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Canonical representations of surface groups

By Aaron Landesman and Daniel Litt

Abstract

Let Σg,n be an orientable surface of genus g with n punctures. We study

actions of the mapping class group Modg,n of Σg,n via Hodge-theoretic and

arithmetic techniques. We show that if

ρ : π1(Σg,n) → GLr(C)

is a representation whose conjugacy class has finite orbit under Modg,n,

and r <
√
g + 1, then ρ has finite image. This answers questions of Junho

Peter Whang and Mark Kisin. We give applications of our methods to the

Putman-Wieland conjecture, the Fontaine-Mazur conjecture, and a ques-

tion of Esnault-Kerz. The proofs rely on non-abelian Hodge theory, our

earlier work on semistability of isomonodromic deformations, and recent

work of Esnault-Groechenig and Klevdal-Patrikis on Simpson’s integrality

conjecture for cohomologically rigid local systems.
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1. Introduction

1.1. Overview. Let Σg,n be an orientable topological surface of genus g

with n punctures, and let x ∈ Σg,n be a basepoint. We denote the mapping

class group of Σg,n by Modg,n. There is a natural outer action of Modg,n on

π1(Σg,n, x), induced by the action of Homeo+(Σg,n) on Σg,n. Thus, Modg,n acts

on the set of conjugacy classes of representations of π1(Σg,n, x) into GLr(C).
Our goal is to study the finite orbits of this action via Hodge-theoretic and

arithmetic techniques.

Definition 1.1.1. For g, n, r≥0, a representation ρ : π1(Σg,n, x) → GLr(C)
is MCG-finite if the conjugacy class of ρ has finite orbit under the action of

Modg,n.

Note here that we are studying conjugacy classes of representations. For

example, semisimple MCG-finite representations correspond to finite Modg,n-

orbits in the character variety of π1(Σg,n), not its representation variety. In-

deed, Modg,n does not naturally act on the representation variety of π1(Σg,n).

Any representation of π1(Σg,n) constructed without making choices (for

example, without naming a specific curve in Σg,n), or by making choices with

only a finite amount of indeterminacy, is MCG-finite. So we view MCG-finite

representations as the canonical representations of π1(Σg,n).

The study of MCG-finite representations has a long history. It has a

close connection to isomonodromy and the Painlevé VI equation, originally

introduced in 1902 by Painlevé [Pai02] and Gambier [Gam10]. For each g, n, r,

conjugacy classes of semisimple MCG-finite representations

π1(Σg,n) → GLr(C)

correspond to algebraic solutions to a certain isomonodromy differential equa-

tion; see [CH21, Th. A]. Algebraic solutions to the Painlevé VI equation in an

appropriate choice of coordinates correspond to MCG-finite representations

with trivial determinant in the particular case g = 0, n = 4, r = 2 (see [Mah99,

§1-§3] and [Dor01, §2]).

There is substantial literature on the search for algebraic solutions to the

Painlevé VI equation, [AK02], [Boa05], [Boa06], [Boa07b], [Boa07a], [CL09],

[Dub96], [DM00], [Hit95], [Hit03], [Kit05], [Kit06], culminating in the clas-

sification given in [LT14]. Boalch [Boa10] pitches the problem of classifying

algebraic solutions to Painlevé VI as a natural generalization of Schwarz’s list

of hypergeometric equations with finite monodromy [Sch73].

We will later see that the classification of MCG-finite representations is

closely connected to several major open questions in low-dimensional topology.

In particular, it has connections to the Putman-Wieland conjecture [PW13,

Conj. 1.2] and Ivanov’s conjecture that mapping class groups do not virtually
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surject onto Z [Iva06, §7]. These conjectures in turn have applications to

algebraic geometry, as they would determine the first rational homology of

finite covers of Mg,n.

Many interesting classes of representations are MCG-finite. Examples

include the rigid local systems studied by Katz [Kat96], representations con-

structed via TQFT techniques (e.g., [Kup11], [KS16], [KS18a], [KS18b]), and

representations of algebro-geometric interest, such as those constructed via

the Kodaira-Parshin trick (e.g., [LL22, Exam. 3.3.1]). We will see later that

MCG-finite representations of π1(Σg,n) are closely related to representations

of finite-index subgroups of Modg,n+1.

1.2. Results for surface groups. Given the difficulty of classifying MCG-

finite representations in the g = 0, n = 4, r = 2 case (encompassing Painlevé

VI), it may be surprising that we are able to obtain a complete and simple

characterization of MCG-finite representations when g � r.

Theorem 1.2.1. For g, n, r ≥ 0, let

ρ : π1(Σg,n) → GLr(C)

be a MCG-finite representation. If r <
√
g + 1, then ρ has finite image.

This answers a question of Junho Peter Whang [LL22, Question 1.5.3].

We will prove Theorem 1.2.1 in Section 8.7.

While the statement appears to be purely topological or even group-

theoretic in nature, the proof relies on (non-abelian and mixed) Hodge the-

ory, and also takes input from the Langlands program, through the work of

Esnault-Groechenig [EG18] and Klevdal-Patrikis [KP22] on integrality of co-

homologically rigid local systems.

Remark 1.2.2. Some bound on the rank as in Theorem 1.2.1 is neces-

sary. Indeed, there are a number of interesting MCG-finite representations of

π1(Σg,n) of rank r � g with infinite image, as explained in Question 10.2. We

have no reason to think that the precise bound of
√
g + 1 is optimal in general.

That said, the bound cannot be improved too much. It is sharp when g = 1,

by Remark 10.2.1, but not for g = 2, 3, by Remark 10.2.2. For general g, there

are MCG-finite representations of π1(Σg) of rank 2g + 1 with infinite image

(Examples 10.1.6((3))), so the bound cannot be improved to be better than

linear in g. We summarize the situation in Figure 1.

As explained in [CH21, Th. A], Theorem 1.2.1 yields a classification result

for algebraic solutions to isomonodromy differential equations:

Corollary 1.2.3. Let C be a smooth projective curve of genus g, and

let D ⊂ C be a reduced effective divisor. Let (E,∇) be a semisimple flat vector
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Figure 1. The geography of known MCG-finite representations:

Theorem 1.2.1 shows that the region r <
√
g + 1 contains only

MCG-finite representations with finite image. As explained in

Question 10.2, there are examples of MCG-finite rank r rep-

resentations with infinite image for r � g. For r polynomial

in g, all known examples have virtually solvable image. For r

exponential in g, there are interesting MCG-finite irreducible

representations with infinite image.

bundle on C with regular singularities along D, with rkE <
√
g + 1. Suppose

that the eigenvalues of the residue matrices of (E,∇) have real parts in [0, 1).

Then (E,∇) has an algebraic universal isomonodromic deformation if and only

if (E,∇) has finite monodromy.

Note that the condition on residue matrices can always be achieved af-

ter a birational gauge transformation, by replacing (E,∇) with the Deligne

canonical extension of (E,∇)|C\D.

This algebro-geometric reformulation of our main result is not just window

dressing. It is the perspective we will take in the proof of Theorem 1.2.1.

1.3. An application to low rank local systems on Mg,n. We next record

a consequence of our main result for local systems of low rank on families

of curves. As in Notation 1.10.1, we say a family π : C → M of smooth

proper genus g curves with geometrically connected fibers, equipped with n

disjoint sections si : M → C , is versal if the corresponding map M → Mg,n

is dominant. We call π◦ : C ◦ := C \⋃i si(M ) → M a punctured versal family

of genus g curves.

The following is immediate from Theorem 1.2.1, by Proposition 2.1.3 be-

low.
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Corollary 1.3.1. Suppose π◦ : C ◦ → M is a punctured versal family

of genus g curves, and V is a local system on C ◦ of rank <
√
g + 1. For any

fiber C◦ of π◦, the local system V|C◦ has finite monodromy.

1.4. The Putman-Wieland conjecture. Among the main ingredients in the

proof of Theorem 1.2.1 are some new results toward the Putman-Wieland

conjecture, sketched below and described in detail in Section 7.

We now set some notation to state the Putman-Wieland conjecture. Let

Σg,n be a surface, and let φ : π1(Σg,n, x) � H be a surjection onto a finite

group, corresponding to some finite H-cover Σg′ → Σg branched over n points.

Let Γ be the stabilizer of φ up to conjugacy in the pure mapping class group

of Σg,n+1. Then Γ acts naturally acts on H1(Σg′).

We say that the Putman-Wieland conjecture for (g, n,H) holds if for every

such H-cover Σg′ → Σg, all non-zero vectors in H1(Σg′) have infinite orbit

under Γ. The original Putman-Wieland conjecture [PW13, Conj. 1.2] asserts

that for any fixed g ≥ 2, n ≥ 0, the Putman-Wieland conjecture for (g, n,H)

holds for every H. We prove the Putman-Wieland conjecture for (g, n,H)

for any fixed H once g is sufficiently large. In this way, our results are an

“asymptotic” version of the Putman-Wieland conjecture.

Theorem 1.4.1. For g ≥ 2, n ≥ 0, and any finite group H with #H < g2,

the Putman-Wieland conjecture for (g, n,H) holds.

Theorem 1.4.1 is proven below as a case of Corollary 7.2.4. More generally,

for arbitrary H, we prove that the Putman-Wieland conjecture holds for the

subspace of H1(Σg′) spanned by irreducible representations of H of small rank.

Theorem 1.4.2.Let ρ be an irreducible representation of H with dim ρ<g,

and let H1(Σg′)
ρ be the ρ-isotypic component of H1(Σg′). Then no non-zero

vector in H1(Σg′)
ρ has finite orbit under Γ.

Theorem 1.4.2 is proven below as a special case of Theorem 7.2.1.

As we shall see in the course of the proof of Theorem 1.2.1, especially

Lemma 8.6.1, the Putman-Wieland conjecture is connected to the classification

of MCG-finite representations with virtually solvable image.

1.5. Arithmetic applications. In Section 9, we give a number of applica-

tions to questions in arithmetic geometry. For example, we show in Theo-

rem 9.1.2 that low rank representations of the arithmetic étale fundamental

group of a generic curve of genus g have finite image when restricted to the

geometric fundamental group. This verifies a prediction of the Fontaine-Mazur

conjecture; see Remark 9.1.5. These results also answer a question of Esnault-

Kerz; see Remark 9.1.3.

As a consequence, we construct many residual representations of the geo-

metric fundamental group of a generic curve of genus g that have no lifts to
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representations of geometric origin. These examples are related to a conjecture

of de Jong [dJ01] (proven by Gaitsgory [Gai07]) and a question of Flach; see

Remarks 9.2.5 and 9.2.6.

1.6. A consequence for free groups. From Theorem 1.2.1, we deduce an

analogous result for free groups.

Corollary 1.6.1. Let FN be a free group on N generators, with N = 2g

or N = 2g + 1. Let

ρ : FN → GLr(C)

be a representation whose conjugacy class has finite orbit under Out(FN ). If

r <
√
g + 1, then ρ has finite image.

Proof. If N is even, choose an isomorphism FN ' π1(Σg,1), and if N is

odd, choose FN ' π1(Σg,2). Any representation of FN with finite orbit under

Out(FN ) yields a representation of a genus g surface group with finite orbit

under the mapping class group. Such a representation has finite image by

Theorem 1.2.1. �

Remark 1.6.2. It is natural to ask if the bound on r in Corollary 1.6.1 is

sharp. There exist (non-semisimple) representations of FN of fairly low rank

(r = N + 1) with infinite image and finite orbit under Out(FN ) (see Exam-

ple 10.2.7), so the bound cannot be improved too much. However, in contrast

with the case of MCG-finite representations, we do not know any examples

of semisimple representations of FN with infinite image and finite orbit under

Out(FN ) as soon as N ≥ 3. Indeed, a conjecture of Grunewald and Lubotzky

[GL09, Conj. in §9.2], combined with the main result of [FH17], implies that no

such examples exist when N ≥ 3. In the interests of provocation, we conjecture

(Conjecture 10.2.8) that such examples do exist. As evidence, we offer sev-

eral examples of semisimple MCG-finite representations of surface groups with

infinite image; see Question 10.2. Note that there are interesting semisimple

representations of F2 with finite orbit under Out(F2); see Example 10.2.7.

Remark 1.6.3. One appeal of Corollary 1.6.1 lies in the fact that it admits

a completely elementary reformulation, using Nielsen’s description of Aut(FN );

see [Nie24] and also [MKS04, Th. 3.2, p. 131]. Let (A1, . . . , AN ) be an N -tuple

of invertible r × r complex matrices, with N = 2g or N = 2g + 1. Consider

the following operations on N -tuples of invertible matrices:

(1) the cyclic permutation

c : (A1, A2, . . . , AN ) 7→ (A2, A3, . . . , AN , A1);

(2) the transposition

τ : (A1, A2, A3, . . . , AN ) 7→ (A2, A1, A3, . . . , AN );
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(3) the inversion map

ε : (A1, A2, . . . , AN ) 7→ (A−1
1 , A2, . . . , AN );

(4) the Dehn twist

d : (A1, A2, . . . , AN ) 7→ (A1A2, A2, . . . , AN ).

We say (A1, . . . , AN ) and (A′
1, . . . , A

′
N ) are conjugate if there exists some B

such that Ai = BA′
iB

−1 for all i.

Now suppose that the set of N -tuples obtained from (A1, . . . , AN ) by re-

peatedly applying c, τ, ε, and d only intersect finitely many conjugacy classes of

N -tuples (A1, . . . , AN ). If r <
√
g + 1, Corollary 1.6.1 implies that A1, . . . , AN

generate a finite subgroup of GLr(C).

Remark 1.6.4. Similarly to Remark 1.6.3, one could make Theorem 1.2.1

explicit, using any one of the known generating sets of Modg,n, but the formulas

are a bit more involved, as in [CH21, §6]. In our view it would be of great

interest to find a proof of Theorem 1.2.1 or Corollary 1.6.1 of a similarly explicit

nature.

Remark 1.6.5. A result analogous to Corollary 1.6.1 follows immediately

for characteristic quotients of free or surface groups. For example, let G be a

characteristic quotient of a free group FN on N = 2g or N = 2g+1 generators,

and ρ : G → GLr(C) a representation whose conjugacy class has finite orbit

under Out(G). If r <
√
g + 1, then ρ has finite image by Corollary 1.6.1.

1.7. Cohomological results. One of the new technical inputs we use to

achieve Theorem 1.2.1 is an analysis of the cohomology of unitary local systems

on families of curves. Our main result, which follows from an analysis of the

derivative of the period map associated to the mixed Hodge structure on the

cohomology of unitary local systems, is the following. We adapt notation

described later in Notation 1.10.1.

Theorem 1.7.1. Let π : C → M be a smooth proper family of n-pointed

curves of genus g with geometrically connected fibers, so that the associated

map M → Mg,n is dominant étale. Let π◦ : C ◦ → M be the associated family

of punctured curves. Let V be a unitary local system on C ◦. Then any non-zero

sub-local system of R1π◦∗V has rank at least 2g − 2 rkV.

We prove this in Section 6.1 and give a related cohomological vanishing

theorem with milder unitarity hypotheses in Theorem 6.2.1. Note that The-

orem 1.7.1 shows that H0(M , R1π◦∗V) = 0 if g > rkV. This result is used

several times in the proof of Theorem 1.2.1, as described in Section 1.9. It is

especially interesting when V has finite monodromy, where it is closely related

to the Putman-Wieland conjecture, as described above in Section 1.4 and in

more detail in Section 7.
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1.8. Prior work.

1.8.1. MCG-finite representations and Painlevé VI. As mentioned in Sec-

tion 1.1, there has been a huge amount of effort put forth towards classifying

algebraic solutions to the Painlevé VI equation, arguably beginning with work

of Riemann [Rie57] and Schwarz [Sch73] and culminating in the classification

[LT14]. Calligaris-Mazzocco [CM18] classified algebraic solutions satisfying

several conditions in the case g = 0, n = 5, r = 2, but the complete classifi-

cation in this case remains open. See also [Mic06] for a related result in the

genus zero case, when the local monodromy matrices are given by reflections;

this appears to be the first result showing that MCG-finite representations

(satisfying certain conditions) have finite image.

For all the work invested in the algebraic solutions to Painlevé VI, this only

addresses the case of classifying MCG-finite representations with g=0, n=4,

r=2, and trivial determinant, as explained in [LT14]. In higher genus, all work

that we know of has been on the case of 2-dimensional representations. The

beautiful paper [BGMW22] handles the 2-dimensional case (r=2, g≥1, n≥0)

with trivial determinant. The non-semisimple case r = 2, g ≥ 1, n ≥ 0 with

arbitrary determinant is explained in [CH21, Th. B]. These results appear to

depend crucially on the assumption r = 2.

Remark 1.8.2. The above-mentioned results in rank 2 led Junho Peter

Whang to ask whether, for g � r, all MCG-finite rank r representations of

Σg,n have finite image [LL22, Question 1.5.3]. More generally, motivated by the

p-curvature conjecture, Mark Kisin asked whether MCG-finite representations

necessarily have finite image; see [BGMW22, p. 3] and [Sin10, p. 1]. (Note that

counterexamples are known in general; see [BKMS18, Th. 5.1] for counterex-

amples coming from TQFT techniques or [LL22, Exam. 3.3.1] for counterex-

amples coming from the Kodaira-Parshin trick, as well as Question 10.2 of this

paper.) In this way, Theorem 1.2.1 answers Whang’s question affirmatively,

and provides a positive answer to Kisin’s question in the regime g > r2 − 1.

There has also been much work put towards finding interesting exam-

ples of MCG-finite representations, notably [Dor01], [Dia13], [Gir16b], [DL15],

[Gir16a].

In a more arithmetic direction, [BGS16] announced striking results on

strong approximation for Markoff triples, obtained by analyzing the arithmetic

properties of subvarieties of the character variety parametrizing 2-dimensional

representations of π1(Σ1,1). The first step in their analysis is to determine the

finite orbits of the mapping class group action on this character variety [BGS16,

last paragraph of p. 132]. In this way, our Theorem 1.2.1 can be viewed as a

necessary first step toward attempting to generalize their approach to higher

rank, higher genus character varieties.
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1.8.3. MCG-finite representations and geometric topology. In the world

of low-dimensional topology a number of authors have studied the dynamics

of mapping class group actions on character varieties; finite orbits are the

same as semisimple MCG-finite representations. Kasahara [Kas15] relates fixed

points of this action corresponding to faithful representations to the well-known

question of linearity of the mapping class group. Goldman and many other

authors have studied ergodicity of these actions; see [Gol06] and the references

therein. Previte-Xia [PX00], [PX02] study the relationship between density of

the image of an SU(2)-representation and density of its mapping class group

orbit. In some sense our main result is a partial answer to [Gol06, Question

2.7], which asks for necessary and sufficient conditions for a representation to

have dense orbit under the mapping class group. We characterize the most

extreme possible failure of density, namely the case of finite orbit.

There are also a number of related results on representations of the map-

ping class group. Farb, Lubotzky, and Minsky [FLM01, Th. 1.6] show there

are no faithful linear representations of finite index subgroups of Modg,0 of

dimension < 2
√
g − 1. See Remark 10.1.7 for a comparison of our results to

theirs. See also [FH13], [Kor02], [Fun11], [KP20] for bounds on the dimension

of representations of Modg,n, although these results only address representa-

tions of the full mapping class group, as opposed to representations of finite

index subgroups.

1.8.4. The Putman-Wieland conjecture. The other main contribution of

this paper, towards the Putman-Wieland conjecture, has a number of precur-

sors, notably [Loo97a], [GLLM15], [Loo97b]. Our Hodge-theoretic approach is

related to an approach suggested by Looijenga [Loo15]. The strongest previous

result towards the Putman-Wieland conjecture is perhaps the main result of

[GLLM15], which says that for certain quotients of π1(Σg), called φ-redundant

quotients, much more than the Putman-Wieland conjecture is true — the

monodromy representations considered by the conjecture have very large im-

age, commensurable with an arithmetic group. There has also been interest-

ing recent work related to the Putman-Wieland conjecture by Marković and

Marković-Tos̆ić [Mar22], [MT24].

The analogue of the Putman-Wieland conjecture for graphs, as opposed

to surfaces, has been proven by Farb and Hensel [FH17].

