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Abstract
We prove a generalization of the Fulton—Hansen connectedness theorem, where IP" is replaced
by a normal variety on which an algebraic group acts with a dense orbit.

The product version of the Fulton—Hansen theorem [6] says that if Y7, Y> are irreducible,
projective varieties, ¥; — P" are finite morphisms and dim Y| 4+ dim Y > dim P”, then
Y1 xpn Y3 is connected. As Catanese emphasized both in the panoramic survey [3] and in
the shorter version [2], one should look at the topological side of every question in alge-
braic geometry. Thus one should view the Fulton—Hansen theorem as a generalization of
Lefschetz’s hyperplane section theorem for the fundamental group. In this form, the quasi-
projective version says that if Yy, Y» C P" are normal, irreducible, quasi-projective varieties,
pi » Y; — P" are quasi-finite morphisms, and dim Y; 4 dim ¥> > dim P”, then

71 (Y1 XPr gy g0 Y2) — (Y1) x w1 (Y2) s surjective

for general g1, g2 € Aut(P"); here our notation means that we first compose p; with g; and
then take fiber product. See [4,6] and [7, Remark 9.3] for the original proofs and Corollaries 2—
3 for further discussion. Also see [18, Theorem 3.3.6] and [12, Theoreme 7.2].

Our main result is Theorem 2, which generalizes the above results. We replace
(PGL,+1,P") by a pair (G, X), where X is a normal quasi-projective variety and G is
an algebraic group acting on X with a fixed point and a dense open orbit. We obtain the
Fulton-Hansen theorem by applying Theorem 2 to X = P” and G C PGL,,4 the stabilizer
of a point; see Corollary 2. This also implies the original form of the Fulton—-Hansen theo-
rem, which begins with a map Z — P" x P" and shows that the preimage of the diagonal is
connected, see Corollary 3.

The usual approaches to Fulton—Hansen-type theorems exploit ampleness properties of
the tangent bundle Tx. We get the strongest result when Tx is ample, which holds only
for X = P" [20]. For other homogeneous spaces X = G/ P, one can develop a theory that
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measures the failure of ampleness [5,7,9,21,22]. This leads to results that give 7y -surjectivity
if dim Y| 4+dim Y; is large enough. For example, let0 < r < n/2 andlet X = Gr(P", P"). By
[9, Connectedness Theorem, p. 361] the map 71 (Y] N Y2) — m1(Y1) x w1 (Y>2) is surjective
provided

dim Y, + dim Y, > dim X + dim Gr(P"~!, P"2). (%)

Here dim X is what we expect on the right hand side of () from the naive dimension count.
For r = 0, dim Gr(P"~!, P"~2) = 0, and we recover the Fulton-Hansen theorem. However,
for r > 0 the extra term gets quite large. Nonetheless, this bound is optimal, see Example 8.

Our aim is to prove that, for many group actions, the naive dimension estimate dim Y +
dim Y, > dim X is enough to give m|-surjectivity, unless the intersection Y| N Y is very
degenerate.

Notation 1 We work over an algebraically closed field k unless otherwise specified. Let G
be a connected algebraic group acting on a normal k-variety X. We usually assume that the
action is faithful.

The action is denoted by (g, x) — gx.If p : ¥ — X is a morphism then it is convenient
to use the shorthand gY — X forgop:Y — X.

We consider the case when the G-action has a dense open orbit, denoted by X°, and
also a fixed point xg € X. For any n > 0, G acts linearly on the nth order infinitesimal
neighborhood Oy ,/ mﬁo, where (Ox x,, My,) is the local ring at x and its maximal ideal. If
we assume the action of G on X is faithful, this induced action is also faithful for sufficiently
large n, and so, in this case, G is a linear algebraic group.

We use 71(Z, z0) to denote the topological fundamental group of Z(C) if we are over
C and the étale fundamental group of Z otherwise. We will usually include basepoints, but
sometimes omit them when it is not important to keep track of them.

The main result is easier to state for normal subvarieties over C. We prove a more general
version in Theorem 2, where the characteristic is arbitrary, the stabilizer may be disconnected
and the Y; are not necessarily subvarieties.

Theorem 1 Let G be a connected algebraic group acting on a normal variety X defined over
C. Assume that the action has a fixed point xo € X and a dense open orbit X° C X such
that the stabilizer H C G of any point in X° is connected. Let Y1, Y» be irreducible, normal,
locally closed subvarieties of X containing xo. Assume that

(1) dimY; +dim Y, > dim X and
(2) there is an irreducible component Z C Y1 N Y> of the expected dimension dim Y1 +
dim Y> — dim X, that contains xo and is not disjoint from X°.

Then,
m1(g1Y1 N g2Y2, x0) — w1 (Y1, x0) x w1 (Y2, x0) is surjective

for general (g1, g2) € G x G.

Note that the conclusion of Theorem 1 is pretty much the strongest that one can hope
for: If Y; N Y, is disjoint from X°, then g{Y; N g2Y> is never in ‘general position,” and if
an irreducible component does not contain the base point xp, then its contribution to the
fundamental group is hard to control; see also Examples 7-8. For counterexamples with
disconnected stabilizers see Examples 10-11.

We next state and prove Theorem 2, from which Theorem 1 follows. We then derive
generalizations of the Fulton—Hansen theorem and further applications. We conclude with
various examples and counterexamples.

@ Springer
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Proof of the main theorem

We start with some preliminary lemmas.

Lemma 1 Let f : U — V be a dominant morphism of irreducible varieties ando : V — U
a section. Then U, is connected for general v € V.

Proof Ttis enough to show that the geometric generic fiber of f is connected. By irreducibility
of U, the generic fiber of f is irreducible. The generic fiber may fail to be geometrically
irreducible, but all geometric components must pass through the image of o, and hence the
geometric generic fiber is connected. O

We also require the following slight variant of [14, Theorem 2], which follows from [14,
Theorem 2] and upper semicontinuity of dimension of fibers.

