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ABSTRACT. Schinzel and Wojcik have shown that if o, 8 € Q™ \ {£1},
then there are infinitely many primes p where v,(o) = v,(8) = 0 and
where «, 8 share the same multiplicative order modulo p. We present
two variants of their result. First, we give a short and simple proof of
the analogous statement where Q is replaced by any global function
field K. Second, we show that a similar conclusion holds in the number
field case provided one can find a suitable ‘auxiliary prime’. Given K,
a, and 3, it appears simple in practice to find such a prime. As an
application, we prove there are infinitely many primes p with the same
rank of appearance in the sequences of Pell and Fibonacci numbers.

1. INTRODUCTION

In [SW92], Schinzel and Wojcik showed that whenever a, f € Q*\ {£1},
there are infinitely many primes p where the p-adic valuations v,(a) =
v,(8) = 0 and where a and f share the same multiplicative order when
reduced modulo p. They aptly titled their paper On a problem in elementary
number theory. It is natural to wonder whether analogous theorems hold if
the problem is transferred from elementary to algebraic number theory.

Number field generalizations were taken up by Woéjcik in [W96]. There
Wojcik works under the assumption of Schinzel’s unproved ‘Hypothesis
H’ (introduced in [SS58]) concerning simultaneous prime values of integer-
coefficient polynomials. Variants of the Schinzel-W¢ojcik theorem obtained
without extra hypotheses are almost entirely absent from the literature. The
exception that proves the rule: In [JP21| a version of the Schinzel-Wdjcik
theorem is demonstrated for imaginary quadratic fields K. Unfortunately
the statement there requires a and f to belong to the ring of integers of K;
handling general a, 8 € K* (satisfying the natural condition that neither
be a root of unity) would seem to require a new idea.

In this note we present two unconditional variants of the Schinzel-Wéjcik
theorem. The first is a version for an arbitrary global function field.
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Theorem 1.1. Let K be an algebraic function field over the finite field F.
Assume F is the full field of constants of K. For every o, 8 € K \ F, there
are infinitely many places P of K for which vp(a) = vp(B) = 0 and where
a, 3 share the same multiplicative order in the residue field Op/P.

(When discussing function fields we set up our definitions following Stichenoth’s
monograph [Sti09]; in particular, P is equal to, not merely identifiable with,
the maximal ideal of Op.) Our proof of Theorem 1.1 is similar in spirit to
the argument of [SW92|. However, it is both shorter and simpler; that all
the residue fields of K have the same positive characteristic is a great help.

One should be able to derive results significantly stronger than The-
orem 1.1 by applying methods used to investigate Artin’s primitive root
conjecture. Over Q Jérviniemi [J21] has characterized, conditional on the
Generalized Riemann Hypothesis (GRH), those tuples of nonzero ratio-
nal numbers aq,...,a; for which there are infinitely many primes p with
ai,...,a; sharing the same multiplicative order modulo p. (See [PS09| for
earlier GRH-conditional investigations.) For example, Jarviniemi shows this
conclusion holds whenever ay,...,a; > 1. (This last statement also fol-
lows from Hypothesis H as earlier demonstrated by Wojcik [W96].) Related
GRH-conditional results for general number fields are contained in recent
work of Jarviniemi and Perucca [JP23]. When such problems are studied
in the function field setting, usually GRH can be substituted with the Rie-
mann Hypothesis for curves (see for instance [PS95| and [Ros02, Chapter
10]). As the Riemann Hypothesis for curves is a theorem of Weil (see [Sti09,
Chapter 5| for a relatively elementary proof), one expects that results of
this same kind could be established unconditionally. Needless to say, such
arguments when fully unwound would be substantially more intricate than
what we offer for Theorem 1.1.

Our second theorem concerns the number field case. Here we show that
the conclusion of the Schinzel-Wojcik theorem holds for a given K, o, and
[ provided one can locate an auxiliary prime satisfying appropriate condi-
tions. This auxiliary prime strategy (but with a different requirement on
the prime) is already present in the original proof of Schinzel and Woj-
cik; happily, in the setting of [SW92], those authors could show that the
sought-after prime always exists! So far we have not been so lucky.

