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Abstract
For an odd integer n = 2d − 1, let Bd be the subgraph of the hypercube Qn induced
by the two largest layers. In this paper, we describe the typical structure of proper
q-colorings of V (Bd) and give asymptotics on the number of such colorings when q is
an even number. The proofs use various tools including information theory (entropy),
Sapozhenko’s graph containermethod and a recently developedmethod of Jenssen and
Perkins that combines Sapozhenko’s graph container lemmawith the cluster expansion
for polymer models from statistical physics.

Keywords Hamming Cube · Proper coloring · Enumeration · Graph container
method · Dluster expansion entropy approach
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1 Introduction

Webeginby establishing some foundational definitions andnotation,whichwewill use
to state our first main theorem (Theorem 1.1 below). Write Qn for the n-dimensional
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Hamming cube (the graph with the vertex set {0, 1}n where two vertices are adjacent
if they differ in exactly one coordinate). Denote by Lk the “k-th layer” of Qn , i.e., the
collection of the vertices in Qn with k 1’s in its coordinates. A coloring in this paper
always refers to a proper coloring of vertices of the given graph. The main results of
this paper concern the typical structure of colorings of the middle layers of Qn , which
is a problem suggested by Balogh, Garcia, and the first author [3].

Following [3], throughout the paper, we always assume that n is odd and let d =
(n+1)/2.WriteBd for the subgraphof Qn inducedonLd−1∪Ld (the twomiddle layers
of Qn). Note that Bd is d-regular, bipartite with the unique bipartition Ld−1 ∪Ld , and
balanced (i.e., |Ld−1| = |Ld |). We use N for |V (Bd)|(= 2

(n
d

)
), and assume d → ∞.

Given q ∈ N and a graph G, writeCq(G) for the collection of q-colorings of G and
let cq(G) = |Cq(G)|. Our first main theorem concerns asymptotics for the number of
q-colorings of Bd for all even q.

Theorem 1.1 Let q ≥ 4 be a fixed even integer. Then we have

cq(Bd) = (q/2)N
(

q

q/2

)
exp ((1 + o(1)) f (q, d))

as d → ∞, where

f (q, d) = N (1 − 2/q)d + N (1 − 2/q)2d · 1
2

(
d(1 − 2/q)−2 − d − 1

)
.

In particular, for q = 4,

c4(Bd) ∼ 6 · 2N exp ( f (4, d)) = 6 · 2N exp
(
N2−d + N2−2d(3d/2 − 1/2)

)
.

Theorem 1.1 itself does not give an asymptotic formula for general cq(Bd) when
q ≥ 6. In fact, Theorem 1.1 is a direct consequence of a stronger result (Theorem 7.1),
which provides a detailed approximation of cq(Bd) for all even q. Roughly speaking,
with Theorem 7.1, for any given even q, the precise asymptotic formula of cq(Bd)

can be computed in a finite time (meaning that the running time does not depend on
the input size d). The statement of Theorem 7.1 requires some technical definitions
arising from statistical physics, and is therefore postponed to Sect. 7.

Our second main theorem, Theorem 1.2, characterizes the typical structure of q-
colorings of Bd . Before we state the theorem, we first fill in some background and
introduce relevant notation.
History and BackgroundWe begin with the number of colorings of the Hamming cube
cq(Qn). The first result about asymptotics of cq(Qn) was given in 2003 by Galvin
[13] for the case q = 3. A structural characterization of Cq(Qn) was later obtained
by Engbers and Galvin [7] in 2012 (in fact, their result is written in a more general
context of graph homomorphisms of discrete tori); this also motivated them to propose
a conjecture on the asymptotics of cq(Qn) for larger q. The next case, q = 4, was
established by Kahn and the third author [19], affirming the conjecture of Engbers
and Galvin. Recently, Jenssen and Keevash [15] settled the conjecture of Engbers
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and Galvin for any q, also providing a framework which can be used to compute the
asymptotics of cq(Qn) in finite time for any q.

Motivated by the problem of enumerating maximal antichains in Boolean lattices,
Duffus, Frankl, and Rödl [6] initiated the study of related enumeration problems on
consecutive layers of Qn . Answering their questions, Ilinca and Kahn [14] determined
logarithmic asymptotics of the number ofmaximal independent sets in the two consec-
utive layers of Qn (while the asymptotics itself still remains open). Moving to 2021,
inspired by the work of Jenssen and Perkins [16] that gives much finer asymptotics for
the number of independent sets of Qn (which was originally obtained by Sapozhenko
[29]), Balogh, Garcia and the first author [3] determined asymptotics for the number
of independent sets in Bd , the middle two layers of Qn . In that paper, they gave a
conjecture for the asymptotics of the number of maximal independent sets in Bd , and
also proposed the problem of counting q-colorings ofBd . We remark that independent
sets in consecutive layers of Qn are also closely related to another classical topic in
combinatorics, intersecting set families, see e.g., [1, 2, 4, 9].

In addition to its own interests, another important motivation to study enumeration
problems onBd is that it is a good entry point to generalize this line ofwork—including
counting/analyzing typical structures of graph homomorphisms (independent sets,
proper colorings, Lipschitz functions, etc.), maximal independent sets, linear exten-
sions of a partial order, and so on: see e.g. [11, 17, 28] for some related problems—from
Qn to other bipartite graphs with good expansion properties. Many prior works, lim-
ited by the methods used, have relied heavily on the structure of Qn (see e.g., [7, 13,
15, 20]). As a subgraph of Qn , the middle two layers—while sharing many properties
with Qn in common, e.g., regularity, bipartition, good expansion of small subsets—
also exhibit their own structural behavior, which, in some sense, is “less structured”
compared to Qn . Because of this difference, the approaches that have successfully
worked for enumeration problems on Qn often do not immediately extend to Bd .
Therefore, the study of Bd may reveal clues to understanding more general classes of
bipartite graphs, and may lead to progress on related problems. We will return to this
point in Sect. 2.

Notation We use V and E for V (Bd) and E(Bd), respectively. Given q, we use
Q = {1, 2, . . . , q} for the collection of q colors and f for a coloring in Cq(Bd).
Say an ordered partition (A, B) ofQ is principal if {|A|, |B|} = {�q/2	, 
q/2�}, and
A ⊆ Q is principal if A is a part of a principal partition (i.e., |A| ∈ {�q/2	, 
q/2�}).
For a given principal (A, B), we say f agrees with (A, B) at v if

fv ∈ A ⇔ v ∈ Ld and fv ∈ B ⇔ v ∈ Ld−1

(where fv is the value of f at v). Given a principal (A, B) and f , define

XA,B( f ) = {v ∈ V | f disagrees with (A, B) at v}. (1)

We say f is a ground state coloring if XA,B( f ) = ∅ for some principal (A, B).

For a simple graph G and a set W ⊆ V (G), we write G[W ] for the subgraph of G
induced on W (as usual). Say W ⊆ V (G) is 2-linked if G2[W ] is connected, where
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G2 is the square of G (that is, G2 is the graph on V (G) having an edge between each
pair of vertices at distance at most 2 in G). A 2-linked component of S ⊆ V (G) is a
maximal 2-linked subset of S.

For any integer q ≥ 4, define the threshold polymer size, denoted by T (q), to be

the smallest integer t that satisfies 2 + t log(1 − 2/q) < 0. (2)

Our second main theorem essentially reveals that almost every coloring is “close” to
some ground state coloring.

Theorem 1.2 Let q ≥ 4 be even. Almost all proper q-colorings f of Bd satisfy the
following property: there exists a principal partition (A, B) such that every 2-linked
component of X A,B( f ) is of size less than T (q).

We believe that T (q) is the smallest integer for which Theorem 1.2 holds. In fact,
one can obtain much more detailed structural results on Cq(Bd) as in Theorem 1.3
below, whose form is inspired by [7, Theorem 1.2] and [15, Theorem 13.2]. The proof
of Theorem 1.3 is almost identical to the proof of [15, Theorem 13.2] (modulo the
results in this paper—specifically, Lemmas 2.1, 6.3 and A.2) thus we omit it.

Theorem 1.3 For any even q ≥ 4 there exists a constant ξ ∈ (1−2/q, 1) that satisfies
the following property: if ξd ≤ s ≤ 1/q2, then there exists a partition

Cq(Bd) = D0 ∪
⋃

(A,B) is principal

Dq(A, B)

satisfying the following properties:

(i) |D0| ≤ exp(−�(d))cq(Bd);
(ii) For a principal partition (A, B), a coloring f ∈ Dq(A, B), and a color a ∈ A

(resp. a color b ∈ B), the proportion of vertices of Ld (resp. Ld−1) colored a
(resp. b) is within s of 2/q.

(iii) For any distinct principal partitions (A, B) and (A′, B ′),

|Dq(A, B)| = (1 ± exp (−�(Nt))) |Dq(A
′, B ′)|

where t := min{s2, s/d2}.
(iv) Let μq be the uniform probability measure on Cq(Bd). For each principal par-

tition (A, B), x ∈ Ld , y ∈ Ld−1, a ∈ A and b ∈ B,

Pμq

(
fx = a | f ∈ Dq(A, B)

) = 1

q/2
(1 ± exp(−�(d)))

and

Pμq

(
fy = b | f ∈ Dq(A, B)

) = 1

q/2
(1 ± exp(−�(d))).
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2 Overview of the Proof

Informally speaking, the proof of the main theorems consists of the following three
steps, each of which requires separate ingredients:

Step 1. Almost all colorings f admit a ground state;
Step 2. f ’s with large flaws (i.e., the vertices that disagree with the ground state of

f ) are negligible;
Step 3. Approximately count the total number of colorings using Steps 1 and 2.

Step1 is inspiredby and closely follows theworkof [7, 18],whichuses entropy ideas
initiated by Kahn [18]. For Step 3, we use the polymer model and cluster expansion
method originating from statistical physics. Recently in [16], this method was shown
to be very powerful in enumeration problems related to Qn . Though it still requires
some technical modifications, this cluster expansion-based approach provides a rather
routine framework for enumeration problems when it applies; we refer interested
readers to [3, 15].

Perhaps the most interesting part of our proof is Step 2. Inspired by the prior works
on colorings of Qn in [15, 19], the proof of this step integrates an entropy approach and
Sapozhenko’s graph container lemma [29].However, neither of the previous arguments
directly extend to our problem. In particular, the beautiful proof in [15] crucially relies
on the existence of a special partition of V (Qn) ([15, Lemma 8.1]), but it is not even
clear whether such a special vertex partition exists in Bd . The novelty of our work
is that we implement an entropy approach and the graph container framework (not
the lemma itself) in such a way that it does not rely on the precise structure of the
host graph, but only on its expanding property. We expect that this new approach will
also work for more general classes of bipartite graphs with appropriate expansion
properties.

Next, we describe more details for each step. As the first step, we show that if q
is an even integer, then for almost every f ∈ Cq(Bd) there is some principal (A, B)

with which f agrees on all but an exponentially small fraction of the vertices.

Lemma 2.1 (Step 1: almost all f ’s admit a ground state) Let q ≥ 4 be even. There exist
α, β > 0 such that for all but a 2−αd -fraction of f ’s in Cq(Bd), there is a principal
(A, B) for which

|XA,B( f )| < 2−βd N . (3)

For f and (A, B) as in Lemma 2.1, call (A, B) the ground state of f . Note that the
rhs of (3) can be very large (since N = 2

(n
d

)
), so Lemma 2.1 by itself is not enough

to give the level of precision as in Theorems 1.1–1.3, and therefore requires a refining
process in the next step.

For a principal (A, B) and S ⊆ V , define

χA,B(S) = { f ∈ Cq(Bd) : XA,B( f ) = S}. (4)

For g ∈ N, let

H(g) = {X ⊆ V : X is 2-linked, |N (X)| = g}

123



7 Page 6 of 47 Combinatorica (2025) 45 :7

where N (X) = {y ∈ V : y is adjacent to some x ∈ X}.

Lemma 2.2 (Step 2: f ’s with large flaws are negligible) Let β ′ > 0 be such that
d2−βd ≤ 2−β ′d for β as in Lemma 2.1 (and d large enough). For any principal
partition (A, B) and g ∈ [d10, 2−β ′d N ],

∑

X∈H(g)

∣
∣χA,B(X)

∣
∣ = (q/2)N2−�(g/ log2 d). (5)

The lower bound d10 on g is just a convenient choice and not at all optimal. With
Step 2, we reduce our problem to taking care of f ’s with a manageable size of flaws
(more specifically, a polynomial size). And the contributions from those small flaws
can be easily handled using trivial bounds.

As the final step,we use the polymermodel and cluster expansionmethod developed
in [16] to obtain detailed information about the structure ofCq (Bd) as inTheorems1.1–
1.3. The heart of this step is verifying the convergence condition (seeTheorem3.14) for
the cluster expansion of the appropriately defined polymermodel, inwhich Lemma 2.2
plays the crucial role.

