THE DISTRIBUTION OF INTERMEDIATE PRIME FACTORS
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ABSTRACT. Let P(%)(n) denote the middle prime factor of n (taking into account mul-
tiplicity). More generally, one can consider, for any o € (0,1), the a-positioned prime
factor of n, P(®)(n). Tt has previously been shown that loglog P(®)(n) has normal order
aloglog z, and its values follow a Gaussian distribution around this value. We extend this
work by obtaining an asymptotic formula for the count of n < x for which P(®)(n) = p, for
primes p in a wide range up to x. We give several applications of these results, including
an exploration of the geometric mean of the middle prime factors, for which we find that
Ly en<s log P<%)(n) ~ A(log )1, where ¢ is the golden ratio, and A is an explicit con-
stant. Along the way, we obtain an extension of Lichtman’s recent work on the “dissected”
Mertens’ theorem sums ZP+(")SZ}, O(n)=k % for large values of k.

1. INTRODUCTION

Starting with [10] various papers have considered the distributional properties of the “mid-
dle prime factor” of an integer. Suppose the prime factorization of an integer n > 1 is written
as

n = (J?QSQ T QZf;LT;) = P1P2 * - PQ(n);
with 1 < g < -+ < quw) and p; < pp < -+ < pop). Call Q(%)(n) = ([w(n)/2] the middle
prime factor of n without considering multiplicity and P(%)(n) = P[a(n)/2] the middle prime
factor of n considering multiplicity.
The study of the middle prime factor without considering multiplicity was first taken up
in [10], where the authors obtained an asymptotic for the reciprocal sum of the middle prime
factors of n up to z,

1 X
2 = o ((1+ o) V2Tog, 7oz )

1
1<n<z Q(Q)(n)

Here and throughout this paper we write log, x to denote the k-fold iterated natural log-
arithm. The above asymptotic was significantly sharpened by Ouellet in [23]; that paper
also considered the problem generalized to the a-positioned prime factor Q@) (n) = Qrawm)]-
In the remainder, we similarly define! P(®)(n) := Praom)]- (For convenience, we henceforth
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1As in our prior paper [21], we use a slightly different definition of the a-positioned prime factor than that
given before by De Koninck, Doyon, and Ouellet. They take the prime factor in position max{1, |a(Q2(n) +
1)|} rather than position [aQ(n)] as we do here. These two definitions often give the same position and
never differ by more than 1, and the results quoted here from other papers go through with either definition.
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define P (1) := 1.) The asymptotic formula for the reciprocal sum of the middle prime
factors considering multiplicity [12] is surprisingly different,

Zp(;)(n) B C\/I;UE (1+O (@))

n<zx

1 11
1 H 1_@1—‘[(1_5)2
p?—2p 1-2 1—4

3<q<p

9
fi licit tant ¢ =
or an explicit constant ¢ = NG ; : I
Despite their different reciprocal sums, both log, Q®(n) and log, P(*)(n) have normal
order alog, x (see [9]) and both of these values are distributed according to the Gaussian
law. In particular [8] shows for fixed € € (0,3), a € (0,1) and |¢| < (log, x)° that

1 log, P (n) — alog, x B t 1
x# {ngx. s <t} = <—a(1—a)> + O, (—\/@> (1)

where &(7) = \/%7 f_TOO e ""/2dy is the Gaussian probability distribution function.

Recently in [21], the authors of this paper studied the distribution of the values of P(®)(n)
in a variety of settings. In particular this a-positioned prime factor obeys Benford’s leading
digit law, and is equidistributed in coprime residue classes modulo ¢ where ¢ can be nearly
as large as, but not significantly larger than, (logz)®, for c¢(a) =1 — 27o/(1=a),

2. RESuULTS

In this paper we investigate the distributional properties of the function P®(n) in much
greater detail. In particular, we determine, for a wide range of prime numbers p, an asymp-
totic for the number of integers up to x that have p as the middle (or a-positioned) prime
factor. We define

M;a>(x) =#{n<ux: P(a)(n) =p}
and set

ﬁ — iong
0go X

(so that logp = (logz)?). Throughout the remainder of the paper, p and 8 will be related
by this expression. We first consider the middle prime factor (the case when o = %)

Theorem 2.1. Let € > 0 and suppose that p is a prime number, p — oo. Then if either
5<%—6 or%+e<ﬁ<1—ewehave

.
logs x x 1

1+ O, C if s +e< B <1 —F¢,
( ( logﬁ)) “plloga) VI o,z

1 log, p) /2
140, [ floear  Qogap) P (@ ifo<pB<l—e
\ log, x (logp)© p(logz)2=2"

2

SIS

(2)
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where

o [ 20=28) — 3
= PI()1(+ i}ﬂ; 2\/\%;‘153/4 “Hm (1 - é) ﬁ (1 - ;ﬁﬁ ) )

362 1
1+ ———) =1.523555....
H ( Q(q—2)>

q>2 prime

While the expression for the constant Cz above depends on 5 in a complicated way, we
observe that €1 = 2

1

The difference in the asymptotic formulae for Mp(i)(x) in the two ranges of 8 considered
above is largely a manifestation of the difference in the asymptotic behavior of the sum of
reciprocals of p-smooth numbers having &k prime divisors, in the two cases when k/log, p
is less than or greater than 2 (and bounded away from 2). For k& < (2 — €) log, p, work of
Lichtman [20] (Theorem 5.1) provides the desired information, while in Theorem 5.3, we
extend Lichtman’s result to the case k > (2 + €) log, p.

We can similarly obtain a version of this theorem that holds for general o, however we
need to introduce some additional notation before we can state this theorem.

First define the constants (depending on a and /3)

(1 - Oé) ﬁ 1

and V=2 T-a

X 1= B ’

expressions which appear frequently in the statements below. We also define p, o, and p, q,

= iy e

where {#} = 6 — 0] denotes the fractional part of a real number, and ¢ will be taken to be
either x or v. Note that p, , = 1 whenever o = f3, since in this case x = 1.

The constant p., is the long term average of c raised to the fractional part of the integer
multiples of 1 — a. As such, the behavior of these sums depends on whether « is rational or

irrational. If 1 —a = { is rational with ged(a,b) = 1, we find that

1b—1 " 1 ife=1
pra=g 2 =y ol
i=0 b(cl/b —1)

On the other hand, if o # f is irrational, it follows from the equidistribution theorem (see
the proof of Lemma 4.7 below for more explicit statements) that

1
—1

Pe,a = / Ctdt = < .
0 log ¢

1 1
1+27a(al—1) Ll+via=1)

Finally, we define the value

ﬂa =
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As we will see below, for fixed o, the behaviour of M,§a> (x) has a phase transition for 4 on
either side of this value, analogous to the transition at g = % when o = % Note that 8, < «
for all v € (0,1).

We can now state the following generalization of Theorem 2.1.

Theorem 2.2. Fiz e > 0 and o € (0,1). Suppose that f € (0,1) satisfies either 0 < f <
bo—€ or B+ €< B <1—c€ and that « is rational. Then we have, as x,p — 00,

( N
(1 + Oa,e ( IOgS .ZU)) - COZE’IO::EB — 'lf Ba _|_ € < ﬁ < 1_ €,
%827 )) pllogz)'~(2) (50) 7 flog, @

loggfz:i (long)*% C.x .
1+ O 2 0<f<fa—c¢
\<+ ’<<1°g25’3) T Qogp)® ) plogay-rrzas FO<H<hamc
a—1

a—1_ .« §a_ a— —1
O V(T =x®) X2 oy H (1 B l)x (1 X 1)
P T A+ x%) 2ra(l — B) , q q ’

prime

_ py,aev(%u ) 1
Co= 2(1 = a)T(1 + ve) 11 (1 T aa- 2)) '

q>2 prime

M (x) =4

where

The dependence of the implied constants on o comes from the distance of a from 0 and 1,
as well as the size of the denominator of a.

The same asymptotic equalities hold true (without any effective error term) for each fized
irrational . For almost all o in this range, they hold with an explicit multiplicative error of

140 (logs 33)3/4(10&1 x)HE + 1
- (logy 2)'/4 (log p)«(logy p)t/2 )

Finally, for any parameter £ = o(1) as x — 0o, we have, uniformly in 5 € (¢,1 — €) and

ae(f-EB+E),

a . 1Og3[)3 Cﬁﬁl‘
M15>(q;)_ <1+O<5+,/10 x)) 2 () .
82 p(logz) ~\a) \1-a \/log,

Here the implied constant is independent of «.

The obstruction to uniformity for irrational o comes from known bounds on the dis-
crepancy of the Kronecker sequence {(1 — a)n})_;, see the proof of Lemma 4.7. However,
adapting some of the arguments for the above result, we can also give the following bound

on M,ga)(a:), which is completely uniform in all @ € (0,1) and in § away from 0 and 1.

Theorem 2.3. Fiz e € (0,1/2). We have uniformly for a € (0,1) and 5 € (e,1 —¢),
T
p+/log, T

It is worth noting that the above bound is best possible in its range of uniformity, since

equality is attained in the case o« = [ itself (as seen from Theorem 2.2). Moreover, as the
4

M@ (z) <

p
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proof will show, the bound in Theorem 2.3 can be improved to a power saving in log x, either
if av is close to 0 or 1, or if 3 lies in (6, B, + 9) for any ¢ fixed small enough in terms of €.

Because of the presence and behavior of the p., terms, the constants C, and Cs, above
(the latter being viewed as a function of « for fixed §) have the property of being continuous
at every irrational, but discontinuous at every rational value of «, except at o = 5 (if 5 is
rational). At this value, when o = 3, the constant C, , above simplifies to

1
2ra(l — «)
whether « is rational or not. Using this, the normal distribution of the a-positioned prime

factor (1) follows as a corollary. In fact we can improve the error term in that expression to
the following.

Corollary 2.4. Fiz a € (0,1). We have, uniformly for all real t,

1 logy P(n) — alog, x B t (logs )/
x#{ngx. s <t}—®<—a(1_a)>+0a (—\/@ . (4)

The proof proceeds by partial summation over primes of M;go‘) (), combined with the
methods used in the proof of Theorems 2.5 and 2.6 below.

