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Abstract

For an odd integer n = 2d — 1, let B; be the subgraph of the hypercube Q, induced
by the two largest layers. In this paper, we describe the typical structure of proper
g-colorings of V (13;) and give asymptotics on the number of such colorings when g is
an even number. The proofs use various tools including information theory (entropy),
Sapozhenko’s graph container method and a recently developed method of Jenssen and
Perkins that combines Sapozhenko’s graph container lemma with the cluster expansion
for polymer models from statistical physics.
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1 Introduction

We begin by establishing some foundational definitions and notation, which we will use
to state our first main theorem (Theorem 1.1 below). Write Q,, for the n-dimensional
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Hamming cube (the graph with the vertex set {0, 1}" where two vertices are adjacent
if they differ in exactly one coordinate). Denote by Ly, the “k-th layer” of Q,, i.e., the
collection of the vertices in O, with k 1’s in its coordinates. A coloring in this paper
always refers to a proper coloring of vertices of the given graph. The main results of
this paper concern the typical structure of colorings of the middle layers of Q,,, which
is a problem suggested by Balogh, Garcia, and the first author [3].

Following [3], throughout the paper, we always assume that n is odd and let d =
(n+1)/2. Write B, for the subgraph of Q,, induced on L;_ UL (the two middle layers
of Q,). Note that B is d-regular, bipartite with the unique bipartition £;_; U L4, and
balanced (i.e., |[L4—1] = |L4]). We use N for |V (By)|(= 2(2)), and assume d — 00.

Given g € Nand a graph G, write C,(G) for the collection of g-colorings of G and
let ¢4 (G) = |Cy4(G)|. Our first main theorem concerns asymptotics for the number of
g-colorings of B, for all even q.

Theorem 1.1 Let g > 4 be a fixed even integer. Then we have

cq(Ba) = (q/2>N( 7 )exp((l +o(1) f(q.d))
q/2
as d — oo, where

f@.d) =N =2/g)" + N1 =2/)* - 2 (d(1 =2/q)? —d ~ 1).

R —

In particular, for g = 4,
ca(Ba) ~ 6-2V exp (F(4,d)) = 6 -2V exp (Nz—d FN223Bd)2 1 /2)) .

Theorem 1.1 itself does not give an asymptotic formula for general ¢, (B4) when
q > 6.Infact, Theorem 1.1 is a direct consequence of a stronger result (Theorem 7.1),
which provides a detailed approximation of ¢, (B;) for all even ¢g. Roughly speaking,
with Theorem 7.1, for any given even ¢, the precise asymptotic formula of ¢, (By)
can be computed in a finite time (meaning that the running time does not depend on
the input size d). The statement of Theorem 7.1 requires some technical definitions
arising from statistical physics, and is therefore postponed to Sect.7.

Our second main theorem, Theorem 1.2, characterizes the typical structure of g-
colorings of B;. Before we state the theorem, we first fill in some background and
introduce relevant notation.

History and Background We begin with the number of colorings of the Hamming cube
¢q(Qn). The first result about asymptotics of ¢, (Q,) was given in 2003 by Galvin
[13] for the case ¢ = 3. A structural characterization of C,;(Q,) was later obtained
by Engbers and Galvin [7] in 2012 (in fact, their result is written in a more general
context of graph homomorphisms of discrete tori); this also motivated them to propose
a conjecture on the asymptotics of ¢, (Q;) for larger q. The next case, g = 4, was
established by Kahn and the third author [19], affirming the conjecture of Engbers
and Galvin. Recently, Jenssen and Keevash [15] settled the conjecture of Engbers
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and Galvin for any ¢, also providing a framework which can be used to compute the
asymptotics of ¢, (Qj) in finite time for any g.

Motivated by the problem of enumerating maximal antichains in Boolean lattices,
Duftus, Frankl, and Rodl [6] initiated the study of related enumeration problems on
consecutive layers of Q,. Answering their questions, Ilinca and Kahn [14] determined
logarithmic asymptotics of the number of maximal independent sets in the two consec-
utive layers of Q,, (while the asymptotics itself still remains open). Moving to 2021,
inspired by the work of Jenssen and Perkins [16] that gives much finer asymptotics for
the number of independent sets of O, (which was originally obtained by Sapozhenko
[29]), Balogh, Garcia and the first author [3] determined asymptotics for the number
of independent sets in B, the middle two layers of Q. In that paper, they gave a
conjecture for the asymptotics of the number of maximal independent sets in 34, and
also proposed the problem of counting g-colorings of B;. We remark that independent
sets in consecutive layers of Q, are also closely related to another classical topic in
combinatorics, intersecting set families, see e.g., [1, 2, 4, 9].

In addition to its own interests, another important motivation to study enumeration
problems on By is that it is a good entry point to generalize this line of work—including
counting/analyzing typical structures of graph homomorphisms (independent sets,
proper colorings, Lipschitz functions, etc.), maximal independent sets, linear exten-
sions of a partial order, and soon: seee.g. [11, 17, 28] for some related problems—from
Q,, to other bipartite graphs with good expansion properties. Many prior works, lim-
ited by the methods used, have relied heavily on the structure of Q) (see e.g., [7, 13,
15, 20]). As a subgraph of Q,, the middle two layers—while sharing many properties
with O, in common, e.g., regularity, bipartition, good expansion of small subsets—
also exhibit their own structural behavior, which, in some sense, is “less structured”
compared to Q,. Because of this difference, the approaches that have successfully
worked for enumeration problems on Q, often do not immediately extend to B,.
Therefore, the study of B; may reveal clues to understanding more general classes of
bipartite graphs, and may lead to progress on related problems. We will return to this
point in Sect. 2.

Notation We use V and E for V(B,;) and E(By), respectively. Given g, we use
Q = {1,2,...,q} for the collection of g colors and f for a coloring in C,(By).
Say an ordered partition (A, B) of Q is principal if {|A|, |B|} = {lg/2], [q/21}, and
A C Qs principal if A is a part of a principal partition (i.e., |A| € {lg/2], [¢/21})-
For a given principal (A, B), we say f agrees with (A, B) at v if

foeAsvely; and fyre Bsvely
(where f; is the value of f at v). Given a principal (A, B) and f, define
XaB(f)={ve V| f disagrees with (A, B) at v}. (1)

We say f is a ground state coloring if X 4 p(f) = ¥ for some principal (A, B).

For a simple graph G and aset W C V (G), we write G[W] for the subgraph of G
induced on W (as usual). Say W C V(G) is 2-linked if G2[W] is connected, where
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G? is the square of G (that is, G? is the graph on V (G) having an edge between each
pair of vertices at distance at most 2 in G). A 2-linked component of S C V(G) is a
maximal 2-linked subset of S.

For any integer g > 4, define the threshold polymer size, denoted by T (g), to be

the smallest integer ¢ that satisfies 2 + ¢ log(1 — 2/g) < 0. 2)

Our second main theorem essentially reveals that almost every coloring is “close” to
some ground state coloring.

Theorem 1.2 Let g > 4 be even. Almost all proper q-colorings f of By satisfy the
Jfollowing property: there exists a principal partition (A, B) such that every 2-linked
component of X a4 p(f) is of size less than T (q).

We believe that 7'(g) is the smallest integer for which Theorem 1.2 holds. In fact,
one can obtain much more detailed structural results on C,(By) as in Theorem 1.3
below, whose form is inspired by [7, Theorem 1.2] and [15, Theorem 13.2]. The proof
of Theorem 1.3 is almost identical to the proof of [15, Theorem 13.2] (modulo the
results in this paper—specifically, Lemmas 2.1, 6.3 and A.2) thus we omit it.

Theorem 1.3 Forany even q > 4 there exists a constant & € (1 —2/q, 1) that satisfies
the following property: if €4 < s < 1/q?, then there exists a partition

C,(By) =Dy U U D, (A, B)
(A, B) is principal

satisfying the following properties:

@) Dol = exp(—K2(d))cq(Ba);

(ii) For a principal partition (A, B), a coloring f € Dy(A, B), and a colora € A
(resp. a color b € B), the proportion of vertices of Lg (resp. Lq—1) colored a
(resp. b) is within s of 2/q.

(iii) For any distinct principal partitions (A, B) and (A’, B'),

1Dy (A, B)| = (1 £exp (= (N1))) [Dy(A', B)|

where t := min{s?, s /d?*}.
(iv) Let jug be the uniform probability measure on Cy4(By). For each principal par-
tition (A, B), x € L5,y € Lg—1,a € Aand b € B,

1

Py, (fx =alf €Dy(A, B)) = o

(1 £ exp(—=2(d)))
and

1
Py, (fy=b1f €Dy(A, B)) = m(l + exp(—2(d))).
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2 Overview of the Proof

Informally speaking, the proof of the main theorems consists of the following three
steps, each of which requires separate ingredients:

Step 1. Almost all colorings f admit a ground state;

Step 2. f’s with large flaws (i.e., the vertices that disagree with the ground state of
f) are negligible;

Step 3. Approximately count the total number of colorings using Steps 1 and 2.

Step 1isinspired by and closely follows the work of [7, 18], which uses entropy ideas
initiated by Kahn [18]. For Step 3, we use the polymer model and cluster expansion
method originating from statistical physics. Recently in [16], this method was shown
to be very powerful in enumeration problems related to Q,. Though it still requires
some technical modifications, this cluster expansion-based approach provides a rather
routine framework for enumeration problems when it applies; we refer interested
readers to [3, 15].

Perhaps the most interesting part of our proof is Step 2. Inspired by the prior works
on colorings of O, in [15, 19], the proof of this step integrates an entropy approach and
Sapozhenko’s graph container lemma [29]. However, neither of the previous arguments
directly extend to our problem. In particular, the beautiful proof in [15] crucially relies
on the existence of a special partition of V(Q;) ([15, Lemma 8.1]), but it is not even
clear whether such a special vertex partition exists in B;. The novelty of our work
is that we implement an entropy approach and the graph container framework (not
the lemma itself) in such a way that it does not rely on the precise structure of the
host graph, but only on its expanding property. We expect that this new approach will
also work for more general classes of bipartite graphs with appropriate expansion
properties.

Next, we describe more details for each step. As the first step, we show that if ¢
is an even integer, then for almost every f € C,(By) there is some principal (A, B)
with which f agrees on all but an exponentially small fraction of the vertices.

Lemma 2.1 (Step 1: almostall f’s admit a ground state) Let g > 4 be even. There exist
o, B > 0 such that for all but a 2~%¢-fraction of f’s in Cy(By), there is a principal
(A, B) for which

1Xa5(N) <27PIN. 3)

For f and (A, B) asin Lemma 2.1, call (A, B) the ground state of f. Note that the
rhs of (3) can be very large (since N = 2(3)), so Lemma 2.1 by itself is not enough
to give the level of precision as in Theorems 1.1-1.3, and therefore requires a refining
process in the next step.

For a principal (A, B) and S C V, define

xA,B(S) ={f € Cg(Bya) : Xa,p(f) =S} (4)
For g € N, let

H(g) ={X C V: X is 2-linked, |[N(X)| = g}
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where N(X) = {y € V : y is adjacent to some x € X}.

