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Prill’s problem

Aaron Landesman and Daniel Litt

ABSTRACT

We solve Prill’s problem, originally posed by David Prill in the late 1970s and popu-
larized in Arbarello, Cornalba, Griffiths and Harris’s “Geometry of Algebraic Curves.”
That is, for any curve Y of genus 2, we produce a finite étale degree 36 connected cover
f: X =Y where, for every point y € Y, the preimage f~!(y) moves in a pencil.

1. Introduction

Throughout, we work over the complex numbers. Let f: X — Y be a dominant map of smooth
projective connected algebraic curves, where g(Y'), the genus of Y, is at least 2. In this case, the
Riemann-Hurwitz formula yields deg(f) < g(X), so one would not expect that f~!(y) moves in
a pencil for a general y € Y. That is, one expects h(X, Ox (f~'(y))) = 1 for a general y € Y.
Of course, there are many cases where f~!(y) moves in a pencil for special y € Y, but in the
late 1970s, David Prill raised the following question.

Question 1.1 (Prill’s problem, [ACGHS85, Exercise VI.D]). Given any curve Y of genus g > 2
and a finite covering f: X — Y, does h" (X, Ox (f_l(y))) =1 for a general y € Y?

Due to its elementary nature, Prill’s problem garnered much attention in the early 1980s.
Various special cases of Prill’s problem were answered affirmatively, such as those summarized
in [ACGHS85, BB05, Moh07].

We say that a finite cover f: X — Y of smooth proper geometrically connected curves is Prill
exceptional if hY (X, Ox (ffl(y))) > 2 for every point y € Y. The general belief, up until this
point, was that no Prill exceptional covers should exist. Our main result unexpectedly resolves
Prill’s problem by showing that Prill exceptional covers do, in fact, exist. Even more surprisingly,
our construction gives a Prill exceptional cover of any genus 2 curve.

THEOREM 1.2. If Y is any smooth proper connected curve of genus 2 over the complex numbers,
there is a finite étale cover f: X — Y which is Prill exceptional.

The idea of the proof of Theorem 1.2 is to relate Prill’s problem to a problem in Hodge
theory. Inspired by recent work of Markovié¢ [Mar22], we employ a construction of Bogomolov
and Tschinkel [BT02, BT04]. This yields a finite étale cover f: X — Y of degree 36 such
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that the Jacobian Picg( has an isogeny factor which is independent of the complex structure
on Y. Analyzing the infinitesimal variation of Hodge structure associated to H'(X,Q) yields
that f.wx is not generically globally generated, and a routine calculation shows that f is Prill
exceptional.

Remark 1.3. If ¢p: X’ — Y is a finite cover such that 1) factors through a Prill exceptional
cover f: X — Y, then 1 is also Prill exceptional, as there is an injection H° (X, ﬁ(f_l(y))) —
HO (X’ , O (g_l(y))). Thus Theorem 1.2 can be used to construct Prill exceptional covers of
arbitrary degree, by composing with an arbitrary map X’ — X.

Remark 1.4. Although Theorem 1.2 solves Prill’s problem, it would still be extremely interesting
to know if there any Prill exceptional covers where Y has genus g > 2.

Remark 1.5. In this paper, we give a short solution to Prill’s problem, a simple to state question,
which has been open since the 1970s. In a companion paper, [LL22a, Remark 5.7], we give a much
more involved proof of a slightly weaker result, yielding a Prill exceptional cover of a general
genus 2 curve. That proof relies on heavier machinery, but we decided to also include it in [LL22a]
as it is nearly automatic from the tools developed there.

2. The proof of Theorem 1.2

To start, we rephrase the condition that f: X — Y is Prill exceptional in terms of f.wx not being
generically globally generated, meaning that all of its global sections lie in a proper subbundle.
This lemma is known to experts, but we recall it for completeness.

LEMMA 2.1. Let f: X — Y be a finite étale morphism of smooth proper connected curves.
Then f.wx Is not generically globally generated if and only if f is Prill exceptional.

Proof. We wish to show that f,wx is not generically globally generated if and only if

hO(X, 0x(f71(y))) = h°(Y. (£.0x)(y)) > 1

for every point y in Y. Note that f.wx is not generically globally generated if and only if, for
a general y € Y, we have an exact sequence

0 — HOY, fuox (~)) — HOY, fuwx) 2> HOY, froxl,) — (2.1)

— H'(Y, fuwx(=y)) — H'(Y, fiwx) —— 0,

where 3 is not surjective. Since h'(Y, fiwx) = h'(X,wx) = 1, the map 3 is not surjective
precisely when h!(Y, fiwx (—y)) > 1. By Serre duality, this is equivalent to h°(Y, f.Ox(y)) > 1
for a general point y € Y. This is equivalent to the statement that h°(Y, f.Ox(y)) > 1 for all
points y € Y by the upper semicontinuity of sheaf cohomology. O

Throughout the remainder of the proof, we work in the following setup.