We can similarly derive as a corollary a description of the distribution of the relative
position of a fixed prime p among the prime divisors of integers divisible by p. For an integer
n that is divisible by p, we write n = p; - - - po(n), where

a,a:

Pr<p2<- < pPp1 < P=Pk < Prt1 <00 < Pan) (5)
so that p is the k-th smallest prime factor of n (and if n is divisible by p?, we take the largest
index corresponding to a factor of p). For such an n we then denote by R,(n) = ﬁ the
relative position of p among the prime factors of n. It isn’t hard to show that the normal
order of R,(n)is f = log”) ; we show that it is in fact normally distributed around this value.

Theorem 2.5. Fix e > O. We have, for x > 10

ﬁ#{n<x pln, %q}_@(ﬁ)JrOE(m), (6)

uniformly in € (e,1 —€) and all real t.

We conclude with one more application of Theorem 2.1. If we denote by Pg(n) the k-th
largest prime factor of n, Dickman [11], de Bruijn [5, Eq. 5.1] and later Knuth and Trabb
Pardo [19] investigate the average value of log P (n) and find, for each fixed k, that

—Zlogpk = (Dg +o(1)) log
n<lx
where the Dy are constants and in particular D; = 0.624329... is the Golomb-Dickman
constant.?
This result can be interpreted as saying that “on average” the largest prime divisor of an
integer n has just under 5/8 as many digits as n, and for any fixed k the k-th largest prime
’In fact, L 3" log P(n) = Dylogz + Dy (1 — ) + O (exp(—(log 2)3/57¢)), see [25, Exercise 290).

n<x

5
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factor of n has, on average, a fixed, positive proportion of the number of digits that n has.
Tenenbaum [24, Corollary 4] considers this same average for the least prime factor P~ (n)
and shows (for a complicated but explicit constant A~) that

1
T Z log P™(n) =e loglogx + A~ + O (exp(—(log a:)3/8*6)) .

We investigate the same problem for the middle (or a-positioned) prime factor of n.

Theorem 2.6. Let ¢ = %5 be the golden ratio, and o' =1 = p —1 = @ = 0.6180...
its reciprocal. The average value of the logarithm of the middle prime factor of the integers

up to x satisfies
1 1 ) (logy x)%/?
Enggm log P(z')(n) = A(log z)? (1 +0 (%)) (7)

— 1 AN
P H<1——> (1—£> — 1.313314. ..
! D

and ! =T(p+1)=T(p—1)=T(¢).
Note that ¢ is one of the solutions to the equation I'(z + 1) = I'(z — 1).

€

where

Remark 2.7. One can similarly generalize this to other values of a. Using Theorem 2.2 one
can similarly derive that for any fixed 0 < a < 1 we have 1 3" _ log P(®(n) ~ A, (log z)"

where B, = max{ﬁ—i—( ) (=2 a) 1}

0<B<1

n<x

2.1. Background on the distribution of the j-th smallest and largest prime factor.
Other authors have investigated the distribution of intermediate prime factors from a slightly
different perspective than that considered here, namely by considering directly the j-th
smallest prime factor of an integer. We include here some of the notable results from this
perspective for comparison.

Most directly comparable to our work is the work of Galambos [14], extending work of
Erdés [13], which shows the following. As before, let p; = p;(n) denote® the j-th smallest
prime factor of n counted with multiplicity as in (5). If j = j(z) tends to infinity with z,
while also satisfying the bound j(z) < log, # — (log, x)*/?*¢, then, for any real ¢ as z — oo,

%#{nﬁx:%\/(;)_j<t}=q)(t)+o(l)'

We can compare this to the result (1) from [8] (as well as our strengthening in Corollary
2.4). Since most integers n have approximately log, n prime factors, the a-positioned prime
factor typically has index about j7 = aloglogn. Thus, comparing the a-positioned prime
factor P (n), to the j = [alog,n]-th prime factor p;(n), we note that both log, P (n)
and p;(n) are distributed according to the Gaussian law around alog, x, the former has a
smaller standard deviation by a factor of v/1 — «.

3Here we consider p;(n) = oo if j > w(n).
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Galambos and De Koninck [6] and later Granville [15] investigate further the sequence of
consecutive intermediate prime factors of an integer and show, for almost all integers, that
the sequence log, p; of intermediate prime divisors can be interpreted as a Poisson process.

Finally, we note that much more is known about the distribution of the j-th largest prime
divisor Pj(n) than what was mentioned above. In particular, Billingsley [4] and Knuth
and Trabb Pardo [19] show that log Pj(n)/logn is distributed as the j-th coordinate of the
Poisson—Dirichlet distribution. As discussed further in our concluding remarks, our results
don’t encompass the full range of prime divisors—in particular they don’t apply to the jth
largest prime factors (our results require 5 bounded away from 1). It would be interesting
to better understanding the transition in behavior between the intermediate prime factors
and these large prime factors.

Notation and conventions: Most of our notation is standard. We continue to use P*(n)
for the largest prime factor of n (with P™(1) = 1) and we use P~(n) for the smallest prime
factor of n (taking P~ (1) = o0). We say n is y-smooth if P*(n) <y, and we call n y-rough
when P~(n) > y. Given a set of primes E, we use 2g(n) to denote the number of primes of
E dividing n, counted with multiplicity; explicitly, Qg(n) = Zpan’ vep k. We also denote
by E(x) the sum of reciprocals of the elements of £ up to x, that is, E(z) =3 . x1/p.

Implied constants in < and O-notation may always depend on any parameter declared
as “fixed”. In particular, they depend on « and e unless stated otherwise. For rational «,
the dependence on a will come from the distance of o from 0 and 1, and the size of the
denominator of a. For fixed quantities 0 and e, we shall write § <. 1 to mean that ¢ € (0,1)
may be fixed to be sufficiently small in terms of e (we shall be using variants of this notation
with § and e replaced by other fixed parameters). We write log, = for the k-fold iterate of
the natural logarithm.

3. THE EXACT MIDDLE PRIME FACTOR

Let M,(x) denote the number of integers n < x with Q(n) =1 (mod 2), and whose exact
middle prime factor is p. In order to present our argument in as simple a manner as possible
we will first prove the following theorem, which may also be of some interest in its own right.

Theorem 3.1. Let € > 0 and suppose p — oo, = iggii. Then if either B < £ —¢€ or
%+6<B<1—6 we have

( logs x — x 1
1+ 0O, — C if s +e< B <1 —F¢,
< (V log, )) “plloga) VD iogyw

\
—1/2\\ _
1y, [ fresr lomn) TAVE  © g1
\ log, © (log p)© p(logz)2=2"

Nl

(8)
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where

7(1_2ﬂ) 1—
0 U)o ()
8= - = - :
2/m(1 — B)3/4
r (1 + %) ﬁ( 5) q prime q

IS 1
C = 1+—) — 0.507851 . ...
4y/T 11 ( q(q—2)

q>2 prime
Analogously to M,(z), we can define M ,(7) to be the count of those integers having
an even number of prime factors, and whose middle prime factor is p. M, (r) satisfies an

expression identical to (2) above but with different constants C's and C' in place of Cpand C
respectively, namely, C's = 6/3, / % and C = 2C = 1.015703. ... Summing the expressions
for M,(z) and M (x) gives the expression for M,(x) in Theorem 2.1.

4. TECHNICAL PREPARATION

Before proving our main results, we state several results which will be used in the proofs.
We begin with the following consequences of the classical results of Sathe—Selberg and Nicolas
concerning the distribution of numbers with a given number of prime factors (see, e.g.,
Theorems 6.5 and 6.6 in p. 304-305, and Exercise 217 of [25]).

Lemma 4.1. Fiz 6 € (0,1). For all sufficiently large values of x,

z  (logyx
1
Z < logz (k—1)!

)k—l

n<x
Q(n)=k

uniformly for positive integers k < (2 — §)log, x, and

xlogx
Z 1< 9k
n<x
Q(n)=k

uniformly for k > (24 6)log, .

The following lemma belongs to the study of the ‘anatomy of integers’, and makes precise
the claim that Qp(n) = > x, ,cpk is typically of size >~ cp1/p, uniformly across all
sets of primes E. Although the statement below is slightly more general than Lemma 3.1 in
[21], the same proof goes through; also compare with Theorem 08 on p. 5 of [16].

Lemma 4.2. Fiz ¢y € (0,1),Co > 0. Let x > 3 and let E be a nonempty set of primes with
smallest element pg. With E(x) = 1/p, we have, for 1 <y < min{Cy, (1—¢€)pr},

p<z, peE
Z l < zexp(—E(x)-Qy)),
n<x
Qp(n)>yE(z)

where Q(y) = ylogy —y + 1 and the implied constant is absolute. When 0 < y < 1, the
same inequality holds with the Qp(n) condition replaced by Qg(n) < yE(x).
8
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We denote by ®(x,y) the number of integers n < x whose least prime factor P~(n) >y
and where Q(n) = k. The following two results of Alladi provide estimates for ®y(z,y) in
different ranges of y.

Theorem 4.3 (Alladi [1], Theorem 7, see also [2]). Fizr > 0 and set u = }zgz, = logl'z—'y'

Then uniformly for exp((logy, z)?) <y < /T and 1 < k < rlogu, we have*

Buny) T (ogwt! (1+OT<#>).

Clogx T(14+€)  (k—1)! Viogu
Theorem 4.4 (Alladi [1], Theorem 6). Fiz € € (0,2) and set p = I(I)Cg_gl;r' Then uniformly
for 3 <y <exp ((logz)*?) and 1 < k < (2 — €)log, x, we have

By(.y) = xg(y,p)  (logya)*! (1+O (k(log2 y)2))’

Clogx T(1+p)  (K—1)! (log, x)?
where
oI I0) (0)

The truncated sums of the exponential series (and twists thereof) will play a starring role
in our arguments. The following technical result provides the groundwork for estimating
such sums.

Theorem 4.5 (Norton [22], Lemmas 4.5 and 4.7). Let v, 0 be positive real numbers. Then
k

PO e—ll_e)exp((R(—Q) 1)) (9)

k<(1-0)v u(

and

exp ((R(0) + 1)v) (10)
E>(1+6)v

where R(0) =60 — (6 + 1) log(f + 1).

We will be making more frequent use of the following consequence of Norton’s estimates.

Lemma 4.6. Suppose W > 0 is sufficiently large and that E = o(W?/?) as W — co. Then

Wk W1/2 E2 Wk: W1/2 E?
Z e < 7 exp (W — W) and Z N < 7 exp <W - W) :
0<k<W—E E>WAE

We note that these estimates can be interpreted as bounds on the tail probabilities of a
Poisson distribution with parameter WW.

