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Abstract

Schinzel and Wéjcik have shown that for every «, 5 € Q* \ {£1}, there are infinitely many primes p where
vp(a) = vp(B) = 0 and where « and § generate the same multiplicative group mod p. We prove a weaker
result in the same direction for algebraic numbers «, 8. Let o, 8 € Q*, and suppose INQ(a,8)/0()| # 1
and |Ng(a,8)/0(8)| # 1. Then for some positive integer C' = C(a, ), there are infinitely many prime
ideals P of Ogq,3) Where vp(a) = vp(f) = 0 and where the group (3 mod P) is a subgroup of (a mod P)
with [(a mod P) : (8 mod P)| dividing C. A key component of the proof is a theorem of Corvaja and
Zannier bounding the greatest common divisor of shifted S-units.
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1 Introduction

In 1992, Schinzel and Wéjcik proved the following elegant result: For every o, € Q* \ {£1}, there
are infinitely many primes p (not dividing the numerator or denominator of «, ) for which the mod
p reductions of a and 3 generate the same subgroup of F) [SW92]. Their arguments, which amplify
those found in unpublished work of J.S. Wilson, J. W.S. Cassels, and J. G. Thompson, are ingenious but
elementary. Our interest here is in extensions of their result to algebraic number fields.

Suppose «a and 8 are nonzero elements of a number field K. We let
Pk (a, B) = {P € MaxSpec(Ofk) : vp(a) = vp(B) = 0, (@ mod P) = (S mod P)}.

(Since «, B are not assumed algebraic integers, the mod P reductions refer to the images in Op/POp,
where Op is the localization of Ok at P.) The number field Schinzel-Wéjcik problem is to prove the
infinitude of Py (a, B) for as many choices of «, 3, K as possible.!

1 As will emerge shortly, P (a, 3) is infinite for some K containing a, 3 if and only if it is infinite for K = Q(«, 3).
So K could be omitted from the statement of the problem.
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2 The fundamental identity 2

Quite a lot can be said if one is willing to assume plausible but unproved hypotheses. For instance,
working under the assumption of the Generalized Riemann Hypothesis, Jarviniemi and Perucca have
advanced a “Master Theorem” for problems connected with Artin’s primitive root conjecture [JP23]. That
theorem implies that (under GRH) Px (v, 8) is infinite whenever a, § are multiplicatively independent. In
fact, one has the analogous conclusion with «, S replaced by any finite list of multiplicatively independent
elements. This last conclusion is also contained in work of Wéjcik [Wéj96], conditional not on GRH but
on Schinzel’s Hypothesis H [SS58] concerning simultaneous prime values of integer polynomials [W&;96].

If we insist on unconditional results, our knowledge is much more modest. In [JP21], Just and the author
showed that Pk (a, 3) is infinite when K is imaginary quadratic and «, 8 are nonzero integers of K, not
roots of unity. In [Pol], a sufficient condition is presented for Px («, 5) to be infinite. Here K can be any
number field and «, 8 any nonzero elements of K, but verifying the condition requires finding a suitable
“auxiliary prime ideal” in the Galois closure of K. While such a prime appears easy to compute in practice
(for any choice of «, 8, K where one expects Px(«, §) to be infinite), we do not know a priori that this
prime always exists.

In this paper we prove an unconditional theorem not requiring a search for auxiliary primes. The catch is
that we do not obtain equality of the groups generated by « and § but only a bounded index statement.

Theorem 1. Let a, B € Q%, both contained in the number field K, and neither a root of unity. Assume
either that o, B are multiplicatively dependent or that [N g()| # 1 and [Nk q(B)| # 1. For some constant
C (that may depend on «, ), there are infinitely many prime ideals P of O where vp(a) = vp(8) =0
and where the group (f mod P) is a subgroup of (o mod P) having index dividing C'.

It would be desirable to weaken the hypotheses on «a, 3. Unfortunately this would seem to require a new
idea, as explained in the concluding remarks.