NoOTATION 2.2. Consider a diagram of the form

A h Y

R / (2.2)

M
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where 7 is a relative smooth proper curve of genus g > 2 with geometrically connected fibers,
h is finite étale, and 7’ is a smooth proper curve of genus ¢’ with geometrically connected fibers.
Suppose that the map .# — .#, induced by 7 is dominant étale. Fix m € . and let X = Z,,,
Y =%, and f = h|x. We refer to the data of (2.2) as a wersal family of covers of curves of
genus g.

The next proposition shows that, in the above setup, in order to construct Prill exceptional
curves, it is enough to produce an isotrivial isogeny factor in PicO% Wz

ProrosITION 2.3. With notation as in Notation 2.2, suppose that the Jacobian Pic%-/% has an
isotrivial isogeny factor. Then, f,wx is not generically globally generated.

Proof. Let V= R'7’Q and ¥ = V®0 ,. We study the infinitesimal variation of Hodge structure
associated to V. The Hodge filtration on ¥ satisfies

Fly = Wy g and Y /F'Y = R'5.0, .
The Gauss—Manin connection V: ¥ — ¥ ® Ql/// induces an & ,-linear map
V: 71';0.155///[ =Flv 5y /Flv Ql// =RY7 Oy ® Ql//

The given isotrivEl isogeny factor of Picgg o yields a nonzero isotrivial sub-QQ-Hodge struc-
ture W C V. Hence V has nontrivial kernel: the kernel contains FX(W ® & ).
Restricting V to the fiber over m € .#, we obtain a map

Vm: H'(X,wx) = H (X, 0x) ® QY .-
As M — My is étale, there is a natiural identification of Qifl,m with Qi//g’[Y] ~ HY (Y, w%m).
Applying Serre duality, we may view V,, as a map
H°(X,wy) — Hom (H*(X,wyx), H* (Y,w$?)),
or equivalently, as a map
HO(Y, fiwx) — Hom (HY(Y, fuiwx), H*(Y,w$?)) . (2.3)

Then [LL22b, Theorem 5.1.6 and Lemma A.1.8], applied where the local system V in [LL22b,
Notation 5.1.1] is taken to be h,Q, shows that (2.3) is induced by the map

a: frwx — Hom(f*wx,wf?Q)

n— (qn: Vi trX/y(n(X) 1/))

by taking global sections. Note that « is injective since, by [L1.22b, Theorem 5.1.6], it is obtained
from the isomorphism 3: f.0x — Hom(f«Ox, Oy ) (which corresponds to the self-duality of the
regular representation) by tensoring  with powers of wy to obtain the map « as the composition
of injective maps

frwx =~ fxOx Q@ wy — Hom(f*ﬁx ® wy,w?ﬁz) ~ Hom(f*wx,w§2) .

As V has nontrivial kernel, the same is true for V,,. That is, there exists a nonzero n €
HO(Y, f.wx) such that the nonzero map qn: frwx — w{@ induces the zero map on global sections.
Hence any global section of f.wx lies in the kernel of ¢;. Said another way, f.wx is not generically
globally generated. O
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It remains to show that there are versal families of covers of curves of genus 2 so that Picgg o
has an isotrivial isogeny factor. We now do this carefully but note that it can also be extracted
from [BT04, §3], culminating in [BT04, Example 3.7 and Proposition 3.8]. We include a proof
for completeness, following [BT04].

PROPOSITION 2.4. There exists a versal family 2 b I W of covers of curves of genus 2
with 7' = h o as in Notation 2.2, such that h has degree 36, the Jacobian Picgg/{/// has an
isotrivial isogeny factor, and the map .# — .#5 induced by 7 is surjective and étale.

Remark 2.5. In fact, Proposition 2.4 has a straightforward generalization to higher genus: Let J7

denote the moduli stack of hyperelliptic curves of genus g. There exists a family 2 LNy
such that 7 is a family of smooth proper genus g hyperelliptic curves with geometrically con-
nected fibers, 7o h is a family of smooth proper curves with geometrically connected fibers, h is
finite étale of degree 36, the Jacobian Pic?% o has an isotrivial isogeny factor, and .# — J7; is
a surjective étale map.