Lemma2 Let G be a connected algebraic group acting transitively on a normal k-variety
X. Let Y1 and Y> be irreducible, normal varieties and p; : Y; — X quasi-finite morphisms.
Then there is a dense open subset U C G x G such for all (g1, g2) € U, g1Y1 xx g2Ya is

(1) either empty
(2) or of pure dimension dim Y1 + dim Y, — dim X

Moreover, if g1Y1 X x g2Y> is non-empty and of dimension < dim Y1 4+ dim Y, — dim X for
some (g1, g2) € G x G, then (2) holds. ]

Notation 2 Let X be a k-variety, xo € X a closed point and X° C X a dense open subset.
Let p : Z — X be a quasi-finite morphism. We let Z° denote p~1(X°). For zo € p~'(x0),
let Z(zp) C Z denote the union of those irreducible components that contain zo and whose
images are not disjoint from X°. We say that z¢ is a good limit point of Z if Z(z¢) # 0.

Lemma 3 Let G be a connected algebraic group acting on a normal variety X with a fixed
point xo € X and a dense open orbit X° with stabilizer H C G. Let Hy C H denote the
identity component of H.

Let Yy and Y, be irreducible, normal varieties and p; : Y; — X quasi-finite morphisms
such that Y; := pfl (X°) are nonempty.

Let I C G x G x Y| x Y, parametrize quadruples (g1, 82, Y1, ¥5) such that gflpl(yi) =
gz_lpz(yé). Let I° C I be the preimage of Y x Y5 and 1° C I its closure. We have

GxGZI°5 Y xYs. (6.1)
Then

(2) I° — Y7 x Y5 is alocally trivial G x H-bundle.

(3) I° has at most |H / Hy| irreducible components.

(4) Every good limit point zo = (y1, y2) lying on a component of Y1 xx Y2 of dimension
dim Yy + dim Y, — dim X gives a rational section m, : (g1, g2) —> (gl, g2, V1, V2)-

Let j index those irreducible components I°(zg, j) C I° that contain the image of 4. Then
the following hold.

(5) Forany j as above, the image of m; (I_O(z(), j)) — m1(Y1 X Y2) has index < |H /Hy|.
(6) 1°(zo, j) N~ (g1, g2) is a nonempty union of irreducible components of (g1Y1 X x
82Y2)(zo) for general (g1, 82) € G x G.
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(7) If H is connected then 1~ (g1, g2) is connected for general (g1, g2) € G x G.

Remark 3.8. It can happen that g1Y; xx g»Y> is always reducible, though this seems to
be rare; see Example 4.

Proof Claims (2) and (4) are clear and (2) implies (3). There is nothing further to prove if
there are no good limit points.

Otherwise let zo = (y1, y2) be a good limit point. Set K = k(G x G). We next prove
(6). By Lemma 2, the generic fiber I°(zo, J)k of the projection I°(z0, Jj) > G xGis
nonempty, hence irreducible over K, and it has a K-point, given by zo. Note there is some
such component 1°(zg, j) because zg is a good limit point. The union of those geometric
irreducible components of 7°(zg, j)x that contain this K -point is defined over an extension
of K. Thus, every geometric irreducible component of 7°(zo, j)x contains this K -point.
Hence, for general (g1, g2) € G x G, every irreducible component of I°(zo0, ) Nz~ g1, 82)
contains (g1, g2, 20), proving (6).

As for (5), I° — Y} x Y5 factors as

1° 3 1°/(G x Hy) 3 YP x Y5,

Here 1 is a principal G x Hp-bundle with connected fibers and 1, is finite, étale of degree
|H /Hp| (but possibly disconnected). Thus the image of

71 (I1°) = m (Y7 x Yy)

is a subgroup of index < |H /Hy|. Observe that 77 (Y x Y7) — mi(Y1 x ¥2) is surjective
as Y1 and Y are normal; see [7, 0.7.B]. We can thus factor 7 : I°(zp, j) — Y1 X Y2 as

FPo. )% (N x V)™ 51 x 1, 69)

where 7 is finite, étale of degree < |H /Hp| and
71 (I°(z0, j)) = m((Y1 x ¥2)™) is surective. (6.10)
This proves (5) and (7) follows from Lemma 1. O

The proof of Theorem 2 will follow from the above, together with the following important
fact from topology.

Remark 1 Suppose we are given amap f : X — Y of varieties over C. We claim that there
is a Zariski open subset U C Y such that X xy U — U is locally a trivial bundle in the
Euclidean topology. More precisely, for any point p € U?", the analytic space associated to
U, there is an analytic open set V C U®" with p € V and a homeomorphism of topological
spaces spaces (™)~ 1(V) ~ (f*™)~1(p) x V over V.

The claim above follows from [8, Part I, Theorem 1.7, p. 43] and its proof, although it is
not explicitly stated there, so we comment on the details. First, [11, §4, Theorem 1] shows
that the pieces in the stratification of [8, Part I, Theorem 1.7, p. 43] can be taken to be complex
analytic. (Note that the pieces of the stratification are not necessarily real analytic when the
map is real analytic, see [8, Caution, p. 43].) To prove the existence of the desired Zariski
open set U C Y, one may work with proper compactifications X,Y of X and Y, which
exist by Nagata’s compactification theorem. We may then use the last sentence of [8, Part
I, Theorem 1.7, p. 43] to ensure the boundaries of these closures are also unions of strata
of the stratifications. Hence, we also obtain stratifications of the open parts X and Y. Then,
[8, Part I, §1.6, p. 43] explains why the resulting map is topologically trivial over pieces of
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the stratification. Finally, to show that one of the pieces of the stratification of Y is Zariski
open, we note that there is a piece whose complement is a complex analytic proper closed
subvariety, hence algebraic by Chow’s theorem.

8(Fundamental groups of fibers) Let S, W, Z be irreducible k-varieties, Z is normal.
Assume that we have dominant morphisms

st w2z

and a section 0 : § — W of g such that poo : § — Z is a constant morphism
with image zo € Z. Assume that 7;(W) — m1(Z) is surjective and W — Z is a flat
map with irreducible fibers. We aim to understand whether the induced homomorphism
m(Wx, G(s)) — m1(Z, zo) is surjective for general s € S.