Let us sketch our proof of Theorem 1. Suppose K and K’ are number fields containing o and 8 with
K C K'. Suppose also that P’ is a nonzero prime ideal of O lying above the nonzero prime ideal P of Ok
Then vp(a) = vp(B) = 0 if and only if vp/(a) = vp(B) = 0. The embedding Op/POp < Op//P' Ops
shows that the subgroups generated by o mod P and § mod P can be identified with those generated by
a mod P" and 8 mod P’. So the conclusion of Theorem 1 holds for K if and only if it holds for K'. In
particular, by passing to the Galois closure, we can (and will) assume that K is Galois over Q.

We will prove that P (o™, 3) is infinite for some n € Z>°. This implies Theorem 1 with C = n. Let
us suppose for now that o and S are multiplicatively independent; the contrary case will prove easy to
dispense with. In §2, we show that when #Px(«, 5) < 0o, a certain fundamental identity holds between
the conjugates of o and 3. (This piece of the argument is inspired by earlier work in [SW92, JP21, Pol].)
Hence, if #Pk(a™, ) < oo for every n, then an entire sequence of identities follows. Sections 3 and 4
collect results needed to analyze this family of relations; one particularly important ingredient is a theorem
of Corvaja and Zannier [CZ05] from Diophantine analysis. In §5 we put all the pieces together, arguing
that at least one identity in our sequence must fail.

2 The fundamental identity

Proposition 2. Let K be a Galois number field. Suppose that o, 8 € K* are multiplicatively independent
(so that in particular, neither is a root of unity). If #Pk(«, 5) < oo, then there is a T € Gal(K/Q) for
which

I[[ (eo))—o(B)=+F(,p) J[ @Q-o(ap), (1)

oceCal(K/Q) o€Gal(K/Q)
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where
F(a, B)
-1
:< I ~y@yr® I ~NEeyre [ N UP(/3>< 11 N(P)”P(l_o‘ﬂ)) . (2)
vp(a)>0 vp(a)<0 vp(a)= P: vp(a)#0 or
on(8)<0 vp(8)20

We preface the proof of Proposition 2 by introducing some relevant notation and terminology. We fix a
strictly increasing sequence of primes ¢ for which

(i) a?# B,
(ii) ¢Ok is comaximal with both aOk and Ok,

(iii) as ¢ — oo through our sequence, ¢ — —1 in 7 (the profinite completion of Z).

To see that such a sequence exists, note that condition (i) is violated for at most one prime ¢ (as « is not
a root of unity), while (ii) is satisfied for all but finitely many primes ¢. Invoking Dirichlet’s theorem
on primes in progressions, we can construct an infinite, strictly increasing sequence of primes whose nth
term is congruent to —1 modulo n!. Throwing away the finitely many terms for which (i) and (ii) fail, we
obtain a sequence satisfying all of (i)—(iii). We refer to this fixed sequence of primes as our filter sequence.
For brevity, we signal limiting behavior as ¢ — co through the filter sequence by the phrase

“as q Z .
We say a claim holds “eventually” if it holds for all ¢ sufficiently far out in the filter sequence.

Proof of Proposition 2. For each ¢ in the filter sequence, we write

(a? — B)Ok = l_IPerq7 where each epy = vp(a? — ), (3)

the product extending over all nonzero prime ideals of O

We consider first the contribution to the right-hand side of (3) from (the finitely many) primes P belonging
to the support of Ok or fOk. Fix such a P. If vp(a) > 0, then epy = vp(a? — §) = vp(f) eventually,
by the strong triangle inequality. Similarly, if vp(a) < 0, then ep, = vp(a? — ) = vp(af) = qup(w)
eventually. Suppose now that vp(a) = 0. If vp(8) < 0 then ep, = vp(B3), while if vp(8) > 0 we have
epq = 0. Since only finitely many primes belong to the support of aOx or SOk, we may — eventually —
split the right-hand side of (3) into the five products

H PePa H PePa H pvp(B H pave(a H pve(B) (4)

PePk(a,B) vp(a)=vp(B8)=0 vp(a)>0 vp(a)<0 vp(a)=0
P¢Pr(a.B) vp(B8)<0

Here is the key observation (already present in [SW92]): If vp(a) = vp(f) = 0, and epy > 0, then
a? = B in Op/POp. Hence either (o« mod P) = (8 mod P), so that P € Pg(«, ), or g divides
#(Op/POp)* = NP — 1. So if we take norms in (4) and reduce modulo ¢, the second product will make
a trivial contribution.
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It will be convenient to work not modulo ¢ but modulo a prime ideal of Ok above ¢g. For each ¢ in our
filter sequence, we fix once and for all a prime ideal @ of Ok lying above ¢q. Our work so far shows that,
eventually, we have the mod () congruence

