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Abstract—In this paper, we investigate an accurate synchro-
nization between a physical network and its digital network twin
(DNT) that is a virtual representation of the physical network.
The considered network includes a physical network where a
base station (BS) serves a set of users, and a DNT that evolves
with the status of both DNT and the physical network. The BS
must use its limited spectrum resources to serve the users, as
well as transmit the physical network information to the cloud
server for DNT synchronization. Since the DNT can predict the
physical network status, the BS may not need to transmit physical
network information to the server at each time slot thus saving
spectrum resources to serve users. However, if the BS does not
transmit physical information to the DNT over a long period
of time, the DNT may not be able to represent the physical
network accurately. To this end, the BS must determine whether
to send physical network information to the server to update
DNT and the spectrum resources used for physical network
information transmission and serving users. We formulate this
resources allocation problem as an optimization problem aiming
to maximize the sum of data rates of all users, while minimizing
the gap between the states of the physical network and the DNT.
The formulated problem is challenging to solve by conventional
optimization methods, since the BS may not be able to know
the future status of the DNT. To solve this problem, we design
a gate recurrent unit (GRU) and soft action-critic (SAC) based
algorithm. The GRU enables the DNT to predict its future states
by using historical state data, and updating the DNT when the
BS does not transmit physical network information. The SAC
based algorithm enables the BS to learn the relationship between
the physical network information transmission and the future
status estimation accuracy of the DNT thus determining whether
to transmit physical network information to the cloud server,
ensuring an accuracte synchronization between the physical
network and the DNT. Simulation results demonstrate that our
designed algorithm can promote the weighted sum of data rates
and the similarity between the status of the DNT and the
physical network by up to 10.31% compared to a baseline method
integrating the GRU and the deep Q network.

I. INTRODUCTION

Digital twins (DTs) that are real-time virtual representa-

tions of physical products, processes or services can be used

for real-time monitoring, simulations, and optimization of

physical products [1]. Currently, researchers have focused on

the generation of digital network twins (DNT), which is a

virtual representation of a physical network, such that one

can use generated DNTs for wireless network monitoring and

optimization. First, constructing a DNT requires mapping not

only physical objects (i.e., devices and infrastructure of a

physical network) but also several unique networking factors

(i.e., network protocols, wireless channel dynamics, and the

network performance metrics). Hence, it is impractical to
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directly map all network features for DNT generation and one

must select appropriate network features for DNT creations

[2]. Second, no standardized metrics exist for evaluating the

DNT performance [3]. Third, privacy protection in DNT

remains a key issue to be addressed since private information

of physical network users may be leaked in the process

of information exchange between a physical network and a

DNT [4].

Recently, a number of existing works [5]–[8] have studied

the generation and creations of DNTs. In particular, the authors

in [5] designed a deep neural network (DNN) based method

to create a DNT for a mobile edge computing system. The

designed DNT is used to approximate the optimal user associa-

tion scheme in the physical network. In [6], the authors created

a DNT using a Bayesian model. In [7], the authors proposed a

continual learning framework to build a synchronized DNT of

a autonomous vehicle network so as to make vehicle driving

decisions. In [8], the authors presented several use cases, the

design standardization, and an implementation example of the

DNT. However, most of these works [5], [6], [8] did not

consider the similarity and synchronization between the DNT

and a physical network and they directly assumed that the

DNT can be updated in real time. Meanwhile, these works

[5]–[8] did not consider how the generation of DNTs affect the

physical network performance since DNT generations require

the transmission of a large amount of data, which will also

introduce significant communication overhead.

The main contribution of this work is to design a novel

DNT framework that jointly optimizes the performance of a

physical network and the synchronization between the DNT

and the physical network. Our key contributions include:

• We consider a DT enabled network that consists of a

physical network with a base station (BS), several users,

and a DNT. The DNT is a virtual representation of

the physical network and can predict physical network

dynamics. The BS must use limited spectrum resources

to serve the users and transmit the information of the

physical network to a cloud server to generate the DNT.

Since the DNT can predict the physical network status,

the BS may not need to transmit the information to the

server at every time slot, and thus conserving spectrum

resources to better serve the users. To this end, the BS

in the physical network needs to determine whether to

transmit the physical network information to the cloud

server for updating the DNT, and optimize spectrum

resource allocation for the users and physical network

information transmission. We formulate this problem as

an optimization problem aiming to maximize the data
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Fig. 1. The considered DNT enabled network.

rates of all users while minimizing the gap between the

states of the physical network and the DNT.

