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Abstract

We prove a generalization of the Fulton–Hansen connectedness theorem, where Pn is replaced

by a normal variety on which an algebraic group acts with a dense orbit.

The product version of the Fulton–Hansen theorem [6] says that if Y1, Y2 are irreducible,

projective varieties, Yi → Pn are finite morphisms and dim Y1 + dim Y2 > dim Pn , then

Y1 ×Pn Y2 is connected. As Catanese emphasized both in the panoramic survey [3] and in

the shorter version [2], one should look at the topological side of every question in alge-

braic geometry. Thus one should view the Fulton–Hansen theorem as a generalization of

Lefschetz’s hyperplane section theorem for the fundamental group. In this form, the quasi-

projective version says that if Y1, Y2 ⊂ Pn are normal, irreducible, quasi-projective varieties,

pi : Yi → Pn are quasi-finite morphisms, and dim Y1 + dim Y2 > dim Pn , then

π1

(
Y1 ×Pn ,g1,g2

Y2

)
� π1(Y1) × π1(Y2) is surjective

for general g1, g2 ∈ Aut(Pn); here our notation means that we first compose pi with gi and

then take fiber product. See [4,6] and [7, Remark 9.3] for the original proofs and Corollaries 2–

3 for further discussion. Also see [18, Theorem 3.3.6] and [12, Theoreme 7.2].

Our main result is Theorem 2, which generalizes the above results. We replace

(PGLn+1, Pn) by a pair (G, X), where X is a normal quasi-projective variety and G is

an algebraic group acting on X with a fixed point and a dense open orbit. We obtain the

Fulton-Hansen theorem by applying Theorem 2 to X = Pn and G ⊂ PGLn+1 the stabilizer

of a point; see Corollary 2. This also implies the original form of the Fulton–Hansen theo-

rem, which begins with a map Z → Pn × Pn and shows that the preimage of the diagonal is

connected, see Corollary 3.

The usual approaches to Fulton–Hansen-type theorems exploit ampleness properties of

the tangent bundle TX . We get the strongest result when TX is ample, which holds only

for X = Pn [20]. For other homogeneous spaces X = G/P , one can develop a theory that
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measures the failure of ampleness [5,7,9,21,22]. This leads to results that give π1-surjectivity

if dim Y1+dim Y2 is large enough. For example, let 0 ≤ r ≤ n/2 and let X = Gr(Pr , Pn). By

[9, Connectedness Theorem, p. 361] the map π1(Y1 ∩ Y2) → π1(Y1) × π1(Y2) is surjective

provided

dim Y1 + dim Y2 > dim X + dim Gr(Pr−1, Pn−2). (∗)

Here dim X is what we expect on the right hand side of (∗) from the naive dimension count.

For r = 0, dim Gr(Pr−1, Pn−2) = 0, and we recover the Fulton-Hansen theorem. However,

for r � 0 the extra term gets quite large. Nonetheless, this bound is optimal, see Example 8.

Our aim is to prove that, for many group actions, the naive dimension estimate dim Y1 +
dim Y2 > dim X is enough to give π1-surjectivity, unless the intersection Y1 ∩ Y2 is very

degenerate.

Notation 1 We work over an algebraically closed field k unless otherwise specified. Let G

be a connected algebraic group acting on a normal k-variety X . We usually assume that the

action is faithful.

The action is denoted by (g, x) 	→ gx . If p : Y → X is a morphism then it is convenient

to use the shorthand gY → X for g ◦ p : Y → X .

We consider the case when the G-action has a dense open orbit, denoted by X◦, and

also a fixed point x0 ∈ X . For any n ≥ 0, G acts linearly on the nth order infinitesimal

neighborhood OX ,x0/m
n
x0

, where (OX ,x0 ,mx0) is the local ring at x0 and its maximal ideal. If

we assume the action of G on X is faithful, this induced action is also faithful for sufficiently

large n, and so, in this case, G is a linear algebraic group.

We use π1(Z , z0) to denote the topological fundamental group of Z(C) if we are over

C and the étale fundamental group of Z otherwise. We will usually include basepoints, but

sometimes omit them when it is not important to keep track of them.

The main result is easier to state for normal subvarieties over C. We prove a more general

version in Theorem 2, where the characteristic is arbitrary, the stabilizer may be disconnected

and the Yi are not necessarily subvarieties.

Theorem 1 Let G be a connected algebraic group acting on a normal variety X defined over

C. Assume that the action has a fixed point x0 ∈ X and a dense open orbit X◦ ⊂ X such

that the stabilizer H ⊂ G of any point in X◦ is connected. Let Y1, Y2 be irreducible, normal,

locally closed subvarieties of X containing x0. Assume that

(1) dim Y1 + dim Y2 > dim X and

(2) there is an irreducible component Z ⊂ Y1 ∩ Y2 of the expected dimension dim Y1 +
dim Y2 − dim X, that contains x0 and is not disjoint from X◦.

Then,

π1(g1Y1 ∩ g2Y2, x0) � π1(Y1, x0) × π1(Y2, x0) is surjective

for general (g1, g2) ∈ G × G.

Note that the conclusion of Theorem 1 is pretty much the strongest that one can hope

for: If Y1 ∩ Y2 is disjoint from X◦, then g1Y1 ∩ g2Y2 is never in ‘general position,’ and if

an irreducible component does not contain the base point x0, then its contribution to the

fundamental group is hard to control; see also Examples 7–8. For counterexamples with

disconnected stabilizers see Examples 10–11.

We next state and prove Theorem 2, from which Theorem 1 follows. We then derive

generalizations of the Fulton–Hansen theorem and further applications. We conclude with

various examples and counterexamples.
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Proof of themain theorem

We start with some preliminary lemmas.