Lemma 2.2 (Step 2: f’s with large flaws are negligible) Let B/ > 0 be such that
d2=P4 < 2=Pd for B as in Lemma 2.1 (and d large enough). For any principal
partition (A, B) and g € [d'°,27F4N],

_ 2
Yo xasX)] = (g/2N2m 0/ loe D), )
XeH(g)

The lower bound d'° on g is just a convenient choice and not at all optimal. With
Step 2, we reduce our problem to taking care of f’s with a manageable size of flaws
(more specifically, a polynomial size). And the contributions from those small flaws
can be easily handled using trivial bounds.

As the final step, we use the polymer model and cluster expansion method developed
in [16] to obtain detailed information about the structure of C, (8;) asin Theorems 1.1
1.3. The heart of this step is verifying the convergence condition (see Theorem 3.14) for
the cluster expansion of the appropriately defined polymer model, in which Lemma 2.2
plays the crucial role.

We point out that the assumption that g is even is only required for Lemma 2.1 (see
Remark 4.2), hence the result analogous to Lemma 2.1 for odd ¢ would enable us to
extend Theorems 1.1-1.3 for any integer g. It is very natural to ask whether the odd
q case could be handled by additional ideas or different arguments, or if the situation
is fundamentally different for even and odd numbers of colors. We also note that the
particular structure of B, is used most heavily in Step 1, where our approach relies
on the existence of a large matching with desirable structural properties. In contrast,
in Steps 2 and 3, we primarily use the expansion properties of B;. We believe that it
may be relatively straightforward to generalize these results to other bipartite graphs
with good expansion.

Organization Section3 collects various preliminary materials. Lemmas 2.1 and 2.2
are proved in Sects.4 and 5, respectively. In Sect. 6 we construct polymer models on
B, and prove some important properties. The main theorems, Theorems 1.1 and 1.2
are proved in Sects. 7 and 8, respectively. Before we close this section, we introduce
more definitions and notation.

Morve definitions For f € C,(By), fu denotes the restriction of f to U, and f(U)
denotes the colorset { f;, : v € U}. Forx € V, x;(€ {0, 1}) denotes the i-th coordinate
in x. By the Hamming weight of x, denoted |x|, we mean |{x; : x; = 1}|. As usual
Ny = N(x) = {v : v ~ x} where v ~ x means v and x are adjacent, and then
NU) = Uuey Ny, 3 U) = NWU\U,and Ut = U UNU).ForU C V,dy(v) =
I[N (v) N U|. For two disjoint subsets Wi, W, of V, V(W1, W») = {(w1, wp) € E :
w) € Wi, wy € Waland V(W)) = {(wy,w) € E : w; € Wi, w € V}. Again, log
means log,, and In is the natural logarithm.
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3 Preliminaries
3.1 Basics

Recall that a composition of an integer n is an ordered sequence (ay, . ..) of positive
integers summing to n. The a;’s are the parts of the composition. Below is a well-
known fact.

Proposition 3.1 The number of compositions of n is 2"~! and the number of compo-
sitions with at most b partsis ) ; _, (";1) < bloglen/b) ‘\yhen b < n /2.

For X,Y C V(G),wesay thatY covers X if X C N(Y) and that Y mutually covers
Xif X C N(Y)andY C N(X). Observe that if Y covers X then there is Y’ C Y that
mutually covers X. We will use the following lemma, a special case of a fundamental
result of Lovasz [25] and Stein [30].

Lemma 3.2 Let G be a bipartite graph with bipartition P U Q, where |N (u)| > a for
eachu € P and |N(v)| < b for each v € Q. Then there exists some Q' C Q that
covers P and satisfies

10| < lag -(I+1Inb).

Corollary 3.3 For any X C V(= V(By)), there exists a set Y < V such that Y
mutually covers X and |Y| < WEI—X)‘ - (1 +1nd).

Proof Let X; = XNLy_1and X, = XNL,. By applying Lemma 3.2 for X; UN (X1)
and X, U N(X») separately, we get mutual covers Y| and Y> of X and X». Observe
that Y := Y; U Y5 is a mutual cover of X and

Y] = |Y)] +|Y2] < @ -(1+1Ind) + @ -(1+1nd)
= 'NEJX” -(1+1Ind).

O

The next lemma is used to bound the numbers of certain types of 2-linked sets
in V(By). It follows from the fact (see e.g. [22, p. 396, Ex.11]) that the infinite A-
branching rooted tree contains precisely

(Ann) < (eA)’171
A—-Dn+1"—

rooted subtrees with n vertices.

Lemma3.4 If G is a graph with maximum degree A, then the number of n-vertex
subsets of V(G) which contain a fixed vertex and induce a connected subgraph is at
most

(eA)" 1. (©6)
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3.2 Isoperimetry

We use isoperimetric inequalities on By, which can be easily derived from direct
applications of the Lovasz version of the Kruskal-Katona Theorem [21, 24]. Recall
that N/2 = |Ly4] = |La—1].

Theorem 3.5 (Lovisz [26]) Let A be a family of m-element subsets of a fixed set U
and B be the family of all (m — q)-element subsets of the sets in A. If | A| = ( )for

X
m
some real number x, then |B| > (qu).

Proposition3.6 Let X C Lyjor X C Ly_.

(i) If1X| < d/4, then IN(X)| > d|X| — |X|*/2.
(i) If|1X| <d', then IN(X)| = d|X|/12.
(i) If|X| =27 RN, then IN(X)| = (1 + Q(1)|X].

Proof (i) IN(S)|>d+(d—1)+---+(d —|S|+ 1) =d|S| - |S|(IS] = 1)/2.
(i) Let|S| = (2) for some real x. Note that in this case, x < d + 11. By Theorem

3.5, we have [IN(S)| = (,*)) = () =47 = IS|-=%7 = dIS|/12.
(iii) If | X| = 27%@N, then | X| = (}}) for some x = (2 — Q(1))d. By Theorem 3.5,
(2)/Q) =1+QO. o

3.3 The Graph Container

This section recalls or proves some variants of the graph container lemma due to
Sapozhenko [29]. An excellent exposition on this topic is given in [12]. Recall that
H(g) ={X €V : X 2-linked, |[N(X)| = g}

Lemma 3.7 Forall g € N, there exists a family V = V(g) € 2" with

|V| S 20(g10g2d/d+d)’

such that for any X € H(g), V contains a set that mutually covers X.

Proof Given a set X € H(g), by Corollary 3.3, there exists a set ¥ € V such that Y
mutually covers X and |Y| < lNEI—X)l -(1+4+1Ind) = % - (1 + Ind). Moreover, observe
that Y is 4-linked (i.e. (B7)*[Y] is connected where (B4)* is the fourth power of B,)
as X is 2-linked and Y mutually covers X. We therefore take ) to be the collection of
all 4-linked subsets of V of size at most f—l - (1 +1Ind). Then by Lemma 3.4,

|V| S N Z (ed4)@ — 20(g10g2d/a'+d)'
£<%.(14+Ind)
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Let ¢y = ¢ (d) > 0. Following [12, 15], define a y-approximating pair for X C V
to be a pair (F, ) € 2V x 2V satisfying

FCN(X),§S2X; 7N
dywr(u) < Vu € S; (8)

and
ds(v) <y Yve V\F. ©)]

Lemma3.8 Let ¥ < d/2. For each Y C V there exists a family W = W(Y, g) <
2V x 2V with

W] < 20(glogd/y)

such that any X C V mutually covered by Y and |N (X)| = g has a r-approximating
pair in W.

The proof of Lemma 3.8 is almost identical to the proof of [15, Lemma 7.5], so we
omit.

Lemma3.9 Let < d/2. There is a familyU = U(g) 2" x 2V with

| < 2 0(glog” d/d+glogd/y+d)

such that every X € H(g) has a y-approximating pair in U.

Proof Take U(g) = UYGV(g) W(Y, g) where V(g) and W(Y, g) are the families in
Lemmas 3.7-3.8. O

Foraset X C V,define X| := XNLy_1,and X, := X N L,. The next observation
says that a -approximating pair for X naturally induces vr-approximating pairs for
X1 and X».

Observation 3.10 Let (F, S) be a y-approximating pairfor X C V.Let F| := FNL,
and S| := SN Ly—1. Then (Fy, Sy) is a Y-approximating pair for Xy; i.e., (F1, Sy)
satisfies (7), (8), and (9). The same holds for X, with F, := FNL;_jand S, := SNLy,.

Lemma3.11 For (F;, S;) (i = 1,2) as above,
1Sil < |Fil + IN(XDIy/(d —¥). (10)
In particular, if Y < d then
1Sil = (1 +o(1)IN(X;)]. (1)
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Proof This proof of (10) is almost identical to the proof of [12, Lemma 5.3] (with
slightly different parameters). We use X, F, S for X;, F;, S; for simplicity. First
observe that

dIS| = YIS\X| =) d|X| + (d — Y)IS\X] = |[V(S, N(X)| = d|F|+ ¢ INX\F|.
By comparing the first and the last expressions, we have
ISI < |F| + ¢ [(NCO\F) U (S\X)|/d. (12)
Also observe that
IVINX)| = IVINCONF)| + [V(F, S\X)| = (d — Y)I(N(X)\F) U (S\X)],

which gives
[(NCONF) U (S\X)| = IN(X)|d/(d — ). (13)
Now (10) follows from the combination of (12) and (13), and (11) follows from (10)
)
by noticing |F;| < |[N(X;)|. O

3.4 Entropy

We briefly recall relevant entropy background; see e.g. [27] for more detailed intro-
duction.
Let X, Y be discrete random variables. The entropy or Shannon entropy of X is

1
H(X) = log —,
(X) ;pm g

where p(x) = P(X = x) (and p log% := 0 for p = 0). The conditional entropy of X

given Y is
1

p(x]y)

HX|Y) =) p() ) pxly) log (14)
y X

(where p(x[y) = P(X = x|Y = y)).
For p € (0, 1), we also define the binary entropy function H(p) = —plog(p) —
(1 — p)log(1 — p); this is the entropy of a Bernoulli random variable with parameter

p-
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Lemma 3.12 For H(-) the Shannon entropy function, the following properties hold.

H(X) <log|Range(X)|, with equality iff X is uniform from its range; (15)

H(X|Y) = H(X); (16)
H(X,Y)=H(X)+ H(Y|X); A7)
H(X...X,|Y) < ZH(X,-|Y) (note (X1 ...X,) is adiscrete r.v.); (18)
if Z is determined by Y, then H(X|Y) < H(X|Z2); (19)
if Z is determined by X, then H(X, Z|Y) = H(X|Y). (20)

We also need the following version of Shearer’s Lemma [5].

Lemma3.13 Let X = (X4, ..., Xy) bearandomvector, and o - 2INT 5 Rt satisfies
> aa=1 Vie[N] Q21
A>i

Then for any partial order < on [N],

H(X)< Y aaH(Xal(X; 1 < A)), (22)
ACIN]

where X4 = (X; :i € A)andi < Ameansi < a Va € A.

