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Abstract—In this paper, we investigate an accurate synchro-
nization between a physical network and its digital network twin
(DNT) that is a virtual representation of the physical network.
The considered network includes a physical network where a
base station (BS) serves a set of users, and a DNT that evolves
with the status of both DNT and the physical network. The BS
must use its limited spectrum resources to serve the users, as
well as transmit the physical network information to the cloud
server for DNT synchronization. Since the DNT can predict the
physical network status, the BS may not need to transmit physical
network information to the server at each time slot thus saving
spectrum resources to serve users. However, if the BS does not
transmit physical information to the DNT over a long period
of time, the DNT may not be able to represent the physical
network accurately. To this end, the BS must determine whether
to send physical network information to the server to update
DNT and the spectrum resources used for physical network
information transmission and serving users. We formulate this
resources allocation problem as an optimization problem aiming
to maximize the sum of data rates of all users, while minimizing
the gap between the states of the physical network and the DNT.
The formulated problem is challenging to solve by conventional
optimization methods, since the BS may not be able to know
the future status of the DNT. To solve this problem, we design
a gate recurrent unit (GRU) and soft action-critic (SAC) based
algorithm. The GRU enables the DNT to predict its future states
by using historical state data, and updating the DNT when the
BS does not transmit physical network information. The SAC
based algorithm enables the BS to learn the relationship between
the physical network information transmission and the future
status estimation accuracy of the DNT thus determining whether
to transmit physical network information to the cloud server,
ensuring an accuracte synchronization between the physical
network and the DNT. Simulation results demonstrate that our
designed algorithm can promote the weighted sum of data rates
and the similarity between the status of the DNT and the
physical network by up to 10.31% compared to a baseline method
integrating the GRU and the deep Q network.

I. INTRODUCTION

Digital twins (DTs) that are real-time virtual representa-
tions of physical products, processes or services can be used
for real-time monitoring, simulations, and optimization of
physical products [1]. Currently, researchers have focused on
the generation of digital network twins (DNT), which is a
virtual representation of a physical network, such that one
can use generated DNTs for wireless network monitoring and
optimization. First, constructing a DNT requires mapping not
only physical objects (i.e., devices and infrastructure of a
physical network) but also several unique networking factors
(i.e., network protocols, wireless channel dynamics, and the
network performance metrics). Hence, it is impractical to
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directly map all network features for DNT generation and one
must select appropriate network features for DNT creations
[2]. Second, no standardized metrics exist for evaluating the
DNT performance [3]. Third, privacy protection in DNT
remains a key issue to be addressed since private information
of physical network users may be leaked in the process
of information exchange between a physical network and a
DNT [4].

Recently, a number of existing works [5]-[8] have studied
the generation and creations of DNTs. In particular, the authors
in [5] designed a deep neural network (DNN) based method
to create a DNT for a mobile edge computing system. The
designed DNT is used to approximate the optimal user associa-
tion scheme in the physical network. In [6], the authors created
a DNT using a Bayesian model. In [7], the authors proposed a
continual learning framework to build a synchronized DNT of
a autonomous vehicle network so as to make vehicle driving
decisions. In [8], the authors presented several use cases, the
design standardization, and an implementation example of the
DNT. However, most of these works [5], [6], [8] did not
consider the similarity and synchronization between the DNT
and a physical network and they directly assumed that the
DNT can be updated in real time. Meanwhile, these works
[5]-[8] did not consider how the generation of DNTs affect the
physical network performance since DNT generations require
the transmission of a large amount of data, which will also
introduce significant communication overhead.

