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selector processes and a consequence

on positive empirical processes

By Jinyoung Park and Huy Tuan Pham

Abstract

For appropriate Gaussian processes, as a corollary of the majorizing

measure theorem, Michel Talagrand (1987) proved that the event that the

supremum is significantly larger than its expectation can be covered by a

set of half-spaces whose sum of measures is small. We prove a conjecture

of Talagrand that is the analog of this result in the Bernoulli-p setting, and

answer a question of Talagrand on the analogous result for general positive

empirical processes.

1. Introduction

The study of suprema of stochastic processes is of central interest in proba-

bility theory, with influential applications in related areas. We refer the readers

to [11], [17] for extensive discussions of various aspects of this subject. Through

many fundamental developments, one now has a fairly good understanding of

the suprema of centered Gaussian processes.1 In particular, one can associate

each Gaussian process (Zt)t∈T indexed by a set T with a metric on T given by

d(t, s) := (E[(Zt−Zs)
2])1/2, and Talagrand’s celebrated generic chaining bound

and majorizing measure theorem [12], [13], [17] determine the expectation of

the supremum supt∈T Zt (up to a constant factor) by a quantity depending

only on the metric space (T, d). Via this fundamental result, one can obtain

deep insights and characterizations of the suprema of Gaussian processes. One

important example is Theorem 1.1 below, which gives a nice geometric char-

acterization of large suprema of Gaussian processes: such an event must be

contained in a union of half-spaces whose sum of measures is small.
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1Following [17], we always assume Gaussian processes are centered, i.e., EZt = 0 for all

t ∈ T .
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Theorem 1.1 (Talagrand, Theorem 2.12.2 in [17]). There exists L > 0

such that the following holds. Let g be an M -dimensional standard Gaussian

vector. For T ⊆ R
M , consider the process Zt = 〈t, g〉 for t ∈ T . Then one can

find a sequence of half-spaces Hk of RM with
ß

sup
t∈T

Zt ≥ LE sup
t∈T

Zt

™

⊂
⋃

k≥1

Hk

and
∑

k≥1

P(Hk) ≤
1

2
.

Our main contribution in this paper is the proof of a conjecture of Ta-

lagrand on selector processes (Theorem 1.2; originally [15, Prob. 4.1], [16,

Conj. 5.7] and [17, Research Prob. 13.2.3]) and a result on positive empirical

processes (Theorem 1.3; a question of Talagrand [18] and a problem posed in

[15]), which are analogous to Theorem 1.1. We first quickly state our main

results and then provide more context, definitions, and motivations for Tala-

grand’s questions.

Given a finite set X, write 2X for the power set of X. For p ∈ [0, 1], let

µp be the product measure on 2X given by µp(A) = p|A|(1 − p)|X\A|. We use

Xp for the random variable whose distribution is µp. For S ⊆ X, define the

upset generated by S to be 〈S〉 := {T : T ⊇ S}. Following [16], we say F ⊆ 2X

is p-small if there is G ⊆ 2X such that

(1) F ⊆ 〈G〉 :=
⋃

S∈G

〈S〉

and

(2)
∑

S∈G

p|S| ≤ 1/2.

We say G is a cover of F if (1) holds.

Our first main result is the Bernoulli-p analog of Theorem 1.1.

Theorem 1.2. There exists L > 0 such that the following holds. Consider

any 0 < p < 1, any finite set X and any collection Λ of sequences λ = (λi)i∈X
with λi ≥ 0. Then the family







S ⊆ X : sup
λ∈Λ

∑

i∈S

λi ≥ LE sup
λ∈Λ

∑

i∈Xp

λi







is p-small.

In [16], Talagrand explains the meaning of the above theorem this way:

Conjecture 5.7 (now Theorem 1.2) shows that “if you are given a selector pro-

cess, and would like to prove that, within a multiplicative factor, the quantity

E supλ∈Λ

∑

i∈Xp
λi ≤ M for a constant M , there is in the end no other way
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than to find the witnesses that the set {S ⊆ X : supλ∈Λ

∑

i∈S λi ≥ LM}

is small.” In the same place, Talagrand suggests that this result “provides

fundamental information.”

Our second main result is the analog of Theorem 1.1 for positive empirical

processes (see (4) and the discussion that follows).

Theorem 1.3. There exists L > 0 such that the following holds. For

any N > 0 and i.i.d. random variables Y1, . . . , YN distributed according to a

Borel probability measure ν on a Polish space T, and any finite collection F of

Borel functions f : T → R≥0 with F ⊆ L∞(T), consider the positive empirical

process Zf = 1
N

∑N
i=1 f(Yi). Assume that 0 < E[supf∈F Zf ] < ∞. Then one

can find a collection C of pairs (g, t), where g is a nonnegative function on T

and t > 0, so that with Eg,t := {Zg ≥ t}, we have
®

sup
f∈F

Zf ≥ LE sup
f∈F

Zf

´

⊂
⋃

(g,t)∈C

Eg,t

and
∑

(g,t)∈C

P(Eg,t) ≤
1

2
.

We remark that the conclusion of Theorem 1.3 readily extends to cases

where F is not necessarily finite, for example when F is a totally bounded

infinite subset of L∞(T).

In [15], Talagrand proved versions of our main results for the special case

where the class of functions consists of indicator of sets, and he posed the

question of extending the results to general classes of functions as important

open problems. This is fully addressed by our results in both the setting of

selector processes and empirical processes. (Talagrand’s result on empirical

processes in [15] is stated slightly differently; see the remark at the end of

Section 3 for how to obtain from our proof a stronger version of Talagrand’s

result in the general setting.)

More context and definitions. A Gaussian process can be described in the

form Zt =
∑∞

i=1 ξiti, where ξ1, ξ2, . . . are i.i.d. standard Gaussian random vari-

ables, and t = {ti}i≥1 ∈ T ⊆ `2 is a square-summable sequence. Alternatively,

one can view Gaussian processes as random series (with i.i.d. Gaussian coeffi-

cients) of functions fi : T → R (where fi(t) = ti), an object of natural interest.

Generalizing the coefficients beyond the Gaussian case immediately leads to

substantially more challenging questions. In particular, in the case where the

coefficients ξi are independent Rademacher random variables, a longstanding

conjecture of Talagrand (“the Bernoulli Conjecture”) suggests a precise way to

control the supremum in expectation in the spirit of chaining. The conjecture

was only resolved recently in a breakthrough by Bednorz and Lata la [2].



1296 JINYOUNG PARK and HUY TUAN PHAM

The problem is even harder when ξi are centered Bernoulli-p random

variables (to be contrasted with our focus later on the ordinary nonnega-

tive Bernoulli-p random variables). In the “generalized Bernoulli Conjecture,”

which now is [17, Th. 11.12.1] and whose proof is inspired by work of Bednorz

and Martynek [3], Talagrand showed that suprema of centered Bernoulli pro-

cesses can be described in terms of quantities depending only on the metric

structure of appropriate classes of functions, together with quantities depend-

ing on suprema of processes of the form Zt =
∑M

i=1 ξiti for t : N → R≥0, and ξi
i.i.d. (ordinary) Bernoulli-p random variables. This way, the study of random

sums of functions leads us naturally to positive selector processes, which we

now define formally. Recall that Xp is the random variable whose distribution

is µp. Given a collection Λ of sequences λ = (λi)i∈X , we define the selector

process associated to Λ as the process indexed by Λ whose value at λ is given by

(3) Zλ :=
∑

i∈Xp

λi.

A selector process is positive if λi ≥ 0 for all λ ∈ Λ and i ∈ X.

Next, we motivate the study of positive empirical processes. Given i.i.d.

random variables Y1, . . . , YN distributed according to a Borel probability mea-

sure on a Polish space T, and a class F of functions f : T → R, an empirical

process is a process indexed by F of the form

(4) Zf :=
1

N

∑

i≤N

f(Yi).