3.5 Polymer Models and the Cluster Expansion

This section gives a brief introduction to two tools from statistical physics, polymer
models and the cluster expansion, in the language of graph theory. For more general
exposition and applications of polymer models, we refer interested readers to [8, 16,
23].

Abstract Polymer Model. Let Hp be a graph defined on a finite set P, such that every
vertex has a loop edge and there is no multiple edge. For historical reasons in physics,
the vertices y € P are called polymers. Two polymers y, ¥’ are called adjacent,
denoted by y ~ ¥/, if there is an edge yy’ in Hp. In particular, every polymer is
adjacent to itself. We equip each polymer y with a complex-valued weight w(y), and
refer the weighted graph (Hp, w) as the polymer model. Denote by Qp the collection
of independent sets of Hp (including the empty set), where loops are allowed. The
polymer model partition function

EP.w)= Y []Jew (23)

AeQp yeA

is essentially the weighted independence polynomial of (Hp, w). Sometimes, by abuse
of notation, we also refer to (P, w) or E (P, w) as the polymer model.

Cluster Expansion. For an ordered multiset ' = (yy, 2, ..., ¥x) of polymers, we
define the incompatibility graph Hp[I'] to be the simple graph defined on I" with the
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edge set E = {y;y; : vi ~ yj in Hp}. We say an ordered multiset I' of polymers is
a cluster if it is non-empty, and the incompatibility graph Hp[I'] is connected. For
example, for two adjacent polymers y, y’, the ordered multiset ' = (y, y’,y) is a
cluster with Hp[I'] = K3, where K3 is the complete graph on three vertices.

For a simple graph H, let ¢ (H) be the Ursell function of H, defined by

¢(H) =

VDl Z{(—I)K(F) : F is a connected spanning subgraph of H}.

We remark that, from the above definition,
for any fixed k e N, if |V(H)| < k then ¢ (H) = Ok (1). (24)

The weight function of a cluster T is defined using the Ursell function as

o) =¢HpT) [ [ 0. (25)

yel

Let C be the set of all clusters on P. The cluster expansion is the formal power
series of the logarithm of the partition function E (P, w), which takes the form!

nEMP, w) = Z (). (26)

recC

Note that the cluster expansion is an infinite series, despite the finiteness of the
polymer model. A sufficient condition for the convergence of the cluster expansion is
given by Kotecky and Preiss [23] in 1986.

Theorem 3.14 (Convergence of the cluster expansion) Let f : P — [0, c0) and
g : P — [0, 00) be two functions. Suppose that for all polymers y € P,

D oG )lexp (fO) +20)) < fF), 27)

v~y

then the cluster expansion (26) converges absolutely. Moreover, for a cluster T € C,
let g(I') = 3, cr §(y) and write T' ~ y if there exists y' € T so that y ~ y'. Then
for all polymers vy,

Y loMexp(gM) < f(»). (28)

reC,r~y

4 Proof of Lemma 2.1

This section closely follows the arguments originated in [ 18] and developed in [7] (and
also adapted in [15]) with the additional idea of “rotating” ;. The arguments in [7,

! For details of the cluster expansion, we refer readers to Chapter 5 of [10].
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18] heavily rely on the nice property of the Hamming cube that it can be decomposed
into two half cubes with a perfect matching between them (i.e. Q,, = Q,,—1JK>). In
their argument, both the ranked structure of the 0,1 and the existence of the perfect
matching between the two copies of Q,_; are crucial. The less nice structure of By
blocks one from a straightforward extension of this argument, but in Sect. 4.1 we show
that By still possesses a portion of the structure we desire.

Lemma 2.1 follows from Lemma 4.1 below. Given f € C,(By), say uv € E is
ideal if (f(Ny), f(Ny)) is a principal partition.

Lemma 4.1 Letf be a uniformly random coloring chosen from C,(By). Foranye € E,

P¢ (e is not ideal) = 2~ 29)
Derivation of Lemma 2.1 from Lemma 4.1 Given f, say a path is ideal if all the edges
in the path are ideal. Fix any u € V, and write K,, = K, (f) for the set of vertices that

can be reached from u via an ideal path. We may assume u € L£;_; by symmetry. For
v # u,let QF be the event {v € K, }. Observe that

P(Q;,) > 1~ 279 for any v # u;

indeed, with P a shortest path in By from u to v (so has length < n), by Lemma 4.1
we have

P(QF,) = P(P ideal) > 1 — n2~ %@ =1 _ =%,

By the above observation, we have E|u U K| > (1 —27%@)|V|, so by Markov’s
Inequality, there is a constant ¢ > 0 such that

P(juU Kyl < [V|(1 —27)) =272,
Note that, by the definition of K,,, f agrees with (f(Ny), Q\ f(N,)) atall the vertices

inu U K,, and (f(N,), Q\f(N,)) is principal unless K, = ¢. Now Lemma 2.1
follows. o

4.1 Structure of B,

We first define “levels” of vertices in I3;. To make the notion more intuitive, we begin
by “rotating” By: for each vertex x € V, let

x=x+(, ..., 1,0, 0, ..., 0
—— e N —— e
d—1 entries d entries

(where addition is taken modulo 2). Let V™' = {x™' : x € V}. Notice that this rotation
preserves Hamming distance between pairs of vertices; in particular, vertices x and y
are adjacent if and only if x* and y™' differ in exactly one entry. Therefore, B; and
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B;Ot = Q,[V™"] are isomorphic, so it suffices to prove Lemma 4.1 for B;Ot (and we
will do so).
The kth level of B;Ot is now defined as in [7]:

n—1
Ly = {x e vt Zx,- :k] )

i=1
Observe that the levels of B range from 0 to n — 1. To obtain a decomposition of
B;Ot similar to the decomposition of Q, = Q,,—1JK>, consider the partition (Vp, V1)
of V™ where V) = {x € V™ : x, =0}and V| = {x € V™' : x, = 1}. Observe that
[Vol = |V1]| = N/2,and V(V1, V2) is a (not necessarily perfect) matching (since Bfl‘“
is a subgraph of Q,, = Q,_10K>). Moreover,

there is a perfect matching between Ly N Vo and Ly N Vy if k is even,
and
V(LN Vo, L NVy) =@ if k is odd.

Indeed, for any v € Ly N Vy,

vV =v+(0,0,...,0,1) (30)

isin Ly NV (we call v’ the mate of v in this case) iff k is even. We denote V* = {x €
L N Vy : k even}, and note for future reference that

—1 d d
V=) =00 = 5N 31
Forv € V*, let
M, := N \{v'}(<E V),

and define M, similarly. Finally, for each v € V* with the Hamming weight |v| > 4,
we associate

aw =w() € V* with |w| = |v| — 4 and

w being connected to v by a path of length 4 in B[ Vy]. (32)

This is possible because, in fact, forany v € Ly NV and 0 € V), their preimages in
By, ie., v™ and 0™, are connected by a shortest path of length |[v™' + 0™ = |v| = k
in 3;. Note that the shortest path that connects v and 0 must stay in B;Ot[Vo] (since
both of them already have a 0 entry in the last digit). Then we can pick w on such a
path so that |w| = |v| — 4.
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4.2 Proof of Lemma 4.1

In this section, we use f for f(-) to shorten the notation. Again, the argument in
this section, which builds upon the decomposition of B into Vo U V; discussed in
Sect. 4.1, closely follows [7, 18], and we try to be brief while pointing out differences
that is worth noting.
Letv € V* (so v € L; for some even i). For v/ and w = w(v) defined in (30) and
(32), observe that
My UMy C Li ULy, (33)

and
Ny CLisULi_4UL; 3. (34)

Following [18], we define the following order on the indices of the levels: 1 < 0 <
3<2<5<4-...Toturn this into a partial order on V, we say that x < y ifi < j,
wherex € Lyandy € L.

With this partial order, wehave {i —1,i+1} < iand{i—5,i—4,i -3} < {i—1,i+1}
for even indices i. Thus (33) and (34) translate into the following:

Ny < My UM, <v,v foreachv e V* (35)

(where we write X < Yifx < yforallx e Xandy € Y).
We first point out that for a uniformly random g-coloring f, by (15) we have the
trivial bound:
H() > N log (%’) . (36)

To complete the proof of Lemma 4.1, we wish to give an upper bound on H (f) that
would be smaller than the lower bound (36) if P(e is not ideal) is large, allowing us
to conclude that P(e is not ideal) = 2~

We may assume that e = vv’ for some v € V* by symmetry. Observe that

e=1- Z P(fy, = A, fy, = B)
(A, B) principal
>1- Y Pdy, =A. fy, = B) =P(eisnotideal);  (37)

(A, B) principal

therefore to prove Lemma 4.1, it will suffice to show that € = 279,

We are now ready to compute an upper bound for H (f). Note that the family
{M, U M,y : v e V*} together with d copies of each edge vv’ with v € V* covers
each vertex of V exactly d times, so by Lemma 3.13, we have

1 . / .
H({) < - (d Z H(f, o[ i <v,0)) + Z H (fa, 0, | (6 i < MU,MU/))),

veV* veV*
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which can be relaxed to

1
HE) < > HEy ) + 5 > HEwm,.m, 1N, (38)

veV* veV*
using (35).
For the first term on the rhs of (38),
(19 -
H(fv,v’ |fMU,ML,/) < H(fv,v’lfM,,a fMU/)

14
(=) Z H(fv,v’

Ao, A}

fu, = Ao, f'M;, = Aj) Py, = Ao, fM{, = Ay,
(39)

where the sum is taken over all possible Ag, A| € Q. Note that

_ _ (15
H(fv,u’ fm, = Ao, ftu, = Al) < log [(q_|AO|)(q_|A1|)_|Q\(AOUA1)|] (40)

since v ~ v’ so they cannot take the same color.

Next we treat the second term on the rhs of (38). For v € V* with |v| < 3 (the
number of such vertices is at most (”,) = 0(d?)), the vertex w = w(v) is not defined,
and we simply apply the naive bound

H(fm,,m, |fn,) = HEp,m,) < 2(d — 1) logg.

For v € V* with |v] > 4, we bound the conditional entropy in two pieces, cor-
responding to (i) the choice of color sets for M, and M/, and (ii) the assignment of
colors to specific vertices once the sets of colors are determined. Specifically, we have

(19 _
H(ty, m, ) < H(Em, m,|tN,)

20 =z
= H®&mymy sty fm,

16),(17)
<

fn,)

H(fy,, va/

fy,) + H €, u,,

fur,. far,)). 41)
The second term in (41) is

Hm, M, |far, . fMv/)

= Z H€m, M,
Ao, A1

fur, = Ao. By = ADP(Ey, = Ao, fyy = AD)

(15) _ B _ _
< > log(IAol* AT Py, = Ao, Tiy = A)). (42)
Ao, Aj
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Remark 4.2 There is no simple improvement possible to this trivial bound in (42) since
there are no edges between M, and M. This is in stark contrast to the situation in
Q,, where there is a perfect matching between M, and M/, allowing an entropy
savings whenever Ag N A1 is nonempty (since we cannot choose the same color for
both vertices in any of the matching edges). Ultimately, the loss of this small entropy
savings is the reason why we are unable to establish Lemma 4.1 for odd ¢.

