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Abstract—Non-Gaussian Component Analysis (NGCA)
is the statistical task of finding a non-Gaussian direction in
a high-dimensional dataset. Specifically, given i.i.d. samples
from a distribution P* on R™ that behaves like a known
distribution A in a hidden direction v and like a standard
Gaussian in the orthogonal complement, the goal is to
approximate the hidden direction. The standard formulation
posits that the first £ — 1 moments of A match those of
the standard Gaussian and the k-th moment differs. Under
mild assumptions, this problem has sample complexity O(n).
On the other hand, all known efficient algorithms require
Q(n*/?) samples. Prior work developed sharp Statistical
Query and low-degree testing lower bounds suggesting an
information-computation tradeoff for this problem.

Here we study the complexity of NGCA in the Sum-
of-Squares (SoS) framework. Our main contribution is the
first super-constant degree SoS lower bound for NGCA.
Specifically, we show that if the non-Gaussian distribution
A matches the first (£ — 1) moments of N(0, 1) and satisfies
other mild conditions, then with fewer than n! ~**/2 many
samples from the normal distribution, with high probability,
degree (log n)%*"”“) SoS fails to refute the existence of
such a direction v. Our result significantly strengthens
prior work by establishing a super-polynomial information-
computation tradeoff against a broader family of algorithms.
As corollaries, we obtain SoS lower bounds for several
problems in robust statistics and the learning of mixture
models.

Our SoS lower bound proof introduces a novel tech-
nique, that we believe may be of broader interest, and
a number of refinements over existing methods. As in
previous work, we use the framework of [Barak et al.
FOCS 2016], where we express the moment matrix M as
a sum of graph matrices, find a factorization M ~ LQL”
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using minimum vertex separators, and show that with
high probability () is positive semidefinite (PSD) while the
errors are small. Qur technical innovations involve the
following. First, instead of the minimum weight separator
used in prior work, we crucially make use of the minimum
square separator. Second, proving that () is PSD poses
significant challenges due to an intrinsic reason. In all prior
work, the major part of (Q was always a constant term,
meaning a matrix whose entries are constant functions
of the input. Here, however, even after removing a small
error term, () remains a nontrivial linear combination of
non-constant, equally dominating terms. We develop an
algebraic method to address this difficulty, which may have
wider applications. Specifically, we model the multiplications
between the “important” graph matrices by an R-algebra,
construct a representation of this algebra, and use it to
analyze (). Via this approach, we show that the PSDness
of @) boils down to the multiplicative identities of Hermite
polynomials.

Index Terms—Non-Gaussian component analysis, sum
of squares, robust estimation, lower bounds

[. INTRODUCTION

Non-Gaussian Component Analysis (NGCA) is a
statistical estimation task first considered in the signal pro-
cessing literature [BKST06] and subsequently extensively
studied (see, e.g., Chapter 8 of [DK23] and references
therein). As the name suggests, the objective of this task
is to find a non-Gaussian direction (or, more generally,
low-dimensional subspace) in a high-dimensional dataset.
Since its introduction, the NGCA problem has been
studied in a range of works from an algorithmic stand-
point; see [TKM11], [SKBMO08], [DJSS10], [DINS13],
[SNS16], [VNO16], [TV18], [GS19], [DH24], [CV23].
Here we explore this problem from a hardness perspective
with a focus on Sum-of-Squares algorithms.
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The standard formulation of NGCA is the following.
Fix a univariate distribution A. For a unit vector direction
v, let P;“ be the distribution on R™ defined as follows:
The projection of P2 in the v-direction is equal to
A, and its projection in the orthogonal complement is
the standard Gaussian distribution. Observe that P2 is
a product distribution with respect to a non-standard
coordinate system. It is further assumed that, for some
parameter k, the first £ — 1 moments of the univariate
distribution A match those of the standard Gaussian
N(0,1) and the k-th moment differs by a non-trivial
amount. Given i.i.d. samples from a distribution Pf,
for an unknown v, the goal is to estimate the hidden
direction v. It is known that, under mild assumptions on
the distribution A, this problem has sample complexity
O(n). Unfortunately, all known methods to achieve this
sample upper bound run in time exponential in n by
essentially using brute-force over a cover of the unit
sphere to identify the hidden direction. On the other
hand, if we have > n*/2 samples, a simple spectral
algorithm (on the k-th moment tensor) solves the problem
in sample-polynomial time (see, e.g., [DH24]). A natural
question is whether more sample-efficient polynomial-
time algorithms exist or if the observed gap is inherent—
i.e., the problem exhibits a statistical-computational
tradeoff. As our main result, we show (roughly speaking)
that the gap is inherent for SoS algorithms of degree
O( logn

)

loglogn
In addition to being interesting on its own merits,

further concrete motivation to understand the hardness
of NGCA comes from its applications to various well-
studied learning problems. Specifically, the NGCA prob-
lem captures interesting (hard) instances of several
statistical estimation problems that superficially appear
very different. The idea is simple: Let II be a statistical
estimation task. It suffices to find a univariate distribution
Aq such that for any direction v the high-dimensional
distribution PA" is a valid instance of problem II.
Solving II then requires solving NGCA on these instances.
We provide two illustrative examples below.

