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On a conjecture of Talagrand on
selector processes and a consequence
on positive empirical processes

By JiINYOUNG PARK and Huy TuaAN PHAM

Abstract

For appropriate Gaussian processes, as a corollary of the majorizing
measure theorem, Michel Talagrand (1987) proved that the event that the
supremum is significantly larger than its expectation can be covered by a
set of half-spaces whose sum of measures is small. We prove a conjecture
of Talagrand that is the analog of this result in the Bernoulli-p setting, and
answer a question of Talagrand on the analogous result for general positive
empirical processes.

1. Introduction

The study of suprema of stochastic processes is of central interest in proba-
bility theory, with influential applications in related areas. We refer the readers
to [11], [17] for extensive discussions of various aspects of this subject. Through
many fundamental developments, one now has a fairly good understanding of
the suprema of centered Gaussian processes.! In particular, one can associate
each Gaussian process (Z;)icr indexed by a set T' with a metric on T" given by
d(t, s) := (E[(Z;— Zs)?])'/?, and Talagrand’s celebrated generic chaining bound
and majorizing measure theorem [12], [13], [17] determine the expectation of
the supremum sup,cr Z; (up to a constant factor) by a quantity depending
only on the metric space (T, d). Via this fundamental result, one can obtain
deep insights and characterizations of the suprema of Gaussian processes. One
important example is Theorem 1.1 below, which gives a nice geometric char-
acterization of large suprema of Gaussian processes: such an event must be
contained in a union of half-spaces whose sum of measures is small.
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1Following [17], we always assume Gaussian processes are centered, i.e., EZ; = 0 for all
teT.
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THEOREM 1.1 (Talagrand, Theorem 2.12.2 in [17]). There exists L > 0
such that the following holds. Let g be an M -dimensional standard Gaussian
vector. For T C RM | consider the process Zy = (t,g) fort € T. Then one can
find a sequence of half-spaces Hy, of RM with

{sup Z; > LEsup Zt} c |J Hx
teT teT k>1

and

> P(H) <

k>1

DO =

Our main contribution in this paper is the proof of a conjecture of Ta-
lagrand on selector processes (Theorem 1.2; originally [15, Prob. 4.1], [16,
Conj. 5.7] and [17, Research Prob. 13.2.3]) and a result on positive empirical
processes (Theorem 1.3; a question of Talagrand [18] and a problem posed in
[15]), which are analogous to Theorem 1.1. We first quickly state our main
results and then provide more context, definitions, and motivations for Tala-
grand’s questions.

Given a finite set X, write 2% for the power set of X. For p € [0, 1], let
pp be the product measure on 2% given by p,(A) = pll(1 — p) XAl We use
X, for the random variable whose distribution is p,. For S C X, define the
upset generated by S to be (S) := {T : T D S}. Following [16], we say F C 2%
is p-small if there is G C 2X such that
(1) Fcg)=J®

Seg
and
(2) > <12
Seg

We say G is a cover of F if (1) holds.
Our first main result is the Bernoulli-p analog of Theorem 1.1.

THEOREM 1.2. There exists L > 0 such that the following holds. Consider
any 0 < p < 1, any finite set X and any collection A of sequences XA = (\;)icx
with A\; > 0. Then the family

S CX: supZ/\i > LE sup Z i
AEA g AEA X,

18 p-small.
In [16], Talagrand explains the meaning of the above theorem this way:
Conjecture 5.7 (now Theorem 1.2) shows that “if you are given a selector pro-

cess, and would like to prove that, within a multiplicative factor, the quantity
Esupxea Y iex, Ai < M for a constant M, there is in the end no other way
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than to find the witnesses that the set {S C X : supycp D jeg i > LM}
is small.” In the same place, Talagrand suggests that this result “provides
fundamental information.”

Our second main result is the analog of Theorem 1.1 for positive empirical
processes (see (4) and the discussion that follows).

THEOREM 1.3. There exists L > 0 such that the following holds. For
any N > 0 and i.1.d. random variables Y1,..., YN distributed according to a
Borel probability measure v on a Polish space T, and any finite collection F of
Borel functions f : T — R>q with F C L>(T), consider the positive empirical
process Zy = + SN F(Y:). Assume that 0 < E[supser Zf] < oo. Then one
can find a collection C of pairs (g,t), where g is a nonnegative function on T
and t > 0, so that with Eg; := {Z, > t}, we have

{sup Zy > LE sup Zf} - U Ey
fer fer (9,6)€C

and )
Y P(By,) < 5
(g,t)eC

We remark that the conclusion of Theorem 1.3 readily extends to cases
where F is not necessarily finite, for example when F is a totally bounded
infinite subset of L>°(T).

In [15], Talagrand proved versions of our main results for the special case
where the class of functions consists of indicator of sets, and he posed the
question of extending the results to general classes of functions as important
open problems. This is fully addressed by our results in both the setting of
selector processes and empirical processes. (Talagrand’s result on empirical
processes in [15] is stated slightly differently; see the remark at the end of
Section 3 for how to obtain from our proof a stronger version of Talagrand’s
result in the general setting.)

More context and definitions. A Gaussian process can be described in the
form Z; = Y772 &ti, where &1, &o, . .. are i.i.d. standard Gaussian random vari-
ables, and t = {t;};>1 € T C (? is a square-summable sequence. Alternatively,
one can view Gaussian processes as random series (with i.i.d. Gaussian coeffi-
cients) of functions f; : T'— R (where f;(t) = t;), an object of natural interest.
Generalizing the coefficients beyond the Gaussian case immediately leads to
substantially more challenging questions. In particular, in the case where the
coefficients ¢; are independent Rademacher random variables, a longstanding
conjecture of Talagrand (“the Bernoulli Conjecture”) suggests a precise way to
control the supremum in expectation in the spirit of chaining. The conjecture
was only resolved recently in a breakthrough by Bednorz and Latata [2].
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The problem is even harder when &; are centered Bernoulli-p random
variables (to be contrasted with our focus later on the ordinary nonnega-
tive Bernoulli-p random variables). In the “generalized Bernoulli Conjecture,”
which now is [17, Th. 11.12.1] and whose proof is inspired by work of Bednorz
and Martynek [3], Talagrand showed that suprema of centered Bernoulli pro-
cesses can be described in terms of quantities depending only on the metric
structure of appropriate classes of functions, together with quantities depend-
ing on suprema of processes of the form Z; = Zf\il &ty for t : N — R, and &;
ii.d. (ordinary) Bernoulli-p random variables. This way, the study of random
sums of functions leads us naturally to positive selector processes, which we
now define formally. Recall that X, is the random variable whose distribution
is pp. Given a collection A of sequences A = (\;)icx, we define the selector
process associated to A as the process indexed by A whose value at A is given by

(3) Zyi= Y\

A selector process is positive if A; > 0 for all A € A and 7 € X.