The main contribution of this work is to design a novel
DNT framework that jointly optimizes the performance of a
physical network and the synchronization between the DNT
and the physical network. Our key contributions include:

o We consider a DT enabled network that consists of a
physical network with a base station (BS), several users,
and a DNT. The DNT is a virtual representation of
the physical network and can predict physical network
dynamics. The BS must use limited spectrum resources
to serve the users and transmit the information of the
physical network to a cloud server to generate the DNT.
Since the DNT can predict the physical network status,
the BS may not need to transmit the information to the
server at every time slot, and thus conserving spectrum
resources to better serve the users. To this end, the BS
in the physical network needs to determine whether to
transmit the physical network information to the cloud
server for updating the DNT, and optimize spectrum
resource allocation for the users and physical network
information transmission. We formulate this problem as
an optimization problem aiming to maximize the data
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Fig. 1. The considered DNT enabled network.
rates of all users while minimizing the gap between the
states of the physical network and the DNT.

o The formulated problem is challenging to solve since the
BS may not be able to know the future status of the
DNT. To solve this problem, we proposed a machine
learning method that integrates the gate recurrent units
(GRUs) and the soft actor-critic (SAC). The GRUs allow
the DNT to predict its future state using historical data,
ensuring DNT status updates when the information of the
physical network cannot be transmitted. The SAC can
learn from the GRU prediction accuracy to enable the
BS to determine whether to send the physical network
information to the cloud server, ensuring an accurate
synchronization between the physical network and the
DNT. Compared to other RL methods, the objective
function of the SAC includes an entropy term, which
not only stabilizes the algorithm but also promotes the
exploration towards the global optimal policy.

Simulation results show that compared to a baseline method
integrating the GRU and deep Q network (DQN), our proposed
algorithm can improve the weighted sum of data rates and the
similarity between the status of the DNT and the physical
network by up to 10.31%.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a DNT enabled network (see Fig. 1) that
consists of: 1) a physical network in which a BS serve a set
U of U mobile users, and 2) a DNT that is a mapping of
the physical network and can be used for physical network
monitoring and network dynamic prediction [9]. The BS must
serve the users in the physical network and transmit the
information of the physical network to a cloud server for DNT
generation [10]. Next, we first introduce the mobility model
of each user. Then, we introduce the data transmission model.
Finally, we introduce our considered optimization problem.

A. Mobility Model

For simplicity, we use a random walk model to model the
mobility of each user [11]. At each time slot ¢, each user u
has 5 probable movements: 1) stay at the current location, 2)
move forward, 3) move backward, 4) move left, and 5) move
right. The probability of user u choosing each movement is
p, = [pu,lypu,Zapu,37pu,4apu,5]’ where p,, 1 is the probability
of user u choosing to stay at the current position and py 2,

Du,3> Du,a, Pus are, respectively, the probability of user u
moving forward, backward, left, and right. p,, is assumed to
be identical for all time slots. We consider the coordinate of
user w at time slot ¢ is Iy, = [1Y; 1,1Y; ,], and the distance that
each user can move in a time slot is Al. Thus, the coordinate
of user u at time slot £ + 1 is

[lgt 1) lgt 2] with probability p, 1,

[ w1 ut ot Al] with probability p,, o,
Loiiny = 4 [l luro — Al with probability py 3, (1)
[ ut L — ALY 2] with probability p, 4,

ut L+ Al lut 5| with probability p, 5.

B. Transmission Model

We assume that the BS serves the users and sends the
physical network information to the cloud server by employing
the orthogonal frequency division multiple access (OFDMA)
technique. We assume that the BS can allocate a set N of
N resource blocks (RBs) to serve users and transmit physical
network information. Each user can only occupy one RB. The
transmission rate of the BS transmitting data to user u at time
slot ¢ is

N U
PH (1Y)
Cut (wut) = ngz:l xut,nB 10g2 <]. + I"—FBUt]Vo> 5 (2)
where B is the bandwidth of each RB; &, = [Zys,1, -..) Tut, N]

is the RB allocation vector, Z,:, € {0,1} indicates whether
RB n is allocated to user w at time slot ¢ with z;, = 1
indicating that RB n is allocated to user u at time slot {,
otherwise, we have x, , = 0; P is the transmit power, which
is assumed to be equal for all users; h (I},) = o0,d,] is the
channel gain between user v and the BS with o, being the
—IN||5 being the
distance between user v and the BS at time slot ¢, IN being
the coordinate of the BS; I,, is the interference caused by the
users that are located in other service areas (e.g., other BSs
that are not included in our considered physical network) and
use RB n; Ny is the noise power spectral density. Similarly,
the transmission rate of the BS transmitting physical network
information to the cloud server at time slot ¢ is