Example 1: Robust Mean Estimation: Consider
the following task, known as (outlier-)robust mean
estimation: Given i.i.d. samples from a distribution D
on R™ such that dpy(D,N(p,I)) < e, for some small
€ > 0, the goal is to approximate the mean vector x in fo-
norm. Suppose that A is an e-corrupted one-dimensional
Gaussian distribution in total variation distance, namely
a distribution that satisfies drv(A,G) < e, where
G ~ N(0,1), where § € R. For any unit vector v, the
distribution PvA is an e-corrupted Gaussian on R", i.e.,
dry (P2, N(0v,1d)) < e. It is then easy to see that the
NGCA task on this family of PA’s is an instance of robust
mean estimation. Namely, approximating v is equivalent
to approximating the target mean vector (once we know
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v, the one-dimensional problem of estimating J robustly
is easy).
Example 2: Learning Mixtures of Gaussians:

A k-mixture of Gaussians (GMM) on R” is a convex
combination of Gaussians, i.e., a distribution of the
form F(z) = Zle w;N(u;, X;) where Zle w; = 1.
The prototypical learning problem for GMMs is the
following: Given i.i.d. samples from an unknown GMM,
the goal is to learn the underlying distribution in total
variation distance (or, more ambitiously, approximate
its parameters). Suppose that A is a k-mixture of one-
dimensional Gaussians YF_, w;N(t;,2) and the t; are
chosen to be sufficiently far apart such that each pair of
components has small overlap. For any unit vector v, the
distribution P is a mixture of k& Gaussians on R" of
the form 3% wN(t;v,1d — (1 — 62)vvT). For small 6,
this can be thought of as k “parallel pancakes”, in which
the means lie in the direction v. All n — 1 orthogonal
directions to v will have an eigenvalue of 1, which is
much larger than the smallest eigenvalue in this direction
(which is d). In other words, for each unit vector v, the
k-GMM P will consist of k “skinny” Gaussians whose
mean vectors all lie in the direction of v. Once again,
the NGCA task on this family of P/’s is an instance
of learning GMMSs: once the direction v is identified,
the corresponding problem collapses to the problem of
learning a one-dimensional mixture, which is easy to
solve.

By leveraging the aforementioned connection, hard-
ness of NGCA can be used to obtain similar hard-
ness for a number of well-studied learning problems
that superficially appear very different. These include
learning mixture models [DKS17], [DKPZ23], [DKS23],
robust mean/covariance estimation [DKS17], robust lin-
ear regression [DKS19], learning halfspaces and other
natural concepts with adversarial or semi-random la-
bel noise [DKZ20], [GGK20], [DK22a], [DKPZ21],
[DKK*22], [Tie24], list-decodable mean estimation and
linear regression [DKS18], [DKP*21], learning simple
neural networks [DKKZ20], [GGJ*20], and even learning
simple generative models [CLL22]. Concretely, to achieve
this it suffices to find a distribution A of the required
form that matches as many moments with the standard
Gaussian as possible.

Prior  Evidence  of Hardness: Prior
work [DKS17] established hardness of NGCA in
a restricted computational model, known as the
Statistical Query (SQ) model (see also [DKRS23] for
a recent refinement). SQ algorithms are a class of
algorithms that are allowed to query expectations of
bounded functions on the underlying distribution through
an SQ oracle rather than directly access samples. The
model was introduced by Kearns [Kea98] as a natural
restriction of the PAC model [Val84] in the context of
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learning Boolean functions. Since then, the SQ model
has been extensively studied in a range of settings,
including unsupervised learning [FGR*17].

[DKS17] gave an SQ lower bound for NGCA
under the moment-matching assumption and an additional
regularity assumption about the distribution A (which was
removed in [DKRS23]). Intuitively, the desired hardness
result amounts to the following statistical-computational
trade-off: Suppose that A matches its first £k — 1 moments
with the standard Gaussian. Then any distinguishing SQ
algorithm requires either n*() samples, where 7 is the
ambient dimension, or super-polynomial time in n.

While the SQ model is quite broad, it does not
in general capture the class of algorithms obtained via
convex relaxations. With this motivation, in this work
we focus on establishing lower bounds for NGCA in the
Sum-of-Squares (SoS) framework. It is interesting to note
that the classes of SQ algorithms and SoS algorithms are
incomparable in general. In the context of NGCA studied
here, the work [BBHT21] implies that SQ algorithms
are essentially equivalent to low-degree polynomial tests.
As a corollary of [BBH'21], one can also deduce low-
degree polynomial testing lower bounds for NGCA (see
also [MW?22] for a direct low-degree testing lower bound
of an essentially equivalent problem). We remark that
SoS lower bounds that are proved via pseudo-calibration
subsume low-degree lower bounds [Hop18]. Interestingly,
[GJJT20] implicitly gave a direct low-degree polynomial
lower bound as well. (Specifically, as noted in their
Remark 5.9, Attempt 1 for the proof of Lemma 5.7 there
shows that w.h.p. E[1] = 1 = o(1), which is equivalent
to a low-degree polynomial lower bound).