N(HP@Rq) = ] ~@s [ v@e)r@® I N@E)r@ H N(P
P PePk (a,B) vp(a)>0 vp(a)<0 (ﬁ)<o
vp

(Here we applied Fermat’s little theorem to replace N(P)%P(®) with N(P)"P(*). To know that the
right-hand side is Q-adically integral, so that it makes sense to reduce mod @), we use our assumption
that ¢Ok is comaximal with aOg and SOk.)

Continuing, suppose P is a fixed prime not belonging to the support of o or 5. Then
epq =vp(@®™ —af) = vp((a?™ — 1) + (1 - ap)). (5)

The valuation vp(adt! — 1) = 0o as q N —1; indeed, for every positive integer m, #(Op/P™Op)* =
#(O /P™)* eventually divides ¢ + 1, yielding vp(adtt — 1) > m. Since 1 — aB # 0 (as «,3 are
multiplicatively independent), eventually vp(adt! — 1) > vp(1 — af3), so that from (5),

epq =vp(l —af) eventually. (6)

So under our assumption that #Pk(a, ) < 0o, we have eventually

I[I N@yre= [ N@yrt-od), (7)
PePk(a,B) PePk(a,B)
We claim that, eventually, the right-hand side is congruent modulo @ to
11 N(P)vr=af), (8)
P: vp(a)=vp(B)=0

Indeed, there are only finitely many prime ideals P for which vp(a) = vp(8) = 0 and vp(1 — af) > 0
For each of these, (6) shows that eventually

vp(a?—p) =epg=vp(l—aB) >0

Hence, either P € Pk («, ) or N(P) =1 (mod Q). So any (nontrivial) factor in (8) not already part of
the right-hand product in (7) is 1 modulo Q.

H N(P UP(/B H UP(O‘) H N(P
>

Thus, if we set

0 vp(a)<0 vp()=0
vp(B8)<0
then
N(HP%) = Fy(a, B) 11 N(P)*r(=28)  (mod Q).
P P: vp(a)=vp(8)=0
Since

N((1 - ap)Ok) = Fi(a, B) I1 N(P)vr(-ad)

P: vp(@)=vp(8)=0
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for
Fl(av ) = H N(P)vp(l_aﬂ)’
P: vp(a)#0 or
vp(B)#£0
we conclude that
N(HP”’*I) = F(a,8) - N((1 - af)Ox) (mod Q) (9)

P
with
F(a, B) := Fy(a, B)/ F1(av, B).

We are now ready to prove our fundamental identity (1). Notice that

N((1-aB)Ok) =+Ngigl—af) =+ ] (1 -a(ep)). (10)
ceGal(K/Q)
On the other hand,
N(HPeP’Q> = N((a? - B)Ok) = £Ng g(a? — B). (11)
P

If ¢ is unramified in K, which certainly holds eventually, then modulo @),

Nipgla? =)= [ (o) —a(8)
c€Gal(K/Q)
= H ((Hon/q oo)(a)—a(fB)). (12)
c€eGal(K/Q)

Assembling (9)—(12), we see that eventually

[I ((Frobgs o)) —o(B)) = £F(a,B) (1—o(ap)) (mod Q).

ceGal(K/Q) o€Gal(K/Q)

By passing to a subsequence of ¢, we can assume that the element Frobg,, € Gal(K/Q) is independent of
q, and the same for the choice of 4 sign. This last congruence holding for infinitely many ¢ implies the
congruence must be an equality, establishing the fundamental identity (1) with 7 = Frobg /q- O

Remark. Our proof shows that the element 7 in the statement of Proposition 2 can be taken to have the
form Frobg, for an infinite subsequence of ¢ belonging to our original filter sequence (where each @ is a
prime ideal of Ok lying above the corresponding rational prime ¢). While not needed for the proof of
Theorem 1, this observation will be useful in our concluding remarks.