Next, we motivate the study of positive empirical processes. Given i.i.d.
random variables Y7, ..., Yy distributed according to a Borel probability mea-
sure on a Polish space T, and a class F of functions f : T — R, an empirical
process is a process indexed by F of the form

(4) Zp =5 32500
i<N

We say that an empirical process is positive if the functions f in the class F
are nonnegative. Empirical processes and their suprema form an important
subject in probability theory and have a wide range of applications in com-
puter science, statistics and machine learning [14], [17], [10], [6]. There, one
is often interested in the suprema of the empirical process, sup;cr Zf. While
one is often interested in centered empirical processes, i.e., those indexed by
zero mean functions, by a deep result of Talagrand [17, Th. 6.8.3] (“the fun-
damental theorem of empirical processes”), the supremum of general centered
empirical processes can always be controlled, in a precise sense, by quantities
depending only on the metric structure of an appropriate class of functions,
and the supremum of an appropriate positive empirical process. Thus, the
study of positive empirical processes is key to understanding centered empirical
processes.

As we have discussed in the previous paragraphs, the study of suprema of
centered stochastic processes naturally leads us to the study of their positive
counterpart. While substantial advances in chaining allow us to understand
precisely the reduction from centered processes to positive processes, suprema
of positive processes are much less understood. As Talagrand explains in [17],
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in many cases, we know that “chaining explains all the boundedness due to
cancellation,” but “what could we ask about boundedness of processes where no
cancellation occurs?” Thus, while we have good understanding of the effect of
cancellation on the suprema of stochastic processes, positive processes (where
there is no cancellation to exploit) are much less understood and are essentially
the last missing piece in the picture. In this context, our main theorems address
the task of filling in this missing piece: Theorem 1.2 resolves a conjecture of
Talagrand on large suprema of positive selector processes, one of the questions
in [17, Ch. 13] on “Unfulfilled dreams;” and Theorem 1.3 answers a question
of Talagrand on general positive empirical processes. We point out that our
proof of Theorem 1.3 builds on a close connection between positive empirical
processes and a version of selector process with multiplicities that has been
informally observed in [16].

Roughly speaking, Theorem 1.1 shows that, for a Gaussian process, one
can find simple geometric “witnesses” (half-spaces) that cover the event that
the supremum of the process is large, and the sum of measures of these wit-
nesses is small. In particular, even though it is a simple application of Markov’s
inequality to show that the probability of the event {sup,cr Z; > LE sup;cr Z;}
is small, the simple geometric witnesses provide a much more refined structure
on this event. Similarly, in Theorem 1.2, which is in the setting of positive
selector processes, the role of the half-spaces is replaced by the upsets (S5),
and being p-small is an analog of admitting a cover by half-spaces with small
total measure. The meaning of Theorem 1.3 can also be sketched in a similar
way — it describes explicit “simple” witnesses (half-spaces of the empirical
measure) that cover the tail event of sup 7 Zf. The covering perspective, as
observed by Talagrand [16], also provides striking connections between these
sets of questions and the study of thresholds, specifically the Kahn-Kalai con-
jecture. Building on the insights in the present paper, particularly the notion
of minimum fragment, in [9] we obtain the resolution of the Kahn-Kalai con-
jecture.

Finally, we mention that the “abstract setting” of [16, Conj. 5.7], which is
[15, Prob. 4.2], [16, Conj. 7.1] and [17, Research Prob. 13.3.2], remains open.

Reformulations. We will prove Theorem 1.2 via the slightly more con-
venient equivalent reformulation below. As observed in [16], the following
theorem is equivalent to Theorem 1.2:

THEOREM 1.4. There exists L' > 0 such that the following holds. Con-
sider any 0 < p < 1, any finite set X, and any family F C 2X. Assume that
for each S € F, we are given a sequence X° = (\3(i));ex with \3(i) > 0 and

(5) > A% = 1.

€S
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Then if F is not p-small, we have

(6) Esup Y A%(i) > 1/L,
SEF X,

Note that we only have supge 7 E D e x, A3(i) > p, so (6) suggests a non-
trivial phenomenon. The theorem below implies Theorem 1.4. As usual, for
m > 0, we denote by (nXl) the collection of subsets of X of size m.

THEOREM 1.5. There exists K > 0 such that the following holds. Con-
sider any 0 < p < 1, any finite set X, and any family F C 2X. Assume that
for each S € F, we are given a sequence X5 = (\3(i))ies with A5(i) >0 and

(7) > A% = 1.

€S
Suppose F is not p-small. Then, for W chosen uniformly at random from

(LK\))(prJ)’ we have

(8) Esup Y A%(i) >107".
S€F iesnw

The derivation of Theorem 1.2 from Theorem 1.4 can be found in [16]. We
include the simple proof of Theorem 1.4 from Theorem 1.5, and the derivation
of Theorem 1.2 from Theorem 1.4 in Section 2.1 for completeness.

The general weighted setting of Theorems 1.4 and 3.1 (the main results
leading toward Theorems 1.2 and 1.3) poses significant challenges, as one can
anticipate from the statement: while the assumption on F is inherently com-
binatorial, the conclusion applies to general weight functions on the sets in
F. In the simplest unweighted case (where we restrict all S € F to have the
same size s, and A9(i) = 1I(i € S)), our proof shares some inspiration with
the argument in [1], [5], [7], and the recent improvement in [9], although in
this special case there are also alternative approaches. In particular, as we
mentioned earlier, in this case (and more generally in the special case where
the class of functions consists of {0, 1}-valued functions), Talagrand [15] gave
a nice proof using a second moment argument. The treatment of the general
weighted setting (where we place no restriction on S € F and \¥) requires a
different set of ideas.

Firstly we work with elements at different dyadic scales, and one impor-
tant idea is to choose to work with only certain “informative” scales. Secondly,
a major difficulty of the general setting is that the weight of an element can
vary with the set S € F. In order to address this problem, we need a much
more delicate and involved notion of fragments (Definition 2.3), as well as the
associated notion of minimum fragment and its analysis. The use of minimum
fragment (associated to a simple notion of fragment), inspired by the present
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work, is crucial in our recent resolution of the Kahn-Kalai conjecture [9]. We
note that, whereas it is possible to establish the fractional version of the Kahn-
Kalai conjecture without the idea of minimum fragment, it remains critical in
our proof even if one only wants to establish the weaker fractional version of
Theorem 1.2 ([16, Conj. 6.8]). In particular, the main difficulty of weight func-
tions changing with S € F remains in the fractional version of Theorem 1.2,
and the full strength and flexibility of our generalized notion of fragment and
minimum fragment is required to handle this problem, which is how we arrive
at these notions.