4 Cfl %2 < A
l | |
P ol ¢ [x3] fa

P(q.0¢(2t5)) +—— &0

FIGURE 1. A diagram depicting the relevant curves in the proof of Proposition 2.4

Proof of Proposition 2.4. First, we construct a particular scheme ., which has a surjective
étale map to #5. Let .#" be the Sg-cover of .#5 parametrizing orderings of Weierstrass points
on the universal curve, and let ¢': %’ — .#’ be the pullback of the universal curve to .Z’.
Let P’ := P(¢,wy/.41), so that there is a natural 2-to-1 map &’ — P', ramified over the images
of six disjoint sections §),...,s5: 4" — #’. The statement of Proposition 2.4 is insensitive to
replacing .#' by a Zariski-open cover, and replacing #”, P/, s, by their pullbacks to this cover,
and we do so freely. Zariski-locally on .#’, we may construct the double cover p': & — P’
branched over the images of s},...,s} in P'. Now, let .# = (p/)"1(si(.#")) denote the finite
étale double cover of .#' where one additionally marks a point of &’ mapping to the image of sf
under p’. Let P, %, & denote the pullbacks of ', %', & along .# — #', and let q: & — A
be the natural map. By construction, ¢ has a section, call it ¢5, whose image lies over the image
of si. We consider (&, 5) as an elliptic curve with identity section t5: 4 — &.

The next several steps in the proof construct a sequence of three finite étale covers of %/, the
last of which maps to an isotrivial elliptic curve &y, as in Figure 1. Let %7 be the normalization
of the fiber product % xp &. We claim that %7 is finite étale over 2. To see this, observe that
% — P is branched to order 2 at every point in the branch locus of the map ¢: & — P obtained
by pulling back p’. Therefore, €| — % is finite étale by a relative version of Abhyankar’s lemma
[GRT71, Exposeé XIII, Proposition 5.5].

Next, define 62 := €1 X g [x3 &, where the map [x3]: & — & is multiplication by 3 on
the relative elliptic curve, and where we use t5 as the identity section of the elliptic curve &.
Because [x3] is finite étale, % is finite étale over %7, hence over %'
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We next construct one further finite étale cover 2~ of %5. Let a: & — P(q.Og(2t5)) denote
the map induced by the complete linear system associated to 2t5. The map « is a double cover
ramified along the 2-torsion of the relative elliptic curve (&, t5) over . Let 2 = a(&[3]\im(t5)),
and note that Z is finite étale of degree 4 over .# . Zariski-locally on .#, we can and do construct
the double cover & — P(q.0¢(2t5)), branched over &, which is a family of genus 1 curves.
We replace .# with the above Zariski cover used to construct &y. Then, 2 , defined as the
normalization of &y Xp(g, ¢, (2t5)) 62, has a dominant map to &. To conclude the proof, it is
enough to show that &p is isotrivial and 2~ — % is finite étale of degree 36. Indeed, since
Z — & is a surjective map, Picog o has &y as an isogeny factor, which we will show to be
isotrivial.

First, h is a composite of three maps of degrees 2, 9, and 2, so h has degree 36.

Next, we claim that 2 — % is finite étale. Since ¥7 — & is branched to order 2 over t5,
the map %2 — & is branched to order 2 over &[3]. Hence 42 — P(¢.0g(2t5)) is evenly branched
over ¥, meaning that each preimage of any point in & has even ramification order. Therefore,
2 — % is finite étale by relative Abhyankar’s lemma [GR71, Expose XIII, Proposition 5.5].

It remains to show that & is isotrivial. This follows from the computation preceding [BT04,
Lemma 4.3], which we now recall. Consider the Hesse pencil

Ey:®+ 24+ 23+ dayz =0,

where we view E) as a family of elliptic curves with identity point [1 : —1 : 0] € E\ C P2
Projecting F) away from the point [1: —1 : 0], we obtain a double cover E) — P! given as the
quotient E) — E\/{£1} ~ PL. Since F,[3] is precisely the base locus of the Hesse pencil, the
image of E)[3] is independent of .

We next claim that any elliptic curve over C is isomorphic to E) for some A € C. Note that
the family (E))yep1 defines a relative curve over P}, whose fiber at A = oo is the reducible nodal
curve xyz = 0. The other singular members of the Hesse pencil are also nodal curves with three
irreducible components. This family therefore corresponds to a map v: P! — ]171, where ]1,1
is the moduli stack of elliptic curves. The map is surjective because it induces a nonconstant
map from P! to the coarse moduli space of ]171. Therefore, every smooth elliptic curve over the
complex numbers is isomorphic to E) for some A € C.

Since any two elliptic curves F and E’ appear as members of the Hesse pencil, the images
E[3] = E/{#+1} ~ P! and E'[3] — E'/{£1} ~ P! have the same cross ratios. Hence any two
fibers of the pair (P(q+0#(2t5)), Z) are isomorphic, so any two fibers of & are isomorphic. Hence
&) is isotrivial. O

We now straightforwardly combine the above results to prove Theorem 1.2.

Proof of Theorem 1.2. By Proposition 2.4, there is a family h: 2~ — % of degree 36 finite étale
covers of genus 2 curves over .# , where the induced map .# — .#5 is surjective étale and Picg{ S
has an isotrivial isogeny factor. For any point m € .#, let f: X — Y be the fiber of h: &~ — ¥
over m. By Proposition 2.3, the sheaf f,wx is not generically globally generated. By Lemma 2.1,
X — Y is Prill exceptional. ]
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