Informal Main Result: Since we are focusing
on establishing hardness, we will consider the natural
hypothesis testing version of NGCA, noticing that the
learning version of the problem typically reduces to the
testing problem. Specifically, our goal is to distinguish
between a standard multivariate Gaussian and the product
distribution that is equal to a pre-specified univariate
distribution A in a hidden direction v and is the standard
Gaussian in the orthogonal complement.

Problem 1.1 (Non-Gaussian Component Analysis, Test-
ing Version). Let A be a one-dimensional distribution that
matches the Ist to the (k — 1)-th moments with N(0, 1).
Given m i.i.d. samples {z1,...,2,,} € R™ drawn from
one of the following two distributions, the goal is to
determine which one generated them.

1) (Reference Dyey) The true
dimensional normal distribution
N(0,1d,,).

2) (Planted distribution, D,;) Choose v € {£1/y/n}"
uniformly at random (called the hidden/planted
direction) and draw z’ ~ XN(0,1d,), then we

distribution,
multivariate

n-
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take x = 2’ — (2/,v)v + av, where a ~ A, to
be the result. In other words, the distribution is
N(0,1d;,—1)yr x A, where v is chosen uniformly
at random from {£1/,/n}".

We use Boolean planted directions v € {£1/y/n}"
in Definition I.1 for technical convenience. Lower bounds
in this setting imply, in particular, that NGCA is hard
w.r.t. an adversarial distribution of v.

A necessary condition for this testing problem to be
computationally hard is that the univariate distribution
A matches its low-degree moments with the standard
Gaussian. At a high-level, our main contribution is to
prove that this condition is also sufficient in the SoS
framework (subject to mild additional conditions). Here,
we state an informal version of our main theorem,
Theorem II.11.

Theorem 1.2 (Main Theorem, Informal). Given n, sup-
pose 2 < k < (log n)o(l) and A is a distribution on R
such that:
1) (Moment matching) The first k — 1 moments of A
match those of N(0, 1).
2) (Moment bounds) | E z[h:(x)]| < (logn)°®) for all
Hermite polynomials of degree up to 2k(logn)?, and

% > (log n) ~2\9°®)) for all nonzero

polynomial p(x) of degree up to \/logn.
If n is sufficiently large, then with high probability, given
fewer than n"=)%/2 many samples, Sum-of-Squares
soen y fils to distinguish between the
loglogn
random and planted distributions for the corresponding
NGCA Problem I.1."

of degree o(

The SoS algorithms we consider are semi-definite
programs whose variables are all degree < D monomials
in v which represents the unknown planted direction. The
constraints are “vi = 1/n” and that for any low-degree
polynomial p(-), the average value of p evaluated on
the inner product between v and the samples should
be reasonably close to E,.a[p(z)]. As a corollary
of Theorem 1.2, any such algorithm requires either a
large number of samples (> n(!=%)*/2 many) or super-
polynomial time to solve the corresponding NGCA.
Note that the bound here is sharp, since with O(n*/?)
samples it is possible to efficiently solve the problem
(see, e.g., [DH24]).

Remark 1.3. We highlight that NGCA can be viewed
as a “meta-problem”, parameterized by the “structure”
of the one-dimensional distribution A, which captures
hard instances of a wide variety of learning problems.
Our main contribution is to establish SoS-hardness

'As is usual for SoS lower bounds for average-case problems,
technically what we show is that if we apply pseudo-calibration, the
moment matrix is PSD with high probability.
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of NGCA for any moment-matching distribution A
(under mild conditions). This is a powerful result for
showing SoS-hardness for other learning problems via
reductions. For certain special cases of A—specifically
when A is (essentially) a mixture of Gaussians—there
exists reduction-based hardness for the problem under
cryptographic assumptions (namely, the sub-exponential
hardness of LWE) [BRST21], [GVV22]. However, these
reductions are tailored to that specific choice of A. For
other choices of A, no such reduction-based hardness is
known, and it appears that LWE may not be the right
starting point. For all other applications in this work,
with the exception of learning GMMs, the only prior
evidence of hardness was from the aforementioned SQ
or low-degree testing lower bounds.

Remark I.4. It is worth noting the special case where
the distribution A is discrete. Recent works [DK22b],
[ZSWB22] showed polynomial-time algorithms for this
version of the problem with sample complexity O(n),
regardless of the number of matched moments. Such a
result is not surprising, as these algorithms are based
on the LLL-method for lattice basis reduction which is
not captured by the SoS framework. Importantly, these
algorithms are extremely fragile and dramatically fail if
we add a small amount of “noise” to A.

Applications to Robust Statistics and Mix-
ture Models: Our main result (Theorem 1.2) implies
information-computation tradeoffs in the SoS framework
for a range of fundamental problems in learning theory
and robust statistics. (See Table I for a description of
the problems we consider and the guarantees we obtain.)
For the problems we consider, SQ and low-degree testing
lower bounds were previously known.

