Annals of Mathematics 199 (2024), 823-897
https://doi.org/10.4007 /annals.2024.199.2.6

Canonical representations of surface groups
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Abstract

Let 34, be an orientable surface of genus g with n punctures. We study
actions of the mapping class group Modg,, of X4, via Hodge-theoretic and
arithmetic techniques. We show that if

p:7m1(Xg,n) = GL-(C)

is a representation whose conjugacy class has finite orbit under Modyg,y,
and r < /g + 1, then p has finite image. This answers questions of Junho
Peter Whang and Mark Kisin. We give applications of our methods to the
Putman-Wieland conjecture, the Fontaine-Mazur conjecture, and a ques-
tion of Esnault-Kerz. The proofs rely on non-abelian Hodge theory, our
earlier work on semistability of isomonodromic deformations, and recent
work of Esnault-Groechenig and Klevdal-Patrikis on Simpson’s integrality
conjecture for cohomologically rigid local systems.
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1. Introduction

1.1. Overview. Let ¥, , be an orientable topological surface of genus g
with n punctures, and let x € ¥, , be a basepoint. We denote the mapping
class group of X, , by Mod,,. There is a natural outer action of Mod, , on
71(EZg,n, ), induced by the action of Homeo™ (£, ,,) on X, ,,. Thus, Mod,,, acts
on the set of conjugacy classes of representations of 7 (g, ) into GL,(C).
Our goal is to study the finite orbits of this action via Hodge-theoretic and
arithmetic techniques.

Definition 1.1.1. For g,n,r >0, a representation p : m1(X4,,z) = GL.(C)
is MCG-finite if the conjugacy class of p has finite orbit under the action of
Modg .

Note here that we are studying conjugacy classes of representations. For
example, semisimple MCG-finite representations correspond to finite Modg -
orbits in the character variety of m1(X,,), not its representation variety. In-
deed, Mody,, does not naturally act on the representation variety of m1(2,).

Any representation of m1(X4,) constructed without making choices (for
example, without naming a specific curve in ¥, ), or by making choices with
only a finite amount of indeterminacy, is MCG-finite. So we view MCG-finite
representations as the canonical representations of m1(Xg ).

The study of MCG-finite representations has a long history. It has a
close connection to isomonodromy and the Painlevé VI equation, originally
introduced in 1902 by Painlevé [Pai02] and Gambier [Gam10]. For each g,n,r,
conjugacy classes of semisimple MCG-finite representations

1 (Xgn) = GL,(C)

correspond to algebraic solutions to a certain isomonodromy differential equa-
tion; see [CH21, Th. A]. Algebraic solutions to the Painlevé VI equation in an
appropriate choice of coordinates correspond to MCG-finite representations
with trivial determinant in the particular case g = 0,n = 4,r = 2 (see [Mah99,
§1-§3] and [Dor01, §2]).

There is substantial literature on the search for algebraic solutions to the
Painlevé VI equation, [AK02], [Boa05], [Boa06], [Boa07b], [Boa0T7a], [CL09],
[Dub96], [DMO00], [Hit95], [Hit03], [Kit05], [Kit06], culminating in the clas-
sification given in [LT14]. Boalch [Boal0] pitches the problem of classifying
algebraic solutions to Painlevé VI as a natural generalization of Schwarz’s list
of hypergeometric equations with finite monodromy [Sch73].

We will later see that the classification of MCG-finite representations is
closely connected to several major open questions in low-dimensional topology.
In particular, it has connections to the Putman-Wieland conjecture [PW13,
Conj. 1.2] and Ivanov’s conjecture that mapping class groups do not virtually
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surject onto Z [Iva06, §7]. These conjectures in turn have applications to
algebraic geometry, as they would determine the first rational homology of
finite covers of .4, .

Many interesting classes of representations are MCG-finite. Examples
include the rigid local systems studied by Katz [Kat96], representations con-
structed via TQFT techniques (e.g., [Kupll], [KS16], [KS18a], [KS18b]), and
representations of algebro-geometric interest, such as those constructed via
the Kodaira-Parshin trick (e.g., [LL22, Exam. 3.3.1]). We will see later that
MCG-finite representations of m1(X,,,) are closely related to representations
of finite-index subgroups of Modg ;,41.

1.2. Results for surface groups. Given the difficulty of classifying MCG-
finite representations in the g = 0,n = 4,7 = 2 case (encompassing Painlevé
VI), it may be surprising that we are able to obtain a complete and simple
characterization of MCG-finite representations when g > 7.

THEOREM 1.2.1. For g,n,r >0, let
p:m(Egn) = GL-(C)

be a MCG-finite representation. If r < /g + 1, then p has finite image.

This answers a question of Junho Peter Whang [LL22, Question 1.5.3].
We will prove Theorem 1.2.1 in Section 8.7.

While the statement appears to be purely topological or even group-
theoretic in nature, the proof relies on (non-abelian and mixed) Hodge the-
ory, and also takes input from the Langlands program, through the work of
Esnault-Groechenig [EG18] and Klevdal-Patrikis [KP22] on integrality of co-
homologically rigid local systems.

Remark 1.2.2. Some bound on the rank as in Theorem 1.2.1 is neces-
sary. Indeed, there are a number of interesting MCG-finite representations of
m1(X4,) of rank r > ¢ with infinite image, as explained in Question 10.2. We
have no reason to think that the precise bound of v/g + 1 is optimal in general.
That said, the bound cannot be improved too much. It is sharp when g = 1,
by Remark 10.2.1, but not for g = 2,3, by Remark 10.2.2. For general g, there
are MCG-finite representations of 71(Xy) of rank 2¢ + 1 with infinite image
(Examples 10.1.6((3))), so the bound cannot be improved to be better than
linear in g. We summarize the situation in Figure 1.

As explained in [CH21, Th. A], Theorem 1.2.1 yields a classification result
for algebraic solutions to isomonodromy differential equations:

COROLLARY 1.2.3. Let C' be a smooth projective curve of genus g, and
let D C C be a reduced effective divisor. Let (E,V) be a semisimple flat vector
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rank (r)

r polynomial in g:
examples with infinite
virtually solvable image

r exponential in g:
semisimple examples
with infinite image

r < /g + 1: finite image

genus (g)

Figure 1. The geography of known MCG-finite representations:
Theorem 1.2.1 shows that the region r < /g + 1 contains only
MCG-finite representations with finite image. As explained in
Question 10.2, there are examples of MCG-finite rank r rep-
resentations with infinite image for r > ¢. For r polynomial
in g, all known examples have virtually solvable image. For r
exponential in g, there are interesting MCG-finite irreducible
representations with infinite image.

bundle on C with regular singularities along D, with tk E < /g + 1. Suppose
that the eigenvalues of the residue matrices of (E,V) have real parts in [0,1).
Then (E,V) has an algebraic universal isomonodromic deformation if and only
if (E,V) has finite monodromy.

Note that the condition on residue matrices can always be achieved af-
ter a birational gauge transformation, by replacing (E,V) with the Deligne
canonical extension of (E, V)| p-

This algebro-geometric reformulation of our main result is not just window
dressing. It is the perspective we will take in the proof of Theorem 1.2.1.

1.3. An application to low rank local systems on #y,. We next record
a consequence of our main result for local systems of low rank on families
of curves. As in Notation 1.10.1, we say a family = : € — # of smooth
proper genus g curves with geometrically connected fibers, equipped with n
disjoint sections s; : .# — €, is versal if the corresponding map .# — M,
is dominant. We call 7° : €° := €\ |J; si(A# ) = A a punctured versal family
of genus g curves.

The following is immediate from Theorem 1.2.1, by Proposition 2.1.3 be-
low.
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COROLLARY 1.3.1. Suppose w° : €° — A is a punctured versal family
of genus g curves, and V is a local system on €° of rank < /g + 1. For any
fiber C° of ©°, the local system V|co has finite monodromy.

1.4. The Putman-Wieland conjecture. Among the main ingredients in the
proof of Theorem 1.2.1 are some new results toward the Putman-Wieland
conjecture, sketched below and described in detail in Section 7.

We now set some notation to state the Putman-Wieland conjecture. Let
Ygn be a surface, and let ¢ : m1(Xy,,2) - H be a surjection onto a finite
group, corresponding to some finite H-cover ¥, — ¥, branched over n points.
Let I' be the stabilizer of ¢ up to conjugacy in the pure mapping class group
of ¥g nt1. Then I' acts naturally acts on Hi(Xy).

We say that the Putman-Wieland conjecture for (g,n, H) holds if for every
such H-cover ¥, — X4, all non-zero vectors in H;(X,) have infinite orbit
under I'. The original Putman-Wieland conjecture [PW13, Conj. 1.2] asserts
that for any fixed g > 2,n > 0, the Putman-Wieland conjecture for (g,n, H)
holds for every H. We prove the Putman-Wieland conjecture for (g,n, H)
for any fixed H once g is sufficiently large. In this way, our results are an
“asymptotic” version of the Putman-Wieland conjecture.

THEOREM 1.4.1. Forg > 2,n >0, and any finite group H with #H < ¢°,
the Putman-Wieland congjecture for (g,n, H) holds.

Theorem 1.4.1 is proven below as a case of Corollary 7.2.4. More generally,
for arbitrary H, we prove that the Putman-Wieland conjecture holds for the
subspace of Hi(Xy) spanned by irreducible representations of H of small rank.

THEOREM 1.4.2. Let p be an irreducible representation of H with dim p<g,
and let Hi(Xy)? be the p-isotypic component of Hi(X,). Then no non-zero
vector in Hy (X4 )P has finite orbit under I

Theorem 1.4.2 is proven below as a special case of Theorem 7.2.1.

As we shall see in the course of the proof of Theorem 1.2.1, especially
Lemma 8.6.1, the Putman-Wieland conjecture is connected to the classification
of MCG-finite representations with virtually solvable image.

1.5. Arithmetic applications. In Section 9, we give a number of applica-
tions to questions in arithmetic geometry. For example, we show in Theo-
rem 9.1.2 that low rank representations of the arithmetic étale fundamental
group of a generic curve of genus g have finite image when restricted to the
geometric fundamental group. This verifies a prediction of the Fontaine-Mazur
conjecture; see Remark 9.1.5. These results also answer a question of Esnault-
Kerz; see Remark 9.1.3.

As a consequence, we construct many residual representations of the geo-
metric fundamental group of a generic curve of genus g that have no lifts to
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representations of geometric origin. These examples are related to a conjecture
of de Jong [dJ01] (proven by Gaitsgory [Gai07]) and a question of Flach; see
Remarks 9.2.5 and 9.2.6.

1.6. A consequence for free groups. From Theorem 1.2.1, we deduce an
analogous result for free groups.

COROLLARY 1.6.1. Let F be a free group on N generators, with N = 2g
or N=2g+1. Let
p: FN — GLT(C)

be a representation whose conjugacy class has finite orbit under Out(Fy). If
r <+/g+1, then p has finite image.

Proof. If N is even, choose an isomorphism Fy ~ m(X41), and if N is
odd, choose Fy ~ m1(X,2). Any representation of Fyy with finite orbit under
Out(Fy) yields a representation of a genus g surface group with finite orbit
under the mapping class group. Such a representation has finite image by
Theorem 1.2.1. [l

Remark 1.6.2. Tt is natural to ask if the bound on 7 in Corollary 1.6.1 is
sharp. There exist (non-semisimple) representations of Fy of fairly low rank
(r = N + 1) with infinite image and finite orbit under Out(Fy) (see Exam-
ple 10.2.7), so the bound cannot be improved too much. However, in contrast
with the case of MCG-finite representations, we do not know any examples
of semisimple representations of Fy with infinite image and finite orbit under
Out(Fy) as soon as N > 3. Indeed, a conjecture of Grunewald and Lubotzky
[GL09, Conj. in §9.2], combined with the main result of [FH17], implies that no
such examples exist when N > 3. In the interests of provocation, we conjecture
(Conjecture 10.2.8) that such examples do exist. As evidence, we offer sev-
eral examples of semisimple MCG-finite representations of surface groups with
infinite image; see Question 10.2. Note that there are interesting semisimple
representations of F» with finite orbit under Out(F3); see Example 10.2.7.

Remark 1.6.3. One appeal of Corollary 1.6.1 lies in the fact that it admits
a completely elementary reformulation, using Nielsen’s description of Aut(Fy);
see [Nie24] and also [MKS04, Th. 3.2, p. 131]. Let (Ay,..., Ax) be an N-tuple
of invertible r x r complex matrices, with N = 2g or N = 2g + 1. Consider
the following operations on N-tuples of invertible matrices:

(1) the cyclic permutation
c: (A1, Ay, ..., AN) — (A9, As, ... AN, Ay);
(2) the transposition
T:(Ay, Ao, As, ..., AN) — (Ao, A1, As, ... AN);
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(3) the inversion map

e: (A1, Ao, . AN) = (AT Ao, AN
(4) the Dehn twist

d: (A1, Ag, ..., AN) — (A1Ag, Ag, ..., AN).

We say (Ai,...,An) and (4],..., A)y) are conjugate if there exists some B
such that A; = BA;B~! for all i.

Now suppose that the set of N-tuples obtained from (Ai,..., Ay) by re-
peatedly applying c, 7, €, and d only intersect finitely many conjugacy classes of
N-tuples (A4y,...,An). If r < /g + 1, Corollary 1.6.1 implies that A;,..., Ay
generate a finite subgroup of GL,(C).

Remark 1.6.4. Similarly to Remark 1.6.3, one could make Theorem 1.2.1
explicit, using any one of the known generating sets of Mod, ,,, but the formulas
are a bit more involved, as in [CH21, §6]. In our view it would be of great
interest to find a proof of Theorem 1.2.1 or Corollary 1.6.1 of a similarly explicit
nature.

Remark 1.6.5. A result analogous to Corollary 1.6.1 follows immediately
for characteristic quotients of free or surface groups. For example, let G be a
characteristic quotient of a free group Fy on N = 2g or N = 2g+ 1 generators,
and p : G — GL,(C) a representation whose conjugacy class has finite orbit
under Out(G). If r < /g + 1, then p has finite image by Corollary 1.6.1.

1.7. Cohomological results. One of the new technical inputs we use to
achieve Theorem 1.2.1 is an analysis of the cohomology of unitary local systems
on families of curves. Our main result, which follows from an analysis of the
derivative of the period map associated to the mixed Hodge structure on the
cohomology of unitary local systems, is the following. We adapt notation
described later in Notation 1.10.1.

THEOREM 1.7.1. Let w: € — A be a smooth proper family of n-pointed
curves of genus g with geometrically connected fibers, so that the associated
map M — My is dominant étale. Let m° : €° — M be the associated family
of punctured curves. LetV be a unitary local system on €°. Then any non-zero
sub-local system of R'7°V has rank at least 2g — 21k V.

We prove this in Section 6.1 and give a related cohomological vanishing
theorem with milder unitarity hypotheses in Theorem 6.2.1. Note that The-
orem 1.7.1 shows that HO(.#, R*72V) = 0 if g > rkV. This result is used
several times in the proof of Theorem 1.2.1, as described in Section 1.9. It is
especially interesting when V has finite monodromy, where it is closely related
to the Putman-Wieland conjecture, as described above in Section 1.4 and in
more detail in Section 7.
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1.8. Prior work.

1.8.1. MCG-finite representations and Painlevé VI. As mentioned in Sec-
tion 1.1, there has been a huge amount of effort put forth towards classifying
algebraic solutions to the Painlevé VI equation, arguably beginning with work
of Riemann [Rie57] and Schwarz [Sch73] and culminating in the classification
[LT14]. Calligaris-Mazzocco [CM18] classified algebraic solutions satisfying
several conditions in the case ¢ = 0,n = 5,r = 2, but the complete classifi-
cation in this case remains open. See also [Mic06] for a related result in the
genus zero case, when the local monodromy matrices are given by reflections;
this appears to be the first result showing that MCG-finite representations
(satisfying certain conditions) have finite image.

For all the work invested in the algebraic solutions to Painlevé VI, this only
addresses the case of classifying MCG-finite representations with ¢ =0,n=4,
r=2, and trivial determinant, as explained in [LT14]. In higher genus, all work
that we know of has been on the case of 2-dimensional representations. The
beautiful paper [BGMW22] handles the 2-dimensional case (r=2,¢g>1,n>0)
with trivial determinant. The non-semisimple case r = 2,g > 1,n > 0 with
arbitrary determinant is explained in [CH21, Th. B|. These results appear to
depend crucially on the assumption r = 2.

Remark 1.8.2. The above-mentioned results in rank 2 led Junho Peter
Whang to ask whether, for ¢ > r, all MCG-finite rank r representations of
¥4.» have finite image [LL22, Question 1.5.3]. More generally, motivated by the
p-curvature conjecture, Mark Kisin asked whether MCG-finite representations
necessarily have finite image; see [ BGMW22, p. 3] and [Sin10, p. 1]. (Note that
counterexamples are known in general; see [BKMS18, Th. 5.1] for counterex-
amples coming from TQFT techniques or [LL22, Exam. 3.3.1] for counterex-
amples coming from the Kodaira-Parshin trick, as well as Question 10.2 of this
paper.) In this way, Theorem 1.2.1 answers Whang’s question affirmatively,
and provides a positive answer to Kisin’s question in the regime g > 2 — 1.

There has also been much work put towards finding interesting ezam-
ples of MCG-finite representations, notably [Dor01], [Dial3], [Girl16b], [DL15],
[Girl6a].

In a more arithmetic direction, [BGS16] announced striking results on
strong approximation for Markoff triples, obtained by analyzing the arithmetic
properties of subvarieties of the character variety parametrizing 2-dimensional
representations of 71 (X;,1). The first step in their analysis is to determine the
finite orbits of the mapping class group action on this character variety [BGS16,
last paragraph of p. 132]. In this way, our Theorem 1.2.1 can be viewed as a
necessary first step toward attempting to generalize their approach to higher
rank, higher genus character varieties.
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1.8.3. MCG-finite representations and geometric topology. In the world
of low-dimensional topology a number of authors have studied the dynamics
of mapping class group actions on character varieties; finite orbits are the
same as semisimple MCG-finite representations. Kasahara [Kas15] relates fixed
points of this action corresponding to faithful representations to the well-known
question of linearity of the mapping class group. Goldman and many other
authors have studied ergodicity of these actions; see [Gol06] and the references
therein. Previte-Xia [PX00], [PX02] study the relationship between density of
the image of an SU(2)-representation and density of its mapping class group
orbit. In some sense our main result is a partial answer to [Gol06, Question
2.7], which asks for necessary and sufficient conditions for a representation to
have dense orbit under the mapping class group. We characterize the most
extreme possible failure of density, namely the case of finite orbit.

There are also a number of related results on representations of the map-
ping class group. Farb, Lubotzky, and Minsky [FLMO1, Th. 1.6] show there
are no faithful linear representations of finite index subgroups of Mod, o of
dimension < 24/g — 1. See Remark 10.1.7 for a comparison of our results to
theirs. See also [FH13], [Kor02], [Funl1], [KP20] for bounds on the dimension
of representations of Mod, ,,, although these results only address representa-
tions of the full mapping class group, as opposed to representations of finite
index subgroups.