Proof. For any parameter § = o(/W~'/3), we have

R(—0) + 1= (1—6)(1 - log(1 — ) = (1 — ) <1+9+%2+0(93)) = 1—%2+0(93).

4Note that while Theorem 7 of [1] is stated only for k < (2 —€) logu, the concluding remarks of that paper
point out how that restriction can be weakened to the version given here.
9
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Consequently taking = E/W = o(W~'/3), we deduce from (9) and the above estimate that

Wk Wk €W 1 ) W1/2 E2

0<k<W-E E<(1-0)W

establishing the first of the claimed estimates. The proof of the second is analogous. 0

We conclude this section with an estimate on certain ‘twisted’ versions of the truncated
sums of the exponential series, which arise in the arguments of Theorem 2.2.

Lemma 4.7. Fiz e, o € (0,1) with « rational. Then we have, uniformly in B € [B,+€,1—¢]
and in V, E — oo satisfying V'/? < E and E = o(V?/3),

Vk B V1/2 E2
Z ﬂx{(l kY — s {1 +0 (e ceV 4 7 eXP (_W)>} (11)

V—-E<k<V+E

where c, > 0 1s a constant depending only on «. With the same restrictions on o,V and E,

VL(A—a)k] p eV E V2 E?
VI ey _ Pre E B
(= a)k]!” R B Ry eXp( 2V) - (12)

The implied constants in the two formulae above depend at most on the distance of a from
0 and 1, and the size of the denominator of c.

The above asymptotic formulae also hold true (without any effective error term) for a fized
irrational o € (0,1), and with a multiplicative error of

E3/2 1 1 1+e 1/2 E2
1+0 ( % + 28 V(Eofgév) + VE exp <_W>) for almost all o € (0,1).  (13)

Finally, given €, V, E as above and a parameter £ = o(1), we have

Vk V1/2 E2
Z ﬁx{(l_a)k} — 6V {1 +0 (5+ = exp (_W>> }’ (14)

V-E<k<V+E
uniformly in € (,1 —¢) andina € (6 —E,8+E).

&

V-FE k< v+

l—a — —«

Proof. We first consider the case when a € (0, 1) is rational. We start by writing 1 —a = a/b
for some coprime positive integers a, b, so that b > 1. Then the sum on the left hand side of
(11) is equal to

> NI SINCTRE S ‘;_f (15)

VngkSVJrE : r mod b V—-E<k<V+E
k=r (mod b)

By the orthogonality of additive characters, the inner sum on k is (writing e(z) = ")

1 rl (Ve2m‘f/b)k
5 6(7) 2.

V-E<k<V+E

1 rt 2mil/b vvl/2 E?
=3 e(—b)exp(Ve )+O (e 7P| =57 ) |-

10
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Plugging this back into (15) and interchanging sums yields

k
3 Vo
!

V—-E<k<V+E

. 1/2 EZ
- {ar/b} 27rz€/b {ar/b} _T_'g VV =
Z X + - Zexp ) Z X e( b>+0<e z exp( 2V>)

r mod b r mod b

1 ajl V12 E?
_ vV, - 27rz€/b ]/b |4 .
Px.a€’ + 2 ;Zl exp(V E X ( ) +0 (e 7P |~ 5y

where @ € Z denotes a multlphcatlve inverse of @ mod b, and we have noted that as r runs
over the different residues mod b, so does ar. The inner sum in the last display is O(1), so
that the sum over ¢ above is < e(!=¢)V with ¢, := 1 — cos(27/b) > 0. This completes the
proof of (11).

In order to show (12), we start by setting m = | (1 —a)k], so that m € (V —E—1,V + E]
and m/(1 —a) < k < (m+1)/(1 — «). This last condition automatically implies that
kel (V-E)/1-a),V+E)/1—-a)forallme|[V—EV+ E —1|. The remaining m
are of the form V + 0F + O(1) for some 0 € {£1}, so that for such m,

E2

1 1
h(m) :=mlogV — mlogm+m—§10gm V_§10gv_ﬁ+0()

and by Stirling’s formula,

e <h(m) - %log(%r)) (1 +0 (%)) Velvﬂ exp ( 2E;> . (16)

which is negligible compared to the error term in (12). Hence, up to a negligible error, the

sum in (12) is equal to
Vm
R {(A—a)k}
E - E v . (17)

_ T m +1
V—E<m<V+E QS’K%
Now, for any positive A < B, we see that

Z -k} _ Z ,lar/b} Z 1= (B—A)p,q+O0(1). (18)

A<k<B r mod b A<k<B
k=r (mod b)

Defining L := /V/E, we partition the interval [V — E.V 4 E] into [2E/L| equal length
subintervals I, so that each subinterval has length 2E(2E/L + O(1))™! = L + O(V/E?) =
L + O(1). For any subinterval I of length L + O(1) and any two integers my,my € I,
Lagrange’s Mean Value Theorem implies that there exists m’ € [mq, ms] satisfying

oh E 1 EL

whereby another application of Stirling’s formula reveals that

Z, ) ‘;:! <1 Lo <EVL>) _ ZZ‘ <1+0 (@)) . (19)

11
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As such, fixing some integer m; € I and letting L; and R; denote the least and largest
integers in I respectively, we see that the contribution of all m € I to the sum (17) is

vm vV /E

mel m m+1 L Rr+1
© 170‘Sk< 1o l—Ia Sk< 1I_a

(18) Pra |E Vi
N 1—a<1+0< V))Lm[!
(19) Pra | E v
N 1—a<1+0< V))Zm!’

mel

Summing this over all I, and using Lemma 4.6 to extend the sum on m, we obtain (12).
Now, given a parameter & = o(1), we see that y = (1—«a)f/(1—)a = 1+ O(E) uniformly
for B € (e,1—¢) and a € (B—&, B+E), so that x1(1=¥k = exp({(1—a)k}logx) = 14+0(E),
and Lemma 4.6 completes the proof of (14).
Finally, in order to establish the assertions corresponding to both (11) and (12) for irra-
tional a € (6,1 — €), we carry out the above argument with L := E'/2. By (19), the sums in
(11) and (17) are respectively equal to

;Z( (1 <E3/2)>Z {1—e)k} 419 Z — ( (%/2)) Z pl=—a)k}

kel Ly Rr+1
l—a §k< 11—«

where (as before) the outer sums are over the |2E/L| equal length subintervals I partitioning
[V — E,V + E], and k; and m; are some integers chosen from 1.

As such, it only remains to estimate the sums ), _; A=)k} yniformly over intervals
J C [V—E,V+E] with length |.J| — oo, where ¢ € {x,v}. Since the sequence {(1—a)k}32, is
uniformly distributed mod 1, this sum is ~ p. ,|J|. In fact, by Koksma’s inequality (Theorem
5.4 in [17]), we see that

1
10{ _ tdt
|J|+0 Z" /

where Var(t — ¢") denotes the total variation of the function ¢ — ¢ on [0, 1) and Disc({(1 —
a)k : k € J}) denotes the discrepancy of the sequence {(1 — a)k : k € J}. By Khintchine’s
bound (Theorem 5.15 in [17]), the above discrepancy is < log L(log, L)'/ L for almost all
a € (0,1), while Var(t — ¢') = |c— 1] < 1. Carrying out the above simplifications in reverse
completes the proof of the lemma. O

< Var(t — ¢') - Disc({(1 — o)k : k € J}),

5. MERTENS’ THEOREM DISSECTED

We will need the following result of Lichtman estimating the sum of reciprocals of smooth
numbers with a given number of prime factors.

Theorem 5.1 (Lichtman [20, Theorem 4.1]). Fiz ¢ > 0, and set r := —— and

=IO 0

p
12
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As y — 00, we have, uniformly for k < (2 — €)log, v,

1 1 k k
S L= (1 ‘o, <—<10 )2)) |
Pt (A)<y ' &2Y
Q(A)=k

It will also be helpful to have some upper bound for the above sums that is valid for all
values of k. Such a result can be obtained by an application of Rankin’s method.

Lemma 5.2. We have uniformly for y > 3 and integers J > 1,

1 J .5
>, 7 < grlogy. (20)
PH(A)<y
Q(A)=J
Proof. For any 0 < z < 2 we have
1 _J ZSUA) _J z\ 1 2\
S e T (- (-
Pt (A)<y Pt(A)<y 3<p<y
Q(A)=J
2 1 27 .
< 5 eXP (z Z —) < 2_Z(logy) :
3<p<y

Taking z = 2 — 1/J and noting that (1 — 1/2J)~7 < 1, we obtain the desired estimate. [J

We will also need a version of Lichtman’s theorem (Theorem 5.1) for “large” values of k,
namely those where k > (2 + ¢€) log, y. In fact, we show that (20) above essentially gives the
correct order of magnitude (up to the factor of k in the numerator) for such k. This result
can be viewed as an extension of Lichtman’s result on dissecting Mertens’ theorem for very
large values of k. We define

oo 13 ()

p>2
so that ng(z) = (1 — z/2)n(z) for all z # 2.
Theorem 5.3. Fiz ¢ € (0,1/2) and A > 1. We have uniformly for y > yo and (2 +
V5e)logyy < k < (logy)' />,

1 log?y 1
— =n(2)—— O )
L2 AT <” (aong—logzy)) =

Q(A)=k

Note that

n(2) = — ] (1 - zﬁ) = 1.201303. ...

p>2

Proof. In what follows, let €, == v/5e. We adapt the proof of [25, Theorem I1.6.6]. The sum
on the left hand side of (21) is the coefficient of 2* in the function

Q(n) -1
I ((CH
e n p
n: Pt (n)<y P<y

13
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which is holomorphic on the disk |z| < 2 —€/2. As such, the sum in (21) equals

1 2\ dz
— 1—-— .
B I((EE =

|z|=2—¢ P<Y

By the Prime Number Theorem (with the usual La Vallée Poussin error term),

I1 <1 - 1>Z _ " (1 + O(exp(—K logy))>

s\ p) (logy)

for some absolute constant K > 0. Moreover, for |z| < 2 — ¢, we have

I1(1-3) (1-5) =ow (S {em(-3) - (1 5)}) =0 ()

P>y P>y
Consequently,
1 lo Rz
—=I1+0 (exp(—K logy)/ % ]d2|> , (22)
PH(A)< A |z|=2—¢ |Z’
<y
Q(A)=k
where