We say that an empirical process is positive if the functions f in the class F

are nonnegative. Empirical processes and their suprema form an important

subject in probability theory and have a wide range of applications in com-

puter science, statistics and machine learning [14], [17], [10], [6]. There, one

is often interested in the suprema of the empirical process, supf∈F Zf . While

one is often interested in centered empirical processes, i.e., those indexed by

zero mean functions, by a deep result of Talagrand [17, Th. 6.8.3] (“the fun-

damental theorem of empirical processes”), the supremum of general centered

empirical processes can always be controlled, in a precise sense, by quantities

depending only on the metric structure of an appropriate class of functions,

and the supremum of an appropriate positive empirical process. Thus, the

study of positive empirical processes is key to understanding centered empirical

processes.

As we have discussed in the previous paragraphs, the study of suprema of

centered stochastic processes naturally leads us to the study of their positive

counterpart. While substantial advances in chaining allow us to understand

precisely the reduction from centered processes to positive processes, suprema

of positive processes are much less understood. As Talagrand explains in [17],
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in many cases, we know that “chaining explains all the boundedness due to

cancellation,” but “what could we ask about boundedness of processes where no

cancellation occurs?” Thus, while we have good understanding of the effect of

cancellation on the suprema of stochastic processes, positive processes (where

there is no cancellation to exploit) are much less understood and are essentially

the last missing piece in the picture. In this context, our main theorems address

the task of filling in this missing piece: Theorem 1.2 resolves a conjecture of

Talagrand on large suprema of positive selector processes, one of the questions

in [17, Ch. 13] on “Unfulfilled dreams;” and Theorem 1.3 answers a question

of Talagrand on general positive empirical processes. We point out that our

proof of Theorem 1.3 builds on a close connection between positive empirical

processes and a version of selector process with multiplicities that has been

informally observed in [16].

Roughly speaking, Theorem 1.1 shows that, for a Gaussian process, one

can find simple geometric “witnesses” (half-spaces) that cover the event that

the supremum of the process is large, and the sum of measures of these wit-

nesses is small. In particular, even though it is a simple application of Markov’s

inequality to show that the probability of the event {supt∈T Zt ≥ LE supt∈T Zt}

is small, the simple geometric witnesses provide a much more refined structure

on this event. Similarly, in Theorem 1.2, which is in the setting of positive

selector processes, the role of the half-spaces is replaced by the upsets 〈S〉,

and being p-small is an analog of admitting a cover by half-spaces with small

total measure. The meaning of Theorem 1.3 can also be sketched in a similar

way — it describes explicit “simple” witnesses (half-spaces of the empirical

measure) that cover the tail event of supf Zf . The covering perspective, as

observed by Talagrand [16], also provides striking connections between these

sets of questions and the study of thresholds, specifically the Kahn-Kalai con-

jecture. Building on the insights in the present paper, particularly the notion

of minimum fragment, in [9] we obtain the resolution of the Kahn-Kalai con-

jecture.

Finally, we mention that the “abstract setting” of [16, Conj. 5.7], which is

[15, Prob. 4.2], [16, Conj. 7.1] and [17, Research Prob. 13.3.2], remains open.

Reformulations. We will prove Theorem 1.2 via the slightly more con-

venient equivalent reformulation below. As observed in [16], the following

theorem is equivalent to Theorem 1.2:

Theorem 1.4. There exists L′ > 0 such that the following holds. Con-

sider any 0 < p < 1, any finite set X , and any family F ⊆ 2X . Assume that

for each S ∈ F , we are given a sequence λ
S = (λS(i))i∈X with λS(i) ≥ 0 and

(5)
∑

i∈S

λS(i) ≥ 1.
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Then if F is not p-small, we have

(6) E sup
S∈F

∑

i∈Xp

λS(i) ≥ 1/L′.

Note that we only have supS∈F E
∑

i∈Xp
λS(i) ≥ p, so (6) suggests a non-

trivial phenomenon. The theorem below implies Theorem 1.4. As usual, for

m ≥ 0, we denote by
(X
m

)

the collection of subsets of X of size m.

Theorem 1.5. There exists K > 0 such that the following holds. Con-

sider any 0 < p < 1, any finite set X , and any family F ⊆ 2X . Assume that

for each S ∈ F , we are given a sequence λ
S = (λS(i))i∈S with λS(i) ≥ 0 and

(7)
∑

i∈S

λS(i) ≥ 1.

Suppose F is not p-small. Then, for W chosen uniformly at random from
( X
bK|X|pc

)

, we have

(8) E sup
S∈F

∑

i∈S∩W

λS(i) ≥ 10−11.

The derivation of Theorem 1.2 from Theorem 1.4 can be found in [16]. We

include the simple proof of Theorem 1.4 from Theorem 1.5, and the derivation

of Theorem 1.2 from Theorem 1.4 in Section 2.1 for completeness.

The general weighted setting of Theorems 1.4 and 3.1 (the main results

leading toward Theorems 1.2 and 1.3) poses significant challenges, as one can

anticipate from the statement: while the assumption on F is inherently com-

binatorial, the conclusion applies to general weight functions on the sets in

F . In the simplest unweighted case (where we restrict all S ∈ F to have the

same size s, and λS(i) = 1
s I(i ∈ S)), our proof shares some inspiration with

the argument in [1], [5], [7], and the recent improvement in [9], although in

this special case there are also alternative approaches. In particular, as we

mentioned earlier, in this case (and more generally in the special case where

the class of functions consists of {0, 1}-valued functions), Talagrand [15] gave

a nice proof using a second moment argument. The treatment of the general

weighted setting (where we place no restriction on S ∈ F and λS) requires a

different set of ideas.

Firstly we work with elements at different dyadic scales, and one impor-

tant idea is to choose to work with only certain “informative” scales. Secondly,

a major difficulty of the general setting is that the weight of an element can

vary with the set S ∈ F . In order to address this problem, we need a much

more delicate and involved notion of fragments (Definition 2.3), as well as the

associated notion of minimum fragment and its analysis. The use of minimum

fragment (associated to a simple notion of fragment), inspired by the present



ON A CONJECTURE OF TALAGRAND ON SELECTOR PROCESSES 1299

work, is crucial in our recent resolution of the Kahn-Kalai conjecture [9]. We

note that, whereas it is possible to establish the fractional version of the Kahn-

Kalai conjecture without the idea of minimum fragment, it remains critical in

our proof even if one only wants to establish the weaker fractional version of

Theorem 1.2 ([16, Conj. 6.8]). In particular, the main difficulty of weight func-

tions changing with S ∈ F remains in the fractional version of Theorem 1.2,

and the full strength and flexibility of our generalized notion of fragment and

minimum fragment is required to handle this problem, which is how we arrive

at these notions.

As discussed later in Section 3, proving Theorem 1.3, especially in the

general case where we do not impose that the underlying distribution ν is

continuous, requires more ideas. In particular, we will need a version of The-

orem 1.2 with multiplicities, Theorem 3.1, which itself admits an equivalent

reformulation, Theorem 3.3. We emphasize that the core principles behind the

proof of these results are the same as those behind the proof of Theorem 1.2.

Organization. The core part of the paper, the proof of Theorem 1.5, is

contained in Section 2. The proof of Theorem 1.3 is given in Section 3, building

on a version of Theorem 1.5 with multiplicities, Theorem 3.3. In the course,

we have made no attempt to optimize absolute constants. Logarithms are in

base e unless otherwise specified.

2. Proof of Theorem 1.2

2.1. Reductions between Theorems 1.2, 1.4 and 1.5. In this section, we

give short reductions from Theorem 1.2 to Theorems 1.4 and 1.5.

The next derivation can be found in [16] for the “weakly p-small” version

of Theorem 1.2.

Proof of Theorem 1.2 from Theorem 1.4. Consider a collection Λ of se-

quences λ = (λi)i∈X with λi ≥ 0, and with L to be determined, consider

the collection

G :=







S ⊆ X : sup
λ∈Λ

∑

i∈S

λi ≥ LE sup
λ∈Λ

∑

i∈Xp

λi







.