At a high level, for all our problems, our SoS
lower bounds follow using the same template: we show
that for specific choices of the distribution A, the
problem NGCA is an instance of a hypothesis testing
problem known to be efficiently reducible to the learning
problem in question. As long as the one-dimensional
moment-matching distribution A in question satisfies the
hypotheses required for our main theorem to hold, we
directly obtain an SoS lower bound for the corresponding
hypothesis testing problem.

As an illustrative example, we explain how to
reduce the hypothesis testing version of special NGCA
instances to the problem of learning a mixture of k
Gaussians in n dimensions. Consider the distribution A =
Sohey % N(ui,0?), which is a mixture of Gaussians, and
let the planted distribution be given by N (0, Id;—1),1 X
A, where the hidden direction v is from {+—=}".
Expanding the expression, we see that the hypothesis
testing problem is exactly to distinguish a true Gaussian

from the mixture Zle + N(piv, 1d — (1 = o)vv™).
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Table I gives a list of problems where this work
shows SoS lower bounds. It compares the information-
theoretic sample complexity (the minimum sample size
achievable by any algorithm) with the “computational”
sample complexity implied by our SoS lower bound.

A. Technical Overview of the Lower Bound

In this section, we provide a brief high-level overview
of our lower bound proof.

Pseudo-calibration technique and graph matrices. We
employ the general technique of pseudo-calibration as
introduced in [BHK*16] to produce a suitable candidate
SoS solution F. For a given degree D, this solution can be
described by a moment matrix indexed by sets I, J C [n]
where |I|,|J] < D. The matrix entries are defined
as My(I,J) := E(v'*7), with v/*” representing the
monomial []7, v/*7®") These entries are functions
of the input zq,...,2, € R" and are expressed in
terms of Hermite polynomials (refer to Definition I1.2
and Equation (4)).

As in most SoS lower bounds, the most challenging
part is to show that Mz is PSD. We provide an overview
of the new ideas required for the proof in the proceeding
discussion. Similar to prior works such as [BHK'16],
[GJIT20], [PR20], [JPRT21], [Pan21], [JPRX23], we
expand My as a linear combination of special matrices
called graph matrices [AMP16], whose spectral norm we
can bound in terms of combinatorial properties of the
underlying shapes®. Using graph matrices, we carefully
factorize M as M = LQLT + (error terms) where M
is M rescaled for technical convenience, thus reducing
the task to showing that ) > 0. Here, the construction
of matrices L, () in the factorization uses a recursive
procedure like in previous works, where we repeatedly
use minimum vertex separators of a shape to decompose
the graph, and hence the graph matrix, in a canonical
way.

Minimum square separators. The first technical novelty
in this work is the introduction of the minimum square
vertex separators in the factorization of M. Rather than
using the minimum weight vertex separator or the sparse
minimum vertex separator as in previous works, we define
this new concept for bipartite graphs with two types of
vertices—circles and squares——which naturally arise
in our analysis of the NGCA problem.

Choosing the correct notion of vertex separators is
a crucial first step in our analysis. This is because the
combinatoroial properties of minimum square separators
and minimum weight separators are key to controlling

2A shape is, roughly speaking, a graph plus two distinguished vertex
subsets called the left and right indices. The two indices are used
to identify rows and columns of the associated matrix. The reader is
referred to the full version of the paper for a formal definition.
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Sample Complexity versus Computational Sample Complexity

Statistical Estimation Task Information-Theoretic ‘ Degree-O( 15 }‘fg," ) SoS
glogn

RME (X < Id) to £a-error 2(+/7) O(n) Q(n2(1*6))

- 1/2

RME ( = Id) to fy-error (72804710 o(n) Q(nk1-2)/2)

List-decodable Mean Estimation to error O(T71 k) O(n) Q(nk(lfs) 2)

RCE (multiplicative) to constant error O(n) Q(n20-29)

RCE (additive) to spectral error O(ﬂ%&lﬂ) O(n) Q(nk(1-2)/2)

Estimating k-GMM O(kn) Q(nk(1—e))

Estimating 2-GMM (common unknown covariance) O(n) Q(nQ(l_g))

TABLE I: A contrast between the information-theoretic sample complexity and the sample complexity required by
degree-O(/¢c log n/loglogn)-SoS for a range of natural tasks in robust statistics and learning mixture models. This
includes robust mean estimation (RME), robust covariance estimation (RCE), learning Gaussian mixture models,
and list-decodable mean estimation. The parameter 7, when it appears, is related to the proportion of contamination.

the norms of all the error terms generated in the resulting
factorization M ~ LQLT, which we will use throughout
our analysis. Importantly, the use of minimum square
separators leads to a characterization of the dominant
terms in the expansion of (), which we describe now.