_ 1 n(z)(log y)* log’y 1 n(z)(logy)*
I =— \%\ —— 2" dz = 770(2> ok - % T dz (23)
|z]=2—¢ |z|=2+€1
since the residue of the function n(z)(logy)?/z**1 at the simple pole z = 2 is precisely
—10(2) log? y/2*. The error term in (22) is < (logy)? ¢ exp(—K+/logy), which is negligible
compared to the error term in (21) since k < (logy)'/2~¢. Moreover, the last integral in (23)
1s

(logy)*te

(2+ el)lf\/logﬂ/7

where we have used the fact that fo% eres?dh < /v for all A > 1 (see [25, p. 302]).
Finally, since k > (2 + €;) log, y, the last expression in the above display is

= (log y>2+€1 ( 2 )k < (log y)2+61 < 2 )(2+61)log2y
2k /logay \2+€e1) ~ 2k /log,y
log?y ~ log?y 1
= ————(logy) "V <« 7
2% (logy)<\/logy y

2k/logy y

where we have noted that for e € (0,1/2), we have ¢; = v/5¢ € (0,1.6), so that

7(€1) ::2{<1—|—%>10g<1+%1>—%}Z%ZE-

Collecting estimates completes the proof of the theorem. O
14

1o Rz 1 2m
< 7{ (leszl‘dd < m/o exp((2 + €1) logy y cos 0) df <

|z|=2+€1
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Remark 5.4. Although this shall not be essential for us, it is worth noting that the range
of k in Theorem 5.3 can be extended to (2 + ¢,)log,y < k < (logy)Y/?~¢ for any positive
parameter €, < 1.6 depending on y: In fact, we can show that in this range of £,

1 log?y { 1 63
— =1,(2)—==1314+0 | ——=-exp | =2 log,y ,
P+%;§y A 2 ey\/@ ;

Q(A)=k

where the €2/5 may be replaced by €2/4 if ¢, < (logy y)~'/* and y is sufficiently large.

In order to show this, we carry out the above argument until (23) with e replaced by e,,.
In order to bound the corresponding analogue of the last integral in (23), we note that since
n(z) has a simple pole at z = 2, we have n(z) < 1/|z — 2| < 1/||z| — 2| = 1/¢, on the circle
|z| =2+ ¢€,. The above calculations now show that this integral is

log? exp(— lo log? 1 €2
< gk y exp(—7(e,)logy y) gk y exp (__y log, y>
2 eyv/10gy y 28 e,4/logyy >

if ¢, € (0,1.6). If ¢, < (logyy)~'/3 (and y > o), then we may note that 7(e,) = (2 +
ey)og(l +¢€,/2) — ¢, = € /44 O(e)) = . /4 + O(1/log, y), allowing us to replace € /5 by
ej /4 in the last bound in the above display. 0

6. PROOF OF THEOREM 3.1

We assume throughout that < 1 —e. We start by letting K = 1.02/log2 ~ 1.4715,
and note that by the second assertion in Lemma 4.1, the number of n < x divisible by
p which have more than 2K log, z prime divisors is < x/p(logx)1% which is negligible
for our purposes. Hence, it remains to show that the asymptotic formulae claimed for
M () hold true for the number N, (z) of positive integers n < x having Q(n) =1 (mod 2),
Q(n) < 2K logy x and p(a(n)+1)/2(n) = p.

Any positive integer n > 1 counted in N,(z) can be uniquely written in the form n = ApB
for some positive integers A < z/p and B < z/Ap with PT(A) < p < P~(B) and with
Q(A) = Q(B) = k, where Q(n) =2k +1 > 1. As such,

D=1+ ¥ Y Y= ¥ Y oo ( ) (24)

k<Klog,x A<z/p B<xz/Ap 0<k<Klogyz A<z/p
P*(A)<p P~ (B)>p Pr(A)<p
Q(A)=k Q(B)=k Q(A)=k

We first consider the case p > exp((log, x)?), or equivalently 3 > 3logsx/log,z. Since
Ap® < p*3 < exp(3K log, v(log 7)'~¢) < /2, we have p < \/x/Ap, and Theorem 4.3 yields

Z Z x/Ap e 4a(loguy)F ! (1 e ( 1 )>
k<Klogy,xz A<zx/p log I/Ap (1 + gA)(k - 1)' vV log UaA
Pt (A)<p

Q(A)=k

15
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where uy = % and {4 = logukAffy‘ Now since log(Ap) < (k+1)logp < log, x logp, we
have log <Aip) = logx (1 +0 <logfozligp )) Consequently, recalling that u = ﬁi’ we obtain
1 1 1 1
ug=ul14+0 D627 06D — (logus)"" = (logu)* ' (14+0 0627 08P :
log log
where the implication above uses the fact that logu = (1 — f)log, z > elog, z. Likewise,
& = f(l—l—O (%)) where £ = ﬁ, so that e = ™% (1—1—0 (%)), and by

Lagrange’s Mean Value Theorem,

r(1+60 =10+9+0 (122) —ra+g) (1+0 ({22 ).

Collecting estimates, we now obtain

. 1 e (logu)*! L
8 plogz ( (vlogﬁ)) k<1§ggzr(1+5) (k=1 P*%;SpA
Q(A)=k

where we have recalled that for any k < K log, z, we have p**! < z for all sufficiently large

x, which implies that any A counted in the inner sum above is automatically < x/p.

We now write N,(z) = N,1(z) + Np2(x), where N, ;(x) is defined by restricting the outer
sum in (25) to k < (2 —6)logyp = (2 — §)Blogy x for some § € (0,1), to be chosen small
enough in terms of € (all our statements henceforth will be valid for all 6 <, 1).

Estimation of Np1(x): In order to estimate N, ;(z), we invoke Theorem 5.1 to estimate
the inner sum on A. This shows that N, ;(z) is

T 1 1 k e % (logu)*~t (logy p)*
140 +
plogx ( (\/10g2$ 10g2p>) 2 (loggp) F+¢) (k=1 &

k<(2—4)logy p

_ r 110 1 N 1 Z ( k ) ke ¢ <2k) w?k
plogzlogu Vd0og,z  logyp e n logop/) T(1+&) \ k /) (2k)!

2—6) logy p

where we have defined

w = \/logulong = \/B(l — ) log, x,

the geometric mean of logwu and log, p. We will find that the values of k£ which are most

significant in the sum above are those with k ~ w.
22k

By Stirling’s estimate, we see that (Qkk) = 7 (1 + 0 (%)), hence

T 1 1
Npa(z) = w/2plog x logu (1 Y (, /log, x * loggp)>
ko kY2e¢ (2w)?F 1
> 1) rvg o (O (5) @

k<(2-0)logy p

16
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Now invoking Lemma 4.6 with W = 2w and F = 6y/wlogw =: 2w’, we see that
Z < k > ]{31/26775 (2w)2k
g I
k<min{w—w’,(2—4) log, p} 10g2p F(l + g) (Qk)
1/2 (2w)™
<w Z m)!
m<2w-—2w’
p2w - (log x)2 B(1-p)
wi/logw — (logy x)*(logs x)*
where we have noted that w = +/B(1 — B)log,x > BY?log,x > +/log, zlog;x since

3logsx/logy,z < f < 1 —e. This shows that the total contribution from k£ < min{w —
w', (2 —0)log, p} to the right hand side of (26) is

1 x
log, x logg $)4 p(log x)l_Q\/m log,

<

(27)

<1

which is negligible in comparison to our error terms in either of the two cases § < 1/5—¢€ or
ge(1/5+¢€1—c¢). (For § <1/5— ¢, we make use of the easy fact that 1 —2,/5(1 — 3) >
1/2—3p/2 for all 8 € (0,1).) In particular, for § < 1/5— ¢, we have (2 —d)log,p < w —w/’,
hence the above argument shows that the count N,;(x) itself is absorbed in the claimed
error term.

Now if 5 € (1/5+¢,1—¢), then the total contribution of k € (w+w', (2 —§) log, p] to the
right hand side of (26) is, by another application of Lemma 4.6,

) L k1/26*’Yf (2w)2k
< Jlogzlogd > "\log,p) T(1+ &) (2k)!
wtw' <k<(2-6) log, p ? |
z+/1o 2w)™ !
NI N

plogxlogu <

x
> 2wt2u m! (logy 2)%4/logg @ p(log x)* 2V BU=5) | /log, x

which is again negligible in comparison to the error term. (Here we have noted that w =

VB(1 — B)logy x < log, x.)
In the same range of 3, we find that the interval [w—w’, w+w'] gives the main contribution
to the sum in (26). For & in this range we have

B B [logs

-1
1 _ _k _ 8 log, x

and so throughout this range we find that & = Toe (1 — 1ogu> = /m +0 ( /logzx) and

r \/ % +0 <~ / —}Ziii) From this a routine calculation shows that for all such k& we

logop —

can write
k /2 B Ui (\/%) exp (—’Y\/%) Vw 140 log, x
n<10g2p> r1+¢) F<1+ %) < * ( logza:))'
17
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Consequently, for 8 € (1/5+¢,1 — ¢), the contribution of k € [w — w',w + w'| to N,1(z) is

T 1 k k12778 (2w)?*
o rloeu | 1T 2. i (1 2k)!
Vplog zlogu Viegaw ) ) o2 \1082D (1+&) (2k)!

16 /15
W) v (o fomr v
AT (1 " / )plogxlogu log, © o ST (2k)!