If K is a number field and o, 5 € K*, we call a nonzero prime ideal P
of Ok generous with respect to K, «, 3 if

(i) vp(a) = vp(8) =0,
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(ii) « and 8 generate topologically the same subgroup of K, where Kp
is the P-adic completion of K. Equivalently but more concretely:

For each nonnegative integer k, there are integers n and m with
a"=f (mod P*) and B™=a (mod P*).

Here and below, where congruences appear relating elements not as-
sumed to lie in O, the congruences are to be understood as holding

in the localization Op.

Theorem 1.2. Let K be a number field and let o, B € K*. Suppose there
s a nonzero prime ideal Py of Ok that is generous with respect to K, a, 3.
Then there are infinitely many nonzero prime ideals P of O for which

vp(a) = vp(B) = 0 and where o, B have the same multiplicative order in
Op/POp.

Our proof of Theorem 1.2 borrows essential ideas from [SW92| but the
argument is complicated by the need in several places to work with ideals
rather than elements. It may be that generous primes always exist if a;, 8 €
K> and neither is a root of unity. We do not know how to prove this
speculation or any reasonable approximation to such a statement. However,
in practice it seems easy to find a generous prime given K, and 5. We
illustrate this with an example at the end of §3 which has a consequence
of independent interest: There are infinitely many primes whose rank of
appearance (see §3 for the definition) is the same in the sequence of Pell
numbers and the sequence of Fibonacci numbers.

2. SCHINZEL-WOJCIK FOR FUNCTION FIELDS: PROOF OF THEOREM 1.1

In what follows we let p denote the characteristic of K. We write Py for
the set of places of K/F. Writing multordp for the multiplicative order in
Op / P y let

S= 8K<a7 6)
={P € Px : vp(a) = vp(B) = 0 and multordp(a)) = multordp(5)}.
The proof of Theorem 1.1 is based on the following simple but fundamental
observation: Suppose vp(a) = vp(8) = 0 while vp(afF” — 1) > 0 for a
certain nonnegative integer m. Then 87" = a~! in Op/P. Since the pth

power map is an automorphism of Op/P, we conclude that

multordp(3) = multordp(AP) = ... = multordp(?")

= multordp(a™") = multordp(a).
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Thus, P € S. (Compare with the ‘Proposition’ on p. 225 of [SW92|.)

We now suppose for a contradiction that #S < oo. For each P € S,
write #0p/P = p/P, and put f = lempes[fp].

Since ¢ F, we have that 3 is transcendental over F', and so there is at
most one positive integer m with a8P" — 1 = 0. So for all sufficiently large

positive integers n, say all n > ng,

(2.1) o -1
. :L‘n = —
apfr’ —1

Let P be a place of K for which vp(a) = vp(S) = 0. If P appears in the
support of (x,) for at least one n > ng, then P € S. Let us argue that each

e K*.

fixed P € § appears in the support of x,, for only finitely many n. We start
by observing that

ﬁp("“” _ Bp"f _ 5p”f(/@p"f(pf—1) —1).
For each fixed positive integer m and all n > m,
#(Op/P™)" = pfp(m_l)(pfp —1) divides p"f(pf - 1),

so that vp(ﬁp(nJrl)f — ﬁpﬂ’f) > m. It follows now from the ultrametric inequal-
ity that {87"'} is a Cauchy sequence in the P-adic topology. Thus, writ-

nf A
— [ for some

ing Kp for the P-adic completion of K, we have that ?
B € Kp. The numerator and denominator in (2.1) both tend to a@ -1,
which is nonzero (otherwise a@ = 1/ satisfies o’ = 1/47" = 1/ = «a,
forcing a € F'). Hence, x, — 1 in Kp, implying vp(x,) = 0 for all large
enough n.