Case .1. k = C. By Remark 1, there is an open, dense subset S° C S such that g is a
topological fiber bundle over S°. Set W° := ¢~ !(§°). Note that W° — S° has a section that
gets contracted by p. Thus

71 (Wy,0(s)) = m1(Z, z0) is surjective for every s € S°. ((8.1.2))

Case .2. chark = 0. By the Lefschetz principle we get that (.1.a) holds for the étale
fundamental group.

Case 3. chark > 0. Let w7z : (Z/, 16) — (Z, zo) be an irreducible, finite, étale cover
corresponding to a finite quotient 71 (Z, zo) — H. By pullback we obtain a connected, finite,
étale cover my : W — W.Here, W’ is irreducible because W' — Z’ is flat with irreducible
fibers. Further, o lifts (non-uniquely) to a section o’ : § — W’ such that p’ o o’ maps S to
zé). Thus, by Lemma 1, there is an open, dense subset S7; C S such that Ws’ is connected for
s € Sy, That s,

T (Ws, a(s)) — m(Z,z0) — H is surjective for every s € S. (8.3.a)

In this case we say that (WS, o (s)) — m1(Z, z0) 1S surjective on finite quotients for general
s € S.

Remark .4 The complication in .3 is that S3; depends on H, and, if char k > 0,then Ny SY,
may be empty. That is, there may not be any closed point s € S for which (Ws, o (s)) —
m1(Z, z0) is surjective; see Example 9.

Combining Lemma 3 with Paragraph , can now prove our main theorem.

Theorem 2 Let G be a connected algebraic group acting on a normal k-variety X with a
fixed point xo € X and a dense open orbit X° with stabilizer H C G. Let (y1, Y1), (y2, Y2)
be irreducible, normal, pointed varieties and p; : Y;i — X quasi-finite morphisms such that
pi (vi) = xo. Assume that
(1) 1 <=dim(Y? xx Y;) <dimY; 4 dim Y, — dim X, and
(2) Y1 xx Y2 has a good limit point zo = (y1, ¥2), as in Notation 2. Then, for general
(81,82) € G x G,
(3) the closure of g1Y7 xx g2Y5 in g1Y1 xx g2Y> has at most |H / Hy| connected compo-
nents, and
(4) thereis a subgroup T' C w1 (Y1, y1) x w1 (Y2, y2) of index at most |H / Hy| such that the
natural map,

mi(g1Y1 xx g2Y2,20) = T

is surjective if char k = 0, and surjective on finite quotients if char k > 0.
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Proof. Fix an index j as in Lemma 3 and consider the diagram

GxG LG ) x5y %1,
whose right hand side is defined in (3.9). Set

Ii=m (Y x Y2)7) C (Y, y1) x 71 (Ya, y2).
Next apply the discussions in Paragraph to conclude that

m(I°(zo. ) N1 (81, 82)) = w1 ((Y1 x ¥2)7)

is surjective if char k = 0, and surjective on finite quotients if char k > 0. O

Fulton-Hansen-type theorems

We get the following version of the Fulton—Hansen theorem.

Corollary 1 (Fulton—Hansen theorem 1) Let G be a connected algebraic group acting 2-
transitively on a quasi-projective variety X. Let Z be a normal, irreducible variety with
dim Z > dim X and p : Z — X x X quasi-finite. Then, for general (g1, g2) € G X G, and
Ax : X — X x X the diagonal map,

(1) Z X(g1,90)0p,XxX,Ax X is connected and
(2) the natural map,

m(Z X (g1.,82)0p, X x X, Ax X,Zo) —-» m1(Z,2) x m (X, x),

is surjective if char k = 0 and surjective on finite quotients if char k > Q.

Proof (assuming Corollary 5). For general (g1, g2) € G x G choose z9 = (z,x) €
Z X (g1,42)0p,XxX,Ax X and define xo € X as the point such that (xo, xo) = ((g1, g2) 0 P)(2).
Let G C G denote the identity component of the stabilizer of xo. Note that G acts transitively
on X \ {xo}. (By Remark 2, the stabilizer in G of x is already connected, though we will not
need this fact.)

We aim to apply Theorem 2 to G x G acting on X x X with fixed point (xo, x9) and dense
open orbit (X \ {xo}) x (X \ {x0}). We now check the hypotheses. As an itinitial reduction,
the statement for general translations of both Z and X is equivalent to the analogous one for
only translates of Z because Z X (¢, ¢>)op, X x X, (h1,h2)orx X = Z X (hy g1y g2)op. X x X Ax X.
Now, note that, dim;,(Z X (g, g1)op,XxX,Ax X) = dimZ +dimX —dimX x X > 0 by
Lemma 2. Since Ax (X) \ {(x0, x0)} is contained in the dense orbit (X \ {x¢}) x (X \ {x0}),
z0 is a good limit point of Z X (4, ¢,)op, Xx X,Ax X. Additionally, it follows from Corollary 5
that the stabilizer H C G of the G action on X \ {xo} is connected. Therefore, the stabilizer
in G x G of apoint of X \ {xo} x X \ {x0} is also connected. ]

We could have proven Corollary 1 using Remark 2 in place of Corollary 5. We opted to
use the latter as it leads to a more self-contained proof.

Animportant special case of Corollary 1 isthe the case where Z = Yy x Y, and p = p1 X p»
for p; : ¥; — X quasi-finite morphisms. Because this is typically how Corollary 1 is applied,
we now restate it in this case.

Corollary 2 (Fulton—-Hansen theorem II) Let G be a connected algebraic group acting 2-
transitively on a quasi-projective variety X. Let Y1, Y> be normal, irreducible varieties and
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pi : Yi — X quasi-finite morphisms. Assume that dim Y| + dim Y> > dim X. Then, for
general (g1,82) € G x G,

(1) g1Y1 xx g2Y» is connected and
(2) the natural map,

m1(g1Y1 xx g2Y2, 20) = i (Y1, y1) x w1 (Y2, y2).

is surjective if char k = 0 and surjective on finite quotients if char k > 0.