We point out that the assumption that q is even is only required for Lemma 2.1 (see
Remark 4.2), hence the result analogous to Lemma 2.1 for odd q would enable us to
extend Theorems 1.1–1.3 for any integer q. It is very natural to ask whether the odd
q case could be handled by additional ideas or different arguments, or if the situation
is fundamentally different for even and odd numbers of colors. We also note that the
particular structure of Bd is used most heavily in Step 1, where our approach relies
on the existence of a large matching with desirable structural properties. In contrast,
in Steps 2 and 3, we primarily use the expansion properties of Bd . We believe that it
may be relatively straightforward to generalize these results to other bipartite graphs
with good expansion.
Organization Section3 collects various preliminary materials. Lemmas 2.1 and 2.2
are proved in Sects. 4 and 5, respectively. In Sect. 6 we construct polymer models on
Bd and prove some important properties. The main theorems, Theorems 1.1 and 1.2
are proved in Sects. 7 and 8, respectively. Before we close this section, we introduce
more definitions and notation.
More definitions For f ∈ Cq(Bd), fU denotes the restriction of f to U , and f (U )

denotes the color set { fv : v ∈ U }. For x ∈ V , xi (∈ {0, 1}) denotes the i-th coordinate
in x . By the Hamming weight of x , denoted |x |, we mean |{xi : xi = 1}|. As usual
Nx = N (x) = {v : v ∼ x} where v ∼ x means v and x are adjacent, and then
N (U ) = ∪u∈U Nu , ∂(U ) = N (U )\U , and U+ = U ∪ N (U ). For U ⊆ V , dU (v) :=
|N (v) ∩ U |. For two disjoint subsets W1,W2 of V , ∇(W1,W2) := {(w1, w2) ∈ E :
w1 ∈ W1, w2 ∈ W2} and ∇(W1) := {(w1, w) ∈ E : w1 ∈ W1, w ∈ V }. Again, log
means log2, and ln is the natural logarithm.
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3 Preliminaries

3.1 Basics

Recall that a composition of an integer n is an ordered sequence 〈a1, . . .〉 of positive
integers summing to n. The ai ’s are the parts of the composition. Below is a well-
known fact.

Proposition 3.1 The number of compositions of n is 2n−1 and the number of compo-
sitions with at most b parts is

∑
i<b

(n−1
i

)
< 2b log(en/b), when b < n/2.

For X ,Y ⊆ V (G), we say that Y covers X if X ⊆ N (Y ) and that Y mutually covers
X if X ⊆ N (Y ) and Y ⊆ N (X). Observe that if Y covers X then there is Y ′ ⊆ Y that
mutually covers X . We will use the following lemma, a special case of a fundamental
result of Lovász [25] and Stein [30].

Lemma 3.2 Let G be a bipartite graph with bipartition P ∪ Q, where |N (u)| ≥ a for
each u ∈ P and |N (v)| ≤ b for each v ∈ Q. Then there exists some Q′ ⊆ Q that
covers P and satisfies

|Q′| ≤ |Q|
a

· (1 + ln b).

Corollary 3.3 For any X ⊆ V (= V (Bd)), there exists a set Y ⊆ V such that Y
mutually covers X and |Y | ≤ |N (X)|

d · (1 + ln d).

Proof Let X1 = X∩Ld−1 and X2 = X∩Ld . By applying Lemma 3.2 for X1∪N (X1)

and X2 ∪ N (X2) separately, we get mutual covers Y1 and Y2 of X1 and X2. Observe
that Y := Y1 ∪ Y2 is a mutual cover of X and

|Y | = |Y1| + |Y2| ≤ |N (X1)|
d

· (1 + ln d) + |N (X2)|
d

· (1 + ln d)

= |N (X)|
d

· (1 + ln d).

��
The next lemma is used to bound the numbers of certain types of 2-linked sets

in V (Bd). It follows from the fact (see e.g. [22, p. 396, Ex.11]) that the infinite �-
branching rooted tree contains precisely

(
�n
n

)

(� − 1)n + 1
≤ (e�)n−1

rooted subtrees with n vertices.

Lemma 3.4 If G is a graph with maximum degree �, then the number of n-vertex
subsets of V (G) which contain a fixed vertex and induce a connected subgraph is at
most

(e�)n−1. (6)
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3.2 Isoperimetry

We use isoperimetric inequalities on Bd , which can be easily derived from direct
applications of the Lovász version of the Kruskal–Katona Theorem [21, 24]. Recall
that N/2 = |Ld | = |Ld−1|.

Theorem 3.5 (Lovász [26]) Let A be a family of m-element subsets of a fixed set U
and B be the family of all (m − q)-element subsets of the sets in A. If |A| = ( xm

)
for

some real number x, then |B| ≥ ( x
m−q

)
.

Proposition 3.6 Let X ⊆ Ld or X ⊆ Ld−1.

(i) If |X | ≤ d/4, then |N (X)| ≥ d|X | − |X |2/2.
(ii) If |X | ≤ d10, then |N (X)| ≥ d|X |/12.
(iii) If |X | = 2−�(d)N, then |N (X)| ≥ (1 + �(1))|X |.

Proof (i) |N (S)| ≥ d + (d − 1) + · · · + (d − |S| + 1) = d|S| − |S|(|S| − 1)/2.
(ii) Let |S| = (xd

)
for some real x . Note that in this case, x ≤ d + 11. By Theorem

3.5, we have |N (S)| ≥ ( x
d−1

) = (xd
) d
x−d+1 = |S| d

x−d+1 ≥ d|S|/12.
(iii) If |X | = 2−�(d)N , then |X | = (xd

)
for some x = (2− �(1))d. By Theorem 3.5,( x

d−1

)
/
(x
d

) = 1 + �(1). ��

3.3 The Graph Container

This section recalls or proves some variants of the graph container lemma due to
Sapozhenko [29]. An excellent exposition on this topic is given in [12]. Recall that
H(g) = {X ⊆ V : X 2-linked, |N (X)| = g}.

Lemma 3.7 For all g ∈ N, there exists a family V = V(g) ⊆ 2V with

|V| ≤ 2O(g log2 d/d+d),

such that for any X ∈ H(g), V contains a set that mutually covers X.

Proof Given a set X ∈ H(g), by Corollary 3.3, there exists a set Y ⊆ V such that Y
mutually covers X and |Y | ≤ |N (X)|

d · (1 + ln d) = g
d · (1 + ln d). Moreover, observe

that Y is 4-linked (i.e. (Bd)
4[Y ] is connected where (Bd)

4 is the fourth power of Bd )
as X is 2-linked and Y mutually covers X . We therefore take V to be the collection of
all 4-linked subsets of V of size at most g

d · (1 + ln d). Then by Lemma 3.4,

|V| ≤ N
∑

	≤ g
d ·(1+ln d)

(ed4)	 = 2O(g log2 d/d+d).

��
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Let ψ = ψ(d) > 0. Following [12, 15], define a ψ-approximating pair for X ⊆ V
to be a pair (F, S) ∈ 2V × 2V satisfying

F ⊆ N (X), S ⊇ X; (7)

dV \F (u) ≤ ψ ∀u ∈ S; (8)

and
dS(v) ≤ ψ ∀v ∈ V \F . (9)

Lemma 3.8 Let ψ ≤ d/2. For each Y ⊆ V there exists a family W = W(Y , g) ⊆
2V × 2V with

|W| ≤ 2O(g log d/ψ)

such that any X ⊆ V mutually covered by Y and |N (X)| = g has a ψ-approximating
pair inW .

The proof of Lemma 3.8 is almost identical to the proof of [15, Lemma 7.5], so we
omit.

Lemma 3.9 Let ψ ≤ d/2. There is a family U = U(g) ⊆ 2V × 2V with

|U | ≤ 2O(g log2 d/d+g log d/ψ+d)

such that every X ∈ H(g) has a ψ-approximating pair in U .

Proof Take U(g) = ⋃Y∈V(g) W(Y , g) where V(g) and W(Y , g) are the families in
Lemmas 3.7–3.8. ��

For a set X ⊆ V , define X1 := X ∩Ld−1, and X2 := X ∩Ld . The next observation
says that a ψ-approximating pair for X naturally induces ψ-approximating pairs for
X1 and X2.

Observation 3.10 Let (F, S) be aψ-approximating pair for X ⊆ V . Let F1 := F∩Ld

and S1 := S ∩ Ld−1. Then (F1, S1) is a ψ-approximating pair for X1; i.e., (F1, S1)
satisfies (7), (8), and (9). The sameholds for X2 with F2 := F∩Ld−1 and S2 := S∩Ld .

Lemma 3.11 For (Fi , Si ) (i = 1, 2) as above,

|Si | ≤ |Fi | + |N (Xi )|ψ/(d − ψ). (10)

In particular, if ψ � d then

|Si | ≤ (1 + o(1))|N (Xi )|. (11)
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Proof This proof of (10) is almost identical to the proof of [12, Lemma 5.3] (with
slightly different parameters). We use X , F, S for Xi , Fi , Si for simplicity. First
observe that

(d|S| − ψ |S\X | =) d|X | + (d − ψ)|S\X | ≤ |∇(S, N (X))| ≤ d|F | + ψ |N (X)\F |.

By comparing the first and the last expressions, we have

|S| ≤ |F | + ψ |(N (X)\F) ∪ (S\X)|/d. (12)

Also observe that

|∇(N (X))| ≥ |∇(N (X)\F)| + |∇(F, S\X)| ≥ (d − ψ)|(N (X)\F) ∪ (S\X)|,

which gives
|(N (X)\F) ∪ (S\X)| ≤ |N (X)|d/(d − ψ). (13)

Now (10) follows from the combination of (12) and (13), and (11) follows from (10)

by noticing |Fi |
(7)≤ |N (Xi )|. ��

3.4 Entropy

We briefly recall relevant entropy background; see e.g. [27] for more detailed intro-
duction.

Let X ,Y be discrete random variables. The entropy or Shannon entropy of X is

H(X) =
∑

x

p(x) log
1

p(x)
,

where p(x) = P(X = x) (and p log 1
p := 0 for p = 0). The conditional entropy of X

given Y is

H(X |Y ) =
∑

y

p(y)
∑

x

p(x |y) log 1

p(x |y) (14)

(where p(x |y) = P(X = x |Y = y)).
For p ∈ (0, 1), we also define the binary entropy function H(p) = −p log(p) −

(1− p) log(1− p); this is the entropy of a Bernoulli random variable with parameter
p.
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Lemma 3.12 For H(·) the Shannon entropy function, the following properties hold.

H(X) ≤ log |Range(X)|, with equality iff X is uniform from its range; (15)

H(X |Y ) ≤ H(X); (16)

H(X ,Y ) = H(X) + H(Y |X); (17)

H(X1 . . . Xn|Y ) ≤
∑

H(Xi |Y ) (note (X1 . . . Xn) is a discrete r.v.); (18)

if Z is determined by Y , then H(X |Y ) ≤ H(X |Z); (19)

if Z is determined by X , then H(X , Z |Y ) = H(X |Y ). (20)

We also need the following version of Shearer’s Lemma [5].

Lemma 3.13 Let X = (X1, . . . , XN ) be a random vector, andα : 2[N ] → R
+ satisfies

∑

A�i
αA = 1 ∀i ∈ [N ]. (21)

Then for any partial order ≺ on [N ],

H(X) ≤
∑

A⊆[N ]
αAH

(
XA|(Xi : i ≺ A)

)
, (22)

where XA = (Xi : i ∈ A) and i ≺ A means i ≺ a ∀a ∈ A.

3.5 Polymer Models and the Cluster Expansion

This section gives a brief introduction to two tools from statistical physics, polymer
models and the cluster expansion, in the language of graph theory. For more general
exposition and applications of polymer models, we refer interested readers to [8, 16,
23].
Abstract Polymer Model. Let HP be a graph defined on a finite set P , such that every
vertex has a loop edge and there is no multiple edge. For historical reasons in physics,
the vertices γ ∈ P are called polymers. Two polymers γ, γ ′ are called adjacent,
denoted by γ ∼ γ ′, if there is an edge γ γ ′ in HP . In particular, every polymer is
adjacent to itself. We equip each polymer γ with a complex-valued weight ω(γ ), and
refer the weighted graph (HP , ω) as the polymer model. Denote by �P the collection
of independent sets of HP (including the empty set), where loops are allowed. The
polymer model partition function


(P, ω) =
∑

�∈�P

∏

γ∈�

ω(γ ) (23)

is essentially theweighted independence polynomial of (HP , ω). Sometimes, by abuse
of notation, we also refer to (P, ω) or 
(P, ω) as the polymer model.
Cluster Expansion. For an ordered multiset � = (γ1, γ2, . . . , γk) of polymers, we
define the incompatibility graph HP [�] to be the simple graph defined on � with the
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edge set E = {γiγ j : γi ∼ γ j in HP }. We say an ordered multiset � of polymers is
a cluster if it is non-empty, and the incompatibility graph HP [�] is connected. For
example, for two adjacent polymers γ, γ ′, the ordered multiset � = (γ, γ ′, γ ) is a
cluster with HP [�] = K3, where K3 is the complete graph on three vertices.