• The formulated problem is challenging to solve since the

BS may not be able to know the future status of the

DNT. To solve this problem, we proposed a machine

learning method that integrates the gate recurrent units

(GRUs) and the soft actor-critic (SAC). The GRUs allow

the DNT to predict its future state using historical data,

ensuring DNT status updates when the information of the

physical network cannot be transmitted. The SAC can

learn from the GRU prediction accuracy to enable the

BS to determine whether to send the physical network

information to the cloud server, ensuring an accurate

synchronization between the physical network and the

DNT. Compared to other RL methods, the objective

function of the SAC includes an entropy term, which

not only stabilizes the algorithm but also promotes the

exploration towards the global optimal policy.

Simulation results show that compared to a baseline method

integrating the GRU and deep Q network (DQN), our proposed

algorithm can improve the weighted sum of data rates and the

similarity between the status of the DNT and the physical

network by up to 10.31%.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a DNT enabled network (see Fig. 1) that

consists of: 1) a physical network in which a BS serve a set

U of U mobile users, and 2) a DNT that is a mapping of

the physical network and can be used for physical network

monitoring and network dynamic prediction [9]. The BS must

serve the users in the physical network and transmit the

information of the physical network to a cloud server for DNT

generation [10]. Next, we first introduce the mobility model

of each user. Then, we introduce the data transmission model.

Finally, we introduce our considered optimization problem.

A. Mobility Model

For simplicity, we use a random walk model to model the

mobility of each user [11]. At each time slot t, each user u

has 5 probable movements: 1) stay at the current location, 2)

move forward, 3) move backward, 4) move left, and 5) move

right. The probability of user u choosing each movement is

pu = [pu,1, pu,2, pu,3, pu,4, pu,5], where pu,1 is the probability

of user u choosing to stay at the current position and pu,2,

pu,3, pu,4, pu,5 are, respectively, the probability of user u

moving forward, backward, left, and right. pu is assumed to

be identical for all time slots. We consider the coordinate of

user u at time slot t is lU
ut =

[

lUut,1, l
U
ut,2

]

, and the distance that

each user can move in a time slot is ∆l. Thus, the coordinate

of user u at time slot t+ 1 is

lU
u(t+1) =































[

lUut,1, l
U
ut,2

]

with probability pu,1,
[

lUut,1, l
U
ut,2 +∆l

]

with probability pu,2,
[

lUut,1, l
U
ut,2 −∆l

]

with probability pu,3,
[

lUut,1 −∆l, lUut,2
]

with probability pu,4,
[

lUut,1 +∆l, lUut,2
]

with probability pu,5.

(1)

B. Transmission Model

We assume that the BS serves the users and sends the

physical network information to the cloud server by employing

the orthogonal frequency division multiple access (OFDMA)

technique. We assume that the BS can allocate a set N of

N resource blocks (RBs) to serve users and transmit physical

network information. Each user can only occupy one RB. The

transmission rate of the BS transmitting data to user u at time

slot t is

cut (xut) =

N
∑

n=1

xut,nB log2

(

1 +
Ph
(

lU
ut

)

In +BN0

)

, (2)

where B is the bandwidth of each RB; xut = [xut,1, ..., xut,N ]
is the RB allocation vector, xut,n ∈ {0, 1} indicates whether

RB n is allocated to user u at time slot t with xut,n = 1
indicating that RB n is allocated to user u at time slot t,

otherwise, we have xut,n = 0; P is the transmit power, which

is assumed to be equal for all users; h
(

lU
ut

)

= oud
−2
ut is the

channel gain between user u and the BS with ou being the

Rayleigh fading parameter, dut =
√

∥lU
ut − lN∥2 being the

distance between user u and the BS at time slot t, lN being

the coordinate of the BS; In is the interference caused by the

users that are located in other service areas (e.g., other BSs

that are not included in our considered physical network) and

use RB n; N0 is the noise power spectral density. Similarly,

the transmission rate of the BS transmitting physical network

information to the cloud server at time slot t is

cC
t (yt) =

N
∑

n=1

yt,nB log2



1 +
Ph
(

lC
)

In +BN0



 , (3)

where yt = [yt,1, ..., yt,N ] is the RB allocation vector, yt,n ∈
{0, 1} indicates whether RB n is allocated to the cloud server

at time slot t with yt,n = 1 indicating that RB n is allocated

to the cloud server at time slot t and the BS will send the

physical network information to the cloud server, otherwise,

we have yt,n = 0; hn

(

lC
)

is the channel gain between BS

n and the cloud server with lC being the coordinate of the

cloud server. We assume the data size of the physical network

information that is needed to be transmitted to the cloud server

is D. Given the data rate cC
t (yt), the transmission delay of
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the BS transmitting physical network information to the cloud

server at time slot t can be represented as TC
t (yt) =

D
cC
t (yt)

.