Cp ( —{—O( /log3x>>
p(log 2)' 2,/B(1-5) Tog, © log,

vgohere we have used Lemma 4.6 to extend the sum over all values of k& and noted that
DAL A Y T € 1+ O(e~"). We have thus established that

= (2k)! 2

( C'Bx lOgS z e 1

+ 0 “— 1f—+6<5<1—57
24/ B(1-8) / < < log T 5

Npa(z) = pllog )™ logy @ i (28)
L 3logg x
© if =288 < Bl ¢
\ <p(10g x>1/2—3ﬂ/2 (1Og2 xr 10g3 .’17)4) 1 logy ﬁ 5 €

Estimation of Nya(x): We recall that

Npa(z) =

T 1 e (logu)*! 1
1+0 < )) E E —.
/ — 1)
p lOg v ( 10g2 L (2—9) logy p<k<Klog, = F<1 T+ é) (k 1) PH(A)<p 4

Q(A)=k

For g € (1/5+¢€,1 —¢€), we invoke Lemma 5.2 to obtain

loguw)* 1t k
Z (log u)

:UlogQ:vlogzp Z vk
(k—1)! 2k

Npa(z) < plog x K

lo
plogx o8'p A
(2—6) logy p<k<Klog, x k>(2-9)logy p

where v == llogu =< logyz. Defining § so that v(1 + 6) = (2 — §)log,p, we see that

2
0 = i(/Qﬁ__&l) — 1= 1. An application of (10) now yields

zlogy, vlog’p exp (v(R(6) + 1))
plogx NG
7/logy w(log @) exp ((152) (3521 — log (352 ) log, @)
plogx

xy/logy (29)

1-2,/B(1-B)+F(8,5)

N,

p,2<x) <

<

p(log z)

where F(8,5) = 2/B(L— B) — (4~ 5)3 + (2~ 5)3log (22).
We claim that for any § <. 1, G(9) = infgepi/sie1-g F(B,0) > 0. Indeed, since F

is continuous on [1/5 4+ €,1 — €] x [0,1], so is G on [0, 1]; hence it suffices to show that
18
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G(0) = infgen/s4e1-q F(B,0) > 0. But this in turn is an immediate consequence of the
observation that F (%, 0) = 0 and that

4B
F(5.0) = 2/FTT =) - 45+ 2010 (125
is strictly increasing for 5 > % This proves our claim. As such, for any fixed § <, 1 and
c=c(e,6) € (0,G(6)/2), we see that F'(3,0) > 2c¢ for all 5 € (1/5+¢,1 —¢), leading to
x

p(log I)H\/ﬂ(lfﬁnc

Np72($) <

for all such .

Now suppose 3logs z/log, © < f < 1/5 — € and set v = 2y/vlogv. We proceed as in (27)
to bound the contributions of k € ((2—9)log, p, v —v'|U v+, K log, z] in N, 2(z). Indeed,
invoking (20) to bound the sum of 1/A, we see that this contribution is

xlog?p Z (logu)t~' k. xlog®p Z (logu)*~' k
plogx (k—1)! 28 plogx

(k— 1)1 2

(2—6) logy p<k<v—2v’

xlog, xlog? p vk vk 1 x
L —M—— — -
K plog a Z k! + Z X < log, 7/log, = p(log z)1/2-35/2

k<v—v' k>v+v’

v+v'<k<Klog, x

which is negligible in comparison to the error term. Finally we use Theorem 5.3 to estimate
the contribution to N,»(z) from the range (v — v/,v 4+ /). To do so, we choose ¢ < 3
sufficiently small so that (24 /5¢g) log, p < v—2'. For sufficiently large x, the choice €y = €

suffices. Hence, the sought contribution is

" 1 e (log u)kil 1
1+0 A
plogz ( <\/10g2 x)) v_v,<2k;U+v, ra+¢ (k-1)! P+§§p A

Q(A)=k

_ no(2)e 2 xlog’p 110 logs = N 1 Z vkt
2F<3/2) p IOg T 10g2 T (log p)fo A /10g2 P ot vt (l{}—l)' ’

where we noted that for all k& in the above range, £ = 1/2 + O(y/logs z/log, ), so that
e ¢ = e 2(1 + O(y/logs x/logy x)) and T'(1 + &) = T'(3/2)(1 + O(y/logy v/ log, z)). The
constant in the last display above is exactly C, while the sum on v is e”(14+O(1/v?\/logv)) =

(log 2)20=8) (1 + O(1/(log, z)2\/logs x)) by Lemma 4.6. Collecting estimates, we have now
shown that

[\

T

p7 —_—
Cu flogsz  (logyp)™2\\ . a1
1 O f 0g3 T < < l — e
P(logx)“?’ﬁ)/?( i ( logoz | (logp)® if Toger <P <5-¢€

(30)
Since Ny(x) = Np1(z) + Npa(x), (28) and (30) together complete the proof of Theorem 3.1
in the cases 3110(;% <f<1l/5—cand1/5+e<f<1—e¢
19
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It remains to consider the case 8 < 3logyx/log, z, that is, p < exp((log, )?). In this
case, an application of Theorem 4.4 to (24) yields®

T (log, p)2)> g9(p,p) (logyz)** 1
p( ) plog x ( log, x kglgggm P(l + N) (k - 1)' P+%;§p A ( )
Q(A) =k

where we have noted, as before, that log(z/Ap) = log z(1+O(log, z log p/ log x)). Proceeding
as in the case 3logsx/log, v < f < 1/5 — €, we see that the contribution of k& < %long —
3y/1og, xlogs x and k > 1log, z+3/log, xlogy x to (31) is < z/p(log x)'/2~2%(log, x)® which
is absorbed in the error term since (logz)%/? < (log x)31°83%/21%82@ — (log, x)3/? < (log, x)*.
Finally, the contribution of the remaining k is, by Theorem 5.3, equal to

2
no(2)zlog”p (o [logsz 1
2 plogx logoz  (logp)e©\/log, p

Z 9(p,p) (5logyx
Fl+p) (k—=1)
% logy x—3+/logy x logg $<k<% logy 2434 /logy x logz

_ M(2)g(p, 1/2) x /logs x 1
2I'(3/2)  p(logx)t/2=2¢ (1 o ( log,z (log p)=+/log, p))

by a final application of Lemma 4.6 and the observation that y = 1/2 4+ O(y/log; z/ log, x).
By Mertens’ Theorem, we have g(p, 1/2) = e~"/?(log p)~"/2(1 + O(1/log p)), completing the
proof of Theorem 3.1.

)k:—l

X

6.1. The middle prime factor when Q(n) is even. Recall that for those integers having
an even number of prime factors, we define the middle prime factor to be the smaller of the
two possible choices. As such, in order to modify the proof of Theorem 3.1 to handle M (),
we note that if Q(n) = 2k, and P2)(n) = p then we may write n = ApB where p = pi(n),
QA)=k—-1,Q(B) =Fkand PT(A) < p < P7(B). Assuch, the same arguments in Theorem
3.1 go through only by changing all the conditions Q(A) = k to Q(A) = k — 1. The only
notable effect of this change in our arguments is that in the case 8 > 3logsx/log, x, the
expression for N, 1(z) has (log, p)*~1/(k — 1)! in place of (log, p)*/k!, and so by a change of
variable k +— k — 1, we obtain the following analogue of (26):

Noal?) = Sy loga (1 o (W " kw))
e k1267 (2u)2F 1
2 liag) ravg e (o 6):

k<(2—6)logy p—1

Here the contributions of k¥ < min{w—w’, (2—0)log, p—1} and of k € (w+w’, (2—9) log, p—1]
can be bounded as before; starting with the trivial bound k%2 < 1, we see that this

"Here it is important that our choice of K was less than 2.
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contribution is®

1 T
(logy z)4(logg )® p(log z)'~2V/B01=5) \/@.
All other sums are handled exactly as in the proof of Theorem 3.1, and the final result

of having Q(A) = k — 1 in place of Q(A) = k is that our constants C3 and C (that had

arisen for the exact middle prime factor) are multiplied by /(1 — 5)/5 and 2 in the cases
pe(1/54+¢€1—e€)and € (0,1/5 — €) respectively.

<

7. THE «a-POSITIONED PRIME FACTOR

We now generalize Theorem 2.1, giving a proof of the more general Theorem 2.2. The
proof closely follows the proof of Theorem 3.1, and so in many places we only describe the
extra ideas necessary in the more general case and elaborate only on the differences with the
arguments of Theorem 3.1.

Proof of Theorem 2.2. As before, we assume throughout that § < 1 — e. This time at
the outset, we distinguish between the cases § > 3logsx/log,x and f < 3logs z/log, x,
considering first the former. With Ky := 2.04/log2, Lemma 4.1 shows that the n < z
with p|n having Q(n) < k, = max{2/a,2/(1 — a)} or Q(n) > Kjlog, z give a negligible
contribution to our count; hence it suffices to establish the claimed formulae for the number
N (z) of n < x with Q(n) € (ka, Kolog, ] and P (n) = p. We factor each such n with
Q(n) =k € (ka, Kolog, x], uniquely as n = ApB with PT(A) < p < P7(B), Q(A) = [ak] -1
and Q(B) = k— [ak] = [(1 — a)k], and use Theorem 4.3 to estimate the count of B’s given
A. This yields

1 T e € (logu)l-a)kl=1 1

N () = (1+0< )) >, > 7

» flogyw ) ) ploge,  G= T+ (1-a)k] -1 L = A
Q(A)=[ak] -1

(32)
with &€ = (1 — a)k|/(logu — 7). As before, we write N\ (z) = Nzﬁﬁ)(a:) + NZS%)(JU), where
N]Ei)(x) is defined by restricting the above sum to k, < k < (?) log, p for some 6 > 0
which will be fixed to be small enough in terms of e.

Estimation of Néi)(x): By Theorem 5.1,

(a) B 1 1 T
N,y (z) = (1 +0 ( Tos, @ + log2p>> logzlog ulog, p
[ak] 1Y e kY (log u) L=k (log, p) [*#]
< X (M) gl -k (1) T '

lo
ka<k<(23%)loga p B2l

@

(33)

6In order to obtain the correct power saving in log, = for even (n), it is important to truncate the sum
on k to [w — ay/wlogw,w + ay/wlogw] for some fixed ¢ > 2. Our choice a := 3 when defining w’ was
convenient, but larger a would work just as well.
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Now since k > k,, we see that 0 < [am ok < ;. Consequently,
[ak] log[ak] — [ak] log(ak)

B [ak] — ak [ak] —ak 1
and likewise

(1= k] togl (1 = a)k] = L(1 = )kl og((1 ~ a)h) = L(1 ~ @)k ~ (1= )k + O (),
so that, by Stirling’s estimate,

(3 )< a0 00) b (1))

[k ] [ak] ekl | (1 — a)k | L(A-ak] = qlak] (1 — o) la=o)k]

Consequently, (33) yields

a 1
N()a:

1 1 x
ot (T) = (1+O<\/@+log2p>> V2ra(1 — a) plog zlog ulog, p
[ak] =1\ e [ak][(1 - a)k] w* (o an L
£ (R e (o R) oo

lo
25 log, p g2 P

ka<k<

where we set w = Q. glog, x wWith Qqp = (g)a (ﬂ)l_a. Note w > % log, x > log, p.