3 Preparation from Diophantine analysis

In this section we collect several results from Diophantine analysis needed for the proof of Theorem 1.
These statements require some setup; see Chapters 1 and 2 of Corvaja and Zannier’s tract [CZ18] for further
discussion. If L is a number field, we let M and M? denote the collection of infinite (Archimedean) and
finite (non-Archimedean) places of L, respectively, and we set My = M7° U Mg. If v € M7®° corresponds

(z) |I{&/ [L:Q)]

to the real embedding o, we normalize |- |, so that |z|, = |o . If v corresponds to the pair of
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complex nonreal embeddings {o,5}, we let |z|, = |o(x) é/ Ll Finally, if v € MY corresponds to the

nonzero prime ideal P of Op, we let |z, = N(P)~vr®)/[L:Q],

The absolute height (henceforth, simply height) of z € Q is defined as H(x) := [],¢p, max{1,|z],},
where L is any number field containing x. Its logarithmic height is h(z) := log H (z); equivalently, h(z) =
> e, 1og™ ||y, where log™ t = max{0,logt}. The word “absolute” is justified by our normalizations of
the | - |, which ensure that H(z) and h(z) are independent of the ambient field L.

Everything we need is a consequence of the following deep theorem of Schlickewei, which improved on
earlier work of Schmidt. For a proof, see e.g. Chapter 7 of Bombieri and Gubler’s monograph [BG06].
Several further applications are detailed in [CZ18].

If S is a set of places of L containing all the infinite places, O, g denotes the collection of S-integers of L,
meaning the set of x € L with |z|, <1 forallv ¢ S.

Schmidt—Schlickewei Subspace Theorem. Let L be a number field and let S be a finite set of places of
L containing all the infinite places. For each v € S, let {;,, 1 =1,2,...,n, be linearly independent linear
forms in n variables with coefficients from L. Let € > 0. Then the solutions x = [x1,...,2,] € (Or,5)" to
the inequality

—E

[TTT1w 0 < [ T] max{lzlu,. .., |2alu}

veSi=1 veM;y,

all lie in a certain finite union of proper L-vector subspaces of L™.

The following consequence of the subspace theorem seems to be well-known but we include a proof for
completeness. By an S-unit, we mean a unit in the ring O g. That is, € L is an S-unit if |z|, = 1 for
all v ¢ S.

Proposition 3. Let L be a number field and let S be a finite set of places of L containing all the infinite
places. Let vy € S. Only finitely many S-units u satisfy

log |1 — ul,, < —¢ - h(u). (13)

Proof. We apply the subspace theorem with n = 2 and x = [1, u], noting that a proper L-subspace of L?
will contain [1,u] for at most a single value of u. For v # vy, let

O y(z1,22) =22 and  lo,(21,22) = 271,

and take
01 (21, 22) = 21, Uy (21, 02) = 21 — 2.

By the subspace theorem, all but finitely many u € Oy, 5 satisfy

—€/2
< 11 \u!y>1 —ulyy > | [ max{1,|ul,} = H(u)™/%
ves veMr,
v#1o

In the statement of Proposition 3, u is not only an element of Ok g but an S-unit. So by the product

formula, [[,eqluly =1, and [], g .z, [uly = lul;;l. We conclude that all but finitely many S-units

—&/2

w satisfy |1 — uly, > |uly, - H(u)"%/%. This implies immediately that (13) has finitely many solutions
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—e/2

among S-units u with |ul,, > H(u)~%/2. Suppose u is a solution to (13) where |ul,, < H(u)~%/2. Since

|1 —uly, < H(u)"¢, we have |ul,, > 1 — H(u)"¢. Hence,

H(u) ™2 > |ulyy > 1 — H(u)™* > 1 — H(u)"*/?,
implying H(u) < 22/¢. Since u has bounded height and bounded degree (being an element of L), the
number of such w is finite by a theorem of Northcott (see [BG06, Theorem 1.6.8, p. 25]). O
The following corollary of Proposition 3 will be used to prove Theorem 1 for multiplicatively dependent
a, B.
Corollary 4. Let L be a number field. Let S be a finite set of places of L containing all the infinite places.

Let v € L, not a root of unity. There are only finitely many n € Z>° for which 1 — ™ is an S-unit.