1.8.4. The Putman-Wieland conjecture. The other main contribution of
this paper, towards the Putman-Wieland conjecture, has a number of precur-
sors, notably [Loo97a], [GLLM15], [Loo97b]. Our Hodge-theoretic approach is
related to an approach suggested by Looijenga [Lool5]. The strongest previous
result towards the Putman-Wieland conjecture is perhaps the main result of
[GLLM15], which says that for certain quotients of m;(X,), called ¢-redundant
quotients, much more than the Putman-Wieland conjecture is true — the
monodromy representations considered by the conjecture have very large im-
age, commensurable with an arithmetic group. There has also been interest-
ing recent work related to the Putman-Wieland conjecture by Markovi¢ and
Markovié-Tosi¢ [Mar22], [MT24].

The analogue of the Putman-Wieland conjecture for graphs, as opposed
to surfaces, has been proven by Farb and Hensel [FH17].

1.9. Outline of the proof. We now sketch the proof of Theorem 1.2.1,
which is loosely inspired by Katz’s proof of the p-curvature conjecture for the
Gauss-Manin connection [Kat72]. Following this, we sketch the proof of the
vanishing results we use (Theorem 1.7.1 and its consequence Theorem 6.2.1) in
Section 1.9.4, which are used in different ways in each of the three steps listed
below of the proof of Theorem 1.2.1. A schematic diagram outlining the main
elements of the proof is depicted in Figure 2.
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Lem. 8.3.4 «+——— Lem. 8.3.3

l T[EGI?B, KP22, Langlands|
LL23
Prop. 8.4.1 é Prop. 8.2.1 Prop. 5.2.4
——— [Moc06]
Unitary case
[LL23, Isomonodromy]
[Moc06, Non-abelian Hodge theory]
Thm. 1.2.1 +— Thm. 8.5.3 +—— Lem. 85.2 +— Thm. 6.2.1 Prop. 5.2.3
_—
Semisimple case Cohomological vanishing
T Mixed Hodge theory and [MS80]
Lem. 8.6.1 «—— Thm. 7.2.1 «+—— Thm. 1.7.1 «—— Thm. 5.1.6
_— _— _—
Putman-Wieland Cohomological rank bound Period map

Figure 2. A diagram depicting the structure of the proof of
the main result, Theorem 1.2.1, in the shape of a boat.

1.9.1. Step 1. The unitary case. Every unitary representation is a direct
sum of irreducible unitary representations. Therefore, we suppose p is unitary,
irreducible, and MCG-finite, with rk p < /g + 1. We construct from p a finite
étale cover . of A, ,, with associated family of punctured curves 7°: €° — .,
and a projective unitary local system V on %° whose restriction to a fiber
C° of 7° has monodromy given by p. Applying Proposition 8.2.1, (which
is a fairly straightforward consequence of our cohomological vanishing result,
Theorem 6.2.1, applied to ad V), shows that V is cohomologically rigid. The
main result of [KP22] then gives that p is defined over the ring of integers Ok
of some number field K. Moreover, using Proposition 2.3.4, by replacing .#
by a dominant étale scheme over it, along which certain cohomological lifting
obstructions vanish, we can assume V lifts from a projective local system to a
bona fide local system.

By compactness of the unitary group and discreteness of O, it suffices
to show that for each embedding ¢ : O — C, p ®g, , C is unitary. (We
know this unitarity for one such ¢ by assumption, but not the others.) The
rigidity of V implies by non-abelian Hodge theory that these p®4, , C underlie
complex polarizable variations of Hodge structure for any complex structure
on X, ,. Hence, given their low rank, these local systems are unitary by [LL23,
Th. 1.2.12].

1.9.2. Step 2. The semisimple case. Now suppose p is an arbitrary semi-
simple, MCG-finite representation with rkp < /g + 1. Again, we associate
to p a local system V on a family of curves 7n° : ° — .#, so that .# has a
dominant étale map to .#,, and whose fibral monodromy is given by p. By
non-abelian Hodge theory, we may deform V to a local system Vg underlying
a complex polarizable variation of Hodge structure. By [LL23, Th. 1.2.12], V
has unitary monodromy when restricted to a fiber of 7°. By the unitary case,
Section 1.9.1, V; thus has finite monodromy when restricted to a fiber of 7°.
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Note that even if n = 0, i.e., #° is proper, we here need to use non-abelian
Hodge theory for non-proper varieties, as the total space %° will not be proper.

It remains to argue that the restriction Vo|co of Vi to a fiber C° of #°
agrees with the restriction V|go, corresponding to p. Recall that Vy and V
were only deformation equivalent, so it may be surprising that they necessar-
ily restrict to the same local system on fibers. We verify this agreement in
Lemma 8.5.2 through another application of Theorem 6.2.1, which which tells
us that since the fibral monodromy Vy|ce is unitary of low rank, it does not
admit non-trivial MCG-finite deformations.

Note that Vy may not a priori be unitary; we only know that Vo|ce is
unitary. In particular, it is not clear whether Vy is necessarily cohomologically
rigid.

1.9.3. Step 3. The general case. The crucial input for dealing with non-
semisimple representations is our work towards the Putman-Wieland conjec-
ture. By the above it is enough to show that low-rank MCG-finite representa-
tions are semisimple, i.e., we wish to verify that certain extensions split. For
simplicity, let us suppose for the purpose of this sketch that p is an exten-
sion of two irreducible MCG-finite representations p; and ps. By the previous
step, p1 and p2 have finite monodromy, so after passing to a finite cover X4 s
of ¥y n, we may assume p; and py have trivial monodromy. The splitting
of this extension of ps by p; corresponds to the vanishing of a certain ele-
ment in Ext}rl(zq,’n/)(pl, p2). Because we arranged that p; and p2 have trivial

monodromy on 7 (3y /), the above extension class corresponds to a map
(X ) = pY ® pa, with unipotent abelian image. Hence, it factors through
Hi(Xy ), and so defines a low rank subspace of H'(3, ), stable under a
finite index subgroup of Modg ,4+1. We verify in Lemma 8.6.1, using our main
result toward the Putman-Wieland conjecture, Theorem 7.2.1, that such a sub-
space cannot exist. Theorem 7.2.1 itself follows more or less immediately from
Theorem 1.7.1.

1.9.4. The proof of our cohomological vanishing results. Note that we used
Theorem 1.7.1, or its immediate consequence, Theorem 6.2.1, in every step
above. Before explaining the idea of the proof of these results, let us recall the
setting. We begin with a scheme .# with a dominant étale map .# — .#, .
We denote the associated family of punctured curves by ¥° — .#. We are
given a local system V on °. Theorem 1.7.1 says that if V is unitary, there are
no sub-local systems of R'72V of low rank (that is, rank less than 2g — 21k V).
Let C° be a fiber of 7°. We deduce Theorem 6.2.1, which says that when V|co
is unitary and has low rank (less than g), then R'7SV has no global sections.
The benefit of Theorem 6.2.1 is that we only need check unitarity on fibers,
but the cost is that we are only able to rule out global sections, i.e., trivial
sub-local systems, instead of arbitrary low rank sub-local systems.
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First, we deduce Theorem 6.2.1 from Theorem 1.7.1. The idea is to use
the assumption that V is unitary on fibers to reduce via Lemma 2.4.2 to the
case that V is a tensor product U ® (7°)*W, with U unitary. A non-zero
global section of R'72(U ® (7°)*W) = (R'7U) ® W yields a non-zero map
WY — R'7°U, and hence a low rank sub-local system of R'7°U, contradicting
Theorem 1.7.1.

The proof of Theorem 1.7.1 boils down to an analysis of the derivative of
the period map associated to the complex variation of mixed Hodge structure
on R'7°V for V unitary. We identify this derivative with a natural multiplica-
tion map

HY(E ®we (D)) ® HY(EY @ we) — HY(wS?(D))
in Theorem 5.1.6, where C is the smooth projective compactification of C°
with boundary D, and E is the vector bundle on C' associated to V|co by the
Mehta-Seshadri correspondence [MS80]. By the theorem of the fixed part, the
existence of a low rank sub-local system of R!7°V places restrictions on this
map, which we rule out using vector bundle methods, as developed in [LL23,
§6], ultimately relying on Clifford’s theorem for vector bundles.

1.10. Notation. Unless otherwise stated, we will work over the field of
complex numbers C. In particular, we will lift this restriction in Section 9.

Notation 1.10.1. We fix non-negative integers (g,n) so that n > 1if g =1
and n > 3 if g = 0, i.e., Xy, is hyperbolic. Let .# be a connected complex
variety. A family of n-pointed curves of genus g over .# is a smooth proper
morphism 7 : € — .# of relative dimension one, with geometrically connected
genus ¢ fibers, equipped with n sections s1,...,$, : A4 — € with disjoint
images. Call such a family versal if the induced map .# — .#,,, is dominant
and étale. Here .#,, denotes the Deligne-Mumford moduli stack of n-pointed
genus g smooth proper curves with geometrically connected fibers.

If 7: ¢ — # is a family of n-pointed curves, we let 2 := [[iL; im(s;)
denote the images of the sections, which is finite étale of degree n over .Z.
Also let €° := € \ |J;im(s;), let j : €° < € be the natural inclusion, and let
m°:=moj:%° — .# denote the composition. We will refer to 7° : €° — .#
as the associated family of punctured curves. If w° arises as the family of
punctured curves associated to a versal family of n-pointed curves, we will call
it a punctured versal family. We will frequently use m € .# as a basepoint,
and ¢ € €° as a basepoint with 7°(c) = m. We use C° as notation to denote
the fiber (7°)~1(m) = €2:

¢ I @ 7

(L) \ %

M
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Notation 1.10.2. For G an algebraic group with derived subgroup Gd9°r
and corresponding Lie algebra g4°*, we use Ad : G — GL(g%") to denote
the natural action of G' on g% by conjugation. Given a representation p :
(X, z) = G(C), let ad(p) := po Ad : m(X,z) — GL(g"). In particu-
lar, given p : m(X,z) — GL.(C) or p : m(X,z) — PGL,(C) we use ad(p)
to denote the composite map ad(p) : m1(X,z) — GL(pgl,.(C)). Under the
identification between local systems on a connected space and representations
of the fundamental group, if W is a local system on X corresponding to some
representation p, we use ad W to denote the local system corresponding to ad p.

A representation (X, z) = GL.(C) is unitary if its image has compact
closure. A complex local system is unitary if its monodromy representation is
unitary. By an averaging argument, unitary representations are exactly those
that preserve a positive-definite Hermitian form on C"; i.e., they are conjugate
to a representation that factors through the unitary group U(n).

Notation 1.10.3. For a pointed finite-type scheme or Deligne-Mumford
stack (X, z) over C, we will use 71 (X, x) to denote the topological fundamental
group of the associated complex-analytic space or analytic stack. Similarly, for
a local system A on X, we use H'(X,A) to denote the singular cohomology
of the associated complex-analytic space or stack, unless otherwise stated. We
will use Mod, , to denote the mapping class group of an orientable surface
of genus ¢g with n punctures, and PMody, = m(#,,) (see Lemma 2.0.1)
to denote pure mapping class group, i.e., the subgroup of Mody,, of index n!
preserving the punctures pointwise.
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2. Representation-theoretic preliminaries

In this section, we give group-theoretic constructions that we will use to
analyze representations with finite mapping class group orbit. In Section 2.1,
we verify basic properties of MCG-finite representations. In Section 2.2, given
an irreducible representation p : 71 (X4, ) = GL,(C) whose conjugacy class
is fixed by a finite-index subgroup I' C PModg 41, we construct a represen-
tation p : I' = PGL,(C), which will be analyzed throughout this paper. In
Section 2.3, we show how to lift certain projective representations of the funda-
mental groups of families of curves to honest representations into GL,(C), after
passing to a suitable cover. Finally, in Section 2.4, we prove some structural
results about the representations we have constructed.

We will use the following lemma throughout, to connect properties of
mapping class groups to geometry.

LEMMA 2.0.1. For m € My, a basepoint and m' € My ni1 a lift of m,
there are isomorphisms mi(Myn, m) =~ PModg,,, mi(Myns1,m') =~ PModg,
such that the diagram

1 ——m(Bgn) — m(Mgnt1,m') — 1 (Myp,m) —1

- -

PMod,,, — 1

1 — m(Syn) —> PModg i1

commutes, where the vertical maps are given by these isomorphisms, the top
row s the exact sequence of homotopy groups induced by the forgetful map
Mgn+1 — Mgn, and the bottom row is the Birman exact sequence [FMI12,
p. 98].

Proof. This follows from the contractibility of the universal cover of .#, ,,
and the fact that .#,, is the quotient of its universal cover by the properly
discontinuous action of PModg,. See [FM12, §10.6.3 and p. 353]. There
is a choice involved here, namely, if C' is the Riemann surface associated to
the point m € .#;,, one must choose a homeomorphism between C' and our
reference surface X, ,,, and similarly with m’. Changing this homeomorphism
replaces the vertical isomorphisms by conjugate isomorphisms. ([

The subgroup Wl(Eg,n) C PMody 41 is often referred to as the point-
pushing subgroup.

2.1. Basic properties of MCG-finite representations. To acquaint the reader
with MCG-finite representation, we now spell out some of their basic proper-
ties.

ProprosITION 2.1.1. The direct sum and tensor product of two MCG-
finite representations of w1 (3g,n) is MCG-finite. Any semisimple subquotient
of an MCG-finite representation is MCG-finite.
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Proof. The first statement, about direct sums and tensor products, is
clear. The second is immediate from [LL22, Lemma 2.2.1]. O

We next show that restrictions of representations of Mody 41 to the point-
pushing subgroup are MCG-finite. See also [Kasl5, Lemma 2.2] for a related
result with analogous proof.

PROPOSITION 2.1.2. Let I' C Mody 41 be a finite index subgroup con-
taining the point-pushing subgroup m (X,,,) C Modg ni1. Let

p:T'— GL,(C)
be a representation. Then p\m(ggyn) is MCG-finite.

Proof. Replacing I' with I' " PMody 41, we may assume I' C PModg 41,
the pure mapping class group. We claim that the image of I' in PMod, ,, (under
the map PModg 41 — PMod,,, arising from the Birman exact sequence)
stabilizes the conjugacy class of p. It suffices to show that for each v € T,

p’ i (Bgn) = GL,(C),
g+ p(v9r™)
is conjugate to p. Indeed, p7(h) = p(v)p(h)p(y)~ . O

We later give a partial converse to Proposition 2.1.2, for irreducible repre-
sentations, in Corollary 2.3.5. We now give a geometric counterpart to Propo-
sition 2.1.2, which is closely related to [CH21, Th. Al].

PRrROPOSITION 2.1.3. Let w° : €° — A be a punctured versal family of

n-pointed genus g curves, as in Notation 1.10.1. In particular, # — My s
dominant and étale. Let C° be a fiber of m°. If

p:m(€°) = GL.(C)
is a representation, plr (coy is MCG-finite.

We prove Proposition 2.1.3 in Section 2.1.6, but we first require some
well-known lemmas about families of curves.

LEMMA 2.1.4. For .4 a scheme and any dominant étale map M — My,
im(my (M) — w1 (Myy)) has finite index in 1 (Mgy) ~ PModg p.

Proof. After pulling back to a finite étale cover A" — #,, that is a
scheme (such exists by, e.g., [PdJ95, Prop. 2.3.4]), we may assume there
is a dominant étale map of schemes o : .#Z — A . It is enough to show
im(7y () — m (A7) has finite index in 7;(.4"), which follows from [Deb01,
Lemma 4.19]. The basic idea here is to pass to opens over which the map is
finite flat, and use that passing to opens will preserve the property that the
image of the map of fundamental groups has finite index. O



838 AARON LANDESMAN and DANIEL LITT

LEMMA 2.1.5. If€ — A is a versal family of n-pointed curves of genus g,
with 3g—3+n >0, as in Notation 1.10.1, so that C° is a fiber of 7°, the sequence

(2.1) 1 — m(C°) —— m(€°) —— m(AH) —— 1
1s exact.

Proof. Except for injectivity, the result is immediate from the long exact
sequence in homotopy groups and the fact that C° is connected. Injectivity
holds in the universal case where .# = .#,, is the Deligne-Mumford moduli
stack of curves and ¢° = €, is the universal punctured curve, as the universal
cover of .#g, is contractible. We next show the map 7 (C°) — m(€°) is
injective in the general case via pullback. The composite map C°—% — ¢, is
the natural inclusion of C° as a fiber of €7, over .#, ,,. Hence, the composition
m1(C°) = m(€°) — m(%,,) is injective, and so the first map is injective. [

2.1.6. Proof of Proposition 2.1.3. The exact sequence (2.1) induces an
outer action of m1(.#) on w1 (C®), which factors through the outer action of
PMod,,, on m1(C°) induced by the Birman exact sequence. Specifically, this
outer action sends v € PMod,, to the action of conjugation by 7 on m1(C?)
for v € PModg »+1 a lift of 7y. By construction, this outer action is compatible
with the outer action of Mod, , on 7 (C°) of Definition 1.1.1.

To show p|, (o) is MCG-finite, it therefore suffices to show the conjugacy
class of p[, (co) is stable under the image I" of

T (€°) - m( M) — T (M) ~PMody,, .

This image has finite index by Lemma 2.1.4. The conjugacy class of p|., (o)
is stable under this image because, if ¥ € 71(%°) is any lift of v € T, then pY
is conjugate to p by p(7), as in the proof of Proposition 2.1.2. O

2.2. Projective local systems associated to MCG-finite representations. We
next give a construction lifting an irreducible MCG-finite representation of
m1(X4,n) to a projective representation of a finite index subgroup of Modg 1.

Notation 2.2.1. Suppose p is an irreducible MCG-finite representation of
1 (Xgn, x). Let I' C PMod,,,, denote the finite index stabilizer of the conjugacy
class of p, and let rc PModg ;,+1 denote the preimage of I under the surjection
PModgy ,+1 — PMody , coming from the Birman exact sequence.

LEMMA 2.2.2. In the setup of Notation 2.2.1, there exists a unique rep-
resentation p : I' — PGL,.(C) so that

71 (Zgm, ) —— GL,(C)

(2.2) l J

I 7 4 PGL,(C)
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commutes, where w1 (Xgn,x) C I C PModg 41 s the inclusion of the point-
pushing subgroup from the Birman exact sequence.

Proof. First, we construct the representation p. By identifying PModg 41
C Aut(m (34,0, x)), we obtain an action of PModg 41 on r-dimensional repre-
sentations of w1 (X, x). Since r preserves p up to conjugacy, for every v € f,
there is some matrix M, € GL,(C) so that M,pM " = ~(p). Since p is irre-
ducible, M, is unique up to scaling by Schur’s lemma. We let M, denote the

image of M, in PGL,(C); M, is well defined by the previous sentence. Define
p by
p: T — PGL,(C),
vy M.