Now, plugging all our bounds [(39), (40), (41), and (42)] into (38) and simplifying
slightly, we have

V* _ — —
HE) < 0 + %H(fMU,fMU, )
VLY Togthag a,) - PR, = Ao, By = A, 43)
Ag, Ay

where g, = ((g = [AoD(g = A1) = |Q\(Ag U ADI) - (1ol A1) ™. Note

that at this stage, v and v’ represent arbitrary vertices connected by an edge; since the
graph is edge-transitive, this does not present any problems.

To bound the final sum, we bound /4, 4, as follows: first, if (Ag, A1) is principal,
then (recalling ¢ is even)

= (8 o) (8) =@

If (Ao, A1) is not principal, then /1 4,, 4, is substantially smaller; to see this, we begin
by writing

haoar = (@ = 140D = 141) = 1Q\(Ag U ADI) - (140l 41])
(this is true for all Ay, A1, but it will simplify our computations slightly in the non-
principal case). Now, if (Ag, A1) is not principal but Ag U A; = Q, then |Ag| # q/2

or |[A1| # g /2. Without loss of generality, say that |Ag| # q/2. So (g — |Ao|)|Ao| <
(q/2)* = ©(1), and (¢ — |A1)]A1] < (¢/2)°, giving

4
haoar = (@ = 1A0Dl4ol) - (¢ = 141DIAY) = (F) — oD

(Notice that the same statement would not be true for odd ¢, as we could take a non-
principal partition (Ao, A1) with [Agl|, |A1| = [¢/2], giving the same bound as in the
principal case.) And if (Ag, A1) is not principal and Ag U A| # Q, then

4
haoar = (@ = 140D = 141D = ©D) - (140l1A1]) = (F) = ©M)
in this case as well.
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So in either case, if (Ao, A1) is not principal, then 14, 4, < (q/2)4 — (1), which
we will rewrite as hy 4, < (q/2)* /4 — § where § = ©(1) (since ¢ is a constant
and d — 00). Recalling the definition of € from (37), we may bound the sum in (43)
as follows:

Z log(hag,a,) - P(fu, = Ao, fury = A1)
Ag, Ay

= elog ((%)HM - 8) +(1—e)log <<%)4‘2/d>
e (§)") e 10 (3)")
=log ((%)4_2/d> —e 0.

Inserting this into (43), we have

H({) < 0> + V7l

—H(fy,, fu,
7 (far,, £,

_ 4-2/d
fy,) + V] <log ((%) ) e @(1)) .

(44)
On the other hand, (31) gives | V*|log ((¢/2)*%/%) = N log (¢/2). Then combin-
ing (36) and (44), and solving for €, we obtain

fn,). (45)

€ < 0d*/N)+ 0 (1/d)- H(Eu,. fu,

Thus all that remains in order to bound € is to analyze the entropy term in (45).
Ignoring the conditioning, a naive upper bound is

o _ 15
H(fy,, tm, |tN,) < 2q. (46)

Substituting into (45), together with recalling that N = 2¢(1=0(1) giyes

€ = 0(1/d) (= o(1)). (47)

2

We will strengthen our bound on H (fy,, £y, |fw,,) via the following key lemma

(and the fact that € is small).

Lemma 4.3 For any principal (A, B),

6¢

P(ty, = A, fy, =B|fy, =A) > 1 - ——
( M, » vy, | Ny ) = ]P)(wa = A)

; (48)

2 This lemma is based on Lemma 4.2 in Engbers and Galvin’s paper [7], and the proof is very similar.
However, there is a small subtle error in the original proof of Lemma 4.2, which can be resolved by slight
modifications to the argument, analogous to those made here.
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and also

> Py, =4 <e (49)

A not principal

Proof Let w, wy, wy, w3, v be a path of length 4 from w to v in BIIO‘. Write Q, 4 and
Ry, 4 for the events {fNU = A} and {f'Mv = A}, respectively. (The event R, 4 will be
defined only for v € V* and its mate, so we don’t have to worry about the definition of
M, for other v’s.) For two events P, Q we use the shorthand notation P Q for P A Q,
and P for the complementary event of P. We also use Ouvv (A, for Oy A0y B, and
similarly for Ry, (a,B)-

With this notation, to prove the first statement of the lemma, we wish to bound the
probability

P (va’,(A,B) Qw,A)

P (Ryv,(a,8)| Qu.a) =1 —P(Ryy (a,5) F(Qu)
w,

Qw,A) =1-

To bound the probability in the numerator, we begin by observing that

Ry .A.8)Qu.a S Ruy.(a.8)Quv.ca.B) YV Quur.(a.B)Qu.A- (50)

This does not rely on any special facts about these events; in general, PQ = PQ A
(RVR)C PRVRO.
Moreover, we have
P(Ryv,(a,B)Quv (4,B)) =< €. (5D

To see this, notice that the event Iz’w/‘( A.8)Quv' (4,B) 18 equivalent to saying that
fu, va/) # (A, B), but (fy,, fNu’) = (A, B). Since fy;, < fy, and va/ - fNu/’ this
means that there must be at least one color missing from f'MU U f'MU,; thus this event
implies that (f M, f M,,) is not principal. Recalling that € is simply the probability that
(f' M, f'Mv,) is not principal, this gives (51).

Now to bound the probability of the remaining event, vi/y( A,B)Qw, A, We observe

O, (A.BYQuw, 4 S Qu,AQuw,BY Qui,BQur.Aa Y Quy,aQus,B Y Qus,B0v,A

Vv Qv,A Qv’,B»

and
each of the 5 events on the rhs occurs with probability less than € (52)

since Qy, B sz, 4 implies that wyw; is not ideal, etc. Therefore,

_ P(Ruv’,(A,B)Qw,A) (50),(5<1),(52) 6e

P({fy, = A.fm, = B) |fy, = A i Py, = A)
(g, = 4Ty, = BY [ I, = 4) P(fy, = 4) T Py, =4
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which concludes (48). Also, ]P’(f'Nw =A) > ]P’(wa =A, wa, = Q\A) implies

> Phv, =4 = Y Pdy, =A fy, =Q\4)

A principal A principal
= Y Py, =A 1y, =B
(A, B) principal

— P(eis ideal) > 1 — €

where the last inequality follows from (37). O

The rest of the proof is just a special case of the proof of [7, Theorem 1.4] so we
will try to be brief. The entropy term in (45) can be split as

_ 14 - -
fv) = Y. Hw,.fu,

A principal
+ Z H(tw, . tu,,

A not principal

H (. fu, fy, = A) - Py, = A)

fy, = A) - Py, = A).  (53)

The second sum in (53) is

49),(15),(16)
<

> H(wm,.fu,|ty, = A)-Pdy, = A)

A not principal

2qe; (54)

for the first sum in (53), note that, by symmetry, P(f N, = A) isequal for each principal
A C 9, s0 by (49) and (47), we have

P(fy, = A) = Q(1). (55)
Next, for each principal A,

fN — A) (1:4)

w

H(fy,, f'MU,

Z —]P)(E.Mv == AO» va/ = A1|wa = A)
Ap, A

log [P(fur, = Ao, fur, = Ailfy, = A)].

and using the fact that —plog p < H(p) for any constant p € (0, 1) (here H(p) is
the binary entropy function, defined in Sect. 3.4), we obtain

HEu, B, [fv, = 4 = Y H(Pdw, = Ao, fu, = 41 [fy, = 1), 66)
Ao, Al

If (Ag, A1) = (A, Q\A), then Lemma 4.3 gives

6 @47).(55)
€ )

Py, = Ao, fyy, = A1 |fy, =A)>1— ———
(fp, 0, fu, 1|, ) Py =)
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On the other hand, if (Ag, A1) # (A, Q\A) then by Lemma 4.3

_ _ _ 6¢
Py, = Ao, ty, = A1 |fy, =A) < ———— < 1/2.
(Eu, 0, fm, 1| fa,, ) Py = A) /

w

Since H(p) is increasing for p < 1/2, and is symmetric about 1/2, we may bound
each of the entropy terms in the rhs of (56) by H (6¢/P(fy, = A)). Thus we may
bound the first sum in (53) as follows:

fy, = A) - Py, = A)

Z H(fy,, f'ML,,

A principal

6¢e _
< 2% Hl—— | - Py =A
< > (P T = A)> (fy, = A)

A principal

=0()- H( ) < Celog(C/e) 57)

€
P(fy, = A)
for some constant C, where the last inequality uses the fact that H (x) < 2x log(1/x)
for x < 1/2 [and (55)]. Note that by symmetry, we can take A to be an arbitrary

principal set in (57).
Finally, we combine (53), (54), and (57) to obtain

H(fy,. T, |fy,) < 2g€ + Celog(C/e),
which, together with (45), gives
€ < O(d*/N)+ 0 (1/d) - [2qe + Celog(C/e)].

Then as N = 29@_ we solve to obtain € = 279 completing the proof of
Lemma 4.3.

5 Proof of Lemma 2.2
5.1 Warming-Up

Before we start in earnest, we recall (e.g. from [19]) how the entropy function gives
an upper bound on ¢, (G) for any d-regular bipartite graph G (with, say, a bipartition
D U U). The argument in this section will be used in a refined form in the proof in
Sect.5.4. For f € C;(G) chosen uniformly at random, we have

1
oz, &) 2 1ty D Hitp) + Htyltp) < 3 [EH(fNu) + H(fu|fNu)} ;

ueld
(58)
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here the inequality uses Lemma 3.13 with

(59)

oo — 1/d if S= N, forsome u € U;
S ) otherwise

for the first term, and (18) for the second term.

Notice that we can always give the following simple upper bound on the terms in
(58); this bound is too weak to be useful in general, but in the proof that follows, we
will use it on some small sets of vertices.

Proposition 5.1 For f drawn from any probability distribution on Cy(G) andu €V,

1
(T (u) :=) EH(fNu) + H(f,|ty,) <log(q/2)* + 0(1/d). (60)

Proof Recall that f(N,) = {f, : v € N,}, i.e., the set of colors used on fy,. Clearly,
f(N,) is determined by fy, , and then we have

Tw) 2 LHEN,)) + HEy, N+ HEEy,)

19
< TH®EWN)) + THEN, E(N)) + HEE(N)). (61)
Note that for each possible value C of f(N,),

H (£, |f(N,) = C) < log(q — |C)),
H (fn, [E(N,) = C) < dlog|C].