Proof. Enlarging S if necessary, we can assume that -y is an S-unit. Since +y is not a root of unity, H(vy) > 1,

and there is some 1y € S with |v],, > 1. Then for large n, we have [1 —~"|,, > S|7[2 > exp(cn), for a

constant ¢ > 0. Let ¢ = W It follows from Proposition 3 that if n is sufficiently large,

[1—~", > H(y") ¢ = exp(—cn/#5S) forallv e sS.

Hence, [[,cqll ="y = exp(en) [1,cs pp0, exp(—cn/#S) > 1 for large n, implying (by the product
formula) that 1 —~™ is not an S-unit. O

The next result is due to Corvaja and Zannier [CZ05, see (13) and Proposition 2[; it builds on earlier joint
work with Bugeaud [BCZ03]. Here log™ ¢t = min{0, logt}.

Proposition 5. Let L be a number field and let S be a finite set of places of L containing all the infinite
places. Let € > 0. There are only finitely many multiplicatively independent pairs of S-units u,v satisfying

Z log™ max{|l — ul,, |1 — v|,} < —emax{h(u), h(v)}.
veEMg

4 A lemma concerning multiplicative independence

We require one final preliminary result before proceeding to the proof of Theorem 1.

Lemma 6. Let K/Q be a Galois number field. Assume o, 5 are multiplicatively independent elements of
K> with |[Ng ()| # 1 and [Nk o(B)| # 1. There is a positive integer Ny such that the following holds:
If n is a positive integer exceeding Ny, then for every o € Gal(K/Q),

T(a) "B, o(a)"0(B)  are multiplicatively independent.

Proof. We fix 0 € Gal(K/Q) and argue that
T(a)™"B, o(a)"o(B) are multiplicatively independent for all sufficiently large n. (14)

Since there are finitely many possibilities for o, Lemma 6 follows.

Let g denote the (finite) group of roots of unity contained in K. As shown by Skolem [Sko47] (see also

[Iwab3, Lemma 3]), the group K*/ux is free abelian. Let 71, mo, 73, ... be a sequence of elements of K *

whose images in K*/ug form a basis. If 6 € K* and § = (n{*m5?7ms® - - - for some ¢ € pu, we associate
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to 0 the infinite dimensional vector V() := [e1, e2,€3,...] € ®2,Z. Observe that elements 6,y € K* are
multiplicatively dependent if and only if V() and V() are linearly dependent over Z, or equivalently
over Q.

Put
a=V(r(a)), b=V(3), a'=V(c(a)), b =V(s(p)).

Let A denote the set of positive integers n for which —na + b and na’ + b’ are Q-linearly dependent.
Since —na + b = V(7(a)™"f) and na’ + b’ = V(o(a)"0(3)), the observation recorded at the end of the
last paragraph reduces to the proof of (14) to the claim that #N < oco. We proceed by contradiction,
assuming N is an infinite set.

We first establish that a and a’ are Q-linearly dependent. Indeed, if this fails, then some 2 x 2 submatrix
Qg —na + b:|
, has

k] . The corresponding submatrix of [na’ b

of the 2 x oo matrix [:,] is nonsingular, say [Zf
J
determinant

—na; +b; —nay + by

2 / / . o 1.
= - iay, — )+ (1 1 1
na;. b; nd, + 0, n”(ajay, — axa;) + (linear polynomial in n),

which is nonzero for large n. Then —na + b and na’ + b’ are Q-linearly independent for all sufficiently
large n, contradicting that A is infinite.

It follows that 7() and o(a) are multiplicatively dependent. Write 7(a)? = o(«)”, where A and B are
integers, not both zero. Since [Nk q(7(a))| = [Nk g(o(a))| = [Nk g(a)| # 1, we conclude that A = B.
Hence, 7(a), o(a) differ (multiplicatively) by a root of unity in K, giving

a=a'.
This last equality implies that for every n € N/, the vectors —na+b and (na’+b’)+(—na+b) = b+b’ are
linearly dependent over Q. If b + b’ = 0, then Bo(/3) is a root of unity, contradicting that |Ng q(8)| # 1.
So b + b’ is nonzero. It follows that for each n € N,

—na+beQ- (b+b).