C. Digital Network Twin Model

The DNT is a mapping of the physical network and hence

the DNT should have the same status and the wireless manage-

ment strategy of the physical network. We define a vector st
to represent the status of the physical network at time slot t. In

our considered network, the network dynamics are introduced

by user movements. Hence, st =
[

lU
1t, ..., l

U
Ut

]

. Given yt and

st, the status s′t (yt) of DNT at time slot t is

s′t (yt) =























st, if

N
∑

n=1

yt,n = 1,

ŝt if

N
∑

n=1

yt,n = 0,

(4)

where ŝt =
[

l̂
U

1t, ..., l̂
U

Ut

]

is the status estimated by the DNT at

time slot t. From (4), we see that when the BS assigns an RB

to send the physical network information to the cloud server

(i.e.,
∑N

n=1 yt,n = 1), the status of the DNT at time slot t is the

same as the status of the physical network st since DNT can

directly obtain the status information of the physical network.

In contrast, when the BS does not send the physical network

information to the cloud server (i.e.,
∑N

n=1 yt,n = 0), the DNT

must estimate the changes of the DNT (i.e., user movement)

and uses the prediction as the status of the DNT. If the DNT

and the physical network have the same status (i.e., st = s′t),

we consider the DNT synchronizes with the physical network.

D. Problem Formulation

Given the defined system model, our goal is to maximize

the sum of the data rate of all users, while guaranteeing the

synchronization between the physical network and the DNT

over a set T of T time slots. This maximization problem

includes optimizing the RB allocation vectors x1t, ...,xUt,

and physical network information transmission vector yt. The

maximization problem is formulated as follows

max
{x1t,...,xUt,yt}t∈T

T
∑

t=1

U
∑

u=1

ϵcut (xut)−
(1− ϵ)

U
∥st−s′t (yt)∥

2
2,

(5)

s.t. xut,n ∈ {0, 1}, u ∈ U , n ∈ N , t ∈ T , (5a)

N
∑

n=1

xut,n f 1, ∀u ∈ U , t ∈ T , (5b)

yt,n ∈ {0, 1}, n ∈ N , t ∈ T , (5c)

N
∑

n=1

yt,n f 1, n ∈ N , t ∈ T , (5d)

TC
t (yt) f µ, t ∈ T , (5e)

where ϵ ∈ (0, 1) is a weight parameter, µ is the upper bound of

the delay of transmitting the physical network information to

the cloud server. In (5), the constraints (5a) and (5b) imply that

each user can occupy only one RB, (5c) and (5d) imply that

the BS must determine whether to allocate one RB to send the

physical network information to the cloud server, (5e) implies

that the delay of transmitting the physical network information

to the cloud server has to meet a requirement µ.

The problem (5) is challenging to solve by conventional

optimization methods due to the following reasons. First, the

BS may not be able to know a future status s′t+1 of the

DNT since it depends not only on yt but also on the status

estimation accuracy of the DNT. Second, the status of the

considered physical network and DNT varies in real-time

due to the movement of the users and the physical network

information transmission. If we use conventional optimization

methods to solve problem (5) so as to adapt to these dynamics,

we must implement the optimization methods at each time slot.

Hence, the computational complexity increases significantly.

To solve problem (5), we use a reinforcement learning (RL)

based method which can learn the relationship between yt the

status estimation accuracy of the DNT to determine yt at each

time slot, so as to keep an accurate synchronization between

the physical network and the DNT.

III. PROPOSED SOLUTION

To solve problem (5), we introduce a machine learning

method that integrates the GRUs and the SAC algorithm. In

our proposed method, the GRUs are used to predict the status

of the DNT, and the SAC is used to determine whether to send

the physical network information to the cloud server while

maintaining an accurate synchronization between the physical

network and the DNT. Compared to other RNN methods for

user mobility predictions, the GRUs can effectively fix the

gradient vanishing and the gradient exploding problems thus

improving prediction accuracy and reducing computational

overhead. Compared to other RL methods, the SAC is based on

maximizing entropy which makes the algorithm more stable,

while also encouraging exploration to find multiple near-

optimal actions. Next, we first introduce the use of GRUs for

DNT status prediction. Then, we introduce the components

of our proposed SAC based RL framework. Finally, we

explain the procedure of using our proposed method to solve

problem (5).