As discussed later in Section 3, proving Theorem 1.3, especially in the
general case where we do not impose that the underlying distribution v is
continuous, requires more ideas. In particular, we will need a version of The-
orem 1.2 with multiplicities, Theorem 3.1, which itself admits an equivalent
reformulation, Theorem 3.3. We emphasize that the core principles behind the
proof of these results are the same as those behind the proof of Theorem 1.2.

Organization. The core part of the paper, the proof of Theorem 1.5, is
contained in Section 2. The proof of Theorem 1.3 is given in Section 3, building
on a version of Theorem 1.5 with multiplicities, Theorem 3.3. In the course,
we have made no attempt to optimize absolute constants. Logarithms are in
base e unless otherwise specified.

2. Proof of Theorem 1.2

2.1. Reductions between Theorems 1.2, 1.4 and 1.5. In this section, we
give short reductions from Theorem 1.2 to Theorems 1.4 and 1.5.

The next derivation can be found in [16] for the “weakly p-small” version
of Theorem 1.2.

Proof of Theorem 1.2 from Theorem 1.4. Consider a collection A of se-
quences A = (\;)jex with A; > 0, and with L to be determined, consider
the collection

G:=<S5CX:sup Ai > LE sup Ai
AEA ; A€A i;{:p
By definition of G, for each S € G, there is (7°());ex € A for which

9) ZTS(i) > LE sup Z Ai-

€S A€ iex,
Now for each S € G, define 25
A5 (i) = {Ts(z') ifies,

0 otherwise.
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Thus, for any Y C X, we have
sup » i > Y 75(i) = ) O A5(i)
AEA ey =% =%

and, hence, in particular

(10) E sup Z Ai > Esup Z NS (4).

AEA X, S€9icx,

Assume for contradiction that G is not p-small. Then by (9) and Theorem 1.4,
we have
E sup Z N (i) > (L/L)E sup Z i
9€0iex, Ahiex,
Combining with (10), we have
E sup Z i > (L/L)E sup Z i

AEA X, AEA X,
This is a contradiction for L > L'. O

Proof of Theorem 1.4 from Theorem 1.5. Note that if F is not p-small,
then | X|p > 1/2 (since {{z} : z € X} covers F). With N := max{||X|p], 1},
let W’ be chosen uniformly at random from (ﬁ) Then with ¢ := N/| K|X|p|,
we can think of choosing W’ as choosing W first and then picking a (-fraction
of it. We consider two cases.

If |[X|p > 1, then using the facts that ¢ > 1/(2K) and that P(|.X,| >
[ XIp]) = 1/2 (see [8]),

Sy~ L S/ 1 S/ 1
Eglelgl;p)\ (2) > 2E§22i6§W//\ (1) > 4KE sup Z A2 (i) > T 100K

If 1/2 < |X|p < 1, then using the facts that ( > 1/K and that P(|X,| > 1)

>1—(1-pXI>1-e12>1/4,

1 1 1
E sup Z )\S(i) > —E sup Z /\S(i) > —[Esup Z )\S(i) >
S€F iex, 4 seF s K ser sow 4-100°K
Now, Theorem 1.4 follows by letting L' = 4 - 10" K. O

2.2. Proof of Theorem 1.5. Given the previous reductions, the key step
in the proof of Theorem 1.2 is the proof of Theorem 1.5, which is the focus of
this section and the key result in the paper containing the main insights.

In this section, p, X, F, and A% are as in Theorem 1.5, and K, a universal
constant, is chosen sufficiently large to support our proof. We use n for |X|,
and J and w are quantities that satisfy

| Knp| = Jnp = w;



ON A CONJECTURE OF TALAGRAND ON SELECTOR PROCESSES 1301

S, 5", 8" and S represent members of F, and W € (ii) Finally, for m € Z™,
[m] denotes {0,1,...,m}.
We say W is good if
S() > 10-10
rglgj}__{Z A (i) > 107,
ieSNW

and bad otherwise. Note that (8) follows if a (1/10)-fraction of (i) is good.
Therefore, to prove Theorem 1.5, it suffices to show that

(11) if a (9/10)-fraction of (fu() is bad,
then
(12) F is p-small.

Before getting to the details of the proof, we first give an informal de-
scription of our overall strategy. Roughly speaking, a family F is p-small if
F admits a “cheap” cover, where being cheap refers to the condition in (2).
In order to derive (12), we will first construct a cover of F, where the cover,
U = U(W), depends on the choice of W. We will show that the overall cost
of the covers among bad W’s is small, from which, combined with (11), the
existence of a cheap cover is guaranteed.

We first need some pre-processing steps on the weights \5.

Observation 2.1. Let 7 = [log;pon] + 2. It is sufficient to prove Theo-
rem 1.5 assuming that, for all S € F and ¢ € X,

(13) A3(i) = 10077 for some j € {0,1,2,...,7},
with (7) weakened to
(14) > A%(i) = 10072,
€S
Justification. We may first assume that
(15) A3(i) < 1 for all S and i,
by capping larger weights at 1. Under this assumption, for each .5, let
S;={i€S: ) €[10077,1007 )} (=0,1,2,...).

By replacing the weights of elements in S; with 10077/, we can assume that
A9(i) = 1007 for all i € S; with (7) weakened to 3 ;cq A%(7) > 1/100. Finally,
note that

D A(S;) < 181107 < p100 B0 2 = 10072,

>T
Thus, by removing elements in S; for f > 7, we can assume that S; = () for
all j > 7 with (7) weakened to 3 ,c¢ A%(i) > 10072 O
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From now on, we assume (13). For S € F, we write s; for |S;| and define
the profile of S to be s = s(S) = (so,...,57). In Observation 2.2 below, we
use the trivial fact that
(16) a family F = {S1,59,...} is p-small if 7/ = {S],55,...}

is p-small and S; D S} Vi.