By definition of G, for each S ∈ G, there is (τS(i))i∈X ∈ Λ for which

(9)
∑

i∈S

τS(i) ≥ LE sup
λ∈Λ

∑

i∈Xp

λi.

Now for each S ∈ G, define λ
S :

λS(i) =

{

τS(i) if i ∈ S,

0 otherwise.
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Thus, for any Y ⊆ X, we have

sup
λ∈Λ

∑

i∈Y

λi ≥
∑

i∈Y

τS(i) ≥
∑

i∈Y

λS(i)

and, hence, in particular

(10) E sup
λ∈Λ

∑

i∈Xp

λi ≥ E sup
S∈G

∑

i∈Xp

λS(i).

Assume for contradiction that G is not p-small. Then by (9) and Theorem 1.4,

we have

E sup
S∈G

∑

i∈Xp

λS(i) ≥ (L/L′)E sup
λ∈Λ

∑

i∈Xp

λi.

Combining with (10), we have

E sup
λ∈Λ

∑

i∈Xp

λi ≥ (L/L′)E sup
λ∈Λ

∑

i∈Xp

λi.

This is a contradiction for L > L′. �

Proof of Theorem 1.4 from Theorem 1.5. Note that if F is not p-small,

then |X|p ≥ 1/2 (since {{x} : x ∈ X} covers F). With N := max{b|X|pc, 1},

let W′ be chosen uniformly at random from
(X
N

)

. Then with ζ := N/bK|X|pc,

we can think of choosing W′ as choosing W first and then picking a ζ-fraction

of it. We consider two cases.

If |X|p ≥ 1, then using the facts that ζ ≥ 1/(2K) and that P(|Xp| ≥

b|X|pc) ≥ 1/2 (see [8]),

E sup
S∈F

∑

i∈Xp

λS(i) ≥
1

2
E sup

S∈F

∑

i∈S∩W′

λS(i) ≥
1

4K
E sup

S∈F

∑

i∈S∩W

λS(i) ≥
1

4 · 1011K
.

If 1/2 ≤ |X|p < 1, then using the facts that ζ ≥ 1/K and that P(|Xp| ≥ 1)

≥ 1 − (1 − p)|X| ≥ 1 − e−1/2 > 1/4,

E sup
S∈F

∑

i∈Xp

λS(i) ≥
1

4
E sup

S∈F

∑

i∈S∩W′

λS(i) ≥
1

4K
E sup

S∈F

∑

i∈S∩W

λS(i) ≥
1

4 · 1011K
.

Now, Theorem 1.4 follows by letting L′ = 4 · 1011K. �

2.2. Proof of Theorem 1.5. Given the previous reductions, the key step

in the proof of Theorem 1.2 is the proof of Theorem 1.5, which is the focus of

this section and the key result in the paper containing the main insights.

In this section, p,X,F , and λ
S are as in Theorem 1.5, and K, a universal

constant, is chosen sufficiently large to support our proof. We use n for |X|,

and J and w are quantities that satisfy

bKnpc = Jnp = w;
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S, S′, S′′ and Ŝ represent members of F , and W ∈
(X
w

)

. Finally, for m ∈ Z
+,

[m] denotes {0, 1, . . . ,m}.

We say W is good if

max
S∈F

∑

i∈S∩W

λS(i) ≥ 10−10,

and bad otherwise. Note that (8) follows if a (1/10)-fraction of
(X
w

)

is good.

Therefore, to prove Theorem 1.5, it suffices to show that

(11) if a (9/10)-fraction of
(X
w

)

is bad,

then

(12) F is p-small.

Before getting to the details of the proof, we first give an informal de-

scription of our overall strategy. Roughly speaking, a family F is p-small if

F admits a “cheap” cover, where being cheap refers to the condition in (2).

In order to derive (12), we will first construct a cover of F , where the cover,

U = U(W ), depends on the choice of W . We will show that the overall cost

of the covers among bad W ’s is small, from which, combined with (11), the

existence of a cheap cover is guaranteed.

We first need some pre-processing steps on the weights λS .

Observation 2.1. Let τ = blog100 nc + 2. It is sufficient to prove Theo-

rem 1.5 assuming that, for all S ∈ F and i ∈ X,

(13) λS(i) = 100−j for some j ∈ {0, 1, 2, . . . , τ},

with (7) weakened to

(14)
∑

i∈S

λS(i) ≥ 100−2.

Justification. We may first assume that

(15) λS(i) ≤ 1 for all S and i,

by capping larger weights at 1. Under this assumption, for each S, let

Sj = {i ∈ S : λS(i) ∈ [100−j , 100−j+1)} (j = 0, 1, 2, . . .).

By replacing the weights of elements in Sj with 100−j , we can assume that

λS(i) = 100−j for all i ∈ Sj with (7) weakened to
∑

i∈S λS(i) ≥ 1/100. Finally,

note that
∑

j>τ

λS(Sj) ≤ |S|10−(τ+1) ≤ n100− log100 n−2 = 100−2.

Thus, by removing elements in Sj for f > τ , we can assume that Sj = ∅ for

all j > τ with (7) weakened to
∑

i∈S λS(i) ≥ 100−2. �
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From now on, we assume (13). For S ∈ F , we write sj for |Sj | and define

the profile of S to be s = s(S) = (s0, . . . , sτ ). In Observation 2.2 below, we

use the trivial fact that

(16)
a family F = {S1, S2, . . .} is p-small if F ′ = {S′

1, S
′
2, . . .}

is p-small and Si ⊇ S′
i ∀i.

Observation 2.2. It is sufficient to prove Theorem 1.5 assuming that for

all S ∈ F , in addition to (13), for each j ∈ [τ ], either sj = 0 or

(17) 100j/(1004(j + 1)2) ≤ sj < 2 · 100j ; and

(18) sj is a power of 100

with (14) weakened to

(19)
∑

i∈S

λS(i) ≥ 100−4.

Justification. First, we can greedily remove elements from each S until

λS(S) < 2. (Note that we have (15) under (13).) This gives the upper bound

in (17) since 2 > λS(S) =
∑

sj100−j .

Next, for each S and j, remove all elements in Sj for which

sj < 100j/(1004(j + 1)2).

This process reduces the weight of S by at most
∑

j≥0

100j/(1004(j + 1)2) · 100−j < 100−3.

Finally, for each j with |Sj | > 0, remove elements from Sj to round |Sj | to

the largest power of 100 that is at most |Sj |. The weight of Sj remains at least

a 1/100 fraction of its weight before removal of elements, yielding (19). �

We say s = (s0, s1, . . . , sτ ) is a legal profile if each nonzero sj ∈ s satisfies

(20) max{1, 100j/(1004(j + 1)2)} ≤ sj < 2 · 100j

and

(21) sj is a power of 100.

We will also need the notion of a partial legal profile sb := (sj : j ≤ b), in

which each nonzero sj satisfies (20) and (21). Given s or sb, we use Fs for

the collection of S’s whose profile is s, and Fsb
for the collection of S’s whose

partial profile is sb. Note that if s restricted on {j ≤ b} is sb, then Fs ⊆ Fsb
.

The following definition is a key notion in our proof.



ON A CONJECTURE OF TALAGRAND ON SELECTOR PROCESSES 1303

Definition 2.3. Given S∈Fs and W ∈
(X
w

)

, we say U ⊆ S\W is an (S,W )-

fragment (with index b) if the following holds: there are b∈{−1, 0, . . . , τ} and

S′ ∈ Fsb
such that

S′
j ⊆ W ∪ U ∀j ≤ b,(22)

∑

j≥b+1

λS′

(S′
j∩(W ∪ U))≥ .01





∑

j≥b+1

λS′

(S′
j) − 100−b

Ñ

∑

j≤b

sj − |U |

é

.(23)

For example, S \W is an (S,W )-fragment with index τ .

