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Z[
√
−5]: halfway to unique factorization

Paul Pollack

Abstract. It is well known that factorization is not unique in Z[
√
−5]. We give a short, self-

contained proof that Z[
√
−5] is “halfway” towards being a unique factorization domain: For

every nonzero, nonunit α ∈ Z[
√
−5], any two factorizations of α into irreducibles involve the

same number of factors.

1. INTRODUCTION. Our jumping-off point is the familiar definition of a unique

factorization domain (UFD): An integral domain D is a UFD if every nonzero

nonunit element of D can be expressed as a product of irreducible elements of D
in a unique way, where uniqueness is up to order and unit multiplication. This last

clause (“up to order and. . . ”) is a bit slippery, and the precise conditions for unique-

ness are most clearly expressed in two parts. Whenever Ã1, . . . , Ãk and Ä1, . . . , Äℓ are

irreducibles having Ã1 · · ·Ãk = Ä1 · · · Äℓ, uniqueness requires that

(i) k = ℓ, and

(ii) for some permutation Ã of {1, 2, . . . , k}, and some units ϵ1, . . . , ϵk of D,

ÄÃ(i) = ϵiÃi for all i = 1, 2, . . . , k.

Unique factorization domains are strewn throughout the landscape of a first ring theory

course, customary examples being the ring Z of ordinary integers, the ring F [x] of

one-variable polynomials over a field F , and the ring Z[i] of Gaussian integers.

Lest one form the impression that all reasonable domains are UFDs, it is common

for instructors in these courses to trot out Z[
√
−5] = {a + b

√
−5 : a, b ∈ Z} as a

cautionary tale. Making use of the norm map (whose definition is recalled below), it

is simple to prove that every nonzero nonunit in Z[
√
−5] has some expression as a

product of irreducibles. But this expression is not always unique! Arguing again with

norms, one can show that ±1 are the only units in Z[
√
−5] (see §2, below) and that all

of 2, 3, 1 +
√
−5, and 1−

√
−5 are irreducible. It follows that the innocent-seeming

and easily-noticed identity

2 · 3 = (1 +
√
−5)(1−

√
−5) (1)

exhibits two distinct factorizations of the element 6.

Both sides of (1) involve the same number of irreducibles (k = ℓ = 2), meaning

that condition (i) for uniqueness holds. Thus (1) is a counterexample to uniqueness

only on account of condition (ii) and so it might be objected, somewhat cheekily, that

(1) represents only a half -failure of unique factorization. Following Zaks [1, 2], we

say that a domain D is half-factorial (or an HFD) if all counterexamples in D to

unique-factorization satisfy condition (i) above. Precisely, D is an HFD if any two

factorizations into irreducibles of the same nonzero nonunit element feature the same

number of factors.

It is remarkable — and surely deserves to be better known — that half-failures of

unique factorization are all one can hope for (fear for?) in Z[
√
−5].

Theorem 1. The domain Z[
√
−5] is an HFD.
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Theorem 1 is a very special case of a 1960 result of Carlitz [3] which characterizes

number fields whose rings of integers are half-factorial. Carlitz proves that these are

precisely the number fields of class number less than or equal to 2. (Note that Q[
√
−5]

has class number 2 and ring of integers Z[
√
−5], so Theorem 1 follows.) Carlitz’s

paper has spawned a large body of related work; some relevant surveys are [4, 5, 6, 7].

Since Theorem 1 can be appreciated by anyone who has completed a course on

rings, it seems desirable to have a proof accessible to that same audience. Towards this

end, Chapman, Gotti, and Gotti [8] offer a self-contained development of ideal theory

in Z[
√
−5], sufficient to carry out Carlitz’s argument for Theorem 1. Our approach

here is somewhat different. We make a beeline towards Theorem 1, avoiding any re-

liance on unique factorization into ideals and making no mention of class numbers.

Nevertheless, experts will recognize that our arguments share features with those ap-

pearing in the development of ideal theory; we trust this will be viewed as a feature

and not a bug.