Observation 2.2. 1t is sufficient to prove Theorem 1.5 assuming that for
all S € F, in addition to (13), for each j € [7], either s; =0 or

(17) 1007 /(1004 (5 + 1)%) < s < 2-1007; and

(18) s; is a power of 100
with (14) weakened to
(19) > A%(i) = 1007,
€S
Justification. First, we can greedily remove elements from each S until
M3(S) < 2. (Note that we have (15) under (13).) This gives the upper bound
in (17) since 2 > A9(9) = 3 5;10077.
Next, for each S and j, remove all elements in S; for which
55 < 1007 /(100% (5 + 1)2).
This process reduces the weight of S by at most
> 1007/(100%(j +1)%) - 1007 < 1007,
Jj=0

Finally, for each j with |S;| > 0, remove elements from S; to round |S;| to
the largest power of 100 that is at most |S;|. The weight of S; remains at least

a 1/100 fraction of its weight before removal of elements, yielding (19). O
We say s = (so, 51, ...,57) is a legal profile if each nonzero s; € s satisfies

(20) max{1,1007/(100%(j + 1)%)} < s; < 2- 100/

and

(21) s; is a power of 100.

We will also need the notion of a partial legal profile sp := (s; : j < b), in

which each nonzero s; satisfies (20) and (21). Given s or s;, we use Fg for

the collection of S’s whose profile is s, and Fg, for the collection of S’s whose

partial profile is s,. Note that if s restricted on {j < b} is sy, then Fs C F,.
The following definition is a key notion in our proof.
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Definition 2.3. Given S€ Fgand W € (fu(), we say U C S\W isan (S, W)-
fragment (with index b) if the following holds: there are be {—1,0,...,7} and
S" € Fs, such that

(22) S;CWUU Vj<hb,

23) DAV uv)>.01] Y AT(S) —1007 | Y s — |U]
zb+1 b+l J<b

For example, S\ W is an (S, W)-fragment with index 7.

Remark 2.4. A similar notion of fragment is used in [1], [5], [7] and in
the recent resolution of the Kahn—Kalai conjecture [9], in which the definition
of fragment is much simpler. The more delicate definition of fragment, as in
Definition 2.3, is crucial for the current setting of Theorem 1.5.

Given S and W, we denote by T = T(S,W) the minimum (S, W)-
fragment, where here minimum refers to the index b first (breaking ties ar-
bitrarily), and then |T'| (again, breaking ties arbitrarily). We use ¢ = (S, W)
for |T'(S,W)|. For any pair (S, W), its minimum fragment 7" and the corre-
sponding index by = b(S, W) are uniquely determined.

The following definition will be crucial in the construction of U (W), a
cover of F.

Definition 2.5. Given Z C X, b € [7], t > 0, and a partial profile s, we
say S’ € Fs, is (Z,b, sp, t)-feasible if

(24) S CZ Vji<b,

(25) AT NZ) =01 | Y AT(S) —10070 [ D s -t

>bt1 >b+1 j<b

The definitions of minimum fragment and feasibility are closely related,
as shown in Propositions 2.6 and 2.7.

PROPOSITION 2.6. Let S € Fs. Let T be the minimum (S, W)-fragment
with index by, and t = |T|. If S" is (W UT, by, sp,., t)-feasible, then

(26) (Y sp\w=r.
J<br
Proof. Note that, by the definition of feasibility, S’ satisfies (22) and (23)
with U =T and b = br; that (|J;<p, S;) \ W C T follows from this definition.
To show T' C | J<p,, S%, first observe that by minimality of [T'[, 7' C S’. Indeed,
if x € T\S’, then replacing T by T\ {z}, one can check that S’ still satisfies (22)
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and (23). Suppose there is z € TN S for some jo > by + 1. Note that
(27) A (z) < 100~ (1),
Then 77 := T\ {z} is an (S, W)-fragment, since S’ trivially satisfies (22), and
> (S n(wuT))
j>br+1
> Y AT(S N uT)) - A (2)
j=br+1

(25),(27) :
> 01| Y AT —1007 | Y s —|T] ) — 100707
j=>br+1 J<br

=01 > AT —1007 [ Y s — |17

j>br+1 Jj<br
This contradicts the minimality of 7. ([

PROPOSITION 2.7. Let S € Fs. Let T be the minimum (S, W)-fragment
with index by, and t = |T|. If S" is (W UT, by, sy, t)-feasible, then

(28) t>.9) s
J<br

Proof. Let Ty = S;NT and t; = |Tj| (so t =}, t; by Proposition 2.6).
We will prove the proposition by contradiction, showing that the failure of (28)
violates the minimality of 7'

First observe that, if we assume ¢t < .9 ZijT sj, then there exists b < by
such that

(29) > 41007 <9 > 510077,

b'<j<br b'<j<br

Indeed, if (uy :=) > p<j<p, 10077 (t; — 9s;) > 0 for all b’ < by, then

Z (tj — .9s;) = Z 100 (u; — wit1) + 100°T

§<br i<br—1
br
= (100" = 100" )u; + ug > 0.
1=1
Note that (29) gives, by Proposition 2.6,
(30) STATEINW) =1 > AT(S)).

b <j<br b <j<br
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Now we claim that
(31) T":=Uj<py—1 Tj is an (S, W)-fragment with index b’ — 1,
which contradicts the minimality of 7.
Proof of (31). It is clear that S’ satisfies property (22). For (23),
> MG n(WuT))

>V
DS snwury+ Y AT (S nw)
Jj2br+1 b'<j<br
(23),(30) : :
> 01| Y AT 1007 [ Y st )|+ ) AT(S)
j=br+1 J<br b'<j<br
= 01> A(S)) =100 N s~ ) +.09 > 551007
Jj=b J<br b'<j<br
() : :
> 01 [ oA =007 [N s -t )
>V j<b-1

where (f) follows from the inequalities

09 " 510077 > 1007 DN,

b <j<br b'<j<br
and
/ (26) /
(100" — 100~ Er+1) N 55 > (10077 — 100~y
j<b—1
>1007Y¢ — 100~ (b7,
This completes the proof of the proposition. O

PRrROPOSITION 2.8. If W is bad, then for any S, we have by > 0.

Proof. 1f by = —1, then by Proposition 2.6 we have T' = ). Then by (23),
there is S’ for which

A8 W) > 01N (§7) > 1071,
which contradicts the fact that W is bad. O

Now we construct U(W), the promised cover of F. The following con-
struction is valid for all W € (fu( ), but in the end we will be interested only in
bad W’s.
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For W € (i}(), define U = U(W) to be
UW):={T(S,W):SeF}.