1.9. Outline of the proof. We now sketch the proof of Theorem 1.2.1,

which is loosely inspired by Katz’s proof of the p-curvature conjecture for the

Gauss-Manin connection [Kat72]. Following this, we sketch the proof of the

vanishing results we use (Theorem 1.7.1 and its consequence Theorem 6.2.1) in

Section 1.9.4, which are used in different ways in each of the three steps listed

below of the proof of Theorem 1.2.1. A schematic diagram outlining the main

elements of the proof is depicted in Figure 2.
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Lem. 8.3.4 Lem. 8.3.3

Prop. 8.4.1︸ ︷︷ ︸
Unitary case

Prop. 8.2.1 Prop. 5.2.4

Thm. 1.2.1 Thm. 8.5.3︸ ︷︷ ︸
Semisimple case

Lem. 8.5.2 Thm. 6.2.1︸ ︷︷ ︸
Cohomological vanishing

Prop. 5.2.3

Lem. 8.6.1 Thm. 7.2.1︸ ︷︷ ︸
Putman-Wieland

Thm. 1.7.1︸ ︷︷ ︸
Cohomological rank bound

Thm. 5.1.6︸ ︷︷ ︸
Period map

[Moc06, Non-abelian Hodge theory]

[LL23, Isomonodromy]

[Moc06]

[LL23]

[EG18, KP22, Langlands]

Mixed Hodge theory and [MS80]

Figure 2. A diagram depicting the structure of the proof of

the main result, Theorem 1.2.1, in the shape of a boat.

1.9.1. Step 1. The unitary case. Every unitary representation is a direct

sum of irreducible unitary representations. Therefore, we suppose ρ is unitary,

irreducible, and MCG-finite, with rk ρ <
√
g + 1. We construct from ρ a finite

étale cover M of Mg,n, with associated family of punctured curves π◦ :C ◦→M,

and a projective unitary local system V on C ◦ whose restriction to a fiber

C◦ of π◦ has monodromy given by ρ. Applying Proposition 8.2.1, (which

is a fairly straightforward consequence of our cohomological vanishing result,

Theorem 6.2.1, applied to adV), shows that V is cohomologically rigid. The

main result of [KP22] then gives that ρ is defined over the ring of integers OK

of some number field K. Moreover, using Proposition 2.3.4, by replacing M

by a dominant étale scheme over it, along which certain cohomological lifting

obstructions vanish, we can assume V lifts from a projective local system to a

bona fide local system.

By compactness of the unitary group and discreteness of OK , it suffices

to show that for each embedding ι : OK ↪→ C, ρ ⊗OK ,ι C is unitary. (We

know this unitarity for one such ι by assumption, but not the others.) The

rigidity of V implies by non-abelian Hodge theory that these ρ⊗OK ,ιC underlie

complex polarizable variations of Hodge structure for any complex structure

on Σg,n. Hence, given their low rank, these local systems are unitary by [LL23,

Th. 1.2.12].

1.9.2. Step 2. The semisimple case. Now suppose ρ is an arbitrary semi-

simple, MCG-finite representation with rk ρ <
√
g + 1. Again, we associate

to ρ a local system V on a family of curves π◦ : C ◦ → M , so that M has a

dominant étale map to Mg,n and whose fibral monodromy is given by ρ. By

non-abelian Hodge theory, we may deform V to a local system V0 underlying

a complex polarizable variation of Hodge structure. By [LL23, Th. 1.2.12], V0

has unitary monodromy when restricted to a fiber of π◦. By the unitary case,

Section 1.9.1, V0 thus has finite monodromy when restricted to a fiber of π◦.
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Note that even if n = 0, i.e., π◦ is proper, we here need to use non-abelian

Hodge theory for non-proper varieties, as the total space C ◦ will not be proper.

It remains to argue that the restriction V0|C◦ of V0 to a fiber C◦ of π◦

agrees with the restriction V|C◦ , corresponding to ρ. Recall that V0 and V
were only deformation equivalent, so it may be surprising that they necessar-

ily restrict to the same local system on fibers. We verify this agreement in

Lemma 8.5.2 through another application of Theorem 6.2.1, which which tells

us that since the fibral monodromy V0|C◦ is unitary of low rank, it does not

admit non-trivial MCG-finite deformations.

Note that V0 may not a priori be unitary; we only know that V0|C◦ is

unitary. In particular, it is not clear whether V0 is necessarily cohomologically

rigid.

1.9.3. Step 3. The general case. The crucial input for dealing with non-

semisimple representations is our work towards the Putman-Wieland conjec-

ture. By the above it is enough to show that low-rank MCG-finite representa-

tions are semisimple, i.e., we wish to verify that certain extensions split. For

simplicity, let us suppose for the purpose of this sketch that ρ is an exten-

sion of two irreducible MCG-finite representations ρ1 and ρ2. By the previous

step, ρ1 and ρ2 have finite monodromy, so after passing to a finite cover Σg′,n′

of Σg,n, we may assume ρ1 and ρ2 have trivial monodromy. The splitting

of this extension of ρ2 by ρ1 corresponds to the vanishing of a certain ele-

ment in Ext1π1(Σg′,n′ )
(ρ1, ρ2). Because we arranged that ρ1 and ρ2 have trivial

monodromy on π1(Σg′,n′), the above extension class corresponds to a map

π1(Σg′,n′) → ρ∨1 ⊗ ρ2, with unipotent abelian image. Hence, it factors through

H1(Σg′,n′), and so defines a low rank subspace of H1(Σg′,n′), stable under a

finite index subgroup of Modg,n+1. We verify in Lemma 8.6.1, using our main

result toward the Putman-Wieland conjecture, Theorem 7.2.1, that such a sub-

space cannot exist. Theorem 7.2.1 itself follows more or less immediately from

Theorem 1.7.1.

1.9.4. The proof of our cohomological vanishing results. Note that we used

Theorem 1.7.1, or its immediate consequence, Theorem 6.2.1, in every step

above. Before explaining the idea of the proof of these results, let us recall the

setting. We begin with a scheme M with a dominant étale map M → Mg,n.

We denote the associated family of punctured curves by C ◦ → M . We are

given a local system V on C ◦. Theorem 1.7.1 says that if V is unitary, there are

no sub-local systems of R1π◦∗V of low rank (that is, rank less than 2g−2 rkV).
Let C◦ be a fiber of π◦. We deduce Theorem 6.2.1, which says that when V|C◦

is unitary and has low rank (less than g), then R1π◦∗V has no global sections.

The benefit of Theorem 6.2.1 is that we only need check unitarity on fibers,

but the cost is that we are only able to rule out global sections, i.e., trivial

sub-local systems, instead of arbitrary low rank sub-local systems.



834 AARON LANDESMAN and DANIEL LITT

First, we deduce Theorem 6.2.1 from Theorem 1.7.1. The idea is to use

the assumption that V is unitary on fibers to reduce via Lemma 2.4.2 to the

case that V is a tensor product U ⊗ (π◦)∗W, with U unitary. A non-zero

global section of R1π◦∗(U ⊗ (π◦)∗W) = (R1π◦∗U) ⊗ W yields a non-zero map

W∨ → R1π◦∗U, and hence a low rank sub-local system of R1π◦∗U, contradicting
Theorem 1.7.1.

The proof of Theorem 1.7.1 boils down to an analysis of the derivative of

the period map associated to the complex variation of mixed Hodge structure

on R1π◦∗V for V unitary. We identify this derivative with a natural multiplica-

tion map
H0(E ⊗ ωC(D))⊗H0(E∨ ⊗ ωC) → H0(ω⊗2

C (D))

in Theorem 5.1.6, where C is the smooth projective compactification of C◦

with boundary D, and E is the vector bundle on C associated to V|C◦ by the

Mehta-Seshadri correspondence [MS80]. By the theorem of the fixed part, the

existence of a low rank sub-local system of R1π◦∗V places restrictions on this

map, which we rule out using vector bundle methods, as developed in [LL23,

§6], ultimately relying on Clifford’s theorem for vector bundles.

1.10. Notation. Unless otherwise stated, we will work over the field of

complex numbers C. In particular, we will lift this restriction in Section 9.

Notation 1.10.1. We fix non-negative integers (g, n) so that n ≥ 1 if g = 1

and n ≥ 3 if g = 0, i.e., Σg,n is hyperbolic. Let M be a connected complex

variety. A family of n-pointed curves of genus g over M is a smooth proper

morphism π : C → M of relative dimension one, with geometrically connected

genus g fibers, equipped with n sections s1, . . . , sn : M → C with disjoint

images. Call such a family versal if the induced map M → Mg,n is dominant

and étale. Here Mg,n denotes the Deligne-Mumford moduli stack of n-pointed

genus g smooth proper curves with geometrically connected fibers.

If π : C → M is a family of n-pointed curves, we let D :=
∐n

i=1 im(si)

denote the images of the sections, which is finite étale of degree n over M .

Also let C ◦ := C \⋃i im(si), let j : C ◦ ↪→ C be the natural inclusion, and let

π◦ := π ◦ j : C ◦ → M denote the composition. We will refer to π◦ : C ◦ → M

as the associated family of punctured curves. If π◦ arises as the family of

punctured curves associated to a versal family of n-pointed curves, we will call

it a punctured versal family. We will frequently use m ∈ M as a basepoint,

and c ∈ C ◦ as a basepoint with π◦(c) = m. We use C◦ as notation to denote

the fiber (π◦)−1(m) = C ◦
m:

(1.1)

C ◦ C D

M

j

π◦

π
s1

sn

. . .
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Notation 1.10.2. For G an algebraic group with derived subgroup Gder

and corresponding Lie algebra gder, we use Ad : G → GL(gder) to denote

the natural action of G on gder by conjugation. Given a representation ρ :

π1(X,x) → G(C), let ad(ρ) := ρ ◦ Ad : π1(X,x) → GL(gder). In particu-

lar, given ρ : π1(X,x) → GLr(C) or ρ : π1(X,x) → PGLr(C) we use ad(ρ)

to denote the composite map ad(ρ) : π1(X,x) → GL(pglr(C)). Under the

identification between local systems on a connected space and representations

of the fundamental group, if W is a local system on X corresponding to some

representation ρ, we use adW to denote the local system corresponding to ad ρ.

A representation π1(X,x) → GLr(C) is unitary if its image has compact

closure. A complex local system is unitary if its monodromy representation is

unitary. By an averaging argument, unitary representations are exactly those

that preserve a positive-definite Hermitian form on Cn; i.e., they are conjugate

to a representation that factors through the unitary group U(n).

Notation 1.10.3. For a pointed finite-type scheme or Deligne-Mumford

stack (X,x) over C, we will use π1(X,x) to denote the topological fundamental

group of the associated complex-analytic space or analytic stack. Similarly, for

a local system Λ on X, we use H i(X,Λ) to denote the singular cohomology

of the associated complex-analytic space or stack, unless otherwise stated. We

will use Modg,n to denote the mapping class group of an orientable surface

of genus g with n punctures, and PModg,n = π1(Mg,n) (see Lemma 2.0.1)

to denote pure mapping class group, i.e., the subgroup of Modg,n of index n!

preserving the punctures pointwise.
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2. Representation-theoretic preliminaries

In this section, we give group-theoretic constructions that we will use to

analyze representations with finite mapping class group orbit. In Section 2.1,

we verify basic properties of MCG-finite representations. In Section 2.2, given

an irreducible representation ρ : π1(Σg,n, x) → GLr(C) whose conjugacy class

is fixed by a finite-index subgroup Γ ⊂ PModg,n+1, we construct a represen-

tation ρ̃ : Γ → PGLr(C), which will be analyzed throughout this paper. In

Section 2.3, we show how to lift certain projective representations of the funda-

mental groups of families of curves to honest representations into GLr(C), after
passing to a suitable cover. Finally, in Section 2.4, we prove some structural

results about the representations we have constructed.

We will use the following lemma throughout, to connect properties of

mapping class groups to geometry.

Lemma 2.0.1. For m ∈ Mg,n a basepoint and m′ ∈ Mg,n+1 a lift of m,

there are isomorphisms π1(Mg,n,m) ' PModg,n, π1(Mg,n+1,m
′) ' PModg,n

such that the diagram

1 // π1(Σg,n) // π1(Mg,n+1,m
′) //

∼
��

π1(Mg,n,m) //

∼
��

1

1 // π1(Σg,n) // PModg,n+1
// PModg,n // 1

commutes, where the vertical maps are given by these isomorphisms, the top

row is the exact sequence of homotopy groups induced by the forgetful map

Mg,n+1 → Mg,n, and the bottom row is the Birman exact sequence [FM12,

p. 98].

Proof. This follows from the contractibility of the universal cover of Mg,n,

and the fact that Mg,n is the quotient of its universal cover by the properly

discontinuous action of PModg,n. See [FM12, §10.6.3 and p. 353]. There

is a choice involved here, namely, if C is the Riemann surface associated to

the point m ∈ Mg,n, one must choose a homeomorphism between C and our

reference surface Σg,n, and similarly with m′. Changing this homeomorphism

replaces the vertical isomorphisms by conjugate isomorphisms. �

The subgroup π1(Σg,n) ⊂ PModg,n+1 is often referred to as the point-

pushing subgroup.

2.1. Basic properties of MCG-finite representations. To acquaint the reader

with MCG-finite representation, we now spell out some of their basic proper-

ties.

Proposition 2.1.1. The direct sum and tensor product of two MCG-

finite representations of π1(Σg,n) is MCG-finite. Any semisimple subquotient

of an MCG-finite representation is MCG-finite.
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Proof. The first statement, about direct sums and tensor products, is

clear. The second is immediate from [LL22, Lemma 2.2.1]. �

We next show that restrictions of representations of Modg,n+1 to the point-

pushing subgroup are MCG-finite. See also [Kas15, Lemma 2.2] for a related

result with analogous proof.

Proposition 2.1.2. Let Γ ⊂ Modg,n+1 be a finite index subgroup con-

taining the point-pushing subgroup π1(Σg,n) ⊂ Modg,n+1. Let

ρ : Γ → GLr(C)

be a representation. Then ρ|π1(Σg,n) is MCG-finite.

Proof. Replacing Γ with Γ∩PModg,n+1, we may assume Γ ⊂ PModg,n+1,

the pure mapping class group. We claim that the image of Γ in PModg,n (under

the map PModg,n+1 → PModg,n arising from the Birman exact sequence)

stabilizes the conjugacy class of ρ. It suffices to show that for each γ ∈ Γ,

ργ : π1(Σg,n) → GLr(C),

g 7→ ρ(γgγ−1)

is conjugate to ρ. Indeed, ργ(h) = ρ(γ)ρ(h)ρ(γ)−1. �

We later give a partial converse to Proposition 2.1.2, for irreducible repre-

sentations, in Corollary 2.3.5. We now give a geometric counterpart to Propo-

sition 2.1.2, which is closely related to [CH21, Th. A1].

Proposition 2.1.3. Let π◦ : C ◦ → M be a punctured versal family of

n-pointed genus g curves, as in Notation 1.10.1. In particular, M → Mg,n is

dominant and étale. Let C◦ be a fiber of π◦. If

ρ : π1(C
◦) → GLr(C)

is a representation, ρ|π1(C◦) is MCG-finite.

We prove Proposition 2.1.3 in Section 2.1.6, but we first require some

well-known lemmas about families of curves.

Lemma 2.1.4. For M a scheme and any dominant étale map M → Mg,n,

im(π1(M ) → π1(Mg,n)) has finite index in π1(Mg,n) ' PModg,n.

Proof. After pulling back to a finite étale cover N → Mg,n that is a

scheme (such exists by, e.g., [PdJ95, Prop. 2.3.4]), we may assume there

is a dominant étale map of schemes α : M → N . It is enough to show

im(π1(M ) → π1(N )) has finite index in π1(N ), which follows from [Deb01,

Lemma 4.19]. The basic idea here is to pass to opens over which the map is

finite flat, and use that passing to opens will preserve the property that the

image of the map of fundamental groups has finite index. �
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Lemma 2.1.5. If C → M is a versal family of n-pointed curves of genus g,

with 3g−3+n≥ 0, as in Notation 1.10.1, so that C◦ is a fiber of π◦, the sequence

(2.1) 1 π1(C
◦) π1(C

◦) π1(M ) 1

is exact.

Proof. Except for injectivity, the result is immediate from the long exact

sequence in homotopy groups and the fact that C◦ is connected. Injectivity

holds in the universal case where M = Mg,n is the Deligne-Mumford moduli

stack of curves and C ◦ = C ◦
g,n is the universal punctured curve, as the universal

cover of Mg,n is contractible. We next show the map π1(C
◦) → π1(C

◦) is

injective in the general case via pullback. The composite map C◦→C →C ◦
g,n is

the natural inclusion of C◦ as a fiber of C ◦
g,n over Mg,n. Hence, the composition

π1(C
◦) → π1(C

◦) → π1(C
◦
g,n) is injective, and so the first map is injective. �

2.1.6. Proof of Proposition 2.1.3. The exact sequence (2.1) induces an

outer action of π1(M ) on π1(C
◦), which factors through the outer action of

PModg,n on π1(C
◦) induced by the Birman exact sequence. Specifically, this

outer action sends γ ∈ PModg,n to the action of conjugation by γ̃ on π1(C
◦)

for γ̃ ∈ PModg,n+1 a lift of γ. By construction, this outer action is compatible

with the outer action of Modg,n on π1(C
◦) of Definition 1.1.1.

To show ρ|π1(C◦) is MCG-finite, it therefore suffices to show the conjugacy

class of ρ|π1(C◦) is stable under the image Γ of

π1(C
◦) � π1(M ) → π1(Mg,n) ' PModg,n .

This image has finite index by Lemma 2.1.4. The conjugacy class of ρ|π1(C◦)

is stable under this image because, if γ̃ ∈ π1(C
◦) is any lift of γ ∈ Γ, then ργ̃

is conjugate to ρ by ρ(γ̃), as in the proof of Proposition 2.1.2. �

2.2. Projective local systems associated to MCG-finite representations. We

next give a construction lifting an irreducible MCG-finite representation of

π1(Σg,n) to a projective representation of a finite index subgroup of Modg,n+1.

Notation 2.2.1. Suppose ρ is an irreducible MCG-finite representation of

π1(Σg,n, x). Let Γ ⊂ PModg,n denote the finite index stabilizer of the conjugacy

class of ρ, and let Γ̃ ⊂ PModg,n+1 denote the preimage of Γ under the surjection

PModg,n+1 → PModg,n coming from the Birman exact sequence.

Lemma 2.2.2. In the setup of Notation 2.2.1, there exists a unique rep-

resentation ρ̃ : Γ̃ → PGLr(C) so that

(2.2)

π1(Σg,n, x) GLr(C)

Γ̃ PGLr(C)

ρ

ρ̃
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commutes, where π1(Σg,n, x) ⊂ Γ̃ ⊂ PModg,n+1 is the inclusion of the point-

pushing subgroup from the Birman exact sequence.

Proof. First, we construct the representation ρ̃. By identifying PModg,n+1

⊂ Aut(π1(Σg,n, x)), we obtain an action of PModg,n+1 on r-dimensional repre-

sentations of π1(Σg,n, x). Since Γ̃ preserves ρ up to conjugacy, for every γ ∈ Γ̃,

there is some matrix Mγ ∈ GLr(C) so that MγρM
−1
γ = γ(ρ). Since ρ is irre-

ducible, Mγ is unique up to scaling by Schur’s lemma. We let Mγ denote the

image of Mγ in PGLr(C); Mγ is well defined by the previous sentence. Define

ρ̃ by

ρ̃ : Γ̃ → PGLr(C),

γ 7→Mγ .

Uniqueness of Mγ ∈ PGLr(C) implies that ρ̃ is a representation, as

MγMγ′ =Mγγ′ .

Commutativity of (2.2) follows from the definition of the inclusion ι :

π1(Σg,n, x) ↪→ PModg,n+1 ⊂ Aut(π1(Σg,n, x)) as the point-pushing subgroup,

realizing the set of inner automorphisms. Indeed, for η ∈ π1(Σg,n, x), ι sends η

to the automorphism of π1(Σg,n, x) given by β 7→ ηβη−1. Hence we may take

Mι(η) = ρ(η), implying (2.2) commutes.

Finally, uniqueness of ρ̃ follows from commutativity of (2.2) and unique-

ness of Mγ . Indeed, for any γ ∈ Γ̃ and for all η ∈ π1(Σg,n, x), we must have

ρ̃(γηγ−1) = ρ̃(γ)ρ̃(η)ρ̃(γ)−1,

and hence ρ̃(γ) must equal Mγ . �

See, e.g., the proof of [Sim92, Th. 4] for a similar argument.

We will also need a geometric variant of Lemma 2.2.2. We give the

geometric rephrasing of Lemma 2.2.2, implicitly using Lemma 2.0.1. Below

M is the finite étale cover of Mg,n corresponding to a finite-index subgroup of

Γ ⊂ PModg,n, chosen so that M is a scheme (as opposed to a Deligne-Mumford

stack).

Lemma 2.2.3. Let ρ : π1(Σg,n, x) → GLr(C) be an irreducible MCG-finite

representation. There exists a scheme M with a finite étale map M → Mg,n,

with associated family of n-times punctured curves π◦ : C ◦ → M , a point

c ∈ C ◦ with m := π◦(c), and a representation ρ̃ : π1(C
◦, c) → PGLr(C) so that

the following holds. Upon identifying π1(Σg,n, x) ' π1(C
◦
m, c), the diagram

(2.3)

π1(C
◦
m, c) GLr(C)

π1(C
◦, c) PGLr(C)

ρ

ρ̃

commutes.
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2.3. Lifting Projective representations. The main goal of this section is

to prove Proposition 2.3.4, which says that, étale locally on the base M , we

can lift the representation ρ̃ into PGLr(C) constructed in Lemma 2.2.3 to a

representation ρ′ into GLr(C).
Because the obstruction to lifting is related to C× = ker(GLr(C) →

PGLr(C)), we will use the following classification when r = 1.