For a simple graph H , let φ(H) be the Ursell function of H , defined by

φ(H) = 1

|V (H)|!
∑

{(−1)e(F) : F is a connected spanning subgraph of H}.

We remark that, from the above definition,

for any fixed k ∈ N, if |V (H)| ≤ k then φ(H) = Ok(1). (24)

The weight function of a cluster � is defined using the Ursell function as

ω(�) = φ(HP [�])
∏

γ∈�

ω(γ ). (25)

Let C be the set of all clusters on P . The cluster expansion is the formal power
series of the logarithm of the partition function 
(P, w), which takes the form1

ln
(P, ω) =
∑

�∈C
ω(�). (26)

Note that the cluster expansion is an infinite series, despite the finiteness of the
polymer model. A sufficient condition for the convergence of the cluster expansion is
given by Kotecký and Preiss [23] in 1986.

Theorem 3.14 (Convergence of the cluster expansion) Let f : P → [0,∞) and
g : P → [0,∞) be two functions. Suppose that for all polymers γ ∈ P ,

∑

γ ′∼γ

|ω(γ ′)| exp ( f (γ ′) + g(γ ′)
) ≤ f (γ ), (27)

then the cluster expansion (26) converges absolutely. Moreover, for a cluster � ∈ C,
let g(�) =∑γ∈� g(γ ) and write � ∼ γ if there exists γ ′ ∈ � so that γ ∼ γ ′. Then
for all polymers γ , ∑

�∈C,�∼γ

|ω(�)| exp (g(�)) ≤ f (γ ). (28)

4 Proof of Lemma 2.1

This section closely follows the arguments originated in [18] and developed in [7] (and
also adapted in [15]) with the additional idea of “rotating” Bd . The arguments in [7,

1 For details of the cluster expansion, we refer readers to Chapter 5 of [10].
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18] heavily rely on the nice property of the Hamming cube that it can be decomposed
into two half cubes with a perfect matching between them (i.e. Qn = Qn−1�K2). In
their argument, both the ranked structure of the Qn−1 and the existence of the perfect
matching between the two copies of Qn−1 are crucial. The less nice structure of Bd

blocks one from a straightforward extension of this argument, but in Sect. 4.1 we show
that Bd still possesses a portion of the structure we desire.

Lemma 2.1 follows from Lemma 4.1 below. Given f ∈ Cq(Bd), say uv ∈ E is
ideal if ( f (Nu), f (Nv)) is a principal partition.

Lemma 4.1 Let f be a uniformly random coloring chosen fromCq(Bd). For any e ∈ E,

Pf (e is not ideal) = 2−�(d). (29)

Derivation of Lemma 2.1 from Lemma 4.1 Given f , say a path is ideal if all the edges
in the path are ideal. Fix any u ∈ V , and write Ku = Ku(f) for the set of vertices that
can be reached from u via an ideal path. We may assume u ∈ Ld−1 by symmetry. For
v �= u, let Q∗

uv be the event {v ∈ Ku}. Observe that

P(Q∗
uv) ≥ 1 − 2−�(d) for any v �= u;

indeed, with P a shortest path in Bd from u to v (so has length ≤ n), by Lemma 4.1
we have

P(Q∗
uv) ≥ P(P ideal) ≥ 1 − n2−�(d) = 1 − 2−�(d).

By the above observation, we have E|u ∪ Ku | ≥ (1− 2−�(d))|V |, so by Markov’s
Inequality, there is a constant c > 0 such that

P(|u ∪ Ku | < |V |(1 − 2−cd)) = 2−�(d).

Note that, by the definition of Ku , f agrees with ( f (Nu),Q\ f (Nu)) at all the vertices
in u ∪ Ku , and ( f (Nu),Q\ f (Nu)) is principal unless Ku = ∅. Now Lemma 2.1
follows. ��

4.1 Structure ofBd

We first define “levels” of vertices in Bd . To make the notion more intuitive, we begin
by “rotating” Bd : for each vertex x ∈ V , let

x rot := x + (1, . . . , 1︸ ︷︷ ︸
d−1 entries

, 0, 0, . . . , 0︸ ︷︷ ︸
d entries

)

(where addition is takenmodulo 2). Let V rot = {x rot : x ∈ V }. Notice that this rotation
preserves Hamming distance between pairs of vertices; in particular, vertices x and y
are adjacent if and only if x rot and yrot differ in exactly one entry. Therefore, Bd and

123



7 Page 14 of 47 Combinatorica (2025) 45 :7

Brot
d := Qn[V rot] are isomorphic, so it suffices to prove Lemma 4.1 for Brot

d (and we
will do so).

The kth level of Brot
d is now defined as in [7]:

Lk :=
{

x ∈ V rot :
n−1∑

i=1

xi = k

}

.

Observe that the levels of Brot
d range from 0 to n − 1. To obtain a decomposition of

Brot
d similar to the decomposition of Qn = Qn−1�K2, consider the partition (V0, V1)

of V rot where V0 = {x ∈ V rot : xn = 0} and V1 = {x ∈ V rot : xn = 1}. Observe that
|V0| = |V1| = N/2, and ∇(V1, V2) is a (not necessarily perfect) matching (since Brot

d
is a subgraph of Qn = Qn−1�K2). Moreover,

there is a perfect matching between Lk ∩ V0 and Lk ∩ V1 if k is even,

and

∇(Lk ∩ V0, Lk ∩ V1) = ∅ if k is odd.

Indeed, for any v ∈ Lk ∩ V0,

v′ = v + (0, 0, . . . , 0, 1) (30)

is in Lk ∩V1 (we call v′ the mate of v in this case) iff k is even. We denote V ∗ = {x ∈
Lk ∩ V0 : k even}, and note for future reference that

|V ∗| = (n−1
d−1

) = d
n

(n
d

) = d
2n N . (31)

For v ∈ V ∗, let

Mv := Nv\{v′}(⊆ V0),

and define Mv′ similarly. Finally, for each v ∈ V ∗ with the Hamming weight |v| ≥ 4,
we associate

a w =w(v) ∈ V ∗ with |w| = |v| − 4 and

w being connected to v by a path of length 4 in Brot
d [V0]. (32)

This is possible because, in fact, for any v ∈ Lk ∩V0 and 0 ∈ V0, their preimages in
Bd , i.e., vrot and 0rot, are connected by a shortest path of length |vrot + 0rot| = |v| = k
in Bd . Note that the shortest path that connects v and 0 must stay in Brot

d [V0] (since
both of them already have a 0 entry in the last digit). Then we can pick w on such a
path so that |w| = |v| − 4.
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4.2 Proof of Lemma 4.1

In this section, we use f̄ for f (·) to shorten the notation. Again, the argument in
this section, which builds upon the decomposition of Brot

d into V0 ∪ V1 discussed in
Sect. 4.1, closely follows [7, 18], and we try to be brief while pointing out differences
that is worth noting.

Let v ∈ V ∗ (so v ∈ Li for some even i). For v′ and w = w(v) defined in (30) and
(32), observe that

Mv ∪ Mv′ ⊆ Li−1 ∪ Li+1, (33)

and
Nw ⊆ Li−5 ∪ Li−4 ∪ Li−3. (34)

Following [18], we define the following order on the indices of the levels: 1 ≺ 0 ≺
3 ≺ 2 ≺ 5 ≺ 4 · · · . To turn this into a partial order on V , we say that x ≺ y if i ≺ j ,
where x ∈ Li and y ∈ L j .

With this partial order,wehave {i−1, i+1} ≺ i and {i−5, i−4, i−3} ≺ {i−1, i+1}
for even indices i . Thus (33) and (34) translate into the following:

Nw ≺ Mv ∪ Mv′ ≺ v, v′ for each v ∈ V ∗ (35)

(where we write X ≺ Y if x ≺ y for all x ∈ X and y ∈ Y ).
We first point out that for a uniformly random q-coloring f , by (15) we have the

trivial bound:
H(f) ≥ N log

(q
2

)
. (36)

To complete the proof of Lemma 4.1, we wish to give an upper bound on H(f) that
would be smaller than the lower bound (36) if P(e is not ideal) is large, allowing us
to conclude that P(e is not ideal) = 2−�(d).

We may assume that e = vv′ for some v ∈ V ∗ by symmetry. Observe that

ε := 1 −
∑

(A,B) principal

P(f̄Mv = A, f̄Mv′ = B)

≥ 1 −
∑

(A,B) principal

P(f̄Nv = A, f̄Nv′ = B) = P(e is not ideal); (37)

therefore to prove Lemma 4.1, it will suffice to show that ε = 2−�(d).
We are now ready to compute an upper bound for H(f). Note that the family

{Mv ∪ Mv′ : v ∈ V ∗} together with d copies of each edge vv′ with v ∈ V ∗ covers
each vertex of V exactly d times, so by Lemma 3.13, we have

H(f) ≤ 1

d

(

d
∑

v∈V ∗
H
(
fv,v′
∣∣(fi : i ≺ v, v′)

)+
∑

v∈V ∗
H
(
fMv,Mv′

∣∣(fi : i ≺ Mv, Mv′)
)
)

,
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which can be relaxed to

H(f) ≤
∑

v∈V ∗
H(fv,v′ |fMv,Mv′ ) + 1

d

∑

v∈V ∗
H(fMv,Mv′ |fNw) (38)

using (35).
For the first term on the rhs of (38),

H(fv,v′ |fMv,Mv′ )
(19)≤ H(fv,v′ |f̄Mv , f̄Mv′ )

(14)=
∑

A0,A1

H
(
fv,v′
∣∣ f̄Mv = A0, f̄M ′

v
= A1

) · P(f̄Mv = A0, f̄M ′
v

= A1),

(39)

where the sum is taken over all possible A0, A1 ⊆ Q. Note that

H
(
fv,v′
∣
∣ f̄Mv = A0, f̄M ′

v
= A1

) (15)≤ log
[
(q−|A0|)(q−|A1|)−|Q\(A0∪A1)|

]
(40)

since v ∼ v′ so they cannot take the same color.
Next we treat the second term on the rhs of (38). For v ∈ V ∗ with |v| ≤ 3 (the

number of such vertices is at most
( n
≤2

) = O(d2)), the vertexw = w(v) is not defined,
and we simply apply the naïve bound

H(fMv,Mv′ |fNw) = H(fMv,Mv′ ) ≤ 2(d − 1) log q.

For v ∈ V ∗ with |v| ≥ 4, we bound the conditional entropy in two pieces, cor-
responding to (i) the choice of color sets for Mv and Mv′ , and (ii) the assignment of
colors to specific vertices once the sets of colors are determined. Specifically, we have

H(fMv,Mv′ |fNw)
(19)≤ H(fMv,Mv′

∣
∣f̄Nw)

(20)= H(fMv,Mv′ , f̄Mv , f̄Mv′
∣
∣f̄Nw)

(16),(17)≤ H(f̄Mv , f̄Mv′
∣∣f̄Nw) + H(fMv,Mv′

∣∣f̄Mv , f̄Mv′ ). (41)

The second term in (41) is

H(fMv,Mv′
∣∣f̄Mv , f̄Mv′ )

(14)=
∑

A0,A1

H(fMv,Mv′
∣∣f̄Mv = A0, f̄M ′

v
= A1)P(f̄Mv = A0, f̄M ′

v
= A1)

(15)≤
∑

A0,A1

log(|A0|d−1|A1|d−1) · P(f̄Mv = A0, f̄M ′
v

= A1). (42)
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Remark 4.2 There is no simple improvement possible to this trivial bound in (42) since
there are no edges between Mv and Mv′ . This is in stark contrast to the situation in
Qn , where there is a perfect matching between Mv and Mv′ , allowing an entropy
savings whenever A0 ∩ A1 is nonempty (since we cannot choose the same color for
both vertices in any of the matching edges). Ultimately, the loss of this small entropy
savings is the reason why we are unable to establish Lemma 4.1 for odd q.

Now, plugging all our bounds [(39), (40), (41), and (42)] into (38) and simplifying
slightly, we have

H(f) ≤ O(d2) + |V ∗|
d

H(f̄Mv , f̄Mv′
∣∣f̄Nw)

+ |V ∗|
∑

A0,A1

log(hA0,A1) · P(f̄Mv = A0, f̄M ′
v

= A1), (43)

where hA0,A1 :=
(
(q − |A0|)(q − |A1|) − |Q\(A0 ∪ A1)|

)
· (|A0||A1|

)1−1/d
. Note

that at this stage, v and v′ represent arbitrary vertices connected by an edge; since the
graph is edge-transitive, this does not present any problems.

To bound the final sum, we bound hA0,A1 as follows: first, if (A0, A1) is principal,
then (recalling q is even)

hA0,A1 =
((q

2

)2 − 0

)
·
((q

2

)2)1−1/d

=
(q
2

)4−2/d
.