Lemma 1 Let f : U → V be a dominant morphism of irreducible varieties and Ã : V → U

a section. Then Uv is connected for general v ∈ V .

Proof It is enough to show that the geometric generic fiber of f is connected. By irreducibility

of U , the generic fiber of f is irreducible. The generic fiber may fail to be geometrically

irreducible, but all geometric components must pass through the image of Ã , and hence the

geometric generic fiber is connected. �


We also require the following slight variant of [14, Theorem 2], which follows from [14,

Theorem 2] and upper semicontinuity of dimension of fibers.

Lemma 2 Let G be a connected algebraic group acting transitively on a normal k-variety

X. Let Y1 and Y2 be irreducible, normal varieties and pi : Yi → X quasi-finite morphisms.

Then there is a dense open subset U ⊂ G × G such for all (g1, g2) ∈ U, g1Y1 ×X g2Y2 is

(1) either empty

(2) or of pure dimension dim Y1 + dim Y2 − dim X

Moreover, if g1Y1 ×X g2Y2 is non-empty and of dimension ≤ dim Y1 + dim Y2 − dim X for

some (g1, g2) ∈ G × G, then (2) holds. �


Notation 2 Let X be a k-variety, x0 ∈ X a closed point and X◦ ⊂ X a dense open subset.

Let p : Z → X be a quasi-finite morphism. We let Z◦ denote p−1(X◦). For z0 ∈ p−1(x0),

let Z(z0) ⊂ Z denote the union of those irreducible components that contain z0 and whose

images are not disjoint from X◦. We say that z0 is a good limit point of Z if Z(z0) �= ∅.

Lemma 3 Let G be a connected algebraic group acting on a normal variety X with a fixed

point x0 ∈ X and a dense open orbit X◦ with stabilizer H ⊂ G. Let H0 ⊂ H denote the

identity component of H.

Let Y1 and Y2 be irreducible, normal varieties and pi : Yi → X quasi-finite morphisms

such that Y ◦
i := p−1

i (X◦) are nonempty.

Let I ⊂ G ×G ×Y1 ×Y2 parametrize quadruples (g1, g2, y′
1, y′

2) such that g−1
1 p1(y′

1) =
g−1

2 p2(y′
2). Let I ◦ ⊂ I be the preimage of Y ◦

1 × Y ◦
2 and Ī ◦ ⊂ I its closure. We have

G × G
π← Ī ◦ Ä→ Y1 × Y2. (6.1)

Then

(2) I ◦ → Y ◦
1 × Y ◦

2 is a locally trivial G × H-bundle.

(3) I ◦ has at most |H/H0| irreducible components.

(4) Every good limit point z0 = (y1, y2) lying on a component of Y1 ×X Y2 of dimension

dim Y1 + dim Y2 − dim X gives a rational section πz0 : (g1, g2) 	→
(
g1, g2, y1, y2).

Let j index those irreducible components Ī ◦(z0, j) ⊂ Ī ◦ that contain the image of πz0 . Then

the following hold.

(5) For any j as above, the image of π1

(
Ī ◦(z0, j)

)
→ π1(Y1 × Y2) has index ≤ |H/H0|.

(6) Ī ◦(z0, j) ∩ π−1(g1, g2) is a nonempty union of irreducible components of (g1Y1 ×X

g2Y2)(z0) for general (g1, g2) ∈ G × G.
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(7) If H is connected then π−1(g1, g2) is connected for general (g1, g2) ∈ G × G.

Remark 3.8. It can happen that g1Y1 ×X g2Y2 is always reducible, though this seems to

be rare; see Example 4.

Proof Claims (2) and (4) are clear and (2) implies (3). There is nothing further to prove if

there are no good limit points.

Otherwise let z0 = (y1, y2) be a good limit point. Set K = k(G × G). We next prove

(6). By Lemma 2, the generic fiber Ī ◦(z0, j)K of the projection Ī ◦(z0, j) → G × G is

nonempty, hence irreducible over K , and it has a K -point, given by z0. Note there is some

such component Ī ◦(z0, j) because z0 is a good limit point. The union of those geometric

irreducible components of Ī ◦(z0, j)K that contain this K -point is defined over an extension

of K . Thus, every geometric irreducible component of Ī ◦(z0, j)K contains this K -point.

Hence, for general (g1, g2) ∈ G×G, every irreducible component of Ī ◦(z0, j)∩π−1(g1, g2)

contains (g1, g2, z0), proving (6).

As for (5), I ◦ → Y ◦
1 × Y ◦

2 factors as

I ◦ Ä1→ I ◦/(G × H0)
Ä2→ Y ◦

1 × Y ◦
2 .

Here Ä1 is a principal G × H0-bundle with connected fibers and Ä2 is finite, étale of degree

|H/H0| (but possibly disconnected). Thus the image of

π1(I ◦) → π1(Y
◦
1 × Y ◦

2 )

is a subgroup of index ≤ |H/H0|. Observe that π1(Y
◦
1 × Y ◦

2 ) → π1(Y1 × Y2) is surjective

as Y1 and Y2 are normal; see [7, 0.7.B]. We can thus factor Ä : Ī ◦(z0, j) → Y1 × Y2 as

Ī ◦(z0, j)
Ä0−→ (Y1 × Y2)

∼ Ä̃−→ Y1 × Y2, (6.9)

where Ä̃ is finite, étale of degree ≤ |H/H0| and

π1

(
Ī ◦(z0, j)

)
→ π1

(
(Y1 × Y2)

∼)
is surective. (6.10)

This proves (5) and (7) follows from Lemma 1. �


The proof of Theorem 2 will follow from the above, together with the following important

fact from topology.