The dominant family in ) and well-behaved products.
Recall that our goal is to show that with high probability,
the matrix () from factorization M ~ LQL" is positive-
definite. We view (@ as a linear combination, where
each term is a graph matrix multiplied by its coefficient.
In all prior works that utilize the factorization ap-
proach [BHK16], [G]J+20], [PR20], [JPR"21], [Pan21],
[JPRX23], the dominant term in () was a constant term,
i.e., a matrix whose entries are numbers independent
of the input. Here, however, we encounter a new and
intrinsic difficulty: () contains an entire family of non-
constant terms that are almost equally dominant.

Using the refined tools developed in our error analy-
sis, we are able to characterize the shapes of the dominant
terms, which we refer to as simple spider disjoint unions
(SSD). The formal definition is given in the full paper.
A related but less restrictive family of shapes, called
“spiders”, was introduced in [GJJT20] in the context
of the Sherrington-Kirkpatrick problem, which can be
seen as a special case of NGCA where the unknown
distribution A is the uniform distribution on {£1}. Their
technique of using the null-space to annihilate all spiders
relies on A being a discrete distribution, which does not
apply to our setting. Additionally, we note that their work
establishes a sample complexity lower bound of n3/2, in
contrast to the O(n?) upper bound [DH24]. To achieve
an almost optimal lower bound of n(!=5)%/2 (see the
second paragraph of the introduction), we need to study
of the ‘rigid’ structure of these shapes and their linear
combinations.

As discussed earlier, the dominant terms in () are
simple spider disjoint union graph matrices. To prove
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that their sum in () is positive-definite with high proba-
bility, we begin by examining the recursive factorization
procedure that generates (). Roughly speaking, @ is a
sum of numerous matrix products derived during the
factorization. Among these products, we identify those
that significantly impact ()—referred as the well-behaved
intersection configurations —and show that the remaining
other terms altogether contribute minimally. This leads
to an expression of a dominating part of (), which we
denote by Qssp, along with a characterizing equation
Lssp *wb Qssp *wb Lgsp = Mssp. Here, Lssp, Mssp
denotes the SSD part of L, M respectively, and sy,
denotes what we call the well-behaved product between
graph matrices. The formal definitions and statements
are given in the full paper.

Before overviewing the proof of the positive-
definiteness of Qssp, we make two important remarks.
First, the coefficients of the graph matrices in L and
M are delicate. For instance, in L, the coefficient of a
simple spider is n~IF1/2 - E4lh;], where j denotes the
degree of the unique circle vertex of the spider, and
h; is a Probabilist’s Hermite polynomial; for disjoint
union shapes, the coefficient is the product of those of
its components. When matrices multiply, the coefficients
multiply as well, and at several places we need to handle
them in an exact way rather than doing mere magnitude
estimates. Second, and more subtly, we will not analyze
the matrix Lgsp or Mssp in the same way we analyze
Q@ssp, as both of them contain terms with larger norms.
Instead, we focus our analysis on Qssp.

PSDness via representation. To show that Qssp is
positive-definite, we start with simple spiders. We use an
algebraic method to study their multiplicative structure.
The multiplication of general graph matrices is very
complicated, but for simple spiders, an algebraic study
turns out to be feasible. It goes as follows.

First, we show that (Jss—a further restricted matrix
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that collects all simple spider terms in (Jssp—is positive-
definite in a non-standard sense. Specifically, we model
the multiplications of simple spiders as an associative
R-algebra, which we call SAp (simple-spider algebra
of degree D). The multiplication in SAp is the well-
behaved product restricted by taking only simple spiders
in the result. This is a non-commutative algebra, and it
approximates the major terms in the multiplication of
simple spiders graph matrices in special cases, although
not always. To understand the structure of SAp, we
construct essentially all its irreducible representations and
obtain a concrete Artin-Wedderburn decomposition as a
direct sum of matrix algebras. Details of the construction
are given in the full paper. This decomposition greatly
simplifies the objects under study: it maps elements
of SAp, which represent graph matrices of dimension
n®®) | to real matrices of dimension at most D + 1,
while preserving algebra operations and matrix transposes.
Using this decomposition, we prove that the matrix
LsstsLsTs is “positive-definite”, and hence so is Qss.
Here, Lgss, Mgss are the simple spider part of L, M
respectively. The proof of this fact somewhat surprisingly
boils down to the multiplicative identities of Hermite poly-
nomials. The quotation mark around “positive-definite”
means that we obtain a sum-of-squares expression of
LssQss Ldg in the approximation algebra, SA p. In reality,
since the well-behaved product only approximates real
matrix products of certain simple spiders but not all, to
extend the “positive-definiteness in SAp” to the positive-
definiteness of the matrix (Jss, we need to make sure
that ()ss contains only special simple spiders where this
approximation works well.

