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Abstract—Large-scale power cyber-physical systems (CPSs)
have many factors that contribute to uncertainties in their data.
When intrusions occur, they will cause anomalies in the system’s
cyber-physical data. However, the traditional anomaly detection
methods often rely on static thresholds or simple statistical
models which are not accurate enough to identify the outlier,
leading to a higher risk of false positives or missed detections.
Recent advances in deep-learning based detection of stealth false
data injection attacks offers a number of improvements, but the
cohesive use of cyber-physical time domain data from real world
systems to detect and validate the detection with a ground truth
model from an emulation testbed and their incorporation in real
world energy management systems remains in its infancy. Hence,
this paper aims to model and capture temporal dependencies
with emulation data, enabling unsupervised anomaly detection by
reconstructing expected behavior and identifying deviations that
suggest potential attacks as recent methods have fallen short in
identifying subtle, long-term dependencies. This study proposes a
Long Short-Term Memory (LSTM) autoencoder-based approach
to detect Man-in-the-Middle (MiTM) attacks in power systems
by leveraging multi-sensor temporal datasets [1]. Additionally,
feature reduction and data normalization techniques are imple-
mented to improve model performance. Simulations using a Texas
2000-bus grid case demonstrate the effectiveness of our approach
in identifying and mitigating cyber threats, effectively enhancing
intrusion detection capabilities.

Index Terms—anomaly detection, LSTM autoencoder, cyber
threats, multi-sensor data fusion, power grid resilience

I. INTRODUCTION

According to the U.S. Department of Energy (DOE), the
number of intrusions has grown sharply in recent years, which
emphasizes the urgent need for security-oriented design of
engineered systems. Cyber-informed engineering solutions are
needed, including intrusion prevention, detection, and response
techniques that leverage the physics of the system in an
integrated manner with cyber. [2]. Therefore, it is essential to
enhance situational awareness and adopt proactive responses
related to cyber security issues.

The authors would like to acknowledge the US Department of Energy under
award DE-CR0000018, the National Science Foundation under Grant 2220347
and TEES Smart Grid Center.

Cyber-physical systems (CPSs), which integrate physical
devices with cyber components, aim to enhance the resilience
of power systems by providing new theoretical and practically
deployed ways of system vulnerabilities and providing proac-
tive responses [3], [4]. However, a wide range of cyber threats
pose significant risks to critical cyber-physical infrastruc-
tures like power grids [5], which could cause communication
channel disruption, power system outages, etc. These threats
encompass various types of attacks, such as phishing, denial-
of-service (DoS), ransomware, man-in-the-middle (MiTM),
and insider threats. The MiTM attack is a type of cyber attack
where an intruder secretly intercepts and potentially alters
the communication between two ports that believe they are
directly communicating with each other [6]. In the MiTM
attack, the intruder positions themselves between the sender
and receiver, capturing the data being exchanged.

In response to cyber attacks threaten CPSs, anomaly detec-
tion is a crucial aspect of ensuring the integrity and security
of the system [7], [8]. Traditional intrusion detection systems
like Snort may cause false positive results because they rely
on predefined rules and patterns. It matches incoming network
traffic against its database of known attack signatures and
triggers an alert when a match is found, which may cause
false positives according to the rules. Machine learning models
like random forest (RF), Support Vector Classifier (SVC), can
handle static data well but struggle with the temporal structure
in sequential data [9], [10]. However, an LSTM autoencoder-
based anomaly detection approach enhances system resilience
and security by leveraging multi-sensor data to reduce false
positives compared to traditional methods. It has demonstrated
promising results in outlier identification in various areas, like
air quality prediction [11], discovering suspicious vehicle net-
work activities [12], etc. The LSTM autoencoder is designed
to model the temporal dependencies, reflecting the dynamic
interactions within the cyber and physical components making
them ideal for capturing the sequential and time-dependent
nature of CPS data. This approach allows for more precise
identification of cyber threats, ensuring timely and accurate
responses to potential cyber intrusions.

In this paper, we develop an LSTM autoencoder-based
approach to detect MiTM attacks on a 2000-bus grid cyber-979-8-3503-3120-2/24/$31.00 ©2024 IEEE
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physical datasets [1]. The proposed detector can effectively
identify anomalies within the data with improved detection
precision and accuracy. Moreover, feature reduction minimizes
irrelevant or redundant information, and data normalization
scales the features, allowing the model to focus on significant
patterns and achieve faster convergence during training which
optimize the model’s performance.