2. PREPARATION. Here we lay out some of the tools needed for the proof of The-

orem 1.

Our argument makes heavy use of the norm map. For each ³ = a + b
√
−5 ∈

Q[
√
−5], we define the conjugate of ³ by ³̃ = a− b

√
−5, and we define the norm

of ³ by N³ = ³³̃, so that N³ = a2 + 5b2. It is straightforward to check that conju-

gation is a field automorphism of Q[
√
−5]; thus, for all ³, ´ ∈ Q[

√
−5],

N(³´) = ³´ · ³̃´ = ³´ · (³̃ ˜́) = ³³̃ · ´ ˜́ = N³ ·N´.

For ³ ∈ Z[
√
−5], the formula N³ = a2 + 5b2 shows that N³ ∈ Z≥0, with equal-

ity only when ³ = 0. The norm being integer-valued on Z[
√
−5] allows one to trans-

fer certain questions about the arithmetic of Z[
√
−5] to questions about Z. For ex-

ample, it is relatively straightforward now to determine the units of Z[
√
−5]: If ³ is

a unit of Z[
√
−5], with inverse ´ ∈ Z[

√
−5], then 1 = N(³´) = N³ ·N´. Since

N³,N´ ∈ Z≥0, it must be that N³ = 1 (and N´ = 1). Conversely, if N³ = 1,

then ³ is a unit with inverse ³̃. Hence,

N³ = 1 ⇐⇒ ³ is a unit in Z[
√
−5].

Since the only solutions in integers of a2 + 5b2 = 1 are a = ±1, b = 0, the only units

of Z[
√
−5] are ±1.

Recall that a nonzero, nonunit element Ã of a domain D is said to be prime in D if,

whenever Ã | ³´ with ³, ´ ∈ D, either Ã | ³ or Ã | ´. Equivalently, Ã is prime when

Ã is nonzero and Ã generates a prime ideal of D. We (continue to) say Ã is irreducible

if, whenever Ã = ³´ with ³, ´ ∈ D, either ³ or ´ is a unit in D. It is a pleasant

exercise to show that in any domain D every prime is irreducible. Irreducibles need

not be prime; looking back at our earlier factorizations of 6 in the domain Z[
√
−5],

each of the factors 2, 3, 1 +
√
−5 and 1−

√
−5 is irreducible but none of these are

prime.

For us it is of crucial importance that elements of prime norm in Z[
√
−5] are them-

selves prime.

Lemma 2. If Ã ∈ Z[
√
−5] has a norm that is prime in Z, then Ã is prime in Z[

√
−5].

In the following argument, the expression #S denotes the cardinality of the set S
and Fp denotes the finite field with p elements (p prime).
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Proof (following [9, 10]). Let p = NÃ. Since Ã | ÃÃ̃ = p, reduction mod Ã yields

a well-defined surjection Z[
√
−5]/(p) ↠ Z[

√
−5]/(Ã). The corresponding ker-

nel contains Ã and so is nontrivial. Thus, #Z[
√
−5]/(Ã) is a proper divisor of

#Z[
√
−5]/(p). Since Z[

√
−5]/(p) has p2 elements (namely a + b

√
−5 for 0 f

a, b < p) and Z[
√
−5]/(Ã) is not the zero ring, this forces #Z[

√
−5]/(Ã) = p. It

follows that Z[
√
−5]/(Ã) ∼= Fp. Therefore (Ã) is a prime (and indeed, maximal) ideal

of Z[
√
−5], and hence Ã is prime in Z[

√
−5].

We also need a simple result from the theory of congruences, due essentially to

Aubry, Thue, and Vinogradov (independently); see [11] for variants and a discussion

of its history.

Lemma 3. Let m be a positive integer, and let A,B be positive real numbers with

AB g m. For each integer µ, there are x, y ∈ Z, not both 0, with

x ≡ yµ (mod m)

and |x| f A, |y| f B.