Proposition 2.3.1 ([BGMW22, Lemma 3.2]). Let g ≥ 1, n ≥ 0. Then

any MCG-finite representation

ρ : π1(Σg,n) → C×

has finite image.

For the reader’s benefit, we recall the idea of the proof of Proposition 2.3.1.

The idea is to show that if any standard generator of π1(Σg,n) corresponding

to a loop γ in Σg,n has infinite order under ρ, then acting on ρ by powers of

the Dehn twist about γ gives an infinite collection of distinct representations.

In order to lift PGLr(C)-reps to GLr(C)-reps, we will need to know that

the image of ρ has finite intersection with the center of GLr(C).

Lemma 2.3.2. Let g ≥ 1. Suppose ρ : π1(Σg,n) → GLr(C) is an MCG-

finite representation. Then ρ has finite determinant. Moreover, ρ factors

through a subgroup G with SLr(C) ⊂ G ⊂ GLr(C) and µ := G∩ker(GLr(C) →
PGLr(C)) a finite group.

Proof. By Proposition 2.3.1, the composition π1(Σg,n)
ρ−→ GLr(C)

det−−→ C×

has finite image H. We can take G := det−1(H) ⊂ GLr(C), which indeed has

finite intersection with the center of GLr(C), and hence finite intersection with

ker(GLr(C) → PGLr(C)). �

In order to lift representations from PGLr(C) to GLr(C), we will need to

kill certain cohomological obstructions using dominant étale maps.

Lemma 2.3.3. Let i > 0 and M be a complex variety. Suppose µ is a

finite abelian group and σ ∈ H i(π1(M ,m), µ) a cohomology class. Then there

is a dominant étale map M ′ → M so that σ|M ′ = 0 ∈ H i(π1(M
′), µ).

Proof. First, we claim that for any class α ∈ H i(M , µ), there is a dom-

inant étale map N → M so that α|N = 0. Since µ is finite, we can use

the comparison between singular and étale cohomology to reduce to show-

ing that for any α ∈ H i
ét(M , µ), there is a dominant étale map N → M

for which α|N = 0. Choose an injective resolution I• of µ, and represent α

by some ᾱ ∈ ker(Ii(M ) → Ii+1(M )). Because I• is exact, there exists for

each x ∈ M an étale neighborhood Ux of x so that α|Ux is in the image of

Ii−1(Ux) → Ii(Ux). Taking x to be the generic point of M gives the claim.
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Now, as above let α denote the image of σ under the natural map

H i(π1(M ,m), µ) → H i(M , µ),

and take N as above so that α|N = 0. By [SGA73, Exp. XI, 4.6] we can

find a Zariski open M ′ ⊂ N that is a K(π1(M
′,m′), 1) Eilenberg-Maclane

space. This implies the natural map H i(π1(M
′,m′), µ) → H i(M ′, µ) is an

isomorphism. Therefore, since α|N = 0, we also have α|M ′ = 0, and hence

σ|π1(M ′) = 0, as desired. �

We now combine the above results to show that the projective represen-

tation ρ̃ constructed in Lemma 2.2.3 can be lifted to a linear representation.

Proposition 2.3.4. Suppose C → M is a versal family of n-pointed

curves of genus g ≥ 1, with associated family of punctured curves π◦ : C ◦→M .

Let c ∈ C ◦ be a point and m = π◦(c). Suppose we have representations ρ :

π1(C
◦
m, c) → GLr(C) and ρ̃ : π1(C

◦, c) → PGLr(C) so that the diagram

(2.4)

π1(C
◦
m, c) GLr(C)

π1(C
◦, c) PGLr(C)

ρ

ρ̃

commutes. Moreover, assume ρ is MCG-finite. Then, there exist

(1) a dominant étale map M ′ → M ,

(2) corresponding relative curve C ′ := M ′ ×M C with associated family of

punctured curves C ′◦, and

(3) a representation ρ′ : π1(C
′◦, c′) → GLr(C) for some basepoint c′ ∈ C ′◦

lying over c

so that, upon choosing some m′ over m with Cm′ ' Cm,

(2.5)

π1(C
◦
m′ , c′) π1(C

′◦, c′) GLr(C)

π1(C
◦, c) PGLr(C)

ρ

ρ′

ρ̃

commutes. Moreover, im ρ′ is contained in a subgroup G with SLr(C) ⊂ G ⊂
GLr(C), such that SLr(C) ⊂ G has finite index.
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Proof. Taking G and µ as in Lemma 2.3.2, there is a commuting diagram

(2.6)

H1(π1(C
◦, c), µ) H1(π1(C

◦
m, c), µ)

Hom(π1(C
◦, c), G) Hom(π1(C

◦
m, c), G)

Hom(π1(C
◦, c),PGLr(C)) Hom(π1(C

◦
m, c),PGLr(C))

H2(π1(C
◦, c), µ) H2(π1(C

◦
m, c), µ),

λ

ν ξ

α

β γ

δ

ε ζ

η

where the columns are exact sequences of sets. We start with a representation

ρ̃ ∈ Hom(π1(C
◦, c),PGLr(C)) and ρ ∈ Hom(π1(C

◦
m, c), G). The commutativity

of (2.4) can be equivalently expressed as the statement that δ(ρ̃) = γ(ρ). We

seek to construct ρ′ such that (2.5) commutes, meaning that, after replacing

M with a dominant étale M ′ and C with C ′, there is some ρ′ with β(ρ′) = ρ̃

and α(ρ′) = ρ.

First, we argue that we can pass to some M ′ so that ρ̃ lies in the image

of β. It is equivalent to arrange that ε(ρ̃) = 0. As a first step, we claim

η(ε(ρ̃)) = 0. This holds because η(ε(ρ̃)) = ζ(δ(ρ̃)), and δ(ρ̃) = γ(ρ) lies in

the image of γ. We therefore have that ε(ρ̃) ∈ ker η. The Hochschild-Serre

spectral sequence associated to the short exact sequence

1 → π1(C
◦
m) → π1(C

◦) → π1(M ) → 1

of Lemma 2.1.5 yields a short exact sequence

0 → H2,0 → ker η
ι→ H1,1 → 0,

where H i,j is a subquotient of H i(π1(M ,m), Hj(π1(C
◦
m, c), µ)).

By passing to a finite étale cover M1 of M , we can assume π1(M ,m) acts

trivially on the finite group H1(π1(C
◦
m, c), µ). Now as

H i(π1(M ,m), Hj(π1(C
◦
m, c), µ))

is finite, by Lemma 2.3.3 we may pass to a further dominant étale scheme

over M killing every element of H i,j , (i, j) = (2, 0) or (1, 1), and hence every

element of ker η. Thus after passing to any component M2 of this dominant

étale scheme over M2, we have ε(ρ̃) = 0. Let C ◦
2 be the pullback of C ◦ to M2.

Let ρ ∈ H1(π1(C
◦
2 , c), G) be an element with β(ρ) = ρ̃; such a ρ exists

as we have arranged ε(ρ̃) = 0. We wish to arrange α(ρ) = ρ. This may not

be the case, but it is enough to show that after passing to a further dominant

étale M ′, we can modify ρ by an element of im ν so that this does hold. More

precisely, note that α(ρ) differs from ρ by an element of σ ∈ H1(π1(C
◦
m, c), µ),

as by construction γ(α(ρ)) = γ(ρ). It suffices to show that, after passing to
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a dominant étale scheme over M2, σ is in the image of λ. After passing to

a finite étale cover of M2, we may assume that H1(π1(C
◦
m, c), µ) is fixed by

π1(M ,m). The Hochschild-Serre spectral sequence gives a map

H0(π1(M ,m), H1(π1(C
◦
m, c), µ))

χ−→ H2(π1(M ,m), H0(π1(C
◦
m, c), µ))

such that χ(σ) = 0 if an only if σ ∈ imλ. Since H0(π1(C
◦
m, c), µ) = µ is finite,

we can apply Lemma 2.3.3 so as to assume, after replacing M by a dominant

étale M ′, that χ(σ) = 0. This implies that σ ∈ imλ, as desired. �

We can now give a partial converse to Proposition 2.1.3.

Corollary 2.3.5. Let ρ : π1(Σg,n) → GLr(C) be an irreducible MCG-

finite representation, with g ≥ 1. There are a punctured versal family of curves

C ◦ → M and a representation ρ′ of π1(C
◦) whose determinant has finite order,

with the following property : For C◦ a fiber of π◦, there is an identification

π1(Σg,n) ' π1(C
◦) such that, under this identification, ρ′|π1(C◦) = ρ.

Proof. This follows by combining Lemma 2.2.3 and Proposition 2.3.4. �

Remark 2.3.6. Combining Corollary 2.3.5 with Proposition 2.1.3 gives a

proof of [CH21, Th. A] in the case that ρ is semisimple and the flat vector

bundle (E,∇0) of [CH21, Th. A] is taken to be the Deligne canonical extension

of (ρ|C◦ ⊗ O, id⊗d) to C.
2.4. Representations that are unitary on fibers. The main goal of this sec-

tion is to verify Lemma 2.4.2, which allows us to write local systems on a

family of punctured curves C ◦ → M in terms of unitary local systems and

local systems pulled back from M , after passing to a dominant étale map.

The following criterion for unitarity and finiteness will be useful when

analyzing the representations produced by Lemma 2.2.2 and Proposition 2.3.4.

Lemma 2.4.1. Let G be a group and H E G a normal subgroup. Let

ρ : G→ GLr(C)

be a representation such that det ρ has finite order, and suppose ρ|H is irre-

ducible.

(1) If ρ|H has finite image, then ρ has finite image.

(2) If ρ|H is unitary, then ρ is unitary.

Proof. We first prove (1). As det ρ has finite order, it suffices to show that

the projectivization

Pρ : G
ρ−→ GLr(C) → PGLr(C)

has finite image. Let t = # im(ρ|H). For each g ∈ G, Pρ(g) is the unique (by

Schur’s lemma) element of PGLr(C) such that

Pρ(g)Pρ(h)Pρ(g)−1 = Pρ(ghg−1)
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for all h ∈ H. Since ρ(g) acts by conjugation on the order t set im(ρ|H),

its action has order dividing t!, so ρ(h) = ρ(gt!)ρ(h)ρ(g−t!). Hence we have

Pρ(gt!) = id by uniqueness. Thus the image of Pρ has exponent dividing t!.

But a linear group with finite exponent is finite [Bur05].

We now turn to the unitary case and verify (2). Let h be a positive-

definite Hermitian inner product preserved by ρ|H . We first check that im ρ

lies in the general unitary group; i.e., it preserves h up to scaling. Let V be the

underlying vector space of our representation ρ. The invariant inner product

h : V × V → C corresponds to a C-linear isomorphism of H-representations

φ : V → V
∨
. The linear map φ, and hence h, is unique up to scaling by Schur’s

lemma. For any g ∈ G,

hg : (v, w) 7→ h(ρ(g)v, ρ(g)w)

is another H-invariant Hermitian form, and hence hg = c · h for some c ∈ C×.

Equivalently, im(ρ) ⊂ GU(h). Since ρ has finite determinant, we moreover

obtain im(ρ) ⊂ U(h). �

We conclude the section by giving a convenient description of local sys-

tems V on a family of punctured curves π◦ : C ◦ → M , with unitary fibral

monodromy. It may be useful for the reader to consider the case A = C.
As in Notation 1.10.1, let π : C → M be a versal family of n-pointed

curves, and let C ◦ → M be the associated family of punctured curves. Let

m ∈ M be a point.

Lemma 2.4.2. Let A be an Artin local C-algebra with residue field C.
Suppose V is a local system of free A-modules on C ◦ such that V|C ◦

m
is a

constant deformation of a unitary local system ; that is, there exists a unitary

C-local system V0 on C ◦
m such that V|C ◦

m
' V0 ⊗C A.

There is a dominant étale map M ′ → M , with C ′ = M ′ ×M C and

π′◦ : C ′◦ → M ′ the associated family of punctured curves, over which

V|C ′◦ ' ⊕s
i=1Ui ⊗ (π′

◦
)∗Wi,

where the Wi are locally constant sheaves of free A-modules on M ′ and the

Ui are unitary local systems on C ′◦. Moreover, for C ′◦ a fiber of C ′◦ → M ′,

each Ui|C′◦ is irreducible, the Ui|C′◦ are pairwise non-isomorphic, and Wi '
π′◦∗Hom(Ui,V|C ′◦).

Proof. Since V0 is unitary, we can express it as as a sum of irreducible uni-

tary local systems, V0 ' ⊕s
i=1S

⊕ni

i , with the Si pairwise non-isomorphic. Let

ρ : π1(C
◦
m) → GLr(C) be the monodromy representation associated to V0, and

let ρi be the (irreducible) representation associated to Si. By Proposition 2.1.3,

ρ is MCG-finite. Hence each ρi is MCG-finite by Proposition 2.1.1.
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By repeatedly applying Corollary 2.3.5, there are a dominant étale map

M ′ → M and representations ρ′i : π1(C
′◦) → GLr(C) with finite determinant

so that for any m′ ∈ M ′, ρ′i restricts to a representation π1(C
′◦
m′) → GLr(C)

identified with ρi. Let Ui denote the local system on C ′◦ corresponding to ρ′i.

Each Ui is unitary by Lemma 2.4.1. The Ui are irreducible and pairwise non-

isomorphic because the same holds for the ρi.

Let Wi = π′◦∗ Hom(Ui,V|C ′◦), as in the statement. The Wi are locally

constant sheaves of free A-modules by the hypothesis that V|C ◦
m

' V0 ⊗C A.

There is a natural evaluation map

ψ : ⊕s
i=1(π

′◦)∗Wi ⊗ Ui → V|C ′◦ .

It only remains to show that ψ is an isomorphism. We do so after restriction

to any fiber of C ′◦ → M ′, where ψ is identified with the isomorphism

⊕s
i=1Hom(ρi, ρ⊗A)⊗ ρi → ρ⊗A,

s∑

i=1

α1 ⊗ vi 7→
s∑

i=1

αi(vi). �

3. Deformation-theoretic preliminaries

In this section we introduce some deformation theory of group representa-

tions. In Section 8, we will use the theory developed here in conjunction with

the vanishing results proven in Section 6 to show that MCG-finite representa-

tions have certain rigidity properties.

3.1. Deformations of representations. We begin by recalling a standard

description of deformations of representations in terms of cohomological data.

Recall Notation 1.10.2: for R a ring and a representation ρ : G→ GLr(R),

we use ad(ρ) to denote the adjoint G-representation obtained by composing ρ

with GLr(R) → GL(pglr(R)).

Fix a group G and a representation ρ0 : G→ GLr(C). Let Art be the cat-
egory of local Artin C-algebras with residue field C. If A ∈ Art, with maximal

ideal mA, we say that a representation ρA : G → GLr(A) is a deformation of

ρ0 if ρA = ρ0 mod mA. The constant deformation is the deformation obtained

via the composition

G
ρ0→ GLr(C) → GLr(A).

We say a representation ρ : G → GLr(A) is conjugate to a constant rep-

resentation if there exists a matrix M ∈ GLr(A) such that MρM−1 fac-

tors through GLr(C). Say a deformation ρA of ρ0 has constant determinant

if det ρA = det ρ0, regarded as a map G → A× via the natural inclusion

C× ↪→ A×.



846 AARON LANDESMAN and DANIEL LITT

We now define deformations of representations over square-zero extensions

in Art. Given a square-zero extension

0 → I → B → A→ 0

with A,B ∈ Art, and a representation ρA : G → GLr(A), a deformation of

ρA is a representation ρB : G → GLr(B) with ρB = ρA mod I. Two such

deformations ρB, ρ
′
B are equivalent if there exists a matrix M ∈ GLr(B) with

ρB =Mρ′BM
−1, such that M = id modI.

Lemma 3.1.1. Fix a group G and a representation ρ0 : G → GLr(C).
Consider

0 → εA→ A[ε]/ε2 → A→ 0

with A ∈ Art, and let ρA : G → GLr(A) be a deformation of ρ0 over A with

constant determinant. The set of equivalence classes of deformations of ρA to

an A[ε]/ε2-representation with constant determinant is naturally in bijection

with H1(G, ad(ρA)). Moreover, this description is functorial in G.

Proof. See [Maz97, Ch. V, §21, Prop. 1]. �

Lemma 3.1.2. Let

1 → N → G→ Q→ 1

be a short exact sequence of groups (i.e., N is normal in G and Q = G/N ).

Let A ∈ Art and

ρ : G→ GLr(A)

be a representation, and suppose that H0(Q,H1(N, ad(ρ)|N )) = 0. If ρε is any

deformation of ρ to A[ε]/ε2 with constant determinant, then ρε|N is equivalent

to ρ⊗A A[ε]/ε
2|N .

Proof. By Lemma 3.1.1, the set of equivalence classes of deformations of ρ

to A[ε]/ε2 is naturally in bijection withH1(G, ad(ρ)), and the set of equivalence

classes of deformations of ρ|N is naturally in bijection with H1(N, ad(ρ)|N ).

By functoriality, the restriction map is given by the natural map

H1(G, ad(ρ)) → H1(N, ad(ρ)|N ),

which, by the five-term exact sequence from the Hochschild-Serre spectral se-

quence, factors through H0(Q,H1(N, ad(ρ)|N )) = 0. Hence ρε|N is equivalent

to ρ⊗A A[ε]/ε
2|N as desired. �

3.2. A criterion for constancy. The next proposition gives a criterion for

a deformation of a group representation to induce the trivial deformation on a

normal subgroup. This will be used in the proof of the semisimple version of

our main theorem, Theorem 8.5.3.
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We define

Bn = C[t]/tn+1,

Rn = Bn−1[ε]/ε
2 = C[t, ε]/(tn, ε2).

Let dn : Bn → Rn be the map given by

dn : f(t) 7→ f(t) + εf ′(t),

where f ′(t) is the derivative of f(t). Note that dn is injective.

Below we say that an element of GLr(Bn) is constant if it lies in GLr(C) ⊂
GLr(Bn). We say that an element of GLr(C[[t]]) is constant mod tn+1 if its

image in GLr(Bn) is constant. Likewise, a representation ρ into GLr(Bn) is

constant if it factors through GLr(C); it is conjugate to a constant represen-

tation if there exists M ∈ GLr(Bn) such that MρM−1 is constant. Similarly,

a representation into GLr(C[[t]]) is constant mod tn+1 if its image in GLr(Bn)

is constant.

Proposition 3.2.1. Let

1 → N → G→ Q→ 1

be a short exact sequence of groups. Let

ρ0 : G→ GLr(C)

be a representation, and suppose that for all n and all deformations γ : G →
GLr(Bn) of ρ0 with γ|N constant, we have H0(Q,H1(N, ad(γ)|N )) = 0. If

ρ∞ : G→ GLr(C[[t]])

is any representation with ρ∞ = ρ0 mod t and constant determinant, then

ρ∞|N is conjugate to a constant representation. That is, there exists M∞ ∈
GLr(C[[t]]) such that M∞ρ∞|NM−1

∞ factors through GLr(C).

Proof. We wish to constructM∞ ∈ GLr(C[[t]]) such thatM∞ρ∞|NM−1
∞ is

constant, i.e., factors through GLr(C). We do so by successive approximation.

For all m ≥ 0, set ρm : G→ GLr(Bm) to be ρ∞ mod tm+1.

Set S1=id. Suppose we have found Sn∈GLr(C[[t]]) such that Snρ∞|NS−1
n

is constant modulo tn. We claim it suffices to construct an element Mn ∈
GLr(Bn),Mn = idmodtn, such that MnSnρn|NS−1

n M−1
n is constant. Indeed,

let M1 = id and for n ≥ 1, let M̃n be an arbitrary lift of Mn to GLr(C[[t]]).

Then, the representation M̃nSnρ∞|NS−1
n M̃n

−1
is constant mod tn+1. Set

Sn+1 = M̃nSn, so that Sn+1 = M̃n · M̃n−1 · · ·›M1 by induction. Then, setting

M∞ := lim
n→∞

M̃n · M̃n−1 · · ·›M1 = lim
n→∞

Sn,
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we claim that the limit converges as M̃n → id, and M∞ρ∞|NM−1
∞ is constant.

This claim holds because M∞ = Sn mod tn for all n, so we have

M∞ρ∞|NM−1
∞ mod tn = Snρ∞|NS−1

n mod tn,

which is constant for all n by construction.

We now construct the desired matrix Mn ∈ GLr(Bn). Replacing ρ∞ by

Snρ∞S
−1
n , we may assume ρ∞|N is constant modulo tn, i.e., ρn−1|N is constant.