Uniqueness of M, € PGL,(C) implies that p is a representation, as
MyMoyr = Moy

Commutativity of (2.2) follows from the definition of the inclusion ¢ :
1 (Egn, ) = PModg 41 C Aut(mi(Xg,,2)) as the point-pushing subgroup,
realizing the set of inner automorphisms. Indeed, for n € 71 (345, ), ¢ sends n
to the automorphism of 71 (g, 2) given by 8+ n8n~!. Hence we may take
M,y = p(n), implying (2.2) commutes.

Finally, uniqueness of p follows from commutativity of (2.2) and unique-
ness of M.,. Indeed, for any v € I' and for all n € (X, ), we must have

plymy ™) = ply)p(m)p()

and hence p(v) must equal M. O

See, e.g., the proof of [Sim92, Th. 4] for a similar argument.

We will also need a geometric variant of Lemma 2.2.2. We give the
geometric rephrasing of Lemma 2.2.2, implicitly using Lemma 2.0.1. Below
A is the finite étale cover of .#,,, corresponding to a finite-index subgroup of
I' € PMody ;,, chosen so that .# is a scheme (as opposed to a Deligne-Mumford
stack).

LEMMA 2.2.3. Let p: m1(Xgn,x) = GL-(C) be an irreducible MCG-finite
representation. There exists a scheme .# with a finite étale map M — My,
with associated family of n-times punctured curves w° : €° — M#, a point
c € €° with m := 7°(c), and a representation p : m(€°,c) = PGL,(C) so that
the following holds. Upon identifying m(Xgn,x) ~ m1(€y,c), the diagram

m1(6°,c) —— GL,(C)

(2.3) l l

m(%4°,¢) —— PGL,(C)

commutes.
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2.3. Lifting Projective representations. The main goal of this section is
to prove Proposition 2.3.4, which says that, étale locally on the base .#, we
can lift the representation p into PGL,(C) constructed in Lemma 2.2.3 to a
representation p’ into GL,.(C).

Because the obstruction to lifting is related to C* = ker(GL,(C) —
PGL,(C)), we will use the following classification when r = 1.

ProprosITION 2.3.1 ([BGMW22, Lemma 3.2]). Let ¢ > 1,n > 0. Then
any MCG-finite representation

p:m(Sgn) = C*
has finite image.

For the reader’s benefit, we recall the idea of the proof of Proposition 2.3.1.
The idea is to show that if any standard generator of 7 (X,,,) corresponding
to a loop 7y in X, ,, has infinite order under p, then acting on p by powers of
the Dehn twist about v gives an infinite collection of distinct representations.

In order to lift PGL,(C)-reps to GL,(C)-reps, we will need to know that
the image of p has finite intersection with the center of GL,(C).

LEMMA 2.3.2. Let g > 1. Suppose p : m1(X4,) = GL,(C) is an MCG-
finite representation. Then p has finite determinant. Moreover, p factors
through a subgroup G with SL,(C) C G C GL,(C) and pu := GNker(GL,(C) —
PGL,(C)) a finite group.

Proof. By Proposition 2.3.1, the composition 1 (Eg.,) & GL,(C) <% €

has finite image H. We can take G := det ' (H) C GL,(C), which indeed has
finite intersection with the center of GL,(C), and hence finite intersection with

ker(GL,(C) — PGL,(C)). O

In order to lift representations from PGL,(C) to GL,(C), we will need to
kill certain cohomological obstructions using dominant étale maps.

LEMMA 2.3.3. Let i > 0 and .# be a complex variety. Suppose u is a
finite abelian group and o € H' (w1 (.#,m), 1) a cohomology class. Then there
is a dominant étale map M' — M so that o| 4 =0 € H (7 (M), ).

Proof. First, we claim that for any class « € H*(.#,u), there is a dom-
inant étale map A4 — # so that a| » = 0. Since p is finite, we can use
the comparison between singular and étale cohomology to reduce to show-
ing that for any o € HY (.4, u), there is a dominant étale map A — &
for which «| » = 0. Choose an injective resolution I® of u, and represent «
by some & € ker(I'(.#) — I'*'(.#)). Because I® is exact, there exists for
each © € .# an étale neighborhood U, of = so that «|y, is in the image of
I'"1(U,) — I'(U,). Taking = to be the generic point of .# gives the claim.
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Now, as above let o denote the image of ¢ under the natural map
Hi(ﬂ-l(%am)vﬂ) - Hz(%vﬂ)a

and take ./ as above so that a|, = 0. By [SGA73, Exp. XI, 4.6] we can
find a Zariski open .#' C A4 that is a K(m(.#',m’'),1) Eilenberg-Maclane
space. This implies the natural map H(my(.4',m'),u) — H (A", p) is an
isomorphism. Therefore, since a| y = 0, we also have a4 = 0, and hence
Ol () = 0, as desired. O

We now combine the above results to show that the projective represen-
tation p constructed in Lemma 2.2.3 can be lifted to a linear representation.

PROPOSITION 2.3.4. Suppose € — M is a versal family of n-pointed
curves of genus g > 1, with associated family of punctured curves n° : €° — M .

Let ¢ € €° be a point and m = w°(c). Suppose we have representations p :
m1(%)5,c) = GL.(C) and p : m1(€¢°,c) — PGL,(C) so that the diagram

(%2, ¢) —2— GL,.(C)

(2.4) l l

m1(%°,¢) —— PGL,(C)

commutes. Moreover, assume p is MCG-finite. Then, there exist

(1) a dominant étale map A" — M,

(2) corresponding relative curve €' = M' X z € with associated family of
punctured curves €'°, and

(3) a representation p' : 7 (€"°,d) — GL.(C) for some basepoint ¢ € €'
lying over c

so that, upon choosing some m’ over m with €, ~ G,

p

/_\

m(€°,,¢) —— m(€"°,¢) —— GL,(C)

(2.5) l ) l

m(€°,¢) —2— PGL,(C)

commutes. Moreover, im p' is contained in a subgroup G with SL,.(C) C G C
GL,(C), such that SL,.(C) C G has finite inde.
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Proof. Taking GG and p as in Lemma 2.3.2, there is a commuting diagram

HY(m(€°, ¢), 1) ————— H'(m1(G5,), 1)
v 3
Hom(m1(¢°,¢), G) ——=—— Hom(m (¢, ¢),G)
(2.6) 5 §
Hom(m (%2, ¢), PGL(C)) —— Hom(m1(2, ), PGL,(C))
€ ¢
H(m(€°,¢), p) —————— H*(m(%,¢), ),

where the columns are exact sequences of sets. We start with a representation
p € Hom(m (¢°,c), PGL,(C)) and p € Hom(m (%5, ¢), G). The commutativity
of (2.4) can be equivalently expressed as the statement that 6(p) = v(p). We
seek to construct p’ such that (2.5) commutes, meaning that, after replacing
A with a dominant étale .#" and € with ¢”, there is some p’ with 8(p') = p
and a(p’) = p.

First, we argue that we can pass to some .#’ so that p lies in the image
of B. Tt is equivalent to arrange that £(p) = 0. As a first step, we claim
n(e(p)) = 0. This holds because n(e(p)) = ¢(d(p)), and §(p) = v(p) lies in
the image of v. We therefore have that (p) € kern. The Hochschild-Serre
spectral sequence associated to the short exact sequence

1 = m(%,) > m(€°) — m(H#)—1
of Lemma 2.1.5 yields a short exact sequence
0— H*® = kern = HY' — 0,
where H%J is a subquotient of H(mwy (.4, m), HI (w1 (€5, ), 1))-

By passing to a finite étale cover .#) of .# , we can assume 1 (.#,m) acts
trivially on the finite group H'(m1(€5, ), ). Now as

Hi(ﬂl(%, m), Hj(771<(g7$17c)7 M))

is finite, by Lemma 2.3.3 we may pass to a further dominant étale scheme
over .# killing every element of H*/, (i,5) = (2,0) or (1,1), and hence every
element of kerrn. Thus after passing to any component .#5 of this dominant
étale scheme over .#5, we have €(p) = 0. Let €5 be the pullback of €° to ..

Let p € HY(m1(¥5,c),G) be an element with 3(p) = p; such a p exists
as we have arranged €(p) = 0. We wish to arrange a(p) = p. This may not
be the case, but it is enough to show that after passing to a further dominant
étale .#', we can modify p by an element of im v so that this does hold. More
precisely, note that «(p) differs from p by an element of o € H'(71(%€2,¢), i),
as by construction y(a(p)) = v(p). It suffices to show that, after passing to
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a dominant étale scheme over .#5, ¢ is in the image of A. After passing to
a finite étale cover of .45, we may assume that H'(m (65, c), ) is fixed by
w1 (A ,m). The Hochschild-Serre spectral sequence gives a map

H0<771('/l7m)7H1(7r1(Cg;mc>7M)) % H2(7T1('//7 m): Ho(ﬂ—l(%ﬁw C)nu'))

such that y(o) = 0 if an only if o € im A. Since H(m1 (€2, ¢), ) = p is finite,
we can apply Lemma 2.3.3 so as to assume, after replacing .# by a dominant
étale ', that x(o) = 0. This implies that o € im A, as desired. O

We can now give a partial converse to Proposition 2.1.3.

COROLLARY 2.3.5. Let p : m(24) = GL(C) be an irreducible MCG-
finite representation, with g > 1. There are a punctured versal family of curves
€° — M and a representation p’ of 1 (€°) whose determinant has finite order,
with the following property: For C° a fiber of m°, there is an identification
m1(Egn) = m1(C°) such that, under this identification, p'| oy = p.

Proof. This follows by combining Lemma 2.2.3 and Proposition 2.3.4. O

Remark 2.3.6. Combining Corollary 2.3.5 with Proposition 2.1.3 gives a
proof of [CH21, Th. A] in the case that p is semisimple and the flat vector

bundle (E, Vj) of [CH21, Th. A] is taken to be the Deligne canonical extension
of (p|ce ® 0,id®d) to C.

2.4. Representations that are unitary on fibers. The main goal of this sec-
tion is to verify Lemma 2.4.2, which allows us to write local systems on a
family of punctured curves €° — .# in terms of unitary local systems and
local systems pulled back from .#, after passing to a dominant étale map.

The following criterion for unitarity and finiteness will be useful when
analyzing the representations produced by Lemma 2.2.2 and Proposition 2.3.4.

LEMMA 2.4.1. Let G be a group and H I G a normal subgroup. Let
p:G— GL,.(C)

be a representation such that detp has finite order, and suppose p|g is irre-
ducible.

(1) If p|g has finite image, then p has finite image.
(2) If p|lg is unitary, then p is unitary.

Proof. We first prove (1). As det p has finite order, it suffices to show that
the projectivization

Pp: G - GL,(C) — PGL,(C)

has finite image. Let ¢t = #im(p|g). For each g € G, Pp(g) is the unique (by
Schur’s lemma) element of PGL,(C) such that

Pp(g)Pp(h)Pp(g) " =Pp(ghg™")
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for all h € H. Since p(g) acts by conjugation on the order ¢ set im(p|g),
its action has order dividing t!, so p(h) = p(g?")p(h)p(g~"). Hence we have
Pp(g") = id by uniqueness. Thus the image of Pp has exponent dividing t!.
But a linear group with finite exponent is finite [Bur05].

We now turn to the unitary case and verify (2). Let h be a positive-
definite Hermitian inner product preserved by p|g. We first check that im p
lies in the general unitary group; i.e., it preserves h up to scaling. Let V be the
underlying vector space of our representation p. The invariant inner product
h :V xV — C corresponds to a C-linear isomorphism of H-representations
o:V — V. The linear map ¢, and hence h, is unique up to scaling by Schur’s
lemma. For any g € G,

h? : (v, w) = h(p(g)v, p(g)w)

is another H-invariant Hermitian form, and hence h¥9 = ¢ - h for some ¢ € C*.
Equivalently, im(p) € GU(h). Since p has finite determinant, we moreover
obtain im(p) C U(h). O

We conclude the section by giving a convenient description of local sys-
tems V on a family of punctured curves 7° : ° — ., with unitary fibral
monodromy. It may be useful for the reader to consider the case A = C.

As in Notation 1.10.1, let w : ¥ — .# be a versal family of n-pointed
curves, and let €° — 4 be the associated family of punctured curves. Let
m € ./ be a point.

LEMMA 2.4.2. Let A be an Artin local C-algebra with residue field C.
Suppose V is a local system of free A-modules on €° such that V|go is a
constant deformation of a unitary local system; that is, there exists a unitary
C-local system Vo on 6y, such that V|ge ~ Vo @c A.

There is a dominant étale map H' — M, with €' = M X 4 € and
7'° €' — M the associated family of punctured curves, over which

Vigro >~ @i U; @ (n'°)*W;,

where the W; are locally constant sheaves of free A-modules on .#' and the
U; are unitary local systems on €'°. Moreover, for C'° a fiber of €'° — ',
each U;|cro is irreducible, the U;|cro are pairwise non-isomorphic, and W; ~
7T/: HOIIl(Ui, V|(g/0).

Proof. Since V is unitary, we can express it as as a sum of irreducible uni-
tary local systems, Vg =~ @leS?”i, with the S; pairwise non-isomorphic. Let
p:m(%5) — GL,(C) be the monodromy representation associated to Vo, and
let p; be the (irreducible) representation associated to S;. By Proposition 2.1.3,
p is MCG-finite. Hence each p; is MCG-finite by Proposition 2.1.1.
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By repeatedly applying Corollary 2.3.5, there are a dominant étale map
M' — A and representations p) : 1 (¢’°) — GL,(C) with finite determinant
so that for any m’ € .#', p) restricts to a representation m1(%¢”",,) — GL,(C)
identified with p;. Let U; denote the local system on ¢”° corresponding to pf.
Each U; is unitary by Lemma 2.4.1. The U; are irreducible and pairwise non-
isomorphic because the same holds for the p;.

Let W; = 7/° Hom(U;, V| ), as in the statement. The W; are locally
constant sheaves of free A-modules by the hypothesis that V]ge ~ Vo @c A.
There is a natural evaluation map

P @le(ﬂ'/o)*wi U, -V

(bﬂlo.

It only remains to show that 1 is an isomorphism. We do so after restriction
to any fiber of €’° — .#’, where 1) is identified with the isomorphism

®j—1 Hom(pi, p @ A) @ pi = p® A,

S S
Za1®vi»—>2ai(vi). O
i=1 i=1

3. Deformation-theoretic preliminaries

In this section we introduce some deformation theory of group representa-
tions. In Section 8, we will use the theory developed here in conjunction with
the vanishing results proven in Section 6 to show that MCG-finite representa-
tions have certain rigidity properties.

3.1. Deformations of representations. We begin by recalling a standard
description of deformations of representations in terms of cohomological data.

Recall Notation 1.10.2: for R aring and a representation p : G — GL,(R),
we use ad(p) to denote the adjoint G-representation obtained by composing p
with GL,(R) — GL(pgl,(R)).

Fix a group G and a representation py : G — GL,(C). Let Art be the cat-
egory of local Artin C-algebras with residue field C. If A € Art, with maximal
ideal my, we say that a representation p4 : G — GL,(A) is a deformation of
po if pa = po mod my. The constant deformation is the deformation obtained
via the composition

G328 GL,(C) = GL,.(A).

We say a representation p : G — GL,(A) is conjugate to a constant rep-
resentation if there exists a matrix M € GL,.(A) such that MpM~! fac-
tors through GL,(C). Say a deformation p4 of py has constant determinant
if detpa = det pg, regarded as a map G — A* via the natural inclusion
C* — A*.
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We now define deformations of representations over square-zero extensions
in Art. Given a square-zero extension

0—-I—-B—-A—=0

with A, B € Art, and a representation p4 : G — GL,.(A), a deformation of
pA is a representation pp : G — GL,(B) with pp = pg mod I. Two such
deformations pp, p’p are equivalent if there exists a matrix M € GL,(B) with
pp = MpsM~!, such that M = id modI.

LEMMA 3.1.1. Fiz a group G and a representation py : G — GL,(C).
Consider

0— €A — Ale]/e? - A =0

with A € Art, and let py : G — GL.(A) be a deformation of py over A with
constant determinant. The set of equivalence classes of deformations of pa to
an Ale]/€e-representation with constant determinant is naturally in bijection
with H'(G,ad(pa)). Moreover, this description is functorial in G.

Proof. See [Maz97, Ch. V, §21, Prop. 1]. O
LEMMA 3.1.2. Let
1> N->G—-Q—1

be a short exact sequence of groups (i.e., N is normal in G and Q = G/N).
Let A € Art and

p:G— GL.(A4)

be a representation, and suppose that HY(Q, H'(N,ad(p)|n)) = 0. If pe is any
deformation of p to Ale]/e* with constant determinant, then pc|n is equivalent
to p @ Alel/€X|.

Proof. By Lemma 3.1.1, the set of equivalence classes of deformations of p
to Ale]/€? is naturally in bijection with H'(G, ad(p)), and the set of equivalence
classes of deformations of p|y is naturally in bijection with H(N,ad(p)|n).
By functoriality, the restriction map is given by the natural map

HY(G,ad(p)) — HY(N,ad(p)|n),

which, by the five-term exact sequence from the Hochschild-Serre spectral se-
quence, factors through H%(Q, H'(N,ad(p)|x)) = 0. Hence p.|y is equivalent
to p @4 Ale]/€?|y as desired. O

3.2. A criterion for constancy. The next proposition gives a criterion for
a deformation of a group representation to induce the trivial deformation on a
normal subgroup. This will be used in the proof of the semisimple version of
our main theorem, Theorem 8.5.3.
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We define
B, = C[t]/t",
Ry = Bn-1ld/€® = Clt, /(" €%).
Let d,, : B, — R, be the map given by

dn : f(t) = f() +ef'(2),

where f’(t) is the derivative of f(t). Note that d,, is injective.

Below we say that an element of GL,(By,) is constant if it lies in GL,(C) C
GL,(B,). We say that an element of GL,(C[[t]) is constant mod "*! if its
image in GL,(B,) is constant. Likewise, a representation p into GL,(B,) is
constant if it factors through GL,(C); it is conjugate to a constant represen-
tation if there exists M € GL,(B,) such that MpM~! is constant. Similarly,
a representation into GL,.(C[[t]]) is constant mod #"*1 if its image in GL,(B,,)
is constant.

ProrosITION 3.2.1. Let
1o N->G—=Q—1
be a short exact sequence of groups. Let
po : G — GL,(C)

be a representation, and suppose that for all n and all deformations v : G —
GL,(By) of po with v|n constant, we have H*(Q, H*(N,ad(y)|n)) = 0. If

pe : G = GL, (C[[1])

18 any representation with po, = po modt and constant determinant, then
Poo|N 18 conjugate to a constant representation. That is, there exists Mo, €
GL,(C[[t]]) such that Muopoo|N Mz} factors through GL,(C).