Remark 2.4. A similar notion of fragment is used in [1], [5], [7] and in

the recent resolution of the Kahn–Kalai conjecture [9], in which the definition

of fragment is much simpler. The more delicate definition of fragment, as in

Definition 2.3, is crucial for the current setting of Theorem 1.5.

Given S and W , we denote by T = T (S,W ) the minimum (S,W )-

fragment, where here minimum refers to the index b first (breaking ties ar-

bitrarily), and then |T | (again, breaking ties arbitrarily). We use t = t(S,W )

for |T (S,W )|. For any pair (S,W ), its minimum fragment T and the corre-

sponding index bT = b(S,W ) are uniquely determined.

The following definition will be crucial in the construction of U(W ), a

cover of F .

Definition 2.5. Given Z ⊆ X, b ∈ [τ ], t ≥ 0, and a partial profile sb, we

say S′ ∈ Fsb
is (Z, b, sb, t)-feasible if

S′
j ⊆ Z ∀j ≤ b,(24)

∑

j≥b+1

λS′

(S′
j ∩ Z) ≥ .01





∑

j≥b+1

λS′

(S′
j) − 100−b

Ñ

∑

j≤b

sj − t

é

 .(25)

The definitions of minimum fragment and feasibility are closely related,

as shown in Propositions 2.6 and 2.7.

Proposition 2.6. Let S ∈ Fs. Let T be the minimum (S,W )-fragment

with index bT , and t = |T |. If S′ is (W ∪ T, bT , sbT , t)-feasible, then

(26) (
⋃

j≤bT

S′
j) \W = T.

Proof. Note that, by the definition of feasibility, S′ satisfies (22) and (23)

with U = T and b = bT ; that (
⋃

j≤bT
S′
j) \W ⊆ T follows from this definition.

To show T ⊆
⋃

j≤bT
S′
j , first observe that by minimality of |T |, T ⊆ S′. Indeed,

if x ∈ T \S′, then replacing T by T \{x}, one can check that S′ still satisfies (22)
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and (23). Suppose there is x ∈ T ∩ S′
j0

for some j0 ≥ bT + 1. Note that

(27) λS′

(x) ≤ 100−(bT+1).

Then T ′ := T \ {x} is an (S,W )-fragment, since S′ trivially satisfies (22), and
∑

j≥bT+1

λS′

(S′
j ∩ (W ∪ T ′))

≥
∑

j≥bT+1

λS′

(S′
j ∩ (W ∪ T )) − λS′

(x)

(25),(27)

≥ .01





∑

j≥bT+1

λS′

(S′
j) − 100−bT

Ñ

∑

j≤bT

sj − |T |

é

− 100−bT





= .01





∑

j≥bT+1

λS′

(S′
j) − 100−bT

Ñ

∑

j≤bT

sj − |T ′|

é

 .

This contradicts the minimality of T . �

Proposition 2.7. Let S ∈ Fs. Let T be the minimum (S,W )-fragment

with index bT , and t = |T |. If S′ is (W ∪ T, bT , sbT , t)-feasible, then

(28) t ≥ .9
∑

j≤bT

sj .

Proof. Let Tj = S′
j ∩ T and tj = |Tj | (so t =

∑

j≤b tj by Proposition 2.6).

We will prove the proposition by contradiction, showing that the failure of (28)

violates the minimality of T .

First observe that, if we assume t < .9
∑

j≤bT
sj , then there exists b′ ≤ bT

such that

(29)
∑

b′≤j≤bT

tj100−j < .9
∑

b′≤j≤bT

sj100−j .

Indeed, if (ub′ :=)
∑

b′≤j≤bT
100−j(tj − .9sj) ≥ 0 for all b′ ≤ bT , then

∑

j≤bT

(tj − .9sj) =
∑

i≤bT−1

100i(ui − ui+1) + 100bT ubT

=

bT
∑

i=1

(100i − 100i−1)ui + u0 ≥ 0.

Note that (29) gives, by Proposition 2.6,

(30)
∑

b′≤j≤bT

λS′

(S′
j ∩W ) ≥ .1

∑

b′≤j≤bT

λS′

(S′
j).
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Now we claim that

(31) T ′ :=
⋃

j≤b′−1 Tj is an (S,W )-fragment with index b′ − 1,

which contradicts the minimality of T .

Proof of (31). It is clear that S′ satisfies property (22). For (23),
∑

j≥b′

λS′

(S′
j ∩ (W ∪ T ′))

(26)
=

∑

j≥bT+1

λS′

(S′
j ∩ (W ∪ T )) +

∑

b′≤j≤bT

λS′

(S′
j ∩W )

(23),(30)

≥ .01





∑

j≥bT+1

λS′

(S′
j) − 100−bT

Ñ

∑

j≤bT

sj − t

é

+ .1
∑

b′≤j≤bT

λS′

(S′
j)

= .01
∑

j≥b′

λS′

(S′
j) − 100−(bT+1)

Ñ

∑

j≤bT

sj − t

é

+ .09
∑

b′≤j≤bT

sj100−j

(†)

≥ .01





∑

j≥b′

λS′

(S′
j) − 100−(b′−1)

Ñ

∑

j≤b′−1

sj − t′

é

 ,

where (†) follows from the inequalities

.09
∑

b′≤j≤bT

sj100−j ≥ 100−(bT+1)
∑

b′≤j≤bT

sj

and

(100−b′ − 100−(bT+1))
∑

j≤b′−1

sj
(26)

≥ (100−b′ − 100−(bT+1))t′

≥ 100−b′t′ − 100−(bT+1)t. �

This completes the proof of the proposition. �

Proposition 2.8. If W is bad, then for any S, we have bT ≥ 0.

Proof. If bT = −1, then by Proposition 2.6 we have T = ∅. Then by (23),

there is S′ for which

λS′

(S′ ∩W ) ≥ .01λS′

(S′) ≥ 10−10,

which contradicts the fact that W is bad. �

Now we construct U(W ), the promised cover of F . The following con-

struction is valid for all W ∈
(X
w

)

, but in the end we will be interested only in

bad W ’s.
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For W ∈
(X
w

)

, define U = U(W ) to be

U(W ) := {T (S,W ) : S ∈ F} .

Note that U(W ) covers F since T (S,W ) ⊆ S for each S ∈ F .

The following lemma shows that if we only consider bad W ’s, then the

overall cost (in (2)) for the covers is cheap. Recall that n = |X| and w = Jnp.

Lemma 2.9. We have

∑

W bad

∑

U∈U(W )

p|U | ≤ J−c

Ç

n

w

å

for some constant c > 0.

Note that Lemma 2.9, combined with (11), implies that there is a bad W

for which
∑

U∈U(W )

p|U | ≤ (10/9)J−c < 1/2.

This gives (12) and thus concludes the proof of Theorem 1.5.

Proof of Lemma 2.9. Let a bad W be given. For each b, a legal partial

profile sb and t ≥ 0, let

GW (sb, t) = {S : S ∈ Fsb
, t(S,W ) = t, b(S,W ) = b}

and

UW (sb, t) = {T (S,W ) : S ∈ GW (sb, t)}.

Then with nb :=
∑

j≤b sj for given sb, we have

(32)
∑

W bad

∑

U∈U(W )

p|U | ≤
∑

b≥0

∑

sb legal

∑

.9nb≤t≤nb

∑

W bad

∑

U∈UW (sb,t)

p|U |,

noting that the range b ≥ 0 follows from Proposition 2.8, and the range of t is

from Propositions 2.6 and 2.7.

Given b ≥ 0, sb and t, we bound
∑

W bad

∑

U∈UW (sb,t)
p|U | as follows:

Step 1. Pick Z := W ∪T . Since |Z| = w+t (note W and T are always disjoint),

the number of possibilities for Z is at most (recalling w = Jpn)
Ç

n

w + t

å

=

Ç

n

w

å

·
t−1
∏

j=0

n− w − j

w + j + 1
≤

Ç

n

w

å

(Jp)−t.