Proof. We consider the residue classes mod m of the integers x0 − y0µ, as (x0, y0)
ranges over all ordered pairs of integers satisfying 0 f x0 f A and 0 f y0 f B. The

number of pairs (x, y) is (1 + +A,)(1 + +B,) > AB. Since AB g m, two of our

pairs, say (x1, y1) and (x2, y2), must satisfy x1 − y1µ ≡ x2 − y2µ (mod m). Then

x = x1 − x2 and y = y1 − y2 are as in the lemma statement.

3. PROOF OF THEOREM 1. We will deduce Theorem 1 from the following propo-

sition. For a positive integer n, we write Ω(n) for the number of positive primes of Z

dividing n, counted with multiplicity (for example, Ω(6) = Ω(9) = 2, since 6 = 2 · 3
while 9 = 3 · 3).

Proposition 4. If Ã is an irreducible of Z[
√
−5] that is not prime, then Ω(NÃ) = 2.

Proof of Theorem 1, assuming Proposition 4. Assume that the statement of Theorem

1 is false. We choose a counterexample ³ of minimal norm. That is, ³ has two factor-

izations into irreducibles of different lengths, and N³ is as small as possible among

all such ³. Write

³ = Ã1 · · ·Ãk = Ä1 · · · Äℓ, (all Ãi, Äj irreducible, and k ̸= ℓ). (2)

If Ãi is prime for some i, the primality of Ãi implies that Ãi | Äj for some j. The

irreducibility of Äj then forces Äj to be a unit multiple of Ãi. We can now divide both

our factorizations of ³ through by Ãi to find that ³/Ãi is still a counterexample to

Theorem 1, of smaller norm than ³. But this contradicts the choice of ³. Hence, no Ãi

is prime and similarly no Äj is prime.

Take norms in (2). Applying Proposition 4, we see that Ω(N³) = 2k = 2ℓ. Thus

k = ℓ, a contradiction.

Proof of Proposition 4. Assuming Proposition 4 is false, choose a counterexample Ã
of minimal norm. Since Ã is not a unit, we have Ω(NÃ) > 0. Also, since Ã is not

prime, Lemma 2 gives Ω(NÃ) > 1. As Ã is a counterexample to Proposition 4, it

must be that k := Ω(NÃ) g 3. We factor the integer NÃ into positive primes in Z:

ÃÃ̃ = p1p2p3 · · · pk, where p1 f p2 f · · · f pk.
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Let us observe for later use that ÃÃ̃ cannot be divisible by any prime of Z[
√
−5].

Indeed, if Ä is prime and Ä | ÃÃ̃, then the primality of Ä coupled with the irreducibility

of Ã forces Ã to be an associate of Ä or Ä̃. But then Ã is prime, contrary to our hypoth-

esis. (We have tacitly used here that conjugation is an automorphism of Z[
√
−5] and

so preserves both primality and irreducibility.)

Writing Ã = X + Y
√
−5, the integers X and Y must be relatively prime. Other-

wise, there is a rational prime p dividing Ã, which forces (by irreducibility) Ã to be an

associate of p. But then NÃ = p2 and so Ω(NÃ) = 2 after all, a contradiction. From

gcd(X,Y ) = 1 and

NÃ = X2 + 5Y 2 ≡ 0 (mod p1p2), (3)

we deduce that

gcd(Y, p1p2) = 1. (4)

Thus, we can choose an integer µ with

X ≡ Y µ (mod p1p2). (5)

From (3), (4), and (5),

µ2 ≡ −5 (mod p1p2). (6)

We now use Lemma 3 to choose integers x and y, not both 0, with

x ≡ yµ (mod p1p2) (7)

and |x| f 51/4
√
p1p2, |y| f 5−1/4√p1p2. Put µ = x + y

√
−5. Then Nµ = x2 +

5y2 ≡ 0 (mod p1p2) while also

0 < x2 + 5y2 f (2
√
5)p1p2 < 5p1p2.

Thus, Nµ = p1p2, 2p1p2, 3p1p2, or 4p1p2.

Let us see what the congruence (7) buys us. Multiplying out,

Ãµ̃ = (X + Y
√
−5)(x− y

√
−5) = (xX + 5yY ) + (xY − yX)

√
−5.