Proof. We wish to construct Mo, € GL,(C[[t]]) such that Moo poo|n M is
constant, i.e., factors through GL,(C). We do so by successive approximation.
For all m > 0, set py, : G — GL,.(B,) to be ps mod t™F1,

Set S; =id. Suppose we have found S, € GL,(C[[t]]) such that Sy, pe0|n S,
is constant modulo t". We claim it suffices to construct an element M, €
GL,(By), M,, = idmodt™, such that M, S,pn|nS;, M, ! is constant. Indeed,
let M; = id and for n > 1, let M, be an arbitrary lift of M, to GL,(C[[t]]).
Then, the representation M;Snpoo| NS, 1]\7_[;_1 is constant mod t"*1. Set
Snt1 = M\;Sn, so that Sp11 = M\; . ]\/4;_/1 . ]T[l by induction. Then, setting

My := lim M\;]\/L:le = lim S,,
n—oo

n—oo
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we claim that the limit converges as Mvn — id, and Moo pool NMo_ol is constant.
This claim holds because M., = .S,, mod t™ for all n, so we have

Moo poo| N M mod t" = Sy poc| NS, ! mod 7,

which is constant for all n by construction.

We now construct the desired matrix M, € GL,(B,). Replacing ps by
SnpooSgl, we may assume poo| N is constant modulo ", i.e., p,—1|n is constant.
We wish to find M,, € GL,(B,,) such that
(1) M, =id modt™, and
(2) Mypn|nM, ' is constant.

Given g € N, we let p,(g) € Mat,«,(B,—_1) be the matrix obtained by
differentiating the entries of p,(g). The representation d,, o p, |y is given by

g~ po(g) + epn(g),

as pp|n is constant mod ¢".
Note that d,, o pp|n : N = GL,(R,,) is constant mod € (as it is equal to
pn—1|n mod €). By hypothesis,

H(Q, H' (N, ad(pn-1)|x)) = 0,
and so by Lemma 3.1.2, d,, o p,|n is conjugate to the constant representation

Pn—1|N ®B,_, Rn = po|ln ®c Ry

by some matrix
n—1

id+e > Cit’ € GLy(Ry),
i=0
where the C; € Mat,,(C). The idea of the remainder of the proof is to view the
matrix above as a vector field that we may flow along to make p, |y constant;
we find the desired conjugating matrix M,, by “integrating” this vector field.
We compute that for g € IV,

(po @c Rn)(g9) = (pn—1 ®@B,_, Rn)(9)

n—1 n—1
_ (id +ey Cit’) (dy © pn(g)) (id = C’iti>
=0 1=0
n—1 n—1
= (id +ey Cﬁi) (po(9) + €pnl9)’) (id —€> Cﬂfi)
=0 i=0

n—1

= po(9) + epn(g)' + €Y _[Ci, po(9)]t'.
i=0
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As p(g) is constant mod t*, p(g)" is 0 mod t"~!. Hence equating coefficients,
we find
[Ci,po(g)) =0fori<n—1
and
pu(9)" = [po(g), Cpa]t" ",
Now set

M, —id+En=Ln ¢ GL,(By).
n

We claim M,,pn|n M, lis constant. Indeed,

o = (104 C2) ) (-Gt

= pu(g) + %[t”‘lcn_l, pn(9)]
= pulg) + %[t”_lcnfl,ﬂo(g)]

= /() = =pal9)’

But the only non-vanishing coefficient of p(g)’ is the coefficient of "1, so the
above expression is constant as desired. O

4. Hodge-theoretic preliminaries

In this section we recall some preliminaries on polarizable complex varia-
tions of Hodge structure (complex PVHS), mixed Hodge theory, and Simpson-
Mochizuki’s non-abelian Hodge theory.

4.1. Variations of mized Hodge structure. Our main goal in this section
is Theorem 4.1.1, which describes the variation of mixed Hodge structure on
the cohomology of a unitary local system on a family of punctured curves. We
then describe the resulting bigrading explicitly in Lemma 4.1.2.

We now review pertinent notation. We refer the reader to [LL23, §5] for
basic definitions related to complex PVHS. Let V be a unitary local system on
a smooth quasi-projective variety. We say that V has a real structure if there
exists a real orthogonal local system Vg such that V >~ Vi ®g C. Note that
for any unitary local system V, the local system V @ VV has a natural real
structure.

Let w : € — # be a family of n-pointed curves as in Notation 1.10.1.
Further assume that .# is smooth. Let 7° : ¥° — .# be the associated
family of punctured curves, j : €° — % the inclusion, ¥ = ¢ \ ¢°, and V
a unitary local system on %°. Below we will use the notion of the Deligne
canonical extension of a flat vector bundle from %° to %, as described in
[Del70, Rems. 5.5(1)] or [LL23, Def. 4.1.2].
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See [PS08, Defs. 14.44, 14.45, and 14.49] for the definitions of variations of
mixed Hodge structure, graded-polarizability and admissibility in the rational
case; the real case is analogous and discussed in [SZ85, Def. 3.4].

The following is well known but perhaps difficult to extract from the
literature.

THEOREM 4.1.1. Suppose V is a unitary local system on €° with real
structure Vg. Then, R'7w°Vg underlies an admissible graded-polarizable real
variation of mized Hodge structure with weights in [1,2], and weight filtration
given by

WIR% VR := R'7,j, Vg € R'VR =: W2R'72Vp.

Let (&,V) denote the Deligne canonical extension of (V & Ogo,id ®d) to €.
The Hodge filtration on R'm°V RO 4 is given, under the canonical identification

RV ® 04 =5 Rin (& > 6 00k, ,(log 2)),

by the filtration induced by the filtration béte on the relative de Rham complex
& E® Q%/%(log 2). That is,

F'R'TV® 0 4 = im(1.(€ © Q) ,(log 2)) = RV @ 0 y).

Proof. First, Griffiths transversality holds vacuously, as the Hodge filtra-
tion only has two steps. To verify the remaining properties of a variation
of mixed Hodge structure we may do so pointwise. Over a point, the veri-
fication that R'72Vg underlies a real variation of mixed Hodge structure is
carried out in [Tim87, Theorem, p. 152]. The description of the weight filtra-
tion follows from [Tim87, Lemma 6.2]. The description of the Hodge filtration
follows from the definition of the Hodge filtration and the degeneration of the
Hodge-de Rham spectral sequence [Tim87, Th. 7.1(a)].

It remains only to verify graded-polarizability and admissibility. This
follows from Saito’s theory [Sai90] (also see [Sch19]) as we now explain. As
Vr is orthogonal, it underlies a real PVHS with trivial Hodge filtration and
polarization arising from the orthogonal structure. Hence, Rj.(Vgr) underlies
an object of the derived category of (real) mixed Hodge modules on ¥. Hence
RmyVr = Rm,Rj, Vg underlies an object of the derived category of (real) mixed
Hodge modules on .#. As 7° is a fiber bundle and hence R'7°Vy is locally
constant, this implies (by [Sch19, Th. 21.1]) that R'7°Vg in fact underlies a
graded-polarizable admissible variation of mixed Hodge structure. It remains
only to compare it with the structure described in the theorem. But this follows
by compatibility when .# is a point, by base change. ([

Let V be a unitary local system on %°, and let J& := R'7°V® 0 4. If V
has a real structure Vg, as in Theorem 4.1.1, then R'7°Vg underlies a natural
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polarized variation of R-mixed Hodge structure. In general, we let W* F'® be
the weight and Hodge filtrations respectively, and we let F° be the conjugate
Hodge filtration induced by the natural isomorphism

IR ~ IRy .
Define
Hy? = F W,
,%ﬁvo’l = FInWw!,
and

Ayt =F'nFL

We give a schematic picture of the structures on J&; in Figure 3.

Figure 3. A schematic diagram of the mixed Hodge structure
on the cohomology of a unitary local system.

LEMMA 4.1.2. For V a unitary local system on €°, there is a natural
direct sum decomposition

(4.1) Sy = A0 © A @ A

Further, under the natural isomorphism 7y = v,

(4.2) Ay = A

Proof. One may check both statements hold by doing so on fibers, in which
case it is a straightforward verification using the definitions of the weight and
Hodge filtrations. O

4.2. Variations on the theorem of the fized part. Our main goal here is to
prove Proposition 4.2.2, which is a variant of the theorem of the fixed part.

THEOREM 4.2.1 (Theorem of the fixed part [SZ85, 4.19], [PS08, 14.52]).
Let & be a smooth quasiprojective complex variety, and let W be an admissible
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graded-polarizable real variation of mized Hodge structure on Z . Then there
is a natural real Hodge structure on H°(2 ,W) such that the natural inclusion

HY(Z ,W)oR - W
is a morphism of real variations of mized Hodge structure.

For our main results, we will need a variant of the theorem of the fixed
part for irreducible representations appearing the cohomology of a unitary local
system on a family of curves. Given a complex local system IL on a variety, we
define the local system L by

(4.3) T L if I admits a real structure,
' . L& L otherwise.

Note that L admits a natural real structure. Note that if L is an irreducible
local system underlying a complex variation of Hodge structure (necessarily
unique up to reindexing), and if L admits a (necessarily unique) real structure,
then LL in fact underlies a real variation of Hodge structure. Indeed, the com-
plex variation carried by L must be preserved (up to reindexing) by complex
conjugation, as otherwise I would carry two distinct complex variations.

PROPOSITION 4.2.2. Let 2 be a smooth quasiprojective complex variety,
and let W be an admissible graded-polarizable real variation of mired Hodge
structure on Z'. Let L be an irreducible complex local system on Z~ such
that Hom(IL, W¢) # 0. Then, L underlies a polarizable real variation of Hodge
structure, and there exist a non-zero constant real mired Hodge structure Q)
and a non-zero map of variations of mized Hodge structure

Q®L — W.

Proof. First, let ¢ be an integer for which there exists a non-zero map

L — gr%,v We. Then

grlw We = ®;V; @ Wj,
where the V; are distinct irreducible local systems carrying polarizable complex
variations of Hodge structure, and the W, are constant complex variations
[LL23, Prop. 4.1.4(2)]. By assumption, L occurs among the V;, and hence
carries a complex PVHS. Hence L carries a real PVHS.

Let Q := Hom(]i,W) = HO(%,iv ® W). The real variation LV ®W
is a tensor product of a pure (hence admissible) variation with an admissible
variation, hence is admissible itself. By the theorem of the fixed part, The-
orem 4.2.1, () carries a canonical real mixed Hodge structure such that the
evaluation map

QoL > W

is a map of variations, as desired. The map is non-zero by construction. ([l
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4.3. Consequences of non-abelian Hodge theory. The main result from
non-abelian Hodge theory that we will use is the following result of Mochizuki,
generalizing earlier work of Simpson in the projective case:

THEOREM 4.3.1 ( [Moc06, Th. 10.5]). Let X be a smooth projective va-
riety and D C X a strict normal crossings divisor. Let X = X \ D. Any
representation

p:7m(X)— GL.(C)

with finite determinant admits a deformation with constant determinant to a
representation underlying a complexr PVHS.

Proof. Aside from the statement about determinants, this is precisely
[Moc06, Th. 10.5]; the statement about determinants follows by examining
the proof of that theorem. O

We also use the related result that cohomologically rigid representations
underlie complex PVHS.

LEMMA 4.3.2. Let X, D, p be as in Theorem 4.3.1. Suppose in addition
that p is semisimple with finite determinant and H'(X,adp) = 0. Then p
underlies a complex PVHS.

Proof. Let G denote the Zariski-closure of the image of p. Note that G
is reductive by semisimplicity of p. Let g be the Lie algebra of G, viewed
as a 71 (X)-representation. Note that g is a subalgebra of ad p as p has finite
determinant, and it is moreover a summand of ad p as ad p is semisimple. Hence
p is cohomologically rigid as a G-representation, as H'(X,g) C H'(X,adp) =
0.

We may apply [Moc06, Lemma 10.13], which yields that p admits a de-
formation as a G(C)-representation to po : m1(X) — G(C), which underlies
a PVHS. But p is rigid and hence admits no non-trivial deformations. This
implies p = pg, so p underlies a PVHS. (]

5. The period map associated to a unitary representation

In this section, we give an explicit description of the derivative of the
period map on the cohomology of a unitary vector bundle over a punctured
curve. In Section 5.1, we set up notation to describe the derivative of the
period map, and we state our description in Theorem 5.1.6. In Section 5.2, we
study a natural bilinear pairing on vector bundles, which is closely related to
the derivative of the period map.

5.1. The period map. We now describe the period map associated to the
first cohomology of a unitary local system over a punctured curve. We aim to



854 AARON LANDESMAN and DANIEL LITT

state Theorem 5.1.6, which is a generalization of the classical statement that,
for C' a curve, the multiplication map

HY(C,w)® HY(C,w) — H°(C,w®?)

can be identified via Serre duality with the derivative of the period map asso-
ciated to the Hodge structure on H'(C,C) [Voi07, Lemma 10.22].

Notation 5.1.1. Suppose 7 : € — A is a relative smooth proper curve over
a smooth contractible complex-analytic base 9. Suppose s1,...,8, : B — €
are sections to m with disjoint images %,...,%,, and let & be the union
of the Z;. Let €° =%\ %, j : €° — € be the natural inclusion, and let
7° : €°— A be the composition 7° = w o j. Let V be a unitary C-local sys-
tem on €°, and let W := R'7°V denote the higher direct image local system
on A. Let (&, V) denote the Deligne canonical extension [Del70, Rems. 5.5(3)]
of (V& Oyo,id ®d) to €; this is a vector bundle with flat connection with reg-
ular singularities along &. Note that for each b € %, &, with the parabolic
structure induced by V (as in [LL23, Def. 3.3.1]) is the semistable parabolic vec-
tor bundle associated to V]go by the Mehta-Seshadri correspondence [MS80],
[Sim90)].

5.1.2. Constructing the period map. We next construct the relevant period
map in (5.2). Set 7 1= W @¢ Oy ~ Rim.(& > & @ QL ,(log 7)), the right-
hand side being relative hypercohomology [Del70, Cor. 6.10, Prop. 6.14]. As
the vector bundle .7 arises from a local system, it carries a natural Gauss-
Manin connection Vgjs. Because we are assuming V is unitary, the Hodge-
de Rham spectral sequence degenerates [Tim87, Th. 7.1(a)] (see also [Sai88,
Th. 5.3.1] for a much more general result), giving a two-step Hodge filtration

of 7 =W ® O, satisfying
5.1) F' = m(6 @ Qg 5(l0g 7)),
' H|F' A ~ R, &,

as described in Theorem 4.1.1.
Since A is contractible, we can globally trivialize the local system W,
yielding a flat trivialization of #°. We therefore obtain a period map

(5.2) P: % — Gr(rk F1.2, 1k ),

for Gr(s,r) the Grassmannian of s-dimensional subspaces of an r dimensional
vector space, which sends b € Z to the subspace F174, C /4.

Remark 5.1.3. In the above Notation 5.1.1, and in what follows, when
¢ — 2 is a relative curve, we will tend to use QF /%(@) instead of the iso-

morphic but arguably more correct Q}g / 4(log Z) in order to simplify notation.
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We will also often identify Q%}, /% with the relative dualizing sheaf we,4; we
will pass between the two without comment.

5.1.4. The derivative of the period map. Having set up notation for the
period map, we now describe its derivative. The derivative of the period map
is an O gz-linear map

AP : Ty — P* T proe k) = (F' )Y @ (A F'H),

where the latter canonical identification follows from [EH16, Th. 3.5] and the
fact that the universal sub and quotient bundles on the Grassmannian pull
back under P to F'# and s#/F'2#. This is dual to a map

dPV : (F') @ (H)F ) — Q.

As €,s1,...,8y, is a family of n-pointed curves over %, we also obtain a clas-
sifying map ¢ : 8 — .#,, inducing a pullback map

o c*Q(l///g’n — QL.

5.1.5. The derivative of the period map at a point. We now identify the
derivative of the period map at a point b € . Given a point b € A, set
C =%, D := D, and E := &|¢. Via Serre duality, we identify dP,’” as a map

dP) : HY(C,E ® Q¢ (log D)) @ H°(C, E¥ @ we) — Ny,

and c; as a map
* 0 2 1
¢ H(C,wg?(D)) — Q2 p-

We also have a natural @g-linear map V : F1.¢ — # /F'# @ Q_I% given as
the composition

(5.3) Vi F - Y 20, > HJF A 0,

A computation similar to [Voi07, Lemma 10.19, Th. 10.21, and Lemma
10.22], which we carry out in Appendix A and complete in Section A.2, yields

THEOREM 5.1.6. Under the identifications above, the map dP,’ factors as

dPY
H°(C,E @ QL(log D)) @ H(C, EY @ we) ~ 0,

(5.4) l(@ C;T
HY(C,E® EY @ wS?*(D))

H(C,we?(D))

where the left vertical map ® is the tensor product of global sections, and the
bottom map tr is induced by the trace pairing E @ EY — Oc. Moreover, dP,’
is adjoint to Vy,.
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5.2. A bilinear pairing. Let C' be a smooth proper connected curve of
genus g, D C C a reduced divisor, and E a vector bundle on C. In this
section, we study the natural perfect pairing

(5.5) Bp : (E®we(D)) x (BY @ we) - wi(D)
given as the composition
Bp: (E®@we(D)) x (EY ®we) -2 (E® EY) @ w@2(D) "2 wE2(D),

where tr denotes the trace pairing E® EY — O¢. Our motivation for consider-
ing this pairing is the close relationship between (5.5) and Theorem 5.1.6: for
E as in Theorem 5.1.6, the pairing on global sections induced by Br computes
the derivative of the period map.

The main result of this section is Proposition 5.2.3, which gives a sufficient
criterion for the rank of E to be large in terms of this bilinear pairing. It is this
lower bound on the rank of E that ultimately leads to the bound of \/g + 1 in
our main result, Theorem 1.2.1. In Sections 6 and 7 we use Proposition 5.2.3
to analyze mapping class group representations appearing in the cohomology
of unitary local systems.

We next review background on parabolic bundles, in order to state Propo-
sition 5.2.3. For a more detailed and leisurely introduction to parabolic bun-
dles, we suggest the reader consult [LL23, §2] and references therein.

5.2.1. A lightning review of parabolic bundles. Fix a smooth proper curve C,
and let D = z1 + --- + x, be a reduced divisor on C. Recall that a par-
abolic bundle on (C, D) is a vector bundle E on C, a decreasing filtration

41 . . .
Ey, = EJ1 2 Ef 2 2 E?ﬁ = 0 for each 1 < j < n, and an increasing
sequence of real numbers 0 < ozjl. < oz? < < o/j” < 1foreach 1< j <n,

referred to as weights. We use F, = (F, {E;}, {04;}) to denote the data of a
parabolic bundle.

Given a parabolic bundle E, = (F, {EJZ}7 {aé}), let J C {1,...,n}, denote
the set of integers j € {1,...,n} for which ozjl- =0, and define

Ey = ker(E — ®je By, [ E2).

(This is a special case of more general notation used for coparabolic bundles
as in [LL23, 2.2.8] or the equivalent [BY96, Def. 2.3], but it is all we will need
for this paper.) In particular, /E\o C FE is a subbundle.