Note that U(W') covers F since T'(S,W) C S for each S € F.
The following lemma shows that if we only consider bad W’s, then the
overall cost (in (2)) for the covers is cheap. Recall that n = |X| and w = Jnp.

LEMMA 2.9. We have
> > aere(l)
o w
W bad UcU(W)
for some constant ¢ > 0.
Note that Lemma 2.9, combined with (11), implies that there is a bad W

for which
> < 10/9) 7 < 1/2.

Uel(W)

This gives (12) and thus concludes the proof of Theorem 1.5.

Proof of Lemma 2.9. Let a bad W be given. For each b, a legal partial
profile s, and t > 0, let

Gw (sp,t) ={S: 8 € Fs,,t(S,W) =1t,b(S, W) = b}

and
Uw(sb,t) = {T(S, W) : S e gw(Sb,t)}.

Then with ny := 3, s; for given s;, we have

DD I AP DD DD DA

W bad UelU (W) b>0 s legal .9n,<t<n, W bad Ul (sp,t)

noting that the range b > 0 follows from Proposition 2.8, and the range of ¢ is
from Propositions 2.6 and 2.7.
Given b > 0, sp and ¢, we bound Y "y paa ZUGL{W(sb,t)p‘U‘ as follows:
Step 1. Pick Z := WUT. Since |Z| = w+t (note W and T are always disjoint),
the number of possibilities for Z is at most (recalling w = Jpn)

n _(n S —w —j _t
(w+t>_(w) ]1_[w+j+1_< )Up)

Step 2. Given Z, by the definition of fragment, there must exist a choice of
(Z,b, sy, t)-feasible S. Make a choice of S (arbitrarily) such that it only
depends on Z. Then Proposition 2.6 enables us to specify T as a subset
of ;< S*j, whose number of possibilities is at most 2.
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Therefore, the right-hand side of (32) is at most

DI SIED DIND DD DRNTED b DIND D 9 FACE

b>0 sy legal 9np<t<n, W bad U€ely (sp,t) b>0 sp legal .Inp<t<n,
n _
S( ) > Y (T,
w
b>0 sy legal

Notice that, by (20) and (21), the number of possibilities for legal s;, is at most

[T 108100(2 - 100*(j + 1)?).
J<b

On the other hand, using the lower bound on s; in (20),
ny > Y max{1,1007/(100*(j + 1)*)}.
J<b
Therefore, with
(33)  aj i=logygp[2- 100" (j + 1)?] - (J/4)~ O max{L1007/QA00GHDA},

we have
Z Z (J/4)~ 9”b<1_[ +aj) —1 <exp Zaj -1<J
b>0 s legal JEl7] JE|7]

for some positive constant ¢, assuming that J is chosen sufficiently large. 0O

3. Proof of Theorem 1.3

3.1. A wersion of Theorem 1.2 with multiplicities. As a key tool in the
proof of Theorem 1.3, we need a version of Theorem 1.2 for multisets. Given
a finite set X, a multiset over X is a function m : X — Ny (so m(i) is the
“multiplicity” of ¢ € X'). Let M(X) denote the collection of multisets over X.
The size of a multiset is given by |m| := > ,cx m(i). Let My (X) be the
collection of multisets over X of size V. For multisets S and T, we say that T
is a subset of S and denote T'C S if T'(x) < S(z) for all . Given a collection F
of multisets over X, we say that G is a cover of F if for every S € F, there exists
T € G satisfying T' C S. Given two multisets S and T, we define the union
SV T as the multiset with (S V T')(i) = max(S(i),T(7)) and the intersection
S AT as the multiset with (S A T)(i) = min(S(7),7(i)). We also define the
disjoint union S + T as the multiset with (S + T")(i) = S(i) + T'(¢), and the
set difference S\ T as the multiset with (S'\ 7)(i) = max(S(i) — T(7),0). For
an element z € X and a multiset S € M(X), we say that z € S if S(z) >0
and x ¢ S if S(x) =
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We next give an overview of our proof of Theorem 1.3, which requires
several additional ideas. First, we need the following multiset and weighted
generalization of Theorem 1.2.

THEOREM 3.1. There exist L > 0 with the following property. Consider
any finite set X, and any collection A of sequences X = (\;)iex with \; > 0.
Let p: X — R>q be a probability measure on X. Let N be a positive integer.
Let W be a random multiset of size N over X where for each multiset W of

P[W N'H“

zeX

size N,
W(w)

Then the family

(34) {SEM( supZS )BY; >LEsupZW }

AEAZEX AGA@GX

admits a cover G with
G

(35) S II eN“x <1/2

l’
GeGrzeX

Note that for any positive integer N, the random multiset W induced by
N independent samples from p has distribution

2)W @)
PW =w]=N]] “(W)(x)'
zeX

In particular, for any positive integer N, the above distribution is a valid
probability distribution.

In the next subsection, we discuss the reduction of Theorem 1.3 to The-
orem 3.1. We first replace the distribution v underlying the empirical process
by an appropriate distribution p over a finite set. For an appropriate large
integer P, we partition the Polish space T into subsets Bji,..., Bp such that
for each function f € F, f is approximately constant on each set. We then
define the measure u by setting p(h) = v(By) for each h € [P]. For each
function in F, we construct a sequence A on [P]| by choosing an arbitrary el-
ement xp € By, and set A(h) = f(zp,). Let A be the collection of sequences A
corresponding to functions f € F.

To illustrate the connection to selector processes, observe that in the case
v is continuous, i.e., v({z}) = 0 for any = € T, we can guarantee a partition
as above in which u(h) € [1/(2P),1/P] for all h. In this case, the empirical
process given by N independent samples of v is closely connected to the selector
process on [P] with parameter p = N/P indexed by A. In a previous version
of this paper, we give a proof of this special case following a simplified version
of our strategy for Theorem 1.3 utilizing multisets. The follow-up work of
Bednorz, Martynek and Meller [4] shows that this case can be treated without
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resorting to multiset generalization. In particular, in this case, one observes
that for P large a small cover can be constructed for the small probability
event that an element appears more than once in N samples of p.

In the general case where v has atoms, this observation no longer holds:
repeated appearance of elements in samples from v is no longer a rare event.
Multisets arise and as such, the multiset generalization (Theorem 3.1) of Theo-
rem 1.2 is natural in this context. We prove Theorem 1.3 via the discretization
of v into p and translate the desired conclusion into the multiset covering in
Theorem 3.1. We emphasize that this entire plan presents no additional con-
ceptual difficulty. Indeed, we shall present the entire proof of Theorem 3.1 in
parallel with the proof of Theorem 1.5. One shall see that the only difference
is the bookkeeping of combinatorial factors that arise due to the atomic nature
of v.