We wish to find Mn ∈ GLr(Bn) such that

(1) Mn = id modtn, and

(2) Mnρn|NM−1
n is constant.

Given g ∈ N , we let ρn(g)
′ ∈ Matr×r(Bn−1) be the matrix obtained by

differentiating the entries of ρn(g). The representation dn ◦ ρn|N is given by

g 7→ ρ0(g) + ερn(g)
′,

as ρn|N is constant mod tn.

Note that dn ◦ ρn|N : N → GLr(Rn) is constant mod ε (as it is equal to

ρn−1|N mod ε). By hypothesis,

H0(Q,H1(N, ad(ρn−1)|N )) = 0,

and so by Lemma 3.1.2, dn ◦ ρn|N is conjugate to the constant representation

ρn−1|N ⊗Bn−1
Rn = ρ0|N ⊗C Rn

by some matrix

id+ε
n−1∑

i=0

Cit
i ∈ GLr(Rn),

where the Ci ∈ Matr×r(C). The idea of the remainder of the proof is to view the

matrix above as a vector field that we may flow along to make ρn|N constant;

we find the desired conjugating matrix Mn by “integrating” this vector field.

We compute that for g ∈ N ,

(ρ0 ⊗C Rn)(g) = (ρn−1 ⊗Bn−1
Rn)(g)

=

(
id+ε

n−1∑

i=0

Cit
i

)
(dn ◦ ρn(g))

(
id−ε

n−1∑

i=0

Cit
i

)

=

(
id+ε

n−1∑

i=0

Cit
i

)
(ρ0(g) + ερn(g)

′)

(
id−ε

n−1∑

i=0

Cit
i

)

= ρ0(g) + ερn(g)
′ + ε

n−1∑

i=0

[Ci, ρ0(g)]t
i.
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As ρ(g) is constant mod tn, ρ(g)′ is 0 mod tn−1. Hence equating coefficients,

we find

[Ci, ρ0(g)] = 0 for i < n− 1

and

ρn(g)
′ = [ρ0(g), Cn−1]t

n−1.

Now set

Mn = id+
Cn−1

n
tn ∈ GLr(Bn).

We claim Mnρn|NM−1
n is constant. Indeed,

Mnρn(g)M
−1
n =

Å
id+

Cn−1

n
tn
ã
ρn(g)

Å
id−Cn−1

n
tn
ã

= ρn(g) +
t

n
[tn−1Cn−1, ρn(g)]

= ρn(g) +
t

n
[tn−1Cn−1, ρ0(g)]

= ρn(g)−
t

n
ρn(g)

′.

But the only non-vanishing coefficient of ρ(g)′ is the coefficient of tn−1, so the

above expression is constant as desired. �

4. Hodge-theoretic preliminaries

In this section we recall some preliminaries on polarizable complex varia-

tions of Hodge structure (complex PVHS), mixed Hodge theory, and Simpson-

Mochizuki’s non-abelian Hodge theory.

4.1. Variations of mixed Hodge structure. Our main goal in this section

is Theorem 4.1.1, which describes the variation of mixed Hodge structure on

the cohomology of a unitary local system on a family of punctured curves. We

then describe the resulting bigrading explicitly in Lemma 4.1.2.

We now review pertinent notation. We refer the reader to [LL23, §5] for

basic definitions related to complex PVHS. Let V be a unitary local system on

a smooth quasi-projective variety. We say that V has a real structure if there

exists a real orthogonal local system VR such that V ' VR ⊗R C. Note that

for any unitary local system V, the local system V ⊕ V∨ has a natural real

structure.

Let π : C → M be a family of n-pointed curves as in Notation 1.10.1.

Further assume that M is smooth. Let π◦ : C ◦ → M be the associated

family of punctured curves, j : C ◦ → C the inclusion, D = C \ C ◦, and V
a unitary local system on C ◦. Below we will use the notion of the Deligne

canonical extension of a flat vector bundle from C ◦ to C , as described in

[Del70, Rems. 5.5(i)] or [LL23, Def. 4.1.2].
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See [PS08, Defs. 14.44, 14.45, and 14.49] for the definitions of variations of

mixed Hodge structure, graded-polarizability and admissibility in the rational

case; the real case is analogous and discussed in [SZ85, Def. 3.4].

The following is well known but perhaps difficult to extract from the

literature.

Theorem 4.1.1. Suppose V is a unitary local system on C ◦ with real

structure VR. Then, R1π◦∗VR underlies an admissible graded-polarizable real

variation of mixed Hodge structure with weights in [1, 2], and weight filtration

given by

W 1R1π◦∗VR := R1π∗j∗VR ⊂ R1π◦∗VR =:W 2R1π◦∗VR.

Let (E ,∇) denote the Deligne canonical extension of (V ⊗ OC ◦ , id⊗d) to C .

The Hodge filtration on R1π◦∗V⊗OM is given, under the canonical identification

R1π◦∗V⊗ OM

∼−→ R1π∗(E
∇−→ E ⊗ Ω1

C /M (logD)),

by the filtration induced by the filtration bête on the relative de Rham complex

E
∇−→ E ⊗ Ω1

C /M (logD). That is,

F 1R1π◦∗V⊗ OM := im(π∗(E ⊗ Ω1
C /M (logD)) → R1π◦∗V⊗ OM ).

Proof. First, Griffiths transversality holds vacuously, as the Hodge filtra-

tion only has two steps. To verify the remaining properties of a variation

of mixed Hodge structure we may do so pointwise. Over a point, the veri-

fication that R1π◦∗VR underlies a real variation of mixed Hodge structure is

carried out in [Tim87, Theorem, p. 152]. The description of the weight filtra-

tion follows from [Tim87, Lemma 6.2]. The description of the Hodge filtration

follows from the definition of the Hodge filtration and the degeneration of the

Hodge-de Rham spectral sequence [Tim87, Th. 7.1(a)].

It remains only to verify graded-polarizability and admissibility. This

follows from Saito’s theory [Sai90] (also see [Sch19]) as we now explain. As

VR is orthogonal, it underlies a real PVHS with trivial Hodge filtration and

polarization arising from the orthogonal structure. Hence, Rj∗(VR) underlies

an object of the derived category of (real) mixed Hodge modules on C . Hence

Rπ◦∗VR = Rπ∗Rj∗VR underlies an object of the derived category of (real) mixed

Hodge modules on M . As π◦ is a fiber bundle and hence R1π◦∗VR is locally

constant, this implies (by [Sch19, Th. 21.1]) that R1π◦∗VR in fact underlies a

graded-polarizable admissible variation of mixed Hodge structure. It remains

only to compare it with the structure described in the theorem. But this follows

by compatibility when M is a point, by base change. �

Let V be a unitary local system on C ◦, and let HV := R1π◦∗V⊗OM . If V
has a real structure VR, as in Theorem 4.1.1, then R1π◦∗VR underlies a natural
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polarized variation of R-mixed Hodge structure. In general, we let W •, F • be

the weight and Hodge filtrations respectively, and we let F
•
be the conjugate

Hodge filtration induced by the natural isomorphism

HV ' HV∨ .

Define

H
1,0
V := F 1 ∩W 1,

H
0,1
V := F 1 ∩W 1,

and

H
1,1
V = F 1 ∩ F 1.

We give a schematic picture of the structures on HV in Figure 3.

Figure 3. A schematic diagram of the mixed Hodge structure

on the cohomology of a unitary local system.

Lemma 4.1.2. For V a unitary local system on C ◦, there is a natural

direct sum decomposition

(4.1) HV = H
1,0
V ⊕ H

0,1
V ⊕ H

1,1
V .

Further, under the natural isomorphism HV = HV∨ ,

H
i,j
V = H

j,i
V∨ .(4.2)

Proof. One may check both statements hold by doing so on fibers, in which

case it is a straightforward verification using the definitions of the weight and

Hodge filtrations. �

4.2. Variations on the theorem of the fixed part. Our main goal here is to

prove Proposition 4.2.2, which is a variant of the theorem of the fixed part.

Theorem 4.2.1 (Theorem of the fixed part [SZ85, 4.19], [PS08, 14.52]).

Let X be a smooth quasiprojective complex variety, and let W be an admissible
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graded-polarizable real variation of mixed Hodge structure on X . Then there

is a natural real Hodge structure on H0(X ,W) such that the natural inclusion

H0(X ,W)⊗ R → W

is a morphism of real variations of mixed Hodge structure.

For our main results, we will need a variant of the theorem of the fixed

part for irreducible representations appearing the cohomology of a unitary local

system on a family of curves. Given a complex local system L on a variety, we

define the local system L̃ by

L̃ :=

{
L if L admits a real structure,

L⊕ L otherwise.
(4.3)

Note that L̃ admits a natural real structure. Note that if L is an irreducible

local system underlying a complex variation of Hodge structure (necessarily

unique up to reindexing), and if L admits a (necessarily unique) real structure,

then L in fact underlies a real variation of Hodge structure. Indeed, the com-

plex variation carried by L must be preserved (up to reindexing) by complex

conjugation, as otherwise L would carry two distinct complex variations.

Proposition 4.2.2. Let X be a smooth quasiprojective complex variety,

and let W be an admissible graded-polarizable real variation of mixed Hodge

structure on X . Let L be an irreducible complex local system on X such

that Hom(L,WC) 6= 0. Then, L̃ underlies a polarizable real variation of Hodge

structure, and there exist a non-zero constant real mixed Hodge structure Q

and a non-zero map of variations of mixed Hodge structure

Q⊗ L̃ → W.

Proof. First, let i be an integer for which there exists a non-zero map

L → griW WC. Then

griW WC = ⊕jVj ⊗Wj ,

where the Vj are distinct irreducible local systems carrying polarizable complex

variations of Hodge structure, and the Wj are constant complex variations

[LL23, Prop. 4.1.4(2)]. By assumption, L occurs among the Vj , and hence

carries a complex PVHS. Hence L̃ carries a real PVHS.

Let Q := Hom(L̃,W) = H0(X , L̃∨ ⊗ W). The real variation L̃∨ ⊗ W
is a tensor product of a pure (hence admissible) variation with an admissible

variation, hence is admissible itself. By the theorem of the fixed part, The-

orem 4.2.1, Q carries a canonical real mixed Hodge structure such that the

evaluation map

Q⊗ L̃ → W

is a map of variations, as desired. The map is non-zero by construction. �
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4.3. Consequences of non-abelian Hodge theory. The main result from

non-abelian Hodge theory that we will use is the following result of Mochizuki,

generalizing earlier work of Simpson in the projective case:

Theorem 4.3.1 ( [Moc06, Th. 10.5]). Let X be a smooth projective va-

riety and D ⊂ X a strict normal crossings divisor. Let X = X \ D. Any

representation

ρ : π1(X) → GLr(C)

with finite determinant admits a deformation with constant determinant to a

representation underlying a complex PVHS.

Proof. Aside from the statement about determinants, this is precisely

[Moc06, Th. 10.5]; the statement about determinants follows by examining

the proof of that theorem. �

We also use the related result that cohomologically rigid representations

underlie complex PVHS.

Lemma 4.3.2. Let X,D, ρ be as in Theorem 4.3.1. Suppose in addition

that ρ is semisimple with finite determinant and H1(X, ad ρ) = 0. Then ρ

underlies a complex PVHS.

Proof. Let G denote the Zariski-closure of the image of ρ. Note that G

is reductive by semisimplicity of ρ. Let g be the Lie algebra of G, viewed

as a π1(X)-representation. Note that g is a subalgebra of ad ρ as ρ has finite

determinant, and it is moreover a summand of ad ρ as ad ρ is semisimple. Hence

ρ is cohomologically rigid as a G-representation, as H1(X, g) ⊂ H1(X, ad ρ) =

0.

We may apply [Moc06, Lemma 10.13], which yields that ρ admits a de-

formation as a G(C)-representation to ρ0 : π1(X) → G(C), which underlies

a PVHS. But ρ is rigid and hence admits no non-trivial deformations. This

implies ρ = ρ0, so ρ underlies a PVHS. �

5. The period map associated to a unitary representation

In this section, we give an explicit description of the derivative of the

period map on the cohomology of a unitary vector bundle over a punctured

curve. In Section 5.1, we set up notation to describe the derivative of the

period map, and we state our description in Theorem 5.1.6. In Section 5.2, we

study a natural bilinear pairing on vector bundles, which is closely related to

the derivative of the period map.

5.1. The period map. We now describe the period map associated to the

first cohomology of a unitary local system over a punctured curve. We aim to
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state Theorem 5.1.6, which is a generalization of the classical statement that,

for C a curve, the multiplication map

H0(C, ω)⊗H0(C, ω) → H0(C, ω⊗2)

can be identified via Serre duality with the derivative of the period map asso-

ciated to the Hodge structure on H1(C,C) [Voi07, Lemma 10.22].

Notation 5.1.1. Suppose π : C → B is a relative smooth proper curve over

a smooth contractible complex-analytic base B. Suppose s1, . . . , sn : B → C

are sections to π with disjoint images D1, . . . ,Dn, and let D be the union

of the Di. Let C ◦ = C \ D , j : C ◦ → C be the natural inclusion, and let

π◦ : C ◦→B be the composition π◦ = π ◦ j. Let V be a unitary C-local sys-
tem on C ◦, and let W := R1π◦∗V denote the higher direct image local system

on B. Let (E ,∇) denote the Deligne canonical extension [Del70, Rems. 5.5(i)]

of (V⊗OC ◦ , id⊗d) to C ; this is a vector bundle with flat connection with reg-

ular singularities along D . Note that for each b ∈ B, E |Cb
with the parabolic

structure induced by∇ (as in [LL23, Def. 3.3.1]) is the semistable parabolic vec-

tor bundle associated to V|C ◦

b
by the Mehta-Seshadri correspondence [MS80],

[Sim90].

5.1.2. Constructing the period map. We next construct the relevant period

map in (5.2). Set H := W⊗C OB ' R1π∗(E
∇→ E ⊗ Ω1

C /B(logD)), the right-

hand side being relative hypercohomology [Del70, Cor. 6.10, Prop. 6.14]. As

the vector bundle H arises from a local system, it carries a natural Gauss-

Manin connection ∇GM . Because we are assuming V is unitary, the Hodge-

de Rham spectral sequence degenerates [Tim87, Th. 7.1(a)] (see also [Sai88,

Th. 5.3.1] for a much more general result), giving a two-step Hodge filtration

of H = W⊗ OB, satisfying

(5.1)
F 1

H := π∗(E ⊗ Ω1
C /B(logD)),

H /F 1
H ' R1π∗E ,

as described in Theorem 4.1.1.

Since B is contractible, we can globally trivialize the local system W,

yielding a flat trivialization of H . We therefore obtain a period map

P : B → Gr(rkF 1
H , rkH ),(5.2)

for Gr(s, r) the Grassmannian of s-dimensional subspaces of an r dimensional

vector space, which sends b ∈ B to the subspace F 1Hb ⊂ Hb.

Remark 5.1.3. In the above Notation 5.1.1, and in what follows, when

C → B is a relative curve, we will tend to use Ω1
C /B(D) instead of the iso-

morphic but arguably more correct Ω1
C /B(logD) in order to simplify notation.
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We will also often identify Ω1
C /B with the relative dualizing sheaf ωC /B; we

will pass between the two without comment.

5.1.4. The derivative of the period map. Having set up notation for the

period map, we now describe its derivative. The derivative of the period map

is an OB-linear map

dP : TB → P ∗TGr(rkF 1H ,rkH ) ' (F 1
H )∨ ⊗ (H /F 1

H ),

where the latter canonical identification follows from [EH16, Th. 3.5] and the

fact that the universal sub and quotient bundles on the Grassmannian pull

back under P to F 1H and H /F 1H . This is dual to a map

dP∨ : (F 1
H )⊗ (H /F 1

H )∨ → Ω1
B.

As C , s1, . . . , sn is a family of n-pointed curves over B, we also obtain a clas-

sifying map c : B → Mg,n, inducing a pullback map

c∗ : c∗Ω1
Mg,n

→ Ω1
B.

5.1.5. The derivative of the period map at a point. We now identify the

derivative of the period map at a point b ∈ B. Given a point b ∈ B, set

C := Cb, D := Db, and E := E |C . Via Serre duality, we identify dP∨
b as a map

dP∨
b : H0(C,E ⊗ Ω1

C(logD))⊗H0(C,E∨ ⊗ ωC) → Ω1
B,b

and c∗b as a map

c∗b : H
0(C, ω⊗2

C (D)) → Ω1
B,b.

We also have a natural OB-linear map ∇ : F 1H → H /F 1H ⊗ Ω1
B

given as

the composition

∇ : F 1
H → H

∇GM−−−→ H ⊗ Ω1
B → H /F 1

H ⊗ Ω1
B.(5.3)

A computation similar to [Voi07, Lemma 10.19, Th. 10.21, and Lemma

10.22], which we carry out in Appendix A and complete in Section A.2, yields

Theorem 5.1.6. Under the identifications above, the map dP∨
b factors as

H0(C,E ⊗ Ω1
C(logD))⊗H0(C,E∨ ⊗ ωC)

dP∨

b //

⊗
��

Ω1
B,b,

H0(C,E ⊗ E∨ ⊗ ω⊗2
C (D))

tr // H0(C, ω⊗2
C (D))

c∗b

OO
(5.4)

where the left vertical map ⊗ is the tensor product of global sections, and the

bottom map tr is induced by the trace pairing E ⊗ E∨ → OC . Moreover, dP∨
b

is adjoint to ∇b.
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5.2. A bilinear pairing. Let C be a smooth proper connected curve of

genus g, D ⊂ C a reduced divisor, and E a vector bundle on C. In this

section, we study the natural perfect pairing

BE : (E ⊗ ωC(D))× (E∨ ⊗ ωC) → ω⊗2
C (D)(5.5)

given as the composition

BE : (E ⊗ ωC(D))× (E∨ ⊗ ωC)
⊗−→ (E ⊗ E∨)⊗ ω⊗2

C (D)
tr⊗ id−→ ω⊗2

C (D),

where tr denotes the trace pairing E⊗E∨ → OC . Our motivation for consider-

ing this pairing is the close relationship between (5.5) and Theorem 5.1.6: for

E as in Theorem 5.1.6, the pairing on global sections induced by BE computes

the derivative of the period map.

The main result of this section is Proposition 5.2.3, which gives a sufficient

criterion for the rank of E to be large in terms of this bilinear pairing. It is this

lower bound on the rank of E that ultimately leads to the bound of
√
g + 1 in

our main result, Theorem 1.2.1. In Sections 6 and 7 we use Proposition 5.2.3

to analyze mapping class group representations appearing in the cohomology

of unitary local systems.

We next review background on parabolic bundles, in order to state Propo-

sition 5.2.3. For a more detailed and leisurely introduction to parabolic bun-

dles, we suggest the reader consult [LL23, §2] and references therein.

5.2.1. A lightning review of parabolic bundles. Fix a smooth proper curve C,

and let D = x1 + · · · + xn be a reduced divisor on C. Recall that a par-

abolic bundle on (C,D) is a vector bundle E on C, a decreasing filtration

Exj
= E1

j ) E2
j ) · · · ) E

nj+1
j = 0 for each 1 ≤ j ≤ n, and an increasing

sequence of real numbers 0 ≤ α1
j < α2

j < · · · < α
nj

j < 1 for each 1 ≤ j ≤ n,

referred to as weights. We use E? = (E, {Ei
j}, {αi

j}) to denote the data of a

parabolic bundle.

Given a parabolic bundle E? = (E, {Ei
j}, {αi

j}), let J ⊂ {1, . . . , n}, denote
the set of integers j ∈ {1, . . . , n} for which α1

j = 0, and define

“E0 := ker(E → ⊕j∈JExj
/E2

j ).

(This is a special case of more general notation used for coparabolic bundles

as in [LL23, 2.2.8] or the equivalent [BY96, Def. 2.3], but it is all we will need

for this paper.) In particular, “E0 ⊂ E is a subbundle.

Parabolic bundles admit a notion of parabolic stability, analogous to the

usual notion of stability for vector bundles, which we recall next. First, the

parabolic degree of a parabolic bundle E? is

par-deg(E?) := deg(E) +
n∑

j=1

nj∑

i=1

αi
j dim(Ei

j/E
i+1
j ).
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Then, the parabolic slope is defined by µ?(E?) := par-deg(E?)/ rk(E?). Any

subbundle F ⊂ E has an induced parabolic structure F? ⊂ E? defined as

follows: The filtration over xj on F is obtained from the filtration

Fxj
= E1

j ∩ Fxj
⊃ E2

j ∩ Fxj
⊃ · · · ⊃ E

nj+1
j ∩ Fxj

= 0

by removing redundancies. The weight associated to F i
j ⊂ Fxj

is

max
k,1≤k≤nj

{αk
j : F i

j = Ek
j ∩ Fxj

}.