We are supposing § is finite. Thus, the argument of the last paragraph
implies that for all large n, every place in the support of z,, is one of the
finitely many places belonging to the union of the supports of a and . Fix a
place P in the support of « or 5. If vp(3) < 0, the strong triangle inequality
implies that vp(z,) = (p"+f —p™)vp(B) < 0 for all large values of n while
if vp() > 0 then vp(z,) = 0 for all large n. (To see this it is helpful to take
cases according to whether vp(a) < 0, vp(a) =0, or vp(a) > 0.)

Hence, once n is large enough there are no places P with vp(z,) > 0.
That is, x, has no zeros. As principal divisors have degree 0 (see [Sti09,
Theorem 1.4.11, p. 19]), an element of K with no zeros also has no poles
and must be constant (see [Sti09, Corollary 1.1.20, p. 8]). So for large n, we
may write x,, = ¢, for some ¢, € F'. Then

cn—1= cn&ﬂpnf — &ﬁp(nﬂ)f.

As f ¢ F, we may choose a place () with vg(5) > 0 (again by [Sti09,
Corollary 1.1.20, p. 8|). The @Q-adic valuation of the displayed right side
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tends to infinity with n, while the @-adic valuation of the left is 0 unless
¢, = 1. So it must be that ¢, = 1 for all large n. Putting this back into the
last equation forces 8 to be a root of unity, contradicting that g ¢ F.

3. A SUFFICIENT CRITERION FOR SCHINZEL-WOJCIK IN NUMBER
FIELDS: PROOF OF THEOREM 1.2

We begin with a simple reduction. Let K be the Galois closure of K /Q.
If Py is a prime of Ok generous for K, a, 5, and By is a prime of Of lying
above P,, then P, is generous with respect to K,«, . Moreover, if P is
a nonzero prime ideal of Oy with vp(a) = vp(f) = 0 and for which «,
have the same order in O3/POp, then P = P N O is a nonzero prime of
Ok where vp(a) = vp(8) = 0 and for which «, f have the same order in
Op/POp. The upshot is that, by replacing K with K, we can (and will)
assume that K/Q is Galois.

If % = B for infinitely many primes ¢, then o and [ are roots of unity
in K, and they share the same multiplicative order modulo P for every
nonzero prime ideal P. To see this last claim, note that the gth power map
is an automorphism of (Op/PQOp)* as long as ¢ does not divide N(P) — 1.
So we can assume that a? — § € K* for all sufficiently large primes q.

Let S denote the set of nonzero prime ideals P of Ok for which vp(a) =
vp(B) = 0 and «, B share the same order in (Op/POp)*. We assume for
a contradiction that S is finite. Let 7 be the (finite) set of prime ideals of
Ok belonging to the support of « or 3.

For each prime ¢, we fix — once and for all — a nonzero prime ideal @)

of Ok lying above ¢. For all large primes g, we factor

(3.1) (a? = B)0k = [ ] Pre ] P 11 Pera,
PeS PeT P:vp(a)=vp(B8)=0
P¢S
where each ep, = vp(a? — ). We now take norms in (3.1) and analyze the
resulting equation modulo Q).

To get started, suppose P appears to the nonzero exponent ep, in the
third right-hand product in (3.1). Since o and [ are P-integral, we have
ep, = vp(a? — ) > min{qup(a),vp(B)} > 0. Hence, ep, # 0 implies that
ep, > 0, leading to the equation a? =  in Op/POp. Since P ¢ S, it
must be that ¢ | N(P) — 1, and therefore N(P) =1 (mod Q). So the third
product in (3.1) makes a trivial contribution mod @. If on the other hand

P € T, then straightforward reasoning with the strong triangle inequality
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shows that for all large ¢,

vp(B)  if vp(a

ep — qup(a) if vp(a
»q (
(

Up(ﬂ) if Up
0 if Up

Therefore, modulo @),
N( 11 Perq)
— H N(p)vp(ﬁ) H N(p)qvp(a) H N(p)vp(ﬁ)