As will be evident in the proof of Theorem 1.3 from Theorem 3.1, it suffices
in (34) to consider only multisets S € My (X) of fixed size N. However, it
turns out that it is not important to keep track of this restriction, and in fact,
in proving Theorem 3.1, we will go through Theorem 3.3, which works instead
with random multisets of size KN for an appropriate constant K. Thus, we
find it more convenient and general to work with S € M(X) in (34).

In Section 3.2, we prove Theorem 1.3 assuming Theorem 3.1, which re-
quires careful construction of events E,; in Theorem 1.3 from the cover G in
Theorem 3.1. Finally, in Section 3.3, we give the full details of the proof of
Theorem 3.1, which follows along the line of the proof of Theorem 1.5.

3.2. Proof of Theorem 1.3 assuming Theorem 3.1. Since E[sup;cr Zy] €
(0, 00), by renormalizing, we can assume that
(36) El[sup Z¢] = 1.

fer
Let € > 0 be sufficiently small. Let F = {f1,..., fa}.

Let U = max;<s sup fi, and note from (36) that U > 1. Partition T into
sets of the form I(ky, ..., kar) := MM, £ ([kie, (ki+1)e)), where k; € [0, |U/¢]]
are integers. Define a new probability distribution p on Q := {(k1,...,ky) :
ki € [0,|U/e]]} with p(kq,...,kn) = v(I(k1, ..., kpy)) and define Xy, ..., Xy
as independent samples from the distribution p. For each i € [M], define
A Q — R by A(ky, ..., k) = kie, and let A = {\": i € [M]}. Note that
for each y € I(k1,...,knm),

(37) fi(y) = X' (k1, o k)| < e
Given independent samples Xi,..., Xy from g, the multiset given by
X1,...,Xn is a multiset W of size NV with distribution

)W)
P[W:W]:N!H%.
en ’
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By Theorem 3.1, we can find a collection G C M(2) with
(z)

(38) S e — eN“’ <1/2,

Geg xef
and furthermore G covers

(39) {SGM supZS YAz >LIEsupZW }

AEA 2eQ AEA 2eQ

P G
Notice that V& (8)),G( : > egé? (m). As such, by removing elements z € G

in which Nu(x)/G(z) > 1 from each G € G (after which G remains a cover of
(39) and the left-hand side of (38) decreases), we can assume without loss of
generality that

(40) Nu(z)/G(z) <1forall G € G and z € G.

For each G € G, let gi : 2 — R be the function gg(x) = log(Nu(z)/G(x))
for x € G and gg(z) = 0 otherwise. Let tg = 3 ,cq G(@) log(Nu(z)/G(x)).
Then, using (40), for any (Xi,...,Xy) for which the corresponding multiset
W contains G, we have that

TR (T (G

o (Xi,...,Xn) is contained in the event

(41) gG tc — {ZQG Sf }

We compute
N

E [exp (— ZgG(Xi)>
i=1

(42) (Zu :2 5 e >N

zeG z¢G
< (1 +|Gl/N)NY
Note that —gg(x) > 0 for all . Hence, by Markov’s inequality and (42),

PlH;, i) = [€XP< ZQG ) > eXp(—fG)]

(43) < exp(ta)(1 + \G!/N)

= ey IT (22

zeG

X, €G

= (E [exp(—go(X1))™
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We also have N log(1+ |G|/N) < |G|, and thus

wmf@

Pltt) < 1+ 1610 TT (5

el
@)
(9 <11 (%)
zeG

eNp(z))E@)
< 1“6

G(x

)

zeG

where in the last inequality we use the estimate G(z)! < G(x)%®),

From (44) and (35), we have
(45) > P[Hg ) <1/2.

Geg

Finally, for y € T, define 7 : T — Q by n(y) = (k1,...,kn) for y €
I(k1,...,kn). Observe that for independent samples (Yi,...,Yy) from v,
defining X; = 7(Y;) for j € [N] and W the multiset given by Xi,..., Xy,
then (X1,..., Xy) are independent samples from p. Furthermore, by (37), for
all i € [M],

Zp(M, - YN) = > W)X (x)

and

1
E [sup Zfi(Yl,...,YN)} - —E
ie[M] N

As such, assuming that sup ez Zy(Y1, ..., Yn) > 2LEsupc r Zy, recalling (36),
for e sufficiently small, we have that W is contained in (39) and hence covered
by G. Thus, by (41),

sup Zy > 2LE sup Zf} - 1 (H, ia)
{fe]—' feF GLEJQ gete

Noting that W_l(Héc,fc) is exactly the same as the event Ey; for g = —Nggon

and t = —t¢ for each G € G, this yields Theorem 1.3 (upon modifying the value
of the constant L).

Remark 3.2. Theorem 3.1 also directly implies the following statement.
For any ¢ > 0, there exists L > 0 such that the following holds. We say
that a subset of T is symmetric if it is invariant under coordinate permu-
tations. For each k > 1, there exists a symmetric set V;; € T* such that,
if (Y1,...,Yy) is contained in the event {supfef Zp > LEsupser Zf}, then
there exists i; < --- < iy such that (Y;,,...,Y;,) € V4. Furthermore, for each
k>1,P((Y1,...,Ys) € Vi) < 3(ck/N)k.
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In particular, the above statement follows from Theorem 3.1 by taking
Vi=Uceg,jc|=k V&(G), where Vi (G) is the collection of tuples (y1, ..., yx) cT*
whose corresponding multiset is equal to G.

This implies (a stronger version of) the result in [15] on positive empir-
ical processes in the special case where the class of functions only involves
indicator functions of sets, and generalizes this result to the setting of general
nonnegative functions.