The second step is to extend the positive-definiteness
to Qssp- Recall that it is the dominant part of @
and is a linear combination of simple spider disjoint
unions (SSD). This time, we do not have to model the
multiplication of SSD shapes algebraically (as we did
for simple spiders); instead, given the sum-of-squares
expression of (Jss obtained from the above, we can
directly construct a square root of (Jssp by an operation
we call the D-combination. The intuition is that given a
linear combination « of simple spiders, its D-combination
linearly combines all possible disjoint union of shapes
in a with their coefficients multiplied together.’> This
construction is combinatorial rather than algebraic, but
it turns out to have a useful algebraic property: D-
combination commutes with well-behaved products in a
sense. The formal statement is given in the full paper.
Using this property, we prove that if X - X T ~ Qss
then [X]P - ([X]P)T ~ Qssp, where [X]P means
the D-combination of X. This helps us prove the

3Technically, we require « to satisfy a certain consistency condition
which we state precisely in the full version of the paper.
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positive-definiteness of Qssp . Again, additional analytic
arguments are required in the actual proof. We also need
to show that [X]? is not too close to being singular so
that we can use [X]” - ([X]”)T to compensate for the
error terms.

To summarize, from the error analysis we have ||Q —
Qssp|l < n~) . By the above steps, we show that
Qssp = n~°E)1d assuming that A satisfies some mild
conditions besides matching (kK — 1) moments. Together,
we get the positive-definiteness of (). From here, it is
not hard to show that M ~ LQLT is PSD. We now turn
to handling the error terms.

Handling error terms via configurations. As described
more precisely in the proof overview in the full version,
there are two main sources of error terms:

1) The error () — Qssp in the approximation of () by
the sum of well-behaved configurations.
2) The truncation error M — LQLT.

We also need to analyze the error in our PSD approxi-
mation QSSD ~ [X]D . ([X]D)T of QSS[).

Our framework for handling these error terms is
as follows. We formalize the way an error term can be
generated as a configuration, whose definition is given in
the full paper. The goal is then to show that the following
number is small: the product of the coefficients from all
shapes in the configuration, multiplied with the norm
of any graph matrix that results from the configuration.
To estimate this number, we use a charging argument
that assigns edge factors to vertices. The idea is that
to calculate, for example, the exponent over n in the
expression n~1Z~l/2 times the norm bound on a graph
matrix M,, we take log (-) of the expression. We
imagine that each edge in shape « has an additive factor
of 1, and we assign the edge factors to its endpoints so
that each vertex receives a sufficient amount of factors.
The main result we prove is a dichotomy. Either the
configuration is a well-behaved SSD product and has
approximate norm 1 or the configuration has norm o(1).
This allows us to show that the errors Q — Qssp and
Qssp — [X]P - ([X]P)T have norm n~?(=). The design
and analysis of the edge factors assignment scheme
relies on properties of the minimum square separators
and the minimum weight separators, which might be of
independent interest.

To handle the truncation error, we observe that
the truncation error only contains configurations which
are very large and all such configurations have norm
n~UeDerunc) \where Dirunc 18 a “total size” threshold
on shapes that we set in pseudo-calibration.

II. FORMAL STATEMENT OF THE MAIN RESULT

In this section, we formally define the problem state-
ment.and state our main result. In Section II-A, we set
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up basic notation. In Section II-B, we recall the notions
of pseudo-expectation values and the moment matrix,
formally define the NGCA problem, and formulate it
in the sum-of-squares framework. In Section II-C, we
recall the technique of pseudo-calibration introduced by
[BHK'16] and identify the pseudo-calibrated moment
matrix whose PSDness we want to prove. In Section II-D
we show that our pseudo-expectation values satisfy the
desired constraints except for PSDness of the moment
matrix.

A. Notation

Basic Notation: R is the set of real numbers.
For t € Z4, [t] := {1,...,t}. We will use n to
denote the dimension of the input data, and m for the
number of samples. The given m samples are denoted by
X1,y ..., Tm, where each x, = (Ty1,. .., Tun) € R™. We
will use index symbols u € [m], i € [n]. The SoS degree

> ai).

1=

is D. For an integer vector a € N", |al|;

n
[T a(i)!. For a sequence of m such vectors,

i=1
accordingly, a = (a1,...,a,) € (N™)™, |l
ZHaqu = Zau(‘) and a! = Ha P'=Jlau(@)l It

mlght be helpful to think of a e (Nmy™ as an edge-
weighted and undirected bipartite graph on vertex sets
[n], [m] where a, (i) is the weight of edge {i,u}. For
matrices M, N and a number C' > 0, we use M g N to
denote that ||[M — N|| < C where ||-|| on matrices always
means the operator norm. If M, N are square matrices,
M = N denotes that M — N is positive-semidefinite
(PSD). We use poly(-) to indicate a quantity that is
polynomially upper-bounded in its arguments. Similarly,
polylog(-) denotes a quantity that is polynomially upper-
bounded in the logarithm of its arguments. By log(-) we
mean log,(-).

al

Probability Notation: For a random variable X,
we write E[X] for its expectation. N (1, %) denotes the
1-dimensional Gaussian distribution with mean g and
variance o2. When D is a distribution, we use X ~
D to denote that the random variable X is distributed
according to D. When S is a set, we let Ex.g[-] denote
the expectation under the uniform distribution over .S.