P:vp(a)>0 P:vp(a)<0 P:vp(a)=0,0p(8)<0

— H N(P)r® H N(P)vr(@) H N(P)r®).
P:vp(a)>0 P:vp(a)<0 P:vp(a)=0,up(8)<0
(We are assuming ¢ is large. Hence ¢ is coprime to the norm of any prime
in the support of a or [, and the asserted congruence makes sense in
Oq/Q0Oq.) The right-hand side of (3.2) is independent of ¢; calling this
71, we have that vy, € Q”% and that N(]]p.r PP9) =1 (mod Q).
We turn now to the left-hand side of (3.1). For each 7 € Gal(K/Q),

define €(7) € K by €(7) = [, cqax/q) (T 0 0)(a) — 0(8)), and let
& ={xe(r): 7 € Gal(K/Q)}.

(The 4+ means we include both choices of sign.) If ¢ is sufficiently large, then
vo(o(a)) =vg(a(B)) =0 for all 0 € Gal(K/Q), and

Ngjgla' =)= [ (o(a)" = a(8))

oeGal(K/Q)
[ ((Frobgs00)(@) —0(8) (mod Q).
c€eGal(K/Q)
Since N((a? — B)Ok) = |Nkjg(a? — B)|, we see that N((a? — 5)Ok) = ¢
(mod @) for some ¢, € &.
It remains to analyze the product over P € S appearing in (3.1). Our

plan is to restrict ¢ to an arithmetic progression in such a way that the
contribution from P € S is independent of ¢ and highly divisible by the
rational prime pg lying below F.

Fix a nonnegative integer v with the property that

(3.3) U > Uy (€) — py (1)

for all e € & N Q~>°. Our hypotheses imply that o and 3 generate the same
subgroup of (Op,/PYOp,)*. Let ¢ be the order of that subgroup. If we choose
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n € Z with o” =  (mod PB}), then ged(n, ¢) = 1. Using Dirichlet’s theorem
on primes in progressions, we fix a prime number gy = n (mod ¢). We can
choose ¢y large enough that a?% — 3 # 0 and so that ¢ is larger than the
norm of any prime ideal in S.

Henceforth we restrict attention to primes ¢ satisfying

(3.4) ¢=q (mod [[N(P)=(N(P)-1)).

peSs
(Recall that epy, = vp(a® — [3); note that ep,, is a nonnegative integer for
each P € S, since a and (8 are P-integral for all such P.) Our choice of g
is coprime to the modulus, and so the congruence (3.4) holds for infinitely
many primes ¢. Furthermore, for any such prime ¢ and any P € S,

N(P)*Pew(N(P)—1)|q—qo, sothat a%® =1 (mod P'*Pw),
and thus (by the strict triangle inequality)
vp(a? — B) = vp(a®(a?® — 1)+ a® — 3) = epy,-
Therefore, N(]]pcg P7) = 2 where
v = [ N(P)ro € 270

PeS
Putting everything together, we see that for all large ¢ satisfying the
congruence (3.4),
€, =77 (mod Q).
Since the ¢, belong to the fixed finite set &, the same ¢, must appear for
infinitely many ¢. This gives € = 457, for some € € & N Q>°. We now obtain
a contradiction by considering pg-adic valuations.

Since Py € S, the positive integer 7, satisfies that
o™ | N(Py)roo | ,.

Recall gy was chosen so that the multiplicative order ¢ of avin (Op, /Py Op,)*
divides g9 — n, where vp (o™ — ) > v. It follows that a® = o™ =

(mod Fy), and ep, 4, = vp,(a® — ) > v. Hence, v,,(72) > v and

Upo (6) = Upo ('72) + Upg (’71) 2>V + Up, (71)'

But this contradicts our choice of v; see (3.3). This completes the proof of
Theorem 1.2.
The following proposition is helpful for producing generous primes.