If (A0, A1) is not principal, then hA0,A1 is substantially smaller; to see this, we begin
by writing

hA0,A1 ≤
(
(q − |A0|)(q − |A1|) − |Q\(A0 ∪ A1)|

)
· (|A0||A1|

)

(this is true for all A0, A1, but it will simplify our computations slightly in the non-
principal case). Now, if (A0, A1) is not principal but A0 ∪ A1 = Q, then |A0| �= q/2
or |A1| �= q/2. Without loss of generality, say that |A0| �= q/2. So (q − |A0|)|A0| ≤
(q/2)2 − �(1), and (q − |A1|)|A1| ≤ (q/2)2, giving

hA0,A1 ≤ ((q − |A0|)|A0|
) · ((q − |A1|)|A1|

) ≤
(q
2

)4 − �(1).

(Notice that the same statement would not be true for odd q, as we could take a non-
principal partition (A0, A1) with |A0|, |A1| = 
q/2�, giving the same bound as in the
principal case.) And if (A0, A1) is not principal and A0 ∪ A1 �= Q, then

hA0,A1 ≤
(
(q − |A0|)(q − |A1|) − �(1)

)
· (|A0||A1|

) ≤
(q
2

)4 − �(1)

in this case as well.
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So in either case, if (A0, A1) is not principal, then hA0,A1 ≤ (q/2)4 −�(1), which
we will rewrite as hA0,A1 ≤ (q/2)4−2/d − δ where δ = �(1) (since q is a constant
and d → ∞). Recalling the definition of ε from (37), we may bound the sum in (43)
as follows:

∑

A0,A1

log(hA0,A1) · P(f̄Mv = A0, f̄M ′
v

= A1)

≤ ε log

((q
2

)4−2/d − δ

)
+ (1 − ε) log

((q
2

)4−2/d
)

= log

((q
2

)4−2/d
)

− ε log

(
1 − δ/

(q
2

)4−2/d
)−1

= log

((q
2

)4−2/d
)

− ε · �(1).

Inserting this into (43), we have

H(f) ≤ O(d2) + |V ∗|
d

H(f̄Mv , f̄Mv′
∣∣f̄Nw) + |V ∗|

(
log

((q
2

)4−2/d
)

− ε · �(1)

)
.

(44)
On the other hand, (31) gives |V ∗| log ((q/2)4−2/d) = N log (q/2). Then combin-

ing (36) and (44), and solving for ε, we obtain

ε ≤ O(d2/N ) + O (1/d) · H(f̄Mv , f̄Mv′
∣∣f̄Nw). (45)

Thus all that remains in order to bound ε is to analyze the entropy term in (45).
Ignoring the conditioning, a naïve upper bound is

H(f̄Mv , f̄Mv′
∣∣f̄Nw)

(15)≤ 2q. (46)

Substituting into (45), together with recalling that N = 2d(1−o(1)) gives

ε = O(1/d) (= o(1)). (47)

We will strengthen our bound on H(f̄Mv , f̄Mv′
∣∣f̄Nw) via the following key lemma2

(and the fact that ε is small).

Lemma 4.3 For any principal (A, B),

P
(
f̄Mv = A, f̄Mv′ = B

∣∣ f̄Nw = A
) ≥ 1 − 6ε

P
(
f̄Nw = A

) , (48)

2 This lemma is based on Lemma 4.2 in Engbers and Galvin’s paper [7], and the proof is very similar.
However, there is a small subtle error in the original proof of Lemma 4.2, which can be resolved by slight
modifications to the argument, analogous to those made here.
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and also ∑

A not principal

P(f̄Nw = A) ≤ ε. (49)

Proof Let w,w1, w2, w3, v be a path of length 4 from w to v in Brot
d . Write Qv,A and

Rv,A for the events {f̄Nv = A} and {f̄Mv = A}, respectively. (The event Rv,A will be
defined only for v ∈ V ∗ and its mate, so we don’t have to worry about the definition of
Mv for other v’s.) For two events P, Q we use the shorthand notation PQ for P ∧ Q,
and P̄ for the complementary event of P . We also use Qvv′,(A,B) for Qv,AQv′,B , and
similarly for Rvv′,(A,B).

With this notation, to prove the first statement of the lemma, we wish to bound the
probability

P
(
Rvv′,(A,B)

∣∣ Qw,A
) = 1 − P

(
R̄vv′,(A,B),

∣∣ Qw,A
) = 1 − P

(
R̄vv′,(A,B)Qw,A

)

P
(
Qw,A

) .

To bound the probability in the numerator, we begin by observing that

R̄vv′,(A,B)Qw,A ⊆ R̄vv′,(A,B)Qvv′,(A,B) ∨ Q̄vv′,(A,B)Qw,A. (50)

This does not rely on any special facts about these events; in general, PQ = PQ ∧
(R ∨ R̄) ⊆ PR ∨ R̄Q.

Moreover, we have
P(R̄vv′,(A,B)Qvv′,(A,B)) ≤ ε. (51)

To see this, notice that the event R̄vv′,(A,B)Qvv′,(A,B) is equivalent to saying that
(f̄Mv , f̄Mv′ ) �= (A, B), but (f̄Nv , f̄Nv′ ) = (A, B). Since f̄Mv ⊆ f̄Nv and f̄Mv′ ⊆ f̄Nv′ , this
means that there must be at least one color missing from f̄Mv ∪ f̄Mv′ ; thus this event
implies that (f̄Mv , f̄Mv′ ) is not principal. Recalling that ε is simply the probability that
(f̄Mv , f̄Mv′ ) is not principal, this gives (51).

Now to bound the probability of the remaining event, Q̄vv′,(A,B)Qw,A, we observe

Q̄vv′,(A,B)Qw,A ⊆ Qw,A Q̄w1,B ∨ Qw1,B Q̄w2,A ∨ Qw2,A Q̄w3,B ∨ Qw3,B Q̄v,A

∨ Qv,A Q̄v′,B,

and
each of the 5 events on the rhs occurs with probability less than ε (52)

since Qw1,B Q̄w2,A implies that w1w2 is not ideal, etc. Therefore,

P({f̄Mv
= A, f̄Mv′ = B}c | f̄Nw

= A) = P(R̄vv′,(A,B)Qw,A)

P(f̄Nw
= A)

(50),(51),(52)≤ 6ε

P(f̄Nw
= A)
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which concludes (48). Also, P(f̄Nw = A) ≥ P(f̄Nw = A, f̄Nw′ = Q\A) implies

∑

A principal

P(f̄Nw = A) ≥
∑

A principal

P(f̄Nw = A, f̄Nw′ = Q\A)

=
∑

(A,B) principal

P(f̄Nw = A, f̄Nw′ = B)

= P(e is ideal) ≥ 1 − ε

where the last inequality follows from (37). ��
The rest of the proof is just a special case of the proof of [7, Theorem 1.4] so we

will try to be brief. The entropy term in (45) can be split as

H(f̄Mv , f̄Mv′
∣∣f̄Nw)

(14)=
∑

A principal

H(f̄Mv , f̄Mv′
∣∣f̄Nw = A) · P(f̄Nw = A)

+
∑

A not principal

H(f̄Mv , f̄Mv′
∣∣f̄Nw = A) · P(f̄Nw = A). (53)

The second sum in (53) is

∑

A not principal

H(f̄Mv , f̄Mv′
∣∣f̄Nw = A) · P(f̄Nw = A)

(49),(15),(16)≤ 2qε; (54)

for the first sum in (53), note that, by symmetry,P(f̄Nw = A) is equal for each principal
A ⊆ Q, so by (49) and (47), we have

P(f̄Nw = A) = �(1). (55)

Next, for each principal A,

H(f̄Mv , f̄Mv′
∣
∣f̄Nw = A)

(14)=
∑

A0,A1

−P(f̄Mv = A0, f̄Mv′ = A1
∣
∣f̄Nw = A)

· log [P(f̄Mv = A0, f̄Mv′ = A1
∣∣f̄Nw = A)

]
,

and using the fact that −p log p ≤ H(p) for any constant p ∈ (0, 1) (here H(p) is
the binary entropy function, defined in Sect. 3.4), we obtain

H(f̄Mv , f̄Mv′
∣∣f̄Nw = A) ≤

∑

A0,A1

H
(
P(f̄Mv = A0, f̄Mv′ = A1

∣∣ f̄Nw = A)
)
. (56)

If (A0, A1) = (A,Q\A), then Lemma 4.3 gives

P(f̄Mv = A0, f̄Mv′ = A1
∣
∣ f̄Nw = A) ≥ 1 − 6ε

P(f̄Nw = A)

(47),(55)≥ 1/2.
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On the other hand, if (A0, A1) �= (A,Q\A) then by Lemma 4.3

P(f̄Mv = A0, f̄Mv′ = A1
∣
∣ f̄Nw = A) ≤ 6ε

P(f̄Nw = A)
≤ 1/2.

Since H(p) is increasing for p ≤ 1/2, and is symmetric about 1/2, we may bound
each of the entropy terms in the rhs of (56) by H(6ε/P(f̄Nw = A)). Thus we may
bound the first sum in (53) as follows:

∑

A principal

H(f̄Mv , f̄Mv′
∣
∣f̄Nw = A) · P(f̄Nw = A)

≤ 22q
∑

A principal

H

(
6ε

P(f̄Nw = A)

)
· P(f̄Nw = A)

= O(1) · H
(

6ε

P(f̄Nw = A)

)
≤ Cε log(C/ε) (57)

for some constant C , where the last inequality uses the fact that H(x) ≤ 2x log(1/x)
for x ≤ 1/2 [and (55)]. Note that by symmetry, we can take A to be an arbitrary
principal set in (57).

Finally, we combine (53), (54), and (57) to obtain

H(f̄Mv , f̄Mv′
∣
∣f̄Nw) ≤ 2qε + Cε log(C/ε),

which, together with (45), gives

ε ≤ O(d2/N ) + O (1/d) · [2qε + Cε log(C/ε)
]
.

Then as N = 2�(d), we solve to obtain ε = 2−�(d), completing the proof of
Lemma 4.3.

5 Proof of Lemma 2.2

5.1 Warming-Up

Before we start in earnest, we recall (e.g. from [19]) how the entropy function gives
an upper bound on cq(G) for any d-regular bipartite graph G (with, say, a bipartition
D ∪ U). The argument in this section will be used in a refined form in the proof in
Sect. 5.4. For f ∈ Cq(G) chosen uniformly at random, we have

log cq(G)
(15)= H(f)

(17)= H(fD) + H(fU |fD) ≤
∑

u∈U

[
1

d
H(fNu ) + H(fu |fNu )

]
;

(58)
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here the inequality uses Lemma 3.13 with

αS =
{
1/d if S = Nu for some u ∈ U;
0 otherwise

(59)

for the first term, and (18) for the second term.
Notice that we can always give the following simple upper bound on the terms in

(58); this bound is too weak to be useful in general, but in the proof that follows, we
will use it on some small sets of vertices.

Proposition 5.1 For f drawn from any probability distribution on Cq(G) and u ∈ V ,

(T (u) :=)
1

d
H(fNu ) + H(fu |fNu ) ≤ log(q/2)2 + O(1/d). (60)

Proof Recall that f(Nu) = {fv : v ∈ Nu}, i.e., the set of colors used on fNu . Clearly,
f(Nu) is determined by fNu , and then we have

T (u)
(17)= 1

d [H(f(Nu)) + H(fNu |f(Nu))] + H(fu |fNu )

(19)≤ 1
d H(f(Nu)) + 1

d H(fNu |f(Nu)) + H(fu |f(Nu)). (61)

Note that for each possible value C of f (Nu),

H(fu |f(Nu) = C) ≤ log(q − |C |),
H(fNu |f(Nu) = C) ≤ d log |C |.

Since log x+log(q−x) ≤ log(q/2)2 for x ∈ N, the last two terms in (61) are bounded
by

∑

C

P(f(Nu) = C)

[
1

d
H(fNu |f(Nu) = C) + H(fu |f(Nu) = C)

]
≤ log(q/2)2,

yielding the proposition (since H(f(Nu)) = O(1)). ��

5.2 Proof Overview

In Step 1 (Lemma 2.1), we showed that the vast majority of colorings inCq(Bd) admit
a ground state with exponentially small flaws. Our goal in this section is to bound the
number of such colorings that disagree with their ground state exactly at a particular
set X (ranging over all 2-linked sets X with moderately-sized neighborhoods). More
precisely, we wish to bound the quantity

∑

X∈H(g)

∣∣χA,B(X)
∣∣ , (62)
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for all g and (A, B) as in Lemma 2.2. As is typical as in this line of work, directly
bounding the number of colorings f in χA,B(X) is a difficult task. The main idea of
the current proof, which is inspired by [19, 20], is to bound the number of colorings f
that admit a given pair (F, S) as a ψ-approximating pair of XA,B( f ). (Note: Sect. 3
has definitions and background on ψ-approximating pairs.)