Step 2. Given Z, by the definition of fragment, there must exist a choice of

(Z, b, sb, t)-feasible Ŝ. Make a choice of Ŝ (arbitrarily) such that it only

depends on Z. Then Proposition 2.6 enables us to specify T as a subset

of
⋃

j≤b Ŝj , whose number of possibilities is at most 2nb .
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Therefore, the right-hand side of (32) is at most

∑

b≥0

∑

sb legal

∑

.9nb≤t≤nb

∑

W bad

∑

U∈UW (sb,t)

pt ≤
∑

b≥0

∑

sb legal

∑

.9nb≤t≤nb

Ç

n

w

å

J−t2nb

≤

Ç

n

w

å

∑

b≥0

∑

sb legal

(J/4)−.9nb .

Notice that, by (20) and (21), the number of possibilities for legal sb is at most
∏

j≤b

log100(2 · 1004(j + 1)2).

On the other hand, using the lower bound on sj in (20),

nb ≥
∑

j≤b

max{1, 100j/(1004(j + 1)2)}.

Therefore, with

(33) aj := log100[2 · 1004(j + 1)2] · (J/4)−.9max{1,100j/(1004(j+1)2)},

we have

∑

b≥0

∑

sb legal

(J/4)−.9nb ≤
∏

j∈[τ ]

(1 + aj) − 1 ≤ exp

Ñ

∑

j∈[τ ]

aj

é

− 1 ≤ J−c

for some positive constant c, assuming that J is chosen sufficiently large. �

3. Proof of Theorem 1.3

3.1. A version of Theorem 1.2 with multiplicities. As a key tool in the

proof of Theorem 1.3, we need a version of Theorem 1.2 for multisets. Given

a finite set X, a multiset over X is a function m : X → N0 (so m(i) is the

“multiplicity” of i ∈ X). Let M(X) denote the collection of multisets over X.

The size of a multiset is given by |m| :=
∑

i∈X m(i). Let MN (X) be the

collection of multisets over X of size N . For multisets S and T , we say that T

is a subset of S and denote T ⊆ S if T (x) ≤ S(x) for all x. Given a collection F

of multisets over X, we say that G is a cover of F if for every S ∈ F , there exists

T ∈ G satisfying T ⊆ S. Given two multisets S and T , we define the union

S ∨ T as the multiset with (S ∨ T )(i) = max(S(i), T (i)) and the intersection

S ∧ T as the multiset with (S ∧ T )(i) = min(S(i), T (i)). We also define the

disjoint union S + T as the multiset with (S + T )(i) = S(i) + T (i), and the

set difference S \ T as the multiset with (S \ T )(i) = max(S(i) − T (i), 0). For

an element x ∈ X and a multiset S ∈ M(X), we say that x ∈ S if S(x) > 0

and x /∈ S if S(x) = 0.
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We next give an overview of our proof of Theorem 1.3, which requires

several additional ideas. First, we need the following multiset and weighted

generalization of Theorem 1.2.

Theorem 3.1. There exist L > 0 with the following property. Consider

any finite set X , and any collection Λ of sequences λ = (λi)i∈X with λi ≥ 0.

Let µ : X → R≥0 be a probability measure on X . Let N be a positive integer.

Let W be a random multiset of size N over X where for each multiset W of

size N ,

P[W = W ] = N !
∏

x∈X

µ(x)W (x)

W (x)!
.

Then the family

(34)

{

S ∈ M(X) : sup
λ∈Λ

∑

i∈X

S(i)λi ≥ LE sup
λ∈Λ

∑

i∈X

W(i)λi

}

admits a cover G with

(35)
∑

G∈G

∏

x∈X

(eNµ(x))G(x)

G(x)!
≤ 1/2.

Note that for any positive integer N , the random multiset W induced by

N independent samples from µ has distribution

P[W = W ] = N !
∏

x∈X

µ(x)W (x)

W (x)!
.

In particular, for any positive integer N , the above distribution is a valid

probability distribution.

In the next subsection, we discuss the reduction of Theorem 1.3 to The-

orem 3.1. We first replace the distribution ν underlying the empirical process

by an appropriate distribution µ over a finite set. For an appropriate large

integer P , we partition the Polish space T into subsets B1, . . . , BP such that

for each function f ∈ F , f is approximately constant on each set. We then

define the measure µ by setting µ(h) = ν(Bh) for each h ∈ [P ]. For each

function in F , we construct a sequence λ on [P ] by choosing an arbitrary el-

ement xh ∈ Bh and set λ(h) = f(xh). Let Λ be the collection of sequences λ

corresponding to functions f ∈ F .

To illustrate the connection to selector processes, observe that in the case

ν is continuous, i.e., ν({x}) = 0 for any x ∈ T, we can guarantee a partition

as above in which µ(h) ∈ [1/(2P ), 1/P ] for all h. In this case, the empirical

process given by N independent samples of ν is closely connected to the selector

process on [P ] with parameter p = N/P indexed by Λ. In a previous version

of this paper, we give a proof of this special case following a simplified version

of our strategy for Theorem 1.3 utilizing multisets. The follow-up work of

Bednorz, Martynek and Meller [4] shows that this case can be treated without
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resorting to multiset generalization. In particular, in this case, one observes

that for P large a small cover can be constructed for the small probability

event that an element appears more than once in N samples of µ.

In the general case where ν has atoms, this observation no longer holds:

repeated appearance of elements in samples from ν is no longer a rare event.

Multisets arise and as such, the multiset generalization (Theorem 3.1) of Theo-

rem 1.2 is natural in this context. We prove Theorem 1.3 via the discretization

of ν into µ and translate the desired conclusion into the multiset covering in

Theorem 3.1. We emphasize that this entire plan presents no additional con-

ceptual difficulty. Indeed, we shall present the entire proof of Theorem 3.1 in

parallel with the proof of Theorem 1.5. One shall see that the only difference

is the bookkeeping of combinatorial factors that arise due to the atomic nature

of ν.

As will be evident in the proof of Theorem 1.3 from Theorem 3.1, it suffices

in (34) to consider only multisets S ∈ MN (X) of fixed size N . However, it

turns out that it is not important to keep track of this restriction, and in fact,

in proving Theorem 3.1, we will go through Theorem 3.3, which works instead

with random multisets of size KN for an appropriate constant K. Thus, we

find it more convenient and general to work with S ∈ M(X) in (34).

In Section 3.2, we prove Theorem 1.3 assuming Theorem 3.1, which re-

quires careful construction of events Eg,t in Theorem 1.3 from the cover G in

Theorem 3.1. Finally, in Section 3.3, we give the full details of the proof of

Theorem 3.1, which follows along the line of the proof of Theorem 1.5.

3.2. Proof of Theorem 1.3 assuming Theorem 3.1. Since E[supf∈F Zf ] ∈

(0,∞), by renormalizing, we can assume that

(36) E[sup
f∈F

Zf ] = 1.

Let ε > 0 be sufficiently small. Let F = {f1, . . . , fM}.

Let U = maxi≤M sup fi, and note from (36) that U ≥ 1. Partition T into

sets of the form I(k1, . . . , kM ) :=
⋂M

i=1 f
−1
i ([kiε, (ki+1)ε)), where ki ∈ [0, bU/εc]

are integers. Define a new probability distribution µ on Ω := {(k1, . . . , kM ) :

ki ∈ [0, bU/εc]} with µ(k1, . . . , kM ) = ν(I(k1, . . . , kM )) and define X1, . . . , XN

as independent samples from the distribution µ. For each i ∈ [M ], define

λi : Ω → R≥0 by λi(k1, . . . , kM ) = kiε, and let Λ = {λi : i ∈ [M ]}. Note that

for each y ∈ I(k1, . . . , kM ),

(37) |fi(y) − λi(k1, . . . , kM )| ≤ ε.