Since log x +log(g —x) < log(g/2)? for x € N, the last two terms in (61) are bounded
by

> PEN,) =) BH(fNu IF(N,) = ©) + HEJE(N,) = C)} < log(q /2%,
C

yielding the proposition (since H (f(N,)) = O(1)). O

5.2 Proof Overview

In Step 1 (Lemma 2.1), we showed that the vast majority of colorings in C, (By) admit
a ground state with exponentially small flaws. Our goal in this section is to bound the
number of such colorings that disagree with their ground state exactly at a particular
set X (ranging over all 2-linked sets X with moderately-sized neighborhoods). More
precisely, we wish to bound the quantity

D lxas)

XeH(g)

; (62)
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for all g and (A, B) as in Lemma 2.2. As is typical as in this line of work, directly
bounding the number of colorings f in x4 p(X) is a difficult task. The main idea of
the current proof, which is inspired by [19, 20], is to bound the number of colorings f
that admit a given pair (F, S) as a yr-approximating pair of X4 p(f). (Note: Sect.3
has definitions and background on ¥ -approximating pairs.)

Roughly speaking, for a given pair (F, S), we bound the entropy of a random
coloring f corresponding to (F, S), breaking our analysis into three cases. In each
case, we use the chain rule of conditional entropy [as in (58) above] to first “expose”
part of the coloring, then use this to find some “entropy savings” as we color the
remaining vertices. The exact order in which we expose the vertices of the coloring
will be different in each case; very roughly, the three cases will depend on the difference
in size between F' and S and on the amount of error obtained in approximating the
flaw X by the pair (F, S). Ineach case, (F, S) provides a different type of “resources”
that we can use to obtain entropy savings.

We emphasize that the containers (F, §) are crucially used to lead entropy savings;
a “vanilla” entropy approach (as in Sect. 5.1) gives a much weaker bound, and a careful
combination of entropy and containers is key in this step.

We also remark that, as pointed out in Sect. 1, the proof in this section can easily
be extended to odd q.

5.3 Notation and Proof Setup

Throughout this section, we fix an integer g and a principal partition (A, B) as in
Lemma 2.2. In order to use approximating pairs, we must specify the parameter ;
let ¥ be an arbitrary number with

log’d < ¥ < d/log*d, (63)

and let U/ (g) be the corresponding set of pairs (F, §) guaranteed by Lemma 3.9.
For a pair (F, §) € U(g), we define

Ir s :={X € H(g) : (F,S) is a y-approximating pair of X}.

Observe that with this notation, (62) can be broken down according to approximating
pairs as follows:

Yoo lxas®l= > Y |xasX)]. (64)

XeH(g) (F,S)eU(g) XeIF s

Before bounding this sum (the goal of this section), we will break it down one step
further according to the size of a particular set related to each X [yielding (66) below].
To do so, we will need some additional notation; we also take this opportunity to
introduce a variety of notational conventions for this section.

Given a pair (F, S) € U(g) and aset X € Zf g, we will adopt the following:

e Weuse D and U for L1 and L; (for notational simplicity)
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e X1 :=XND,S1:=8SND,and F; .= FNU

e Xp:=XNU,S5:=SNU,and F, := FND

e x1 = |X1],s1 := |81, and f} := |F]

e x2 = |X>|, 5 := |82, and f> := |F3|

e c:=1/logd

o ¢/ :=1/log*d

e We assume that [N (X1)| > |N(X>2)| (thus |[N(X1)| > g/2), as the other case may

be handled identically by switching the roles of ¢/ and D
g1 := |N(X1)[; note that the previous convention guarantees g1 € [g/2, g].

Now for any fixed g1 € [g/2, g], we define the set of colorings
Fr.s(g) :=={f: (f € xa,p(X) forsome X € Zp 5) A IN(X)| =g }. (65

The key of the proof is to establish an upper bound for each |FFr s(g1)[; concretely,
we can break down the sum (64) as follows

Yo lasX= DY Y asX|= D> > 2|Frsg)l

XeH(g) (F.$)el(g) X€lF s (F.8)el(g) g1€l8/2.8]
(66)
(note: the factor of 2 above comes from switching the roles of / and D in the case
where |N(X1)| < |N(X2)|). The remainder of this section is dedicated to bounding
the terms of this sum, and we will divide our analysis into three cases, detailed below.
As a final note, given a coloring f, we call a vertex v is good if f agrees with a
principal partition (A, B) at v (and bad otherwise). We will often use the easy fact
that for a random coloring f drawn from any probability distribution on C, (B,), and
any v € V (recalling that g is even),

H(f, | vis good) <log(g/2). 67)

5.4 Proof of Lemma 2.2

We now bound the terms |FF s(g1)| in (66). Our strategies will vary depending on
the values of g1 — f1 and f — s1, and we will give a different bound on |FFr s(g1)|
in each of the three following cases:

Casel. g1 — f1 < €g1.
Case2. gy — f1 > €grand f; — s < €'gy.
Case 3. f] — 51 = E/gl.

Case 1. g1 — f1 < eg1. We first claim that given a pair (F1, S1),
the number of possibilities for N (X ) is 2°@1 (= 2°68)). (68)

Indeed, (7) implies that N (X) is a subset of N(S7), which is a set of size at most
ah
ds; < (140(1))dg;.Since F1 € N(X1), N(X1) is fully determined by N (X 1)\ F1,
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which has size g1 — f1 < €g1. Therefore, the number of choices for N (X )\ F (and
hence, for N(X1)) is at most

((1 +o(1))dg:

) < exp,[O(eg1 log(d/e))]=2"¢"
=< €81

(where the final equality is from € := 1/ logl'5 d). Note that N (X ) does not neces-
sarily determine X; it only gives the closure of X1, i.e.,

[X1]:=={veD:N() S NXpD}.

Now, fix G to be any of the 2°(81) possible choices for N (X1), and let f be uniformly
chosen from among corresponding colorings, that is, from the set

Frs(@)N{f € xap(X): X elpsand |N(X1)| =G}

We bound the entropy of f as follows:

HO 'L HEp) + HEyltp)
1 dG|U52(U)
< ) SHEN) Y (1 - T) H(E)+ Y H(Elfy,)
ueGUS, veD ueld
< ) Tw+ Y HE)I+) ( dGMZ(”) H(E,). (69)

ueG1US, ucld\(G1USy) veD
where the first inequality uses Lemma 3.13 with ag = 1/d if S = N, for some
ue€ GrUS$,, and a, = 1 — dg,us,(v)/d for each singleton v € D [so that (21) is

satisfied]. We will bound each term of (69) individually.
(i) First term of (69): We define the set

[X1]” ={u eV :Nwu < [X1]}, (70)

and note that [X1]” € G1.,If u € [X1]” U (52\G1), then we use the naive bound in
Proposition 5.1 to obtain

T(u) < log(q/2)* + O(1/d). (71)

For the remaining vertices u € G| U S, (that is, those vertices in G1\[X]7), we
can achieve a stronger bound on 7 (u):

Proposition 5.2 Foru € G\[X1]~ withd'(u) := d — dix, (),

1
- H @y, [E(Nw) + H 8 (N) = log(q/2)* = Qd'w)/d).
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Proof Note that if a color set C € Q is not principal, i.e., ¢ := |C| # g /2, then

ZHEFN) = O+ HEEN) = ©) = loge+log(q —o) = log(g/2)" ~ (1),

(72)
Next, suppose f(N,) = C for some principal C,i.e.,c = g/2.Notethatu € G1\[X1]™
implies # ~ X1 and u ~ D\ Xy, so in particular C intersects both A and B. Let
C'=CNB (# ¥ and ¢’ = |C’|(< ¢ — 1). Note that each vertex in N, \[X1] is good,
so it has at most ¢’ color choices. For vertices in [X], we apply the naive upper bound
¢ (= g/2) for the number of possible color choices. So we have

éH(fNu“.(Nu) = C) + H(fulf(Nu) = C)

< % [(d —d'(w)) logc +d'(u)log(c)] +log(g — ¢)

d'(u)

<logc +

log(1 —1/c) 4+ log(g — ¢)
= log(q/2)* — Q(d'(w)/d). (73)

Combining (72) and (73), we have

1
EH(fNu |f(Nu)) + H(fu |f(Nu)) =
ZIP’(f(Nu) = C)I:éH(fN,Af(Nu) =C) + H{E,|E(Ny) = C)]
C

<log(g/2)* — Q(d'(u)/d).

To finish bounding the first term of (69), it remains to estimate the sizes of the
sets [X1]™ U (S$2\G1) (where we must use a naive bound) and G\[X]™ (where
we may use the stronger bound from the above proposition). And this will follow
from the expansion of the graph; note that by Lemma 3.6(iii) (and the bound on g in
Lemma 2.2.),

IN(XD| = (I +QADIX ] = (1 + Q2)[X]. (74)
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Let x; := |[X{]™|. By (61) and Proposition 5.2,

Z T (u)

ueGI\[X1]~

1
= X [ZH(f(Nu»Hog(q/Z)z—Q(d’(w/d)]
ueG\[X1]™

< 0@g/d) + (&1 —x{)log(q/2> —Q(1/d) - Y (d —dix; ()
ueGI\[X1]~

= 0(g/d) + (g1 — x) log(q/2)* — Q(1/d) - d(g1 — |[X:11)

D (g1 — x7)log(q/2)? — 2(g). (75)

Note by (11) that |G1 U S2| < g1+ (1 +0(1))g2 < (1 +0(1))g. Combining (71) and
(75), we have

Y. T <IG1US|log(g/2) + 0(g/d) — Q(g)
ueG1USy

= |G1 U S»|log(q/2)* — Q(g).

(ii) Second term of (69): If u ¢ S> then u is good, so H (f,) < log(q/2). Therefore,

Y. H®E) < (N/2-GiUS:]log(q/2).
ueld\(G1US»)

(iii) Last term of (69): Observe that for any v € D,

d01US2(U) dG1USQ(U) q .
<1 - e ) H(f,) < (1 - )log (5) ; (76)

indeed, if v € [Xy], then dg,(v) = d so the inequality holds (with equality); if
v ¢ [X1], then v is good, so H(f,) < log(q/2). By this observation, the last term of
(69) is at most

7 T dys,ontog () 1o (4) -1 -a (5 1610511

veD
— log (%) (% — G, U Sg|) .
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Combining the bounds in (i)—(iii), (69) is at most

|G1 U 8] log (%)2 ~Q(9) + (% — Gy U 52|> tog (4)
" (% —la 52|) log (5) = Nog (5) - 2(s). (77)

Finally, the combination of (68) and (77) gives that in Case 1, i.e., g — f1 < €g1, the
number of colorings in Fr_s(g1) is at most

7N log(q/2)—82(g)

Case 2. g — f1 > €g; and f] — 51 < €'g1. Recall that we are given (F, S), thus
(F1, S1) and (F2, S2). Note that for any coloring f € Fr s(g1),

if fg, is specified, then this gives N (X1), (78)

because fs, gives X1 by X1 = {v € S| : f, € A}, thus N(X1). Now let f be uniformly
chosen from Fr s(g1); our plan for Case 2 is to first disclose information on fs, to
specify N(X1) (not fy(x,)), and then take advantage of the fact that N (X )\ F; is
somewhat large.