Remark 1 Suppose we are given a map f : X → Y of varieties over C. We claim that there

is a Zariski open subset U ⊂ Y such that X ×Y U → U is locally a trivial bundle in the

Euclidean topology. More precisely, for any point p ∈ U an, the analytic space associated to

U , there is an analytic open set V ⊂ U an with p ∈ V and a homeomorphism of topological

spaces spaces ( f an)−1(V ) � ( f an)−1(p) × V over V .

The claim above follows from [8, Part I, Theorem 1.7, p. 43] and its proof, although it is

not explicitly stated there, so we comment on the details. First, [11, §4, Theorem 1] shows

that the pieces in the stratification of [8, Part I, Theorem 1.7, p. 43] can be taken to be complex

analytic. (Note that the pieces of the stratification are not necessarily real analytic when the

map is real analytic, see [8, Caution, p. 43].) To prove the existence of the desired Zariski

open set U ⊂ Y , one may work with proper compactifications X , Y of X and Y , which

exist by Nagata’s compactification theorem. We may then use the last sentence of [8, Part

I, Theorem 1.7, p. 43] to ensure the boundaries of these closures are also unions of strata

of the stratifications. Hence, we also obtain stratifications of the open parts X and Y . Then,

[8, Part I, §1.6, p. 43] explains why the resulting map is topologically trivial over pieces of
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the stratification. Finally, to show that one of the pieces of the stratification of Y is Zariski

open, we note that there is a piece whose complement is a complex analytic proper closed

subvariety, hence algebraic by Chow’s theorem.

8(Fundamental groups of fibers) Let S, W , Z be irreducible k-varieties, Z is normal.

Assume that we have dominant morphisms

S
q←− W

p−→ Z

and a section Ã : S → W of q such that p ◦ Ã : S → Z is a constant morphism

with image z0 ∈ Z . Assume that π1(W ) → π1(Z) is surjective and W → Z is a flat

map with irreducible fibers. We aim to understand whether the induced homomorphism

π1

(
Ws, Ã (s)

)
→ π1(Z , z0) is surjective for general s ∈ S.

Case .1. k = C. By Remark 1, there is an open, dense subset S◦ ⊂ S such that q is a

topological fiber bundle over S◦. Set W ◦ := q−1(S◦). Note that W ◦ → S◦ has a section that

gets contracted by p. Thus

π1

(
Ws, Ã (s)

)
� π1(Z , z0) is surjective for every s ∈ S◦. ((8.1.a))

Case .2. char k = 0. By the Lefschetz principle we get that (.1.a) holds for the étale

fundamental group.

Case .3. char k > 0. Let πZ : (Z ′, z′
0) → (Z , z0) be an irreducible, finite, étale cover

corresponding to a finite quotient π1(Z , z0) � H . By pullback we obtain a connected, finite,

étale cover πW : W ′ → W . Here, W ′ is irreducible because W ′ → Z ′ is flat with irreducible

fibers. Further, Ã lifts (non-uniquely) to a section Ã ′ : S → W ′ such that p′ ◦ Ã ′ maps S to

z′
0. Thus, by Lemma 1, there is an open, dense subset S◦

H ⊂ S such that W ′
s is connected for

s ∈ S◦
H . That is,

π1

(
Ws, Ã (s)

)
→ π1(Z , z0) → H is surjective for every s ∈ S◦

H . (8.3.a)

In this case we say that π1

(
Ws, Ã (s)

)
→ π1(Z , z0) is surjective on finite quotients for general

s ∈ S.

Remark .4 The complication in .3 is that S◦
H depends on H , and, if char k > 0,then ∩H S◦

H

may be empty. That is, there may not be any closed point s ∈ S for which π1

(
Ws, Ã (s)

)
→

π1(Z , z0) is surjective; see Example 9.

Combining Lemma 3 with Paragraph , can now prove our main theorem.

Theorem 2 Let G be a connected algebraic group acting on a normal k-variety X with a

fixed point x0 ∈ X and a dense open orbit X◦ with stabilizer H ⊂ G. Let (y1, Y1), (y2, Y2)

be irreducible, normal, pointed varieties and pi : Yi → X quasi-finite morphisms such that

pi (yi ) = x0. Assume that

(1) 1 ≤ dim(Y ◦
1 ×X Y ◦

2 ) ≤ dim Y1 + dim Y2 − dim X, and

(2) Y1 ×X Y2 has a good limit point z0 = (y1, y2), as in Notation 2. Then, for general

(g1, g2) ∈ G × G,

(3) the closure of g1Y ◦
1 ×X g2Y ◦

2 in g1Y1 ×X g2Y2 has at most |H/H0| connected compo-

nents, and

(4) there is a subgroup � ⊂ π1(Y1, y1)×π1(Y2, y2) of index at most |H/H0| such that the

natural map,

π1

(
g1Y1 ×X g2Y2, z0

)
→ �

is surjective if char k = 0, and surjective on finite quotients if char k > 0.
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Proof. Fix an index j as in Lemma 3 and consider the diagram

G × G
π←− Ī ◦(z0, j)

Ä0−→ (Y1 × Y2)
∼ Ä̃−→ Y1 × Y2,

whose right hand side is defined in (3.9). Set

� := π1

(
(Y1 × Y2)

∼)
⊂ π1(Y1, y1) × π1(Y2, y2).

Next apply the discussions in Paragraph to conclude that

π1

(
Ī ◦(z0, j) ∩ π−1(g1, g2)

)
→ π1

(
(Y1 × Y2)

∼)

is surjective if char k = 0, and surjective on finite quotients if char k > 0. �


Fulton–Hansen-type theorems

We get the following version of the Fulton–Hansen theorem.