Given independent samples X1, . . . , XN from µ, the multiset given by

X1, . . . , XN is a multiset W of size N with distribution

P[W = W ] = N !
∏

x∈Ω

µ(x)W (x)

W (x)!
.
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By Theorem 3.1, we can find a collection G ⊆ M(Ω) with

(38)
∑

G∈G

∏

x∈Ω

(eNµ(x))G(x)

G(x)!
≤ 1/2,

and furthermore G covers

(39)

{

S ∈ M(Ω) : sup
λ∈Λ

∑

x∈Ω

S(x)λx ≥ LE sup
λ∈Λ

∑

x∈Ω

W(x)λx

}

.

Notice that (eNµ(x))G(x)

G(x)! ≥
Ä

eNµ(x)
G(x)

äG(x)
. As such, by removing elements x ∈ G

in which Nµ(x)/G(x) > 1 from each G ∈ G (after which G remains a cover of

(39) and the left-hand side of (38) decreases), we can assume without loss of

generality that

(40) Nµ(x)/G(x) ≤ 1 for all G ∈ G and x ∈ G.

For each G ∈ G, let g̃G : Ω → R be the function g̃G(x) = log(Nµ(x)/G(x))

for x ∈ G and g̃G(x) = 0 otherwise. Let t̃G =
∑

x∈GG(x) log(Nµ(x)/G(x)).

Then, using (40), for any (X1, . . . , XN ) for which the corresponding multiset

W contains G, we have that

∏

i:Xi∈G

Nµ(Xi)

G(Xi)
=
∏

x∈G

Å

Nµ(x)

G(x)

ãW (x)

≤
∏

x∈G

Å

Nµ(x)

G(x)

ãG(x)

,

so (X1, . . . , XN ) is contained in the event

(41) Hg̃G,t̃G
=

{

N
∑

i=1

g̃G(Xi) ≤ t̃G

}

.

We compute

E

[

exp

(

−
N
∑

i=1

g̃G(Xi)

)]

= (E [exp(−g̃G(X1))])
N

=

(

∑

x∈G

µ(x)
G(x)

Nµ(x)
+
∑

x/∈G

µ(x)

)N

≤ (1 + |G|/N)N .

(42)

Note that −g̃G(x) ≥ 0 for all x. Hence, by Markov’s inequality and (42),

P[Hg̃G,t̃G
] = P

[

exp

(

−
N
∑

i=1

g̃G(Xi)

)

≥ exp(−t̃G)

]

≤ exp(t̃G)(1 + |G|/N)N

= (1 + |G|/N)N
∏

x∈G

Å

Nµ(x)

G(x)

ãG(x)

.

(43)
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We also have N log(1 + |G|/N) ≤ |G|, and thus

P[Hg̃G,t̃G
] ≤ (1 + |G|/N)N

∏

x∈G

Å

Nµ(x)

G(x)

ãG(x)

≤
∏

x∈G

eG(x)

Å

Nµ(x)

G(x)

ãG(x)

≤
∏

x∈G

(eNµ(x))G(x)

G(x)!
,

(44)

where in the last inequality we use the estimate G(x)! ≤ G(x)G(x).

From (44) and (35), we have

(45)
∑

G∈G

P[Hg̃G,t̃G
] ≤ 1/2.

Finally, for y ∈ T, define π : T → Ω by π(y) = (k1, . . . , kM ) for y ∈

I(k1, . . . , kM ). Observe that for independent samples (Y1, . . . , YN ) from ν,

defining Xj = π(Yj) for j ∈ [N ] and W the multiset given by X1, . . . , XN ,

then (X1, . . . , XN ) are independent samples from µ. Furthermore, by (37), for

all i ∈ [M ],
∣

∣

∣

∣

∣

Zfi(Y1, . . . , YN ) −
1

N

∑

x∈Ω

W(x)λi(x)

∣

∣

∣

∣

∣

≤ ε

and
∣

∣

∣

∣

∣

E

ñ

sup
i∈[M ]

Zfi(Y1, . . . , YN )

ô

−
1

N
E

[

sup
i∈[M ]

∑

x∈Ω

W(x)λi(x)

]∣

∣

∣

∣

∣

≤ ε.

As such, assuming that supf∈F Zf (Y1, . . . , YN )≥2LE supf∈F Zf , recalling (36),

for ε sufficiently small, we have that W is contained in (39) and hence covered

by G. Thus, by (41),
®

sup
f∈F

Zf ≥ 2LE sup
f∈F

Zf

´

⊆
⋃

G∈G

π−1(Hg̃G,t̃G
).

Noting that π−1(Hg̃G,t̃G
) is exactly the same as the event Eg,t for g = −Ng̃G◦π

and t = −t̃G for each G ∈ G, this yields Theorem 1.3 (upon modifying the value

of the constant L).

Remark 3.2. Theorem 3.1 also directly implies the following statement.

For any c > 0, there exists L > 0 such that the following holds. We say

that a subset of T
k is symmetric if it is invariant under coordinate permu-

tations. For each k ≥ 1, there exists a symmetric set Vk ⊆ T
k such that,

if (Y1, . . . , YN ) is contained in the event
{

supf∈F Zf ≥ LE supf∈F Zf

}

, then

there exists i1 < · · · < ik such that (Yi1 , . . . , Yik) ∈ Vk. Furthermore, for each

k ≥ 1, P ((Y1, . . . , Yk) ∈ Vk) ≤ 1
2(ck/N)k.
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In particular, the above statement follows from Theorem 3.1 by taking

Vk =
⋃

G∈G,|G|=k Vk(G), where Vk(G) is the collection of tuples (y1, . . . , yk)∈T
k

whose corresponding multiset is equal to G.

This implies (a stronger version of) the result in [15] on positive empir-

ical processes in the special case where the class of functions only involves

indicator functions of sets, and generalizes this result to the setting of general

nonnegative functions.

3.3. Proof of Theorem 3.1. Theorem 3.1 follows from Theorem 3.3 below.

Theorem 3.3. There exist a positive integer K with the following prop-

erty. Consider any finite set X and any family of multisets F ⊆ M(X). Let

µ : X → R≥0 be a probability measure on X . Let N be a positive integer. Let W

be a random multiset of size KN over X where for each multiset W of size KN ,

P[W = W ] = (KN)!
∏

x∈X

µ(x)W (x)

W (x)!
.

Assume that for each S ∈ F we are given a sequence λ
S = (λS(i))i∈X

with λS(i) ≥ 0 and

(46)
∑

i∈X

S(i)λS(i) ≥ 1.

Then if there is no cover G for F with

∑

G∈G

∏

x∈X

(eNµ(x))G(x)

G(x)!
≤ 1/2,

we have

(47) E sup
S∈F

∑

i∈X

W(i)λS(i) ≥ 10−11.

Proof of Theorem 3.1 from Theorem 3.3. Under the assumptions in The-

orem 3.3, a random multiset W̃ over X of size KN with distribution

P[W̃ = W ] = (KN)!
∏

x∈X

(µ(x))W (x)

W (x)!

satisfies

E sup
S∈F

∑

i∈X

W̃(i)λS(i) ≥ 10−11.

Let W be a random multiset of size N with distribution

P[W = W ] = N !
∏

x∈X

(µ(x))W (x)

W (x)!
.

Note that W̃ has the distribution of a multiset induced by a tuple of KN

independent samples from µ, and W has the distribution of a multiset induced
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by a tuple of N independent samples from µ. Hence, we have

(48) E sup
S∈F

∑

i∈X

W(i)λS(i) ≥
N

KN
E sup

S∈F

∑

i∈X

W̃(i)λS(i) ≥
1

K
· 10−11.

Theorem 3.1 then follows as in the proof of Theorem 1.2 from Theorem 1.4.