-«
Letting F,, := 6+4/w log w, we see that the total contribution of the terms k£ < min {w—Ew,
(%) long} to the expression in (34) is, by Lemma 4.6,

T /log2 Z k' x+/log, p 1 (35)

p plogzlogu u, p(log 2)'=Qas log, = (log, p)'®

which is negligible in comparison to all the claimed error terms as 1—Q, 5 > 1-25—v*(1—/)
for all a, 3 € (0,1).” In particular, for 8 < 3, — €, this shows that NZE,O{) (x) is absorbed in
the error term. On the other hand, in the case § € (6, + €,1 — €), the contribution of
ke (w+ By, (2 )10g2 p] is bounded by the same expression as in (35), and thus is also
negligible. Finally, in the same range of § and for any k € [w — E,,w + E,], we have
k = w + O(FE,); hence, calculations analogous to those carried out for the exact middle
prime factor reveal that the contribution of all such k to the sum in (34) is

logs Csa x w* (-a
Lo [lear)) G S e )
08 T Px.a plogxy/logy x w—Fy<k<w+Ey,

The corresponding assertions of Lemma 4.7 now show that in the case § € (B, +¢€,1 —¢€),

N;E,Oi) (x) satisfies the claimed asymptotic formulae for N,ga) (). The same estimate for N,Ea) (x)

"This follows from the observation that for each value of o € (0,1), the function H,(8) == 283 + v*(1 —
e j e
B) — (ﬁ) (%) >0 for all 8 € (0,1). Indeed for all such 3, 8;% > 0, so H,(5) is convex on (0,1)

and has a unique minimum in (0,1). Since 6(%* gep, =0= H,(Ba), it follows that H,(8) > Hy(Sa) = 0.
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holds true uniformly for 5 € (e,1—¢) and a € (5 —E&, f+E), in which case, for all sufficiently
large =, we have o > €/2 and 8 > 3, + €1 /2 for some ¢ > 0 depending only on e. Moreover
in this case, we see that Cso/py.a = Cpp(l + O(E)), since Cpo = py.oH(a, 5) for some
function H(«, 3) differentiable on the compact set [e/2,1 —€/2] X [¢,1 — €].

Estimation of Nz()f;) (x): To finish off the case 5 > 3log; x/log, z, it remains to show that

N, (O‘)(x) is negligible for § > 3, 4+ € and that it satisfies the claimed asymptotic formulae for

p,2
MZSO‘) (x) when € (3logs x/log, x, B, — €). Indeed, for 8 > B, + €, (20) shows that
log” p ko (logu)l0-akl—1
N(a) z .
p2 () <0 2 2% (1= a)k] — 1!

(2%5) logy p<k<Kplog, x

rlog, x Z 1 (logu)ld-akl+

< e - .
log z)1—26 Qak 1—a)k|+1)!
ploga) = 2 e (k] D)

xlog, v
< p(log x)1—28 Z m!
m><2a;5) (1—a)logy p

where we have defined v = v*logu = v*(1 — f)logyz and set m = |(1 — a)k] + 1 in
the last equality above. (Here it is important that there are < 1/(1 — «a) < 1 many
values of k giving rise to a value of m.) Considering # € (0,1) satisfying (1 + 0)v

(£2) (1 — ) log, p, an application of (10) reveals (by a calculation analogous to (29)) that

Nzgg) (z) < zy/log, x/p(log )1~ @es TH(@ED) where

s (3) (1)
a0 o (-9 25}

As such, it suffices to show that for any fixed ¢; > 0, there exists €5 > 0 (depending at most

on € and ¢€;) such that G(J) = inf F(a, 3,6) > 2¢, for all § <., 1.> But
(a.f)€ler,1—e1]x[Ba+te,1—€]

since F' is continuous on [e1, 1 —e1] X [Bo+€,1—€] x [0, 1], so is G, and it suffices to show that
G(0) > 0 or (by compactness) that F(«, 5,0) > 0 for each («a, ) € [e1,1 —€1] X [Ba+€,1—¢].
This in turn follows from an analysis of the first two partial derivatives of F' with respect to
3 on the interval (8,,1).”

Coming to the case § € (3log; x/log, x, By — €), a straightforward adaptation of the prior
computations (invoking Lemmas 5.2 and 4.6) shows, with E, := 6+/vlogv, the Contribution of
k€ ((2)logyp, 5E2) U (4, Ky log, z] to N( )(x) is < x/p(log z)' =20~ (1=F)(log, z)'7,
which is negligible in comparison to the cla1med error (here we have noted that v < log, z).

On the other hand, since f < [, — €, we have % > (%%)loggp for any ¢ <. 1.

8Notice that this includes both the cases of fixed and varying o conbidered in Theorem 2.2.
9ndeed, it is easy to see that for each value of o € (0,1), we have 2 aBQ > 0 for all 8 € (B4,1). Hence, %
|/3 5. = 0, it follows that F(a, 3,0) itself is an increasing

function of 8 on (B4,1). In particular, we have F(«, 8,0) > F(a, B4,0) = 0, as desired.

an increasing function of § on (34,1). Since 2 o5
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Consequently, (21) shows that the contribution to NZSZ) (z) from k € [4=2e wtle] jg

l-a’ 1-«

loggx | (logyp) ™%\ \ 2n,(2)v* exp(—y*) x
(1+()<\/1<>w+ (log ) )) T+ plogay® ~0h 07

La—ak| rq—
where the sum S(v) = Z”fﬂ’ﬁkﬁvﬁi” my{(l @)

k} is estimated by the corresponding

assertions of Lemma 4.7. This completes the proof of the theorem for 8 > 3log, x/ log, .

It remains to consider the case 5 < 3logs x/log, . This time we first fix €1, €, € (0,1/2)
which satisfy (2 —€;)/(1 — @) > 2 + €,'% and remove the n < z divisible by p which have
Q(n) > K, log, x with K, == (2—¢€,)/(1 —a); the number of such n is < z/p(log z)K1082-1,
which is negligible in comparison to the error terms claimed for § < 3, — € (here, the
constraint ¢; < 1/2 ensures that K,log2 —1— (1 —25 —2v(1 — f3)) > ¢ for some € <, 1).
Hence, it suffices to show the claimed asymptotics for the number N,Sa’(;c) of n < z having
Q(n) < Kylog, x and P (n) = p. Writing each such n as ApB exactly as before, Theorem
4.4 allows us to estimate the number of B given A (in order to apply the theorem, it is
crucial that (1 — a)K, is less than and bounded away from 2). We deduce that

N}ga)(x):(HO((long)?)) Ty 9(p, 1) (logy a) -k 3 %

log, x plogz & e 1+ p) ([(1—a)k] = 1)! ol
Q(A)=[ak] 1

(38)
with p = ([(1 — a)k| — 1)/logy x. Setting v = v*log, z < log,x and E’ = 61/v'logv’,
analogous calculations as before show that the k < (v —E')/(1—«) and k > (v'+E')/(1—«)
give a contribution < z/p(log z)!=2#7"" (log, #)'7 to the sum in (38), which is absorbed in
the error terms since (logz)""? < (logz)31°832/10827 = (log, z)3 < (log, x)°. Finally, since
B =o(1), we have ak > (2 + €1) log, p for all k € [”1:5, ”fjg/} An application of Theorem
5.3 reveals that the contribution of such k to the sum (38) is equal to

[logsz  (logyp) ™2\ \ 2n,(2)v*g(p, v*) x ,
(HO( logy | (logp)” F(1+ve)  p(loga)=25 S,

where the sum S(v') = > %V{(l_“)k} is estimated by Lemma 4.7. This
S kgt |
concludes the proof of Theorem 2.2, upon noting that g(p,v*) = % (1 +0 <1O;p)).

8. PROOF OF THEOREM 2.3

We claim the following bounds, which together imply the assertion of the theorem.
(i) Fix 6 € (0,€). We have uniformly for 5 € (¢,1 —¢) and a € (0,e =) U (1 —e+0,1),
x

M(a) r) <L ——
(=) p(log z)°

p

(39)

101t is clear that such e, e; > 0 can be fixed only in terms of « if « itself is fixed, or only in terms of € if
a€ (/2,1 —€/2).
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for some constant ¢ = c(e, §) > 0.!
(ii) Fix 6,09 > 0 satisfying

1

1
0<é6<-—(1-Bg——
—2( Bess 2 — 2ugs

) <eand 0 < d0p <1 —2v 8 — (Beys +0)(2 — 2ves),

o1
where v g =2 75 = 9757, Then we have, uniformly for a € (i, 1— —),

( )1(ﬁ)a(xl_ﬁ)1a\/l_ uniformly in g € (B, + 9,1 —9),

o pllogx a/ \l-a 08y T

M (z) < Slog, o (40)
p(log ;)50 uniformly in S € (6, 5, + 4.

Theorem 2.3 follows by invoking (i) for a € (0, §)U(1— £, 1) along with (i) for o € ({,1—9).
Hence, it remains to prove (i) and (ii).

To show claim (i), we first remove all n with |Q(n) — log, x| > (6/4) log, x, noting that
the number of such n is < x/p(logx)°* for some constant ¢; = ¢1(d) > 0. Indeed, with E,
denoting the set of all primes, Mertens’ second theorem shows that Eo(z/p) =3 ., 1/( =
logy x + Cy + o(1) for some absolute constant Cy > 0. As such, any n with Q(n) < (1 —
d/4)logy x or Q(n) > (14 /4)log, = can be written as n = mp for some m < x/p either
having Q(m) < (1 — §/4)Ey(x/p) or having Q(m) > (1 + 6/5)Ey(z/p), hence Lemma 4.2

shows that
i
1 1< 1 1< —
Yoo Y s Y Y et
n<z:pln n<z:pln m<x/p m<z/p
Qn)<(1-6/4)logyx  Q(n)=(1+6/4)logy x Q(m)<(1-6/4)Eo(z/p)  m)=(1+6/5)Eo(z/p)

It thus remains to show that (39) holds true for the count of n < z having P(®)(n) = p and
|Q2(n) — logy x| < (§/4) log, x; in the rest of the proof of claim (i), we only consider such n.

Suppose first that a € (0,e — d). Then, since p > exp((logx)), any such n has at least
[(1—a)Q(n) |[+1 > (1—a)Q(n) > (1—e+0)(1—=5/4) logy > (1—e+d)(1—05/2) log, x+1 many
prime divisors (counted with multiplicity) greater than exp((logz)¢). Hence, any such n can
be written as n = mp for some m < z/p having Qg(m) > (1 —e+6)(1—4§/2) log, x, where E
denotes the set of primes exceeding exp((log z)°). Since E(x/p) = > . ((oga)e)<t<asp 1/{ =

(1—€)logyxz+o(l) < (1 —€e+0/4)log, z, we obtain, by defining p, == % > 1 and

again applying Lemma 4.2,

> 1< > 1 < z

n<z: P (n)=p m<z/p p(lOg ZL‘) !
Q(n)>(1-6/4)logy = Qp(m)>peE(z/p)

for some constant ¢; = ¢;1(€,0) > 0. This shows claim (i) for all & € (0,€ — ).