A. GRUs for DNT Status Prediction

We first introduce the use of GRUs for predicting the status

of the DNT. The GRU-based prediction model is implemented

by the cloud server and the output of the model is the

status of the DNT, which will be used for the update of the

DNT wireless resource management strategy. A GRU-based

prediction model consists of three components: 1) the input,

2) the output, and 3) the GRU model, which are introduced

as follows.
1) Input: The input of the GRU model is M previous states

of the DNT, which is represented as S′
t =

(

s′t−M+1, ..., s
′
t

)

.

2) Output: The output of the GRU model is ŝ
′
t+1 =

[

l̂
U

1(t+1), ..., l̂
U

U(t+1)

]

.

2024 IEEE Global Communications Conference: Selected Areas in Communications: Big Data

5038
Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery  S. Downloaded on July 04,2025 at 15:22:29 UTC from IEEE Xplore.  Restrictions apply. 



3) GRU model: The GRU model is used to approximate

the function between the input S′
t and the output s′t+1, thus

building the relationship between the historical states and the

current state of the DNT. A GRU model consists of an input

layer, a hidden layer, and an output layer. The hidden states

ht of the units in the hidden layer at time slot t are used to

store the information related to the previous states from time

slots 1 to t. The hidden states ht of the GRU are updated

based on S′
t and ht−1. Next, we introduce how to update the

hidden state ht,j of hidden unit j given S′
t.

At each time slot t, the hidden state is determined by two

gates: 1) the reset gate rG
t , and 2) the update gate zG

t . The

reset gate rG
t determines the historical states information is

retained in the candidate hidden state h̃t, which is given by

rG
t = Ã

(

W rS′
t +U rht−1

)

, (6)

where Ã (·) is the sigmoid function, and W r ∈ R
N h×2U and

U r ∈ R
N h×N h

are the weight matrices of the reset gate with

N h being the number of the units in the hidden layer. Given

the reset gate rG
t , the candidate hidden state h̃t is

h̃t = tanh
(

W h̃S′
t +U h̃

(

ht−1 » rG
t

)

)

, (7)

where tanh (·) is the hyperbolic tangent function, W h̃ ∈
R

N h×2U and U r ∈ R
N h×N h

are the weight matrices of the

hidden states, and » is an element-wise multiplication.

The update gate zG
t determines the size of the information

stored in the hidden state to update the hidden state ht, which

is given by

zG
t = Ã

(

W zS′
t +U zht−1

)

, (8)

where W z ∈ R
N h×2U and U z ∈ R

N h×N h

are the weight

matrices of the update gate. The hidden state ht can be updated

by

ht =
(

1− zG
t

)

» h̃t + zG
t » ht−1. (9)

The GRU model iteratively updates the hidden states to store

the input S′
t until the hidden state of the current time t is

computed. The output layer of the GRU model will predict

the state of the DNT at time slot t + 1 based on the hidden

state ht:

ŝ
′
t+1 = W oht, (10)

where W o is the output weight matrix. Based on (10), given

ht, we can get the output ŝ
′
t+1.

B. GRU Training

The GRU-based prediction model approximates the function

between the output future state ŝ
′
t+1 and the input previous M

states of the DNT s′t−M+1, ..., s
′
t. Thus, the loss function of

our proposed GRU-based model is

LG =
1

2U
∥ŝ′t+1 − st+1∥

2. (11)

Given the defined loss function, next, we introduce the train-

ing process of our proposed GRU-based algorithm. We use

the mini-batch stochastic gradient descent (SGD) method to

update the parameters of the model to minimize (11). The

update rule of the parameter matrices at time slot t is given

by

W i
t+1 = W i

t − ³∇W i
t
LG,U

j
t+1 = U

j
t − ³∇

U
j
t
LG, (12)

where ³ is the learning rate, i ∈ {r, h̃, z, o}, j ∈ {r, h̃, z},
∇W iLG is the gradient of the loss function with respect to

W i, and ∇UjLG is the gradient of the loss function with

respect to U j .

C. Components of the SAC Algorithm

Next, we introduce the use of SAC based RL to solve

problem (5). The SAC based RL model consists of seven

components: 1) agent, 2) state, 3) action, 4) policy, 5) reward

function, 6) value function, and 7) Q function, which are

introduced as follows.