In particular, letting

F =

{

S ∈ M(X) : sup
λ∈Λ

∑

i∈X

S(i)λi ≥ LE sup
λ∈Λ

∑

i∈X

W(i)λi

}

,

for each S ∈ F , there is (τS(i))i∈X ∈ Λ with

(49)
∑

i∈X

S(i)τS(i) ≥ LE sup
λ∈Λ

∑

i∈X

W(i)λi.

Define λ
S by λS(i) = τS(i) if i ∈ S and λS(i) = 0 otherwise. Then

(50) E sup
λ∈Λ

∑

i∈X

W(i)λi ≥ E sup
S∈F

∑

i∈X

W(i)λS(i).

However, assume for the sake of contradiction that F does not admit a cover

satisfying (35). Then by (49) and (48),

(51) E sup
S∈F

∑

i∈X

W(i)λS(i) ≥
1

K
10−11LE sup

λ∈Λ

∑

i∈X

W(i)λi.

For L sufficiently large, (50) and (51) yield the desired contradiction. �

The proof of Theorem 3.3 follows along the main ideas behind the proof

of Theorem 1.5. Below we give the full details to make transparent the parallel

with the proof of Theorem 1.5. We emphasize that only direct adaptations are

needed and there is no conceptual difficulty in following the argument upon

having the proof of Theorem 1.5.

We follow the definitions in Section 3.1. In the following, denote M = KN ,

and note that S, S′, Ŝ are always elements of F . We say that W ∈ MM (X) is

good if maxS∈F
∑

iW (i)λS(i) ≥ 10−10, and bad otherwise.

By the same processing steps as in Section 2 (Observations 2.1 and 2.2),

we can assume that λS(i) = 100−j for some j ∈ N0, with the right-hand side

of (46) weakened to 100−1. Denote by Sj the sub-multiset of S consisting of

all the elements i with λS(i) = 100−j . Let sj = |Sj |. Then we can assume

that for each j ∈ N0, either sj = 0 or 100j−4/(j + 1)2 ≤ sj < 2 · 100j and sj
is a power of 100, with the right-hand side of (46) weakened to 100−3. Let

τ = max{j : sj 6= 0}. Note that τ < ∞ since F is finite. The following

definition is a straightforward generalization of Definition 2.3 to the multiset

case.
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Definition 3.4. Given S ∈ Fs and W ∈ MM (X), we say U ⊆ S \ W

is an (S,W )-fragment (with index b) if the following holds: there are b ∈

{−1, 0, . . . , τ} and S′ ∈ Fsb
such that

S′
j ⊆ W + U ∀j ≤ b,(52)

∑

j≥b+1

λS′

(S′
j ∧ (W +U)) ≥ .01





∑

j≥b+1

λS′

(S′
j)−100−b

Ñ

∑

j≤b

sj − |U |

é

.(53)

Given S and W , we denote by T = T (S,W ) the minimum (S,W )-

fragment, where here minimum refers to the index b first (breaking ties ar-

bitrarily), and then |T | (again, breaking ties arbitrarily). We use t = t(S,W )

for |T (S,W )|. For any pair (S,W ), its minimum fragment T and the corre-

sponding index bT = b(S,W ) are uniquely determined.

Definition 2.5 can be directly adapted to the current setting.

Definition 3.5. Given Z ∈ M(X), b ∈ [τ ], t ≥ 0, and a partial profile sb,

we say S′ ∈ Fsb
is (Z, b, sb, t)-feasible if

S′
j ⊆ Z ∀j ≤ b,(54)

∑

j≥b+1

λS′

(S′
j ∧ Z) ≥ .01





∑

j≥b+1

λS′

(S′
j) − 100−b

Ñ

∑

j≤b

sj − t

é

 .(55)

The following propositions generalize Propositions 2.6, 2.7 and 2.8. Their

proofs are direct adaptations of the proofs in Section 2 with little changes. We

have included the details for completeness.

Proposition 3.6. For S ∈ Fs, let T be the minimum (S,W )-fragment

with index bT , and let t = |T |. If S′ is (W + T, bT , sbT , t)-feasible, then

(56)

Ñ

∨

j≤bT

S′
j

é

\W = T.

Proof. Note that, by the definition of feasibility, S′ satisfies (52) and (53)

with U = T and b = bT ; that (
∨

j≤bT
S′
j) \W ⊆ T follows from this definition.

To show T ⊆ (
∨

j≤bT
S′
j) \ W , first observe that by minimality of |T |,

T ⊆ S′ \ W . Indeed, if x ∈ T \ (S′ \ W ), then replacing T by T \ {x}, one

can check that S′ still satisfies (52) and (53). Suppose there is x ∈ T ∧ S′
j0

for

some j0 ≥ bT + 1. Note that

(57) λS′

(x) ≤ 100−(bT+1).
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Then T ′ := T \ {x} is an (S,W )-fragment, since S′ trivially satisfies (52), and
∑

j≥bT+1

λS′

(S′
j ∧ (W + T ′))

≥
∑

j≥bT+1

λS′

(S′
j ∧ (W + T )) − λS′

(x)

(55),(57)

≥ .01





∑

j≥bT+1

λS′

(S′
j) − 100−bT

Ñ

∑

j≤bT

sj − |T |

é

− 100−bT





= .01





∑

j≥bT+1

λS′

(S′
j) − 100−bT

Ñ

∑

j≤bT

sj − |T ′|

é

 .

This contradicts the minimality of T . �

Proposition 3.7. For S ∈ Fs, let T be the minimum (S,W )-fragment

with index bT , and let t = |T |. If S′ is (W + T, bT , sbT , t)-feasible, then

(58) t ≥ .9
∑

j≤bT

sj .

Proof. Let Tj = S′
j ∧T and tj = |Tj | (so t =

∑

j≤bT
tj by Proposition 3.6).

We will prove the proposition by contradiction, showing that the failure of (58)

violates the minimality of T .

First observe that, if we assume t < .9
∑

j≤bT
sj , then there exists b′ ≤ bT

such that

(59)
∑

b′≤j≤bT

tj100−j < .9
∑

b′≤j≤bT

sj100−j .

Indeed, if (ub′ :=)
∑

b′≤j≤bT
100−j(tj − .9sj) ≥ 0 for all b′ ≤ bT , then

∑

j≤bT

(tj − .9sj) =
∑

i≤bT−1

100i(ui − ui+1) + 100bT ubT

=

bT
∑

i=1

(100i − 100i−1)ui + u0 ≥ 0.

Note that by Proposition 3.6, (59) gives

(60)
∑

b′≤j≤bT

λS′

(S′
j ∧W ) ≥ .1

∑

b′≤j≤bT

λS′

(S′
j).

Now we claim that

(61) T ′ :=
∨

j≤b′−1 Tj is an (S,W )-fragment with index b′ − 1,

which contradicts the minimality of T .
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Proof of (61). It is clear that S′ satisfies property (52). For (53),
∑

j≥b′

λS′

(S′
j ∧ (W + T ′))

(56)
=

∑

j≥bT+1

λS′

(S′
j ∧ (W + T )) +

∑

b′≤j≤bT

λS′

(S′
j ∧W )

(53),(60)

≥ .01





∑

j≥bT+1

λS′

(S′
j) − 100−bT

Ñ

∑

j≤bT

sj − t

é

+ .1
∑

b′≤j≤bT

λS′

(S′
j)

= .01
∑

j≥b′

λS′

(S′
j) − 100−(bT+1)

Ñ

∑

j≤bT

sj − t

é

+ .09
∑

b′≤j≤bT

sj100−j

(†)

≥ .01





∑

j≥b′

λS′

(S′
j) − 100−(b′−1)

Ñ

∑

j≤b′−1

sj − t′

é

 ,

where (†) follows from the inequalities

.09
∑

b′≤j≤bT

sj100−j ≥ 100−(bT+1)
∑

b′≤j≤bT

sj

and

(100−b′ − 100−(bT+1))
∑

j≤b′−1

sj
(56)

≥ (100−b′ − 100−(bT+1))t′

≥ 100−b′t′ − 100−(bT+1)t. �

This completes the proof of the proposition. �

Proposition 3.8. If W is bad, then for any S, we have bT ≥ 0.