Corollary 1 (Fulton–Hansen theorem I) Let G be a connected algebraic group acting 2-

transitively on a quasi-projective variety X. Let Z be a normal, irreducible variety with

dim Z > dim X and p : Z → X × X quasi-finite. Then, for general (g1, g2) ∈ G × G, and

�X : X → X × X the diagonal map,

(1) Z ×(g1,g2)◦p,X×X ,�X
X is connected and

(2) the natural map,

π1

(
Z ×(g1,g2)◦p,X×X ,�X

X , z0

)
� π1(Z , z) × π1(X , x),

is surjective if char k = 0 and surjective on finite quotients if char k > 0.

Proof (assuming Corollary 5). For general (g1, g2) ∈ G × G choose z0 = (z, x) ∈
Z ×(g1,g2)◦p,X×X ,�X

X and define x0 ∈ X as the point such that (x0, x0) = ((g1, g2)◦ p)(z).

Let G ⊂ G denote the identity component of the stabilizer of x0. Note that G acts transitively

on X \ {x0}. (By Remark 2, the stabilizer in G of x0 is already connected, though we will not

need this fact.)

We aim to apply Theorem 2 to G × G acting on X × X with fixed point (x0, x0) and dense

open orbit (X \ {x0}) × (X \ {x0}). We now check the hypotheses. As an itinitial reduction,

the statement for general translations of both Z and X is equivalent to the analogous one for

only translates of Z because Z ×(g1,g2)◦p,X×X ,(h1,h2)◦�X
X � Z ×

(h−1
1 g1,h

−1
2 g2)◦p,X×X ,�X

X .

Now, note that, dimz0(Z ×(g1,g2)◦p,X×X ,�X
X) = dim Z + dim X − dim X × X > 0 by

Lemma 2. Since �X (X) \ {(x0, x0)} is contained in the dense orbit (X \ {x0}) × (X \ {x0}),
z0 is a good limit point of Z ×(g1,g2)◦p,X×X ,�X

X . Additionally, it follows from Corollary 5

that the stabilizer H ⊂ G of the G action on X \ {x0} is connected. Therefore, the stabilizer

in G × G of a point of X \ {x0} × X \ {x0} is also connected. �

We could have proven Corollary 1 using Remark 2 in place of Corollary 5. We opted to

use the latter as it leads to a more self-contained proof.

An important special case of Corollary 1 is the the case where Z = Y1×Y2 and p = p1×p2

for pi : Yi → X quasi-finite morphisms. Because this is typically how Corollary 1 is applied,

we now restate it in this case.

Corollary 2 (Fulton–Hansen theorem II) Let G be a connected algebraic group acting 2-

transitively on a quasi-projective variety X. Let Y1, Y2 be normal, irreducible varieties and
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pi : Yi → X quasi-finite morphisms. Assume that dim Y1 + dim Y2 > dim X. Then, for

general (g1, g2) ∈ G × G,

(1) g1Y1 ×X g2Y2 is connected and

(2) the natural map,

π1

(
g1Y1 ×X g2Y2, z0

)
� π1(Y1, y1) × π1(Y2, y2),

is surjective if char k = 0 and surjective on finite quotients if char k > 0.

If X and Z as in Corollary 1 are proper, then connectedness of Z ×(g1,g2)◦p,X×X ,�X
X for

general (g1, g2) ∈ G × G implies connectedness for every (g1, g2). This is sometimes called

the Enriques-Severi-Zariski connectedness principle, proved by combining Stein factoriza-

tion with Zariski’s main theorem.

Thus we recover the original setting of the Fulton–Hansen therem [6].

Corollary 3 (Fulton–Hansen theorem III) Let G be a connected algebraic group acting 2-

transitively on a projective variety X. Let Z be a normal irreducible proper variety with

dim Z > dim X and p : Z → X × X a finite morphism. Then Z ×p,X×X ,�X
X is connected.

In particular, if Z = Y1 × Y2 and p = p1 × p2 for pi : Yi → X finite morphisms, then

Y1 ×p1,X ,p2 Y2 is connected. �


Remark 2 The most important example of a 2-transitive action is (PGLn+1, Pn),

The 2-transitive case seems much more general, but in fact there are very few such pairs

(G, X). By [15] (PGLn+1, Pn) is the only pair with X projective. The pairs with X quasi-

projective are all of the form (G � Gn
a, An) where G ⊂ GLn is a product C · G, for C a

subgroup of the central Gm ⊂ GLn and G is one of the following:

(1) n = 1, G = GL1,

(2) n ≥ 2, G = SLn ,

(3) n = 2m is even, G = Spm ,

(4) n = 6, the characteristic is 2, and G = G2.

(Note that G2 does not have a nontrivial 6-dimensional representation in characteristics �= 2.)

There is, however, a very long list of pairs (G, X) such that G(R) acts 2-transitively on

X(R); see [16,25]. So the following variant applies in many more cases.

Corollary 4 Let X be a variety defined over R and G a connected algebraic group acting on

it such that the G(R) action on X(R) is 2-transitive. Assume that for x0 �= x1 ∈ X(R), the

stabilizer of the ordered pair (x0, x1) is connected (over C). Let Z1, Z2 be irreducible, normal

varieties and pi : Zi → X quasi-finite morphisms. Assume that dim Z1 + dim Z2 > dim X

and the Zi have smooth real points. Then,

π1(g1 Z1 ×X g2 Z2) → π1(Z1) × π1(Z2) is surjective

for general (g1, g2) ∈ G(R) × G(R) and for general (g1, g2) ∈ G(C) × G(C). �


There are also some non-transitive group actions for which we get a Fulton–Hansen-type

result, with obvious exceptions.

Example 1 (Orthogonal group) Let GOq := Gm · Oq be the group of orthogonal similitudes

acting on the n-dimensional vector space V n , where q is a nondegenerate quadratic form.