Hermite Polynomials: The probabilist’s Hermite
polynomial He;(z) will be denoted by h;(x). The n-

Hh

for a € N”. Recall that h,/va! (¢ € N") form an
orthonormal basis of polynomials under the inner product

dimensional Hermite polynomials are h,

(f,9) = [f(x)g(x)]

T N(O Id,)
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where N(0,Id,,) is the n-dimensional multivariate normal
distribution with mean 0 and covariance matrix Id,,. For
m

e (NM)™ we let hy = [] ha,-
u=1

B. Problem Statement and Sum-of-Squares Solutions

We now define the SoS formulation for NGCA that
we use. The inputs to our SoS program are i.i.d. samples
Z1,...,%, drawn from the reference distribution. We
denote the SoS variables by v = (vi,...,vp).

A true solution to the NGCA problem would assign
a real value to each v; such that the following constraints
are satisfied:

1) (Booleanity) For all i € [n], v;
2) (Soft NGCA constraints)

1—o.

!(1/m)Z(hj($~V) E [hi(a)]| = O(1/Vm)

where x1,...,x,, are the input samples.

Degree-D SoS gives a relaxation of the problem
where instead of assigning a real value to each v;, we
have an R-linear map E called pseudo-expectation values
which assigns a real value Efp] to each polynomial
p(vi,...,vy,) of degree at most D. We can think of E[p)
as the estimate given by degree-D SoS for the expected
value of p over a (possibly fictitious) distribution of
solutions.

Definition IL.1. We define R<%(v) to be the set of
all polynomials of degree at most d in the variables
Viyeeoy Vo

Definition I1.2 (Pseudo-expectation Operator for NGCA).
Given input samples x1, . .., Ty, and a target distribution
A, we say that an R-linear map E : RSP (v, ..., v,) —
R is a degree D pseudo-expectation operator for NGCA
if it satisfies the following conditions.

1) (Oneness) E(1) =

2) (Booleanity) E(f(v) (v2 — 7)) =0 forall i € [n]

and all f € RSP=2(v);

3) (Soft NGCA constraints)
]; S Ehy@a-v) - B @] = O(k)
for all 1< Dy

4) (Positivity) E[p?] > 0 for all p € REP(v).

If this relaxation is infeasible then degree-D SoS
can prove that there is no vector v = (v1,...,v,) such
that the input has distribution A in the direction v. For
our degree-D SoS lower bounds, we show that w.h.p.
(with high probability) this does not happen. To do this,
we design a candidate pseudo-expectation operator F
and show that w.h.p. it is a degree D pseudo-expectation
operator for NGCA.

Authorized licensed use limited to: University of Wisconsin. Downloaded on July 04,2025 at 14:00:17 UTC from IEEE Xplore. Restrictions apply.



Remark II.3. We use Roman text font for the SoS
variables vi, ..., v, to distinguish them other expressions
such as the input variables which take fixed real values
once the input is given.

Remark I1.4 (Soft NGCA constraints). The “soft” NGCA
constraints (Item 3) indicate that we study generic
SoS lower bounds, i.e., there is no strict polynomial
identity constraint other than booleanity of the variables
v. This is more or less an inevitable feature of the
algorithms dealing with NGCA for general distributions
A in Definition I.1, as opposed to cases where A is more
restricted such as being discrete.

The positivity condition on E can be expressed using
the following (pseudo-)moment matrix.

Definition IL5. We define v' to be the monomial ] VZ-I ®
i=1
where I € N". We define the degree of v! to be |||, =

S I(0).

Definition IL6 (Pseudo-moment Matrix). Given a linear
map E : RS2P[v] — R, its degree D pseudo-moment
matrix, or moment matrix in short, is an ( L"I]D) x ( L"]’]D)
matrix Mg whose rows and columns indexed by subsects
of I C [n] of size at most D, and the entries are
Mg(1,J) == E(v'*7), where 1,J are viewed as the
indicator functions from [n] to {0, 1}.

The verification of the following fact is straightfor-
ward.

Fact IL7. Suppose M satisfies the Booleanity condition.
Then the positivity condition, Item 4 in Definition I1.2, is
equivalent to the condition that Mg = 0.

In the next section, we describe the standard pseudo-
calibration technique used to prove SoS lower bounds.

C. Pseudo-calibration Technique for NGCA and our
Main Result

Pseudo-calibration, introduced in [BHK*16], is a
method to construct a candidate pseudo-expectation
operator ¥ for an input x drawn from the problem
distribution (true distribution, “¢7””). The idea is to show
that there is another distribution (planted distribution,
“pl”) supported on feasible instances and solutions (z,v),
such that it cannot be distinguished from the problem
distribution via any low-degree test. Once we have this
planted distribution, we will choose the candidate pseudo-
expectation values E(v!) so that

E

x~Doey

E
(z,v)~Dp;

[t(x)E(vf)] - [t(x)uf} (1)
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for all low-degree polynomials ¢(z), where v’ is the

n .
monomial [] vil (’), I € N™. Moreover, we impose the

i=1
condition:
Each E(v') itself is a low-degree polynomial in z.
(2)
For our problem, the input data (z1,...,Z,) €