Ph (1€

Rayleigh fading parameter, d,; = /||lY,

= Z yenBlogy | 1+

where y, = [y¢.1,..., y¢,n] is the RB allocation vector, y; ,, €
{0,1} indicates whether RB n is allocated to the cloud server
at time slot ¢ with y; ,, = 1 indicating that RB n is allocated
to the cloud server at time slot ¢t and the BS will send the
physical network information to the cloud server, otherwise,

we have y;,, = 0; hy, lC) is the channel gain between BS

n and the cloud server with € being the coordinate of the
cloud server. We assume the data size of the physical network
information that is needed to be transmitted to the cloud server
is D. Given the data rate c{ (y,), the transmission delay of
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the BS transmitting physical network information to the cloud

server at time slot ¢ can be represented as T) (y,) = %.
t t

C. Digital Network Twin Model

The DNT is a mapping of the physical network and hence
the DNT should have the same status and the wireless manage-
ment strategy of the physical network. We define a vector s,
to represent the status of the physical network at time slot ¢. In
our considered network, the network dynamics are introduced
by user movements. Hence, s; = [llljt, s l%t}. Given y, and
sy, the status s} (y,) of DNT at time slot ¢ is

N
si, i Y yin =1,
si (y,) = m @)

N
8 if Y yin=0,

n=1

where 3, —ylljt, ey igt is the status estimated by the DNT at
time slot ¢. From (4), we see that when the BS assigns an RB
to send the physical network information to the cloud server
(.e., 22;1 Yi,n = 1), the status of the DNT at time slot ¢ is the
same as the status of the physical network s; since DNT can
directly obtain the status information of the physical network.
In contrast, when the BS does not send the physical network
information to the cloud server (i.e., ij:l Y,n = 0), the DNT
must estimate the changes of the DNT (i.e., user movement)
and uses the prediction as the status of the DNT. If the DNT
and the physical network have the same status (i.e., s; = s}),
we consider the DNT synchronizes with the physical network.

D. Problem Formulation

Given the defined system model, our goal is to maximize
the sum of the data rate of all users, while guaranteeing the
synchronization between the physical network and the DNT
over a set 7 of T time slots. This maximization problem
includes optimizing the RB allocation vectors xiy, ..., Ty,
and physical network information transmission vector y,. The
maximization problem is formulated as follows

T U

(1 - 6) / 2
max €Cyt (Tyt) — St— S ,
{wuwwuuyt}temzzhgl ¢ (Tut) U (N (Y2
&)
st Typn €{0,1},uceUU,neN,teT, (5a)
N
> urn <LVuelUteT, (5b)
n=1
Y €{0,1},neNtET, (5¢)
N
i <LneNteT, (5d)
n=1
TC (y,) <7.teT, (5e)

where € € (0, 1) is a weight parameter, ~ is the upper bound of
the delay of transmitting the physical network information to

the cloud server. In (5), the constraints (5a) and (5b) imply that
each user can occupy only one RB, (5¢) and (5d) imply that
the BS must determine whether to allocate one RB to send the
physical network information to the cloud server, (5e) implies
that the delay of transmitting the physical network information
to the cloud server has to meet a requirement .

The problem (5) is challenging to solve by conventional
optimization methods due to the following reasons. First, the
BS may not be able to know a future status sj,, of the
DNT since it depends not only on y, but also on the status
estimation accuracy of the DNT. Second, the status of the
considered physical network and DNT varies in real-time
due to the movement of the users and the physical network
information transmission. If we use conventional optimization
methods to solve problem (5) so as to adapt to these dynamics,
we must implement the optimization methods at each time slot.
Hence, the computational complexity increases significantly.
To solve problem (5), we use a reinforcement learning (RL)
based method which can learn the relationship between y, the
status estimation accuracy of the DNT to determine ¥, at each
time slot, so as to keep an accurate synchronization between
the physical network and the DNT.