Roughly speaking, for a given pair (F, S), we bound the entropy of a random
coloring f corresponding to (F, S), breaking our analysis into three cases. In each
case, we use the chain rule of conditional entropy [as in (58) above] to first “expose”
part of the coloring, then use this to find some “entropy savings” as we color the
remaining vertices. The exact order in which we expose the vertices of the coloring
will be different in each case; very roughly, the three caseswill depend on the difference
in size between F and S and on the amount of error obtained in approximating the
flaw X by the pair (F, S). In each case, (F, S) provides a different type of “resources”
that we can use to obtain entropy savings.

We emphasize that the containers (F, S) are crucially used to lead entropy savings;
a “vanilla” entropy approach (as in Sect. 5.1) gives amuchweaker bound, and a careful
combination of entropy and containers is key in this step.

We also remark that, as pointed out in Sect. 1, the proof in this section can easily
be extended to odd q.

5.3 Notation and Proof Setup

Throughout this section, we fix an integer g and a principal partition (A, B) as in
Lemma 2.2. In order to use approximating pairs, we must specify the parameter ψ ;
let ψ be an arbitrary number with

log3 d � ψ � d/ log2 d, (63)

and let U(g) be the corresponding set of pairs (F, S) guaranteed by Lemma 3.9.
For a pair (F, S) ∈ U(g), we define

IF,S := {X ∈ H(g) : (F, S) is a ψ-approximating pair of X}.

Observe that with this notation, (62) can be broken down according to approximating
pairs as follows:

∑

X∈H(g)

∣∣χA,B(X)
∣∣ =

∑

(F,S)∈U(g)

∑

X∈IF,S

∣∣χA,B(X)
∣∣ . (64)

Before bounding this sum (the goal of this section), we will break it down one step
further according to the size of a particular set related to each X [yielding (66) below].
To do so, we will need some additional notation; we also take this opportunity to
introduce a variety of notational conventions for this section.

Given a pair (F, S) ∈ U(g) and a set X ∈ IF,S , we will adopt the following:

• We use D and U for Ld−1 and Ld (for notational simplicity)
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• X1 := X ∩ D, S1 := S ∩ D, and F1 := F ∩ U
• X2 := X ∩ U , S2 := S ∩ U , and F2 := F ∩ D
• x1 := |X1|, s1 := |S1|, and f1 := |F1|
• x2 := |X2|, s2 := |S2|, and f2 := |F2|
• ε := 1/ log1.5 d
• ε′ := 1/ log2 d
• We assume that |N (X1)| ≥ |N (X2)| (thus |N (X1)| ≥ g/2), as the other case may
be handled identically by switching the roles of U and D

• g1 := |N (X1)|; note that the previous convention guarantees g1 ∈ [g/2, g].
Now for any fixed g1 ∈ [g/2, g], we define the set of colorings

FF,S(g1) := { f : ( f ∈ χA,B(X) for some X ∈ IF,S
) ∧ (|N (X1)| = g1)

}
. (65)

The key of the proof is to establish an upper bound for each |FF,S(g1)|; concretely,
we can break down the sum (64) as follows

∑

X∈H(g)

∣∣χA,B(X)
∣∣ =

∑

(F,S)∈U(g)

∑

X∈IF,S

∣∣χA,B(X)
∣∣ =

∑

(F,S)∈U(g)

∑

g1∈[g/2,g]
2·|FF,S(g1)|

(66)
(note: the factor of 2 above comes from switching the roles of U and D in the case
where |N (X1)| ≤ |N (X2)|). The remainder of this section is dedicated to bounding
the terms of this sum, and we will divide our analysis into three cases, detailed below.

As a final note, given a coloring f , we call a vertex v is good if f agrees with a
principal partition (A, B) at v (and bad otherwise). We will often use the easy fact
that for a random coloring f drawn from any probability distribution on Cq(Bd), and
any v ∈ V (recalling that q is even),

H(fv | v is good) ≤ log(q/2). (67)

5.4 Proof of Lemma 2.2

We now bound the terms |FF,S(g1)| in (66). Our strategies will vary depending on
the values of g1 − f1 and f1 − s1, and we will give a different bound on |FF,S(g1)|
in each of the three following cases:

Case 1. g1 − f1 < εg1.
Case 2. g1 − f1 ≥ εg1 and f1 − s1 < ε′g1.
Case 3. f1 − s1 ≥ ε′g1.

Case 1. g1 − f1 < εg1. We first claim that given a pair (F1, S1),

the number of possibilities for N (X1) is 2
o(g1) (= 2o(g)). (68)

Indeed, (7) implies that N (X1) is a subset of N (S1), which is a set of size at most

ds1
(11)≤ (1+o(1))dg1. Since F1 ⊆ N (X1), N (X1) is fully determined by N (X1)\F1,
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which has size g1 − f1 < εg1. Therefore, the number of choices for N (X1)\F1 (and
hence, for N (X1)) is at most

(
(1 + o(1))dg1

≤ εg1

)
≤ exp2[O(εg1 log(d/ε))]=2o(g1)

(where the final equality is from ε := 1/ log1.5 d). Note that N (X1) does not neces-
sarily determine X1; it only gives the closure of X1, i.e.,

[X1] := {v ∈ D : N (v) ⊆ N (X1)}.

Now,fixG1 to be any of the 2o(g1) possible choices for N (X1), and let f be uniformly
chosen from among corresponding colorings, that is, from the set

FF,S(g1) ∩ { f ∈ χA,B(X) : X ∈ IF,S and |N (X1)| = G1}.

We bound the entropy of f as follows:

H(f)
(17)= H(fD) + H(fU |fD)

≤
∑

u∈G1∪S2

1

d
H(fNu ) +

∑

v∈D

(
1 − dG1∪S2(v)

d

)
H(fv) +

∑

u∈U
H(fu |fNu )

≤
∑

u∈G1∪S2

T (u) +
∑

u∈U\(G1∪S2)

H(fu) +
∑

v∈D

(
1 − dG1∪S2(v)

d

)
H(fv), (69)

where the first inequality uses Lemma 3.13 with αS = 1/d if S = Nu for some
u ∈ G1 ∪ S2, and αv = 1 − dG1∪S2(v)/d for each singleton v ∈ D [so that (21) is
satisfied]. We will bound each term of (69) individually.
(i) First term of (69): We define the set

[X1]− = {u ∈ V : N (u) ⊆ [X1]}, (70)

and note that [X1]− ⊆ G1., If u ∈ [X1]− ∪ (S2\G1), then we use the naïve bound in
Proposition 5.1 to obtain

T (u) ≤ log(q/2)2 + O(1/d). (71)

For the remaining vertices u ∈ G1 ∪ S2 (that is, those vertices in G1\[X1]−), we
can achieve a stronger bound on T (u):

Proposition 5.2 For u ∈ G1\[X1]− with d ′(u) := d − d[X1](u),

1

d
H(fNu |f(Nu)) + H(fu |f(Nu)) = log(q/2)2 − �(d ′(u)/d).
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Proof Note that if a color set C ⊆ Q is not principal, i.e., c := |C | �= q/2, then

1

d
H(fNu |f(Nu) = C)+H(fu |f(Nu) = C) ≤ log c+ log(q−c) = log(q/2)2−�(1).

(72)
Next, suppose f(Nu) = C for someprincipalC , i.e., c = q/2.Note that u ∈ G1\[X1]−
implies u ∼ X1 and u ∼ D\X1, so in particular C intersects both A and B. Let
C ′ = C ∩ B ( �= ∅) and c′ = |C ′|(≤ c− 1). Note that each vertex in Nu\[X1] is good,
so it has at most c′ color choices. For vertices in [X1], we apply the naïve upper bound
c (= q/2) for the number of possible color choices. So we have

1

d
H(fNu |f(Nu) = C) + H(fu |f(Nu) = C)

≤ 1

d

[
(d − d ′(u)) log c + d ′(u) log(c′)

]+ log(q − c)

≤ log c + d ′(u)

d
log(1 − 1/c) + log(q − c)

= log(q/2)2 − �(d ′(u)/d). (73)

Combining (72) and (73), we have

1

d
H(fNu |f(Nu)) + H(fu |f(Nu)) =
∑

C

P(f(Nu) = C)

[
1

d
H(fNu |f(Nu) = C) + H(fu |f(Nu) = C)

]

≤ log(q/2)2 − �(d ′(u)/d).

��

To finish bounding the first term of (69), it remains to estimate the sizes of the
sets [X1]− ∪ (S2\G1) (where we must use a naïve bound) and G1\[X1]− (where
we may use the stronger bound from the above proposition). And this will follow
from the expansion of the graph; note that by Lemma 3.6(iii) (and the bound on g in
Lemma 2.2.),

|N (X1)| ≥ (1 + �(1))|[X1]| ≥ (1 + �(1))|X1|. (74)
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Let x−
1 := |[X1]−|. By (61) and Proposition 5.2,

∑

u∈G1\[X1]−
T (u)

≤
∑

u∈G1\[X1]−

[
1

d
H(f(Nu)) + log(q/2)2 − �(d ′(u)/d)

]

≤ O(g/d) + (g1 − x−
1 ) log(q/2)2 − �(1/d) ·

∑

u∈G1\[X1]−
(d − d[X1](u))

= O(g/d) + (g1 − x−
1 ) log(q/2)2 − �(1/d) · d(g1 − |[X1]|)

(74)= (g1 − x−
1 ) log(q/2)2 − �(g). (75)

Note by (11) that |G1 ∪ S2| ≤ g1 + (1+ o(1))g2 ≤ (1+ o(1))g. Combining (71) and
(75), we have

∑

u∈G1∪S2

T (u) ≤ |G1 ∪ S2| log(q/2)2 + O(g/d) − �(g)

= |G1 ∪ S2| log(q/2)2 − �(g).

(ii) Second term of (69): If u /∈ S2 then u is good, so H(fu) ≤ log(q/2). Therefore,

∑

u∈U\(G1∪S2)

H(fu) ≤ (N/2 − |G1 ∪ S2|) log(q/2).

(iii) Last term of (69): Observe that for any v ∈ D,

(
1 − dG1∪S2(v)

d

)
H(fv) ≤

(
1 − dG1∪S2(v)

d

)
log
(q
2

)
; (76)

indeed, if v ∈ [X1], then dG1(v) = d so the inequality holds (with equality); if
v /∈ [X1], then v is good, so H( fv) ≤ log(q/2). By this observation, the last term of
(69) is at most

1

d

∑

v∈D
(d − dG1∪S2(v)) log

(q
2

)
≤ log

(q
2

)
· 1
d

· d
(
N

2
− |G1 ∪ S2|

)

= log
(q
2

)(N

2
− |G1 ∪ S2|

)
.
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Combining the bounds in (i)–(iii), (69) is at most

|G1 ∪ S2| log
(q
2

)2 − �(g) +
(
N

2
− |G1 ∪ S2|

)
log
(q
2

)

+
(
N

2
− |G1 ∪ S2|

)
log
(q
2

)
= N log

(q
2

)
− �(g). (77)

Finally, the combination of (68) and (77) gives that in Case 1, i.e., g1 − f1 < εg1, the
number of colorings in FF,S(g1) is at most

2N log(q/2)−�(g).

Case 2. g1 − f1 ≥ εg1 and f1 − s1 < ε′g1. Recall that we are given (F, S), thus
(F1, S1) and (F2, S2). Note that for any coloring f ∈ FF,S(g1),

if fS1 is specified, then this gives N (X1), (78)

because fS1 gives X1 by X1 = {v ∈ S1 : fv ∈ A}, thus N (X1). Now let f be uniformly
chosen from FF,S(g1); our plan for Case 2 is to first disclose information on fS1 to
specify N (X1) (not fN (X1)), and then take advantage of the fact that N (X1)\F1 is
somewhat large.

We first specify f on F1 ∪ S1, whose entropy cost is

H(fF1∪S1)
(17)= H(fS1) + H(fF1 |fS1)
(†)≤ 1

d

∑

u∈F1
H(fNu∩S1) +

∑

v∈S1

(
1 − dF1(v)

d

)
H(fv) +

∑

u∈F1
H(fu |fNu∩S1)

=
∑

u∈F1

[
1

d
H(fNu∩S1) + H(fu |fNu∩S1)

]
+
∑

v∈S1

(
1 − dF1(v)

d

)
H(fv)

where for (†) we apply Lemma 3.13 with αT = 1/d if T = Nu ∩ S1 for some u ∈ F1
and αv = 1− dF1(v)/d for each singleton v ∈ S1 (so that (21) is satisfied). Note that,
for each u ∈ F1 and a possible value C for f(Nu ∩ S1), a similar argument as in the
proof of Proposition 5.1 gives that

1

d
H(fNu∩S1) + H(fu |fNu∩S1)

≤ 1

d
H(f(Nu ∩ S1)) + 1

d
H(fNu∩S1 |f(Nu ∩ S1)) + H(fu |f(Nu ∩ S1))

≤ O(1/d) + log(q/2)2.