If X and Z as in Corollary 1 are proper, then connectedness of Z X (g, ¢,)op, X xX,Ax X fOr
general (g1, g2) € G x G implies connectedness for every (g1, g2). This is sometimes called
the Enriques-Severi-Zariski connectedness principle, proved by combining Stein factoriza-
tion with Zariski’s main theorem.

Thus we recover the original setting of the Fulton—Hansen therem [6].

Corollary 3 (Fulton—Hansen theorem III) Let G be a connected algebraic group acting 2-
transitively on a projective variety X. Let Z be a normal irreducible proper variety with
dim Z > dim X and p : Z — X x X a finite morphism. Then Z X ;, x xx, Ay X is connected.
In particular, if Z = Y1 x Yo and p = p1 X p> for p; : Yi — X finite morphisms, then
Y1 X py,x,p, Y2 is connected. O

Remark 2 The most important example of a 2-transitive action is (PGL,41, P"),

The 2-transitive case seems much more general, but in fact there are very few such pairs
(G, X). By [15] (PGL,, 41, P") is the only pair with X projective. The pairs with X quasi-
projective are all of the form (G x G, A") where G C GL, is a product C - G, for C a
subgroup of the central G,, C GL,, and G is one of the following:

() n=1,G=GLy,
) n>2,G=SL,,
(3) n =2miseven, G = Sp,,,

(4) n = 6, the characteristic is 2, and G = G,.
(Note that G, does not have a nontrivial 6-dimensional representation in characteristics #~ 2.)

There is, however, a very long list of pairs (G, X) such that G(R) acts 2-transitively on
X (R); see [16,25]. So the following variant applies in many more cases.

Corollary 4 Let X be a variety defined over R and G a connected algebraic group acting on
it such that the G (R) action on X (R) is 2-transitive. Assume that for xo %= x1 € X(R), the
stabilizer of the ordered pair (xg, x1) is connected (over C). Let Z1, Z be irreducible, normal
varieties and p; : Z; — X quasi-finite morphisms. Assume that dim Z; + dim Z; > dim X
and the Z; have smooth real points. Then,

m1(g1Z1 Xx §2Z2) — m(Z1) x m(Z3) is surjective

for general (g1, g2) € G(R) x G(R) and for general (g1, g2) € G(C) x G(C). O

There are also some non-transitive group actions for which we get a Fulton—Hansen-type
result, with obvious exceptions.

Example 1 (Orthogonal group) Let GO, := G,;, - O, be the group of orthogonal similitudes
acting on the n-dimensional vector space V", where ¢ is a nondegenerate quadratic form.
There are 3 orbits, {0}, (¢ = 0) \ {0}, and the dense open orbit is V" \ (g = 0).
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260 J. Kollér, A. Landesman

Claim 1.1. Let 0 € Y; C A" be irreducible, normal, locally closed subvarieties. Assume
that ¥; ¢ (¢ = 0) and dim Y| + dim Y> > n. Then

m1(g1Y1 N gaYa, 0) = m (Y1, 0) x my(Y2,0) is surjective
for general (g1, g2) € GO, x GOy.

Proof Since A" is smooth,
dimg(g Y1 NgaY2) > dim Y| +dimY, — n.
Thus we have a good limit point if
dimg(g1Y1 N g2Y2 N (g = 0)) < dim Y} +dim ¥ — n.

Since Y; ¢ (g = 0), we see that dimg(g;¥; N (¢ = 0)) < dim ¥; — 1. Since (¢ = 0) \ {0} is
homogeneous, using Lemma 2 we see that

dimo(lel NgYoN(g = O)) <(dimY; — 1)+ (dimY; — 1) — (n — 1),
as needed. m]

The above arguments show that our approach gives the best results if the orbits of an
action are fully understood. In the most extreme case, we have the following classification.
The proof relies on some results of [15], that we recall afterwards.

Proposition 1 Let X be an irreducible, normal variety of dimension > 2 over a field k and
G a connected linear algebraic group acting on X. Assume that all orbits have dimension
either 0 or dim X.

(1) There is at most 1 orbit of dimension 0.
(2) Ifchar k = 0 and there is a O-dimensional orbit, then X is isomorphic to either an affine
or a projective cone over a projective, homogeneous G-variety Y.

Proof. For (1) we may assume that k is algebraically closed. We may then replace G
by its reduction to assume G is smooth. Let P = {p;} be the union of the 0-dimensional
orbits and assume P is nonempty. By Proposition 2 there is a projective G-variety ¥ and a G-
equivariant, affine, surjective morphism f : X\ P — Y, whose general fiber is 1-dimensional
by Lemma 4.

By [24, Theorem 3], there is a normal, G-equivariant compactification X D X.Let Z be
the normalization of the closure of the graph of f with projections wx and 7y.

Since G acts transitively on X \ P, it also acts transitively on Y, hence E := Z \ (X \ P)
is a union of G-orbits. Thus every fiber of wy : Z — Y is a geometrically rational curve and
E is a disjoint union of (possibly multiple) sections.

For any p; € P there is an irreducible component E; C E that is contracted by wx to p;.
Let C C Y be a general curve, X¢ the normalization of 7, ! (C) and F; C X the preimage
of E;. Then X¢ — C is a P'-bundle. Note that a P!-bundle over a smooth, projective curve
contains at most 1 curve with negative self-intersection, and this curve is a section. Thus P
has at most 1 point.

In order to prove (2), we assume from now on that chark = 0. Thennwy : Z — Y is a
P!-bundle and E consists of 1 or 2 sections.

If E consists of 2 sections, then Z = Py (Oy + L) for some anti-ample line bundle L on
Y. Thus X is the affine cone over (Y, L™").
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If E consists of 1 section, then Z = Py (E) where E is obtained as an extension
0—- 0Oy > E—L—0,

for some anti-ample line bundle L on Y. Now we again use that chark = 0, hence — Ky
is ample and Kodaira’s vanishing theorem implies that the extension splits. Thus X is the
projective cone over (Y, L™1). O
Remark 1.3. We believe that (2) is not true if char k # 0, but it should be possible to get
a complete description of all cases.
From this we deduce a useful corollary, used in the proof of Corollary 2 above.