There are 3 orbits, {0}, (q = 0) \ {0}, and the dense open orbit is V n \ (q = 0).
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Claim 1.1. Let 0 ∈ Yi ⊂ An be irreducible, normal, locally closed subvarieties. Assume

that Yi �⊂ (q = 0) and dim Y1 + dim Y2 > n. Then

π1(g1Y1 ∩ g2Y2, 0) � π1(Y1, 0) × π1(Y2, 0) is surjective

for general (g1, g2) ∈ GOq × GOq .

Proof Since An is smooth,

dim0(g1Y1 ∩ g2Y2) ≥ dim Y1 + dim Y2 − n.

Thus we have a good limit point if

dim0

(
g1Y1 ∩ g2Y2 ∩ (q = 0)

)
< dim Y1 + dim Y2 − n.

Since Yi �⊂ (q = 0), we see that dim0

(
gi Yi ∩ (q = 0)

)
≤ dim Yi − 1. Since (q = 0) \ {0} is

homogeneous, using Lemma 2 we see that

dim0

(
g1Y1 ∩ g2Y2 ∩ (q = 0)

)
≤ (dim Y1 − 1) + (dim Y2 − 1) − (n − 1),

as needed. �


The above arguments show that our approach gives the best results if the orbits of an

action are fully understood. In the most extreme case, we have the following classification.

The proof relies on some results of [15], that we recall afterwards.

Proposition 1 Let X be an irreducible, normal variety of dimension ≥ 2 over a field k and

G a connected linear algebraic group acting on X. Assume that all orbits have dimension

either 0 or dim X.

(1) There is at most 1 orbit of dimension 0.

(2) If char k = 0 and there is a 0-dimensional orbit, then X is isomorphic to either an affine

or a projective cone over a projective, homogeneous G-variety Y .

Proof. For (1) we may assume that k is algebraically closed. We may then replace G

by its reduction to assume G is smooth. Let P = {pi } be the union of the 0-dimensional

orbits and assume P is nonempty. By Proposition 2 there is a projective G-variety Y and a G-

equivariant, affine, surjective morphism f : X\P → Y , whose general fiber is 1-dimensional

by Lemma 4.

By [24, Theorem 3], there is a normal, G-equivariant compactification X̄ ⊃ X . Let Z be

the normalization of the closure of the graph of f with projections πX and πY .

Since G acts transitively on X \ P , it also acts transitively on Y , hence E := Z \ (X \ P)

is a union of G-orbits. Thus every fiber of πY : Z → Y is a geometrically rational curve and

E is a disjoint union of (possibly multiple) sections.

For any pi ∈ P there is an irreducible component Ei ⊂ E that is contracted by πX to pi .

Let C ⊂ Y be a general curve, XC the normalization of π−1
Y (C) and Fi ⊂ XC the preimage

of Ei . Then XC → C is a P1-bundle. Note that a P1-bundle over a smooth, projective curve

contains at most 1 curve with negative self-intersection, and this curve is a section. Thus P

has at most 1 point.

In order to prove (2), we assume from now on that char k = 0. Then πY : Z → Y is a

P1-bundle and E consists of 1 or 2 sections.

If E consists of 2 sections, then Z = PY (OY + L) for some anti-ample line bundle L on

Y . Thus X is the affine cone over (Y , L−1).
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If E consists of 1 section, then Z = PY (E) where E is obtained as an extension

0 → OY → E → L → 0,

for some anti-ample line bundle L on Y . Now we again use that char k = 0, hence −KY

is ample and Kodaira’s vanishing theorem implies that the extension splits. Thus X is the

projective cone over (Y , L−1). �

Remark 1.3. We believe that (2) is not true if char k �= 0, but it should be possible to get

a complete description of all cases.

From this we deduce a useful corollary, used in the proof of Corollary 2 above.

Corollary 5 Let X be an irreducible, smooth variety over a field k and G a connected linear

algebraic group acting on X with 2 orbits, one of which is a point x ∈ X. Then X\{x} ∼= G/H

where H is connected.

Proof This is clear if dim X = 1, so assume that dim X ≥ 2.

Let H0 ⊂ H be the identity component. If H0 �= H then G/H0 → G/H is an étale cover,

which extends to an étale cover π : X̃ → X by purity. The G-action on X̃ has an open orbit

X̃ \π−1(x) and π−1(x) is a union of 0-dimensional orbits. Thus deg π = 1 by Propositon 1.

�


Lemma 4 (cf. [15, p. 443]) Let X be a normal irreducible variety, P ⊂ X a 0-dimensional

subset and f : X \ P → Y an affine morphism. Then dim X ≤ dim Y + 1.

Proof Assume that dim X ≥ dim Y + 1. Choose normal compactifications X̄ ⊃ X , Ȳ ⊃ Y

and let Z be the normalization of the closure of the graph of f with projections πX and πY .

Note that πX cannot contract a whole fiber of πY . Thus there is point ȳ ∈ Ȳ and an irreducible

component Zz ⊂ π−1
Y (ȳ) such that Zz ∩ π−1

X (P) and Zz \ π−1
X (P) are both nonempty. Set

W = πX (Zz). Note that P ∩ W �= ∅, so W ◦ := W ∩ X is dense in W . Thus W ◦ ∩ (X \ P) is

the fiber of f , hence affine. By Hartogs’s theorem, this implies dim W = 1. So the general

fiber dimension of f is ≤ 1. �


The following group theoretic result is proved, but not stated, on [15, p. 443]. It does

not seem to be well known, so we now state it and give a proof in Paragraph , following

suggestions of Brian Conrad and Zhiwei Yun.

Proposition 2 Suppose X = G/H is a homogeneous space for a smooth connected linear

algebraic group G over an algebraically closed field k. Then, there exists a parabolic sub-

group H ⊂ P ⊂ G with P/H affine. In particular, there exists a projective variety Y and a

surjective and affine map X → Y .