Proposition 3.1. Let K be a number field and let o, 3 € K*. Let P be a
degree 1 prime ideal of Ok, unramified over Q, with vp(a) = vp(8) = 0.
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Let p = N(P). Suppose there exist integers n and m with
(35) op(a”—8) > vp(a™ —1) and vp(8” — ) > vp(F — 1),

Then P is generous with respect to K, «, 5.
For use in the proof we quote Lemma 2.1 from [KP23|.

Lemma 3.2. Let p be an odd prime. Let A € Z, with v,(A—1) =1t > 1.
For each integer T >t and each B € Z, with B =1 (mod p'), there is an
integer k with A* = B (mod p?).

Proof of Proposition 3.1. By the symmetry of the hypotheses, it is enough
to show « is a power of S modulo P’ for each nonnegative integer v. This is
clear for all v < vy := vp(a™ — B). In particular, if vg = 0o (i.e., if " = f3),
there is nothing more to show. Suppose now that v > vy. We will argue that
there is an integer k with a"*®=V% = 3 (mod Pv).

Rearranging, we want a?~Y* = Ba™ (mod P?). Identifying the P-adic
completion of Ok with Z,, solvability follows from Lemma 3.2 with A :=
o™l B = Ba™, t := vp(aP™t — 1) and T := v. We use here that v > v
and that vg = vp(B — 1) > t. O

Example 3.3. For many choices of K, «, and 3, the hypotheses of Propo-
sition 3.1 are satisfied with n = m = 1 and a degree 1 prime P appearing
to a positive power in the factorization of (o« — f)Ok. Here is a an example
where we have to work harder. Let K = Q(v/2,/5). Let

C1+V2 ) 1445

a_—l—\/ﬁ’ 5——1_\/5.
(In this case (a — B)Ok is a prime ideal of degree 2.) Using gp/PARI for
the computations, one finds that (a” — 8)Ox = P3Ps3Pyr9 Py, where the
subscripts on the prime ideal factors indicate the rational primes lying be-
low. Writing K = Q(6) for # = v/2 + /5, one can choose the labeling so
that P := P9 = (479,60 — 270), which has degree 1 and is unramified
over Q. Hensel lifting, one finds that = 270 + 37-479 (mod P?). Starting
from /2 = £(0* —110) and Vb = —5(6® —170), one finds that a = 57851
(mod P?) and 3 = 91259 (mod P?). This is enough information to verify
(3.5) with n = 7 and m = 205. (Here m was chosen as the inverse of n
modulo N(P) — 1 = 478.) In fact all the P-adic valuations occurring in

(3.5) are equal to 1.

Remark 3.4. Let {u,} and {v,} be the sequences defined by the initial

conditions ug = vy = 0, u; = vy = 1, and the recurrence relations u,, =
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2Up_1 + Up_9 and v, = v,_1 + v,,_o for integers n > 2. These are the Pell
and Fibonacci numbers, respectively. For a prime p, its rank of appearance
in either sequence is the smallest positive integer n for which p divides the
nth term, when such an integer exists. For example, the rank of appearance
of 113 in the sequence {v,} is 19, since 113 | 4181 = vy and 113 does not
divide v,, for any positive integer n < 19. On the other hand, the rank of
appearance of 113 in {u,} is 28.

It is well-known that u,, and v,, admit the Binet formulas u,, = ﬁi((l +
V2)" —(1—+/2)") and v, = \/ig((”g‘/g)” — (1’2\/5)”). (For the general theory

of which this is a special case, see [Rib00, Chapter 1].) From these formulas,
one sees that if K is any number field containing V2 and \/5, and P is a
prime ideal of K lying above a rational prime p not dividing 10, then the
rank of appearance of p in {u,} is the order of V2 modulo P while the

1-v2
rank of appearance of p in {v,} is the mod P order of }”_Lg So our last

example has the following corollary.

Corollary 3.5. There are infinitely many primes whose rank of appearance
in the Pell numbers coincides with its rank of appearance in the Fibonacci

numbers.
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