Parabolic bundles admit a notion of parabolic stability, analogous to the
usual notion of stability for vector bundles, which we recall next. First, the
parabolic degree of a parabolic bundle F, is

n Nj
par-deg(F,) := deg(E) + Y > o} dim(E}/E™).
j=1i=1
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Then, the parabolic slope is defined by u,(E,) := par-deg(E,)/rk(F,). Any
subbundle F' C E has an induced parabolic structure F, C FE, defined as
follows: The filtration over x; on F' is obtained from the filtration

_ 1 2 nj+1 _
by removing redundancies. The weight associated to F’ ; C Fy, is

k. pi _ pk
k,lnglg}g{nj{aj DF = BP0y
A parabolic bundle E, is parabolically semi-stable if for every non-zero sub-
bundle F' C F with induced parabolic structure F, we have p.(Fy) < us(Ey).

Mehta and Seshadri [MS80, Th. 4.1, Rem. 4.3], give a correspondence
between parabolically stable parabolic bundles of parabolic degree zero on (C, D)
and irreducible unitary local systems on C'\ D. This bijection sends a local
system V to the Deligne canonical extension of (V& &, id ®@d) with the parabolic
structure induced by the connection (as in [LL23, Def. 3.3.1]).

Remark 5.2.2. It is not entirely trivial to extract from [MS80] that the
parabolic vector bundle they construct from a unitary representation is in fact
the parabolic vector bundle associated to the Deligne canonical extension of the
associated flat vector bundle. What we will use is the fact that the parabolic
vector bundle associated to the Deligne canonical extension is parabolically
semistable, which follows from [Sim90, Th. 5], for example. A generalization
of this fact about unitary local systems (for complex PVHS) is nicely explained
in [AHL19, §5].

The main technical result we will use regarding Bg is

PROPOSITION 5.2.3. Let E, be a semistable parabolic bundle on (C, D)
of parabolic degree zero, with underlying vector bundle E. Let v € H'(C,E ®
we (D)) be a non-zero global section, and suppose the map

H°(C,Bg(v,—-)): H(C,EY ® we) — H°(C,w&?(D)),
u v+ Bp(v,u)
has rank r. Then tk(E) > g —r.

Before proceeding with the proof, we recall [LL23, Prop. 6.3.6], which the
reader may take as a black box. For a less technical variant of this statement,
see [LL23, Prop. 6.3.1].

PROPOSITION 5.2.4 ( [LL23, Prop. 6.3.6]). Suppose C' is a smooth proper
connected genus g curve and E, = (F, {E;},{a;}) is a non-zero parabolic
bundle C with respect to D = x1 + -+ + ©,. Suppose E, is parabolically
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semistable. Let U C Eg be a (non-parabolic) subbundle with ¢ :==rk E —rkU
and § := h°(C, Eo) — h°(C,U).

(I) If ue(Ex) > 29 — 2+ mn, then tk E > gc — 0.

(I1) If ue(Ex) =29 — 2+ mn, then tk E > gc — 0.

Remark 5.2.5. The statement of Proposition 5.2.4 is equivalent to [L1.23,
Prop. 6.3.6], but it differs slightly in that we write “F, is parabolically stable”
in place of “E\* is coparabolically stable” and pu,(E,) in place of ,u*(E*). How-
ever, by definition, F is parabolically stable if and only if /E\* is coparabolically
stable and ji,(E,) = . (Ey) [LL23, Defs. 2.2.9 and 2.4.2)].

Proof of Proposition 5.2.3. The idea is to apply Proposition 5.2.4(1I) with
¢ =1and § = r, and we now set up notation to do so. Set n = deg D. Let
fo: BV Quwe — w%z(D) be the map of vector bundles induced by B (v, —), and
set U = ker(f,). As Bp is a perfect pairing and v is non-zero by assumption,
U has corank one in EV ® wc.

We conclude by applying Proposition 5.2.4(I1) to the parabolic bundle
(E,)Y @wc(D). This is parabolically stable by definition and has slope p((Ey)Y
®wc(D)) = 2g — 2+ n, since E, has parabolic slope 0.

By unwinding the definitions, one may verify mo = EY®uwc.
Therefore, the assumption of the proposition implies

h(C, (E,)Y ® we(D)y) — hO(C,U) = h%(C, EY @ we) — hO(C,U) =r.

Applying Proposition 5.2.4(IT) to the parabolic bundle (F)" ® we (D) with
U = ker(f,) as defined above so that ¢ = 1 and 6 = r, we find tk E =
tk (Ey)Y @ we(D)y > g — . O

6. The main cohomological results

In Section 6.1, we prove our main cohomological result, showing that
higher direct images of unitary systems on families of curves contain no low
rank local systems. From this we derive a related vanishing result in Sec-
tion 6.2, which we will use later to establish cohomological rigidity of certain
local systems.

Throughout this section, we continue to use Notation 1.10.1. Namely,
we use w : € — . for a versal family of n-pointed curves of genus g, and
w° : €° — M for the associated punctured versal family of curves.

6.1. A rank bound. We now prove our main result on the cohomology of
unitary local systems on versal families of curves, Theorem 1.7.1. That is,
for V a unitary local system on %°, we will show that any non-zero sub-local
system of R'7SV has rank at least 2g — 2rk V.
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Proof of Theorem 1.7.1 assuming Lemma 6.1.1 (below). Let me #, C =
7 1(m), C° = (7°)~Y(m) and D := C — C°. Let (E,V) denote the Deligne
canonical extension to C' of the vector bundle V|co ® Oco with its tautologi-
cal connection; (F,V) is a flat vector bundle on C' with regular singularities
along D. The residues of V endow E with the structure of a parabolic bundle
E,, as described in [LL23, Def. 3.3.1]. By the Mehta-Seshadri correspondence
[MS80], the parabolic bundle E, is a sum of parabolically stable bundles, hence
parabolically semistable.

The connection V on ## := R'7nV ®&¢ € , induces an € 4-linear map

Flor S w)F w0,

as in (5.3). Theorem 5.1.6 identifies the fiber of this map at the point m € .#
with the map

p: H(C,E ® we (D)) — Hom(HY(C, EY @ we), H(C,w$?(D))),
v = (u+— Bg(v,u))

defined via Bg from (5.5). For v € H(C, E ® wo (D)), we denote by V,,(v)
the induced map

Vin(v) : H(C,EY @ we) = H(C,wi? (D)),

u+— Bg(v,u).

Our strategy is to observe that a sub-local system of R!7°V of low rank
would provide us with a vector v in F'.J%, so that the linear transformation
Vm(v) has low rank. This is in tension with Proposition 5.2.3 above, which
will provide us with the required dimension bound.

Now, suppose we have a non-zero irreducible sub-local system L. ¢ R'7SV.
We will show in Lemma 6.1.1 that, after possibly replacing V with its complex
conjugate V, there is some non-zero v € F'.7, ~ H°(C, E®wc (D)) for which
Vm(v) has rank (as a linear map) at most %. Under the identification of The-
orem 5.1.6, we obtain that p(v) has rank at most %. Using Proposition 5.2.3,

tkV=rkFE>g-— %. Upon rearranging, we find rkIL > 2¢g — 21k V. O

We now complete the proof of Theorem 1.7.1 by verifying the following
lemma, which is essentially an application of the theorem of the fixed part.

LEMMA 6.1.1. Suppose ©° : €° — M is a punctured versal family of
genus g curves and V is a unitary local system on €°. For m € #, let V.,

denote the fiber over m of the map F' Y, H|F*H @ Qy from (5.3).
Suppose . C R'7°V is a non-zero irreducible sub-local system. After possibly
replacing V and L. with their complex conjugates V and L, there is some non-

zero v € Ly, N FY9, so that V,,(v) has rank at most rkzﬂ‘.
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Proof. For a local system W, let W denote the corresponding local system
with real structure as in (4.3). Note that

R'7oV = R'n°V.

By Proposition 4.2.2, L underlies a real polarizable variation of Hodge
structure, and we have a non-zero real mixed Hodge structure )g and a non-
zero map of real variations of mixed Hodge structures

L Qr®L — RTOV.

Let Q := (Qr) ®r C. As the grading on (R'72V)¢ is supported in degrees
(1,0),(0,1),(1,1), we may assume (after regrading and possibly replacing @
with a subspace) that either
(1) the bigrading on L is supported in degree (0,0) and the bigrading on @

has support contained in {(1,0), (0,1),(1,1)}; or
(2) the bigrading on LL has support equal to {(1,0),(0,1)} and the bigrading

on @ is supported in degree (0,0).

In the two cases above, we choose v as follows.

Case (1): After possibly replacing V, L with their complex conjugates, we
may assume that

Lij Qi’j QL — RIW:V
is non-zero for some (i,j) € {(1,0),(1,1)}. Choose £ € L,, and ¢ € Q%,
(4,7) € {(1,0),(1,1)} such that v := ¢,,,(¢ ® £) is non-zero.

Case (2): After possibly replacing V and L with their complex conjugates,
we may assume dim L% < dimL;;’. Choose arbitrary non-zero ¢ € ) and
¢ € Ly such that v := (¢ ® €) is non-zero.

It is enough to argue that for v as above, V(v) has rank at most rkz]L. Since

L carries a complex PVHS, we may compute the rank of V(v) by computing
with the analogous period map

Vim : F'Lpy = Lo /F 'L, ® Q'

associated to L. In case (1), this map is identically zero, so we are done (i.e.,
rk V(v) = 0). In case (2), from the definition of Vi, ,,, it is enough to show

dimL,,/F'L,, < %.

This follows because we have dimL,, = dim F'L,, + dimL,, / F'L,, and we
assumed

dim F'L,, = dimLL? > dimLY%! = dimL,,/F'L,,. 0
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6.2. A wvanishing result. We apply Theorem 1.7.1 to prove a vanishing
result about local systems on %° that are not necessarily unitary. We assume
only that their restriction to each fiber of 7° is unitary. The reader may find
it useful to consider the case where A = C below, though we will need the full
generality of the result below for our deformation-theoretic applications.

THEOREM 6.2.1. With notation as in Notation 1.10.1, let 7° : €° — A
be a punctured versal family of genus g curves. Let m € M be a point, and set
C° =%y;. Let A be a local Artin C-algebra with residue field C, and let V be
a locally constant sheaf of free A-modules on €° such that
(1) Vlge is a constant deformation of a unitary local system, i.e., there exists a

unitary complex local system Vo on C° and an isomorphism V|co ~ Vo®A;

and
(2) rkaV < g.
Then HO(.# , R'7SV) = 0.
Proof. Given a dominant map .#’ — .4, we have an injection
HO( i, R'7n°V) — H (', R* 1oV | ).

Hence, it is enough to prove the claim after replacing .# by some .#' with
a dominant map to .#. Combining this with Lemma 2.4.2, we may assume
V ~ @7, U;®(7°)*W;, where W; are locally constant sheaves of free A-modules
on ./ and U; are unitary complex local systems on €°. It is enough to show
that
HO( A, R*72(U; ® (7°)*W;)) = HY (A, (R'7SU;) @ Wy) =0

for each i. Letting m4 be the maximal ideal of A, the myu-adic filtration
on W; has associated-graded pieces isomorphic to direct sums of copies of
W? = W; ®4 C. Hence W; ® R'm,U; has a filtration with associated-graded
pieces isomorphic to W? ® R'm,U;. Thus it suffices to prove

HO(M, R (U © (n°)W0)) = HO(Al, (R'7U3) @ W) = 0.

Note that tk U; @ (7°)*W? < g.

It is therefore enough to show that if U is a unitary complex local system
on ¢° and W is an arbitrary complex local system on .# with

H°(A R'7(Ue (n°)*W)) = H (A, R'7U @ W) # 0,
then rkU ® (7°)*W > g. A non-zero element of H(.Z, R'7°U ® W) yields a
non-zero map of local systems
WY — R'7°U.

Since U is unitary, we have tkW > 2g — 2rkU by Theorem 1.7.1. Hence

tkW + 2rkU > 2g. As rkW,rk U are positive integers, we find tk W - rk U is
minimized when rk W = 1 in which case tk W -rkU > [(2g — 1)/2]| > g. Note
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that here we use that g > 2 in order for condition (2) of the statement to be
satisfied as V # 0. In general, this implies

(6.1) k(U (7°)*"W) =1k W-rkU > g,
as desired. O

7. The asymptotic Putman-Wieland conjecture

7.1. The statement of the Putman-Wieland conjecture. We next discuss
some applications of our methods to the Putman-Wieland conjecture (Conjec-
ture 7.1.3), a major open problem in geometric topology. Much of the interest
in the Putman-Wieland conjecture arises from its close relationship to Ivanov’s
conjecture that mapping class groups Mod, , do not virtually surject onto Z
for g > 0 [Iva06, §7], as explained in [PW13, Th. 1.3]. In particular, the
Putman-Wieland conjecture for g > 0 is equivalent to Ivanov’s conjecture for
g > 0.

Notation 7.1.1. Let ¥, be an oriented surface of genus g > 0, and let
Ygbp be the complement of b > 0 disjoint open discs and p > 0 disjoint
points in ¥4, so that X,;, is an oriented genus g surface with b boundary
components and p punctures. We let PMod, 5 ;, be the subgroup of the mapping
class group of ¥, , fixing the punctures and boundary components pointwise.
Fix a basepoint vg € X4 ,, which we count as an additional puncture to
obtain an action of PMody 4 p+1 on 71 (g4, v0). Let K Qw1 (3gp.p,v0) be a
finite index normal subgroup corresponding to a finite Galois covering space
Ygbp — Xgpbps O equivalently a surjection ¢ : m(Xgpp,v0) - H, with
H = m(Xgpp,v0)/K a finite group. Let I' C PModg 41 denote the finite
index subgroup preserving ¢ up to conjugacy. Viewing Hi(Xy y ,,C) as an
H-representation, if p is an irreducible H-representation, we let

Hl(zg’,b/,p’7 (C)P =pR HomH(pa Hl(zg’,b’,p’) (C))

denote the p-isotypic component.

We obtain an action of I' on K* @ C = H; (X, 4,7, C) and hence on the
characteristic subrepresentation H'(Xy y ,v,C)?. By filling in the punctures
and deleted discs, we also obtain an action of I on Vg := Hi (X, C), referred
to in [PW13, p. 80-81] as a higher Prym representation.

Definition 7.1.2. Fix a finite group H and non-negative integers g, b,
and p. Let PWfb’p be the statement that for any surjection ¢ : 71 (244, vo) =
H, taking K := ker ¢ and v € Vi any non-zero vector, v has infinite orbit un-
der I'.

Conjecture 7.1.3 (Putman-Wieland, [PW13, Conj. 1.2]). The statement
PW;{b’p holds for every group H with ¢ > 2,6 > 0,p > 0.
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Remark 7.1.4. We note that [PW13, Conj. 1.2] is stated without a group
H and with Q coeflicients instead of C coefficients. We use this equivalent
statement to more easily state our results, which imply that PW;{MJ holds
whenever #H is small compared to the genus g.

Remark 7.1.5. There is a counterexample to the Putman-Wieland conjec-
ture when g = 2 [Mar22, Th. 1.3].

7.2. Our results. We are able to verify Png?p in many new cases. More-
over, we prove the following more general statement, ruling out not only in-
variant vectors in H' (X, C), but even ruling out low-dimensional invariant

subspaces of isotypic components. The proof is given below in Section 7.3.

THEOREM 7.2.1. With notation as in Notation 7.1.1, let p be an irre-
ducible complex H-representation and T' C T' be a finite-index subgroup. Then
HY(, 1, C)?P has no mnon-zero I'-invariant subrepresentations of dimension
strictly less than 29 — 2dim p. The same holds for Hi(Xy,C)? in place of
HY(Sy p , C)P.

Remark 7.2.2. In Theorem 7.2.1, it is important that we restrict our at-
tention to subrepresentations, as opposed to arbitrary subquotients, as the
I'-representation H 1(Zgl,b/,p/, C) is not in general semisimple for b’ + p’ > 0.

A perhaps more concrete corollary is the following.

COROLLARY 7.2.3. The statement PW;{b’p holds for every group H such

that every irreducible representation p of H has dimension dimp < g.

Proof. Fix an irreducible representation p of H. By assumption, dim p<g.
Then 2g — 2dim p > 1, and so by Theorem 7.2.1, H;(Xy,C)” has no non-zero
I-invariant 1-dimensional subrepresentations for any p and any finite index
I ¢ T'. In particular, H; (X4, C) has no non-zero invariant vectors under any
finite index I"V. But if there was a non-zero vector v € Vi with finite orbit, its
stabilizer would yield a finite index IV with a fixed vector. O

Even more concretely, we can give the following bound on # H independent
of its representation theory.

COROLLARY 7.2.4. For fized g,b,p > 0, Png,p holds for every group H
with #H < g°.

Proof. If H is a finite group of order #H < ¢2, then because #H is the
sum of the squares of the dimensions of the irreducible representations of H by

[FHI1, (2.19)], no irreducible representations of H have dimension > ¢g. The
result follows from Corollary 7.2.3. O

In order to prove Theorem 7.2.1, we first note that it suffices to consider
the case of surfaces without boundary.
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LEMMA 7.2.5. With notation as in Notation 7.1.1, for any g > 0,b,p >
0, and p an irreducible H-representation, let IV C T' be a finite index sub-
group. Then there exist a finite index T C PModg o p1p+1 and an isomorphism
Hi(2yp,C)P — Hi(X40p+p,C)P inducing a bijection from I'-invariant
subspaces to I -invariant subspaces.

Proof. Define the natural inclusion ¢ : Xy — 4044, shrinking
boundary components to punctures. There is a deformation retraction from
¥g.0,b/+p onto the subspace ¢(Xy y ,v) and so ¢ induces an isomorphism

Hl (Eg’,b’,p’v (C) — H1 (EQ,O,b’+p’, (C)

The kernel of the induced surjection PMod, 5, , — PMod, 0,54 is generated by
7Zb acting on Sg.bp by rotating the boundary components [FM12, Th. 3.18],
and hence this Z° acts trivially on H1(Xy ., C). Let I be the image of
I under this natural map PModg i1 — PModgopipr1- The action of IV
on Hi(Xy 0 4p,C) factors through the natural map I'" — I"”, inducing the
claimed bijection. ([l

7.3. We now prove Theorem 7.2.1, which is more or less an immediate
consequence of Theorem 1.7.1 applied to the irreducible representations of H,
once one sets up the appropriate local systems. For the proof, we will need
the existence of a versal family of ¢-covers, for ¢ : m1(24,0,n,v0) = H, which
we now define.

Definition 7.3.1. As in Notation 7.1.1, specify a surjection ¢ : 71 (24,0, vo)
— H. A wversal family of ¢-covers is the data of

1) a dominant étale morphism .# — 4, ,,, with 7° : €° — .4 the associated
g7
family of punctured curves;
(2) apoint c € €°, m = 7°(c), C° = €, and an identification i : 71 (24,00, v0)
~ m1(C°, c); and
3) a finite étale Galois H-cover f : 2°° — ¥° inducing a map
g

m(C°%¢c) = m(€°,¢c)/m(Z° ) ~ H
agreeing with the surjection ¢ under the identification of (2).