Proof. If bT = −1, then by Proposition 3.6 we have T = ∅. Then by (53),

there is S′ for which

λS′

(S′ ∧W ) ≥ .01λS′

(S′) ≥ 10−10,

which contradicts the fact that W is bad. �

For W ∈ MM (X), define U = U(W ) to be

U(W ) := {T (S,W ) : S ∈ F} .

Note that U(W ) covers F since T (S,W ) ⊆ S for each S ∈ F .

We will also need the following simple observation.

Proposition 3.9. For S ∈ Fs, let T be the minimum (S,W )-fragment

with index bT , and let t = |T |. If S′ is (W +T, bT , sbT , t)-feasible, then W (x) <

S′(x) for all x with T (x) > 0.
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Proof. Suppose that there is x with T (x) > 0 and W (x) ≥ S′(x). Then

for T ′ with T ′(y) = T (y) for y 6= x and T ′(x) = T (x) − 1, we have that S′ is

(W + T ′, bT , sbT , t− 1)-feasible, contradicting minimality of T . �

Choose an appropriate c > 0 and sufficiently large J0 > 0 so that, with

(cf. (33))

(62) aj := log100[2 · 1004(j + 1)2] · (e−4J0)
−.9max{1,100j/(1004(j+1)2)},

we have

(63) exp

Ñ

∑

j≥0

aj

é

− 1 ≤ J−c
0 .

Now we choose K sufficiently large so that K ≥ J0.

Lemma 3.10. We have

∑

W bad

P[W = W ]
∑

U∈U(W )

∏

x∈X

(eNµ(x))U(x)

U(x)!
≤ J−c

0

with c and J0 as in (63).

Proof of Lemma 3.10. For a given bad W ∈ MM (X) (recalling that M =

KN), integer b, a partial profile sb and t ≥ 0, let

GW (sb, t) = {S : S ∈ Fsb
, t(S,W ) = t, b(S,W ) = b}

and

UW (sb, t) = {T (S,W ) : S ∈ GW (sb, t)}.

Then we have, with nb :=
∑

j≤b sj for given sb,

∑

W bad

P[W = W ]
∑

U∈U(W )

∏

x∈X

(eNµ(x))U(x)

U(x)!

≤
∑

b≥0

∑

sb legal

∑

.9nb≤t≤nb

∑

W bad

∑

U∈UW (sb,t)

P[W = W ]
∏

x∈X

(eNµ(x))U(x)

U(x)!
,

(64)

noting that the range b ≥ 0 follows from Proposition 3.8, and the range of t is

from Propositions 3.6 and 3.7.

Fix sb (b ≥ 0) and t. Let Z be a random multiset in MM+t(X) with

P[Z = Z] = (M + t)!
∏

x∈X

µ(x)Z(x)

Z(x)!
.

Let M(M,t)(X) be the collection of Z ∈ M(X) that can be written as

W + T for W ∈ MM (X) that is bad and T ∈ UW (sb, t) has size t (so |Z| =

M + t). By the definition of fragment, for Z ∈ M(M,t)(X), there must exist a

choice of (Z, b, sb, t)-feasible Ŝ. Make a choice of Ŝ = Ŝ(Z) (arbitrarily) such
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that it only depends on Z. Then Proposition 3.6 shows that T ⊆
∨

j≤b Ŝj . In

particular, we have

∑

W bad

∑

U∈UW (sb,t)

P[W = W ]
∏

x∈X

(eNµ(x))U(x)

U(x)!

≤
∑

Z∈M(M,t)(X)

∑

T⊆
∨

j≤b Ŝj

P[W = Z \ T ]
∏

x∈X

(eNµ(x))T (x)

T (x)!
.

(65)

It remains to bound the right-hand side:

∑

Z∈M(M,t)(X)

∑

T⊆
∨

j≤b Ŝj

P[W = Z \ T ]
∏

x∈X

(eNµ(x))T (x)

T (x)!

=
∑

Z∈M(M,t)(X)

∑

T⊆
∨

j≤b Ŝj

P[Z = Z]
P[W = Z \ T ]

P[Z = Z]
·
∏

x∈X

(eNµ(x))T (x)

T (x)!

=
∑

Z∈M(M,t)(X)

P[Z = Z]
∑

T⊆
∨

j≤b Ŝj

M !

(M + t)!

∏

x∈X

Å

µ(x)−T (x) Z(x)!

(Z(x) − T (x))!

ã

·N t
∏

x∈X

(eµ(x))T (x)

T (x)!

≤
∑

Z∈M(M,t)(X)

P[Z = Z]
N t

M t
et

∑

T⊆
∨

j≤b Ŝj

∏

x∈X

Ç

Z(x)

T (x)

å

.

Here, in the last inequality, we have used the trivial bound M !/(M+t)! ≤ M−t.

Furthermore, by Proposition 3.9, we have Ŝ(x) > W (x) for all x with T (x) > 0.

In particular, for x with T (x) > 0, we have Z(x) = W (x)+T (x) < Ŝ(x)+T (x),

and thus
Ç

Z(x)

T (x)

å

≤

Ç

Ŝ(x) + T (x)

T (x)

å

≤ 2Ŝ(x)+T (x) ≤ 22Ŝ(x).

Hence, recalling that M = KN ,

∑

Z∈M(M,t)(X)

P[Z = Z]
N t

M t
et

∑

T⊆
∨

j≤b Ŝj

∏

x∈X

Ç

Z(x)

T (x)

å

≤
∑

Z∈M(M,t)(X)

P[Z = Z](e/K)t
∑

T⊆
∨

j≤b Ŝj

∏

x∈
∨

j≤b Ŝj

22Ŝ(x)

≤
∑

Z∈M(M,t)(X)

P[Z = Z](e/K)t · 22nb · 2nb

= (e/K)t · 23nb .
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Here, in the second inequality, we used that the number of T ⊆
∨

j≤b Ŝj is

at most 2nb and in the last step we used that
∑

Z∈M(M,t)(X) P[Z = Z] ≤ 1.

Finally, we have

∑

b≥0

∑

sb legal

∑

.9nb≤t≤nb

∑

W bad

∑

U∈UW (sb,t)

P[W = W ]
∏

x∈X

(eNµ(x))U(x)

U(x)!

≤
∑

b≥0

∑

sb legal

∑

.9nb≤t≤nb

(e/K)t · 23nb

≤
∑

b≥0

∑

sb legal

(e−4J0)
−.9nb .

The rest of the proof proceeds identically to the proof of Theorem 1.5. As

in (20) and (21), the number of possibilities for legal sb is at most
∏

j≤b

log100(2 · 1004(j + 1)2).

On the other hand, using the lower bound on sj in (20),

nb ≥
∑

j≤b

max{1, 100j/(1004(j + 1)2)}.

Therefore, with our choice of aj from (62), we have

∑

b≥0

∑

sb legal

(e−4J0)
−.9nb ≤

∏

j∈[τ ]

(1 + aj) − 1 ≤ exp

Ñ

∑

j∈[τ ]

aj

é

− 1 ≤ J−c
0

for our choice of c and J0 in (63). �

Theorem 3.3 follows immediately from Lemma 3.10.

Proof of Theorem 3.3. Since F does not have any cover G with

∑

U∈G

∏

x∈X

(eNµ(x))G(x)

G(x)!
≤ 1/2,

we have for all bad W that

∑

U∈U(W )

∏

x∈X

(eNµ(x))U(x)

U(x)!
> 1/2.

Thus, Lemma 3.10 implies that

P[W is bad] ≤ 2J−c
0 .

Hence,

E sup
S∈F

∑

i∈X

W(i)λS(i) ≥ (1 − 2J−c
0 )10−10 ≥ 10−11. �
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