III. PROPOSED SOLUTION

To solve problem (5), we introduce a machine learning
method that integrates the GRUs and the SAC algorithm. In
our proposed method, the GRUs are used to predict the status
of the DNT, and the SAC is used to determine whether to send
the physical network information to the cloud server while
maintaining an accurate synchronization between the physical
network and the DNT. Compared to other RNN methods for
user mobility predictions, the GRUs can effectively fix the
gradient vanishing and the gradient exploding problems thus
improving prediction accuracy and reducing computational
overhead. Compared to other RL methods, the SAC is based on
maximizing entropy which makes the algorithm more stable,
while also encouraging exploration to find multiple near-
optimal actions. Next, we first introduce the use of GRUs for
DNT status prediction. Then, we introduce the components
of our proposed SAC based RL framework. Finally, we
explain the procedure of using our proposed method to solve
problem (5).

A. GRUs for DNT Status Prediction

We first introduce the use of GRUs for predicting the status
of the DNT. The GRU-based prediction model is implemented
by the cloud server and the output of the model is the
status of the DNT, which will be used for the update of the
DNT wireless resource management strategy. A GRU-based
prediction model consists of three components: 1) the input,
2) the output, and 3) the GRU model, which are introduced
as follows.

1) Input: The input of the GRU model is M previous states
of the DNT, which is represented as S; = (8]_ .1, ..., 81).

2) Output: The output of the GRU model is 8, ., =

U U

ll(t+1)7 ey lU(t+1) :
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3) GRU model: The GRU model is used to approximate
the function between the input Sy and the output s, ;, thus
building the relationship between the historical states and the
current state of the DNT. A GRU model consists of an input
layer, a hidden layer, and an output layer. The hidden states
h; of the units in the hidden layer at time slot ¢ are used to
store the information related to the previous states from time
slots 1 to t. The hidden states h; of the GRU are updated
based on S; and h;_1. Next, we introduce how to update the
hidden state h; ; of hidden unit j given S.

At each time slot ¢, the hidden state is determined by two
gates: 1) the reset gate %, and 2) the update gate z¥. The
reset gate ¥ determines the historical states information is
retained in the candidate hidden state h;, which is given by

r{ =0 (W'S, +U'hi_1), (6)

where o (-) is the sigmoid function, and W* € RN"*2U and
U' e RV>N" are the weight matrices of the reset gate with
N being the number of the units in the hidden layer. Given
the reset gate r?, the candidate hidden state h; is

h; = tanh (WESQ +uh (hi—1 ® r?)) ) (7

where tanh (-) is the hyperbolic tangent function, W" e
RN"2U and U" € RNN" are the weight matrices of the
hidden states, and ® is an element-wise multiplication.

The update gate 2 determines the size of the information
stored in the hidden state to update the hidden state h;, which
is given by

2y =0 (W'S; +U’h_1), (8)

where W? € RN'X2U and U” € RV"*N" are the weight
matrices of the update gate. The hidden state h; can be updated
by

he=(1-29) O hi+ 27 © 1. 9)

The GRU model iteratively updates the hidden states to store
the input S’ until the hidden state of the current time ¢ is
computed. The output layer of the GRU model will predict
the state of the DNT at time slot £ + 1 based on the hidden
state hy:

81,1 = W°h,, (10)

where W° is the output weight matrix. Based on (10), given
hi, we can get the output & , ;.

B. GRU Training

The GRU-based prediction model approximates the function
between the output future state &, 41 and the input previous M
states of the DNT s;_M_H, ..., 8. Thus, the loss function of
our proposed GRU-based model is

(1)

Given the defined loss function, next, we introduce the train-
ing process of our proposed GRU-based algorithm. We use
the mini-batch stochastic gradient descent (SGD) method to

1.
L6 = ﬁ”sg-&-l - 3t+1||2~

update the parameters of the model to minimize (11). The
update rule of the parameter matrices at time slot ¢ is given
by

t1= Wi —aVy, LOU],, = U] —aV, L% (12)

where « is the learning rate, i € {r,h,z,0}, j € {r,h,z},
Vw: LS is the gradient of the loss function with respect to
W', and V;; £C is the gradient of the loss function with
respect to U”.

C. Components of the SAC Algorithm

Next, we introduce the use of SAC based RL to solve
problem (5). The SAC based RL model consists of seven
components: 1) agent, 2) state, 3) action, 4) policy, 5) reward
function, 6) value function, and 7) Q function, which are
introduced as follows.