Proof of Theorem 7.2.1. Using Lemma 7.2.5, it is enough to prove Theo-
rem 7.2.1 when b = 0. ]

By [Wew98, Th. 4], there exists a versal family of ¢-covers 2°° EN7 NN
Technically, [Wew98, Th. 4] constructs .# as a Deligne-Mumford stack, where
points have isotropy groups isomorphic to the center of H, but we may re-
place this stack by a scheme that has a dominant étale map to this stack.
Further, after replacing .# with another scheme that has a dominant étale
map to ., corresponding generically to an étale multisection of 7°, we may
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assume m° admits a section, and hence that the map .# — .#, , lifts to a map
M — ‘//lgm-i-l'

As f is a Galois finite étale H-cover, for each irreducible representation
p of H, we obtain a local system U, on ¢°, with monodromy representation
given by p, and with U,| g trivial. After replacing .# with a dominant étale
cover, we may write

€= @Up ® (m°) "W,
p

where W, := 77 Hom(U,, f,C), by Lemma 2.4.2 (where we take A = C). As
U, has finite monodromy by Lemma 2.4.1(1), and f,C has finite monodromy
by definition, the same is true for W,. Thus after replacing .# with a finite
étale cover we may assume each W, is a trivial local system.

We next verify the first part of Theorem 7.2.1, about H'(Z, o, Q).
Observe that for m € .#, the action of 71 (.#,m) on

R'72(U, ® (7°)*W,)p = (R'72U, @ W)

is identified with its action on H'(Z;2,C)? = H'(Zy0,,C)?. Note also
that the action of m(.#) factors through I', under our given map 7 (.#) —
T (Mynt1) = PModgni1. To prove the first part of Theorem 7.2.1, about
HY(2,0,,Q), it thus suffices to show that, after replacing .# with an arbi-
trary finite étale cover, R! (m3U,)®@W, contains no non-trivial sub-local systems
of rank less than 2g — 2dim p. As W, is a trivial local system, this holds by
applying Theorem 1.7.1 to U,,.

We have thus far proven a statement for the cohomology of X, and
to conclude we deduce a corresponding statement for the homology of Y.
Using the inclusion H'(X,,C)? C H* (X, ,/,C)? we deduce that the former
can have no non-zero I"-invariant subrepresentations (for IV C T finite index)
of dimension less than 2g—2 dim p, as the latter has no such subrepresentations.
Using Poincaré duality and the intersection pairing on H;(Xy,C) we obtain a
Mod, ,, equivariant isomorphism H'(X,,C) ~ Hy(3Z,,C). Hence, Hi(Z,,C)”
also has no subrepresentations of dimension less than 2g — 2 dim p. O

8. Proof of the main theorem on MCG-finite representations

We have finally developed the tools to verify our main result, Theo-
rem 1.2.1: that MCG-finite representations of rank r < /g + 1 have finite
image. The proof is fairly involved, so the reader may find it useful to refer
to the sketch in Section 1.9. Briefly, we start by reviewing the notion of co-
homological rigidity in Section 8.1 and prove the necessary rigidity results in
Section 8.2, using our main vanishing result, Theorem 6.2.1. We next deduce
the integrality of MCG-finite representations of low rank in Section 8.3 using a
result of Klevdal-Patrikis [KP22], which builds on work of Esnault-Groechenig
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[EG18] and ultimately relies on input from the Langlands program and known
cases of the companion conjectures. We then combine the above ingredients
with input from non-abelian Hodge theory to deduce that low rank unitary
MCG-finite representations have finite image in Section 8.4. We generalize
this to the semisimple but non-unitary case in Section 8.5, again using non-
abelian Hodge theory. Finally, in Section 8.6 we bootstrap these results to the
general, non-semisimple case, using Theorem 7.2.1 on the Putman-Wieland
conjecture.

8.1. Background on Cohomological rigidity. We now define the notion of
cohomological rigidity, which detects whether a representation has any first
order deformations.

Definition 8.1.1 (Cohomological rigidity). Let X be a smooth projective
variety, Z C X a strict normal crossings divisor, and X = X \ Z. Let G be a
reductive group over C and

p:m(X)— G(C)

a homomorphism such that the monodromy at infinity is quasi-unipotent. The
representation p is said to be cohomologically rigid if

Hl(yvj!* adp) = 07

where j : X < X is the natural inclusion, 7, is the intermediate extension,
and ad p is defined as in Notation 1.10.2.

If V is the local system on X associated to p, we call V cohomologically
rigid if p is.

Remark 8.1.2. For the case where p is irreducible, see [KP22, Prop. 4.7,
Rem. 4.8] for a moduli-theoretic interpretation of cohomological rigidity. This
says that p is a smooth isolated point of the appropriate character variety,
parametrizing representations with fixed local monodromy at infinity. Note
that if X is a curve, then ji, = 7.

We will typically prove cohomological rigidity by computing H*(X,ad p),
via the next lemma.

LEMMA 8.1.3. In the setting of Definition 8.1.1, assume H(X,ad p) = 0.
Then p is cohomologically rigid.

Proof. This follows from the identification H*(X, ji, ad p) ~ H*(U, a ad p)
for U € X a certain dense open subscheme containing X with a: X —U the
inclusion [EG18, Rem. 2.4] (see also [KP22, Rem. 4.8]). The Leray spectral
sequence gives an injection H'(U, a, ad p) < H'(X,ad p), implying the claim.

([l
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Definition 8.1.4. If H'(X,ad p) = 0, we say that p is strongly cohomolog-
1cally rigid.

8.2. Cohomological rigidity and unitary MCG-finite representations. Let
p : m(Xgn) = GL.(C) be a unitary MCG-finite representation of rank <
Vg + 1. We will study p by associating to p a certain unitary local system
on a well-chosen versal family of curves. Crucially, this unitary local system
will be cohomologically rigid. This will follow from our main vanishing result
Theorem 6.2.1.

Throughout this section, we use notation as in Notation 1.10.1. In particu-
lar, 7 : € — # is a versal family of n-pointed curves of genus g, 7° : €° — A
is the associated family of punctured curves, m € .# is a basepoint, and

co =50,

PROPOSITION 8.2.1. Let 'V be a GL, (respectively, PGL,)-local system on
€° with r < \/g+1. Suppose that for m € M, V|co is (respectively, is the
projectivization of) an irreducible, unitary local system. Then V is strongly
cohomologically rigid. In particular, V is cohomologically rigid.

Proof. By Lemma 8.1.3, it is enough to show V is strongly cohomologically
rigid. We let ad V denote the adjoint local system as in Notation 1.10.2. We
will check H'(%¢°,adV) = 0. Using the Leray spectral sequence associated to
the map 7°, it suffices to show that

HO( A, R'7ad V) = H' (A , 72 ad V) = 0.

We have HY(.# , R'72 ad V) = 0 by Theorem 6.2.1 (taking A = C), astkad V =
r? —1 < g and ad V|¢e is unitary by assumption.

To conclude, it is enough to show 7 ad V = 0. This is follows from Schur’s
lemma because V|co is (the projectivization of) an irreducible local system,
and so ad V|ce has no m1(C°)-invariants. O

8.3. Verifying integrality. The next step of the proof is to use the coho-
mological rigidity provided by Proposition 8.2.1 to deduce integrality of MCG-
finite unitary representations.

Definition 8.3.1. Let G be a group scheme over Z. We say a representation
m1(X,z) = G(C) is integral if it is conjugate to a representation that factors
through G (k) for some number field K. A local system on a connected space
X is integral if the corresponding monodromy representation is.

We will primarily be concerned with integrality with respect to the group
schemes G = PGL, and G = GL,. The basic idea to show our local system is
integral is to apply the main result of [KP22], which builds on [EG18] and ulti-
mately relies on Lafforgue’s work on the Langlands program for function fields
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and consequent work on Deligne’s companion conjectures. To apply this result,
we need to know the monodromy of our cohomologically rigid local system V
around boundary components of a strict normal crossings compactification of
%° is quasi-unipotent, which we will verify using the following result.

PROPOSITION 8.3.2 ([AS16, Prop. 2.4]). Suppose that g > 3, v C Xy, is
a simple closed curve, and I' C Mody, is a finite index subgroup. Let 6, €
Mody,, be the Dehn twist about v. Let p : I' — GL,(C) be a representation.
Then for m such that 03" € T, p(83') is quasi-unipotent.

We now verify that the projectivization of a unitary MCG-finite represen-
tation is integral.

LEMMA 8.3.3. Let g > 3 be an integer, and let p : m(2Xy,) = GL-(C)
be an irreducible, unitary, MCG-finite representation, with r < /g + 1. Then
the composition

Pp: m1(Xyn) & GL.(C) — PGL,(C)
1s integral.

Proof. By Lemma 2.2.3, there exist a scheme .# with a finite étale map
M — My, with associated family of punctured curves 7°: 6° — .#, and a
representation

p:m(¢°) - PGL,(C)
agreeing with Pp on restriction to a fiber of #°. It suffices to show that p
is integral. By Proposition 8.2.1, p is cohomologically rigid. Because the
abelianization of PGL,(C) is trivial, it follows from [KP22, Th. 1.2] that p is
integral once we verify that p has quasi-unipotent local monodromy around the
boundary components of a good (i.e., strict normal crossing) compactification
of €°.

One may construct a strict normal crossing compactification as follows.
The scheme ¢° is a finite étale cover of .#, ,4+1 by construction; let ///gmﬂl
be a strict normal crossing compactification of .#, 11 obtained by blowing up
boundary strata of the Deligne-Mumford compactification .# 1 (which is
only a normal crossing compactification, and is not in general strict). Let & be
the normalization of %g’n_i_l/ in the function field of €°. By Proposition 8.3.2,
it suffices to check that the local monodromy about the boundary components
of € correspond to products of commuting Dehn twists about simple closed
curves, under the identification of 71(4°) with a subgroup of PModg 41 =
71 (Mg n+1). This is because a product of commuting quasi-unipotent matrices
is quasi-unipotent. To check the claim about local monodromy about boundary
components, it suffices to check the corresponding claim for //lgmﬂl. But this
is [LLSS23, Lemma 2.1.1]. O

The next result shows we can lift integrality from the projectivization of
a unitary irreducible MCG-finite representation to the original representation.
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LEMMA 8.3.4. Let g > 3 be an integer, and let p: w1 (X4,) — GL.(C) be
an irreducible, unitary, MCG-finite representation, with r < \/g+ 1. Then p
1s integral.

Proof. By Proposition 2.3.1, det p has finite image, and hence p factors
through G(C), where G C GL, is a flat affine Z-group scheme containing
SL, with finite index. (For example, we can take G = det™(u,,), where
det p factors through p,,.) Note that the natural morphism G — PGL, is
finite. After conjugating p by some matrix we may assume Pp factors through
PGL,(Ok) for some number field K, by Lemma 8.3.3.

As m1(X,,,) is finitely generated, it suffices to show that for a generator
a € m(X,,), there exists some finite extension K’/K such that the matrix
p(a) lies in G(Ok+). The obstruction to lifting any given 0k point of PGL,
to G is a ker(G — PGL;) torsor, which becomes trivial on some finite flat
extension, and hence over Ok for some finite K'/K. |

8.4. Verifying finiteness. We now show that a unitary MCG-finite repre-
sentation p of low rank has finite image. We have already shown that, in the
irreducible setting, such representations are defined over 0. We will use the
techniques of [LL23] to deduce that they have finite monodromy. To do so, we
will argue that for each embedding 7 : O — C, p ®¢, » C has unitary mon-
odromy. We know this for one such 7 but not for the rest. To prove unitarity
for all such 7, we will use [L123, Th. 1.2.12], and to verify its hypotheses we
will need to use non-abelian Hodge theory to construct certain complex PVHS.

PROPOSITION 8.4.1. Let
p:m(Egn) = GL-(C)

be a unitary MCG-finite representation with r < \/g+ 1. Then p has finite
1mage.

Proof. As p is unitary, it is semisimple. As an irreducible sub-represen-
tation of an MCG-finite representation is MCG-finite by Proposition 2.1.1, we
may without loss of generality assume p is irreducible.

If g < 3, then » < 1, and so we may conclude by Proposition 2.3.1.
Thus we may assume g > 3. By Lemma 8.3.4, we may assume p factors
through GL,(Ok) for some number field K and some embedding ¢ : O — C.
We now adjust notation so that p denotes this Ox-representation and p, =
p @g, .. C denotes our original MCG-finite representation. By Corollary 2.3.5,
there exists a punctured versal family 4° — .# and a representation p| :
m1(%°) — GL,(C) with finite determinant, restricting to p, on the fundamental
group of a fiber of 7°, i.e., for C° a fiber of 7°, pIL|ﬂ-1(Co) = p,. Note that
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p, is irreducible (as p, is irreducible), and strongly cohomologically rigid, by
Proposition 8.2.1.

Choose any embedding 7 : O — C, and let p; := p ®g, - C. Note that
pr is MCG-finite, as the same is true for p,. We aim to show p; is unitary.

Choose o : C = C so that o ot = 7, and set p, = p, ®c, C. Note that
p;\ﬂl(co) = pr. Now observe that p. is strongly cohomologically rigid, as the
same is true for p/, and strong cohomological rigidity (being a cohomological
condition) is preserved by automorphisms of C. Moreover, p is irreducible
with finite determinant, as the same is true for p!.

We next show p, is unitary. By [LL23, Th. 1.2.12], in order to show p is
unitary, it is enough to show p! underlies a complex PVHS on %°. Since p/.
is strongly cohomologically rigid and irreducible with finite determinant, this
follows from Lemma 4.3.2.

We are thus in the following situation: p : m(X4,) = GL.(Ok) is a
representation such that for each 7 : Ok — C, p ®¢, » C is unitary. Such a
representation has finite image by [LL23, Lemma 7.2.1]. O

8.5. Reduction from the semisimple case to the unitary case. In this sec-
tion we will prove Theorem 1.2.1 for semisimple representations. The idea is
to first deform our representation to a complex PVHS via non-abelian Hodge
theory. Then we will argue that this complex PVHS is in fact unitary, using
the results of [LL23], so that we can apply Proposition 8.4.1. Finally we will
use the rigidity properties of unitary MCG-finite representations to argue that
our deformation was in fact trivial—the deformed representation was in fact
the one we started with.

LEMMA 8.5.1. Let n° : €° — M be a punctured versal family of curves
of genus g. Let ¢ € €° be a point, set m = 7°(c), and let C° = €;,. Let

Poo : (€7, c) — GL,(C[[t])
be a representation with r < /g + 1 and constant determinant, and let pg =

poo @ C. Suppose polr, (co ) is unitary. Then peolx (o) 95 conjugate to a
constant representation.

Proof. We apply Proposition 3.2.1 to the short exact sequence
1= m(C°%¢c) = m(€° c) = m(M,m)— 1.
We must verify that for any n and any deformation
v:m(6°,¢) — GL,.(C[t]/t")
of pg with 7|, (co ) constant, we have
H( 4, R'm, ad(7)) = 0.
But this follows from Theorem 6.2.1. Indeed,
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rkcpyjentr ad(y) = —-1<g
as r < v/g + 1 by assumption. O

LEMMA 8.5.2. Let w° : €° — M be a punctured versal family of curves
of genus g. Let ¢ € €° be a point, set m = w°(c), and let C° = €,,. Let X be
a finite-type connected C-scheme, and let

p: Wl(%o,c) — GLT(ﬁx(X»

be a representation with r < /g + 1 and constant determinant. For a closed
point x € X with residue field k(x) = C, let p, 1= p g, (x) K(T). Suppose
there exists a closed pointy € X such that py|x, (co ) is unitary. Then for each
closed point x € X, pylr, (coc) 18 conjugate to pylr (oo c)-

Proof. Without loss of generality X is a reduced (not necessarily irre-
ducible) connected curve, as any closed point € X is connected to y by such
a curve. We claim it suffices to prove the statement if the parameter space X
is smooth and irreducible.

To reduce to this case, suppose X is neither smooth nor irreducible, and let
Y be the normalization of the component Y of X containing v, and ¢ : Y — X
the natural map. By the case of smooth irreducible curves, t*p| ., (co ) ®k(y') is
independent of 4/ € Y(C), and thus Pl (coc) @ K(y") is independent of y” € Y
as well and, in particular, unitary for all ”. Let Z be a connected component
of the closure of X —im(¢). As X is connected, Z intersects Y non-trivially,
say at some point z € Y. But as zisin Y, pz\m(co,c) is unitary, and hence we
are done by induction on the number of components of X.

So we now assume X is a smooth connected curve. Let

Hom(m (C°, ¢), GL,(C))

be the representation variety parametrizing r-dimensional complex representa-
tions of 1 (C°, ¢). There is a natural GL,(C) action on Hom(7;(C°, ¢), GL,(C))
induced by conjugation. Let

f:X — Hom(m(C°, ), GL,(C))
be the map sending a point  to pu|r (co.). We wish to show that the image
of f lies in a single GL,(C)-orbit, namely that of py|~, (co,c)-
Choose a local parameter t of X at y, so that EX\y ~ C[[t]]. Let

Poo : (€7, c) — GL,(C[[t]])

be the corresponding representation. By Lemma 8.5.1, peo|r, (o ) i conjugate
to a constant representation. It follows that there exists a dense open sub-
set U C X containing y such that f(U) is contained in the GL,(C)-orbit of

py’ﬂ'l(CO,C)‘
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AS pylr, (co.¢) 1s unitary, hence semisimple, its GL,(C)-orbit in
Hom(71(C°,¢), GL,(C))

is closed [Sik12, Th. 30]. Hence the closure U of U maps into the GL,(C)-orbit
of pylr (co.¢)- But as X is irreducible, U = X, completing the proof. O

THEOREM 8.5.3. Let
P m1(Sgn) = GL(C)

be a semisimple MCG-finite representation, and suppose r < /g + 1. Then p
has finite image.

Proof. Observe that if p is a sum of irreducible representations, each of
which have finite monodromy, then p has finite monodromy as well. As a
summand of an MCG-finite representation is MCG-finite by Proposition 2.1.1,
it suffices to treat the case that p is irreducible.

By Corollary 2.3.5, there exist a dominant étale map .# — .#,, and a
local system V with finite determinant on the total space €° of the associated
family of n-times punctured curves of genus g, such that for C° a fiber of 7°,
V|ce has monodromy representation given by p. By Theorem 4.3.1, V admits a
deformation with constant determinant to a local system V underlying a com-
plex PVHS. Since r < 24/g + 1, it follows from [L123, Th. 1.2.12] that the local
system Vy|co is unitary. Moreover, Vo|co is MCG-finite by Proposition 2.1.3.

It follows from Proposition 8.4.1 that Vy|ce has finite monodromy. To
conclude, it is enough to show that V|ce = Vg|co. But this is immediate from
Lemma 8.5.2. [l

8.6. Completion of the non-semisimple case. We come to the final step,
where we verify the non-semisimple case of Theorem 1.2.1. The idea is to show
that if we do have a non-semisimple MCG-finite representation of (3, ) of
low rank, we can produce a certain finite cover X ,» of X, ,, which violates
our results toward the Putman-Wieland conjecture.

