs 25k-Bus system, with its performance compared
to that of other cutting-edge and state-of-the-art learning
algorithms. Notably, the proposed model demonstrated an
excellent performance with 99% accuracy, highlighting its po-
tential for practical applications in dynamic PS environments.
This FedARF model enhanced the real-time adaptability and
scalability of the prediction framework, which is crucial for
dynamic environments, without centralizing sensitive data. In
future work, the use of big data platforms is intended to
enhance the model’s effectiveness for TSA from increased
integration of power electronics-dominated grids.
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