We first specify f on F1 U Sy, whose entropy cost is

HErus) 2 HEs) + H(Er |fs)
M1 d
=D HEwns)+ ) (1 - %) H(,) + Y H(Eulfv,ns)

uekF; vES] uekF
1 dr, (v)
=Y [EH(fN,,ﬂSI) + H(fu|fNL,msl)] +> (1 - F‘T) H (f,)
uekF| veS]

where for () we apply Lemma 3.13 with oy = 1/d if T = N, N S} for some u € F;
and oy, = 1 — dF, (v)/d for each singleton v € S} (so that (21) is satisfied). Note that,
for each u € F| and a possible value C for f(N, N S1), a similar argument as in the
proof of Proposition 5.1 gives that

1
3H(fNunsl) + H,fn,ns,)
1 1
< SHEWNN0S0) + - H By, (N 0 8D) + HEN N, 0 S1)
< 0(1/d) + log(q/2)%.

Also note by Observation 3.10 and (8) that

d
3 (1 = F‘d(”)> HE) < W/d) HE) = 0 (g9/d),

ves) vES]
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thus
H(frus,) < filog(q/2)* + O(gyr/d). (79)

In what follows we use the random variable f for the distribution of f conditioned
on the event that we have specified colors on F; U S;. (Eventually we give an upper
bound on fpuzs)\ (r,us,) that is valid regardless of the coloring of Fj U S;.) We use G
for N(X1) given by the color specification on S; [see (78)]. Below is our key lemma.

Lemma 5.3 Foranyu € G\ Fi,

1 ~ -
SH(Eys5) + HElfy, 50 < log(g/2)* — Q(1). (80)

Proof Note that the lhs of (80) is at most

| B 1 - ~ -

EH(f(Nu\S])) + gH(fN,,\& [E(Nu\SD) + H (£, [E(N,\SD), (1)
and if f (N,\S1) = C for a non-principal color set C, then (with ¢ := |C])

| ~ -
EH(fzvu\sl If(N\S1) = C) + H(EE(N,\S1) = C) <logc +log(g — ¢)
=log(q/2)* — (). (82)
Now, suppose f(N,\S)) = C fora principal color set C. Note that we have already

specified colors on S;, and if some vertices in S1 N N, use colors not in C, then we
again have

1 ~ - ~ o~
JH(Evs BVASD = €) + HEFNAS) = ©) < log(q/2) +loglg/2 1)
=log(¢/2)* — (D). (83)
So now assume that f'(Nu\Sl) = C and that C includes all the colors on N, N Sy.
Note that |N,\S1| > d — ¢ by (9), so in particular, # € G{\[X]™. [Recall the
definition of [X]™ from (70).] This implies # ~ X; and u ~ D\ X1, so C must
intersect both of A and B.Let C’ = C N B (# ¥) and ¢’ = |C’|(< ¢ — 1). Note that

the vertices in N, \S| are all good, thus each vertex in N, \ S| has at most ¢’ choices
for colors. Therefore, with d’ := |N,\S|(> d — V), we have

| B ~ o
EH(fN“\Sl [f(N.\S1) = C) + H(E,[f(N,\S1) =)

d/
=7 log(c") +log(g — ¢)
<logc+ (d'/d)log(1 — 1/c) + log(g — c)
= log(q/2)* — Q(1). (84)
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Combining (82), (83), and (84), we have that the last two terms of (81) are at most

- 1 - - -~
Y PEWNNS) = C) [Emfm\sl F(NASD = C) + HEJNF NS = C)]
C
< log(q/2)* — Q(1).

Therefore, (81) is at most log(q/Z)2 — Q(1) (by noting that its first term is O (1/d)).
O

Now we consider

H o rus)) = HEpys) + H G 1Epys,)- (35)

We bound the first term on the rhs by applying Lemma 3.13 with ag = 1/d if § =
N,\S; for an ue (G1 U $2)\F1, and some «,, for v € D\ S so that (21) is satisfied.
Noting that H (f,) < log(q/2) for each vertex v € D\ S| (since they are good),

= 1 . dG usH\F, (V)
Hips) <~ ) Hlvas)+ Y (1—%)@(%).

ue(G1US)\Fi veD\ S
(86)

To bound the second sum of (86), observe that

Y dGiusyng () =V(D\S1, (G1 U S)\F1)
veD\ S

> |V(D, G U S)| —|V(D, F1)| — [V(S1,U\F1)|
®)
> d|G1 U 8| —dfi — ¥s1

11
221G US| —dfi — O(yg).

so (86) is at most (recalling that |D| = N /2)
1 < q\ (N Vg
oY H(Ews) +log (§> <E — G\ U Syl + fi — sl) +0 <7) .
ue(G1US)\Fi
(87)

For the second term in the rhs of (85), again noting that H (f'u) < log(gq/2) for each
vertex u € U\ S, (since they are good),

PR - q
HEorlfos) = Y HElws) + G Usllog (2)
ue(G1US)\Fi

S N
= Y HEnas) +1og(3) (5—|Glusz|>. (88)

ue(G1US2)\F1
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The sum of the first terms of (87) and (88) are at most, by Proposition 5.1 and
Lemma 5.3,

1 . -
Z |:EH(fNu\S1) + H(fu|fNu\Sl)i|

ue(G1US)\ Fi

< (21— f1) <1og (%’)2 - 9(1)) +1$:\G1| (log (%)2 +0 G))
<tog(2) 461U s~ - 0@ — o+ 0 (%)

2
<1og(3) 1G1US: - fi) - ep). (89)

where for the last inequality we use € := 1/log! d and the fact that g; — f| > egy
in Case 2. Combining (87), (88), and (89) (and observing that ¢ g/d < €g), we can
bound (85) by

tog (1)’ (g - fl) +iog (1) (i —s0—2(eg) = tog (1)’ (% - fl) —ng)i

where the equality uses another assumption in Case 2, i.e., f1 —s1 < €/g1,and €’ < €.
Finally, combining (79) and (90), we have
H(f) = H(rus,) + HEDu\Fus) frus)
< H(frus) + Y PErus, = p)H G rusy Erus, = p)

0
< filog(q/2)* + O (g¥/d) +log(q/2)> (NJ2 — f1) — Q(eg)
= Nlog(q/2) — Q(g/log' ), 1)

Therefore, in Case 2, the number of colorings in Fr s(g1) is at most

9N log(g/2)-Q(g/ logS d).

Case 3. f| —s1 > €'gy. Let f be uniformly chosen from Fr g(g;). Recall that (F; U
S)tT = (F1 USy) UN(F| US,). Then with T (1) as in (60), we have

H(frus,)+) = HENFUsy) + HEFRuUs, | Evmus,))
) 1 drus, (v)
Ly lrans ¥ (1 s g,
ueF1US veN (F1US>)
+ Y H(@E|fy,)

ueF1US

- Y W+ Y (1——dF‘U52(v)>H(fu) ©2)

ueF1US, veN(F1US)
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where for () we apply Lemma 3.13 withag = 1/d if S = N, for some u € F; U S
and o0y = 1 —dpus, (v)/d for each singleton v € N (F;US>) (so that (21) is satisfied).

Let Fp = {u € F1 : N(u) C S1}, and write fy = |Fp|. The proof of below
proposition is identical to that of Proposition 5.2, thus we omit it.

Proposition 5.4 For any u € Fi\Fy withd'(u) := d — ds, (u),

1
C—ZH(fN,,If(Nu)) + H(&,|f(N,) < log(q/2)* — Q(d (u)/d).
Note that

Z d'(u) = |V(F1,D\S1)| = df) —ds) = de'g). (93)
ueF1\Fy

Using Proposition 5.4 and (93), we obtain

()) 1 1
Z T =< Z |:EH(f(Nu))+EH(fNM|f(Nu))+H(fu|f(Nu)):|

ueFi\Fy ueF\Fo
< 0(g/d) + (fi — fo)log(q/2)* — Q€ g).

On the other hand, using the naive bound in Proposition 5.1, we have

S T@) < 0Gg/d) + (fo + 12\ Fi]) log(q/2)%.
ueFoU(S2\ F1)

Combining the above two bounds, the first term of (92) is

Y T < |Fi1U S log(q/2)* — Q(e'g). (94)
ueF1US,

For the second term of (92), using the fact that H (f,) < log(q/2) for all v € D\ S
(since they are all good), we have

dr,us, (V) dpus, (v)
> (1 — UT) HE) <Y (1 — UT) H(,)

veN (F1US3) vES]

+ > (1 -~ —dFlU;Z(U)> log (%)

veN (F1US)\S|

8
Cowgiy+ Y <1—M)log<z>. 95)

d 2
veN (F1US2)\ S|

Observe that

Y. drus,(v) = V(F U Sy, N(F1 USH\S)| = d|Fi U S| —dsi.
veN (F1US2)\ S
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Then (95) is at most
(IN(F1 U $2)| — [F1 U $20) log(q/2) + O (Y g/d). (96)
Combining (92), (94), and (96) (and observing that v g/d < €’g), we have
H(fpus)+) < |(F1US») T log(g/2) — Q(€'g).

Finally, using the fact that H (f,) < log(q/2) forall v ¢ S; US> (since such v’s are
good),

Hf) < HEpusys) + Y. H(E) < Nlog(q/2) — Q(g/log> d).
v (F1USy)*

Therefore, in Case 3, the number of colorings in Fr s(g1) is at most

7N log(q/2)~R(g/log? d)

Conclusion To sum up, we have shown that for any (F, S) and g{, the number of
colorings in Fr s(g1) is at most

N log(q/2)=Q(g/log? d) _ (4 /2N =g/ log?d)
Note by Lemma 3.9 and (63) that
Ug)| < 20(glog’d/d+glogd/y+d) _ Ho(g/log>d)

Therefore, for any principal partition (A, B) and g € [d'°, 2-F'4 N1, we have

Y s QY Y 2 Fes@l

XeH(g) (F,$)el(g) g1€lg/2.8]
< 2.0/ log?d) g (q/z)Nz—Q(g/logz d)

< (q/z)NTQ(g/logz )

which completes the proof of Lemma 2.2.

6 Polymer Models on By

We first define a polymer model on B; and introduce relevant definitions. Recall the
definitions in Sect. 3.5. The set of polymers is defined to be

P = {y C V : y is non-empty, 2-linked, and |N (y)| < 2_ﬁdN} o7
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where § is as in Lemma 2.1. Define Hp to be the graph on P where two polymers
y, v’ are adjacent iff y U y’ is a 2-linked set (so every vertex has a loop). Recall that
Qp (> 0) is the collection of independent sets of Hp with loops allowed.