1) Agent: The agent in our considered problem is the BS.

The BS can collect information of the physical network, such

as the locations of all users, the Rayleigh fading power gains,

the interference caused by the users that are out of the service

area.

2) State: The state of the BS is used to describe the current

status of the physical network. Each state of the physical

network is st. Thus, each state of the BS can be represented

as st.

3) Action: The action of the BS is to determine whether

to transmit physical network information to the cloud server

and, if so, choose a proper RB for the transmission. Hence,

each action of the BS at time slot t is at = yt. Here, the

reason that we consider only physical network information

transmission indicator yt as action without considering RB

allocation vector x1t, ...,xUt as action is because when the

physical network information transmission indicator yt is

determined, the optimal RB allocation vector x1t, ...,xUt can

be determined by an optimization algorithm. In consequence,

the action space of the RL can be significantly reduced.

4) Policy: The policy of the BS is the conditional prob-

ability of the BS choosing action at based on state st.

The policy is implemented by a DNN parameterized by W ,

which describes the relationship of the positions of users, the

similarity between the physical network and the DNT, and

the data rates of all users. Then, the conditional probability

of the BS taking action at based on the st is πW (at|st).
Hereinafter, we use actor to refer the policy function.

5) Q function: The Q function estimates the expected

reward of the BS taking action at at each state st. The BS

uses a DNN with parameter θ to approximate the Q function

Qθ (st,at).
6) Value function: The value function estimates the ex-

pected reward of the BS at each state st. The value function

of the BS is implicitly parameterized by the Q function

parameters, which is given by

Vθ (st) = Eat
[Qθ (st,at)− ³ logπ (at|st)] , (13)

where ³ is the temperature parameter.
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7) Reward: The reward function r (st,at) evaluates action

at at state st. The reward function of the BS is the weighted

sum of the data rates of all users and the similarity between

the states of the physical network and DNT. The data rate

of the users depends on the physical network information

transmission since the physical network information trans-

mission must occupy one RB. Hence, if the BS does not

transmit the physical network information to the cloud server,

the optimization problem in (5) can be formulated as

max
{x1t,...,xUt}t∈T

T
∑

t=1

U
∑

u=1

cut (xut)−
1

U
∥st − ŝt∥

2
2, (14)

s.t. (5a), (5b).

Since we only need to optimize x1t, ...,xUt, the Hungarian

algorithm [12] can be used to find the optimal solution. Based

on (14), the reward function when the BS does not transmit

the physical network information to the cloud server is

r (st,at) = −
(1− ϵ)

U
∥st − ŝt∥

2
2 +

U
∑

u=1

ϵcut (xut) ,

if

N
∑

n=1

yt,n = 0. (15)

If the BS allocates a RB to transmit the physical network

information to the cloud server, the BS must first determine the

RB that is used for physical network information transmission.

The RB used for physical network information transmission

can expressed as R = argmaxn{T
C
t (yt) , T

C
t (yt) < µ}.

Given the RB R used for the physical network information

transmission, the optimization problem in (5) is simplified as

max
{x1t,...,xUt}t∈T

T
∑

t=1

U
∑

u=1

cut (xut) , (16)

s.t. (5a), (5b),
U
∑

u=1

xut,R = 0, t ∈ T . (16a)

where constraint (16a) implies that the BS cannot allocate RB

R to any users since it has been used for physical network

information transmission. Based on (16), the reward when the

BS transmits the physical network information to the server is

r (st,at) =
U
∑

u=1

ϵcut (xut) . (17)

Similarly, since we only need to optimize x1t, ...,xUt, we can

still use the Hungarian algorithm to find the solution.

D. SAC Training at the BS

Next, we introduce the training process of the SAC algo-

rithm. We first assume that at the start of each iteration, the BS

samples a set of state transitions {(st,at, rt (st,at) , st+1)}
based on the policy πW . These transitions are then stored in

a replay buffer D. Next, we introduce the training process of

the policy and the value function separately.

TABLE I
SYSTEM PARAMETERS

Param. Val. Param. Val. Param. Val.