Corollary 5 Let X be an irreducible, smooth variety over a field k and G a connected linear
algebraic group acting on X with 2 orbits, one of whichisapointx € X. Then X\{x} = G/H
where H is connected.

Proof This is clear if dim X = 1, so assume that dim X > 2.

Let Hy C H be the identity component. If Hy # H then G/Hy — G/ H is an étale cover,
which extends to an étale cover 7 : X — X by purity. The G-action on X has an open orbit
X \ 7~ !(x) and 7 ! (x) is a union of 0-dimensional orbits. Thus deg w = 1 by Propositon 1.

O

Lemma4 (cf. [15, p. 443]) Let X be a normal irreducible variety, P C X a O-dimensional
subsetand f : X \ P — Y an affine morphism. Then dim X < dimY + 1.

Proof Assume that dim X > dim Y + 1. Choose normal compactifications X D X, Y D ¥
and let Z be the normalization of the closure of the graph of f with projections 7y and my.
Note that x cannot contract a whole fiber of 7y . Thus there is point ¥ € ¥ and an irreducible
component Z, C 71)71 (y) such that Z, N n;] (P)and Z; \ n;] (P) are both nonempty. Set
W =mnx(Z;). Note that PNW # (J,s0 W° := WN X isdense in W. Thus W° N (X \ P) is
the fiber of f, hence affine. By Hartogs’s theorem, this implies dim W = 1. So the general
fiber dimension of f is < 1. O

The following group theoretic result is proved, but not stated, on [15, p. 443]. It does
not seem to be well known, so we now state it and give a proof in Paragraph , following
suggestions of Brian Conrad and Zhiwei Yun.

Proposition 2 Suppose X = G/H is a homogeneous space for a smooth connected linear
algebraic group G over an algebraically closed field k. Then, there exists a parabolic sub-
group H C P C G with P/H affine. In particular, there exists a projective variety Y and a
surjective and affine map X — Y.

Remark 3 Knop’s proof of Proposition 2 in [15] is slightly different from ours in that he
produces a specific choice of Py associated to H, whereas our proof merely takes P to
be an arbitrary minimal parabolic containing H. It is not clear to us what internal property
distinguishes it from the other choices.

An interesting aspect is that P is usually not unique and the set of such parabolics has
neither a smallest nor a largest element. For example, for

* 0
H.=<O*)CSL2
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the maximal choice of P is SL,; the minimal choices are either the upper or the lower
triangular matrices. For

1 0 =%
H=|0 1 0] cSL;
0 0 1

the minimal choice is B := (upper triangular matrices). The maximal choices are the 2
maximal proper parabolics that contain B.

In what follows, for G an algebraic group, we use R, (G) to denote its unipotent radical,
the maximal smooth normal connected unipotent subgroup of G.

Lemma 5 Let H be a subgroup of a smooth connected reductive group G over a perfect field
k. Then H is either reductive or contained in a k-parabolic subgroup of G.

Proof The key input in this proof is the fact that any smooth connected unipotent subgroup
U of a connected linear algebraic group G over a perfect field k is contained in the unipotent
radical of a parabolic k-subgroup P C G. This follows from a theorem of Bruhat-Tits, see
the “Refined Theorem” in [19].

Applying this to our situation, suppose H is not reductive. We wish to show H is contained
in a proper parabolic subgroup. By the above fact, there is some P C G with R,(H) C
R, (P). It follows that R,(H) ¢ H C Ng(R,(H)) C Ng(R,(P)) C Ng(P) = P.
Therefore, H C P C G for P parabolic. O

88(Proof of Knop’s Proposition 2.) We can write X = G/H for H C G asubgroup. Let P
denote a minimal parabolic containing H. We wish to show P /H is affine. Let L := P /R, (P)
and let K denote the image of H in L. Because P was chosen to be a minimal parabolic
containing H, K is not contained in any proper parabolic subgroup of L. By Lemma 5, K
is reductive. Let U := ker(H — K). Then, U C R, (P) so U is unipotent. The quotient
R, (P)/U is an affine group scheme acting on P/H with quotient L /K. It follows that P/ H
is a principal R, (P)/U-bundle over L /K, and so to show P/H is affine, it suffices to show
L /K is. This follows from the general claim that a quotient of a connected reductive group
by a connected reductive subgroup is affine, see [1, Theorem 1.5]. O

Other applications

Example 2 (Projective homogeneous spaces) These are of the form X = G /P where G is
a semisimple algebraic group and P C G a parabolic subgroup. We get a Schubert cell
decomposition with a single fixed point xo and an open cell X* C X. Note that X* is a
homogeneous space under the unipotent radical U C P. The stabilizer of the U-action on
X* is trivial, hence connected. Thus we get the following.

Claim 2.1. Let Y7, Y» be irreducible, normal varieties and p; : Y; — X quasi-finite
morphisms. Assume that there is an irreducible component

Z* C Y1 xx Yo xx X* andapoint z20=01,)) € ZCY xx Y,

such that dim Z* = dim Y| +dim Y — dim X and p; (y;) = xo, where Z denotes the closure
of Z*. Then, for general (g1, g2) € U x U, (hece also for general (g1, g2) € G x G), the
natural map

m1(g1Y1 Xx g2Y2,20) = m (Y1, y1) x w1 (Y2, y2) s
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(a) surjective if char k = 0 and
(b) surjective on finite quotients if char k > 0.

Note that we could consider instead the P-action, which has a usually larger open orbit
X° D X*. This gives the following variant.
Claim 2.2. Using the above notation, assume that

dim Y] +dim Y, > dim X + dim(X \ X°). (23.2.a)
Then the natural map
m1(g1Y1 xx 82Y2, 20) = (Y1, y1) x w1 (Y2, y2) s

(b) surjective if char k = 0, and
(c) surjective on finite quotients if char k > 0,

for general (g1, g2) € P x P.