Fix a principal partition (A, B) of Q. In this section we tentatively drop the assump-
tion that g is even, as all proofs here works simultaneously for both even and odd q.
We equip each polymer in P with the weight function (recall x4 p from (4))

Ixa,8(7)| _ Ixa,8(¥)I
(Al 1BDN  (lg/2] - Tq/2DN”

wa,g(y) = (98)

For future reference, observe that, writing f,,+ for f restricted on yTand x4 p(y) :=
{fy+: f € xa,B(y)}, we can rewrite (98) as

| Xa,8(Y)I
|A|lv 0Ll .| B|lyTNLal”

waB(Y) = 99)

Now define the polymer model associated to a principal partition (A, B) as

1]

A

&

= E(P,waB) = Z 1_[ wa,B(Y)-

AeQp yeA
For a cluster I' = (y1, 2, ..., Yx) where y; € P, define the size of " to be ||[I'|| =
Zle |vi|. For any k > 1, the k-th term of the cluster expansion of the polymer model
(P, wa.B) is

Lapk):= Y  wap) (100)
rec, T|=k

[where wa g (I") is defined as in (25)] and then by (26),

o0
nEap=) wap@) =) Lapk). (101)
k=1

rec
6.1 Verifying Kotecky-Preiss Condition
For every polymer y € P, consider a new weight function
wa,B(y) = wap(y)exp(ly|/d) (> wa p(y))

and the corresponding polymer model partition function

Eas =8P aap) = Y []@as®). (102)

AeQp yeA

In the next lemma we verify Kotecky—Preiss Condition for (P, @4, p) (thus for
(P, wa,p)). This stronger result will be used in the proof of Lemma A.1.
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Lemma 6.1 There exists functions f : P — [0,00) and g : P — [0, 0o) such that
for each principal partition (A, B) and all polymers y € P,

Y oas@explyl/d) exp (f() +2() < F(). (103)

Y~y
In particular, the cluster expansion of both In E 4 g and In o A,B converge absolutely.

Proof Fix a principal partition (A, B), and simply denote w4 p as w. Recall from
Lemma 2.2 that there exists a constant & > 0 such that for all g € [dlo, Z_ﬁdN],

Y o) <exp(—£g/log?d), (104)
yeH(g)

where H(g) = {X C V : X is 2-linked, |[N(X)| = g}. Let

IN(¥)I/3q if [N(y)| < d"

= d and = 105

Fo =i/ 8= 6N/ (log? d)  otherwise. (105)
Note that, to show (103), it suffices to show that for each v € V,

Y () expQf() + g < 1/d?, (106)

y:y'sv

since the lhs of (103) is at most

/ 1 / (106) 2 3
Y73 Y w0 expQfG)+8()) = Iyld - (1/d*) = f(y).

UEY yeN2(u) y':y'sv

We split the sum in (106) into two parts according to | N (y”)|. First, for y with [N (y)| >
le,

> o) -expf () +8(r")
y'y'ov, IN(y)|=d10
27PN
<Y D o) epf()+80)

g=d0 y":y’eH(g)

(104) 22N i
< ) exp(—ég/log’ ) -exp(ég/Qlog’d) = = (107)
g=d10
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for d sufficiently large. Next, for y with |[N(y)| < d'°, we first give an upper bound
on w(y). Observe that a naive counting gives

1%4.8()] < |AC|\Vﬂ£d|(|B| _ 1)\3()/)0501—1||BC|\Vﬂﬁd—1|(|A| _ 1)\3(V)ﬁ£d|
— |B||Vﬁ£d|(|B| _ ])la(}/)ﬁﬁd—l||A||Vﬁ£d—1\(|A| _ 1)|3(V)ﬂ£d\’

therefore,

99) |B| lyNLql |B| — 1 [0(y)NLy—1| |A| lyNLa-1l |A| — 1 [8(y)NLy|
0= () Cer) ) ()
|Al |B| |B| |Al

|B| |A| Iyl 1 1 [l
§(max{ }) (max{l——, 1——})

|A|” |B| [A] [B|

1 Iyl 1 [l
<1+ —+ 11— — . 108
: < " Lq/2J> ( mm) (o9

Now, if IN(y)| = g < d'°, then by Proposition 3.6(ii), we have |y| < 12g/d. So we
have

> 0 expf() +2()
y'iy'sv
IN(y")|=d"

a0

<Y Y eHepfy)+ew)

g=d y"V’Bv IN(y)l=g

6), <108> 1\ 1%/ 1 \%? 24
( Z ed®)'28/4 (1 + —) (1 - —> exp( f - )
lg/2] lq/21 d 3q

dl() /2
- 24712674 (4 1 \* exn (L) < 1
2 S Sy
=2 e lq21)  “P\3¢) = 283

g=d
for d large enough. This, together with (107), completes the proof. O

6.2 Bounding Terms in Cluster Expansion

For a principal partition (A, B), define

8 {1 ! 1 ! } 1 !
Api=maxjl——,1—— - —.
Y | B [q/2]
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Lemma 6.2 Let (A, B) be a principal partition. Then for any fixed t > 1, we have

o0
3 Lastl = 0, (N5 ).
k=t
Proof We show that
|[La (k)| = O (NdZ(k—l)af\]fB> for each k € N; (109)

and

for each t > 1, there exists a constant K = K (¢) such that Z |La p(k)| < Sf\{B,

k>K
(110)

from which the conclusion follows since

00 K
Do iLas®] =Y ILas®|+ Y 1Las®)] =0 (Na* V64 ,).
k=t k=t

k>K

For (109), let y be a polymer of size at most a fixed k¥ € N. By Proposition 3.6(i), we
have |[N(y)| = d|y| — Ox(1), so

(108) 1 Il 1 [Pl
< ——) (11— ——
0aslr) = <+Lq/2J> ( rq/21>

1 k 1 dly|=ly|—0k(1) dly|
= (1 * Lq/2J> (1 - rqm) = 0u (3375)-

Therefore, for a cluster I of size ||I'|| = k, we have

w5 = ¢(Hp() [T oa ) E 0 (545). (a1
yell

Next, observe that for a cluster I with |I"|| = &, V(I") is a 2-linked set of size at most
k (by the definition of the cluster). Therefore, by Lemma 3.4, the number of options
for V(I') is at most Oy (N . d2(k_1)). Notice that given V (I"), there are only O (1)
possibilities for I". By putting all ingredients together, we have that, for a fixed integer
k,
Las® = Y wap®) =0 (NED5d,), 1)
reC, |IT|=k

recalling that C is the set of all clusters (see Sect.3.5).
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Next, we show (110). By Lemma 6.1 and (28), for any vertex v € V and g(y) as
in (105),

Y leas@lexp(g(D) < 1/d.

reC,r'~{v}

Trivially every cluster I is adjacent to some vertex in V, so

Z lwa,p(T')|exp (g(I')) < N/d. (113)
recC

By Proposition 3.6(ii) and the definition of g(y), we have

_ Jdlrl/G6g) if |yl <d’
= |48 otherwise.

g)

Therefore, for each constant k € N and any cluster I' of size at least k, we have

gM) =Y "g(y) = > dlyl|/(36q) = d|T|l/(369) = dk/(36q).

yel yel

Now, take K = K (¢) to be the smallest integer that satisfies
dt d
exp (—d(K +1)/(369))) < SA,B : N

(such K exists since N ~ 224 //md). Then we have

dlLas®ls Y jwas®)

k>K reC, |T|=K+1

= Z lwa,p(I")] exp (g(T")) exp (—g(I"))
reC, |P||=K+1
N
== 3%{3,

d (113) d
sai{B.N~Z|wA,B(F>|exp(g<r>) < sy

recC

6.3 Almost All Colorings are Captured by at Most One Polymer Model

For a principal parition (A, B), we say that a coloring f € C,(By) is captured by
the polymer model E 4 p if every 2-linked components of X 4 g( f) is of size at most
2PN (where B is as in Lemma 2.1). By the definition of 84 3,

N2

the number of colorings captured by E4 p is exactly (|1g/2][g/2] -84.B.

(114)
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The following lemma says that almost all colorings are captured by at most one polymer
model.

Lemma 6.3 Let g > 4, and denote by C; the set of colorings in Cy(By) captured by
at least two of the polymer models E 4 g’s. Then

2l sexp (-2 (N/d?)) (a/2)fa2DY? Y Bam (115

(A, B) principal

We will use Lemma 6.5 below to prove Lemma 6.3. The proof of Lemma 6.5 is almost
identical to the proof of [15, Lemma 11.2] and we put it in Appendix A for the sake
of completeness.

As in [15], it is helpful to consider an auxiliary probability measure /i, on C,(B4)
(instead of uniform probability measure).

Definition 6.4 Foran f € C,(By), let fi,(f) denote the probability that f is selected
by the following four-step process:

1. Choose a principal partition (A, B) uniformly at random;
2. Choose A € Qp from the distribution v4_ g, where

wa,B(Y)
v g(A) = HVEAH— for each A € Qp; (116)
ZAB

3. With § := UyeA v, select a coloring f € x4, p(S) uniformly at random;
4. Independently assign each v € £;\S™ (v € L;_1\S™, resp.) the color ¢ € A with
probability 1/|A]| (the color ¢ € B with probability 1/|B|, resp.).

For s > 0, say f is s-balanced with respect to (A, B) if for each ¢ € A (¢ € B,
resp.), the proportion of vertices of Ly (L4—1, resp.) colored cis 1/|A| £s (1/|B| £,
resp.). The following lemma says that a typical coloring sampled from the measure
fiy4 is well-balanced with respect to some principal partition.

Lemma 6.5 Let f be a random coloring drawn from the distribution [i,, and denote
by D the principal partition selected at Step 1. Then there is a constant L = L(q) for
which the following holds: if (A, B) is a principal partition and Ld28ﬁ,3 <s <1,
then

P (f is s-balanced w.r.t. (A, B) | D = (A, B))

>1—exp (—sz (s2N)) —exp (—sz (sN/d2)> :

Proof of Lemma 6.3 Let f and D be as in Lemma 6.5. Fix two distinct principal color
partitions (A, B) and (A’, B’), and let F be the set of colorings which are captured
by both B4 p and B4 pr. Set s = 1/g* and observe that we may partition F =
Fa,B U Far p, where Fa p (Far p, resp.) consist of elements of F that are not s-
balanced w.r.t. (A, B) ((A’, B'), resp.) (because no coloring can be s-balanced w.r.t.
two distinct principal partitions).
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It follows from Lemma 6.5 that
P(f € Fap|D=(A B) <exp (—sz (N/d2>) . (117)

On the other hand, for any f that is captured by E4_ g, let the 2-linked components
of X4 g(f)beyi,..., vk and write A = {y1, ..., y}. Then by the definition of fi,,
we have

l_[yeA a)A,B(J/) ] 1
Ea,B Ixa,8(Xa ()]
1
" Eas-(lg/21Tq/2DN/2

P=7fID=(A B)) =

and therefore

P(feFap|D=(AB)) = Z P(=f|D= (A, B))
feFaB
_ |Fa,Bl
Ea.B-(lg/21Tq/2)N/?

This, together with (117), shows that

Fasl < exp (=2 (N/d?)) (la/2)[a/2)" 8 5.

Similar bound can be obtained for | F4/ p'[, so

Cal = exp (=2 (N/a?)) (la/2lfa/2DY? Y Eae

(A, B) principal

7 Proof of Theorem 1.1

Recall from (2) that 7 (g) is the smallest integer ¢ such that 2 + ¢ log(1 — 2/gq) < 0.
Combining Lemmas 2.1, 6.2, and 6.3, we obtain the following theorem on ¢, (By), the
number of proper colorings of 5.