Applying this for two different n € A and subtracting, we get that a € Q - (b + b’) and then that
b € Q- (b+Db’). The latter forces b and b’ to be dependent over Q. Thus, 8 and o () are multiplicatively
dependent. Writing 84" = ¢(8)5" with integers A’, B, we see upon taking norms that A’ = B’. (We use
here that [Ng/q(8)| = [Ng/q(c(B))| # 1.) Thus, 8 and o(f) differ by a root of unity, and b = b’. Hence,
a€ Q- (b+b')=Q-b',and so a’ = a and b’ are Q-dependent. Therefore o(«) and o () are multiplicatively
dependent. This contradicts our assumption that «, 8 are multiplicatively independent. ]

5 Proof of Theorem 1, modulo multiplicative independence

We now put the pieces together to prove Theorem 1.

Proof of Theorem 1. As discussed in the introduction, we may assume that K is Galois over Q.

We first dispense with the case where «, 5 are multiplicatively dependent. Write a” = 8B, where A and
B are integers, not both 0. Since «, 8 are not roots of unity, in fact A, B are both nonzero. Let Q be the
set of maximal ideals of O that appear in the support of (57 — 1)Ok for a prime ¢ not dividing B. Let
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S be the set of finite places of K corresponding to the prime ideals in Q together with all of the infinite
places of K. Then 1 — 37 is an S-unit for all primes ¢ not dividing B. As there are infinitely many such ¢,
Corollary 4 (with L = K and = /) shows that Q must be infinite.

Let @ be any element of Q with vg(a) = vg(8) = 0. We can find a prime ¢ not dividing B for which Q
belongs to the support of 57 — 1. Then the order of § mod @ divides ¢. Since ¢ is coprime to B, it follows
that 3 and B = o generate the same multiplicative subgroup mod Q, so that Q € Pk (al4l, 3). As there
are infinitely many choices for Q, the set Pg (al4l, 8) is infinite. This yields Theorem 1 with C' = |Al.

Henceforth we assume «, 3 are multiplicatively independent with [N g(a)| # 1 and [Nk /(8)| # 1. We
show there is some n € Z>° for which Px (o™, 3) is infinite; this gives Theorem 1 with C' = n.

Suppose for a contradiction that #Px (a™, 3) < oo for all n € Z>°. By Proposition 2, for every n € Z>°
there is a 7 € Gal(K/Q) and a choice of +-sign such that

[[ ooy —o@)==xF@"5) [[ @Q-a@)a(B)). (15)

oeGal(K/Q) oeGal(K/Q)

For later use we note from (2) that that F'(a™, 3)Ok is supported only on prime ideals belonging to the
support of some conjugate of o or 8. In (15), both 7 and the choice of sign may depend on n. However,
by replacing AV with an infinite subset, we may (and will) assume 7 and the sign are constant.

Let Sy denote the set of prime ideals belonging to the support of any conjugate of a or 5. For each n € N,
we consider the equation of fractional ideals induced by (15), removing the contribution from Sy. (All the
factors in (15) generate nonzero fractional ideals of K: The right-hand side is nonzero, by the assumed
multiplicative independence of «, 3, so each factor on the left is nonzero too.) Let

I, = H Pvp(('roa)(t):)n7<7(ﬁ))7 J, = H prp(l—o(a)"o(8))
P¢SO PéSo

(Here the notation suppresses the dependence on n € N.) Then I, and J, are integral ideals. Furthermore,
since F'(«, ) is supported entirely on Sy, we deduce from (15) that

I &= 11 7

ceGal(K/Q) oeGal(K/Q)

an equation involving only integral ideals of Ok . It follows that

Liq = H prr(r@)"=p)
P¢Sy

divides J[,ccaix/q) Jo (as integral ideals), and so
Liq  divides I ecddia, Jo).
oeGal(K/Q)
(Here the ged of two ideals is the smallest ideal containing both.) Hence, there is a o € Gal(K/Q) with
N(ged(liq, J5)) > N(Iig)V/EQ, (16)