Remark 3 Knop’s proof of Proposition 2 in [15] is slightly different from ours in that he

produces a specific choice of PH associated to H , whereas our proof merely takes P to

be an arbitrary minimal parabolic containing H . It is not clear to us what internal property

distinguishes it from the other choices.

An interesting aspect is that P is usually not unique and the set of such parabolics has

neither a smallest nor a largest element. For example, for

H :=
(

∗ 0

0 ∗

)
⊂ SL2
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the maximal choice of P is SL2; the minimal choices are either the upper or the lower

triangular matrices. For

H :=

⎛
¿

1 0 ∗
0 1 0

0 0 1

À
⎠ ⊂ SL3

the minimal choice is B := (upper triangular matrices). The maximal choices are the 2

maximal proper parabolics that contain B.

In what follows, for G an algebraic group, we use Ru(G) to denote its unipotent radical,

the maximal smooth normal connected unipotent subgroup of G.

Lemma 5 Let H be a subgroup of a smooth connected reductive group G over a perfect field

k. Then H is either reductive or contained in a k-parabolic subgroup of G.

Proof The key input in this proof is the fact that any smooth connected unipotent subgroup

U of a connected linear algebraic group G over a perfect field k is contained in the unipotent

radical of a parabolic k-subgroup P ⊂ G. This follows from a theorem of Bruhat–Tits, see

the “Refined Theorem” in [19].

Applying this to our situation, suppose H is not reductive. We wish to show H is contained

in a proper parabolic subgroup. By the above fact, there is some P � G with Ru(H) ⊂
Ru(P). It follows that Ru(H) ⊂ H ⊂ NG(Ru(H)) ⊂ NG(Ru(P)) ⊂ NG(P) = P .

Therefore, H ⊂ P � G for P parabolic. �


88(Proof of Knop’s Proposition 2.) We can write X = G/H for H ⊂ G a subgroup. Let P

denote a minimal parabolic containing H . We wish to show P/H is affine. Let L := P/Ru(P)

and let K denote the image of H in L . Because P was chosen to be a minimal parabolic

containing H , K is not contained in any proper parabolic subgroup of L . By Lemma 5, K

is reductive. Let U := ker(H → K ). Then, U ⊂ Ru(P) so U is unipotent. The quotient

Ru(P)/U is an affine group scheme acting on P/H with quotient L/K . It follows that P/H

is a principal Ru(P)/U -bundle over L/K , and so to show P/H is affine, it suffices to show

L/K is. This follows from the general claim that a quotient of a connected reductive group

by a connected reductive subgroup is affine, see [1, Theorem 1.5]. �


Other applications

Example 2 (Projective homogeneous spaces) These are of the form X = G/P where G is

a semisimple algebraic group and P ⊂ G a parabolic subgroup. We get a Schubert cell

decomposition with a single fixed point x0 and an open cell X∗ ⊂ X . Note that X∗ is a

homogeneous space under the unipotent radical U ⊂ P . The stabilizer of the U -action on

X∗ is trivial, hence connected. Thus we get the following.

Claim 2.1. Let Y1, Y2 be irreducible, normal varieties and pi : Yi → X quasi-finite

morphisms. Assume that there is an irreducible component

Z∗ ⊂ Y1 ×X Y2 ×X X∗ and a point z0 = (y1, y2) ∈ Z ⊂ Y1 ×X Y2,

such that dim Z∗ = dim Y1 + dim Y2 − dim X and pi (yi ) = x0, where Z denotes the closure

of Z∗. Then, for general (g1, g2) ∈ U × U , (hece also for general (g1, g2) ∈ G × G), the

natural map

π1

(
g1Y1 ×X g2Y2, z0

)
→ π1(Y1, y1) × π1(Y2, y2) is
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(a) surjective if char k = 0 and

(b) surjective on finite quotients if char k > 0.

Note that we could consider instead the P-action, which has a usually larger open orbit

X◦ ⊃ X∗. This gives the following variant.

Claim 2.2. Using the above notation, assume that

dim Y1 + dim Y2 > dim X + dim(X \ X◦). (23.2.a)

Then the natural map

π1

(
g1Y1 ×X g2Y2, z0

)
� π1(Y1, y1) × π1(Y2, y2) is

(b) surjective if char k = 0, and

(c) surjective on finite quotients if char k > 0,

for general (g1, g2) ∈ P × P .

Proof For dimension reasons there is an irreducible component Z◦ ⊂ Y1 ×X Y2 ×X X◦ that

contains a good limit point z0. Next we use the P-action to see that z0 is also a good limit

point in gZ◦ ×X X∗ for general g ∈ P . Now we can apply (1). �


Results of this type have been considered in [5,9,10,22]. Our bound (2.2.a) is optimal in

some cases, but weaker in several of them. Using the full G-action, as in the above articles,

leads to further improvements, but we did not find a natural way to recover the bounds of

[5,9] in all cases.

Example 3 (Prehomogeneous vector spaces) A prehomogeneous vector space is a pair

(G, V n) where V n is a k-vector space of dimension n and G ⊂ GLn is a connected subgroup

that has a dense orbit W ⊂ V n . See [13] for an introduction and detailed classification.

The infinite series of irreducible ones all have connected generic stabilizers. Using the

original Sato-Kimura numbering as in [13], the basic examples are built from

(1) (SLn, V n),

(2) (SLn, Sym2 V n),

(3) (SLn,∧2V n),

(13) (Spn, V 2n),

(15) (On, V n),

These lead to further examples by enlarging the group to contain the scalars or replacing

(G, V n) with (G × SLm, V n ⊗ V m) for certain values of m.

Most of the sporadic examples either have disconnected generic stabilizer or the connect-

edness is not known. A nice example is (E6 · Gm, V 27), which is no. 271 on the list. The

connected component of the generic stabilizer is F4. Since F4 has no outer automorphisms,

the stabilizer is F4, hence connected. See also [17,23,26,27] for several other examples.