The subsequent sections of the paper are structured as
follows: Section II presents a comprehensive overview of the
case study. Section III elaborates on the method design. This is
followed by an in-depth examination of the results in Section
IV. Finally, Section V provides concluding remarks.

II. RELATED WORK AND LITERATURE REVIEW

A. Multi-Source Multi-Domain Data Fusion during MiTM
Attack

The RESLab testbed provides a real-time cyber-physical
platform to show the interaction between cyber and physical
systems. It could continuously monitor network traffic and
mimic real-world system activity. It consists of a network
emulator, the dynamic power system simulator, the intru-
sion detection system (IDS), a Real-Time Automation Con-
troller (RTAC), the data storage and fusion system, and the
OpenDNP3 master [6], [13]. The Common Open Research
Emulator (CORE) serves as the network emulator, which could
model, simulate, emulate, test, and validate the monitoring
system while Power World Dynamic Studio (PWDS) simulates
power systems in real-time. The DNP3 Master, implemented
using an open DNP3-based application and an SEL-3530
RTAC, manages communications with the power system, polls
measurements, and operates outstations within the simulated
environment. SNORT is implemented to configure and gener-
ate alerts for DoS, MiTM, and Address Resolution Protocol
(APR) attacks. More demonstrations are illustrated in [6], [13].

The fusion engine in the RESLab testbed enables the
capability to collect data from multiple sensors, synthesizing
real-world data in the energy management system (EMS)
[6], [13]. For cyber sensors, Wireshark instances capture raw
packets at various network locations, and Packetbeat is used to
extract network flow-based data. Security monitoring includes
Snort IDS logs and alerts. For the emulated physical system
using PWDS, real-time sensor readings are obtained from the
observed measurements at the DNP3 master, based on the raw
packet data captured at the DNP3 master. The multivariate
time series data is implemented as our input to the LSTM
autoencoder-based approach framework.

The dataset includes simulations of several cyber attacks
conducted in the RESLab testbed [14]. The MiTM attacks
simulated in the RESLab emulate multi-stage attacks on a syn-
thetic electric grid, where an intruder gains Secure Shell (SSH)
access and performs coordinated False Command Injection
(FCI) and False Data Injection (FDI) attacks, accomplishing
ARP spoofing, to overload transmission lines by compromis-
ing DNP3 communications. Detailed scenarios are discussed
in section IV-A2 and the referenced testbed and MiTM attack
papers [6], [13], [15].

B. Anomaly Detection Literature Review

Anomaly (or outlier) detection focuses on two categories of
data: erroneous or unwanted data and the data under certain
events [16]. In this paper, anomalies are defined as data distinct
from the power system’s normal operation state. Anomalies
occur when data significantly diverges from the values it holds
over a period of time, such as a sudden drop in physical data
caused by MiTM attacks. .

Our previous research [13] explored machine learning tech-
niques including supervised learning approaches unsupervised
learning techniques and semi-supervised learning, which also
demonstrated the capability of outlier identification facing
cyber attacks. However, traditional machine learning tech-
niques often struggle with capturing the temporal dependen-
cies inherent in time series data. LSTM, as an extension
of recurrent neural networks (RNNs), effectively addresses
the issue of short-term memory by maintaining information
over longer sequences [11], [12]. LSTM autoencoder, where
the LSTM cell captures the dependencies and autoencoder
reconstructs the sequence to identify the anomalies, making
them particularly suitable for time series prediction tasks [17].
For example, [18] utilized the LSTM-autoencoder model for
studying temporal correlations between the feature vectors
extracted from the state estimation during a false data injection
attack in power systems. Since LSTM autoencoders can train
sequential data, it is worthwhile to investigate how to leverage
this technique to capture the interdependencies between cyber
and physical data so as to indicate the abnormal activity and
enhance the detection capability.

III. METHODOLOGY

The framework of the proposed LSTM autoencoder-based
anomaly detection method is shown in Fig.1. Specifically, it

Fig. 1: LSTM Autoencoder-Based Detection of Multivariate
Time Series Data for Cyber-Physical Power Systems

consists of three steps, including data preprocessing, model
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training, and anomaly detection.Initially, the data preprocess-
ing step involves feature selection, data cleaning, and the la-
beling of datasets, ensuring that only relevant and high-quality
data is used for model training. The dataset is then split into
training and testing sets to facilitate effective model evaluation.
Next, an LSTM autoencoder is employed, where the input data
is encoded into a lower-dimensional latent representation (z)
that captures essential features of the time-series data. The
decoder reconstructs the original data from this latent space,
with the objective of minimizing the reconstruction error for
normal data sequences. Finally, the anomaly detection step
reconstructs the feature variables and computes the recon-
struction error, measured by the Mean Square Error (MSE),
to identify anomalies. Data points with a reconstruction error
exceeding the threshold are labeled as anomalies, while those
with lower errors are considered normal. The details of the
three steps in the framework are discussed as follows.