U 10 N 6 B 1

P 1 N0 1× 10−5 ou 1

l
N [0, 0] l

C [20, 20] ϵ 0.987

D 0.1 µ 2.5 M 5

Nh 128 ³ 0.05 ¼π 1× 10−4

´ 0.8 ¼Q 1× 10−3

• Training of the policy neural network: The loss func-

tion of the policy neural network is

Jπ (W ) =Est∼D [Eat∼πW
[³ logπW (at|st)

−Qθ (st,at)]] . (18)

At each iteration, the policy πW will be updated using

the stochastic gradient descent (SGD) method so as to

minimize (18). The policy update rule is given as

W ←W − ¼π∇̂W Jπ (W ) , (19)

where ¼π is the learning rate, and ∇̂W Jπ (W ) is the

approximated gradient of (18).

• Training of the neural network in Q function: In

SAC, we use two soft Q functions to reduce the positive

bias in the policy improvement step. In particular, we

parameterize each soft Q functions by θk with k ∈ {1, 2},
and train them independently by minimizing the loss

function JQ (θk) [13]. The loss function of the Q function

neural network JQ (θk) is given by

JQ (θk) =
1

2
E(st,at)∼D [Qθk

(st,at)

−
(

r (st,at) + ´Vθk
(st+1)

)2
]

, k ∈ {1, 2}, (20)

where ´ ∈ (0, 1) is a discount factor; and θk is the pa-

rameters of the target network, which is a slowly updated

copy of the Q function neural network parameterized

by θk. Given (20), the parameters of the Q function is

updated by a SGD method as follows:

θk ← θk − ¼Q∇̂JQ (θk) , k ∈ {1, 2}, (21)

where ¼Q is the learning rate, and ∇̂JQ (θk) is the

approximated gradient of (20).

IV. SIMULATION RESULTS AND ANALYSIS

For simulations, we consider a 100×100 block area served

by the wireless network. The BS is located in the center of the

area serving U = 10 moving users. The starting position lU
u0

of each user u is randomly selected. The BS collects 2,000

trajectories with the length of each trajectory being T = 30
from all U users to train a GRU model. Other parameters

used in the simulations are listed in Table I. For comparison

purposes, we use a GRU and deep Q network (DQN) based

model as the baseline. The baseline model parameters are

similar to that of the designed scheme.
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Fig. 2. The prediction of the user movement trajectories via the GRU model.

Fig. 3. The reward as the number of training epochs varies.

Fig. 2 shows the user movement trajectories predicted by

the GRU model. The users in Fig. 2 are randomly selected

from 10 users. From Fig. 2, we see that the positioning mean

square errors of user 4, user 7, and user 9 are respectively

0.007, 0.07 and 0.24. This is because the GRU effectively

captures dependencies in the historical user movement through

its gating mechanisms thus enabling accurate predictions of

future user movements. From this figure, we can also see

that the mobility prediction accuracy of users 4 and 7 is

much higher compared to that of user 9. This is because the

movement dynamics of user 9 are higher compared to that of

users 4 and 7.

In Fig. 3, we show how the weighted sum of the data

rates and the synchronization accuracy between the DNT

and the physical network changes as the number of training

epochs varies. Fig. 3 shows that, as the number of training

epochs increases, the average rewards of both considered

algorithms increase. This is because the policy of determining

the physical network information transmission is optimized

by the considered RL algorithms. From Fig. 3, we also see

that our designed algorithm can improve the weighted sum of

data rates and the synchronization accuracy by up to 10.31%

compared to the baseline. This is because SAC incorporates an

entropy term into its objective function to enhance the model’s

exploratory capabilities towards the global optimal policy.

V. CONCLUSION

In this paper, we have proposed a DNT enabled network

which includes a physical network and its DNT. The BS in

the physical network must use its limited spectrum resources

to serve a set of users and transmit the physical network

information to a cloud server for DNT generation. We have

formulated this resources allocation problem as an optimiza-

tion problem whose goal is to maximize the sum of data rates

of all users, while minimizing the gap between the state of

the physical network and the DNT. The formulated problem

is challenging to solve by conventional optimization methods,

since the BS may not be able to know the future status of

the DNT. To solve this problem, we have proposed a GRU

and SAC based algorithm. The GRU enables the DNT to

predict its future state to maintain updates when the physical

network information is not transmitted. The SAC enables the

BS to find the relationship between the physical network

information transmission and the future status estimation ac-

curacy of DNT thus determining whether to transmit physical

network information to the cloud server, ensuring an accurate

synchronization between the physical network and the DNT.

Simulation results have shown that compared to a baseline

method using the GRU and the DQN, our proposed GRU

and SAC based algorithm can achieve significant promotion in

terms of the weighted sum of the data rates and the similarity

between the status of the DNT and the physical network.
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