3.3. Proof of Theorem 3.1. Theorem 3.1 follows from Theorem 3.3 below.

THEOREM 3.3. There exist a positive integer K with the following prop-
erty. Consider any finite set X and any family of multisets F C M(X). Let
w1 X — Rxq be a probability measure on X. Let N be a positive integer. Let W
be a random multiset of size KN over X where for each multiset W of size KN,

PW =W]=(KN)' [] %
rzeX

Assume that for each S € F we are given a sequence X° = (A5(4))iex
with A3(i) > 0 and

(46) > ST (6) > 1.
e X
Then if there is no cover G for F with

eNpu(z))e®)
ST <

GegzeX
we have
(47) Esup Y W(i)A%(i) > 107
SeFix

Proof of Theorem 3.1 from Theorem 3.3. Under the assumptions in The-
orem 3.3, a random multiset W over X of size KN with distribution

(p(a)""®

PW =W]=(KN)! ] e

reX
satisfies

Esup Y W(i)A%(i) > 107
S€F iex

Let W be a random multiset of size N with distribution
(u(x)"V @)
P[W = W] = N! —_—
==l

Note that W has the distribution of a multiset induced by a tuple of KN
independent samples from p, and W has the distribution of a multiset induced
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by a tuple of N independent samples from u. Hence, we have

(48) E sup Z W (i) (i) > iIE sup Z W ()N (i) > 1. 107,

~ KN K
SEF icx SEFicx

Theorem 3.1 then follows as in the proof of Theorem 1.2 from Theorem 1.4.
In particular, letting

F = {S e M(X): supZS(i))\i > LESUPZW(i))\i} ’

AEA X AEA X
for each S € F, there is (79(i))jex € A with

(49) > 8(i)r8(i) = LEsup » W(i) ;.

i€ex A€M jex
Define A° by \°(i) = 79(i) if i € S and A5(i) = 0 otherwise. Then
50 Esup Y W)\ >Esup Y WM (4).
(50) AeAg;( (2) Sefiez):( (1)A” (@)

However, assume for the sake of contradiction that F does not admit a cover
satisfying (35). Then by (49) and (48),

1
(51) Esup > W(@HN (@) > =107 LEsup Y W(i)\;.
Se}‘iEZX K AeAg;( '
For L sufficiently large, (50) and (51) yield the desired contradiction. O

The proof of Theorem 3.3 follows along the main ideas behind the proof
of Theorem 1.5. Below we give the full details to make transparent the parallel
with the proof of Theorem 1.5. We emphasize that only direct adaptations are
needed and there is no conceptual difficulty in following the argument upon
having the proof of Theorem 1.5.

We follow the definitions in Section 3.1. In the following, denote M = KN,
and note that S, .5, S are always elements of F. We say that W € M/ (X) is
good if maxger 3; W(i)A%(i) > 10719, and bad otherwise.

By the same processing steps as in Section 2 (Observations 2.1 and 2.2),
we can assume that A%(i) = 10077 for some j € Ny, with the right-hand side
of (46) weakened to 100~1. Denote by S; the sub-multiset of S consisting of
all the elements i with A%(i) = 10077, Let s; = |S;|. Then we can assume
that for each j € Ny, either s; = 0 or 100/=%/(j + 1)? < s; < 2-100/ and s;
is a power of 100, with the right-hand side of (46) weakened to 10073. Let
7 = max{j : s; # 0}. Note that 7 < oo since F is finite. The following
definition is a straightforward generalization of Definition 2.3 to the multiset
case.
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Definition 3.4. Given S € Fg and W € My (X), we say U C S\ W
is an (S, W)-fragment (with index b) if the following holds: there are b €
{-1,0,...,7} and S’ € Fg, such that

(52) S;CW+U Vj<b,

(53) > A(SEAW+U)) =01 Y AT (SH—100"( D s — U]
bt j>bt1 j<b

Given S and W, we denote by T = T(S,W) the minimum (S, W)-
fragment, where here minimum refers to the index b first (breaking ties ar-
bitrarily), and then |T'| (again, breaking ties arbitrarily). We use t = t(S, W)
for |T'(S,W)|. For any pair (S, W), its minimum fragment T" and the corre-
sponding index by = b(S, W) are uniquely determined.

Definition 2.5 can be directly adapted to the current setting.

Definition 3.5. Given Z € M(X), b € [r], t > 0, and a partial profile sy,
we say S’ € F, is (Z,b, sy, t)-feasible if

(54) S CZ Vj<bh,

(55) STAT(SAZ) =01 | Y AT(S) 10070 [ D s —t
J=2b+1 J>b+1 7<b
The following propositions generalize Propositions 2.6, 2.7 and 2.8. Their
proofs are direct adaptations of the proofs in Section 2 with little changes. We
have included the details for completeness.

PROPOSITION 3.6. For S € Fg, let T be the minimum (S, W)-fragment
with index by, and let t = |T|. If S is (W + T, by, sp,., t)-feasible, then

(56) \ S |\ W =T
J<br

Proof. Note that, by the definition of feasibility, S’ satisfies (52) and (53)
with U =T and b = br; that (\/;<p, S;) \ W C T' follows from this definition.

To show T' C (V,;<p, Sj) \ W, first observe that by minimality of |T7,
T C S\ W. Indeed, if z € T\ (S'\ W), then replacing T by T \ {z}, one
can check that S’ still satisfies (52) and (53). Suppose there is z € T'A S for
some jo > br + 1. Note that

(57) A5 (z) < 100~ (b +1),
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Then 77 := T\ {«} is an (S, W)-fragment, since S’ trivially satisfies (52), and
> NS A (W +T))
j=>br+1
> ) M(SIAW4T)) = N (x)
j>br+1

(55),(57) :
> 01| Y AT —1007 | Y s —|T] ) — 100707
j>br+1 J<br

=01 > AT —100707 [ Y s — |1

j>br+1 Jj<br
This contradicts the minimality of 7. O

PROPOSITION 3.7. For S € Fg, let T be the minimum (S, W)-fragment
with index by, and let t = |T|. If S is (W + T, by, s, t)-feasible, then

(58) t>.9) s
J<br

Proof. Let Tj = Si AT and t; = [T}| (so t = ;< t; by Proposition 3.6).
We will prove the proposition by contradiction, showing that the failure of (58)
violates the minimality of T.

First observe that, if we assume ¢ < .93 ., s;, then there exists b <br
such that

(59) > 410077 <9 > 5510077,

b <j<br b'<j<br

Indeed, if (uy :=) > y<j<p, 10077 (t; — 9s;) > 0 for all b’ < by, then

St - 9s) = Y 100 (w; — wig1) + 100wy,

J<br i<br—1
br
=) (100" — 100" )u; 4 ug > 0.
i=1
Note that by Proposition 3.6, (59) gives
(60) DTN AW =1 > AT(S)).
b <j<br b <j<br

Now we claim that
(61) T":=\/j<py_1 Tj is an (S, W)-fragment with index b’ — 1,

which contradicts the minimality of T
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Proof of (61). It is clear that S’ satisfies property (52). For (53),
D NS A (W +T))

>V
56 ’ /
DS N GAW )+ S AT (S AW)
b+ b <j<br
(53),(60) : :
> 0L > AT(S) 10070 [ D syt | L+ ) AT(S))
Jjzbr+1 Jj<br b'<j<br
=.01) AT (S) —100" I [ N5t | +.09 Y 51007
P>V J<br b <j<br
() : :
> 01 Y o AT(S) =007 N s~ )
Jj>b J<v -1

where (t) follows from the inequalities
09 > 5510077 > 100~ 0D N,

b <j<bp b'<j<br
and
/ (56) /
(100" =100~ +) N 55 > (1007 — 100~ 7 D)y
j<b—1
> 100"t — 100~ (b7 +¢, O
This completes the proof of the proposition. O

PropoOSITION 3.8. If W is bad, then for any S, we have bp > 0.