A. Data Preprocessing

Data preprocessing is essential to ensure the quality of the
training and testing datasets as well as the integrity of the
subsequent LSTM autoencoder model training. The original
dataset is not in a unified time interval, so the resampling
method is applied to ensure consistency in the time intervals
across data from the DNP3 master, router, and DNP3 outsta-
tion.This resampling was crucial for aligning and integrating
the temporal data.

The dataset initially includes 28 cyber features along with
physical data (power flows) obtained from DNP3. Among
which, 14 features are selected as the most relevant based on
principal component analysis (PCA) analysis [13], including
critical physical variables such as voltage and current, as well
as other cyber sensors that can indicate the system’s behavior.

Datasets are encoded because the features in the dataset are
categorical. Label encoding is implemented by the Scikit-learn
library. It is preferred since it avoids the high-dimensionality
issues that can arise with one-hot encoding [13].

Moreover, the dataset is scaled using Eq. (1). By scaling
the features to a uniform range within [0,1], it reduces the
risk of any single feature dominating the learning process and
improves the feature processing efficiency [19].

X ′ =
X −Xmin

Xmax −Xmin
(1)

The data is then split into training and testing sets. The
split is managed in a way that can ensure that both training and
testing sets contain a sufficient number of anomaly data points.
The dataset is split based on timestamps, with the training
set containing 75% of the anomaly data and the testing set
containing the remaining 25%, along with the corresponding
normal data.

Anomaly data labeling is another crucial aspect of the
preprocessing phase. Anomalies can be labeled during known
cyber attacks, as well as during periods when the voltage and
current measurements indicated instability (e.g., values falling
below normal operational thresholds).

B. LSTM Autoencoder
1) LSTM Cell: The LSTM cell state is updated at each time

step, allowing the model to remember or forget information
as needed [20], described by:

Ct = ft · Ct−1 + it · C̃t (2)

where Ct is the cell state at time step t, ft is the forget gate,
it is the input gate, and C̃t is the candidate cell state.

Specifically, three gates manage and control the information
flow determined using long-term and short-term memory [20].
In the following equations, W denotes the weight matrix, and
b denoted the bias term:

• Forget Gate: It determines the percentage of information
to erase from the cell state. A sigmoid activation function
is implemented as described by Eq. 3. The activation
function takes the previous hidden state and the current
input to output a value between 0 and 1 for each iteration
in the cell state.

ft = σ(Wf · [ht−1, xt] + bf ) (3)

• Input Gate: It controls new information to add to the
cell state. As Eq. 4 illustrates, the sigmoid function
determines the values to update, and a tanh layer decides
a vector of new values to be added, shown in Eq. 5.

it = σ(Wi · [ht−1, xt] + bi) (4)

C̃t = tanh(WC · [ht−1, xt] + bC) (5)

• Output Gate: By combining the current state and the
hidden state values (Eq. 6), it further determines the
output value by multiplying Eq. 6 with a tanh layer into
Eq. 7 as:

ot = σ(Wo · [ht−1, xt] + bo) (6)

ht = ot · tanh(Ct) (7)

2) Autoencoder: The autoencoder consists of an encoder
and a decoder to reconstruct the input updating the weights
(W ) and bises (b) during training. The encoder maps the input
feature spaces x to the latent space z which is shown in Eq. 8.
The activation function ϕ transforms the input into the latent
space, often referred to as the bottleneck [21]. The decoder
reconstructs the output x′ from z using a neural network,
demonstrated in Eq. 9.

z = ϕ(We · x+ be) (8)

x′ = ψ(Wd · z + bd) (9)

The Mean Squared Error (MSE)is calculated to quantify the
differences between the input x and the reconstructed x′ by:

L(x, x′) = 1

n

n∑
i=1

(xi − x′i)
2 (10)

Therefore, the training process optimizes the model by
minimizing the discrepancy between the input x and the
reconstructed x′.
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C. Anomaly Detection

Once the model is trained, the training dataset is passed
through the model to evaluate its reconstruction performance
and to determine the threshold. The model recreates the origi-
nal input sequences, and the reconstruction error is calculated
for each data point. The threshold for anomaly detection on
the test dataset is then established, typically by analyzing the
distribution of reconstruction errors in the training data.