Also note by Observation 3.10 and (8) that

∑

v∈S1

(
1 − dF1(v)

d

)
H(fv) ≤

∑

v∈S1
(ψ/d) H(fv) = O (gψ/d) ,
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thus
H(fF1∪S1) ≤ f1 log(q/2)2 + O(gψ/d). (79)

In what follows we use the random variable f̃ for the distribution of f conditioned
on the event that we have specified colors on F1 ∪ S1. (Eventually we give an upper
bound on f̃(D∪U)\(F1∪S1) that is valid regardless of the coloring of F1∪ S1.) We use G1
for N (X1) given by the color specification on S1 [see (78)]. Below is our key lemma.

Lemma 5.3 For any u ∈ G1\F1,
1

d
H(f̃Nu\S1) + H(f̃u |f̃Nu\S1) ≤ log(q/2)2 − �(1). (80)

Proof Note that the lhs of (80) is at most

1

d
H(f̃(Nu\S1)) + 1

d
H(f̃Nu\S1 |f̃(Nu\S1)) + H(f̃u |f̃(Nu\S1)), (81)

and if f̃(Nu\S1) = C for a non-principal color set C , then (with c := |C |)
1

d
H(f̃Nu\S1 |f̃(Nu\S1) = C) + H(f̃u |f̃(Nu\S1) = C) ≤ log c + log(q − c)

= log(q/2)2 − �(1). (82)

Now, suppose f̃(Nu\S1) = C for a principal color set C . Note that we have already
specified colors on S1, and if some vertices in S1 ∩ Nu use colors not in C , then we
again have

1

d
H(f̃Nu\S1 |f̃(Nu\S1) = C) + H(f̃u |f̃(Nu\S1) = C) ≤ log(q/2) + log(q/2 − 1)

= log(q/2)2 − �(1). (83)

So now assume that f̃(Nu\S1) = C and that C includes all the colors on Nu ∩ S1.
Note that |Nu\S1| ≥ d − ψ by (9), so in particular, u ∈ G1\[X1]−. [Recall the
definition of [X1]− from (70).] This implies u ∼ X1 and u ∼ D\X1, so C must
intersect both of A and B. Let C ′ = C ∩ B ( �= ∅) and c′ = |C ′|(≤ c − 1). Note that
the vertices in Nu\S1 are all good, thus each vertex in Nu\S1 has at most c′ choices
for colors. Therefore, with d ′ := |Nu\S1|(≥ d − ψ), we have

1

d
H(f̃Nu\S1 |f̃(Nu\S1) = C) + H(f̃u |f̃(Nu\S1) = C)

≤ d ′

d
log(c′) + log(q − c)

≤ log c + (d ′/d) log(1 − 1/c) + log(q − c)

= log(q/2)2 − �(1). (84)
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Combining (82), (83), and (84), we have that the last two terms of (81) are at most

∑

C

P(f̃(Nu\S1) = C)

[
1

d
H(f̃Nu\S1 |f̃(Nu\S1) = C) + H(f̃u |f̃(Nu\S1) = C)

]

≤ log(q/2)2 − �(1).

Therefore, (81) is at most log(q/2)2 − �(1) (by noting that its first term is O(1/d)).
��

Now we consider

H(f̃(D∪U)\(F1∪S1)) = H(f̃D\S1) + H(f̃U\F1 |f̃D\S1). (85)

We bound the first term on the rhs by applying Lemma 3.13 with αS = 1/d if S =
Nu\S1 for an u ∈ (G1 ∪ S2)\F1, and some αv for v ∈ D\S1 so that (21) is satisfied.
Noting that H(f̃v) ≤ log(q/2) for each vertex v ∈ D\S1 (since they are good),

H(f̃D\S1) ≤ 1

d

∑

u∈(G1∪S2)\F1
H(f̃Nu\S1) +

∑

v∈D\S1

(
1 − d(G1∪S2)\F1(v)

d

)
log
(q
2

)
.

(86)

To bound the second sum of (86), observe that

∑

v∈D\S1
d(G1∪S2)\F1(v) = |∇(D\S1, (G1 ∪ S2)\F1)|

≥ |∇(D,G1 ∪ S2)| − |∇(D, F1)| − |∇(S1,U\F1)|
(8)≥ d|G1 ∪ S2| − d f1 − ψs1

(11)= d|G1 ∪ S2| − d f1 − O(ψg),

so (86) is at most (recalling that |D| = N/2)

1

d

∑

u∈(G1∪S2)\F1
H(f̃Nu\S1) + log

(q
2

)(N

2
− |G1 ∪ S2| + f1 − s1

)
+ O

(
ψg

d

)
.

(87)
For the second term in the rhs of (85), again noting that H(f̃u) ≤ log(q/2) for each
vertex u ∈ U\S2 (since they are good),

H(f̃U\F1 |f̃D\S1) ≤
∑

u∈(G1∪S2)\F1
H(f̃u |f̃Nu\S1) + |U\(G1 ∪ S2)| log

(q
2

)

=
∑

u∈(G1∪S2)\F1
H(f̃u |f̃Nu\S1) + log

(q
2

)(N

2
− |G1 ∪ S2|

)
. (88)
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The sum of the first terms of (87) and (88) are at most, by Proposition 5.1 and
Lemma 5.3,

∑

u∈(G1∪S2)\F1

[
1

d
H(f̃Nu\S1) + H(f̃u |f̃Nu\S1)

]

≤ (g1 − f1)

(
log
(q
2

)2 − �(1)

)
+ |S2\G1|

(
log
(q
2

)2 + O

(
1

d

))

≤ log
(q
2

)2
(|G1 ∪ S2| − f1) − O(g1 − f1) + O

(g
d

)

≤ log
(q
2

)2
(|G1 ∪ S2| − f1) − �(εg), (89)

where for the last inequality we use ε := 1/ log1.5 d and the fact that g1 − f1 ≥ εg1
in Case 2. Combining (87), (88), and (89) (and observing that ψg/d � εg), we can
bound (85) by

log
(q
2

)2 (N

2
− f1

)
+ log

(q
2

)
( f1−s1)−�(εg) = log

(q
2

)2 (N

2
− f1

)
−�(εg)

(90)
where the equality uses another assumption in Case 2, i.e., f1−s1 < ε′g1, and ε′ � ε.

Finally, combining (79) and (90), we have

H(f) = H(fF1∪S1) + H(f(D∪U)\(F1∪S1)|fF1∪S1)

≤ H(fF1∪S1) +
∑

ρ

P(fF1∪S1 = ρ)H(f(D∪U)\(F1∪S1)|fF1∪S1 = ρ)

≤ f1 log(q/2)2 + O (gψ/d) + log(q/2)2 (N/2 − f1) − �(εg)

= N log(q/2) − �(g/ log1.5 d), (91)

Therefore, in Case 2, the number of colorings in FF,S(g1) is at most

2N log(q/2)−�(g/ log1.5 d).

Case 3. f1 − s1 ≥ ε′g1. Let f be uniformly chosen from FF,S(g1). Recall that (F1 ∪
S2)+ = (F1 ∪ S2) ∪ N (F1 ∪ S2). Then with T (u) as in (60), we have

H(f(F1∪S2)+) = H(fN (F1∪S2)) + H(fF1∪S2 | fN (F1∪S2))

(†)≤
∑

u∈F1∪S2

1

d
H(fNu ) +

∑

v∈N (F1∪S2)

(
1 − dF1∪S2(v)

d

)
H(fv)

+
∑

u∈F1∪S2

H(fu | fNu )

=
∑

u∈F1∪S2

T (u) +
∑

v∈N (F1∪S2)

(
1 − dF1∪S2(v)

d

)
H(fv) (92)
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where for (†) we apply Lemma 3.13 with αS = 1/d if S = Nu for some u ∈ F1 ∪ S2
and αv = 1−dF1∪S2(v)/d for each singleton v ∈ N (F1∪S2) (so that (21) is satisfied).

Let F0 = {u ∈ F1 : N (u) ⊆ S1}, and write f0 = |F0|. The proof of below
proposition is identical to that of Proposition 5.2, thus we omit it.

Proposition 5.4 For any u ∈ F1\F0 with d ′(u) := d − dS1(u),

1

d
H(fNu |f(Nu)) + H(fu |f(Nu)) ≤ log(q/2)2 − �(d ′(u)/d).

Note that
∑

u∈F1\F0
d ′(u) = |∇(F1,D\S1)| ≥ d f1 − ds1 ≥ dε′g1. (93)

Using Proposition 5.4 and (93), we obtain

∑

u∈F1\F0
T (u)

(61)≤
∑

u∈F1\F0

[
1

d
H(f(Nu)) + 1

d
H(fNu |f(Nu)) + H(fu |f(Nu))

]

≤ O(g/d) + ( f1 − f0) log(q/2)2 − �(ε′g).

On the other hand, using the naïve bound in Proposition 5.1, we have

∑

u∈F0∪(S2\F1)
T (u) ≤ O(g/d) + ( f0 + |S2\F1|) log(q/2)2.

Combining the above two bounds, the first term of (92) is

∑

u∈F1∪S2

T (u) ≤ |F1 ∪ S2| log(q/2)2 − �(ε′g). (94)

For the second term of (92), using the fact that H(fv) ≤ log(q/2) for all v ∈ D\S1
(since they are all good), we have

∑

v∈N (F1∪S2)

(
1 − dF1∪S2(v)

d

)
H(fv) ≤

∑

v∈S1

(
1 − dF1∪S2(v)

d

)
H(fv)

+
∑

v∈N (F1∪S2)\S1

(
1 − dF1∪S2(v)

d

)
log
(q
2

)

(8)≤ O(ψg/d) +
∑

v∈N (F1∪S2)\S1

(
1 − dF1∪S2(v)

d

)
log
(q
2

)
. (95)

Observe that
∑

v∈N (F1∪S2)\S1
dF1∪S2(v) = |∇(F1 ∪ S2, N (F1 ∪ S2)\S1)| ≥ d|F1 ∪ S2| − ds1.
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Then (95) is at most

(|N (F1 ∪ S2)| − |F1 ∪ S2|) log(q/2) + O(ψg/d). (96)

Combining (92), (94), and (96) (and observing that ψg/d � ε′g), we have

H(f(F1∪S2)+) ≤ |(F1 ∪ S2)
+| log(q/2) − �(ε′g).

Finally, using the fact that H(fv) ≤ log(q/2) for all v /∈ S1 ∪ S2 (since such v’s are
good),

H(f) ≤ H(f(F1∪S2)+) +
∑

v /∈(F1∪S2)+
H(fv) ≤ N log(q/2) − �(g/ log2 d).

Therefore, in Case 3, the number of colorings in FF,S(g1) is at most

2N log(q/2)−�(g/ log2 d).

Conclusion To sum up, we have shown that for any (F, S) and g1, the number of
colorings in FF,S(g1) is at most

2N log(q/2)−�(g/ log2 d) = (q/2)N2−�(g/ log2 d).

Note by Lemma 3.9 and (63) that

|U(g)| ≤ 2O(g log2 d/d+g log d/ψ+d) = 2o(g/ log
2 d).

Therefore, for any principal partition (A, B) and g ∈ [d10, 2−β ′d N ], we have
∑

X∈H(g)

∣
∣χA,B(X)

∣
∣ (66)=

∑

(F,S)∈U(g)

∑

g1∈[g/2,g]
2 · |FF,S(g1)|

≤ 2 · 2o(g/ log2 d) · g · (q/2)N2−�(g/ log2 d)

≤ (q/2)N2−�(g/ log2 d),

which completes the proof of Lemma 2.2.

6 Polymer Models onBd

We first define a polymer model on Bd and introduce relevant definitions. Recall the
definitions in Sect. 3.5. The set of polymers is defined to be

P :=
{
γ ⊆ V : γ is non-empty, 2-linked, and |N (γ )| ≤ 2−βd N

}
(97)
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where β is as in Lemma 2.1. Define HP to be the graph on P where two polymers
γ , γ ′ are adjacent iff γ ∪ γ ′ is a 2-linked set (so every vertex has a loop). Recall that
�P (� ∅) is the collection of independent sets of HP with loops allowed.

Fix a principal partition (A, B) ofQ. In this section we tentatively drop the assump-
tion that q is even, as all proofs here works simultaneously for both even and odd q.
We equip each polymer in P with the weight function (recall χA,B from (4))

ωA,B(γ ) := |χA,B(γ )|
(|A| · |B|)N = |χA,B(γ )|

(�q/2	 · 
q/2�)N . (98)

For future reference, observe that, writing fγ + for f restricted on γ + and χ̂A,B(γ ) :=
{ fγ + : f ∈ χA,B(γ )}, we can rewrite (98) as

ωA,B(γ ) = |χ̂A,B(γ )|
|A||γ +∩Ld | · |B||γ +∩Ld−1| . (99)

Now define the polymer model associated to a principal partition (A, B) as


A,B := 
(P, ωA,B) =
∑

�∈�P

∏

γ∈�

ωA,B(γ ).