Proof. 1f by = —1, then by Proposition 3.6 we have T' = ). Then by (53),
there is S’ for which

A (S"AW) > .01A5(8") > 10710,
which contradicts the fact that W is bad. ]
For W € My(X), define Y =U(W) to be
UW):={T(S,W):S5eF}.

Note that U (W) covers F since T'(S,W) C S for each S € F.
We will also need the following simple observation.

PROPOSITION 3.9. For S € Fg, let T be the minimum (S, W)-fragment
with index by, and let t = |T|. If S" is (W +T,br, sp,., t)-feasible, then W (z) <
S'(x) for all x with T'(x) > 0.
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Proof. Suppose that there is 2 with 7'(z) > 0 and W(z) > S’(x). Then
for T" with T'(y) = T'(y) for y # x and T'(z) = T'(x) — 1, we have that S’ is
(W +T',br,sp,, t — 1)-feasible, contradicting minimality of 7. O

Choose an appropriate ¢ > 0 and sufficiently large Jy > 0 so that, with
(cf. (33))
(62) aj = 10g100[2 . 1004(] + 1)2] . (674J0)7.9max{l,lOOj/(1004(j+1)2)}’

we have

(63) exp Zaj -1<Jp“

j=0
Now we choose K sufficiently large so that K > Jp.
LEMMA 3.10. We have

eN,u x) .
> Ewow Y [
W bad UeU(W) z€X
with ¢ and Jy as in (63).

Proof of Lemma 3.10. For a given bad W € M (X) (recalling that M =
KN), integer b, a partial profile s, and ¢ > 0, let

gw(Sb,t) = {S : S e ]-"Sb,t(S, W) =1, b(S, W) = b}
and
U (s, t) = {T(S, W) : S € Gw (sp, 1)}
Then we have, with n; := 3, s; for given sy,

> rw=w) > [ NA

)

W bad UeU(W)zeX
oy (N p(z)V®
XY X Y Y ewew [
b>0 sy legal .9np<t<np, W bad Uecllyy (sp,t) TEX )

noting that the range b > 0 follows from Proposition 3.8, and the range of ¢ is
from Propositions 3.6 and 3.7.
Fix sp (b > 0) and ¢. Let Z be a random multiset in M ps44+(X) with

plz)? )
PlZz=2=M+t) ][] 2
zeX
Let M4 (X) be the collection of Z € M(X) that can be written as
W + T for W € My (X) that is bad and T' € Uy (sp, t) has size t (so |Z] =
M +t). By the definition of fragment, for Z € M) (X), there must exist a
choice of (Z,b, sy, t)-feasible S. Make a choice of § = S(Z) (arbitrarily) such
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that it only depends on Z. Then Proposition 3.6 shows that 7" C \/,<, S*j, In
particular, we have

e z))V @)
S mwew A

) W bad Uty (sp,) veX
eNpu(x T(z)
S 2. EwW=z\T]]] (Tii)
ZeMp(X) TQ\/jgbgj vex '

It remains to bound the right-hand side:

e z)) L)
> > ]P’[W:Z\T]H(N;((x))?

ZeM (p(X) TSV < S; vex

PW=2\T eNpu(z))T (@)
I S \]-H( )

) P[Z = 7] T(z)!
ZeMun(X) TCV, <, S; eX

_ _ —Tx Z(Hf)‘
= Z P[Z = 7] Z I+ H < ( )WW)

ZeM (pr,)(X) TCV, < 55 zeX
i ()™
zeX (.le
Nt x
< ¥ omeeage ¥ OI(R0)
ZeM 1 (X) TCV, <bS zeX

Here, in the last inequality, we have used the trivial bound M!/(M+t)! < M.
Furthermore, by Proposition 3.9, we have S(z) > W (z) for all  with T'(x) > 0.
In particular, for x with T'(x) > 0, we have Z(z) = W (z)+T(z) < S(z)+T (=),

and thUS R
Z(JJ) S($)+1(.’L') S(x)+T(x S(x
(7(:6)><< T(x) )<S() T

Hence, recalling that M = KN,

Y Pz-= Z]A]\;et 3 H( ;’;)

ZeM a1y (X) TCV;<p S *€X

< > PZ=Z(e/K) ) [ 2@
ZeM e (X) TCVj<pSi 2€V <p 5;

< Y. PZ=Z|(e/K) 222
ZeMp,1)(X)

= (e/K)"- 25,
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Here, in the second inequality, we used that the number of 7' C \/,, Sj is
at most 2" and in the last step we used that ZZGM(MJ)(X)P[Z =7 <1
Finally, we have

eNp(z))V@)
>Y Y Y ¥ mw-w [

b>0 sp legal 9n,<t<n, W bad Ul (sp,t) zeX

< Z Z Z e/K . 23

b>0 sp legal 9Inp<t<ny
< E E _4J an'
b>0 s legal

The rest of the proof proceeds identically to the proof of Theorem 1.5. As
n (20) and (21), the number of possibilities for legal s; is at most

[ 10g100(2 - 100*(j + 1)?).
J<b
On the other hand, using the lower bound on s; in (20),
ny > max{1,100//(100"(j + 1)*)}.
j<b

Therefore, with our choice of a; from (62), we have

ZZ (e Jo)~ 9"b<H1—|—aJ)—1<exp Zaj -1<Jy¢

b>0 s legal JE[T] JE[7]

for our choice of ¢ and Jy in (63). O
Theorem 3.3 follows immediately from Lemma 3.10.

Proof of Theorem 3.3. Since F does not have any cover G with
G(z)

ST eN“ <12,

UeG zeX

we have for all bad W that
U

S I eN“Z ‘o

UeU(W) z€X
Thus, Lemma 3.10 implies that
P[W is bad] < 2J;°.

Hence,

Esup Y W(i)A%(i) > (1-2J791071° > 107", O
SEJ:zGX
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