1) Agent: The agent in our considered problem is the BS.
The BS can collect information of the physical network, such
as the locations of all users, the Rayleigh fading power gains,
the interference caused by the users that are out of the service
area.

2) State: The state of the BS is used to describe the current
status of the physical network. Each state of the physical
network is s;. Thus, each state of the BS can be represented
as s;.

3) Action: The action of the BS is to determine whether
to transmit physical network information to the cloud server
and, if so, choose a proper RB for the transmission. Hence,
each action of the BS at time slot ¢ is a; = y,. Here, the
reason that we consider only physical network information
transmission indicator y, as action without considering RB
allocation vector @®y¢, ...,y as action is because when the
physical network information transmission indicator y, is
determined, the optimal RB allocation vector &1y, ..., g can
be determined by an optimization algorithm. In consequence,
the action space of the RL can be significantly reduced.

4) Policy: The policy of the BS is the conditional prob-
ability of the BS choosing action a; based on state s;.
The policy is implemented by a DNN parameterized by W,
which describes the relationship of the positions of users, the
similarity between the physical network and the DNT, and
the data rates of all users. Then, the conditional probability
of the BS taking action a; based on the s; is 7w (a@¢|st).
Hereinafter, we use actor to refer the policy function.

5) Q function: The Q function estimates the expected
reward of the BS taking action a; at each state s;. The BS
uses a DNN with parameter 8 to approximate the Q function
Qo (st at).

6) Value function: The value function estimates the ex-
pected reward of the BS at each state s;. The value function
of the BS is implicitly parameterized by the Q function
parameters, which is given by

Vo (s¢) = Eq, [Qe (8¢, a¢) — alogm (at]s)],

where « is the temperature parameter.

13)
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7) Reward: The reward function r (s, a;) evaluates action
a; at state s;. The reward function of the BS is the weighted
sum of the data rates of all users and the similarity between
the states of the physical network and DNT. The data rate
of the users depends on the physical network information
transmission since the physical network information trans-
mission must occupy one RB. Hence, if the BS does not
transmit the physical network information to the cloud server,
the optimization problem in (5) can be formulated as

T U 1
chut (wut) - EHSt - étH%, (14)

t=1u=1

max
{Z1t5 UL} teT

s.t. (5a), (5b).

Since we only need to optimize xi,..., €y, the Hungarian
algorithm [12] can be used to find the optimal solution. Based
on (14), the reward function when the BS does not transmit
the physical network information to the cloud server is

(19, 2.\
T”St — 8|5+ Zﬁcut (Tut),

u=1

N
iy g =0 (15)
n=1

r (s, ar) = —

If the BS allocates a RB to transmit the physical network
information to the cloud server, the BS must first determine the
RB that is used for physical network information transmission.
The RB used for physical network information transmission
can expressed as R = argmax,{T¢ (y,),T¢ (y,) < 7}
Given the RB R used for the physical network information
transmission, the optimization problem in (5) is simplified as

T U
Z Z Cut (xut) )

max (16)
{Z1tyees®UL b teT =1 u—1
S.t. (53)7 (Sb)v
U
Z Tut,r =0,t€T. (16a)

where constraint (16a)ui?riplies that the BS cannot allocate RB
R to any users since it has been used for physical network
information transmission. Based on (16), the reward when the
BS transmits the physical network information to the server is

U

r (St; at) = Z €Cut (wut) .

u=1

a7

Similarly, since we only need to optimize 14, ..., ¢, We can
still use the Hungarian algorithm to find the solution.

D. SAC Training at the BS

Next, we introduce the training process of the SAC algo-
rithm. We first assume that at the start of each iteration, the BS
samples a set of state transitions {(st, at,7: (St,a¢), St4+1)}
based on the policy 7y . These transitions are then stored in
a replay buffer D. Next, we introduce the training process of
the policy and the value function separately.