For a cluster � = (γ1, γ2, . . . , γk) where γi ∈ P , define the size of � to be ‖�‖ =∑k
i=1 |γi |. For any k ≥ 1, the k-th term of the cluster expansion of the polymer model

(P, ωA,B) is

L A,B(k) :=
∑

�∈C, ‖�‖=k

ωA,B(�) (100)

[where ωA,B(�) is defined as in (25)] and then by (26),

ln
A,B =
∑

�∈C
ωA,B(�) =

∞∑

k=1

L A,B(k). (101)

6.1 Verifying Kotecký–Preiss Condition

For every polymer γ ∈ P , consider a new weight function

ω̃A,B(γ ) := ωA,B(γ ) exp(|γ |/d) (> ωA,B(γ ))

and the corresponding polymer model partition function


̃A,B := 
(P, ω̃A,B) =
∑

�∈�P

∏

γ∈�

ω̃A,B(γ ). (102)

In the next lemma we verify Kotecký–Preiss Condition for (P, ω̃A,B) (thus for
(P, ωA,B)). This stronger result will be used in the proof of Lemma A.1.
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Lemma 6.1 There exists functions f : P → [0,∞) and g : P → [0,∞) such that
for each principal partition (A, B) and all polymers γ ∈ P ,

∑

γ ′∼γ

ωA,B(γ ′) exp(|γ ′|/d) exp
(
f (γ ′) + g(γ ′)

) ≤ f (γ ). (103)

In particular, the cluster expansion of both ln
A,B and ln 
̃A,B converge absolutely.

Proof Fix a principal partition (A, B), and simply denote ωA,B as ω. Recall from
Lemma 2.2 that there exists a constant ξ > 0 such that for all g ∈ [d10, 2−βd N ],

∑

γ∈H(g)

ω(γ ) ≤ exp(−ξg/ log2 d), (104)

where H(g) = {X ⊆ V : X is 2-linked, |N (X)| = g}. Let

f (γ ) = |γ |/d and g(γ ) =
{

|N (γ )|/3q if |N (γ )| ≤ d10

ξ |N (γ )|/(4 log2 d) otherwise.
(105)

Note that, to show (103), it suffices to show that for each v ∈ V ,

∑

γ ′:γ ′�v

ω(γ ′) · exp(2 f (γ ′) + g(γ ′)) ≤ 1/d3, (106)

since the lhs of (103) is at most

∑

u∈γ

∑

v∈N2(u)

∑

γ ′:γ ′�v

ω(γ ′) · exp(2 f (γ ′) + g(γ ′))
(106)≤ |γ |d2 · (1/d3) = f (γ ).

Wesplit the sum in (106) into twoparts according to |N (γ ′)|. First, forγ with |N (γ )| >

d10,

∑

γ ′:γ ′�v, |N (γ ′)|≥d10

ω(γ ′) · exp(2 f (γ ′) + g(γ ′))

≤
2−βd N∑

g=d10

∑

γ ′:γ ′∈H(g)

ω(γ ′) · exp(2 f (γ ′) + g(γ ′))

(104)≤
2−βd N∑

g=d10

exp(−ξg/ log2 d) · exp(ξg/(2 log2 d)) ≤ 1

2d3
(107)
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for d sufficiently large. Next, for γ with |N (γ )| ≤ d10, we first give an upper bound
on ω(γ ). Observe that a naïve counting gives

|χ̂A,B(γ )| ≤ |Ac||γ∩Ld |(|B| − 1)|∂(γ )∩Ld−1||Bc||γ∩Ld−1|(|A| − 1)|∂(γ )∩Ld |

= |B||γ∩Ld |(|B| − 1)|∂(γ )∩Ld−1||A||γ∩Ld−1|(|A| − 1)|∂(γ )∩Ld |,

therefore,

ω(γ )
(99)≤
( |B|

|A|
)|γ∩Ld | ( |B| − 1

|B|
)|∂(γ )∩Ld−1| ( |A|

|B|
)|γ∩Ld−1| ( |A| − 1

|A|
)|∂(γ )∩Ld |

≤
(
max

{ |B|
|A| ,

|A|
|B|
})|γ | (

max

{
1 − 1

|A| , 1 − 1

|B|
})|∂(γ )|

≤
(
1 + 1

�q/2	
)|γ | (

1 − 1


q/2�
)|∂(γ )|

. (108)

Now, if |N (γ )| = g ≤ d10, then by Proposition 3.6(ii), we have |γ | ≤ 12g/d. So we
have

∑

γ ′:γ ′�v

|N (γ ′)|≤d10

ω(γ ′) exp(2 f (γ ′) + g(γ ′))

≤
d10∑

g=d

∑

γ ′:γ ′�v, |N (γ ′)|=g

ω(γ ′) exp(2 f (γ ′) + g(γ ′))

(6),(108)≤
d10∑

g=d

(ed2)12g/d
(
1 + 1

�q/2	
)12g/d (

1 − 1


q/2�
)g/2

exp

(
24g

d2
+ g

3q

)

≤
d10∑

g=d

(2e2d2)12g/d
(
1 − 1


q/2�
)g/2

exp

(
g

3q

)
≤ 1

2d3
.

for d large enough. This, together with (107), completes the proof. ��

6.2 Bounding Terms in Cluster Expansion

For a principal partition (A, B), define

δA,B := max

{
1 − 1

|A| , 1 − 1

|B|
}

= 1 − 1


q/2� .
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Lemma 6.2 Let (A, B) be a principal partition. Then for any fixed t ≥ 1, we have

∞∑

k=t

|L A,B(k)| = Ot

(
Nd2(t−1)δdtA,B

)
.

Proof We show that

|LA,B(k)| = Ok

(
Nd2(k−1)δdkA,B

)
for each k ∈ N; (109)

and

for each t ≥ 1, there exists a constant K = K (t) such that
∑

k>K

|L A,B(k)| ≤ δdtA,B,

(110)
from which the conclusion follows since

∞∑

k=t

|L A,B(k)| =
K∑

k=t

|L A,B(k)| +
∑

k>K

|L A,B(k)| = Ot

(
Nd2(t−1)δdtA,B

)
.

For (109), let γ be a polymer of size at most a fixed k ∈ N. By Proposition 3.6(i), we
have |N (γ )| ≥ d|γ | − Ok(1), so

ωA,B(γ )
(108)≤

(
1 + 1

�q/2	
)|γ | (

1 − 1


q/2�
)|∂(γ )|

≤
(
1 + 1

�q/2	
)k (

1 − 1


q/2�
)d|γ |−|γ |−Ok(1)

= Ok

(
δ
d|γ |
A,B

)
.

Therefore, for a cluster � of size ‖�‖ = k, we have

ωA,B(�) = φ(HP (�))
∏

γ∈�

ωA,B(γ )
(24)= Ok

(
δdkA,B

)
. (111)

Next, observe that for a cluster � with ‖�‖ = k, V (�) is a 2-linked set of size at most
k (by the definition of the cluster). Therefore, by Lemma 3.4, the number of options
for V (�) is at most Ok

(
N · d2(k−1)

)
. Notice that given V (�), there are only Ok(1)

possibilities for �. By putting all ingredients together, we have that, for a fixed integer
k,

LA,B(k) =
∑

�∈C, ‖�‖=k

ωA,B(�) = Ok

(
Nd2(k−1)δdkA,B

)
, (112)

recalling that C is the set of all clusters (see Sect. 3.5).
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Next, we show (110). By Lemma 6.1 and (28), for any vertex v ∈ V and g(γ ) as
in (105),

∑

�∈C,�∼{v}
|ωA,B(�)| exp (g(�)) ≤ 1/d.

Trivially every cluster � is adjacent to some vertex in V , so

∑

�∈C
|ωA,B(�)| exp (g(�)) ≤ N/d. (113)

By Proposition 3.6(ii) and the definition of g(γ ), we have

g(γ ) ≥
{
d|γ |/(36q) if |γ | ≤ d9

d8 otherwise.

Therefore, for each constant k ∈ N and any cluster � of size at least k, we have

g(�) =
∑

γ∈�

g(γ ) ≥
∑

γ∈�

d|γ |/(36q) = d‖�‖/(36q) = dk/(36q).

Now, take K = K (t) to be the smallest integer that satisfies

exp (−d(K + 1)/(36q))) ≤ δdtA,B · d

N

(such K exists since N ∼ 22d/
√

πd). Then we have

∑

k>K

|L A,B(k)| ≤
∑

�∈C, ‖�‖≥K+1

|ωA,B(�)|

=
∑

�∈C, ‖�‖≥K+1

|ωA,B(�)| exp (g(�)) exp (−g(�))

≤ δdtA,B · d

N
·
∑

�∈C
|ωA,B(�)| exp (g(�))

(113)≤ δdtA,B · d

N
· N
d

= δdtA,B .

��

6.3 Almost All Colorings are Captured by at Most One Polymer Model

For a principal parition (A, B), we say that a coloring f ∈ Cq(Bd) is captured by
the polymer model 
A,B if every 2-linked components of XA,B( f ) is of size at most
2−βd N (where β is as in Lemma 2.1). By the definition of 
A,B ,

the number of colorings captured by 
A,B is exactly (�q/2	
q/2�)N/2 · 
A,B .

(114)
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The following lemmasays that almost all colorings are capturedby atmost onepolymer
model.

Lemma 6.3 Let q ≥ 4, and denote by C2 the set of colorings in Cq(Bd) captured by
at least two of the polymer models 
A,B’s. Then

|C2| ≤ exp
(
−�
(
N/d2

))
(�q/2	
q/2�)N/2

∑

(A,B) principal


A,B . (115)

We will use Lemma 6.5 below to prove Lemma 6.3. The proof of Lemma 6.5 is almost
identical to the proof of [15, Lemma 11.2] and we put it in Appendix A for the sake
of completeness.

As in [15], it is helpful to consider an auxiliary probability measure μ̂q on Cq(Bd)

(instead of uniform probability measure).

Definition 6.4 For an f ∈ Cq(Bd), let μ̂q( f ) denote the probability that f is selected
by the following four-step process:

1. Choose a principal partition (A, B) uniformly at random;
2. Choose � ∈ �P from the distribution νA,B , where

νA,B(�) :=
∏

γ∈� ωA,B(γ )


A,B
for each � ∈ �P ; (116)

3. With S :=⋃γ∈� γ , select a coloring f ∈ χ̂A,B(S) uniformly at random;
4. Independently assign each v ∈ Ld\S+ (v ∈ Ld−1\S+, resp.) the color c ∈ A with

probability 1/|A| (the color c ∈ B with probability 1/|B|, resp.).
For s > 0, say f is s-balanced with respect to (A, B) if for each c ∈ A (c ∈ B,

resp.), the proportion of vertices of Ld (Ld−1, resp.) colored c is 1/|A|± s (1/|B|± s,
resp.). The following lemma says that a typical coloring sampled from the measure
μ̂q is well-balanced with respect to some principal partition.

Lemma 6.5 Let f be a random coloring drawn from the distribution μ̂q , and denote
by D the principal partition selected at Step 1. Then there is a constant L = L(q) for
which the following holds: if (A, B) is a principal partition and Ld2δdA,B ≤ s ≤ 1,
then

P (f is s-balanced w.r.t. (A, B) | D = (A, B))

≥ 1 − exp
(
−�
(
s2N
))

− exp
(
−�
(
sN/d2

))
.

Proof of Lemma 6.3 Let f and D be as in Lemma 6.5. Fix two distinct principal color
partitions (A, B) and (A′, B ′), and let F be the set of colorings which are captured
by both 
A,B and 
A′,B′ . Set s = 1/q2 and observe that we may partition F =
FA,B ∪ FA′,B′ , where FA,B (FA′,B′ , resp.) consist of elements of F that are not s-
balanced w.r.t. (A, B) ((A′, B ′), resp.) (because no coloring can be s-balanced w.r.t.
two distinct principal partitions).
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It follows from Lemma 6.5 that

P
(
f ∈ FA,B | D = (A, B)

) ≤ exp
(
−�
(
N/d2

))
. (117)

On the other hand, for any f that is captured by 
A,B , let the 2-linked components
of XA,B( f ) be γ1, . . . , γk , and write � = {γ1, . . . , γk}. Then by the definition of μ̂q ,
we have

P (f = f | D = (A, B)) =
∏

γ∈� ωA,B(γ )


A,B
· 1

|χA,B(XA,B( f ))|
= 1


A,B · (�q/2	
q/2�)N/2 .

and therefore

P
(
f ∈ FA,B | D = (A, B)

) =
∑

f ∈FA,B

P (f = f | D = (A, B))

= |FA,B |

A,B · (�q/2	
q/2�)N/2 .

This, together with (117), shows that

|FA,B | ≤ exp
(
−�
(
N/d2

))
(�q/2	
q/2�)N/2
A,B .

Similar bound can be obtained for |FA′,B′ |, so

|C2| ≤ exp
(
−�
(
N/d2

))
(�q/2	
q/2�)N/2

∑

(A,B) principal


A,B .

��

7 Proof of Theorem 1.1

Recall from (2) that T (q) is the smallest integer t such that 2 + t log(1 − 2/q) < 0.
Combining Lemmas 2.1, 6.2, and 6.3, we obtain the following theorem on cq(Bd), the
number of proper colorings of Bd .