A parabolic bundle E? is parabolically semi-stable if for every non-zero sub-

bundle F ⊂ E with induced parabolic structure F?, we have µ?(F?) ≤ µ?(E?).

Mehta and Seshadri [MS80, Th. 4.1, Rem. 4.3], give a correspondence

between parabolically stable parabolic bundles of parabolic degree zero on (C,D)

and irreducible unitary local systems on C \ D. This bijection sends a local

system V to the Deligne canonical extension of (V⊗O, id⊗d) with the parabolic

structure induced by the connection (as in [LL23, Def. 3.3.1]).

Remark 5.2.2. It is not entirely trivial to extract from [MS80] that the

parabolic vector bundle they construct from a unitary representation is in fact

the parabolic vector bundle associated to the Deligne canonical extension of the

associated flat vector bundle. What we will use is the fact that the parabolic

vector bundle associated to the Deligne canonical extension is parabolically

semistable, which follows from [Sim90, Th. 5], for example. A generalization

of this fact about unitary local systems (for complex PVHS) is nicely explained

in [AHL19, §5].

The main technical result we will use regarding BE is

Proposition 5.2.3. Let E? be a semistable parabolic bundle on (C,D)

of parabolic degree zero, with underlying vector bundle E. Let v ∈ H0(C,E ⊗
ωC(D)) be a non-zero global section, and suppose the map

H0(C,BE(v,−)) : H0(C,E∨ ⊗ ωC) → H0(C, ω⊗2
C (D)),

u 7→ BE(v, u)

has rank r. Then rk(E) ≥ g − r.

Before proceeding with the proof, we recall [LL23, Prop. 6.3.6], which the

reader may take as a black box. For a less technical variant of this statement,

see [LL23, Prop. 6.3.1].

Proposition 5.2.4 ( [LL23, Prop. 6.3.6]). Suppose C is a smooth proper

connected genus g curve and E? = (E, {Ei
j}, {αi

j}) is a non-zero parabolic

bundle C with respect to D = x1 + · · · + xn. Suppose E? is parabolically
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semistable. Let U ⊂ “E0 be a (non-parabolic) subbundle with c := rkE − rkU

and δ := h0(C, “E0)− h0(C,U).

(I) If µ?(E?) > 2g − 2 + n, then rkE > gc− δ.

(II) If µ?(E?) = 2g − 2 + n, then rkE ≥ gc− δ.

Remark 5.2.5. The statement of Proposition 5.2.4 is equivalent to [LL23,

Prop. 6.3.6], but it differs slightly in that we write “E? is parabolically stable”

in place of ““E? is coparabolically stable” and µ?(E?) in place of µ?(“E?). How-

ever, by definition, E? is parabolically stable if and only if “E? is coparabolically

stable and µ?(E?) = µ?(“E?) [LL23, Defs. 2.2.9 and 2.4.2].

Proof of Proposition 5.2.3. The idea is to apply Proposition 5.2.4(II) with

c = 1 and δ = r, and we now set up notation to do so. Set n = degD. Let

fv : E∨⊗ωC → ω⊗2
C (D) be the map of vector bundles induced by BE(v,−), and

set U = ker(fv). As BE is a perfect pairing and v is non-zero by assumption,

U has corank one in E∨ ⊗ ωC .

We conclude by applying Proposition 5.2.4(II) to the parabolic bundle

(E?)
∨⊗ωC(D). This is parabolically stable by definition and has slope µ((E?)

∨

⊗ ωC(D)) = 2g − 2 + n, since E? has parabolic slope 0.

By unwinding the definitions, one may verify (E?)
∨ ⊗ ωC(D)
∧

0 = E∨⊗ωC .

Therefore, the assumption of the proposition implies

h0(C, (E?)
∨ ⊗ ωC(D)
∧

0)− h0(C,U) = h0(C,E∨ ⊗ ωC)− h0(C,U) = r.

Applying Proposition 5.2.4(II) to the parabolic bundle (E?)
∨ ⊗ ωC(D) with

U = ker(fv) as defined above so that c = 1 and δ = r, we find rkE =

rk (E?)
∨ ⊗ ωC(D)
∧

0 ≥ g − r. �

6. The main cohomological results

In Section 6.1, we prove our main cohomological result, showing that

higher direct images of unitary systems on families of curves contain no low

rank local systems. From this we derive a related vanishing result in Sec-

tion 6.2, which we will use later to establish cohomological rigidity of certain

local systems.

Throughout this section, we continue to use Notation 1.10.1. Namely,

we use π : C → M for a versal family of n-pointed curves of genus g, and

π◦ : C ◦ → M for the associated punctured versal family of curves.

6.1. A rank bound. We now prove our main result on the cohomology of

unitary local systems on versal families of curves, Theorem 1.7.1. That is,

for V a unitary local system on C ◦, we will show that any non-zero sub-local

system of R1π◦∗V has rank at least 2g − 2 rkV.



CANONICAL REPRESENTATIONS OF SURFACE GROUPS 859

Proof of Theorem 1.7.1 assuming Lemma 6.1.1 (below). Let m∈M , C =

π−1(m), C◦ = (π◦)−1(m) and D := C − C◦. Let (E,∇) denote the Deligne

canonical extension to C of the vector bundle V|C◦ ⊗ OC◦ with its tautologi-

cal connection; (E,∇) is a flat vector bundle on C with regular singularities

along D. The residues of ∇ endow E with the structure of a parabolic bundle

E?, as described in [LL23, Def. 3.3.1]. By the Mehta-Seshadri correspondence

[MS80], the parabolic bundle E? is a sum of parabolically stable bundles, hence

parabolically semistable.

The connection ∇ on H := R1π◦∗V⊗C OM induces an OM -linear map

F 1
H

∇−→ H /F 1
H ⊗ ΩM

as in (5.3). Theorem 5.1.6 identifies the fiber of this map at the point m ∈ M

with the map

µ : H0(C,E ⊗ ωC(D)) → Hom(H0(C,E∨ ⊗ ωC), H
0(C, ω⊗2

C (D))),

v 7→ (u 7→ BE(v, u))

defined via BE from (5.5). For v ∈ H0(C,E ⊗ ωC(D)), we denote by ∇m(v)

the induced map

∇m(v) : H0(C,E∨ ⊗ ωC) → H0(C, ω⊗2
C (D)),

u 7→ BE(v, u).

Our strategy is to observe that a sub-local system of R1π◦∗V of low rank

would provide us with a vector v in F 1Hm so that the linear transformation

∇m(v) has low rank. This is in tension with Proposition 5.2.3 above, which

will provide us with the required dimension bound.

Now, suppose we have a non-zero irreducible sub-local system L ⊂ R1π◦∗V.
We will show in Lemma 6.1.1 that, after possibly replacing V with its complex

conjugate V, there is some non-zero v ∈ F 1Hm ' H0(C,E⊗ωC(D)) for which

∇m(v) has rank (as a linear map) at most rkL
2 . Under the identification of The-

orem 5.1.6, we obtain that µ(v) has rank at most rkL
2 . Using Proposition 5.2.3,

rkV = rkE ≥ g − rkL
2 . Upon rearranging, we find rkL ≥ 2g − 2 rkV. �

We now complete the proof of Theorem 1.7.1 by verifying the following

lemma, which is essentially an application of the theorem of the fixed part.

Lemma 6.1.1. Suppose π◦ : C ◦ → M is a punctured versal family of

genus g curves and V is a unitary local system on C ◦. For m ∈ M , let ∇m

denote the fiber over m of the map F 1H
∇−→ H /F 1H ⊗ ΩM from (5.3).

Suppose L ⊂ R1π◦∗V is a non-zero irreducible sub-local system. After possibly

replacing V and L with their complex conjugates V and L, there is some non-

zero v ∈ Lm ∩ F 1Hm so that ∇m(v) has rank at most rkL
2 .
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Proof. For a local system W, let W̃ denote the corresponding local system

with real structure as in (4.3). Note that

R̃1π◦∗V = R1π◦∗Ṽ.

By Proposition 4.2.2, L̃ underlies a real polarizable variation of Hodge

structure, and we have a non-zero real mixed Hodge structure QR and a non-

zero map of real variations of mixed Hodge structures

ι : QR ⊗ L̃ → R̃1π◦∗V.

Let Q := (QR)⊗RC. As the grading on (R̃1π◦∗V)C is supported in degrees

(1, 0), (0, 1), (1, 1), we may assume (after regrading and possibly replacing Q

with a subspace) that either

(1) the bigrading on L is supported in degree (0, 0) and the bigrading on Q

has support contained in {(1, 0), (0, 1), (1, 1)}; or
(2) the bigrading on L has support equal to {(1, 0), (0, 1)} and the bigrading

on Q is supported in degree (0, 0).

In the two cases above, we choose v as follows.

Case (1): After possibly replacing V,L with their complex conjugates, we

may assume that

ιi,j : Q
i,j ⊗ L → R1π◦∗V

is non-zero for some (i, j) ∈ {(1, 0), (1, 1)}. Choose ` ∈ Lm and q ∈ Qi,j ,

(i, j) ∈ {(1, 0), (1, 1)} such that v := ιm(q ⊗ `) is non-zero.

Case (2): After possibly replacing V and L with their complex conjugates,

we may assume dimL0,1
m ≤ dimL1,0

m . Choose arbitrary non-zero q ∈ Q and

` ∈ L1,0
m such that v := ιm(q ⊗ `) is non-zero.

It is enough to argue that for v as above, ∇(v) has rank at most rkL
2 . Since

L carries a complex PVHS, we may compute the rank of ∇(v) by computing

with the analogous period map

∇L,m : F 1Lm → Lm/F
1Lm ⊗ Ω1

M ,m

associated to L. In case (1), this map is identically zero, so we are done (i.e.,

rk∇(v) = 0). In case (2), from the definition of ∇L,m, it is enough to show

dimLm/F
1Lm ≤ rkL

2
.

This follows because we have dimLm = dimF 1Lm + dimLm/F
1Lm and we

assumed

dimF 1Lm = dimL1,0
m ≥ dimL0,1

m = dimLm/F
1Lm. �
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6.2. A vanishing result. We apply Theorem 1.7.1 to prove a vanishing

result about local systems on C ◦ that are not necessarily unitary. We assume

only that their restriction to each fiber of π◦ is unitary. The reader may find

it useful to consider the case where A = C below, though we will need the full

generality of the result below for our deformation-theoretic applications.

Theorem 6.2.1. With notation as in Notation 1.10.1, let π◦ : C ◦ → M

be a punctured versal family of genus g curves. Let m ∈ M be a point, and set

C◦ = C ◦
m. Let A be a local Artin C-algebra with residue field C, and let V be

a locally constant sheaf of free A-modules on C ◦ such that

(1) V|C◦ is a constant deformation of a unitary local system, i.e., there exists a

unitary complex local system V0 on C
◦ and an isomorphism V|C◦ ' V0⊗A;

and

(2) rkAV < g.

Then H0(M , R1π◦∗V) = 0.

Proof. Given a dominant map M ′ → M , we have an injection

H0(M , R1π◦∗V) → H0(M ′, R1π◦∗V|M ′).

Hence, it is enough to prove the claim after replacing M by some M ′ with

a dominant map to M . Combining this with Lemma 2.4.2, we may assume

V ' ⊕s
i=1Ui⊗(π◦)∗Wi, whereWi are locally constant sheaves of free A-modules

on M and Ui are unitary complex local systems on C ◦. It is enough to show

that

H0(M , R1π◦∗(Ui ⊗ (π◦)∗Wi)) = H0(M , (R1π◦∗Ui)⊗Wi) = 0

for each i. Letting mA be the maximal ideal of A, the mA-adic filtration

on Wi has associated-graded pieces isomorphic to direct sums of copies of

W0
i := Wi ⊗A C. Hence Wi ⊗ R1π∗Ui has a filtration with associated-graded

pieces isomorphic to W0
i ⊗R1π∗Ui. Thus it suffices to prove

H0(M , R1π◦∗(Ui ⊗ (π◦)∗W0
i )) = H0(M , (R1π◦∗Ui)⊗W0

i ) = 0.

Note that rkUi ⊗ (π◦)∗W0
i < g.

It is therefore enough to show that if U is a unitary complex local system

on C ◦ and W is an arbitrary complex local system on M with

H0(M , R1π◦∗(U⊗ (π◦)∗W)) = H0(M , R1π◦∗U⊗W) 6= 0,

then rkU⊗ (π◦)∗W ≥ g. A non-zero element of H0(M , R1π◦∗U⊗W) yields a

non-zero map of local systems

W∨ → R1π◦∗U.

Since U is unitary, we have rkW ≥ 2g − 2 rkU by Theorem 1.7.1. Hence

rkW + 2 rkU ≥ 2g. As rkW, rkU are positive integers, we find rkW · rkU is

minimized when rkW = 1 in which case rkW · rkU ≥ d(2g − 1)/2e ≥ g. Note
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that here we use that g ≥ 2 in order for condition (2) of the statement to be

satisfied as V 6= 0. In general, this implies

rk(U⊗ (π◦)∗W) = rkW · rkU ≥ g,(6.1)

as desired. �

7. The asymptotic Putman-Wieland conjecture

7.1. The statement of the Putman-Wieland conjecture. We next discuss

some applications of our methods to the Putman-Wieland conjecture (Conjec-

ture 7.1.3), a major open problem in geometric topology. Much of the interest

in the Putman-Wieland conjecture arises from its close relationship to Ivanov’s

conjecture that mapping class groups Modg,n do not virtually surject onto Z
for g � 0 [Iva06, §7], as explained in [PW13, Th. 1.3]. In particular, the

Putman-Wieland conjecture for g � 0 is equivalent to Ivanov’s conjecture for

g � 0.

Notation 7.1.1. Let Σg be an oriented surface of genus g ≥ 0, and let

Σg,b,p be the complement of b ≥ 0 disjoint open discs and p ≥ 0 disjoint

points in Σg, so that Σg,b,p is an oriented genus g surface with b boundary

components and p punctures. We let PModg,b,p be the subgroup of the mapping

class group of Σg,b,p fixing the punctures and boundary components pointwise.

Fix a basepoint v0 ∈ Σg,b,p, which we count as an additional puncture to

obtain an action of PModg,b,p+1 on π1(Σg,b,p, v0). Let K E π1(Σg,b,p, v0) be a

finite index normal subgroup corresponding to a finite Galois covering space

Σg′,b′,p′ → Σg,b,p, or equivalently a surjection φ : π1(Σg,b,p, v0) � H, with

H = π1(Σg,b,p, v0)/K a finite group. Let Γ ⊂ PModg,b,p+1 denote the finite

index subgroup preserving φ up to conjugacy. Viewing H1(Σg′,b′,p′ ,C) as an

H-representation, if ρ is an irreducible H-representation, we let

H1(Σg′,b′,p′ ,C)
ρ := ρ⊗HomH(ρ,H1(Σg′,b′,p′ ,C))

denote the ρ-isotypic component.

We obtain an action of Γ on Kab ⊗ C = H1(Σg′,b′,p′ ,C) and hence on the

characteristic subrepresentation H1(Σg′,b′,p′ ,C)ρ. By filling in the punctures

and deleted discs, we also obtain an action of Γ on VK := H1(Σg′ ,C), referred
to in [PW13, p. 80-81] as a higher Prym representation.

Definition 7.1.2. Fix a finite group H and non-negative integers g, b,

and p. Let PWH
g,b,p be the statement that for any surjection φ : π1(Σg,b,p, v0) �

H, taking K := kerφ and v ∈ VK any non-zero vector, v has infinite orbit un-

der Γ.

Conjecture 7.1.3 (Putman-Wieland, [PW13, Conj. 1.2]). The statement

PWH
g,b,p holds for every group H with g ≥ 2, b ≥ 0, p ≥ 0.
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Remark 7.1.4. We note that [PW13, Conj. 1.2] is stated without a group

H and with Q coefficients instead of C coefficients. We use this equivalent

statement to more easily state our results, which imply that PWH
g,b,p holds

whenever #H is small compared to the genus g.

Remark 7.1.5. There is a counterexample to the Putman-Wieland conjec-

ture when g = 2 [Mar22, Th. 1.3].

7.2. Our results. We are able to verify PWH
g,b,p in many new cases. More-

over, we prove the following more general statement, ruling out not only in-

variant vectors in H1(Σg′ ,C), but even ruling out low-dimensional invariant

subspaces of isotypic components. The proof is given below in Section 7.3.

Theorem 7.2.1. With notation as in Notation 7.1.1, let ρ be an irre-

ducible complex H-representation and Γ′ ⊂ Γ be a finite-index subgroup. Then

H1(Σg′,b′,p′ ,C)ρ has no non-zero Γ′-invariant subrepresentations of dimension

strictly less than 2g − 2 dim ρ. The same holds for H1(Σg′ ,C)ρ in place of

H1(Σg′,b′,p′ ,C)ρ.

Remark 7.2.2. In Theorem 7.2.1, it is important that we restrict our at-

tention to subrepresentations, as opposed to arbitrary subquotients, as the

Γ-representation H1(Σg′,b′,p′ ,C) is not in general semisimple for b′ + p′ > 0.

A perhaps more concrete corollary is the following.

Corollary 7.2.3. The statement PWH
g,b,p holds for every group H such

that every irreducible representation ρ of H has dimension dim ρ < g.

Proof. Fix an irreducible representation ρ ofH. By assumption, dim ρ<g.

Then 2g − 2 dim ρ > 1, and so by Theorem 7.2.1, H1(Σg′ ,C)ρ has no non-zero

Γ′-invariant 1-dimensional subrepresentations for any ρ and any finite index

Γ′ ⊂ Γ. In particular, H1(Σg′ ,C) has no non-zero invariant vectors under any

finite index Γ′. But if there was a non-zero vector v ∈ VK with finite orbit, its

stabilizer would yield a finite index Γ′ with a fixed vector. �

Even more concretely, we can give the following bound on #H independent

of its representation theory.

Corollary 7.2.4. For fixed g, b, p ≥ 0, PWH
g,b,p holds for every group H

with #H < g2.

Proof. If H is a finite group of order #H < g2, then because #H is the

sum of the squares of the dimensions of the irreducible representations of H by

[FH91, (2.19)], no irreducible representations of H have dimension ≥ g. The

result follows from Corollary 7.2.3. �

In order to prove Theorem 7.2.1, we first note that it suffices to consider

the case of surfaces without boundary.
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Lemma 7.2.5. With notation as in Notation 7.1.1, for any g ≥ 0, b, p ≥
0, and ρ an irreducible H-representation, let Γ′ ⊂ Γ be a finite index sub-

group. Then there exist a finite index Γ′′ ⊂ PModg,0,b+p+1 and an isomorphism

H1(Σg′,b′,p′ ,C)ρ → H1(Σg,0,b′+p′ ,C)ρ inducing a bijection from Γ′-invariant

subspaces to Γ′′-invariant subspaces.

Proof. Define the natural inclusion ι : Σg′,b′,p′ ↪→ Σg,0,b′+p′ , shrinking

boundary components to punctures. There is a deformation retraction from

Σg,0,b′+p′ onto the subspace ι(Σg′,b′,p′) and so ι induces an isomorphism

H1(Σg′,b′,p′ ,C) → H1(Σg,0,b′+p′ ,C).

The kernel of the induced surjection PModg,b,p → PModg,0,b+p is generated by

Zb acting on Sg,b,p by rotating the boundary components [FM12, Th. 3.18],

and hence this Zb acts trivially on H1(Σg′,b′,p′ ,C). Let Γ′′ be the image of

Γ′ under this natural map PModg,b,p+1 → PModg,0,b+p+1. The action of Γ′

on H1(Σg′,0,b′+p′ ,C) factors through the natural map Γ′ → Γ′′, inducing the

claimed bijection. �

7.3. We now prove Theorem 7.2.1, which is more or less an immediate

consequence of Theorem 1.7.1 applied to the irreducible representations of H,

once one sets up the appropriate local systems. For the proof, we will need

the existence of a versal family of φ-covers, for φ : π1(Σg,0,n, v0) � H, which

we now define.

Definition 7.3.1. As in Notation 7.1.1, specify a surjection φ : π1(Σg,0,n, v0)

� H. A versal family of φ-covers is the data of

(1) a dominant étale morphism M → Mg,n, with π
◦ : C ◦ → M the associated

family of punctured curves;

(2) a point c ∈ C ◦, m = π◦(c), C◦ = C ◦
m, and an identification i : π1(Σg,0,n, v0)

' π1(C
◦, c); and

(3) a finite étale Galois H-cover f : X ◦ → C ◦ inducing a map

π1(C
◦, c) → π1(C

◦, c)/π1(X
◦, x) ' H

agreeing with the surjection φ under the identification of (2).

Proof of Theorem 7.2.1. Using Lemma 7.2.5, it is enough to prove Theo-

rem 7.2.1 when b = 0.

By [Wew98, Th. 4], there exists a versal family of φ-covers X ◦ f−→C ◦ π◦

−→M.