TABLE I
SYSTEM PARAMETERS
Param. Val. Param. Val. Param. Val.
U 10 N 6 B 1
P 1 No 1x107° o, 1
N [0, 0] 1° [20, 20] € 0.987
D 0.1 ¥ 2.5 M 5
NP 128 a 0.05 Are 1x10~%
B 0.8 Ao 1x1073

o Training of the policy neural network: The loss func-
tion of the policy neural network is

Jﬂ' (W) :EStND [EatNTrW [a IOg w (at|st)
—Qo (st a4)]].

At each iteration, the policy 7y, will be updated using
the stochastic gradient descent (SGD) method so as to
minimize (18). The policy update rule is given as

W« W — A\ Vi Jr (W),

(18)

(19)

where A, is the learning rate, and Vw (W) is the
approximated gradient of (18).

o Training of the neural network in Q function: In
SAC, we use two soft Q functions to reduce the positive
bias in the policy improvement step. In particular, we
parameterize each soft Q functions by 8 with k € {1,2},
and train them independently by minimizing the loss
function Jg (60%) [13]. The loss function of the Q function
neural network Jg (6}) is given by

1

Jq (0k) = QE(st,at%D [Qe,, (s, at)

- (T(Styat) + Vg, (3t+1)>2] Jkefl,2}, (20)

where 3 € (0,1) is a discount factor; and 6}, is the pa-
rameters of the target network, which is a slowly updated
copy of the Q function neural network parameterized
by 0. Given (20), the parameters of the Q function is
updated by a SGD method as follows:

0; (—Bk—)\Q@JQ (Bk),ke {1,2}, 21

where )\ is the learning rate, and V.Jg (6) is the
approximated gradient of (20).

IV. SIMULATION RESULTS AND ANALYSIS

For simulations, we consider a 100 x 100 block area served
by the wireless network. The BS is located in the center of the
area serving U = 10 moving users. The starting position 1%,
of each user u is randomly selected. The BS collects 2,000
trajectories with the length of each trajectory being T' = 30
from all U users to train a GRU model. Other parameters
used in the simulations are listed in Table I. For comparison
purposes, we use a GRU and deep Q network (DQN) based
model as the baseline. The baseline model parameters are
similar to that of the designed scheme.
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Fig. 2. The prediction of the user movement trajectories via the GRU model.
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Fig. 3. The reward as the number of training epochs varies.

Fig. 2 shows the user movement trajectories predicted by
the GRU model. The users in Fig. 2 are randomly selected
from 10 users. From Fig. 2, we see that the positioning mean
square errors of user 4, user 7, and user 9 are respectively
0.007, 0.07 and 0.24. This is because the GRU effectively
captures dependencies in the historical user movement through
its gating mechanisms thus enabling accurate predictions of
future user movements. From this figure, we can also see
that the mobility prediction accuracy of users 4 and 7 is
much higher compared to that of user 9. This is because the
movement dynamics of user 9 are higher compared to that of
users 4 and 7.

In Fig. 3, we show how the weighted sum of the data
rates and the synchronization accuracy between the DNT
and the physical network changes as the number of training
epochs varies. Fig. 3 shows that, as the number of training
epochs increases, the average rewards of both considered
algorithms increase. This is because the policy of determining
the physical network information transmission is optimized
by the considered RL algorithms. From Fig. 3, we also see

the physical network must use its limited spectrum resources
to serve a set of users and transmit the physical network
information to a cloud server for DNT generation. We have
formulated this resources allocation problem as an optimiza-
tion problem whose goal is to maximize the sum of data rates
of all users, while minimizing the gap between the state of
the physical network and the DNT. The formulated problem
is challenging to solve by conventional optimization methods,
since the BS may not be able to know the future status of
the DNT. To solve this problem, we have proposed a GRU
and SAC based algorithm. The GRU enables the DNT to
predict its future state to maintain updates when the physical
network information is not transmitted. The SAC enables the
BS to find the relationship between the physical network
information transmission and the future status estimation ac-
curacy of DNT thus determining whether to transmit physical
network information to the cloud server, ensuring an accurate
synchronization between the physical network and the DNT.
Simulation results have shown that compared to a baseline
method using the GRU and the DQN, our proposed GRU
and SAC based algorithm can achieve significant promotion in
terms of the weighted sum of the data rates and the similarity
between the status of the DNT and the physical network.
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