Theorem 7.1 Let q ≥ 4 and q be even. Then we have

cq(Bd) = (1 + o(1))(q/2)N
∑

(A,B) principal

exp

(
t−1∑

k=1

L A,B(k) + εt

)

,
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where L A,B(k) is as defined in (100) and

εt = O
(
Nd2(t−1)δdtA,B

)
. (118)

In particular,

cq(Bd) = (1 + o(1))(q/2)N
∑

(A,B) principal

exp

⎛

⎝
T (q)−1∑

k=1

L A,B(k)

⎞

⎠ .

Proof By Lemma 2.1, all but 2−αdcq(Bd) colorings are captured by at least one of the
polymer models 
A,B’s. Therefore,

(1 − o(1))(q/2)N
∑

(A,B) principal


A,B

(115)≤ cq(Bd)
(114)≤ (q/2)N

∑

(A,B) principal


A,B + 2−αdcq(Bd),

thus

cq(Bd) = (1 + o(1))(q/2)N
∑

(A,B) principal


A,B .

The rest of the proof follows from (101) and Lemma 6.2. ��

Theorem 7.1 provides a precise asymptomatic formula for cq(Bd) for even q. For
example, if q = 4, then T (q) = 3, so

c4(Bd) = (1 + o(1))(q/2)N
∑

(A,B) principal

exp
(
L A,B(1) + L A,B(2)

) ;

if q = 6, then T (q) = 4, and therefore

c6(Bd) = (1 + o(1))(q/2)N
∑

(A,B) principal

exp
(
L A,B(1) + L A,B(2) + L A,B(3)

)
.

Note that by the definition of cluster and LA,B(k), given q and a fixed integer k, one
can obtain an explicit formula for LA,B(k) in a finite time, and so for cq(Bd).

By symmetry, we simply denote LA,B(k) by Lk for all principal partitions (A, B).
We next provide an explicit computation of L1 and L2. Then Theorem 1.1 will follow
from Theorem 7.1, together with the combination of (119), (120), and (118). We
remark that the computation of Lk for any fixed k will follow from a similar strategy.
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Example 7.2 (Computing L1) Every polymer of size 1 is a single vertex ofLd orLd−1.

There are N of them, and each has weight
(q/2)(q/2 − 1)d

(q/2)d+1 = (1 − 2/q)d . There is

only one type of cluster of size 1, which consists of a polymer of size 1, with Ursell
function 1. Therefore we have

L1 = N (1 − 2/q)d . (119)

Example 7.3 (Computing L2) A polymer of size 2 is either a set of two vertices of Ld

(or Ld−1) sharing a common neighbor, or an edge of Bd . For the first type, there are
N
(d
2

)
of them and each has weight

(q/2)(q/2 − 1)2d−1

(q/2)2(q/2)2d−1 + (q/2)(q/2 − 1)(q/2 − 1)2d−2(q/2 − 2)

(q/2)2(q/2)2d−1 = (1 − 2/q)2d .

For the second type, there are Nd/2 of them and each has weight (q/2)2(q/2−1)2(d−1)

(q/2)2d
=

(1 − 2/q)2(d−1).
There are two types of clusters of size 2. The first type is an ordered pair of adjacent

polymers of size 1, whose Ursell function is −1/2. The number of such clusters is
N + Nd(d −1)+ Nd, and each of them has weight (1−2/q)2d . The second type is a
single polymer of size 2 with Ursell function 1. By the above discussion on polymers,
N
(d
2

)
of such clusters has weight (1−2/q)2d , while the rest Nd/2 of them has weight

(1 − 2/q)2(d−1). Therefore, we have

L2 = −1

2
(N + Nd(d − 1) + Nd)(1 − 2/q)2d + N

(
d

2

)
(1 − 2/q)2d

+ 1

2
Nd(1 − 2/q)2(d−1)

= N (1 − 2/q)2d
(
d

2
(1 − 2/q)−2 − d

2
− 1

2

)
. (120)

8 Proof of Theorem 1.2

To prove Theorem 1.2, we build a new polymer model to count typical colorings.
Define a set of polymers

PT := {γ ⊆ V : γ is non-empty and 2-linked, |γ | ≤ T (q) − 1} .

As before, γ , γ ′ ∈ PT are adjacent iff γ ∪ γ ′ is a 2-linked set; for a principal partition
(A, B), the weight function ωA,B(γ ) is defined as in (98); the corresponding polymer
model partition function is defined as


(PT , ωA,B) :=
∑

�∈�P

∏

γ∈�

ωA,B(γ ).
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Observe that the number of q-colorings f such that every 2-linked component of
XA,B( f ) is of size less than T (q) is exactly 
(PT , ωA,B). Therefore, the theorem
will follow from Theorem 7.1 once we show


(PT , ωA,B) = (1 + o(1))
A,B (121)

for every principal partition (A, B).
Let CT be the collection of all clusters (γ1, γ2, . . .) where γi ∈ PT , and

LT
A,B(k) := ∑�∈CT , ‖�‖=k ωA,B(�). Note that the proof of Lemma 6.1 also implies

that ln
(PT , ωA,B) converges: indeed, as now we only consider small polymers of
constant size, the proof is even simpler. Moreover, similarly to Lemma 6.2, one can
show that for any fixed t ≥ 1,

∞∑

k=t

|LT
A,B(k)| = O

(
Nd2(t−1)δdtA,B

)
,

and in particular, by the definition of T (q), see (2), we have

∞∑

k=T (q)

|LT
A,B(k)| = o(1).

Therefore,


(PT , ωA,B) = exp

( ∞∑

k=1

LT
A,B(k)

)

= (1 + o(1)) exp

⎛

⎝
T (q)−1∑

k=1

LT
A,B(k)

⎞

⎠ . (122)

By the definition of ‖�‖, we have

LT
A,B(k) = L A,B(k) (123)

for every 1 ≤ k ≤ T (q) − 1. Now (121) follows from (122), (123) and Theorem 7.1.

Appendix A Proof of Lemma 6.5

We define |�| :=∑γ∈� |γ | for � ∈ �P . Recall that C is the set of all clusters.

Lemma A.1 Let (A, B) be a principal partition and�A,B be drawn from νA,B defined
in (116). Then there exist a constant L = L(q) such that if t ≥ LdδdA,B, then

P(|�A,B | ≥ t N ) ≤ exp (−�(t N/d)) .
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Proof Recall from (102) the definition of 
̃A,B . By Lemma 6.1, ln 
̃A,B converges
absolutely; moreover, a similar proof as for Lemma 6.2 shows that

ln 
̃A,B =
∑

�∈C
ω̃A,B(�) = O

(
NδdA,B

)
. (124)

Observe that


̃A,B


A,B
= 1


A,B

∑

�∈�P

exp

( |�|
d

) ∏

γ∈�

ωA,B(γ ) = E exp

( |�A,B |
d

)
,

and therefore this, with (124), implies that there exists a constant C such that

E exp
(|�A,B |/d) ≤ exp

(
ln 
̃A,B

)
≤ exp

(
C · NδdA,B

)
.

Take L such that L > C . Then by Markov’s inequality and t ≥ LdδdA,B , we have

P
(|�A,B | ≥ t N

) = P

(
exp

( |�A,B |
d

)
≥ exp

(
t N

d

))
≤ E exp

( |�A,B |
d

)
exp

(
− t N

d

)

≤ exp
(
C · NδdA,B

)
exp (−t N/d) ≤ exp (−�(t N/d)) .

��
Define the flaw of a coloring f ∈ Cq(Bd) to be the set of vertices at which f does

not agree with its closest ground state coloring (breaking ties arbitrarily). Indeed, we
prove the following strengthened version of Lemma 6.5 (which is also a crucial lemma
for proving Theorem 1.3).

Lemma A.2 Let f be a random coloring drawn from the distribution μ̂q (see Defini-
tion 6.4). Denote by D the principal partition selected at Step 1, and let � be the
random polymer configuration selected at Step 2. Let X denote the size of the flaw of
f and L as in Lemma A.1. Then the following holds.

(i) P(X = |�|) ≥ 1 − exp
(−�

(
N/d2

))
.

(ii) If (A, B) is a principal partition and LdδdA,B ≤ t ≤ 1/(4d), then

P(X ≥ t N | D = (A, B)) ≤ exp (−�(t N/d)) .

(iii) If (A, B) is a principal partition and 10Ld2δdA,B ≤ s ≤ 1, then

P (f is s-balanced w.r.t. (A, B) | D = (A, B))

≥ 1 − exp
(
−�
(
s2N
))

− exp
(
−�
(
sN/d2

))
.
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Proof Let (A, B) and t be as in (ii). By Lemma A.1, we have

P (|�| ≤ t N | D = (A, B)) ≥ 1 − exp (−�(t N/d)) . (125)

For short, write �+ for ∪γ∈�γ +, and let |�+| := ∑γ∈� |γ +|. For each c ∈ A

(c ∈ B, resp.), let Z(c) denote the number of vertices in Ld\�+ (Ld−1\�+, resp.)
that receive color c conditioned on the event that D = (A, B). Since in Step 4 the
vertices of Ld\�+ (Ld−1\�+, resp.) are colored k independently with probability
1/|A| (1/|B|, resp.), we have that

Z(c) ∼ Bin
(|Ld\�+|, 1/|A|) (Bin (|Ld−1\�+|, 1/|B|) , resp.).

Note that |�+| ≤ (d + 1)|�| and t ≤ 1/(4d). Then if |�| ≤ t N , we have both
|Ld\�+|, |Ld−1\�+| ≥ N/6. Thus by Chernoff’s bound, there is a constant 	 such
that for every color c ∈ Q,

P (Z(c) ≤ 	N | D = (A, B), |�| ≤ t N ) ≤ exp (−�	 (N )) . (126)

For each c ∈ A (c ∈ B, resp.), let Y (c) denote the number of vertices in Ld (Ld−1,
resp.) that receive color c conditioned on the event that D = (A, B). Observe that for
every c,

0 ≤ Y (c) − Z(c) ≤ |�+|. (127)

Then by (126), (127) and the union bound, we have

P

(
min
c∈Q

Y (c) = �(N ) | D = (A, B), |�| ≤ t N

)
≥ 1 − exp (−�(N )) . (128)

Now, suppose that the events {D = (A, B)}, {|�| ≤ t N }, and {minc∈Q Y (c) =
�(N )} all hold. For any principal partition (A′, B ′) �= (A, B), either A\A′ �= ∅, or
B\B ′ �= ∅. Since minc∈Q Y (c) = �(N ), f must disagree with (A′, B ′) on �(N )

vertices. On the other hand, f disagrees with (A, B) at �, which is of size at most
t N = O(N/d). Then (A, B) must be the closest ground state of f , and thus X = |�|.
Moreover,

P (X = |�|) ≥ P

(
min
c∈Q

Y (c) = �(N ), |�| ≤ t N , D = (A, B)

)
.

Note that for any (A, B), by (125) and (128), we have

P

(
min
c∈Q

Y (c) = �(N ), |�| ≤ t N | D = (A, B)

)

= P

(
min
c∈Q

Y (c) = �(N ) | |�| ≤ t N , D = (A, B)

)
P (|�| ≤ t N | D = (A, B))

≥ 1 − exp (−�(t N/d)) . (129)
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Therefore, we conclude that

P(X ≤ t N | D = (A, B)) ≥ P

(
min
c∈Q

Y (c) = �(N ), |�| ≤ t N | D = (A, B)

)

≥ 1 − exp (−�(t N/d)) ,

which leads to (ii).
For (i), apply (129) with t = 1/(4d), we have

P (X = |�|) ≥
∑

(A,B)

P

(
min
c∈Q

Y (c) = �(N ), |�| ≤ t N | D = (A, B)

)
P (D = (A, B)) ≥ 1

− exp
(
−�
(
N/d2

))
.

Let s be as in (iii) and assume that |�+| ≥ s|Ld |/4. Recall that |�+| ≤ (d+1)|�|,
and then we must have |�| ≥ t N for t = s/(10d) ≤ 1/(4d). Thus by (125),

P

(
|�+| ≤ s

|Ld |
4

| D = (A, B)

)
≥ 1 − exp

(
−�
(
sN/d2

))
. (130)

Let c ∈ A. Similarly as before, as |�+| ≤ s|Ld |/4, applying Chernoff’s bound on
Z(c) gives that with probability at least 1 − exp

(−�
(
s2N
))
,

(1 − s/4)
|Ld\�+|

|A| ≤ Z(c) ≤ (1 + s/4)
|Ld\�+|

|A| .

This, together with (127), gives that

(
1

|A| − s

)
|Ld | ≤ Y (c) ≤

(
1

|A| + s

)
|Ld |.

Then we conclude that for every c ∈ A,

P

(∣∣∣∣
Y (c)

|Ld | − 1

|A|
∣
∣∣∣ ≤ s | |�+| ≤ s

|Ld |
4

, D = (A, B)

)
≥ 1 − exp

(
−�
(
s2N
))

.

The analogous statement holds for c ∈ B. Finally, the above, together with (130) and
the union bound, implies (iii). ��
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