Technically, [Wew98, Th. 4] constructs M as a Deligne-Mumford stack, where

points have isotropy groups isomorphic to the center of H, but we may re-

place this stack by a scheme that has a dominant étale map to this stack.

Further, after replacing M with another scheme that has a dominant étale

map to M , corresponding generically to an étale multisection of π◦, we may
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assume π◦ admits a section, and hence that the map M → Mg,n lifts to a map

M → Mg,n+1.

As f is a Galois finite étale H-cover, for each irreducible representation

ρ of H, we obtain a local system Uρ on C ◦, with monodromy representation

given by ρ, and with Uρ|X ◦ trivial. After replacing M with a dominant étale

cover, we may write

f∗C =
⊕

ρ

Uρ ⊗ (π◦)∗Wρ,

where Wρ := π◦∗ Hom(Uρ, f∗C), by Lemma 2.4.2 (where we take A = C). As

Uρ has finite monodromy by Lemma 2.4.1(1), and f∗C has finite monodromy

by definition, the same is true for Wρ. Thus after replacing M with a finite

étale cover we may assume each Wρ is a trivial local system.

We next verify the first part of Theorem 7.2.1, about H1(Σg′,0,p′ ,Q)ρ.

Observe that for m ∈ M , the action of π1(M ,m) on

R1π◦∗(Uρ ⊗ (π◦)∗Wρ)m = (R1π◦∗Uρ ⊗Wρ)m

is identified with its action on H1(X ◦
m,C)

ρ = H1(Σg′,0,p′ ,C)ρ. Note also

that the action of π1(M ) factors through Γ, under our given map π1(M ) →
π1(Mg,n+1) = PModg,n+1. To prove the first part of Theorem 7.2.1, about

H1(Σg′,0,p′ ,Q)ρ, it thus suffices to show that, after replacing M with an arbi-

trary finite étale cover, R1(π◦∗Uρ)⊗Wρ contains no non-trivial sub-local systems

of rank less than 2g − 2 dim ρ. As Wρ is a trivial local system, this holds by

applying Theorem 1.7.1 to Uρ.

We have thus far proven a statement for the cohomology of Σg′,n′ , and

to conclude we deduce a corresponding statement for the homology of Σg′ .

Using the inclusion H1(Σg′ ,C)ρ ⊂ H1(Σg′,n′ ,C)ρ we deduce that the former

can have no non-zero Γ′-invariant subrepresentations (for Γ′ ⊂ Γ finite index)

of dimension less than 2g−2 dim ρ, as the latter has no such subrepresentations.

Using Poincaré duality and the intersection pairing on H1(Σg′ ,C) we obtain a

Modg,n equivariant isomorphism H1(Σg′ ,C) ' H1(Σg′ ,C). Hence, H1(Σg′ ,C)ρ

also has no subrepresentations of dimension less than 2g − 2 dim ρ. �

8. Proof of the main theorem on MCG-finite representations

We have finally developed the tools to verify our main result, Theo-

rem 1.2.1: that MCG-finite representations of rank r <
√
g + 1 have finite

image. The proof is fairly involved, so the reader may find it useful to refer

to the sketch in Section 1.9. Briefly, we start by reviewing the notion of co-

homological rigidity in Section 8.1 and prove the necessary rigidity results in

Section 8.2, using our main vanishing result, Theorem 6.2.1. We next deduce

the integrality of MCG-finite representations of low rank in Section 8.3 using a

result of Klevdal-Patrikis [KP22], which builds on work of Esnault-Groechenig
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[EG18] and ultimately relies on input from the Langlands program and known

cases of the companion conjectures. We then combine the above ingredients

with input from non-abelian Hodge theory to deduce that low rank unitary

MCG-finite representations have finite image in Section 8.4. We generalize

this to the semisimple but non-unitary case in Section 8.5, again using non-

abelian Hodge theory. Finally, in Section 8.6 we bootstrap these results to the

general, non-semisimple case, using Theorem 7.2.1 on the Putman-Wieland

conjecture.

8.1. Background on Cohomological rigidity. We now define the notion of

cohomological rigidity, which detects whether a representation has any first

order deformations.

Definition 8.1.1 (Cohomological rigidity). Let X be a smooth projective

variety, Z ⊂ X a strict normal crossings divisor, and X = X \ Z. Let G be a

reductive group over C and

ρ : π1(X) → G(C)

a homomorphism such that the monodromy at infinity is quasi-unipotent. The

representation ρ is said to be cohomologically rigid if

H1(X, j!∗ ad ρ) = 0,

where j : X ↪→ X is the natural inclusion, j!∗ is the intermediate extension,

and ad ρ is defined as in Notation 1.10.2.

If V is the local system on X associated to ρ, we call V cohomologically

rigid if ρ is.

Remark 8.1.2. For the case where ρ is irreducible, see [KP22, Prop. 4.7,

Rem. 4.8] for a moduli-theoretic interpretation of cohomological rigidity. This

says that ρ is a smooth isolated point of the appropriate character variety,

parametrizing representations with fixed local monodromy at infinity. Note

that if X is a curve, then j!∗ = j∗.

We will typically prove cohomological rigidity by computing H1(X, ad ρ),

via the next lemma.

Lemma 8.1.3. In the setting of Definition 8.1.1, assume H1(X, ad ρ) = 0.

Then ρ is cohomologically rigid.

Proof. This follows from the identification H1(X, j!∗ ad ρ)'H1(U, a∗ ad ρ)

for U ⊂ X a certain dense open subscheme containing X with a :X→U the

inclusion [EG18, Rem. 2.4] (see also [KP22, Rem. 4.8]). The Leray spectral

sequence gives an injection H1(U, a∗ ad ρ) ↪→ H1(X, ad ρ), implying the claim.

�
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Definition 8.1.4. If H1(X, ad ρ) = 0, we say that ρ is strongly cohomolog-

ically rigid.

8.2. Cohomological rigidity and unitary MCG-finite representations. Let

ρ : π1(Σg,n) → GLr(C) be a unitary MCG-finite representation of rank <√
g + 1. We will study ρ by associating to ρ a certain unitary local system

on a well-chosen versal family of curves. Crucially, this unitary local system

will be cohomologically rigid. This will follow from our main vanishing result

Theorem 6.2.1.

Throughout this section, we use notation as in Notation 1.10.1. In particu-

lar, π : C → M is a versal family of n-pointed curves of genus g, π◦ : C ◦ → M

is the associated family of punctured curves, m ∈ M is a basepoint, and

C◦ = C ◦
m.

Proposition 8.2.1. Let V be a GLr (respectively, PGLr)-local system on

C ◦ with r <
√
g + 1. Suppose that for m ∈ M , V|C◦ is (respectively, is the

projectivization of ) an irreducible, unitary local system. Then V is strongly

cohomologically rigid. In particular, V is cohomologically rigid.

Proof. By Lemma 8.1.3, it is enough to show V is strongly cohomologically

rigid. We let adV denote the adjoint local system as in Notation 1.10.2. We

will check H1(C ◦, adV) = 0. Using the Leray spectral sequence associated to

the map π◦, it suffices to show that

H0(M , R1π◦∗ adV) = H1(M , π◦∗ adV) = 0.

We haveH0(M , R1π◦∗ adV) = 0 by Theorem 6.2.1 (takingA = C), as rk adV =

r2 − 1 < g and adV|C◦ is unitary by assumption.

To conclude, it is enough to show π◦∗ adV = 0. This is follows from Schur’s

lemma because V|C◦ is (the projectivization of) an irreducible local system,

and so adV|C◦ has no π1(C
◦)-invariants. �

8.3. Verifying integrality. The next step of the proof is to use the coho-

mological rigidity provided by Proposition 8.2.1 to deduce integrality of MCG-

finite unitary representations.

Definition 8.3.1. Let G be a group scheme over Z. We say a representation

π1(X,x) → G(C) is integral if it is conjugate to a representation that factors

through G(OK) for some number field K. A local system on a connected space

X is integral if the corresponding monodromy representation is.

We will primarily be concerned with integrality with respect to the group

schemes G = PGLr and G = GLr. The basic idea to show our local system is

integral is to apply the main result of [KP22], which builds on [EG18] and ulti-

mately relies on Lafforgue’s work on the Langlands program for function fields
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and consequent work on Deligne’s companion conjectures. To apply this result,

we need to know the monodromy of our cohomologically rigid local system V
around boundary components of a strict normal crossings compactification of

C ◦ is quasi-unipotent, which we will verify using the following result.

Proposition 8.3.2 ([AS16, Prop. 2.4]). Suppose that g ≥ 3, γ ⊂ Σg,n is

a simple closed curve, and Γ ⊂ Modg,n is a finite index subgroup. Let δγ ∈
Modg,n be the Dehn twist about γ. Let ρ : Γ → GLr(C) be a representation.

Then for m such that δmγ ∈ Γ, ρ(δmγ ) is quasi-unipotent.

We now verify that the projectivization of a unitary MCG-finite represen-

tation is integral.

Lemma 8.3.3. Let g ≥ 3 be an integer, and let ρ : π1(Σg,n) → GLr(C)
be an irreducible, unitary, MCG-finite representation, with r <

√
g + 1. Then

the composition
Pρ : π1(Σg,n)

ρ→ GLr(C) → PGLr(C)
is integral.

Proof. By Lemma 2.2.3, there exist a scheme M with a finite étale map

M → Mg,n, with associated family of punctured curves π◦ : C ◦ → M , and a

representation

ρ̃ : π1(C
◦) → PGLr(C)

agreeing with Pρ on restriction to a fiber of π◦. It suffices to show that ρ̃

is integral. By Proposition 8.2.1, ρ̃ is cohomologically rigid. Because the

abelianization of PGLr(C) is trivial, it follows from [KP22, Th. 1.2] that ρ̃ is

integral once we verify that ρ̃ has quasi-unipotent local monodromy around the

boundary components of a good (i.e., strict normal crossing) compactification

of C ◦.

One may construct a strict normal crossing compactification as follows.

The scheme C ◦ is a finite étale cover of Mg,n+1 by construction; let Mg,n+1
′

be a strict normal crossing compactification of Mg,n+1 obtained by blowing up

boundary strata of the Deligne-Mumford compactification Mg,n+1 (which is

only a normal crossing compactification, and is not in general strict). Let C be

the normalization of Mg,n+1
′
in the function field of C ◦. By Proposition 8.3.2,

it suffices to check that the local monodromy about the boundary components

of C correspond to products of commuting Dehn twists about simple closed

curves, under the identification of π1(C
◦) with a subgroup of PModg,n+1 =

π1(Mg,n+1). This is because a product of commuting quasi-unipotent matrices

is quasi-unipotent. To check the claim about local monodromy about boundary

components, it suffices to check the corresponding claim for Mg,n+1
′
. But this

is [LLSS23, Lemma 2.1.1]. �

The next result shows we can lift integrality from the projectivization of

a unitary irreducible MCG-finite representation to the original representation.
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Lemma 8.3.4. Let g ≥ 3 be an integer, and let ρ : π1(Σg,n) → GLr(C) be
an irreducible, unitary, MCG-finite representation, with r <

√
g + 1. Then ρ

is integral.

Proof. By Proposition 2.3.1, det ρ has finite image, and hence ρ factors

through G(C), where G ⊂ GLr is a flat affine Z-group scheme containing

SLr with finite index. (For example, we can take G = det−1(µm), where

det ρ factors through µm.) Note that the natural morphism G → PGLr is

finite. After conjugating ρ by some matrix we may assume Pρ factors through

PGLr(OK) for some number field K, by Lemma 8.3.3.

As π1(Σg,n) is finitely generated, it suffices to show that for a generator

α ∈ π1(Σg,n), there exists some finite extension K ′/K such that the matrix

ρ(α) lies in G(OK′). The obstruction to lifting any given OK point of PGLr

to G is a ker(G → PGLr) torsor, which becomes trivial on some finite flat

extension, and hence over OK′ for some finite K ′/K. �

8.4. Verifying finiteness. We now show that a unitary MCG-finite repre-

sentation ρ of low rank has finite image. We have already shown that, in the

irreducible setting, such representations are defined over OK . We will use the

techniques of [LL23] to deduce that they have finite monodromy. To do so, we

will argue that for each embedding τ : OK ↪→ C, ρ⊗OK ,τ C has unitary mon-

odromy. We know this for one such τ but not for the rest. To prove unitarity

for all such τ , we will use [LL23, Th. 1.2.12], and to verify its hypotheses we

will need to use non-abelian Hodge theory to construct certain complex PVHS.

Proposition 8.4.1. Let

ρ : π1(Σg,n) → GLr(C)

be a unitary MCG-finite representation with r <
√
g + 1. Then ρ has finite

image.

Proof. As ρ is unitary, it is semisimple. As an irreducible sub-represen-

tation of an MCG-finite representation is MCG-finite by Proposition 2.1.1, we

may without loss of generality assume ρ is irreducible.

If g < 3, then r ≤ 1, and so we may conclude by Proposition 2.3.1.

Thus we may assume g ≥ 3. By Lemma 8.3.4, we may assume ρ factors

through GLr(OK) for some number field K and some embedding ι : OK ↪→ C.
We now adjust notation so that ρ denotes this OK-representation and ρι =

ρ⊗OK ,ι C denotes our original MCG-finite representation. By Corollary 2.3.5,

there exists a punctured versal family C ◦ → M and a representation ρ′ι :

π1(C
◦) → GLr(C) with finite determinant, restricting to ρι on the fundamental

group of a fiber of π◦, i.e., for C◦ a fiber of π◦, ρ′ι|π1(C◦) = ρι. Note that
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ρ′ι is irreducible (as ρι is irreducible), and strongly cohomologically rigid, by

Proposition 8.2.1.

Choose any embedding τ : OK ↪→ C, and let ρτ := ρ ⊗OK ,τ C. Note that

ρτ is MCG-finite, as the same is true for ρι. We aim to show ρτ is unitary.

Choose σ : C ∼→ C so that σ ◦ ι = τ , and set ρ′τ = ρ′ι ⊗C,σ C. Note that

ρ′τ |π1(C◦) = ρτ . Now observe that ρ′τ is strongly cohomologically rigid, as the

same is true for ρ′ι, and strong cohomological rigidity (being a cohomological

condition) is preserved by automorphisms of C. Moreover, ρ′τ is irreducible

with finite determinant, as the same is true for ρ′ι.

We next show ρτ is unitary. By [LL23, Th. 1.2.12], in order to show ρτ is

unitary, it is enough to show ρ′τ underlies a complex PVHS on C ◦. Since ρ′τ
is strongly cohomologically rigid and irreducible with finite determinant, this

follows from Lemma 4.3.2.

We are thus in the following situation: ρ : π1(Σg,n) → GLr(OK) is a

representation such that for each τ : OK ↪→ C, ρ ⊗OK ,τ C is unitary. Such a

representation has finite image by [LL23, Lemma 7.2.1]. �

8.5. Reduction from the semisimple case to the unitary case. In this sec-

tion we will prove Theorem 1.2.1 for semisimple representations. The idea is

to first deform our representation to a complex PVHS via non-abelian Hodge

theory. Then we will argue that this complex PVHS is in fact unitary, using

the results of [LL23], so that we can apply Proposition 8.4.1. Finally we will

use the rigidity properties of unitary MCG-finite representations to argue that

our deformation was in fact trivial—the deformed representation was in fact

the one we started with.

Lemma 8.5.1. Let π◦ : C ◦ → M be a punctured versal family of curves

of genus g. Let c ∈ C ◦ be a point, set m = π◦(c), and let C◦ = C ◦
m. Let

ρ∞ : π1(C
◦, c) → GLr(C[[t]])

be a representation with r <
√
g + 1 and constant determinant, and let ρ0 =

ρ∞ ⊗ C. Suppose ρ0|π1(C◦,c) is unitary. Then ρ∞|π1(C◦,c) is conjugate to a

constant representation.

Proof. We apply Proposition 3.2.1 to the short exact sequence

1 → π1(C
◦, c) → π1(C

◦, c) → π1(M ,m) → 1.

We must verify that for any n and any deformation

γ : π1(C
◦, c) → GLr(C[t]/tn+1)

of ρ0 with γ|π1(C◦,c) constant, we have

H0(M , R1π∗ ad(γ)) = 0.

But this follows from Theorem 6.2.1. Indeed,



CANONICAL REPRESENTATIONS OF SURFACE GROUPS 871

rkC[t]/tn+1 ad(γ) = r2 − 1 < g

as r <
√
g + 1 by assumption. �

Lemma 8.5.2. Let π◦ : C ◦ → M be a punctured versal family of curves

of genus g. Let c ∈ C ◦ be a point, set m = π◦(c), and let C◦ = C ◦
m. Let X be

a finite-type connected C-scheme, and let

ρ : π1(C
◦, c) → GLr(OX(X))

be a representation with r <
√
g + 1 and constant determinant. For a closed

point x ∈ X with residue field κ(x) = C, let ρx := ρ ⊗OX(X) κ(x). Suppose

there exists a closed point y ∈ X such that ρy|π1(C◦,c) is unitary. Then for each

closed point x ∈ X , ρx|π1(C◦,c) is conjugate to ρy|π1(C◦,c).

Proof. Without loss of generality X is a reduced (not necessarily irre-

ducible) connected curve, as any closed point x ∈ X is connected to y by such

a curve. We claim it suffices to prove the statement if the parameter space X

is smooth and irreducible.

To reduce to this case, supposeX is neither smooth nor irreducible, and let

Ỹ be the normalization of the component Y of X containing y, and ι : Ỹ → X

the natural map. By the case of smooth irreducible curves, ι∗ρ|π1(C◦,c)⊗κ(y′) is
independent of y′ ∈ Ỹ (C), and thus ρ|π1(C◦,c)⊗κ(y′′) is independent of y′′ ∈ Y

as well and, in particular, unitary for all y′′. Let Z be a connected component

of the closure of X − im(ι). As X is connected, Z intersects Y non-trivially,

say at some point z ∈ Y . But as z is in Y , ρz|π1(C◦,c) is unitary, and hence we

are done by induction on the number of components of X.

So we now assume X is a smooth connected curve. Let

Hom(π1(C
◦, c),GLr(C))

be the representation variety parametrizing r-dimensional complex representa-

tions of π1(C
◦, c). There is a natural GLr(C) action on Hom(π1(C

◦, c),GLr(C))
induced by conjugation. Let

f : X → Hom(π1(C
◦, c),GLr(C))

be the map sending a point x to ρx|π1(C◦,c). We wish to show that the image

of f lies in a single GLr(C)-orbit, namely that of ρy|π1(C◦,c).

Choose a local parameter t of X at y, so that ÔX,y ' C[[t]]. Let

ρ∞ : π1(C
◦, c) → GLr(C[[t]])

be the corresponding representation. By Lemma 8.5.1, ρ∞|π1(C◦,c) is conjugate

to a constant representation. It follows that there exists a dense open sub-

set U ⊂ X containing y such that f(U) is contained in the GLr(C)-orbit of

ρy|π1(C◦,c).
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As ρy|π1(C◦,c) is unitary, hence semisimple, its GLr(C)-orbit in

Hom(π1(C
◦, c),GLr(C))

is closed [Sik12, Th. 30]. Hence the closure U of U maps into the GLr(C)-orbit
of ρy|π1(C◦,c). But as X is irreducible, U = X, completing the proof. �

Theorem 8.5.3. Let

ρ : π1(Σg,n) → GLr(C)

be a semisimple MCG-finite representation, and suppose r <
√
g + 1. Then ρ

has finite image.

Proof. Observe that if ρ is a sum of irreducible representations, each of

which have finite monodromy, then ρ has finite monodromy as well. As a

summand of an MCG-finite representation is MCG-finite by Proposition 2.1.1,

it suffices to treat the case that ρ is irreducible.

By Corollary 2.3.5, there exist a dominant étale map M → Mg,n and a

local system V with finite determinant on the total space C ◦ of the associated

family of n-times punctured curves of genus g, such that for C◦ a fiber of π◦,

V|C◦ has monodromy representation given by ρ. By Theorem 4.3.1, V admits a

deformation with constant determinant to a local system V0 underlying a com-

plex PVHS. Since r < 2
√
g + 1, it follows from [LL23, Th. 1.2.12] that the local

system V0|C◦ is unitary. Moreover, V0|C◦ is MCG-finite by Proposition 2.1.3.

It follows from Proposition 8.4.1 that V0|C◦ has finite monodromy. To

conclude, it is enough to show that V|C◦ = V0|C◦ . But this is immediate from

Lemma 8.5.2. �

8.6. Completion of the non-semisimple case. We come to the final step,

where we verify the non-semisimple case of Theorem 1.2.1. The idea is to show

that if we do have a non-semisimple MCG-finite representation of π1(Σg,n) of

low rank, we can produce a certain finite cover Σg′,n′ of Σg,n, which violates

our results toward the Putman-Wieland conjecture.

If ρ is a G-representation and ρ′ ⊂ ρ is a subrepresentation, we say that

ρ′ is characteristic if it is stable under all G-automorphisms of ρ (for example,

the socle of ρ, or an isotypic component thereof).