Counterexamples

Example 4 Start with (GL3, A3
xyz) and let Y1, Y2 ⊂ A3 be cones with vertex 0. Then g1Y1 ∩

g2Y2 conists of deg Y1 · deg Y2 lines for general g1, g2 ∈ GL3. Thus, so long as Y1 and Y2

are not both planes, (g1Y1 ∩ g2Y2)(0) = g1Y1 ∩ g2Y2 is reducible and the origin is a good

limit point.

1 27=27 is a coincidence.
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Example 5 Consider (G3
m, A3

xyz) and let let Y1, Y2 ⊂ A3 be surfaces that contain the z-axis.

Usually g1Y1 ∩ g2Y2 is reducible, having both moving and fixed irreducible components for

g1, g2 ∈ G3
m .

If Y1, Y2 intersect transversally at the origin then the origin is not a good limit point, even

though g1Y1∩g2Y2 may have non-empty intersection with the dense open orbit. For example,

this happens for Y1 = (y = x2), Y2 = (x = y2).

In any case, the origin is a good limit point if Y1 ∩ Y2 has an irreducible component Z that

passes through the origin but is not contained in a coordinate hyperplane.

Example 6 Suppose k has characteristic 0 (or at least has characteristic not equal to 2). Let

X ⊂ P4 be the projective cone over a smooth quadric surface with vertex x0. Let G ⊂ Aut(X)

be the identity component. Then, G acts with 2 orbits: {x0} and X \ {x0}. Let Y1 be a 2-plane

contained in X and containing x0. We claim that there is a divisor Y2 with x0 ∈ Y2 ⊂ X such

that g1Y n
1 ×X g2Y n

2 is the union of a curve and a point for general (g1, g2) ∈ G × G. Thus

one preimage of x0 is a good limit point, the other is not.

The computation is local at x0, thus we choose affine coordinates such that X = (xy−uv =
0). We can then choose Y1 = (x = u = 0). We choose Y2 to be the complete intersection

(xy − uv = 4u − (x − y)2 = 0). We can eliminate u to get

Y2
∼= (4xy − (x − y)2v = 0) ⊂ A3.

This is an irreducible hypersurface, but

4xy − (x − y)2v =
(
x + y +

√
1 + v(x − y)

)(
x + y −

√
1 + v(x − y)

)

shows that it is non-normal along (x = y = 0) and Y n
2 has 2 points over the origin. We will

next show that only one of them is a good limit point.

A typical translate of Y1 by G is (x − c−1v = y − cu = 0). Add these to the equations

x + y ±
√

1 + v(x − y) = 4u − (x − y)2 = 0

and eliminate u and v to get

x + y ±
√

1 + cx(x − y) = 0 and (6.1)4c−1 y − (x − y)2 = 0. (6.1)

Here (6.2) defines a curve whose tangent line at the origin is y = 0. With + sign, (6.1) defines

a curve whose tangent line at the origin is x = 0. So we get an isolated intersection point at

the origin. Finally,

y = x

√
1 + cx − 1√
1 + cx + 1

satisfies both (6.1) with a + sign and (6.2).

Example 7 Suppose k has characteristic 0. For X = Pn × Pn , consider G = PGLn+1 ×
PGLn+1, Y1 = Pn × C , and Y2 = Pn × H , where C ⊂ Pn is a smooth projective curve of

positive genus and H ⊂ Pn a hypersurface. Then dim Y1 + dim Y2 = dim X + n.

For general (g1, g2) ∈ G × G,

g1Y1 ∩ g1Y2 = Pn × (deg C · deg H points).

Thus, the intersection is disconnected and its conected components are simply connected.

So, they do not contribute to the fundamental group of C and hence π1(g1Y1 ∩ g2Y2, z0) →
π1(Y1, y1) has infinite index for any basepoint z0 ∈ g1Y1 ∩ g2Y2.
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Example 8 (Variant of [10, Example, p. 634]) Suppose k has characteristic 0. In X =
Gr(P1, Pn), take G = PGLn+1 and consider

Y1 = (lines through a point) ∼= Pn−1,

ZL = (lines in a hyperplane L ⊂ Pn) ∼= Gr(P1, Pn−1), and

Y2 = ∪c∈C ZLc ,

where C ⊂ P̌n is a smooth projective curve of positive genus parametrizing hyperplanes

{Lc : c ∈ C}. Then

dim Y1 + dim Y2 = dim X + n − 2.

The key property is that g1Y1 ∩ g2 ZL is either empty or is isomorphic to Pn−2. Thus, for

general (g1, g2) ∈ G × G, g1Y1 ∩ g2Y2 is reducible and its connected components are

isomorphic to Pn−2. So again they do not contribute to the fundamental group of C .

Example 9 Let k be a field of positive characteristic, take X = P2 with the standard action

of G = PGL3. Let Y1 ⊂ P2 be a line and let Y2 ⊂ P2 be the complement of a line. A general

translate of an intersection of Y1 with Y2 is isomorphic to A1, and the map g1Y1 ∩g2Y2 → Y2

is identified with the inclusion of a line A1 → A2. Hence, after applying an automorphism,

we may assume it is given by Spec k[x, y]/(y) → Spec k[x, y]. This is not surjective on

fundamental groups because the pullback of the connected finite étale Artin-Schreier cover

W := Spec k[x, y, t]/(t p − t − y) → Spec k[x, y] is not connected.

Examples with disconnected stabilizers

We conclude by giving examples showing that π1(g1Y1 ×X g2Y2, z0) → π1(Y1, y1) ×
π1(Y2, y2) may be non-surjective when H is disconnected in the setting of Theorem 2. For

the remainder of the paper, we assume k has characteristic 0.