From (5), (6), and (7), we have that xX ≡ yµ · Y µ ≡ −5yY (mod p1p2), so that

p1p2 | xX + 5yY . Also, xY − yX ≡ (yµ)Y − y(Y µ) ≡ 0 (mod p1p2). Hence,

p1p2 | Ãµ̃ in Z[
√
−5].

We now complete the proof by considering the different possibilities for Nµ.

Suppose that Nµ = p1p2. Then Ã/µ = Ãµ̃/Nµ = Ãµ̃/p1p2. We have just seen

that p1p2 | Ãµ̃, and so µ | Ã. Since Ã is irreducible, Ã is a unit multiple of µ. But then

NÃ = Nµ = p1p2, contradicting that Ω(NÃ) g 3.

Next, suppose that Nµ = 2p1p2. Then µ is irreducible. Otherwise, we can factor

µ = ³´ for nonunits ³, ´. Taking norms, 2p1p2 = N³ ·N´. Since 2 is not a norm

from Z[
√
−5], this forces N³ or N´ to be one of the primes p1 or p2. But then (by

Lemma 2) ³ or ´ is a prime of Z[
√
−5] dividing p1 · · · pk = ÃÃ̃; however, we ruled

out the existence of primes dividing ÃÃ̃ at the start of this proof.

Furthermore, µ is not prime: Otherwise, as µ | µµ̃ = 2p1p2, we have that µ divides

either 2, p1, or p2. But then Nµ divides 22, p21, or p22 in Z, contrary to Ω(Nµ) = 3.
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Since µ is irreducible, non-prime, and Ω(Nµ) = 3, the element µ is itself a coun-

terexample to Proposition 4. The minimality of NÃ therefore implies that NÃ =
p1 · · · pk f 2p1p2 = Nµ. This forces k = 3 and p1 = p2 = p3 = 2. But then NÃ =
2 · 2 · 2 = 8, which is absurd as there are no integer solutions to u2 + 5v2 = 8.

The case when Nµ = 3p1p2 is similar. We find that µ is irreducible, non-prime,

and that k = 3, with p3 f 3. The case p3 = 2 is ruled out as above. If p3 = 3, then

NÃ is one of 2 · 2 · 3, 2 · 3 · 3, or 3 · 3 · 3. But none of these are of the form u2 + 5v2:

They are all 2 or 3 mod 5, whereas u2 + 5v2 ≡ u2 ≡ 0, 1 or 4 mod 5.

The only remaining possibility is Nµ = 4p1p2. In this case,

4Ã/µ = 4Ãµ̃/Nµ = Ãµ̃/p1p2 ∈ Z[
√
−5].

From here, we can conclude with a bit of trickery. Suppose ¸ = a + b
√
−5 is any

element of Z[
√
−5] whose norm a2 + 5b2 is a multiple of 4. Working mod 4, we see

that a and b are both even, so that ¸/2 ∈ Z[
√
−5]. Taking ¸ = µ we get from this

argument that µ/2 ∈ Z[
√
−5]. But now we notice that

N(4Ã/µ) = 16 ·N(Ã)/N(µ) = 4p3 · · · pk,

so we can take ¸ = 4Ã/µ and deduce that 1
2
(4Ã/µ) = Ã

µ/2
∈ Z[

√
−5]. Thus, µ/2 is a

divisor of the irreducible Ã. Hence, Ã is a unit multiple of µ/2, and NÃ = N(µ/2) =
p1p2, contradicting that Ω(NÃ) g 3.

Remark. Nothing in our argument requires Z[
√
−5] to be the full ring of algebraic

integers inside Q[
√
−5]. In fact, the method of this note can be applied equally well

to establish ‘half-unique’-factorization for certain nonmaximal quadratic orders, such

as Z[
√
−3] and Z[

√
5]. Nonmaximal quadratic orders satisfying the conclusion of

Theorem 1 are investigated extensively in [12] (see also [13, pp. 226–229]), [14], [15],

and [16], by more sophisticated means than those employed here.
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