It will be convenient if o is the same for all n € N; we ensure this by passing to a smaller infinite subset

of V.
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Observe that

log N(Lia) = Y vp(r(a)" — B)log N(P). (17)
P¢So

Identifying S with the corresponding subset of MY,

Y vp(r(@)" = B)log N(P) = —[K :Q] Y log|r(a)" —fl,

P¢50 VEM}J(\SO
=—[K:Q] ) log|l—7(a) "Bl
I/EM?(\SO
=[K:Q > loglt—7(a) "Bl (18)
VGMIO{OUSO

(To go from the second line to the third, we applied the product formula in additive form, according to
which > ¢y, log |1 —7(a) "B, =0.) Let S = Mz U Sp. Then every conjugate of v and 3 is an S-unit.
Since 7(«) is not a root of unity, there is some vy € S with |7(«)|,, < 1. Then for a certain constant
c1 > 0, we will have

log |1 — 7(a) "By, > cain  for all large n € N.

Now fixing an ¢ > 0, Proposition 3 implies that for all large n € N/,

Y logll— (@) "Bl = —e((#5) = 1) - h(r(@)"B) = —e((#5) — 1))(n - h(a) + h(5)).

veS, v#£yg

Taking ¢ small enough (for example, & < Sc1h(a)"1(#S) ! suffices), we conclude that

D log|l—7(@) "B, =log|l = () "Bl + > log|l—7(e) "B

ves vES, v#1g
> cin —e((#S5) —1))(n - h(a) + h(B))
> %cln

for all large enough n € N. Thus, referring back to (17) and (18), we have that

N(Ji) > exp(5[K : Qlern).

On the other hand,

log N(ged(fia, J5)) = Y min{vp(r(a)" = B),vp(1 — o(a)"a(5))} log N(P), (19)
P¢So

which we can rewrite as

—[K:Q ) logmax{|l —(a)"Blu, [1 — o() o (B)]y}. (20)

VGM%\S()

By our choice of Sy, the maximum appearing here is at most 1, and so log could be replaced with log™
without changing the value of the expression. By Lemma 6, 7(«)~" and o(«)"0(/3) are multiplicatively
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independent for all sufficiently large values of n. Hence, by Proposition 5, for any € > 0 and all sufficiently
large n € NV,

Z log max{]l . T(a)_"ﬁ\y, ’1 _ 0’(04)”0(6)‘1/} > Z log™ max{|1 - T(Oé)_nﬁ’m |1 - O'(Oé)nO'(ﬁ)’l,}
veMO\So veEMg
—emax{h(r(a)"B), h(c(a)"c(B))}
—e(nh(a) + h(B)),

>
>

so that from (19) and (20),
log N (ged(La, J»)) < £[K : Q)(nh(a) + h(8)).

Fixing € < %01 K : Q]_lh(oz)—l7 we find that for all large enough n € N,
1 .
N(gcd(Iid, Jo')) < exp (201n) < N(Iid)l/[K'Q],

contradicting (16). O

Concluding remarks

Suppose K is imaginary quadratic and that o, 8 € K* are multiplicatively independent. Working through
the arguments of §2 in this case, we find that if #Pg(a", ) < oo, then the identity (15) holds with 7
the nontrivial automorphism of K/Q. (Here we use the Remark following the proof of Proposition 2
alongside the fact that for an imaginary quadratic field K, the Frobenius at ¢ is nontrivial in Gal(X/Q)
when ¢ = —1 (mod |Discg|).) If we suppose further that aOx and fOg have disjoint supports, careful
inspection of (2) reveals that F'(a",3) = 1. So (15) yields

Ngjg(@® = B) = Ngjg(1 — "), (21)

where the bar indicates the nontrivial automorphism of K. (Here we are allowed to omit the + sign from
(15), since norms from an imaginary quadratic field are nonnegative.) Now

Nk (1l —a”B) — Ngjo(a" — B) = (Ngg(a)" — 1)(Ng/g(B) — 1).

Thus, if Ng/g(a) = 1 or Ngg(8) = 1, then (21) is a genuine identity for every n € 7>, So for a,
satisfying our assumptions (e.g., for a = g—f; and 8 = j—fé), we cannot hope to derive a contradiction from
our sequence of identities. It follows that the norm restrictions in Theorem 1 cannot be dispensed with

without a new idea.