Theorem 7.1 Let g > 4 and q be even. Then we have

t—1
cgBa) = (1 +oM)(q/DN exp(ZLA,B<k>+e,>,

(A, B) principal k=1
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where L 4 p(k) is as defined in (100) and
6 =0 (Nd%—”af\{B) . (118)

In particular,

T(g)—1

cgBa) = (1 +oM)(q/DY > exp| D Lask
k=1

(A, B) principal

Proof By Lemma 2.1, all but 274 cq(By) colorings are captured by at least one of the
polymer models E 4 g’s. Therefore,

I—o(M@/DY > Eas

(A, B) principal

115 14 _
< B = @Y )Y Bap+27%c(Ba),

(A, B) principal

thus
cgBa) = (1 +0(M(@/DY > Eas
(A, B) principal
The rest of the proof follows from (101) and Lemma 6.2. O

Theorem 7.1 provides a precise asymptomatic formula for ¢, (B,) for even g. For
example, if ¢ = 4, then T'(g) = 3, so

caBy) = A +o()@/DN > exp(Las()+Lap?);
(A, B) principal

if ¢ = 6, then T'(q) = 4, and therefore

ce(Ba) = (1L +0)(q/2Y > exp(Las()+Las@ +Las3)).
(A, B) principal

Note that by the definition of cluster and L4 p(k), given ¢ and a fixed integer k, one
can obtain an explicit formula for L 4, g (k) in a finite time, and so for ¢, (By).

By symmetry, we simply denote L 4 g (k) by Ly for all principal partitions (A, B).
We next provide an explicit computation of L and L;. Then Theorem 1.1 will follow
from Theorem 7.1, together with the combination of (119), (120), and (118). We
remark that the computation of L for any fixed k will follow from a similar strategy.
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Example 7.2 (Computing L1) Every polymer of size 1 is a single vertex of L5 or L4_1.

_1\d
% =(1- 2/q)d. There is

only one type of cluster of size 1, which consists of a polymer of size 1, with Ursell
function 1. Therefore we have

There are N of them, and each has weight

Li=N(1-2/g). (119)

Example 7.3 (Computing L,) A polymer of size 2 is either a set of two vertices of L
(or L4—1) sharing a common neighbor, or an edge of ;. For the first type, there are
N (%) of them and each has weight

(@/2)(q/2 = D> (q/2)(q/2 = 1(g/2 = 1D)*(q/2-2) _

1—2 2d'
(q/2)%(q/2)%-! (q/2)%(q/2)%—1 (1=2/q)

(/2*(q/2=D)*“"D

For the second type, there are Nd /2 of them and each has weight ¢/

(1 =2/¢)* "D,

There are two types of clusters of size 2. The first type is an ordered pair of adjacent
polymers of size 1, whose Ursell function is —1/2. The number of such clusters is
N+ Nd(d — 1) + Nd, and each of them has weight (1 — Z/q)z". The second type is a
single polymer of size 2 with Ursell function 1. By the above discussion on polymers,
N (g) of such clusters has weight (1 —2/¢)%¢, while the rest Nd /2 of them has weight
(1 —2/¢)*“=D_ Therefore, we have

1 2d d 2d
L2=—§(N+Nd(d— D+ Nd(A -2/9)* + N ) (1—-2/q)
+ %Nd(l —2/g)*@=D

vt —o2d (L s 2 d L
=N{1-2/q) <2(1 2/q) 3 2)~ (120)

8 Proof of Theorem 1.2

To prove Theorem 1.2, we build a new polymer model to count typical colorings.
Define a set of polymers

Pr :={y € V : yisnon-empty and 2-linked, |y| < T(g) — 1}.
As before, v, y’ € Pr are adjacent iff y Uy’ is a 2-linked set; for a principal partition

(A, B), the weight function wa_ g (y) is defined as in (98); the corresponding polymer
model partition function is defined as

E(Pr.oas) = Y []was®).

AeQp yeA
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Observe that the number of g-colorings f such that every 2-linked component of
Xa.B(f) is of size less than T (q) is exactly E(Pr, wa, p). Therefore, the theorem
will follow from Theorem 7.1 once we show

E(Pr,wa,) = (1 +o0(1)E4a,B 121

for every principal partition (A, B).

Let Cr be the collection of all clusters (yi, y2,...) where y; € Pr, and
Lg’B(k) = ZFECT, IT =k w4, g(I'). Note that the proof of Lemma 6.1 also implies
that In E(Pr, wa, p) converges: indeed, as now we only consider small polymers of
constant size, the proof is even simpler. Moreover, similarly to Lemma 6.2, one can
show that for any fixed ¢ > 1,

9]
Y Il skl =0 (Nd2<tfl>3f‘t’3> 7
k=t

and in particular, by the definition of 7' (g), see (2), we have

o]

> L p01 = o0(1).
k=T (q)
Therefore,
00 T(g)-1
E(Pr.wa,) = exp (Z L,ﬁ,B(k)) = +o(yexp| Y  Ligh]. (122)
k=1 k=1
By the definition of || I"||, we have
LY g(k) = Lap(k) (123)

forevery 1 <k < T(q) — 1. Now (121) follows from (122), (123) and Theorem 7.1.

Appendix A Proof of Lemma 6.5
We define |A] := ZVGA |y | for A € Qp. Recall that C is the set of all clusters.

LemmaA.1 Let (A, B) be a principal partition and A o, g be drawn from v4 p defined
in (116). Then there exist a constant L = L(q) such that if t > LdSi,B, then

P(|Aa,Bl Z IN) < exp (=2 (1N /d)).
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Proof Recall from (102) the definition of g A.- By Lemma 6.1, In g A,B converges
absolutely; moreover, a similar proof as for Lemma 6.2 shows that

mEsp=> @asl)=0 (st,’B) . (124)
recC

Observe that

© 1 A A
= 2 oo Monso=sew(552)).

AB =A,B AeQp yeA

and therefore this, with (124), implies that there exists a constant C such that
Eexp (|Aa.pl/d) < exp (ln éA,B) < exp (C _ NS%,B) .

Take L such that L > C. Then by Markov’s inequality and ¢ > Ldaﬁ’ 5> We have

A N A N
itz (52 son(35)) sven (252 on ()

<exp <C . N(Si’B> exp (—1N/d) < exp (—Q (IN/d)).

O

Define the flaw of a coloring f € C,(By) to be the set of vertices at which f does
not agree with its closest ground state coloring (breaking ties arbitrarily). Indeed, we
prove the following strengthened version of Lemma 6.5 (which is also a crucial lemma
for proving Theorem 1.3).

LemmaA.2 Let f be a random coloring drawn from the distribution ji, (see Defini-
tion 6.4). Denote by D the principal partition selected at Step 1, and let A be the

random polymer configuration selected at Step 2. Let X denote the size of the flaw of
f and L as in Lemma A.1. Then the following holds.

(i) PX = |A]) > 1 —exp (—Q (N/d?)).
(ii) If (A, B) is a principal partition and LdSﬁyB <t <1/(4d), then

PX>tN|D= (A, B)) <exp(—Q(N/d)).
(iii) If (A, B) is a principal partition and 10Ld28i,3 <s <1, then
P (f is s-balanced w.r.t. (A, B) | D = (A, B))

>1—exp (—sz (s2N>) —exp (—sz (sN/dz)) :
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Proof Let (A, B) and ¢ be as in (ii). By Lemma A.1, we have
PA| <tN|D=(A,B) >1—exp(—Q(N/d)). (125)

For short, write AT for U,eay ™, and let [AT] := > yealy Tl Foreachc € A

(c € B, resp.), let Z(c) denote the number of vertices in Ls\AT (Lqs—_1\A™, resp.)
that receive color ¢ conditioned on the event that D = (A, B). Since in Step 4 the
vertices of L;\AT (L4_1\A™, resp.) are colored k independently with probability
1/|A| (1/|B|, resp.), we have that

Z(c) ~ Bin (|£4\A*], 1/]A]) Bin (|La—1\AT], 1/|B]) , resp.).

Note that |[AT| < (d + 1)|A| and ¢t < 1/(4d). Then if |[A| < tN, we have both
|LA\AT|, |L4—1\AT| = N/6. Thus by Chernoff’s bound, there is a constant £ such
that for every color ¢ € Q,

P(Z(c) =¢N |D = (A, B), |[A| =tN) < exp (= (N)). (126)

For each ¢ € A (c € B, resp.), let Y(¢) denote the number of vertices in Ly (L4—1,
resp.) that receive color ¢ conditioned on the event that D = (A, B). Observe that for
every c,

0<Y(c)— Z(c) <A™ (127)

Then by (126), (127) and the union bound, we have
P (mig Y(c)=Q(N)|D=(A,B), |[A|] < tN) >1—exp(—Q(N)). (128)
ce

Now, suppose that the events {D = (A, B)}, {|A| < tN}, and {min.cg Y (c) =
Q(N)} all hold. For any principal partition (A", B') # (A, B), either A\A" # @, or
B\B’ # @. Since min.co Y(c) = Q(N), f must disagree with (A’, B') on Q(N)
vertices. On the other hand, f disagrees with (A, B) at A, which is of size at most
tN = O(N/d). Then (A, B) must be the closest ground state of f, and thus X = |A[.
Moreover,

PX=|A])=>P <mi§ Y(c) =Q(N), |[A| <tN, D= (A, B)) .
cE
Note that for any (A, B), by (125) and (128), we have
P <mi§ Y() =Q(N), |A| <tN |D=(A, B))
ce

=P <mi3 Y() = Q(N) | |A| <tN, D = (A, B)> P(A| <tN | D = (A, B))

>1—exp(—Q(tN/d)). (129)
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Therefore, we conclude that

P(X <(N|D= (A, B)>P <mi5 Y(c) = Q(N), |A] <tN | D = (A, B))

>1—exp(=Q(UN/d)),

which leads to (ii).
For (i), apply (129) with ¢ = 1/(4d), we have

PX=IA|) > Z P(min Y(c) =Q(N), |[A| <tN | D= (A, B))]P’(D =(A,B) =1
(A.B)

—exp (—Q (N/d2>) .

Let s be as in (iii) and assume that |[AT| > s|Ly|/4. Recall that |[AT| < (d +1)|A],
and then we must have |A| > tN for r = 5/(10d) < 1/(4d). Thus by (125),

]P(|A+| gs|£4—d| ID = (A, B)) > 1 — exp (—sz (sN/d2)). (130)

Let ¢ € A. Similarly as before, as |[A"| < s|L4|/4, applying Chernoff’s bound on
Z(c) gives that with probability at least 1 — exp (—€2 (s*>N)),

ILa\AT| |La\AT|
(I- S/4)T <Z(i)=d +S/4)T~

This, together with (127), gives that

1 1
(m - S) [Lal < Y(c) < (m +S> [Lal.

Then we conclude that for every ¢ € A,

Ye) 1 o 1L )
P(|Ed| Al S IATISs TR D= =1 exp( sz<s N))

The analogous statement holds for ¢ € B. Finally, the above, together with (130) and
the union bound, implies (iii). O
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