Likewise for a € (1—€+4, 1), since p < exp((logz)'~¢), any n with Q(n) < (1+4§/4) log, x
that is counted in Mé“)(x) has at most [(1 — @)Q(n)] < (e — )(1 + §/4) log, x many prime
divisors (counting multiplicity) greater than exp((logx)'~¢). Denoting by E’ the set of such

H1n the rest of this section, we shall write C(e, §) to mean a constant C' depending on € and 4.
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primes, we see that E’'(z/p) > (e — §/4) log, x. Consequently, with v, = % € (0,1),
Lemma 4.2 yields

T
1< 1 -
2t 2 N g
n<z:P(® (n)=p m<z/p
Q) <(1+5/4)loggr Qs (m)<veE (x/p)

for some constant co = ca(€,0) > 0. This completes the proof of claim (i).

We now establish claim (ii) by closely following the proof of Theorem 2.2. To begin,
defining K := 2.04/log 2 and k. = 8/¢ = max{8/¢,8/(4 — €)}, Lemma 4.1 again shows that
the contribution of n with Q(n) < k. or Q(n) > Kylog, z are both negligible, making it
sufficient to show the claim with Mzgo‘) (x) replaced by the count N,SO‘) (x) of n < x having
P@(n) = p and Q(n) € (ke, Kolog, z]. Since o € (£,1 — £), proceeding as in Theorem 2.2,
we obtain

(@) () — 1 T e~ (IOgU)L(lfa)kjfl l
N, (x) = <1+O< /log2x>>p10gx ) T(1+&) ([(1—a)k] —1)! P+%<p T

ke<k<Kology x

Q(A)=[ak]-1

Bounding the sum on A by Lemma 5.2 and proceeding as before, we see that, uniformly for
a€(§,1—9) and B € (6,1 —¢), we have

k (log u) [((1—a)k]-1
N@(z) <« —2 ——log?p-
plogx k€<k§;0log2x 20k (11— a)k] —1)!
rlog, x Z 1 (logu)ld-ak]
p(log z)'~2

20k |(1—a)k]!
xlog, (2u, logu)™ xlog,

pllog )% 2=l pllog )22 1-)

ke<k<Kolog, x

<

where v, = 27/(1=%) and we have set m := [ (1—a)k], noting that there are < 1/(1—a) <, 1
many possible values of k corresponding to a given value of m. Now with § chosen as in
the statement of the claim, we see that § < ¢ < 1—16, so that the function a — 1 — 2y, —
(Ba+6)(2 — 2v,) is monotonically increasing on (£,1— £)."* As such, for all 8 < 8,46, the
exponent of log z in the above display is 1 —2v, — (2 —2v,) > 1 =204 — (B +0)(2 —2v4) >
1 — 205 — (Beys +6)(2 — 2v¢/5) > 0o, showing the second assertion of claim (ii).

Finally, in the case a € ({,1— %), 8 € (8o +0,1—6), we can follow the proof of Theorem
2.2 (in the case 3 > f, + €) more closely: writing N* (z) = ngﬁ)(x) + ngf;)(x) with the two
summands defined analogously, we again see that ngf;)(a:) is negligible in comparison to the

error term, while the corresponding analogue of (34) holds true for Nﬁ) (x). However at this

211 fact, the function a — 1 —2u, — (Ba +6)(2 — 214 is increasing on (0, 1), for each fixed § € (0,1/16).
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point, invoking the trivial bound

Z . (foz/ﬂ - 1) e [ak]|(1 —a)k| w* (1-a)k}

log, p K

T(1+¢) k12 RS

ka<k<(252)logy p

k
w

< (logy )% E F < ¢"(log, )*?
E>1

reveals that
x

p(log x)l_(g)a(%) - \/@
uniformly for o € (§,1—%) and 8 € (8, +9,1—0). Hence the same bound holds for Néa)(x)
as well. This establishes our claims, and completes the proof of the theorem.

N[Ef){) (r) <

)

9. PROOF OF THEOREM 2.5

We start by observing the following simple and useful bound on the tails of the Gaussian
integral: for all X > 0, we have

- X o0 o
1 1
/ e du = / e 2 du < —/ ue " du = —e X2, (41)
We first prove the theorem for —y/logsx <t < (/logsz. We claim that with
t
A=0+

«/log2x7

the left hand side of (6) is"®

p plog,z [ () 1
= 1= M — . 42
IR R L (et 2

n<z:pln
Rp(n)<A

To this end, we shall make frequent use of the following estimates

xXr
> 1< i (43)

n<z:p|n
Q(n)ﬁ% logq x

x
1€ ——. 44
2 e o

n<z:p|n
12(n)—logy o> (logy 2)*/
The estimate (43) is a direct consequence of Lemma 4.2 since any n < z divisible by p
having Q(n) < g log, x is of the form n = mp for m < x/p having Q(m) < 1 logy(x/p) (for
all sufficiently large x). The estimates in (44) follow from the Hardy-Ramanujan Theorem
written in the form »° (Q(m) — logQ(x/p))2 < xlog, x/p, since any n counted in those
two sums is of the form mp for some m < x/p satisfying |Q(m) — log,(z/p)| > (log, )%/

13In fact, the arguments in the proof show that this identity holds true uniformly for all real ¢, but we
shall not require this.
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Turning now to the proof of the estimate (42), we first note that since the number of n < x
which are divisible by p? is O(z/p?), it suffices to show that (42) holds true with M\ (z)

replaced by the count M,**(z) of n < x exactly divisible by p (meaning p|n but p*{ n) for
which P (n) = p. Any such n has R,(n) = [af2(n)]/Q(n), that is, R,(n) — 1/Q(n) < a <
R,(n). Consequently,

A min{\,Rp(n
/ Méa)*(x) da = /
0 Rp(n)—1/Q(n)

n<x: pHn
Rp(n)<A+1/Q(n (45)
1 1
- L A—R -
L amt L (mmeag)
n<z:p|n n<z: plln
Rp(n)<A A<Rp(n)<A+1/Q(n)

For any n counted in the second sum above, we have |R,(n) — A| < 1/Q(n), which shows
that this sum is

1 1
< > o < > 1+10g2x > 1. (46)

n<z:p|ln n<z:pln n<z:p|n
ARy (n)<A+1/Q(n) Q(n)<ilogyw A<Rp(n)<A+1/Q(n)

By (43), the first of the two sums is < z/p(log z)°**. Any n counted in the second sum has

PM(n) = p and so, since |\ — B < (/1222 it follows from the final assertion of Theorem
82 T

2.2 (for a € (B — &, B+ E)), or from Theorem 2.3, that My (z) < z/p+/log, x. Hence, the
last expression in (46) is < x/p(log, ¥)*2, and (45) yields

= 3 0 () = X a0 ()

n<a:p|n n<z:pln
Rp(n)<A Q(n)ew
Rp(n)<A

(47)
where W = (log, « — (log, 2)?/3,log, = 4 (log, 2)?/3) and in the last equality above, we have
invoked (43) and (44).

Finally, since any n counted in the last sum in (47) has Q(n) = log, #(1+ O((log, x)~/?)),
it follows that the sum is

1 1 1 T
- log, x <1+O <(log2 x)1/3)> Z L= log, x Z 1+0 <p(log2x)4/3)

n<z:p|n n<z:pln
Q(n)ew Rp(n)<A
Rp(n)<A

by carrying out our earlier simplifications in reverse. Consequently, (47) yields

(@)% ( _ X
[ o= i 3 10 ()

n<x: p|n

Rp(n)<A
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establishing our claim (42) uniformly for all ¢ € [—y/logs x, \/logsz]. Hence in order to
complete the proof of the theorem for all ¢ in this range, it suffices to show that

3/2
/MO‘ Y= —2 o[t ) 4o Ueen) (48)
plogy x B(1—5) (logy )'/2
uniformly for all such ¢.

Now for t € [—4/logs z, \/logs x|, we have 3 — & <A < B+ € where € = \/log; z/log, .
Furthermore, for all « € (6 — &, + &) we again find ourselves in the final case of Theorem
2.2, an application of which yields,

A 10g i C €T A B g\l1-a
M) da=|1+0 ([ b.b (log x (2)° (=) 7 da
sge (@) ( ( log, = plogxy/log, x Ja— 5 82)

To analyze the integral above, we note that for all a = g+n e [ —E&,8+ &,

alog <§> (1—a)10g<1_§> = —(B+n)log <1+%> —(1—p—n)log (1-%)

2

B Ui 3
spa—g o)
so that (g)a (t—a)l_a =1- ﬁ{f_—ﬁ) + O(n?), leading to
8y (1=gyite n*log, x (logs )32

As such,

A log, x)%/2 Cs s A=h n?log, x
M (z da:(l—l—O(( 3 )) B.p ex (——2)d
e (=) (log, x)1/2 logyx J ¢ P 26(1 - B) 7
140 (log, )/ x W) 7'2 q
+ 1/2 1 logg x 9 5
(log, @) plogyx v27r ’/5<f’3ﬁ

Invoking the bound (41), we obtain, uniformly for ¢ € [—4/log; z, \/log; x|,

B+t/+/logy " ' (1Og x)3/2
@) () day = 3
/,85 My (w)d plog, x {CI) ( 5(1_5)) +0 <(10g2x)1/2)}’ (50)

where we have noted that exp (— log; 7 ) < (1ogi o7 since B(1 — ) < 1/4.