The model generates a predicted dataset which is the re-
constructed sequences X̂test, containing multiple reconstructed
x̂test,t for different time t resulting from the application of
the sliding window technique. For each time step, the final
predicted value x̂test,t is computed by averaging the predictions
from all windows. This can be expressed as:

x̂test,t =

∑N
i=1 X̂

(i)
test(t− i+ 1)

nt
(11)

where N is the total number of windows that cover time
step t, and nt is the number of windows contributing to the
reconstruction. Eq. (11) ensures that the reconstructed value at
each time step is averaged based on the number of windows
that overlap with it.

Anomalies are identified by comparing the fully recon-
structed values x̂test,t with the original test data xtest,t. Signif-
icant deviations measured by the reconstruction error (MSE)
indicate points where the model fails to capture the underlying
patterns. High reconstruction error suggests the potential pres-
ence of an anomaly, as these points deviate from the normal
behavior learned during the training phase.

IV. RESULT AND DISCUSSION

A. Simulation in Details

1) Data Description: Fused multi-sensor real-time data
is acquired from both the physical and cyber sensors. As
shown in Fig. 2, cyber data include frame length (frame len),
TCP length (tcp len), TCP round trip (tcp rtt), flow count
(flow count), packets, DNP3 Object Count, DNP3 Objects,
application layer control count (AL dnp3 al ctl), DNP3 ap-
plication layer object count (AL dnp3 obj) and DNP3 ap-
plication layer payload (AL payload). The physical data is
simulated through PWDS with a substation’s power flow and
injections in branches and buses. There are 5 and 10 DNP3
outstations (os) being polled. The poll rate refers to how
frequently the system checks for new data points over a given
period. 30poll or 60poll refers to polling intervals of 30 or
60 seconds respectively. The data are resampled at 30-second
intervals using the Pandas library, allowing for a uniform time
series representation.

2) Attack Scenarios: 4 use cases (UCs) are conducted in
the presence of MiTM attacks, see more detailed descriptions
in [14].

UC1: The MiTM intrusion employs False Command In-
jection (FCI) to alter the binary control commands from the
RTAC and then modify the commands from the DNP3 master,
resulting in CLOSE commands being overridden by TRIP

commands. This action opened critical branches, leading to
line overloads [13], [14].

UC2: This case implements a scenario where an intruder
modifies analog control commands and binary commands
to cause power system disruptions. The intruder first in-
spects DNP3 packets, altering generator set points to zero
and changing binary control commands as done in UC1. In
this case, seven generators and one transmission branch are
compromised [13], [14].

UC3: In this scenario, the intruder manipulates polled mea-
surements, leading the operator to re-send control commands,
which involves FDI attack. The intruder then modifies these
commands, by altering generator set points.

UC4: It is a three-stage attack where the intruder first alters
the polled measurements from the DNP3 master, prompting
the operator to re-send control commands. The intruder then
changes the generator set points to low values while falsifying
measurement packets to show the original set points, deceiving
the operator into thinking the commands were successful. As a
result, the true generator outputs decrease, risking an overload
when a line is opened.

3) Model: The first LSTM layer of the encoder takes the
input sequence and outputs a sequence of 128-dimensional
vectors for each time step. The second LSTM layer serves
as a bottleneck, reducing the output to a 64-dimensional
vector. Unlike the first layer, it outputs only a single vector,
effectively encoding the entire input sequence into a single 64-
dimensional representation. The latent variables in this LSTM
autoencoder are represented by the output of this bottleneck
layer, which, in this case, has a latent vector dimension of
64. The decoder then takes this compressed representation,
replicates it, and reconstructs a sequence that resembles the
original input. Dropout layers are employed to prevent over-
fitting by randomly dropping units during training. Finally, the
TimeDistributed layer maps the decoder’s output to the desired
shape, which in this example is a sequence of 14-dimensional
vectors.

4) Evaluation Metrics: F1-score, Recall, and Precision are
implemented to evaluate overall performance. Precision indi-
cates the proportion of true positive (TP) divided by the total
number of elements labeled positive, including false positive
(FP) and TP. Recall is defined as the number of TP divided
by the total number of actual positives. Accuracy is the ratio
of correctly predicted elements to the total elements. The F1
score is defined as the harmonic mean of the precision and
recall, which measures the test accuracy [22].

B. Result Analysis and Discussion

In this section, the anomaly detection performance and
overall effectiveness are evaluated through 4 UCs.