Lemma 8.6.1. Let ρ be an MCG-finite representation of π1(Σg,n), and let

ρ1 ⊂ ρ be a semisimple, characteristic subrepresentation of ρ. Let ρ2 = ρ/ρ1,

and suppose ρ2 is semisimple as well. If ρ1, ρ2 have finite image and rk ρ <√
g + 1, then ρ has finite image as well, i.e., the extension of ρ2 by ρ1 splits.

Proof. If g = 0, ρ is the zero representation, so without loss of generality

we may assume g is positive.
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Decompose ρ∨2 ⊗ ρ1 as ρ∨2 ⊗ ρ1 ' ⊕iσ
⊕ni

i , with the σi irreducible and

pairwise non-isomorphic, and the ni positive integers. Since dim ρ1+dim ρ2 =

dim ρ <
√
g + 1, we obtain from the AM-GM inequality that dim ρ1 · dim ρ2 <

(
√
g + 1/2)2 = (g + 1)/4. Therefore, for every i,

ni · dimσi < (g + 1)/4

and hence ni, dimσi < (g + 1)/4. To put ourselves in the setting of The-

orem 7.2.1, we choose an additional basepoint v ∈ Σg,n and let Σg,n+1 :=

Σg,n \ {v}. Let Γ ⊂ Modg,n+1 be a finite index subgroup stabilizing the conju-

gacy class of each σi.

Let Σg′,n′ → Σg,n be a finite Galois cover, with Galois group H, upon

which the local systems corresponding to both ρ1 and ρ2 trivialize (for example,

the cover defined by ker(ρ1⊕ ρ2)). It suffices to show that ρ|π1(Σg′,n′ ) is trivial.

As ρ|π1(Σg′,n′ ) has abelian image, it factors through an H-equivariant map

H1(Σg′,n′) → ρ∨2 ⊗ ρ1.

Equivalently, this is the extension class corresponding to ρ in

Ext1π1(Σg′,n′ )(ρ2, ρ1) = H1
(
π1(Σg′,n′),Hom(ρ2, ρ1)

)

= Hom
(
π1(Σg′,n′),Hom(ρ2, ρ1)

)
.

Projecting onto the σi-isotypic piece of ρ∨2 ⊗ ρ1 yields a Γ-stable quotient of

H1(Σg′,n′)σi , or equivalently a Γ-stable subspace of H1(Σg′,n′)σi , of rank at

most (g + 1)/4. Call this subspace Qi. But by Theorem 7.2.1, we have that

any non-zero Γ-stable subspace of H1(Σg′,n′)σi has rank at least 2g− 2 dimσi,

which satisfies the inequality

2g − 2 dimσi > 2g − (g + 1)/2 =
3g

2
− 1

2
> (g + 1)/4 > ni dimσi.

Hence Qi equals zero. As this holds for all i, ρ|π1(Σg′,n′ ) is trivial as desired. �

8.7. We finally complete the proof of our main theorem, that MCG-finite

representations

ρ : π1(Σg,n) → GLr(C)

with r <
√
g + 1 have finite image.

Proof of Theorem 1.2.1. The proof is by induction on the length of the

socle filtration. The base case is Theorem 8.5.3. Now let ρ1 be the socle of ρ.

Because the socle of a representation is characteristic, both ρ1 and ρ/ρ1 are

MCG-finite. Therefore, both ρ1 and ρ/ρ1 have finite image by induction. We

conclude by Lemma 8.6.1. �
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9. Consequences for arithmetic representations

The main arithmetic consequence of Theorem 1.2.1 is Theorem 9.1.2 be-

low, which verifies a prediction of the Fontaine-Mazur conjecture, as we now

explain. Throughout this section, we will no longer be working over C.

9.1. Application to relative Fontaine-Mazur.

Definition 9.1.1. Let X be a variety over a finitely-generated field K with

algebraic closure K, and let

ρ : πét1 (XK) → GLr(Q`)

be a continuous representation. We say that ρ is arithmetic if its conjugacy

class has finite orbit under the action of Gal(K/K) on the set of isomorphism

classes of πét1 (XK)-representations. Here the action is induced by the natural

outer action of Gal(K/K) on πét1 (XK).

The relative form of the Fontaine-Mazur conjecture predicts that all semi-

simple arithmetic representations are of geometric origin [Pet23, Conj. 1 bis].

Our main arithmetic result, a straightforward application of Theorem 1.2.1, is

that this is true for representations of low rank on the generic n-pointed curve

of genus g. In fact, we show such representations are not only of geometric

origin: they even have finite image.

Theorem 9.1.2. Let K be a finitely-generated field of characteristic zero

and (C, x1, . . . , xn) a smooth n-pointed geometrically connected curve of genus

g over K , such that the corresponding map Spec(K) → Mg,n,Q factors through

the generic point. If r<
√
g+1, then any continuous arithmetic representation

ρ : πét1 (CK \ {x1, . . . , xn}) → GLr(Q`)

has finite image.

We prove this at the end of Section 9.1 after spelling out some conse-

quences.

Remark 9.1.3. Let K, (C, x1, . . . , xn) be as in the theorem, and choose

any embedding K ↪→ C. Let Can \ {x1, . . . , xn} be the associated Riemann

surface. By [LL23, Lemma 7.5.1], Theorem 9.1.2 implies that arithmetic rep-

resentations are not Zariski-dense in the Q`-points of the character variety

parametrizing semisimple representations of π1(C
an \ {x1, . . . , xn}) of rank r

for 1 < r <
√
g + 1. This answers negatively a question of Esnault and Kerz

[EK20, Question 9.1(1)].

Recall that a local system V on a smooth complex varietyX is of geometric

origin if there is some Zariski open U ⊂ X and a smooth proper morphism

f : Y → U so that V|U is a subquotient of Rif∗C for some i.
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Corollary 9.1.4. Let K and (C, x1, . . . , xn) be as in Theorem 9.1.2,

and let ρ be a continuous representation

ρ : πét1 (CK \ {x1, . . . , xn}) → GLr(Q`)

with dim ρ <
√
g + 1. The following are equivalent :

(1) ρ has finite image;

(2) ρ is arithmetic;

(3) for any embedding K ↪→C and any isomorphism C'Q`, the local system

corresponding to ρC|Can\{x1,...,xn} on Can \ {x1, . . . , xn} is of geometric

origin;

(4) for any embedding K ↪→ C and any isomorphism C ' Q`, the local system

corresponding to ρC|Can\{x1,...,xn} on C
an\{x1, . . . , xn} underlies an integral

PVHS.

Moreover, (1), (3), and (4) are equivalent whenever dim ρ < 2
√
g + 1.

Proof. The equivalence of (1) and (2) when dim ρ <
√
g + 1 holds by

Theorem 9.1.2, and (1) certainly implies (3) and (4) for any value of dim ρ.

Next, (3) implies (4) for any value of dim ρ since any local system of geometric

origin underlies an integral PVHS. This is well known, but see, for example,

the proof of [LL23, Cor. 1.2.7].

To conclude, it remains to show that (4) implies (1) when dim ρ < 2
√
g + 1.

This follows from [LL23, Cor. 1.2.7], by choosing an embedding K ↪→ C cor-

responding to an analytically very general complex point of Mg,n. By [LL23,

Cor. 1.2.7], a local system on an analytically very general curve underlying an

integral PVHS has finite monodromy whenever its dimension is < 2
√
g + 1.

Therefore, ρ also has finite monodromy. �

Remark 9.1.5. The relative Fontaine-Mazur conjecture predicts that all

semisimple arithmetic local systems are of geometric origin. Hence on a generic

curve, all semisimple arithmetic local systems ρ with dim ρ < 2
√
g + 1 should

have finite monodromy by Corollary 9.1.4. In particular, this suggests one

should be able to improve the bound of
√
g + 1 in Theorem 9.1.2 to 2

√
g + 1

if one restricts to semisimple representations.

Note that arithmeticity of ρ on C over K is a stronger condition than

having finite orbit under the action of the mapping class group after base

change to C, and so this does not mean the bound of Theorem 8.5.3 can be

improved to 2
√
g + 1. Indeed, it cannot be improved, even in the semisimple

case, when g = 1; see Remark 10.2.1.

Proof of Theorem 9.1.2. Let C◦
K

:= CK \ {x1, . . . , xn}. For R a ring, let

Mg,n,R denote the moduli stack of genus g, n-pointed curves over SpecR and

let π◦R : C ◦
R → Mg,n,R denote the universal n-punctured genus g curve over R.

We use C◦
R to denote a fiber of π◦R.
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We claim (suppressing basepoints) that there is a map of exact sequences

of étale fundamental groups

(9.1)

0 πét1 (C◦
K
) πét1 (C◦

K) πét1 (SpecK) 0

0 πét1 (C◦
K(Mg,n,Q)

) πét1 (C ◦
Q) πét1 (Mg,n,Q) 0.

'

Indeed, the first sequence is the standard homotopy exact sequence; see [Stacks,

Tag 0BTX]. The second one is less standard but, using [Stacks, Tag 0BTX]

again, its exactness can be reduced to verifying exactness of

(9.2) 0 πét1 (C◦
K(Mg,n,Q)

) πét1 (C ◦
Q
) πét1 (Mg,n,Q) 0.

By comparison of fundamental groups of algebraically closed fields of charac-

teristic 0, it is enough to verify exactness of the sequence with all fields in

subscripts replaced by the complex numbers. The version for topological fun-

damental groups is given in Lemma 2.0.1. Since the étale fundamental group is

the profinite completion of the topological fundamental group [GR71, Exp. XII,

Cor. 5.2], and profinite completions of exact sequences where the left term has

trivial center remain exact [And74, Prop. 3], we obtain exactness of (9.2).

We next use (9.1) to deduce that ρ has finite orbit under the natural action

of π1(Mg,n,Q), to be constructed below. The two exact sequences in (9.1) in-

duce compatible outer actions of π1(SpecK) and π1(Mg,n,Q) on π1(C
◦
K(Mg,n,Q)

).

Hence, the outer action of π1(SpecK) factors through that of π1(Mg,n,Q).

Because SpecK → Mg,n,Q is dominant, the induced map π1(SpecK) →
π1(Mg,n,Q) has image of finite index. In particular, the orbit of the conju-

gacy class of ρ under πét1 (Mg,n,Q, η), and hence under πét1 (Mg,n,Q, η), is finite.

Choose an embedding K ↪→ C, and let (C ◦)an be the corresponding punc-

tured Riemann surface, so that, by residual finiteness of surface groups, there

is a natural inclusion π1((C
◦)an) ↪→ πét1 (C ◦

K
). As the conjugacy class of ρ has

finite orbit under πét1 (Mg,n,Q, η) ' πét1 (Mg,n,C, ηC), the standard comparison

theorems between étale and topological π1 [GR71, Exp. XII, Cor. 5.2] im-

ply that ρ|π1((C ◦)an) has finite orbit under the topological fundamental group

π1(M
an
g,n,C, ηC). Hence ρ|π1((C ◦)an) is MCG-finite, and hence has finite image by

Theorem 1.2.1, which may be applied after choosing an isomorphism between

Q` and C. But π1((C ◦)an) is dense in πét1 (C ◦
K
), so ρ also has finite image. �

9.2. Application to lifting residual representations. Let K, (C, x1, . . . , xn)

be as in Theorem 9.1.2. We next explain why there are residual representa-

tions of πét1 (CK \ {x1, . . . , xn}) that do not lift to arithmetic representations

in characteristic zero. In particular, in Example 9.2.3 we construct residual
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representations of geometric fundamental groups that are not “of geometric

origin,” as we now define. To our knowledge these are the first such examples.

Definition 9.2.1. Let K be an algebraically closed field, and let X/K be

a variety. Let F be a finite field of characteristic different from that of K. Let

L be the fraction field of the Witt vectors W (F). We say that a continuous

representation

ρ : πét1 (XK) → GLr(F)

is of geometric origin if there exists a continuous representation

ξ : πét1 (XK) → GLr(L)

such that

(1) there exists a ξ-stable OL-lattice W ⊂ L
r
with W ⊗ F ' ρ⊗ F;

(2) there exist a dense open subscheme U ⊂ X and a smooth proper morphism

π : Y → U , such that ξ|πét
1 (UK) arises as a subquotient of the monodromy

representation of Riπ∗L for some i ≥ 0.

In other words, we say a residual representation is of geometric origin if

it arises as the reduction of a characteristic zero representation of geometric

origin.

Corollary 9.2.2. Let K, (C, x1, . . . , xn) be as in Theorem 9.1.2. Then

for 1 < r <
√
g + 1 and p�r 0, no surjective representation

ρ : πét1 (CK \ {x1, . . . , xn}) → GLr(Fp)

admits an arithmetic lift to characteristic zero. In particular, no such repre-

sentation is of geometric origin.

Proof. By definition, a mod p representation of geometric origin lifts to

a representation of geometric origin over Qp. As representations of geometric

origin are arithmetic, the second statement follows from the first.

Thus it suffices to show that for p � 0 and ρ as in the theorem, ρ does

not admit an arithmetic lift. Suppose to the contrary that it did admit an

arithmetic lift ξ; by Theorem 9.1.2, ξ would have finite image. Thus it suffices

to show that for Q a finite, totally ramified extension of Qp, there do not exist

any finite subgroups of GLr(OQ) surjecting onto GLr(Fp) if p�r 0.

This follows from Jordan’s theorem on finite subgroups of GLr(Q), where

Q is any field of characteristic zero ([Jor78, p. 91] or [CR06, Th. 36.13]). Recall

that Jordan’s theorem says that there exists some constant n(r) such that if

G ⊂ GLr(Q) is a finite subgroup, G contains an abelian normal subgroup of

index dividing n(r). In particular, for any g1, g2 ∈ G, we have

[g
n(r)
1 , g

n(r)
2 ] = Ir,

where Ir is the r × r identity matrix.
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Now define g1, g2 ∈ GLr(Fp) by

g1 =

Ç

1 1

0 1

å

⊕ Ir−2, g2 =

Ç

1 0

1 1

å

⊕ Ir−2.

Direct computation shows that [g1
n(r), g2

n(r)] 6=Ir as long as p does not divide

n(r). But if GLr(Fp) was the image of a finite subgroup of GLr(OQ), this equal-

ity would hold by Jordan’s theorem, giving the claim. Indeed, we have shown

the result for all p not dividing the constant n(r) from Jordan’s theorem. �

Using Corollary 9.2.2, we now construct examples of residual representa-

tions with no arithmetic lifts.

Example 9.2.3. Fix non-negative integers g, n so that n ≥ 1 if g = 1 and

n ≥ 3 if g = 0. Fix r with 1 < r <
√
g + 1. We claim that for any n-pointed

genus g curve (C, x1, . . . , xn), and any p, there exist surjective representations

ρ : πét1 (CK \ {x1, . . . , xn}) → GLr(Fp)

as in Corollary 9.2.2. In particular, these representations do not admit arith-

metic lifts to characteristic 0.

If n > 0, maintaining the assumption n ≥ 3 when g = 0, we have that

πét1 (CK \ {x1, . . . , xn}) is profinite free on at least two generators. The claim

in this case follows from the fact that GLr(Fp) is generated by two elements

[Wat89].

We now deal with the case n = 0 and g ≥ 2. Indeed, this follows from

the fact that πét1 (CK) surjects onto a free profinite group on g generators by

writing it as the profinite completion of 〈a1, . . . , ag, b1, . . . , bg〉/
∏g

i=1[ai, bi] and

considering the map to the free profinite group generated by c1, . . . , cg sending

ai 7→ ci, bi 7→ id.

We conclude the section with several remarks describing consequences of

the above non-liftable residual representations.

Remark 9.2.4. Corollary 9.2.2 provides a counterexample to a particu-

larly optimistic extension of de Jong’s conjecture [dJ01, Conj. 2.3, Th. 3.5]. De

Jong’s conjecture, proven by Gaitsgory [Gai07], implies that an absolutely irre-

ducible residual Fq-representations of geometric fundamental groups of smooth

curves over finite fields of characteristic not dividing q always lift to arithmetic

representations over a field of characteristic zero. One might naturally ask

if the same is true for curves over arbitrary finitely-generated fields; Corol-

lary 9.2.2 shows that this is not the case.

Remark 9.2.5. The solution to de Jong’s conjecture, as described in Re-

mark 9.2.4, implies that deformation rings of absolutely irreducible Fp-represen-

tations of arithmetic fundamental groups of curves over finite fields (of charac-

teristic different from p) are always complete intersections over Zp. Our results
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show that the analogous statement is not true for the arithmetic fundamental

group πét1 (CK \{x1, . . . , xn}) as in Theorem 9.1.2 because they are not flat over

Zp by Example 9.2.3.

Remark 9.2.6. Flach asks [CO05, p. 7] if deformation rings of absolutely

irreducible residual representations of profinite groups are always complete

intersections. By now it is well known that the answer to this question is in

general “no.” (See, e.g., [EM16] for a more or less complete answer to this

question, and the references therein.) Our result Corollary 9.2.2 shows that

this question has a negative answer even for arithmetic fundamental groups of

generic smooth curves, as explained in Remark 9.2.5.

10. Questions and examples

10.1. Rigidity questions for mapping class groups. One of the key ingre-

dients of our arguments is the statement that certain representations of (finite

index subgroups of) Modg,n are rigid.

Question 10.1.1. Let g � 0. Is every irreducible complex representation

of every finite index subgroup of Modg,n rigid?

The answer is, perhaps, plausibly “yes” if one accepts the well-known

analogy between Modg,n and lattices in simple Lie groups of rank > 1, as all

complex representations of such lattices are rigid. For g small, there are exam-

ples of irreducible non-rigid representations of Modg,n (for example, π1(M0,4)

is free on two generators).

Remark 10.1.2. A positive answer to Question 10.1.1 would imply Ivanov’s

conjecture that Modg,n does not virtually surject onto Z as stated in [Iva06,

§7] and [Kir97, Prob. 2.11.A]. Indeed, suppose some finite index subgroup

Γ ⊂ Modg,n admitted a surjection f : Γ � Z. For t ∈ C×, the representation

ρt : Z → C×,

n 7→ tn

is a non-trivial family of one-dimensional representations of Z. Then the rep-

resentation ρt ◦ f is a non-constant family of irreducible representations of Γ.

A positive answer to Question 10.1.1 would also imply a positive answer

to the following question:

Question 10.1.3. Let g � 0. Let Γ ⊂ Modg,n be a finite index subgroup,

and let Xr(π1(Σg,n)) be the character variety parametrizing r-dimensional

semisimple representations of π1(Σg,n). Is the fixed locus Xr(π1(Σg,n))
Γ fi-

nite?
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Remark 10.1.4. One reason to believe Question 10.1.3 has a positive an-

swer is that the profinite analogue does. Namely, let X be any normal con-

nected algebraic variety over C, and let πét1 (X) be its profinite fundamental

group. Let Γ be a finite index subgroup of Out(πét1 (X)). Then Γ acts on the

set of conjugacy classes of continuous representations

πét1 (X) → GLr(Q`).

It follows from [Lit21, Rem. 1.1.4] that the Γ-fixed points are discrete in the

`-adic topology. (The result there is stated for curves, but one may reduce to

this case by the Lefschetz hyperplane theorem.)

If one accepts in addition Simpson’s motivicity conjecture for rigid local

systems [Sim92, Conj. on p. 9], a positive answer to Question 10.1.1 would im-

ply that every semisimple local system on Mg,n is of geometric origin for g � 0.

This would be of particular interest for those local systems not obviously of geo-

metric origin, e.g., the local systems arising from TQFT constructions. Thus

one might ask

Question 10.1.5. For g � 0, is every semisimple local system on Mg,n

of geometric origin? Let C be a Riemann surface of genus g � 0. Is every

semisimple MCG-finite representation of π1(C) of geometric origin?

Example 10.1.6. The analogy between the representation theory of map-

ping class groups and the representation theory of lattices in simple Lie groups

of rank greater than one only goes so far. Indeed, mapping class groups typi-

cally admit non-rigid reducible representations, as we now explain.

(1) Let H = H1(Σg,Q). Morita [Mor93] produces a non-zero class

σ ∈ H1(Modg, (∧3H)/H),

closely related to the Johnson homomorphism, yielding a non-split exten-

sion of Modg-representations

1 → ∧3H/H →W → Q → 1.

The representationW is evidently a non-trivial deformation of Q⊕∧3H/H,

and hence this latter representation is non-rigid.

(2) An essentially identical but perhaps slightly simpler argument gives ex-

amples for punctured surfaces. For n > 0, the group PModg,n acts on

π1(Σg,n−1, x), and hence on the group algebra Q[π1(Σg,n−1, x)]. Let I ⊂
Q[π1(Σg,n−1, x)] be the augmentation ideal. Then direct computation

shows that the short exact sequence of PModg,n-representations

0 → I
2/I 3 → I /I 3 → I /I 2 → 0

does not split, and hence the representation I /I 2 ⊕I 2/I 3 is not rigid.
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(3) For another example, one may consider the non-torsion class in

H1(Modg,1, H
1(Σg,Z))

constructed in [Mor89, Prop. 6.4], which yields a non-split extension of

Modg,1-representations

1 → H1(Σg,Q) →W → Q → 1.