Proof For dimension reasons there is an irreducible component Z° C Y; xx Y» xx X° that
contains a good limit point zg. Next we use the P-action to see that zg is also a good limit
point in gZ° xx X* for general g € P. Now we can apply (1). O

Results of this type have been considered in [5,9,10,22]. Our bound (2.2.a) is optimal in
some cases, but weaker in several of them. Using the full G-action, as in the above articles,
leads to further improvements, but we did not find a natural way to recover the bounds of
[5,9] in all cases.

Example 3 (Prehomogeneous vector spaces) A prehomogeneous vector space is a pair
(G, V") where V" is a k-vector space of dimension n and G C GL,, is a connected subgroup
that has a dense orbit W C V". See [13] for an introduction and detailed classification.

The infinite series of irreducible ones all have connected generic stabilizers. Using the
original Sato-Kimura numbering as in [13], the basic examples are built from

(1) (SL,, V™),
(2) (SL,, Sym? V"),
(3) (SL,, A2V™),
(13) (Sp,. V"),
(15) (O, V),

These lead to further examples by enlarging the group to contain the scalars or replacing
(G, V") with (G x SL,,,, V" ® V™) for certain values of m.

Most of the sporadic examples either have disconnected generic stabilizer or the connect-
edness is not known. A nice example is (E¢ - G, V27), which is no. 27! on the list. The
connected component of the generic stabilizer is F4. Since F4 has no outer automorphisms,
the stabilizer is F4, hence connected. See also [17,23,26,27] for several other examples.

Counterexamples

Example 4 Start with (GL3, Afm) and let Y1, ¥» C A3 be cones with vertex 0. Then g;Y; N
g2Y> conists of deg Y| - deg Y lines for general g1, go € GL3. Thus, so long as Y; and Y>
are not both planes, (g1Y1 N g2Y2)(0) = g1Y1 N g2Y> is reducible and the origin is a good
limit point.

1 27=27 is a coincidence.
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Example 5 Consider (G;”,,, Ai‘,z) and let let Y1, Y» C A3 be surfaces that contain the z-axis.
Usually g1Y] N g2Y> is reducible, having both moving and fixed irreducible components for
81,8 €G;,.

If Y1, Y> intersect transversally at the origin then the origin is not a good limit point, even
though g; Y1 N g2 Y2 may have non-empty intersection with the dense open orbit. For example,
this happens for Y1 = (y = x2), Yo=(x= y2).

In any case, the origin is a good limit point if Y1 NY> has an irreducible component Z that
passes through the origin but is not contained in a coordinate hyperplane.

Example 6 Suppose k has characteristic O (or at least has characteristic not equal to 2). Let
X C IP* be the projective cone over a smooth quadric surface with vertex xo. Let G C Aut(X)
be the identity component. Then, G acts with 2 orbits: {xo} and X \ {xo}. Let Y7 be a 2-plane
contained in X and containing xo. We claim that there is a divisor ¥, with xg € Y> C X such
that g1 Y|' xx g2Y;' is the union of a curve and a point for general (g1, g2) € G x G. Thus
one preimage of xq is a good limit point, the other is not.

The computation is local at x¢, thus we choose affine coordinates such that X = (xy—uv =
0). We can then choose Y1 = (x = u = 0). We choose Y> to be the complete intersection
(xy — uv = 4u — (x — y)?> = 0). We can eliminate « to get

Yo = (dxy — (x — y)zv =0) C A%
This is an irreducible hypersurface, but
dxy—(x == (x+y+VT+oex —»)(x+y—V1T+vkx—y)

shows that it is non-normal along (x = y = 0) and Y}’ has 2 points over the origin. We will
next show that only one of them is a good limit point.
A typical translate of Y| by G is (x — ¢~ 'v = y — cu = 0). Add these to the equations

x+yEV/THvx—y) =du—(x—y)?>=0
and eliminate u and v to get
x+yEJ/1+cx(x—y)=0 and (6.1)4c’ly—(x—y)2:0. (6.1)

Here (6.2) defines a curve whose tangent line at the origin is y = 0. With + sign, (6.1) defines
a curve whose tangent line at the origin is x = 0. So we get an isolated intersection point at
the origin. Finally,

V14+ex —1
= X—
Y V14+cex +1

satisfies both (6.1) with a + sign and (6.2).

Example 7 Suppose k has characteristic 0. For X = P" x P", consider G = PGL, 4| %
PGL, 41, Y] =P" x C,and Y = P" x H, where C C P" is a smooth projective curve of
positive genus and H C P" a hypersurface. Then dim Y; 4+ dim Y> = dim X + n.

For general (g1, g2) € G x G,

g1Y1Ng1Ys =P" x (deg C - deg H points).

Thus, the intersection is disconnected and its conected components are simply connected.
So, they do not contribute to the fundamental group of C and hence 71(g1Y1 N g2Y2, 20) —
1 (Y1, y1) has infinite index for any basepoint zg € g1 Y1 N g2Y5.
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Example 8 (Variant of [10, Example, p. 634]) Suppose k has characteristic 0. In X =
Gr(P!, P"), take G = PGL,,+ and consider

Y1 = (lines through a point) = P*~1,
Z; = (lines in a hyperplane L C P*) = Gr(P',P*~!), and
Y) = UcecZy,,

where C C P" is a smooth projective curve of positive genus parametrizing hyperplanes
{L¢ :c € C}. Then

dimY; +dimY, =dim X +n — 2.

The key property is that g Yy N g2 Z; is either empty or is isomorphic to P2, Thus, for
general (g1,82) € G x G, g1Y1 N g2Y5 is reducible and its connected components are
isomorphic to P"~2. So again they do not contribute to the fundamental group of C.

Example 9 Let k be a field of positive characteristic, take X = P2 with the standard action
of G = PGL3. Let ¥; C P2 be a line and let Y» C P2 be the complement of a line. A general
translate of an intersection of Y; with Y> is isomorphic to A, and the map g1Y1NgYs - 1>
is identified with the inclusion of a line A — AZ2. Hence, after applying an automorphism,
we may assume it is given by Speck[x, y]/(y) — Speckl[x, y]. This is not surjective on
fundamental groups because the pullback of the connected finite étale Artin-Schreier cover
W := Speck[x, y, t]/(t? —t — y) — Speck[x, y] is not connected.