(R™)™ are ii.d. samples drawn from the true Gaus-
sian distribution, , and v = (vy,...,v,) are the SoS
variables representing the unknown direction whose
solution existence SoS wants to refute. In light of the
NGCA problem in Problem 1.1, our planted distribution
D, is the following: first choose a planted vector
v o~ {i%}" uniformly at random, then choose i.i.d.
samples 1, ..., x,, where

Ti = ((mi)vJ-a (ll)v) ~

where A, is the one-dimensional distribution of interest
in direction v matching k¥ — 1 moments with N(0, 1).
Concretely, conditions Equation (1) and Equation (2)
enforce the pseudo-calibration to have the following form:

N(O, Idnfl)vj_ X Av,

~ h h
E() = > E [vl\/‘l' \/i'
a€(N™)™:“total size” of a (@,0)~Dpu a a@:
is upper bounded by D¢yynec
3)

where Di,nc 1S a parameter deciding the meaning of
“low-degree” in Equation (1) and Equation (2). We will
choose Dy,n. based on the technical analysis. It turns
out that we can choose Dy, to be any value between
C1logn and n for some constants C;,Co depending
on ¢, although there will be a trade-off between D and
Dyrune.

For any fixed I € N”, we let the I-total size of

a=(ay,...,a,) € (N*)™ be total’ (a) :=
llalls + {¢ € [n] : I(i) >0 or (3u € [m]) ay(i) > 0}]
+ H{u € [m]: (3i<[n]) au(i) > 0}.

We use this to measure the “total size” of a in the above
equation. The calculation of (3) is similar to the one in
[GJJ*20], giving the following expression.

Lemma IL8 (Pseudo-calibration). For any I € N7,
E(!) is given by,

>

a€(N™)™: totall (a)<Dtrunc,
and (Vi€[n]) I(i)+>2,,

_ il el ﬁ%{hlaul]

“

Remark I1.9 (Only moments matter). By Equation (4),
the pseudo-expectation values are determined by the
moments of A up to the truncation threshold Dyyqne.
In particular, if Dyyype is smaller than the number of
matched moments (i.e., kK — 1), then Equation (4) will

ay, () is even
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be a constant function and the resulting matrix will be
diagonal and trivially PSD.

Definition I1.10 (Cy,Cp). Given n, D, Dipyne and
distribution A, we let Cy,C, be the minimum values
such that Cy,Cp, > 1, and

1) For all t < 3Dypune, [E [ht(x)]‘ <ct.

2) For all polynomials p(x) of degree at most D such
that [y o1 p*(@) = 1, B [p(2)] = € “0.

We can now state the main theorem formally.

Theorem II.11 (Main Theorem). There is a universal
constant Cyniy > 1 such that for any 6 € (0,1), if n
is sufficiently large then the following holds. Suppose

€ (0,1), A is a 1-dimensional distribution, k > 2, and
D and Dyyyne are integer parameters (where ¢, A, k, D,
and Dyypyne may all depend on n) such that:

A matches the first k — 1 moments with N(0,1). (5)
(6)
(7N

Then if we draw m < n i.i.d. samples from
N(0,1dy,), with probability greater than 1— 0, the degree-
D pseudo-calibration moment matrix with truncation
threshold Dypync is positive-definite.

500
Diyune > max{50D? —D,2klogn}, and
€

(5CU)20D2 C%D(IOD”WC)QE)GC“HWD? < ne/30.

(1—e)k/2

For example, we can set k < (logn)O(l), D =
o(4/ %) and Dypyne = 2kDlogn. Then if the
distribution A matches & — 1 moments with N(0, 1) and
satisfies Cyr, O < (logn)©™), Theorem I1.11 provides
an almost optimal n= 2 ~ sample lower bound for the
corresponding NGCA problem in degree-D SoS.

The proof of Theorem II.11 is in the full version of
the paper.

D. Properties of Pseudo-calibration

In addition to Theorem II.11, we show that the
pseudo-calibration “solution” of v from Equation (4)
satisfies the Booleanity constraints and the soft NGCA
constraints. _

It is not hard to check directly that E satisfies the
Booleanity constraints as multiplying v/ by v? increases
the number I(4) by 2. This is also a special case of the
following more general fact (Cf. [BHK™16], [GJIT20]),
whose proof is a simple expansion of the definition
Equation (3).

Lemma II.12 (Pseudo-expectation preserves zero). If
f(v) is a polynomial only in the SoS variables v such
that deg(f) < D and f(v) = 0 for all v in the planted
distribution, then E(f) = 0 independent of the input .

As for the soft NGCA constraints, we will show that
for any low-degree Hermite polynomial evaluated on the
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inner product z - v, with high probability the pseudo-
expectation value is close to the expectation under A
(Lemma II.13). Below, recall that h;(z) denotes He;(x).

Lemma II.13 (Hermite Tests in the Hidden Direction).
For all Hermite polynomials h; of degree at most D, with
m

high probability, |2 S E (hj(z-v)) — E [hj())| is
i=1 ar
o(1). More precisely,
polylog(m)

;gﬁ(m(mi ) N

The proof of this lemma is in the full version of the
paper.

~E [h;(a)] - E(1)|<

a~vA
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