If p is a G-representation and p’ C p is a subrepresentation, we say that
p' is characteristic if it is stable under all G-automorphisms of p (for example,
the socle of p, or an isotypic component thereof).

LEMMA 8.6.1. Let p be an MCG-finite representation of m1(2g.), and let
p1 C p be a semisimple, characteristic subrepresentation of p. Let po = p/p1,
and suppose pa is semisimple as well. If p1, p2 have finite image and tkp <
Vg + 1, then p has finite image as well, i.e., the extension of py by p1 splits.

Proof. If g = 0, p is the zero representation, so without loss of generality
we may assume g is positive.
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Decompose py ® p1 as py @ p1 =~ @ia?"i, with the o; irreducible and
pairwise non-isomorphic, and the n; positive integers. Since dim p; + dim ps =
dim p < /g + 1, we obtain from the AM-GM inequality that dim p; - dim ps <
(Vg +1/2)? = (g + 1)/4. Therefore, for every i,

n;-dimo; < (¢9+1)/4

and hence n;,dimo; < (g + 1)/4. To put ourselves in the setting of The-
orem 7.2.1, we choose an additional basepoint v € Y, , and let ¥, .11 =
Ygn \ {v}. Let I' C Modg n41 be a finite index subgroup stabilizing the conju-
gacy class of each o;.

Let Xy, — X4, be a finite Galois cover, with Galois group H, upon
which the local systems corresponding to both p; and po trivialize (for example,
the cover defined by ker(p; @ p2)). It suffices to show that p\m(gg,yn,) is trivial.
As p|m(2g/7n,) has abelian image, it factors through an H-equivariant map

Hi(Sg ) = p3 @ p1.
Equivalently, this is the extension class corresponding to p in

EXt71r1(Eg/’n/) (P27 Pl) = Hl (771 (Egﬂn’)? HOm(pQ, Pl))
= Hom (71 (2g /), Hom(p2, p1)) -

Projecting onto the o;-isotypic piece of py ® p; yields a I'-stable quotient of
H (X4 /)7, or equivalently a I'-stable subspace of H'(Xy /)7, of rank at
most (g + 1)/4. Call this subspace @;. But by Theorem 7.2.1, we have that
any non-zero I-stable subspace of H'(X, /)7 has rank at least 2g — 2dim o5,
which satisfies the inequality

3g 1

2g —2dimo; > 29— (g+1)/2 = 5 T3> (9+1)/4 > n;dimo;.

Hence ); equals zero. As this holds for all i, P|7r1(291 ) Is trivial as desired. [

8.7.  We finally complete the proof of our main theorem, that MCG-finite
representations

p:m(Egn) = GL-(C)
with r < 4/g 4+ 1 have finite image.

Proof of Theorem 1.2.1. The proof is by induction on the length of the
socle filtration. The base case is Theorem 8.5.3. Now let p; be the socle of p.
Because the socle of a representation is characteristic, both p; and p/p; are
MCG-finite. Therefore, both p; and p/p; have finite image by induction. We
conclude by Lemma 8.6.1. O
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9. Consequences for arithmetic representations

The main arithmetic consequence of Theorem 1.2.1 is Theorem 9.1.2 be-
low, which verifies a prediction of the Fontaine-Mazur conjecture, as we now
explain. Throughout this section, we will no longer be working over C.

9.1. Application to relative Fontaine-Mazur.

Definition 9.1.1. Let X be a variety over a finitely-generated field K with

algebraic closure K, and let

p: i (Xz) = GLr(Q)
be a continuous representation. We say that p is arithmetic if its conjugacy
class has finite orbit under the action of Gal(K/K) on the set of isomorphism
classes of Tr?(XK)—representationS. Here the action is induced by the natural
outer action of Gal(K/K) on 7$*(X%).

The relative form of the Fontaine-Mazur conjecture predicts that all semi-
simple arithmetic representations are of geometric origin [Pet23, Conj. 1 bis].
Our main arithmetic result, a straightforward application of Theorem 1.2.1, is
that this is true for representations of low rank on the generic n-pointed curve
of genus ¢g. In fact, we show such representations are not only of geometric
origin: they even have finite image.

THEOREM 9.1.2. Let K be a finitely-generated field of characteristic zero
and (C,x1,...,x,) a smooth n-pointed geometrically connected curve of genus
g over K, such that the corresponding map Spec(K) — My nq factors through
the generic point. If r <+/g+1, then any continuous arithmetic representation

p: W‘lét(C'?\ {xl, cee xn}) — GLT(@g)

has finite image.

We prove this at the end of Section 9.1 after spelling out some conse-
quences.

Remark 9.1.3. Let K, (C,x1,...,x,) be as in the theorem, and choose
any embedding K < C. Let C*" \ {x1,...,2,} be the associated Riemann
surface. By [LL23, Lemma 7.5.1], Theorem 9.1.2 implies that arithmetic rep-
resentations are not Zariski-dense in the Q-points of the character variety
parametrizing semisimple representations of 7 (C*" \ {z1,...,2,}) of rank r
for 1 < r < +/g+ 1. This answers negatively a question of Esnault and Kerz
[EK20, Question 9.1(1)].

Recall that a local system V on a smooth complex variety X is of geometric
origin if there is some Zariski open U C X and a smooth proper morphism
f:Y — U so that V|y is a subquotient of R’ f,C for some 1.
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COROLLARY 9.1.4. Let K and (C,z1,...,x,) be as in Theorem 9.1.2,
and let p be a continuous representation

p: W‘ft(C'?\ {z1,...,2,}) = GL.(Qp)

with dim p < /g + 1. The following are equivalent:

(1) p has finite image;

(2) p is arithmetic;

(3) for any embedding K < C and any isomorphism C~Qy, the local system
corresponding to pclcan\(a;,...z,) 00 C*" \ {z1,..., 70} is of geometric
origin;

(4) for any embedding K < C and any isomorphism C ~ Qy, the local system
corresponding to pc|can\ (a,,....z0} 00 C*\{x1,. .., 2s} underlies an integral
PVHS.

Moreover, (1),(3), and (4) are equivalent whenever dim p < 2,/g + 1.

Proof. The equivalence of (1) and (2) when dimp < /g +1 holds by
Theorem 9.1.2, and (1) certainly implies (3) and (4) for any value of dim p.
Next, (3) implies (4) for any value of dim p since any local system of geometric
origin underlies an integral PVHS. This is well known, but see, for example,
the proof of [LL23, Cor. 1.2.7].

To conclude, it remains to show that (4) implies (1) when dim p < 2y/g + 1.
This follows from [LL23, Cor. 1.2.7], by choosing an embedding K < C cor-
responding to an analytically very general complex point of .#, . By [LL23,
Cor. 1.2.7], a local system on an analytically very general curve underlying an
integral PVHS has finite monodromy whenever its dimension is < 21/g + 1.
Therefore, p also has finite monodromy. O

Remark 9.1.5. The relative Fontaine-Mazur conjecture predicts that all
semisimple arithmetic local systems are of geometric origin. Hence on a generic
curve, all semisimple arithmetic local systems p with dim p < 24/g + 1 should
have finite monodromy by Corollary 9.1.4. In particular, this suggests one
should be able to improve the bound of /g + 1 in Theorem 9.1.2 to 2,/g + 1
if one restricts to semisimple representations.

Note that arithmeticity of p on C over K is a stronger condition than
having finite orbit under the action of the mapping class group after base
change to C, and so this does not mean the bound of Theorem 8.5.3 can be
improved to 24/g + 1. Indeed, it cannot be improved, even in the semisimple
case, when g = 1; see Remark 10.2.1.

Proof of Theorem 9.1.2. Let C% := Cg \ {z1,...,2n}. For R a ring, let
Mgn,r denote the moduli stack of genus g, n-pointed curves over Spec R and
let 73 : €5 — My n,r denote the universal n-punctured genus g curve over R.
We use C3 to denote a fiber of 75,.



876 AARON LANDESMAN and DANIEL LITT

We claim (suppressing basepoints) that there is a map of exact sequences
of étale fundamental groups

0 —— m{'(C%) ——— 7"(C) —— 7{"(Spec K) —— 0

o ool

0 —— w‘ft(Cm) — 1'(65) —— 1M (Myng) — 0.
Indeed, the first sequence is the standard homotopy exact sequence; see [Stacks,
Tag 0BTX]. The second one is less standard but, using [Stacks, Tag 0BTX]
again, its exactness can be reduced to verifying exactness of
(9.2) 0 —— w‘ft(Cm) — wft(%é) — ' (A, ,5) — 0.
By comparison of fundamental groups of algebraically closed fields of charac-
teristic 0, it is enough to verify exactness of the sequence with all fields in
subscripts replaced by the complex numbers. The version for topological fun-
damental groups is given in Lemma 2.0.1. Since the étale fundamental group is
the profinite completion of the topological fundamental group [GR71, Exp. XII,
Cor. 5.2|, and profinite completions of exact sequences where the left term has
trivial center remain exact [And74, Prop. 3|, we obtain exactness of (9.2).
We next use (9.1) to deduce that p has finite orbit under the natural action
of mi(Myn0), to be constructed below. The two exact sequences in (9.1) in-
duce compatible outer actions of 71 (Spec K') and 71 (.4, ) on m; (Cm).
Hence, the outer action of m(Spec K) factors through that of (,//gnQ)
Because Spec K — #,,q is dominant, the induced map m;(Spec K) —
(Mg n) has image of finite index. In particular, the orbit of the conju-
gacy class of p under 7¢*(.#,,,, 0, 7), and hence under m¢*(.Z, V1), is finite.
Choose an embedding K < C, and let (4°°)® be the corresponding punc-
tured Riemann surface, so that, by residual finiteness of surface groups, there
is a natural inclusion m((¢°)*") — 77?(%%) As the conjugacy class of p has
finite orbit under ﬂft(///g’n’@,ﬁ) ~ 78 Mync,Tc), the standard comparison
theorems between étale and topological m; [GR71, Exp. XII, Cor. 5.2] im-
ply that p|r ((ge)an) has finite orbit under the topological fundamental group
w1 (M on,C 7c). Hence p|r, ((go)an) is MCG-finite, and hence has finite image by
Theorem 1.2.1, which may be applied after choosing an isomorphism between

Qg and C. But 71((4°)*) is dense in ﬂft(%%), so p also has finite image. [

9.2. Application to lifting residual representations. Let K, (C,x1,...,zy)
be as in Theorem 9.1.2. We next explain why there are residual representa-
tions of 7§ (C% \ {z1,...,7,}) that do not lift to arithmetic representations
in characteristic zero. In particular, in Example 9.2.3 we construct residual
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representations of geometric fundamental groups that are not “of geometric
origin,” as we now define. To our knowledge these are the first such examples.

Definition 9.2.1. Let K be an algebraically closed field, and let X/K be
a variety. Let [F be a finite field of characteristic different from that of K. Let
L be the fraction field of the Witt vectors W (F). We say that a continuous
representation
p: i (Xg) = GL, (F)
is of geometric origin if there exists a continuous representation
& (Xg) = GL, (L)
such that
(1) there exists a &-stable O -lattice W C L with W @ F~ p @ F;
(2) there exist a dense open subscheme U C X and a smooth proper morphism
w:Y — U, such that &£ |7TT't(U?) arises as a subquotient of the monodromy

representation of Rir, L for some i > 0.

In other words, we say a residual representation is of geometric origin if
it arises as the reduction of a characteristic zero representation of geometric
origin.

COROLLARY 9.2.2. Let K, (C,x1,...,xy,) be as in Theorem 9.1.2. Then
for1<r <+/g+1 and p >, 0, no surjective representation

P 71'?(0?\ {w1,. an}) = GLT‘(FP)
admits an arithmetic lift to characteristic zero. In particular, no such repre-
sentation is of geometric origin.

Proof. By definition, a mod p representation of geometric origin lifts to
a representation of geometric origin over @p. As representations of geometric
origin are arithmetic, the second statement follows from the first.

Thus it suffices to show that for p > 0 and p as in the theorem, p does
not admit an arithmetic lift. Suppose to the contrary that it did admit an
arithmetic lift £; by Theorem 9.1.2, £ would have finite image. Thus it suffices
to show that for @ a finite, totally ramified extension of Q,, there do not exist
any finite subgroups of GL,(0() surjecting onto GL,(IF,) if p >, 0.

This follows from Jordan’s theorem on finite subgroups of GL,(Q), where
@ is any field of characteristic zero ([Jor78, p. 91] or [CR06, Th. 36.13]). Recall
that Jordan’s theorem says that there exists some constant n(r) such that if
G C GL,(Q) is a finite subgroup, G contains an abelian normal subgroup of
index dividing n(r). In particular, for any g1, g2 € G, we have

7", g2 = 1,

where I, is the r X r identity matrix.
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Now define g1, g2 € GL,(F,) by

_ 1 1 o 1 0
g1 = (0 1) @ I _o, g2 = (1 1) @I _o.

Direct computation shows that [gT”(’”),ﬁ”(r)] %1, as long as p does not divide
n(r). But if GL, (IF,) was the image of a finite subgroup of GL,(€(), this equal-
ity would hold by Jordan’s theorem, giving the claim. Indeed, we have shown
the result for all p not dividing the constant n(r) from Jordan’s theorem. [J

Using Corollary 9.2.2, we now construct examples of residual representa-
tions with no arithmetic lifts.

Example 9.2.3. Fix non-negative integers g,n so that n > 1if g = 1 and
n>3if g =0. Fix r with 1 < r < /g + 1. We claim that for any n-pointed
genus g curve (C,x1,...,2,), and any p, there exist surjective representations

p: S (Cr \ {x1,. .., 2n}) — GL.(F,)
as in Corollary 9.2.2. In particular, these representations do not admit arith-
metic lifts to characteristic 0.

If n > 0, maintaining the assumption n > 3 when g = 0, we have that
7 (Cw \ {z1,...,7,}) is profinite free on at least two generators. The claim
in this case follows from the fact that GL,(FF,) is generated by two elements
[Wat89].

We now deal with the case n = 0 and g > 2. Indeed, this follows from
the fact that ﬂ‘ft(C?) surjects onto a free profinite group on g generators by
writing it as the profinite completion of (a1, ..., ag,b1,...,bg)/ [[)_1[a:, b;] and
considering the map to the free profinite group generated by cy,. .., ¢4 sending
a; — C;, bl — id.

We conclude the section with several remarks describing consequences of
the above non-liftable residual representations.

Remark 9.2.4. Corollary 9.2.2 provides a counterexample to a particu-
larly optimistic extension of de Jong’s conjecture [dJO1, Conj. 2.3, Th. 3.5]. De
Jong’s conjecture, proven by Gaitsgory [Gai07], implies that an absolutely irre-
ducible residual F-representations of geometric fundamental groups of smooth
curves over finite fields of characteristic not dividing ¢ always lift to arithmetic
representations over a field of characteristic zero. One might naturally ask
if the same is true for curves over arbitrary finitely-generated fields; Corol-
lary 9.2.2 shows that this is not the case.

Remark 9.2.5. The solution to de Jong’s conjecture, as described in Re-
mark 9.2.4, implies that deformation rings of absolutely irreducible F,-represen-
tations of arithmetic fundamental groups of curves over finite fields (of charac-
teristic different from p) are always complete intersections over Z,. Our results
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show that the analogous statement is not true for the arithmetic fundamental
group 7¢*(Cr \{z1,...,7,}) as in Theorem 9.1.2 because they are not flat over
Z, by Example 9.2.3.

Remark 9.2.6. Flach asks [CO05, p. 7] if deformation rings of absolutely
irreducible residual representations of profinite groups are always complete
intersections. By now it is well known that the answer to this question is in
general “no.” (See, e.g., [EM16] for a more or less complete answer to this
question, and the references therein.) Our result Corollary 9.2.2 shows that
this question has a negative answer even for arithmetic fundamental groups of
generic smooth curves, as explained in Remark 9.2.5.

10. Questions and examples

10.1. Rigidity questions for mapping class groups. One of the key ingre-
dients of our arguments is the statement that certain representations of (finite
index subgroups of) Mod, ,, are rigid.

Question 10.1.1. Let g > 0. Is every irreducible complex representation
of every finite index subgroup of Mody ,, rigid?

The answer is, perhaps, plausibly “yes” if one accepts the well-known
analogy between Mod, , and lattices in simple Lie groups of rank > 1, as all
complex representations of such lattices are rigid. For g small, there are exam-
ples of irreducible non-rigid representations of Modg,, (for example, 71 (% 4)
is free on two generators).

Remark 10.1.2. A positive answer to Question 10.1.1 would imply Ivanov’s
conjecture that Modg ,, does not virtually surject onto Z as stated in [Iva06,
§7] and [Kir97, Prob. 2.11.A]. Indeed, suppose some finite index subgroup
I' € Mody ,, admitted a surjection f :I' — Z. For t € C*, the representation

ptZZ%CX,

n— t"

is a non-trivial family of one-dimensional representations of Z. Then the rep-
resentation p; o f is a non-constant family of irreducible representations of I'.

A positive answer to Question 10.1.1 would also imply a positive answer
to the following question:

Question 10.1.3. Let g > 0. Let I' C Mod, ,, be a finite index subgroup,
and let X,(m1(Xg,,)) be the character variety parametrizing r-dimensional
semisimple representations of m1(Z,,). Is the fixed locus X, (m1(X,,))" fi-
nite?
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Remark 10.1.4. One reason to believe Question 10.1.3 has a positive an-
swer is that the profinite analogue does. Namely, let X be any normal con-
nected algebraic variety over C, and let 7$*(X) be its profinite fundamental
group. Let T be a finite index subgroup of Out(7{*(X)). Then T acts on the
set of conjugacy classes of continuous representations

" (X) = GL-(Qp).

It follows from [Lit21, Rem. 1.1.4] that the I'-fixed points are discrete in the
¢-adic topology. (The result there is stated for curves, but one may reduce to
this case by the Lefschetz hyperplane theorem.)

If one accepts in addition Simpson’s motivicity conjecture for rigid local
systems [Sim92, Conj. on p. 9], a positive answer to Question 10.1.1 would im-
ply that every semisimple local system on .# ,, is of geometric origin for g > 0.
This would be of particular interest for those local systems not obviously of geo-
metric origin, e.g., the local systems arising from TQFT constructions. Thus
one might ask

Question 10.1.5. For g > 0, is every semisimple local system on .Z, ,
of geometric origin? Let C be a Riemann surface of genus g > 0. Is every
semisimple MCG-finite representation of m(C') of geometric origin?

Ezample 10.1.6. The analogy between the representation theory of map-
ping class groups and the representation theory of lattices in simple Lie groups
of rank greater than one only goes so far. Indeed, mapping class groups typi-
cally admit non-rigid reducible representations, as we now explain.

(1) Let H = Hi(X,,Q). Morita [Mor93] produces a non-zero class
o € H' (Mod,, (N*H)/H),

closely related to the Johnson homomorphism, yielding a non-split exten-
sion of Mod,-representations

1> AH/H—-W - Q— 1.