268(1-p)
We now show that the contribution to the integral in (48) from « outside [f — &, +
t/+/log, x] is negligible. To that end, we start by noting that by an argument analogous to
the above, we have

1
M@ () do = ——— + 0 (L) 51
/0 p (@) plogy x p(logy x)? (51)
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uniformly for 8 € (e,1 — ¢€). Indeed, it again suffices to show the above to be true with
M (z) replaced by M®*(z), and by a computation similar to (45), we find that

[rwae=Y g =Y g +0(5) = ¥ gm0 (3)
pln

< m<z/p
pln

1 1 x x T
= 2 am ol 2 amete _pb&x+ogﬂ%ﬁy>

l<m<z/p l<m<z/p

where in the last equality, we have invoked Theorems 5 and 14 in [7], in the weak forms
5 ne, 1/2n) = @/logyx + O(c/(logy2)?) and 3,.,., 1/2n)* < /(log, x)* respec-
tively._14 -

Comparing (50) with (51) and taking ¢t = 4/logs x we obtain

B—E& 1
/ M (z)da + / M®) (z) da
0 B+E

_ - log, = Lo (:U(log3 x)j/j) < z(log, x)j/z’
plog,x p(1-p5) p(log, )/ p(log, )%/
where in the last equality, we have again applied (41). Combining (50) with the bound above
for foﬁ € MY (z) da yields the desired relation (48) for all ¢ € [— V/1ogs z, v/logs x|, proving
the theorem for ¢ in this range.

Now suppose t < —y/logs . We claim that both sides of (6) are absorbed in the error
term O(1/(log, x)'/?). This is immediate for the right hand side since by (41), we have

t [ loggx 1
¢ < B(1 —ﬁ)) =¢ ( B(1 —6)) < (log, z)2+/1ogs &

On the other hand, the left hand side of (6) is

) » B | logga I 1
T >, 1< T 2. 1= q)< ﬁ(l—ﬁ))w((logzx)w’) < Qlog, 2)173

n<z:pln n<z:pln
7‘{; O, x
RP(’”)<B+ Togg = Rp(n)<6_ F\/ioizz

where we have used the assertion of the theorem for ¢ = —4/log; z, as established before.
Finally, for t > \/log; x, the reasoning is analogous: by (41), the right hand side of (6) is

1 12 1
1+O<¥“pCEM1—m>+a%ﬂmﬁ)
log, x

140 (e - )+ 140 (Gt
N Vlogg @ P 26(1 = p) (logy)/3 | (logy )13 )7

1"‘Alternautively7 we may replicate the arguments used to handle the sum Zn<z:p“n Ry (n)<A % in (45);

this gives an error term of O(x/p(logy 2)*/3), which is sufficient for the theorem.
30

19 Mar 2024 22:58:17 PDT
230802-McNew Version 2 - Submitted to Illinois J. Math.



whereas by the t = \/logs x case of the theorem (that we already proved),

p p
1> Z 1> = Z 1

n<z:pln n<z:p|n
Ryp(n)<p+

Nirrs;
1/10g2:c ( )<B+\/ﬁ

( h)o(ﬁ)o(ﬁ)

showing that the left hand side is also 1 + O <10g—x)1/3> This completes the proof.

10. PROOF OF THEOREM 2.6

We start by writing

— Z log P % Z M x)logp. (52)

n<x p<x

1
The trivial bound Mp<2)(x) < Z ghows that the contribution to the above sum from p <

exp (\/log x) is

iS]

1 1
> Mz§2>(w)logp< > O§p<< log ,

p<exp(vlog ) p<exp(ylogz)

X

and for v/ < p < z we have Mp(i)(x) = 1 showing that the contribution from such p is
O(1). Next we bound the contribution from those p with exp ((log z)%9%) < p < \/z.

1
The same arguments as in the proof of Theorem 2.3 (claim (i)) show that Mp(2>(a:) <
z/p(log )%*? uniformly for p € (exp((logz)®9%?),/z]: indeed once again, any n counted
1

in My’ (z) either has Q(n) < 0.2291og, z or has more than 2222 log, 2 many prime factors
(counted with multiplicity) exceeding exp((log z)%9). As such two applications of Lemma
4.2 with the set E being the full set of primes or the set of primes exceeding exp((log z)%%9)
respectively, show that the contribution of both of these possibilities is < z/p(log x)*4?, as
desired. Consequently, the total contribution from the primes p € (exp((log z)%9%), \/z] is

1 (1) 1 10gp 0.58
- Z My (z)logp < (log )02 Z , < (log )

x
exp((log 2)0-999) <p<\/zx ps

which is also negligible for our purposes.

It thus remains to consider primes exp (yv/Iogz) < p < exp ((log z)*9%)

, for which we can

1
use Theorem 2.1 to estimate Mp<2)(a:) Thus the sum (52) for p in this range is

logs « (log x)6+2\/6(176)*1
1+0 (=2 > Cs (53)
log, x py/logy
exp(\/log x)<p§exp((log x)0-999)
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where g = 102—22 is a function of p. Rewriting the sum above as an integral and using the

prime number theorem we have

log 2)8+2V/B(1=8)-1 exp((log2)™9%) (100 0 \B+24/B(1-F)~1
> ot -/ ¢, 187 ()
py/logy @ exp(VIog ) ty/logyx

exp(\/log a:) <p<exp((log x)0-999)

)0.999)

/exp((logfv (10g I)f3+2 B(1-p)—1
= B
exp(\/log :v) t log t\/ 10g2 T

for some absolute constant Ky > 0, where in the integrals we have 5 := log, t/log, z. Here

(log z)+2vA0=H)-1
ty/log,

and E(t) == m(t) —li(t) < texp(—K+/logt), the function f(¢) is monotonically decreasing for

all sufficiently large = (and for ¢ > exp(yv/log z)),'® so that two applications of the Riemann-

Stieltjes integration by parts yield (with Ky = K/2),

dt + O(exp(—Ko(log x)1/4)) (54)

to pass to the second line above, we have noted that writing f(t) = Cj

exp((log 1)0'999) exp((log )0 999)
/ f@)dE(t) = — / E()f'(t) dt + O (exp(—Ko(log x)1/4))
exp(\/logz) exp(\/@)

exp((log z)° 999)
<</ texp(—K+/logt)f'(t) dt + exp(—Ko(logz)"/*)
exp( 1105 )

exp((log z)° 999)

<</ t) exp(—K+/log t)dt + exp(—Ko(log 2)/*)
exp(VIog %)

< exp(~Ko(log z)'/"),

establishing (54). Continuing from there, we find that the expression in (53) is

1 oxp((logz)>*%) B+24/B(1—B)-1
1+0 63 % / C’g( 08 2) dt + O (exp(— Ko(logx)1/4))
log, exp(VIog®) tlogty/log, x

Changing the variable of integration to [, using ¢ = exp ((log x)ﬁ) we find that dt =
tlogtlog, x df and so the main term above becomes

0.999

(Viozs+0 (Viogsa)) [ Catogay 07145 (59

1/2
We find that the exponent of logz in the integrand above achieves its maximum at B, =
% + ﬁg, and its value at that point is By + 21/ Bo(1 — By) — 1 = @ = .
Furthermore, defining f' := 8 — By, and expanding as a Taylor series around By gives

B+2VB1=p)—1=¢ 5\/_5’2+0(ﬁ) (56)

15Ty see this, we write log f(t) = Fi(8) + Fa(B)logyxz — logt — 1loggx for certain differentiable
functions Fi, F», and differentiate both sides of this identity with respect to ¢ to obtain f/(¢)/f(t) <
—1/t+0O(1/tlogt) < 0 for all sufficiently large x, uniformly in 8 = log, t/log, = € [0.5,0.999].
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Inserting this into (55) and treating first only the range 3 € [BO — }Zizi, By + igizﬂ :
we find that

logg x
Bo+,/ 23

1DgzzC’g(log x)5+2\/5— dp

Bo- /o2
logs x
10 X logg =
=|Cp, +0 li " exp ((gp’ - %55’2 +0 (5’3)> log, .CE) ds’
o8t ) ) )i
Cp,(log x)‘Pl ( < log; ) 3/2>> 10g3x
=—"1140 exp
/57\5 log, log2 x /7P 5V5 g
5v5
, 7T log, x)3/? exp <_T log; a:)
= Cp,(log x)” e 1+0 ( gf’ ) 1
22 logy @ \/1ogy \/1ogs x

1 3/2 : 4
(e 0 U0 ) og e AT
V/1ogsy x 5v/5log, x

Substituting the value of Cp, from (3), we deduce that the contribution to the expression

(55) from s € [By — /12 By 4 o] s
— 1 1 @’ N\ —1 1 3/2 ,
e ® + (1 B _) (1 _ ﬁ) +0 M (log z)¥
M+ 5 LU ’ Viog, z

We conclude by bounding the contribution from g € [l By — ,/122—?&) and from § €
<Bo + log?’x ,0. 999} to the expression (55). Noting that the function 8 — 8+2/6(1 —
1is increasmg on [5, By — ﬂ/izg—zi) and then using the expansion (56), we deduce that the

contribution from this interval is

log3 T

BO_ ogo T
< \/logza:/ o Cs(log z)PT2VAI-A-14p

/ log )¢’
< (logz)? exp (—%glog3 x) Viogyx < (og—:c)T

(logy )

Finally, the contribution of the interval <Bo 4 /18 (), 999} can be bounded analogously,

log x’

by noting that the function 5 +— 8+ 24/5(1 — f) — 1 is decreasing on this interval. This
completes the proof of the theorem.

11. CONCLUDING REMARKS

While we were able to obtain asymptotic expressions for the frequency with which p is the
middle or a-positioned prime factor of an integer up to x for a very wide range of values of

p (depending on x), our theorems don’t quite encompass the full range of p.
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In particular, we are unable to treat those primes p for which [ is too close to either (3,
or to 1. (We also don’t consider primes p fixed as © — oo, however this is treated, for the
middle prime factor, in [12].)

The obstacles to understanding the behavior in these two remaining ranges are somewhat
different. The complication when 3 = [, comes from the phase transition that occurs when
k =~ 2log, y in the asymptotics of the sums ZP+(n)§y, Q(n)=k % (See Theorems 5.1 and 5.3.)
Extending our results to 8 in this range would require obtaining asymptotic expressions for
these sums near this phase transition. Balazard, Delange and Nicolas [3] have investigated the
closely related phase transition that happens in the counting problem of N(x, k) = #{n <
x| Q(n) = k} for k near 2log, x, and found, for such k near this phase transition, that the
correct asymptotic expression for N(z, k) is a “Gaussian transition” between the asymptotic
expressions valid for k& bounded away on either side of this transition value. Hsien-Kuei
Hwang [18] also found an alternative derivation of this transition behaviour. It seems likely
that a similar transition happens in this case, however we don’t investigate this any further
here. Investigating large values of p when (3 approaches 1 appears to be more difficult. Here
the obstacle is the range of validity of Alladi’s result (Theorem 4.3). Extending our results
would require obtaining an asymptotic expression for ®;(x,y) that holds for values of k that

are large relative to logu, where u = i"ﬂ.
ogy
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