1) Anomaly Detection Performance: As is shown in Fig.
3, the loss MSE line describes the difference between the
true value and the predicted value. It suggests that higher
differences indicate a higher prediction error, which implies
anomalies. The red dashed line is a threshold for anomaly
detection. If the loss, MSE, exceeds the threshold, the model
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(a) UC1: Overloaded transmission lines (WACO 3 (399), WACO
1 (456), JEWETT 1 (1195), and FRANKLIN (1200)).

(b) UC2: Real Power injection at generators from
WADSWORTH(968), RIESEL 1 (631), GRANBURY 1
(601), and GLEN ROSE 1 (560) and the overloaded line.

(c) UC3: Power injection at WADSWORTH generator.
(d) UC4:Power injection at WADSWORTH generator during
mixing of FDI and FCI.

Fig. 2: Multivariate Time Series Data of MiTM Attacks across Use Cases UC1-UC4 with a 30-Second Polling Rate. The label
in the legend is scaled up to highlight the window of anomalies during cyber attacks and physical disturbances.

will flag the point as an anomaly. The vertical green lines
indicate where anomalies are detected by the model. These
points correspond to when the loss MSE exceeds the threshold,
marking the time steps where the behavior is considered
abnormal. The dotted line shows the true labels from the test
set, indicating where actual anomalies were present. These true
labels are used to evaluate the performance of the model in
detecting anomalies. Most anomalies detected by the model
align closely with the true labels, demonstrating its effective-
ness, though a few false positives and false negatives were
observed.

2) Overall Performance: Table I highlights the precision
of LSTM autoencoder-based anomaly detection approach and
how different polling rates and outstation numbers impact the
performance of anomaly detection models across various use
cases. A main observation across all use cases is the high

TABLE I: Polling rate and performance metrics for anomaly
detection use cases (UC1 to UC4).

UC Polling Rate Precision Recall F1-Score
UC1 10os 30poll 0.967105 0.980200 0.97351
UC1 10os 60poll 0.985366 0.980583 0.982968
UC2 10os 30poll 0.941667 0.837037 0.886274
UC2 10os 60poll 0.929348 0.994186 0.960674
UC3 10os 30poll 0.901709 0.854251 0.877338
UC3 5os 60poll 0.798762 0.973585 0.877551
UC4 10os 30poll 0.906822 0.974955 0.939655
UC4 10os 60poll 0.984887 0.677643 0.802875

precision of the LSTM autoencoder, especially in UC1 and
UC4. For example, in UC1 with the 10os 60poll configuration,
the model achieves a precision of 0.9854, indicating that most
of the detected anomalies are true positives. Similarly, in UC4
with the same configuration, the precision reaches 0.9849,
further emphasizing the model’s effectiveness in reducing false
positives.

However, trade-offs in recall are evident across some use
cases. In UC4 with 10os 60poll, although the precision is
exceptionally high at 0.9849, the recall drops to 0.6776,
leading to a lower F1-Score of 0.8029. This suggests that
in certain settings, while the LSTM autoencoder confidently
detects anomalies, it may also miss some false negatives.

Conversely, UC3 demonstrates how varying outstation num-
bers and polling rates can significantly impact performance.
For instance, in UC3 with 5os 60poll, the recall is notably
high at 0.9736, but precision falls to 0.7988, implying that
while more anomalies are captured, there may also be an
increase in false positives, resulting in a lower overall F1-
Score compared to other use cases.

V. CONCLUSION

The LSTM Autoencoder-based framework can efficiently
detect anomalies caused by the MiTM in CPS. Our work
examines the relationship between the loss MSE, threshold,
and detected anomalies to assess how well the model identifies
abnormal behavior within different use cases. The general
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(a) 10os and 30poll Configurations for UC1 (b) 10os and 30poll Configurations for UC2

(c) 10os and 30poll Configurations for UC3 (d) 10os and 30poll Configurations for UC4

Fig. 3: Anomaly Detection Performance of UC1-UC4: Comparison of Loss MSE, Threshold, Detected Anomalies, and True
Anomaly Labels

performance table is further illustrated to prove the capability
to detect the MiTM attack and other disturbances in the
CPS. The polling rate and the number of outstations impact
the precision of anomaly detection. The real-time reaction is
crucial in improving system resilience and security for CPSs,
yet it remains a challenging question for both researchers
and operators [3]. Future work aims to integrate real-time
anomaly detection capabilities, as well as localization tech-
niques, within the RESLab testbed. Localization will enable
not only the detection of anomalies but also the identification
of the components facing cyber threats, which will enhance
the responsiveness of CPSs, providing deeper insights into the
real-time detection and mitigation of anomalies.
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