One may make the restriction to the point-pushing subgroup W |π1(Σg)

explicit as follows. Let

a : π1(Σg) → π1(Σg)
ab ⊗Q ' H1(Σg,Q)

be the map induced by the Hurewicz isomorphism H1(Σg,Z) = π1(Σg)
ab.

Choose a splitting W = H1(Σg,Q) ⊕ Qe, where we view H1(Σg,Q) as

isomorphic to H1(Σg,Q) via the universal coefficient theorem and Poincaré

duality. Then π1(Σg) acts trivially on H1(Σg,Q), and an element γ ∈
π1(Σg) acts on e via the map

e 7→ e+ a(γ).

Remark 10.1.7. For a related discussion of ways mapping class groups do

not behave like lattices in simple Lie groups of rank greater than one; see

[FLM01]. Interestingly, [FLM01, Th. 1.6] shows there are no faithful linear

representations of finite index subgroups of Modg,0 of dimension < 2
√
g − 1.

A related result follows from our work here, as we now explain.

Let Γ ⊂ PModg,n+1 be a finite-index subgroup containing the point-

pushing subgroup. It follows from Theorem 1.2.1, Lemma 2.4.1(1), and Propo-

sition 2.1.2 that if ρ is a representation of Γ of rank <
√
g + 1

(1) whose restriction to the point-pushing subgroup is irreducible, and

(2) with finite determinant,

then ρ has finite image. Although the two results are not comparable, it is

interesting that the bound in [FLM01] is also asymptotic to
√
g.

10.2. Bounds and examples. It is natural to ask how sharp the bound of√
g + 1 in Theorem 1.2.1 is. We have no reason to believe it is sharp. That

said, one cannot expect a bound that is much stronger, as the extension W

constructed in Examples 10.1.6(3) yields a non-trivial unipotent representation

of π1(Σg) of rank 2g + 1, fixed by the action of Modg, namely W |π1(Σg).

Remark 10.2.1. The bounds of many of our main results are sharp when

g = 1. In g = 1, there are semisimple 2-dimensional “special dihedral”

MCG-finite representations of π1(Σ1,n) for n > 0 [BGMW22, Th. B], with

image contained in the infinite dihedral group. This shows sharpness of The-

orem 1.2.1 and also the semisimple case, Theorem 8.5.3. Moreover, there
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exist 2-dimensional non-semisimple MCG-finite representations of π1(Σ1,n) for

n > 0; see [CH21, Th. B]. This implies sharpness of the bound in Lemma 8.6.1.

Note that the “special dihedral” MCG-finite representations of [BGMW22,

Th. B] are not in general arithmetic in the sense of Definition 9.1.1, as in general

their local monodromy at infinity is not quasi-unipotent.

Remark 10.2.2. On the other hand, the bound r <
√
g + 1 in Theo-

rem 1.2.1 is not sharp when g = 2 and g = 3. Indeed, to verify this, we

only need show there are no 2-dimensional MCG-finite representations with

infinite image. There are no non-semisimple such representations by [CH21,

Th. B], and so it only remains to show there are no irreducible 2-dimensional

representations. Any such representation ρ : π1(Σg,n) → GL2(C) has finite

determinant by Lemma 2.3.2. Replacing ρ by ρ ⊗ det ρ−1/2, we would obtain

another MCG-finite 2-dimensional representation with infinite image factoring

through SL2(C). No such representations exist by [BGMW22, Th. A].

Question 10.2.3. Let g, n ≥ 0. What is the minimal rank of an MCG-finite

representation of π1(Σg,n) with infinite image?

It is plausible that much stronger bounds than
√
g + 1 hold in Theo-

rem 1.2.1 if one assumes the representation is semisimple (see Figure 1).

Example 10.2.4. We know of examples of MCG-finite semisimple repre-

sentations of π1(Σg) with infinite image, of rank exponential in g. For ex-

ample, one may via TQFT techniques construct representations of Modg,n of

rank exponential in g [KS16, Cor. 4.3], [BKMS18, Th. 5.1]; these representa-

tions are non-trivial when restricted to the point-pushing subgroup, and hence

by Proposition 2.1.2 yield MCG-finite representations. Similarly, representa-

tions of Modg,n constructed via variants of the Kodaira-Parshin trick [LL22,

Exam. 3.3.1] (see also [LL23, Prop. 5.1.1 and Rem. 5.1.2]) are semisimple of

rank exponential in g and restrict to MCG-finite, semisimple representations

of the point-pushing subgroup, with infinite image.

Example 10.2.5. In genus zero, there is a huge collection of MCG-finite

representations, namely the rigid local systems studied by Katz [Kat96]. The

use of rigidity in our proof of Theorem 1.2.1, and Question 10.1.1, suggest

that the study of MCG-finite representations is a natural generalization of the

study of rigid local systems to the higher genus setting.

Question 10.2.6. Let g, n ≥ 0. What is the minimal rank of a semisimple

MCG-finite representation of π1(Σg,n) with infinite image?

In our view it would be extremely interesting to give an improved bound

for semisimple MCG-finite representations, and to produce fundamentally new

examples of semisimple MCG-finite representations.
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Remark 10.2.7 (Bounds for free groups). A variant of the construction in

Examples 10.1.6(3) gives an example of a representation of the free group FN

on N generators of rank N +1, whose conjugacy class is fixed by the action of

Out(FN ); see [PR00, p. 1444]. For example, when N = 2, this representation

is given by the matrices
Ñ

1 0 1

0 1 0

0 0 1

é

,

Ñ

1 0 0

0 1 1

0 0 1

é

.

Thus again the bound of
√
g + 1 in Corollary 1.6.1 cannot be improved too

much further if one allows non-semisimple representations. However it is in

principle possible that there is no semisimple representation of FN with infinite

image whose conjugacy class has finite orbit under Out(FN ) when N ≥ 3.

Indeed, this would follow from a conjecture of Grunewald and Lubotzky (see

[GL09, §9.2]) using the main result of [FH17].

There are interesting semisimple representations of F2 whose conjugacy

class has finite orbit under Out(F2). This follows, for example, from the linear-

ity of Aut(F2) [Kra00], e.g., by choosing a faithful representation of Aut(F2)

and restricting to the inner automorphisms, and then semisimplifying. Alter-

nately, one may construct examples by applying the Kodaira-Parshin trick to

construct representations of Mod1,2, which is commensurable with Aut(F2).

As remarked in the introduction, we conjecture the opposite of Grunewald

and Lubotzky:

Conjecture 10.2.8. For allN > 0, there exist semisimple representations of

FN with infinite image, whose conjugacy class has finite orbit under Out(FN ).

Our main impetus for this conjecture is the existence of many interesting

MCG-finite representations of π1(Σg,n); see Example 10.2.4. In our view this

conjecture is of great importance, both because of the intrinsic interest of

“canonical” representations of FN (i.e., those with finite orbit under Out(FN )),

and because of its relationship to the representation theory of Aut(FN ).

Remark 10.2.9. We briefly spell out the the relationship between repre-

sentations of FN whose conjugacy class has finite orbit under Out(FN ), and the

representation theory of Aut(FN ). If Γ ⊂ Aut(FN ) is a finite index subgroup

containing the inner automorphisms, and

ρ : Γ → GLr(C)

is a representation, then the conjugacy class of ρ|FN
has finite orbit under

Out(FN ), via a proof analogous to that of Proposition 2.1.2. Conversely, as

in to the proof of Lemma 2.2.2, the projectivization of any irreducible FN -

representation whose conjugacy class has finite orbit under Out(FN ) arises
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from a projective representation of a finite index subgroup of Aut(FN ). See

[BKP19, Th. 7.12] for a related result about low-rank projective representations

of certain finite index subgroups of Aut(Fn).

10.3. Classification. The following is evidently quite difficult, but in our

view is of great interest:

Question 10.3.1. Can one classify MCG-finite representations of π1(Σg,n)

of rank r? Equivalently, can one classify algebraic solutions to the rank r

isomonodromy differential equations over Mg,n? Can one classify representa-

tions of the free group FN on N generators whose conjugacy class has finite

orbit under Out(FN )?

Remark 10.3.2. It would also be extremely interesting to learn of any new

sources of examples of MCG-finite representations. For example, are there

MCG-finite representations π1(Σg,n) → SLr(C) with (Zariski-)dense image for

r arbitrarily large?

Appendix A. Proof of Section 5.1.6

We now explain the proof of Theorem 5.1.6, which loosely follows [Voi07,

§9 and §10]. We retain notation as in Section 5.

A.1. Preparatory Lemmas. Recall that the derivative of the period map

dP was a map

dP : TB → P ∗TGr(rkF 1H ,rkH ) ' (F 1
H )∨ ⊗ (H /F 1

H ).

By adjointness, we obtain from dP a map

dP ′ : F 1
H → (H /F 1

H )⊗ T∨
B.

Recall that in Section 5.1 we defined a map ∇ with the same source and target.

Lemma A.1.1. We have an equality ∇ = dP ′.

Proof. Let W be a vector space and K ⊂ W a subspace of rank r. It

is shown in the course of the proof of [Voi07, Lemma 10.7] that for [K] ∈
Gr(r,W ), the identification TGr(r,W ),[K] ' Hom(K,W/K) is given as follows.

Let S ⊂ OGr(r,W ) ⊗ W denote the universal subbundle. Given σ ∈ K, let

σ̃ denote a choice of holomorphic section of S defined on a neighborhood of

[K] ∈ Gr(r,W ) with σ̃([K]) = σ. Then, the map

TGr(r,W ),[K] → Hom(K,W/K),

u 7→
Å

σ 7→ ∂

∂u
(σ̃) mod K

ã

is well defined and independent of the choice of lift σ̃.
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Choosing b ∈ B, the derivative of the period map dP ′
b is then given as

follows: send σ ∈ F 1Hb to the function that sends v ∈ TB,b to
∂
∂v σ̃ mod F 1Hb,

for σ̃ a local holomorphic lift of σ to F 1H . Here ∂
∂v makes sense as we have

chosen a flat trivialization of H , but we may equivalently write this map as

σ 7→ (v 7→ ∇GM (σ̃)(v) mod F 1
Hb),

or equivalently

σ 7→ (v 7→ ∇(σ̃)(v)). �

After introducing some notation, we next give an explicit computation of

the Gauss-Manin connection ∇GM on H .

Notation A.1.2. Recall from Notation 5.1.1 that (E ,∇) denotes the Deligne

canonical extension of (V ⊗ OC ◦ , id⊗d) to C . Let A
i,j
logD

(E ) be the sheaf of

C∞ logarithmic (i, j)-forms valued in E , and let An
logD

(E ) = ⊕i+j=nA
i,j
logD

(E ).

Then, (Ai,•
logD

(E ), ∂) is the Dolbeault complex of E ⊗Ωi
C
(logD). The complex

(A•
logD

(E ),∇ + ∂) is the de Rham resolution of the unitary local system V.

We similarly define the relative variants Ai,j
logD ,C /B(E ), An

logD ,C /B(E ).

Notation A.1.3. For v a C∞ vector field on an open U ⊂ C , tangent

to D , and w a C∞ section of Ai
logD

(E ) on U , the interior product int(v)(w) ∈
H0(U,Ai−1

logD
(E )) is defined by

int(v)(w)(X1, . . . , Xi+j−1) = w(v,X1, . . . , Xi+j−1)

for any C∞ vector fields X1, . . . , Xi+j−1 on U tangent to D .

Lemma A.1.4. Let σ ∈ A
1
logD

(E ) be a differential form such that for each

b′ ∈ B, σ|Cb′
is closed, so that σ represents a section [σ] of H . Fix b ∈ B and

a tangent vector u ∈ TB,b, and let v be a C∞ section of TC |Cb
, tangent to D

with u = π∗(v). We have

∇GM ([σ])|b(u) = [(int(v)((∇+ ∂)(σ)|Cb
)] ∈ Hb.

Proof. This proof essentially follows [Voi07, Prop. 9.14]. After possibly

shrinking B, which will not alter the statement of this lemma, we may write

C ' Cb × B (as C∞ manifolds), by Ehresmann’s theorem. Let t1, . . . , tm be

C∞ functions on Cb×B pulled back from a system of local coordinates for B.

After possibly shrinking B, we can write σ as

σ = Φ+
m∑

i=1

dti ⊗ ψi,
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where Φ is a section of A 1
logD

(E ) independent of dti, each ψi is a C
∞ section

of E , and Φ|Cb
= σ|Cb

. Since σ is fiber-wise closed, applying ∇+ ∂ gives

(∇+ ∂)σ =
∑

i

dti int(∂/∂ti)((∇+ ∂)Φ)−
∑

i

dti ∧ (∇+ ∂)ψi

and hence

int(∂/∂ti)((∇+ ∂)σ)|Cb
= int(∂/∂ti)((∇+ ∂)Φ|Cb

)− (∇+ ∂)ψi|Cb
.

Since Φ|Cb
= σ|Cb

,

int(∂/∂ti)((∇+ ∂)Φ|Cb
) = ∇GM ([σ])|b(π∗(∂/∂ti)),

by definition of the Gauss-Manin connection. But as (∇ + ∂)ψi|Cb
is exact,

int(∂/∂ti)((∇+ ∂)σ)|Cb
and int(∂/∂ti)((∇+ ∂)Φ|Cb

) represent the same coho-

mology class. Thus

Hb 3 [(int(∂/∂ti)((∇+ ∂)(σ)|Cb
)] = [(int(∂/∂ti)((∇+ ∂)(Φ)|Cb

)]

= ∇GM ([σ])|b(π∗(∂/∂ti)).

Since σ|Cb
is closed, the same result holds after replacing ∂/∂ti with any

vector field v satisfying π∗v = π∗(∂/∂ti); as the π∗(∂/∂ti) form a basis for TB,b,

the proof is complete. �

For the next result, we need to recall the Kodaira-Spencer map.

Definition A.1.5. With notation as in Notation 5.1.1, we have a short

exact sequence

(A.1) 0 TCb
(− logD) TC (− logD)|Cb

π∗TB|Cb
0,

where TC (− logD) is the dual of Ω1
C
(logD). The Kodaira-Spencer map

κ : TB,b → H1(TCb
(− logD))

sends a vector v ∈ TB,b ' H0(Cb, π
∗TB|Cb

) to its image in H1(TCb
(− logD))

under the connecting homomorphism in the long exact sequence in cohomology

arising from (A.1).

Remark A.1.6. Geometrically, the Kodaira-Spencer map sends a deforma-

tion of (Cb,Db) to the corresponding cohomology class in H1(TCb
(−D)) (iden-

tifying TCb
(−D) with TCb

(− logD)). For an explanation of why the boundary

map coincides with this description in the case D = ∅, see, [Voi07, §9.1.2]. In

the case D 6= ∅, an analogous argument goes through.
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Proposition A.1.7. Keep notation as in Notation 5.1.1. For b ∈ B, set

C = Cb, D = Db, and E = E |C . We have a commuting diagram

(A.2)

H0(C,E ⊗ Ω1
C(D))⊗ TB,b H1(C,E),

H0(C,E ⊗ Ω1
C(D))⊗H1(C, TC(−D)) H1(C,E ⊗ Ω1

C(D)⊗ TC(−D))

dP ′′

b

1⊗κ

∪

α

where dP ′′
b is adjoint to the derivative of the period map dPb, κ is the Kodaira-

Spencer map, α is the map induced by the pairing Ω1
C(D) ⊗ TC(−D) → OC

and ∪ is the cup product.

Proof. Let σ ⊗ u be an element of H0(C,E ⊗ Ω1
C(D)) ⊗ TB,b. By, e.g.,

[Voi07, Prop. 9.22] (applied to the ∂-Laplacian—here unitarity is used to de-

fine the adjoint of ∂ and consequently the Laplacian), we may choose a lift σ̃

of σ to a C∞ section of E ⊗Ω1
C
(logD), which is holomorphic on fibers. Com-

bining Lemmas A.1.1 and A.1.4, we find that dP ′′(σ ⊗ u) can be expressed as

[((int(v)(∇ + ∂)σ̃)|Cb
)0,1] for v a C∞ vector field of type (1, 0) tangent to D

and lifting u, as in Lemma A.1.4. As C is a relative curve, for degree reasons

we have

[((int(v)(∇+ ∂)σ̃|Cb
))0,1] = [int(v)∂σ̃|Cb

].

Direct computation gives

∂(int(v)(σ̃|Cb
)) = − int(v)∂σ̃|Cb

+ int(∂v)(σ̃|Cb
).

Using the vanishing of the Dolbeault cohomology class [∂(int(v)(σ̃))] we obtain

[int(v)(∂σ̃|Cb
)] = [int(∂v)(σ̃|Cb

)].

Combining the above yields that dP ′′
b (σ ⊗ u) = [int(∂v)(σ̃|Cb

)]. By definition

of the Kodaira Spencer map, ∂v is identified with κ(u). So

dP ′′
b (σ ⊗ u) = [int(∂v)(σ̃|Cb

)] = [α
(
∂v ∪ σ̃|Cb

)
] = [α

(
∂v ∪ σ

)
] = [α (κ(u) ∪ σ)],

verifying the commutativity of (A.2) as desired. �

Lemma A.1.8. Suppose E is a vector bundle on a smooth curve C , and

suppose D ⊂ C is a divisor. Let H1(C, TC(−D)) ⊗ H0(C,E ⊗ ωC(D)) →
H1(C,E) denote the map corresponding to the Yoneda cup product composition

α ◦ ∪ from Proposition A.1.7, induced by the natural pairing E ⊗ ωC(D) ⊗
TC(−D) → E. This is adjoint to a map υ :H0(C,E ⊗ ωC(D))⊗H1(C,E)∨→
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H1(C, TC(−D))∨. We have a commutative diagram

(A.3)

H0(C,E ⊗ ωC(D))⊗H0(C,E∨ ⊗ ωC) H0(C, ω⊗2
C (D))

H0(C,E ⊗ ωC(D))⊗H1(C,E)∨ H1(C, TC(−D))∨,

µ

η ζ

υ

where the two vertical maps are induced by Serre duality, and the map µ is the

map on global sections induced by

(E ⊗ ωC(D))× (E∨ ⊗ ωC) → (E ⊗ E∨)⊗ (ωC(D)⊗ ωC) → ω⊗2
C (D),

where the first map is the tensor product and the second is obtained from the

trace pairing E ⊗ E∨ → OC .

Proof. Recall that for F a vector bundle on C, the Serre duality pair-

ing between H0(C,F ) and H1(C,F∨ ⊗ ωC) is obtained as the composition

H0(C,F )⊗H1(C,F∨⊗ωC) → H1(C,F∨⊗F ⊗ωC) → H1(C, ωC) → C, where
the first map is induced by cup product, the second is induced by the pairing

F ⊗ F∨ → O, and the third map is the trace map tr : H1(C, ωC) ' C [Vak17,

30.3.15].

Using the above description, we now check commutativity of (A.3). We

use ∪ for the usual cup product and ∪ to denote the composition of the cup

product and the pairing E ⊗ E∨ → O. Choose α ∈ H0(C,E ⊗ ωC(D)), β ∈
H0(C,E∨ ⊗ ωC); we will denote by s a general element of H1(C,E) and by t

a general element of H1(C, TC(−D)). On the one hand, µ(α⊗ β) = α∪β, and
so ζ(µ(α⊗ β)) is given by

t 7→ tr((α∪β) ∪ t).
On the other hand, using the above description of Serre duality,

υ(η(α⊗ β)) = υ(α⊗ (s 7→ tr(β∪s)))
= (t 7→ tr(β∪(α ∪ t)))
= (t 7→ tr((β∪α) ∪ t)) ,

and so we obtain the desired commutativity (using that α∪β = β∪α). �

A.2. Proof of Theorem 5.1.6.

Proof. The final statement claiming adjointness follows from Lemma A.1.1.

The map µ in Lemma A.1.8 is another name for the composition tr ◦⊗ in

(5.4), and by Lemma A.1.8, µ is identified with the map labeled υ there, upon

applying Serre duality. Moreover, υ is by definition adjoint to the composition

α ◦∪ in Proposition A.1.7. The result now follows by identifying the Kodaira-

Spencer map κ of Proposition A.1.7 as Serre dual to the pullback map c∗b in the

statement of Theorem 5.1.6; this identification follows from Remark A.1.6. �
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[Mar22] V. Marković, Unramified correspondences and virtual properties of

mapping class groups, Bull. Lond. Math. Soc. 54 no. 6 (2022), 2324–2337.

MR 4549123. Zbl 7740276. https://doi.org/10.1112/blms.12696.
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