Example 10 If X as in Theorem 2 has nontrivial fundamental group, we can take Y1 = Y2 =
X , and the resulting map π1(X , x0) → π1(X , x0) × π1(X , x0) will fail to be surjective. By

applying Theorem 2, we conclude that H must be disconnected, and have at least π1(X , x0)

components.

For a concrete example of such a variety, take X to be the moduli space parametrizing

unordered pairs of distinct points in P2. Then X is homogeneous under PGL3. The open orbit

in X × X is formed by those ({p1, p2}, {p′
1, p′

2}) for which no three points are on a line. The

stabilizer is Z/2 × Z/2. The space parametrizing ordered pairs of distinct points in P2 is the

universal cover of X . Thus π1(X) ∼= Z/2.

We conclude by giving a somewhat more involved example where H is disconnected, but

nevertheless π1(X , x0) = 1.

Example 11 (Constructing X and G) Let X be the moduli space of smooth plane conics in

P4 over C. The group GL5 acts transitively on X via its action on P4.

Choose coordinates x0, . . . , x4 and a reference conic C0 = (x2
0 +x2

1 +x2
3 = x3 = x4 = 0).

The stablizer of C0 is the set of matrices

G̃ :=
{(

GO3 ∗
0 GL2

)}
⊂ GL5.
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Thus G̃ is connected and so is G̃ ∩ SL5 as shown by the retraction
(

A3 B

0 A2

)
	→

(
d−1 A3 B

0 d A2

)
where d = det A3 · det A2.

Thus X ∼= SL5/(G̃ ∩ SL5) is simply connected. Since we prefer faithful actions, our group

G ⊂ PGL5 is the image of G̃.

For Z ⊂ P4, let 〈Z〉 denote the linear span of Z in P4. Observe that G has a dense orbit

X◦ ⊂ X , consisting of those conics C1 so that 〈C0〉 ∩ 〈C1〉 is a point p and neither of the Ci

contains p.

If C1 = (x0 = x1 = x2
2 + x2

3 + x2
4 = 0) then the stabilizer of the ordered pair (C0, C1) is

the set of matrices

H :=

§
¨
©

⎛
¿

O2 0 0

0 1 0

0 0 O2

À
⎠

«
¬
­ ⊂ PGL5.

Thus H has 4 connected components, which can be geometrically described as follows.

Set p := 〈C0〉 ∩ 〈C1〉. From p one can draw two distinct tangent lines to each Ci . Let

these tangent lines be {T 0
0 , T 1

0 } and {T 0
1 , T 1

1 }. The H action permutes these lines, giving a

surjection H � Z/2 × Z/2.

Example 12 (Constructing Y1 and Y2) Continuing Example 11, we next construct the subva-

rieties Y1 and Y2 ⊂ X .

Choose a point q ∈ 〈C0〉 \ C0 and let Y1 := Y1(q) ⊂ X be the set of those conics C for

which q ∈ 〈C〉 \ C . Then Y1 is a smooth, locally closed subvariety of dimension 9 in X .

To construct Y2, fix 2 distinct points x1, x2 ∈ C0 and general 2-planes Si such that xi ∈ Si .

Let Y2 := Y2(S1, S2) ⊂ X be the set of conics C with the following two properties.

(1) We have that ci := C ∩ Si is a single point and c1 �= c2.

(2) Let Ä(C) ∈ 〈C〉 \ C denote the intersection point of the lines tangent to C at the ci .

Then Ä(C) ∈ 〈C0〉 \ C0.

Given distinct ci ∈ Si and p ∈ 〈C0〉\C0, the set of such conics for ci = C ∩Si and Ä(C) = p

is a principal Gm-bundle whenever c1, c2, and p are not collinear. Indeed, the conics in P2

that pass through (1 : 0 : 0), (0 : 1 : 0) which have tangent lines at those points intersecting

at (0 : 0 : 1) are precisely the hyperbolas x1x2 = λx2
0 for λ ∈ Gm(C). Thus Y2 is a smooth,

locally closed subvariety of dimension 7 in X .

The intersection Z := Y1 ∩ Y2 consists of those conics in Y2 for which Ä(C) = q . Thus

Z is a smooth, locally closed subvariety of dimension 5 in X .

Proposition 3 We use the notation of Examples 11–12. For general (g1, g2) ∈ G × G,

g1Y1 ∩ g2Y2 is irreducible and the map

π1

(
g1Y1 ∩ g2Y2, [C0]

)
→ π1

(
Y1, [C0]

)
has index 4.

Proof Note first that the group action sends Y1(q) to Y1(g1q) and Y2(S1, S2) to Y2(g2S1, g2S2).

Thus, letting Z = Y1 ∩ Y2, it is enough to show that

π1

(
Z , [C0]

)
→ π1

(
Y1, [C0]

)
× π1

(
Y2, [C0]

)
has index 4.

The index is at most 4 by Theorem 2 because H has 4 connected components, as shown in

Example 11. We now show the index is at least 4. Note that Y1 has a connected degree 2

finite étale cover Ỹ1 → Y1 parametrizing pairs (C, c) where C ∈ Y1 and c ∈ C is one of the
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2 points of C whose tangent line passes through q . Similarly, Y2 has a connected degree 2

finite étale cover parametrizing pairs (C, d) where d is one of the two points of C0 whose

tangent line passes through Ä(C). Let q1 and q2 denote the two points of C0 whose tangent

lines pass through q . Then, the restriction of the cover Ỹ1 × Ỹ2 to Z splits into the 4 connected

components

Z̃i, j := {(C, C ∩ Si , q j )} ⊂ Z × ×Y1×Y2(Ỹ1 × Ỹ2) for 1 ≤ i, j ≤ 2.

�
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