Examples with disconnected stabilizers

We conclude by giving examples showing that m1(g1Y1 xx g2Y2,20) — mi(Y1,y1) X
1(Y2, y2) may be non-surjective when H is disconnected in the setting of Theorem 2. For
the remainder of the paper, we assume k has characteristic 0.

Example 10 If X as in Theorem 2 has nontrivial fundamental group, we can take Y| = Y> =
X, and the resulting map 1 (X, x9) — 71 (X, x0) x m1(X, x0) will fail to be surjective. By
applying Theorem 2, we conclude that H must be disconnected, and have at least 1 (X, x¢)
components.

For a concrete example of such a variety, take X to be the moduli space parametrizing
unordered pairs of distinct points in P2. Then X is homogeneous under PGL3. The open orbit
in X x X is formed by those ({p1, p2}, {p], p5}) for which no three points are on a line. The
stabilizer is Z/2 x Z/2. The space parametrizing ordered pairs of distinct points in P is the
universal cover of X. Thus 71(X) = Z/2.

We conclude by giving a somewhat more involved example where H is disconnected, but
nevertheless 1 (X, xg) = 1.

Example 11 (Constructing X and G) Let X be the moduli space of smooth plane conics in
P* over C. The group GLs acts transitively on X via its action on P*.

Choose coordinates xo, . . ., x4 and a reference conic Co = (x§+x12+x§ =x3 =x4 =0).
The stablizer of Cy is the set of matrices

5 GOs3 =
G.—{( 0 GLQ)}CGLS.
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Thus G is connected and so is G N SLs as shown by the retraction

A3 B d'A; B _
(0 A2> > ( 0 dAs where d = det A3 - det A,.

Thus X = SLs/ (G NSLs) is simply connected. Since we prefer faithful actions, our group
G C PGLs is the image of G.

For Z C P*, let (Z) denote the linear span of Z in [P*. Observe that G has a dense orbit
X° C X, consisting of those conics C1 so that (Cp) N (C1) is a point p and neither of the C;
contains p.

IfCi=@xy=x = x% + x% + xf = () then the stabilizer of the ordered pair (Cp, C1) is
the set of matrices

O, 0 0
H .= 0O 1 0 C PGLs.
0 0 O

Thus H has 4 connected components, which can be geometrically described as follows.
Set p := (Cop) N (Cy). From p one can draw two distinct tangent lines to each C;. Let
these tangent lines be {T(? , Tol} and {Tlo, Tll}. The H action permutes these lines, giving a
surjection H — Z/2 x Z/2.

Example 12 (Constructing Y| and Y;) Continuing Example 11, we next construct the subva-
rieties Y| and Y, C X.

Choose a point ¢ € (Cp) \ Cp and let Y1 := Y{(g) C X be the set of those conics C for
which g € (C) \ C. Then Y] is a smooth, locally closed subvariety of dimension 9 in X.

To construct Y», fix 2 distinct points x1, xp € Cp and general 2-planes S; such that x; € S;.
Let Y> := Y>2(S1, $2) C X be the set of conics C with the following two properties.

(1) We have that ¢; := C N S; is a single point and ¢| # c¢3.
(2) Let t(C) € (C) \ C denote the intersection point of the lines tangent to C at the ¢;.
Then t(C) € (Cyp) \ Co.

Givendistinctc; € S; and p € (Cp) \ Co, the set of such conics forc; = CNS;and t(C) = p
is a principal G,,-bundle whenever c1, ¢z, and p are not collinear. Indeed, the conics in P2
that pass through (1 : 0 : 0), (0 : 1 : 0) which have tangent lines at those points intersecting
at (0 : 0 : 1) are precisely the hyperbolas x1x; = kxg for A € G,,(C). Thus Y, is a smooth,
locally closed subvariety of dimension 7 in X.

The intersection Z := Y| N Y3 consists of those conics in Y> for which t(C) = ¢g. Thus
Z is a smooth, locally closed subvariety of dimension 5 in X.

Proposition 3 We use the notation of Examples 11-12. For general (g1,82) € G x G,
g1Y1 N g2 Y> is irreducible and the map

] (lel Ng Y, [Co]) — T (Y1, [Co]) has index 4.

Proof Note first that the group action sends Y1 (¢) to Y1 (g1q) and Y2 (S1, S2) to Y2(g2 51, £252).
Thus, letting Z = Y1 N Y, it is enough to show that

71(Z, [Col) = w1 (Y1, [Col) x 1 (Y2, [Col) has index 4.

The index is at most 4 by Theorem 2 because H has 4 connected components, as shown in
Example 11. We~n0w show the index is at least 4. Note that Y| has a connected degree 2
finite étale cover Y1 — Y| parametrizing pairs (C, ¢) where C € Y7 and ¢ € C is one of the
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2 points of C whose tangent line passes through ¢. Similarly, ¥> has a connected degree 2
finite étale cover parametrizing pairs (C, d) where d is one of the two points of Cp whose
tangent line passes through 7(C). Let g1 and g> denote the two points of Cop whose tangent
lines pass through ¢. Then, the restriction of the cover Y, 1 X Yz to Z splits into the 4 connected
components

Zij=1{(C,CNSi,q)) CZxX xyxr,(Y1 x Ya) for 1<i,j<2.

[m}

Acknowledgements We thank Brian Conrad and Zhiwei Yun for explaining the proof of Proposition 2,
Robert Lazarsfeld for pointing out Corollary 1, Laurent Manivel, Anand Patel, and Arpon Raksit for helpful
conversations, and Akihiko Yukie for long comments and references on prehomogeneous vector spaces. We
also thank Frangois Charles, Dougal Davis, Laurent Moret—Bailly, Wenhao Ou, Eric Riedl, Zev Rosengarten,
Jason Starr, Ashvin Swaminathan, and Ravi Vakil for helpful correspondence on an earlier version of this
article. JK was supported by the NSF under grant number DMS-1901855 and AL by the National Science
Foundation Graduate Research Fellowship Program under Grant No. DGE-1656518 as well as through the
program “Oberwolfach Research Fellows” by the Mathematisches Forschungsinstitut Oberwolfach in 2021.