We came to Theorem 1 by investigating what the fundamental identity (1) implies with « replaced by o™,
forn =1,2,3,.... It seems worth pointing out that (1) by itself is already enough to show Pg(a, ) is
infinite for “100 percent” of a, 8 in a Galois number field K. For simplicity in setting up the counting
problem, we restrict ourselves to a formulation involving integers of K.

Let K be a degree d Galois number field, which we view as sitting inside C, and let o1,...,04 be an
ordering of the elements of Gal(K/Q). Put ||v|/cc = maxi<;<q4|0i(7)|c and define, for each X > 0,

B(X) ={7€ 0k : |llec <X}.
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Then #%(X) ~ kX%, as X — oo, where k > 0 is a constant depending on K (this follows from [Rie61,
Hilfssatz 9]).2 Hence, the number of ordered pairs of nonzero a, 3 € %(X) is asymptotic to £2X 2%,

Proposition 7. For each € > 0 and each X > 1, the number of ordered pairs of nonzero o, 5 € B(X)
where (1) holds, for some T and choice of sign, is O(XQd_%JrE). Here the constant may depend on K, e.

Proof. Fix an integral basis wy,...,wy, and write each v € Ok in the form Zgzl hiw; (all h; € Z). Then
the vector g := [01(7),...,04(7)]7 of conjugates of v satisfies g = Mh, where M = [0;(wj)]1<i j<d
and h = [hy,...,hg)T. Hence, ||7]co = l|glloc < ||h]loo. (We allow implied constants to depend on the
choice of integral basis.) Since M is invertible, we also have h = M ~!g, which allows us to deduce that
|hllcc < |lglloc = l17]loo- In particular, the condition v € Z(X) implies that each |h;| < CX for some
constant C depending only on K.

Referring back to (2), it is straightforward to check that for nonzero a, § € Ok,

F(o,B) =N(lnp), where I,3:= H pupB).
vp(a)>0

We consider first those cases where F' = F(a,3) satisfies F < X'/2. Here we count solutions to (1)
corresponding to a fixed choice of 7 and choice of sign, and a fixed positive integer F. If we write
a = Z?:l h;w; and 8 = Zle hiwi, enforcing (1) then amounts to requiring

I1 (i(m sz}g (w; h’) I1 (1 (i:a(wi)hi> <Zd:a(wi)h;>> — 0.

c€eGal(K/Q) c€eGal(K/Q) i=1 =1

The left-hand side is a polynomial in the 2d variables hi,...,hq, hY, ..., k), of total degree at most 2d,
and it is not the zero polynomial (e.g., since it does not vanish when all h; = b}, = 0). If o, § € Z(X),
then each |h;|,|h;| < CX. By the Schwartz—Zippel Lemma [vzGG13, Lemma 6.44, p. 176], the number of
possibilities for the integers h;, hl € [-CX,CX] — and hence, the number of choices of a, 8 — is at most

19 1%

2d(1 +2CX)%¥~1 = O(X?24=1). Varying 7, the choice of sign, and F, yields O(XZd 2) solutions.

If o, B satisfy (1) with F(a,3) > X'/2, then there is an ideal I = I, 3 with norm exceeding X'/ for
which 5 € I and o € rad(]). Here rad() denotes the product of the distinct prime ideals dividing I. For
each nonzero ideal I, the number of nonzero 8 € Z(X)N I is O(X%/N(I)), and similarly the number of
nonzero a € #(X) Nrad(I) is O(X?/N(rad(I))). (This follows from the more refined estimates of Rieger
in [Rie61, Hilfssatz 9] along with the observation that there are no such 3, resp. o, when N (I) > X9, resp.
N(rad(I)) > X%.) Finally (assuming as we may that ¢ < 3),

xd X NI\ 1
> N Nad(D) = de; ( X1/2> N(I)N (rad(I))

I: N(I)>Xx1/2

_ y2d—1i+e 1 1 2d—L1ye
= X202 H<1+N(P)1+2€+N(P)1+4e+"'><<X zte,
P
using in the final step that the product on P converges. O

2 Actually k = 27 (27)"2 //|Discyc| where 7, is the number of real embeddings of K and 75 the number of pairs
of complex nonreal embeddings.
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