The representation W is evidently a non-trivial deformation of QA3 H/H,
and hence this latter representation is non-rigid.

(2) An essentially identical but perhaps slightly simpler argument gives ex-
amples for punctured surfaces. For n > 0, the group PMod,, acts on
m1(Xgn-1,2), and hence on the group algebra Q[m (X ,—1,)]. Let .& C
Q[m1(Xgn—-1,z)] be the augmentation ideal. Then direct computation
shows that the short exact sequence of PMod, ,,-representations

0= 9293 5 7)9% 5 7)9% =0
does not split, and hence the representation .# /.2 @ .#2/.#3 is not rigid.
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(3) For another example, one may consider the non-torsion class in
H' (Mody,1, H' (X4, 7Z))

constructed in [Mor89, Prop. 6.4], which yields a non-split extension of
Mod,,1-representations

1= HY(Z,,Q) =W - Q — 1.

One may make the restriction to the point-pushing subgroup W|m(2g)
explicit as follows. Let

a:m(Xy) = m(Z)*®Q~ Hi(X,,Q)
be the map induced by the Hurewicz isomorphism Hy(3y,7Z) = m(Z,)2P.
Choose a splitting W = H(X4,Q) @ Qe, where we view Hq(¥,,Q) as
isomorphic to H'(X,, Q) via the universal coefficient theorem and Poincaré
duality. Then 71(X,) acts trivially on Hi(X4,Q), and an element v €

m1(X4) acts on e via the map

e—e+a(y).

Remark 10.1.7. For a related discussion of ways mapping class groups do
not behave like lattices in simple Lie groups of rank greater than one; see
[FLMO1]. Interestingly, [FLMO1, Th. 1.6] shows there are no faithful linear
representations of finite index subgroups of Mody o of dimension < 2/g — 1.
A related result follows from our work here, as we now explain.

Let I' € PModg 41 be a finite-index subgroup containing the point-
pushing subgroup. It follows from Theorem 1.2.1, Lemma 2.4.1(1), and Propo-
sition 2.1.2 that if p is a representation of I" of rank < /g + 1

(1) whose restriction to the point-pushing subgroup is irreducible, and
(2) with finite determinant,

then p has finite image. Although the two results are not comparable, it is
interesting that the bound in [FLMO1] is also asymptotic to /g.

10.2. Bounds and examples. It is natural to ask how sharp the bound of
Vg +1 in Theorem 1.2.1 is. We have no reason to believe it is sharp. That
said, one cannot expect a bound that is much stronger, as the extension W
constructed in Examples 10.1.6(3) yields a non-trivial unipotent representation
of m1(X,) of rank 2g + 1, fixed by the action of Mody, namely Wl (s,)-

Remark 10.2.1. The bounds of many of our main results are sharp when
g = 1. In g = 1, there are semisimple 2-dimensional “special dihedral”
MCG-finite representations of (X ,) for n > 0 [BGMW22, Th. B], with
image contained in the infinite dihedral group. This shows sharpness of The-
orem 1.2.1 and also the semisimple case, Theorem 8.5.3. Moreover, there
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exist 2-dimensional non-semisimple MCG-finite representations of (3 ) for
n > 0; see [CH21, Th. B|. This implies sharpness of the bound in Lemma 8.6.1.

Note that the “special dihedral” MCG-finite representations of [ BGMW22,
Th. B] are not in general arithmetic in the sense of Definition 9.1.1, as in general
their local monodromy at infinity is not quasi-unipotent.

Remark 10.2.2. On the other hand, the bound r < /g +1 in Theo-
rem 1.2.1 is not sharp when g = 2 and g = 3. Indeed, to verify this, we
only need show there are no 2-dimensional MCG-finite representations with
infinite image. There are no non-semisimple such representations by [CH21,
Th. B], and so it only remains to show there are no irreducible 2-dimensional
representations. Any such representation p : m(X,,) — GL2(C) has finite
determinant by Lemma 2.3.2. Replacing p by p ® det p~/2, we would obtain
another MCG-finite 2-dimensional representation with infinite image factoring
through SLy(C). No such representations exist by [BGMW22, Th. A].

Question 10.2.3. Let g,n > 0. What is the minimal rank of an MCG-finite
representation of 7 (3,,,) with infinite image?

It is plausible that much stronger bounds than /g + 1 hold in Theo-
rem 1.2.1 if one assumes the representation is semisimple (see Figure 1).

Ezxample 10.2.4. We know of examples of MCG-finite semisimple repre-
sentations of m1(X,) with infinite image, of rank exponential in g. For ex-
ample, one may via TQFT techniques construct representations of Mod, , of
rank exponential in g [KS16, Cor. 4.3], [BKMS18, Th. 5.1]; these representa-
tions are non-trivial when restricted to the point-pushing subgroup, and hence
by Proposition 2.1.2 yield MCG-finite representations. Similarly, representa-
tions of Mod, , constructed via variants of the Kodaira-Parshin trick [LL22,
Exam. 3.3.1] (see also [LL23, Prop. 5.1.1 and Rem. 5.1.2]) are semisimple of
rank exponential in g and restrict to MCG-finite, semisimple representations
of the point-pushing subgroup, with infinite image.

Ezxample 10.2.5. In genus zero, there is a huge collection of MCG-finite
representations, namely the rigid local systems studied by Katz [Kat96]. The
use of rigidity in our proof of Theorem 1.2.1, and Question 10.1.1, suggest
that the study of MCG-finite representations is a natural generalization of the
study of rigid local systems to the higher genus setting.

Question 10.2.6. Let g,n > 0. What is the minimal rank of a semisimple
MCG-finite representation of m(2,,) with infinite image?

In our view it would be extremely interesting to give an improved bound
for semisimple MCG-finite representations, and to produce fundamentally new
examples of semisimple MCG-finite representations.
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Remark 10.2.7 (Bounds for free groups). A variant of the construction in
Examples 10.1.6(3) gives an example of a representation of the free group Fy
on N generators of rank N + 1, whose conjugacy class is fixed by the action of
Out(Fy); see [PRO0O, p. 1444]. For example, when N = 2, this representation
is given by the matrices

1 01 1
01 0], 0
0 01

Thus again the bound of /g + 1 in Corollary 1.6.1 cannot be improved too
much further if one allows non-semisimple representations. However it is in
principle possible that there is no semisimple representation of F with infinite
image whose conjugacy class has finite orbit under Out(Fy) when N > 3.
Indeed, this would follow from a conjecture of Grunewald and Lubotzky (see
[GL09, §9.2]) using the main result of [FH17].

There are interesting semisimple representations of F» whose conjugacy
class has finite orbit under Out(F5). This follows, for example, from the linear-
ity of Aut(Fz) [Kra00], e.g., by choosing a faithful representation of Aut(Fs)
and restricting to the inner automorphisms, and then semisimplifying. Alter-
nately, one may construct examples by applying the Kodaira-Parshin trick to
construct representations of Mod; 2, which is commensurable with Aut(Fy).

As remarked in the introduction, we conjecture the opposite of Grunewald
and Lubotzky:

Conjecture 10.2.8. For all N > 0, there exist semisimple representations of
Fy with infinite image, whose conjugacy class has finite orbit under Out(Fy).

Our main impetus for this conjecture is the existence of many interesting
MCG-finite representations of 71 (2,); see Example 10.2.4. In our view this
conjecture is of great importance, both because of the intrinsic interest of
“canonical” representations of Fy (i.e., those with finite orbit under Out(Fy)),
and because of its relationship to the representation theory of Aut(Fy).

Remark 10.2.9. We briefly spell out the the relationship between repre-
sentations of Fiy whose conjugacy class has finite orbit under Out(Fy ), and the
representation theory of Aut(Fy). If I' C Aut(Fy) is a finite index subgroup
containing the inner automorphisms, and

p:T'— GL,(C)

is a representation, then the conjugacy class of p|p, has finite orbit under
Out(Fy), via a proof analogous to that of Proposition 2.1.2. Conversely, as
in to the proof of Lemma 2.2.2, the projectivization of any irreducible Fl-
representation whose conjugacy class has finite orbit under Out(Fy) arises
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from a projective representation of a finite index subgroup of Aut(Fy). See
[BKP19, Th. 7.12] for a related result about low-rank projective representations
of certain finite index subgroups of Aut(F},).

10.3. Classification. The following is evidently quite difficult, but in our
view is of great interest:

Question 10.3.1. Can one classify MCG-finite representations of 71 (34 ,)
of rank r? Equivalently, can one classify algebraic solutions to the rank r
isomonodromy differential equations over .#, ,? Can one classify representa-
tions of the free group Fy on N generators whose conjugacy class has finite
orbit under Out(Fn)?

Remark 10.3.2. It would also be extremely interesting to learn of any new
sources of erxamples of MCG-finite representations. For example, are there
MCG-finite representations 71 (34,,) — SL,(C) with (Zariski-)dense image for
r arbitrarily large?

Appendix A. Proof of Section 5.1.6

We now explain the proof of Theorem 5.1.6, which loosely follows [Voi07,
§9 and §10]. We retain notation as in Section 5.

A.1. Preparatory Lemmas. Recall that the derivative of the period map
dP was a map

AP : Ty = P*Tauu e pwwy = (F1 )Y @ (A |FLA).
By adjointness, we obtain from dP a map
dP': F' 0 — (A# |F' ) @ T
Recall that in Section 5.1 we defined a map V with the same source and target.
LEMMA A.1.1. We have an equality V = dP'.

Proof. Let W be a vector space and K C W a subspace of rank r. It
is shown in the course of the proof of [Voi07, Lemma 10.7] that for [K] €
Gr(r, W), the identification Tq(rw),[x) =~ Hom(K, W/K) is given as follows.
Let ¥ C Ogrw) ® W denote the universal subbundle. Given o € K, let
o denote a choice of holomorphic section of .# defined on a neighborhood of
[K] € Gr(r, W) with ¢([K]) = 0. Then, the map

T r,w), (k] — Hom(K, W/K),
U <0' — %(5) mod K)

is well defined and independent of the choice of lift &.
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Choosing b € 2, the derivative of the period map dP] is then given as

follows: send o € F'.74 to the function that sends v € Tap to %5 mod F1.74,

for & a local holomorphic lift of o to F'.#. Here % makes sense as we have

chosen a flat trivialization of ., but we may equivalently write this map as
o+ (v Vg (3)(v) mod F1.4),

or equivalently

o (v V(@) W) O

After introducing some notation, we next give an explicit computation of
the Gauss-Manin connection Vg, on J2.

Notation A.1.2. Recall from Notation 5.1.1 that (&, V) denotes the Deligne
canonical extension of (V ® Oyo,id ®d) to €. Let Aﬁfg@(éa ) be the sheaf of
= logaﬁthmic (i, j)-forms valued in &, and let Af, 5, (&) = EBiJrj:nAfgg@(é").
Then, (ﬂi’;g 2(€),0) is the Dolbeault complex of & @ Q. (log Z). The complex
(Ahg (&), V + 0) is the de Rham resolution of the unitary local system V.
We similarly define the relative variants Af{’){% @fg/@(é"), Alog 97%0/%,(6").

Notation A.1.3. For v a C* vector field on an open U C %, tangent
to Z, and w a C'™ section of .Afog@(é") on U, the interior product int(v)(w) €
HO(U, A}, (&)) is defined by

int(v)(w)(X1, ...y Xitj—1) = w(v, X1, ..., Xitj-1)

for any C°° vector fields Xi,..., X;4; 1 on U tangent to Z.

LEMMA A.1.4. Leto € Allog@(é”) be a differential form such that for each
V € B, olg, is closed, so that o represents a section [o] of . Fizb € % and
a tangent vector u € Tz, and let v be a C™ section of Tg|g,, tangent to 9
with u = m.(v). We have

Vau([o])l(w) = [(int(v)((V + 9)(0)|,)] € 4.

Proof. This proof essentially follows [Voi07, Prop. 9.14]. After possibly
shrinking %, which will not alter the statement of this lemma, we may write
€ ~ 6y x B (as C*° manifolds), by Ehresmann’s theorem. Let ¢i,...,¢,, be
C* functions on Cy x Z pulled back from a system of local coordinates for 2.
After possibly shrinking %, we can write o as

m
U=¢>+Zdti®¢i7
=1
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where @ is a section of egflégg(@‘" ) independent of dt;, each 9; is a C'™° section
of &, and ®|4, = oly,. Since o is fiber-wise closed, applying V + 0 gives

(V+d)o = dt;int(d/0t:;)((V + )®) = > _dt; A (V + )i

and hence
int(8/0t;)((V + 9)0)|g, = int(0/0t:)((V + 0)®@|4,) — (V + 0)tbil,-
Since (I>|<€b = U|<fba
int(0/0t;)((V + 0)®lg,) = Vam([o])b(m:(9/0t:)),

by definition of the Gauss-Manin connection. But as (V + )|, is exact,
int(8/0t;)((V 4 9)0)|¢, and int(9/0;)((V + 0)®|4,) represent the same coho-
mology class. Thus

Ay > [(int(0/0t:)(V + 0)(0)],)] = [(int(9/0t:)((V + 9)(®)l¢;,)]
= Vaum([o])]p(m(9/0t:)).

Since 0|y, is closed, the same result holds after replacing 0/0t; with any
vector field v satisfying m.v = m,(9/0t;); as the m,(9/0t;) form a basis for Tz,
the proof is complete. O

For the next result, we need to recall the Kodaira-Spencer map.

Definition A.1.5. With notation as in Notation 5.1.1, we have a short
exact sequence

(A.l) 0—— T%b(— log .@) —_— Tcg(—log '@)"@ﬂb —_— W*T@’%)b —_— 0,
where Tz (—log 2) is the dual of QL (log Z). The Kodaira-Spencer map

k: Ty — H' (Tg,(—log 2))

¢,) to its image in H' (T, (—log 2))
under the connecting homomorphism in the long exact sequence in cohomology

sends a vector v € Tz ~ HO(6,, " Ty

arising from (A.1).

Remark A.1.6. Geometrically, the Kodaira-Spencer map sends a deforma-
tion of (%}, %) to the corresponding cohomology class in H!(Ty, (—2)) (iden-
tifying Ty, (—2) with Ty, (—log 2)). For an explanation of why the boundary
map coincides with this description in the case 2 = (), see, [Voi07, §9.1.2]. In
the case 2 # (), an analogous argument goes through.
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PRrOPOSITION A.1.7. Keep notation as in Notation 5.1.1. For b € A, set
C =%y, D=9, and E = &|c. We have a commuting diagram
(A.2)
dp}’
HC,E®QL(D)) ®@ Ty, : » H'(C, E),

e ]

H(C,E ® QL(D)) ® H'(C,To(—-D)) —— HY(C,E ® QL(D) ® Te(—D))

where dP} is adjoint to the derivative of the period map dPy, k is the Kodaira-
Spencer map, « is the map induced by the pairing QL (D) ® Te(—D) — Oc¢
and U is the cup product.

Proof. Let 0 ® u be an element of H*(C, E ® QL (D)) ® T»yp. By, e.g.,
[Voi07, Prop. 9.22] (applied to the d-Laplacian—here unitarity is used to de-
fine the adjoint of 0 and consequently the Laplacian), we may choose a lift &
of o to a C* section of & ® Q}g(log 2), which is holomorphic on fibers. Com-
bining Lemmas A.1.1 and A.1.4, we find that dP”(c ® u) can be expressed as
[((int(v)(V + 0)7)|g,)"] for v a C™ vector field of type (1,0) tangent to Z
and lifting u, as in Lemma A.1.4. As € is a relative curve, for degree reasons

we have
[((int(v)(V + 9) )] = [int(v)I5]g,]-

Direct computation gives

A(int(v)(dlg,)) = — int(v)I5 ¢, + int(v)(c

%)-
Using the vanishing of the Dolbeault cohomology class [0(int(v)(7))] we obtain

[int(v)(05]4,)] = [int(9v)(Tle, )]

Combining the above yields that dP)(c ® u) = [int(0v)(cly,)]. By definition
of the Kodaira Spencer map, dv is identified with x(u). So

dP} (o0 ® u) = [int(dv)(c

)] = o (51} Uo <gb)] = |« (51} U 0)] = o (k(u) Uo)],

verifying the commutativity of (A.2) as desired. O

LEMMA A.1.8. Suppose E is a vector bundle on a smooth curve C, and
suppose D C C is a divisor. Let H(C,Tc(—D)) ® H*(C,E ® wc(D)) —
H'(C, E) denote the map corresponding to the Yoneda cup product composition
a o U from Proposition A.1.7, induced by the natural pairing E @ we(D) ®
Tc(—D) — E. This is adjoint to a map v:H(C,E ® wc(D)) ® HY(C, E)Y —
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HY(C,Tc(=D))Y. We have a commutative diagram

HO(C,E @ we(D)) ® H(C, EY @ we) —— HO(C,wE*(D))

(A.3) ln JC

HO(C, EF® wC(D)) &® H1<C, E)V v HI(C, Tc(—D)>v,

where the two vertical maps are induced by Serre duality, and the map p is the
map on global sections induced by

(E®wc(D)) x (BY ®@we) = (E® EY) ® (we(D) @ we) — wd(D),

where the first map is the tensor product and the second is obtained from the
trace pairing E @ BV — Oc¢.

Proof. Recall that for F' a vector bundle on C, the Serre duality pair-
ing between H°(C,F) and H'(C,F¥ ® wc¢) is obtained as the composition
HY(C,F)@ HY(C,F¥®wc) = HY(C,F¥Y @ Fowc) — HY(C,we) — C, where
the first map is induced by cup product, the second is induced by the pairing
F® FV — 0, and the third map is the trace map tr : H'(C,w¢) ~ C [Vakl17,
30.3.15].

Using the above description, we now check commutativity of (A.3). We
use U for the usual cup product and U to denote the composition of the cup
product and the pairing F ® EV — €. Choose a € HY(C,E ® wc(D)), €
H°(C,EY ® wc); we will denote by s a general element of H(C, E) and by ¢
a general element of H!(C,To(—D)). On the one hand, u(a ® 8) = aUB, and
so ((u(a ® B)) is given by

t— tr((aUp) Ut).
On the other hand, using the above description of Serre duality,

v(n(a® f)) =v(a® (s~ tr(8Us)))
= (t — tr(fU(a U1)))
— (¢ t((8T0) U 1))
and so we obtain the desired commutativity (using that aUS = fU«). O
A.2. Proof of Theorem 5.1.6.

Proof. The final statement claiming adjointness follows from Lemma A.1.1.
The map p in Lemma A.1.8 is another name for the composition tro® in
(5.4), and by Lemma A.1.8, p is identified with the map labeled v there, upon
applying Serre duality. Moreover, v is by definition adjoint to the composition
aoU in Proposition A.1.7. The result now follows by identifying the Kodaira-
Spencer map k of Proposition A.1.7 as Serre dual to the pullback map c; in the
statement of Theorem 5.1.6; this identification follows from Remark A.1.6. O
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