Funding Open Access funding enabled and organized by Projekt DEAL.

Declarations

Conflict of interest Statement On behalf of all authors, the corresponding author states that there is no conflict
of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Borel, A.: On affine algebraic homogeneous spaces, Arch. Math. (Basel) 45 (1985), no. 1, 74-78. MR
799451

2. Catanese, F.: Topological methods in algebraic geometry, Colloquium De Giorgi 2013 and 2014, Collo-
quia, vol. 5, Ed. Norm., Pisa, 2014, pp. 37-77. MR 3379178

3. Catanese, F.: Topological methods in moduli theory, Bull. Math. Sci. § (2015), no. 3, 287-449. MR
3404712

4. Deligne, P.: Le groupe fondamental du complément d’une courbe plane n’ayant que des points doubles
ordinaires est abélien (d’aprés W. Fulton), Bourbaki Seminar, Vol. 1979/80, Lecture Notes in Math., vol.
842, Springer, Berlin-New York, 1981, pp. 1-10. MR 636513

5. Faltings, G.: Formale Geometrie und homogene Rdiume, Invent. Math. 64 (1981), no. 1, 123-165. MR
621773

6. Fulton, W., Hansen, J.: A connectedness theorem for projective varieties, with applications to intersections
and singularities of mappings, Ann. of Math. (2) 110 (1979), no. 1, 159-166. MR 541334

7. Fulton, W., Lazarsfeld, R.: Connectivity and its applications in algebraic geometry, Algebraic geometry
(Chicago, I11., 1980), Lecture Notes in Math., vol. 862, Springer, Berlin-New York, 1981, pp. 26-92. MR
644817

8. Goresky, M., MacPherson, R.: Stratified Morse theory, Ergebnisse der Mathematik und ihrer Grenzgebiete
(3) [Results in Mathematics and Related Areas (3)], vol. 14, Springer-Verlag, Berlin, 1988. MR 932724

9. Goldstein, N.: Ampleness and connectedness in complex G / P, Trans. Amer. Math. Soc. 274 (1982), no. 1,
361-373. MR 670938

@ Springer


http://creativecommons.org/licenses/by/4.0/

268 J. Kollér, A. Landesman

10. Hansen, J.: A connectedness theorem for flagmanifolds and Grassmannians, Amer. J. Math. 105 (1983),
no. 3, 633-639. MR 704218

11. Hironaka, H.: Stratification and flammess, Real and complex singularities (Proc. Ninth Nordic Summer
School/NAVF Sympos. Math., Oslo, 1976), 1977, pp. 199-265. MR 0499286

12. Jouanolou, J.-P.: Théoremes de Bertini et applications, Progress in Mathematics, vol. 42, Birkhduser
Boston, Inc., Boston, MA, 1983. MR 725671

13. Kimura, T.: Introduction to prehomogeneous vector spaces, Translations of Mathematical Monographs,
vol. 215, American Mathematical Society, Providence, RI, 2003, Translated from the 1998 Japanese
original by Makoto Nagura and Tsuyoshi Niitani and revised by the author. MR 1944442

14. Kleiman, S. L.: The transversality of a general translate, Compositio Math. 28 (1974), 287-297. MR
360616

15. Knop, F.: Mehrfach transitive Operationen algebraischer Gruppen, Arch. Math. (Basel) 41 (1983), no. 5,
438-446. MR 731620

16. Kramer, L.: Two-transitive Lie groups, J. Reine Angew. Math. 563 (2003), 83—113. MR 2009240

17. Kato, R., Yukie, A.: Rational orbits of the space of pairs of exceptional Jordan algebras, J. Number
Theory 189 (2018), 304-352. MR 3788652

18. Lazarsfeld, R.: Positivity in algebraic geometry. I, Ergebnisse der Mathematik und ihrer Grenzgebiete.
3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd
Series. A Series of Modern Surveys in Mathematics], vol. 48, Springer-Verlag, Berlin, 2004, Classical
setting: line bundles and linear series. MR 2095471

19. User 22479 MathOverflow, Homomorphism into reductive groups, MathOverflow, 2012, https://
mathoverflow.net/q/104266 (version: 2012-08-09)

20. Mori, S.: Projective manifolds with ample tangent bundles, Ann. of Math. (2) 110 (1979), no. 3, 593-606.
MR 554387

21. Sommese, A. J.: Submanifolds of Abelian varieties, Math. Ann. 233 (1978), no. 3, 229-256. MR 466647

22. Sommese, A. J.: Complex subspaces of homogeneous complex manifolds. I. Transplanting theorems,
Duke Math. J. 46 (1979), no. 3, 527-548. MR 544244

23. Springer, T. A..: Some groups of type E7, Nagoya Math. J. 182 (2006), 259-284. MR 2235344

24. Sumihiro, H.: Equivariant completion, J. Math. Kyoto Univ. 14 (1974), 1-28. MR 337963

25. Tits, J.: Sur certaines classes d’espaces homogenes de groupes de Lie, Acad. Roy. Belg. Cl. Sci. Mém.
Coll. in 8° 29 (1955), no. 3, 268. MR 76286

26. Wright, D.J. ., Yukie, A.: Prehomogeneous vector spaces and field extensions, Invent. Math. 110 (1992),
no. 2, 283-314. MR 1185585

27. Yukie, A.: Prehomogeneous vector spaces and field extensions. 111, J. Number Theory 67 (1997), no. 1,
115-137. MR 1485429

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer


https://mathoverflow.net/q/104266
https://mathoverflow.net/q/104266

	A Fulton–Hansen theorem for almost homogeneous spaces
	Abstract
	Proof of the main theorem
	Fulton–Hansen-type theorems
	Other applications
	Counterexamples

	Examples with disconnected stabilizers
	Acknowledgements
	References


