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Abstract—The complexity of modern network infrastructure
continues to grow, supporting a wide range of interconnected
applications. Simulators are indispensable tools in this context,
providing cost-effective and risk-free environments for experi-
mentation and development. However, mastering these network
simulators demands substantial domain-specific knowledge, even
with comprehensive user manuals. Motivated by the capabilities
of Large Language Models (LLMs), this paper introduces the
network-oriented LLM as an intermediary between users and
network simulators, aiming to offer an interactive, automated,
and script-free simulation paradigm. Using the emerging Sionna
simulator as a case study, we adapt the general-purpose LLM into
a network-oriented LLM through joint parameter-efficient fine-
tuning and retrieval-augmented generation, which then stream-
lines the complex simulation process through simple natural
language queries. Comprehensive experiments with state-of-the-
art LLMs demonstrate that the proposed method can effectively
adapt LLMs for use with network simulators, significantly
enhancing user-level operational efficiency and accessibility. The
proposed pipeline can facilitate the broader development of
various network-oriented LLMs, potentially automating a range
of complex network tasks.

I. INTRODUCTION

Existing cyber-infrastructures are increasingly complex to

support a vast array of applications, ranging from mobile

communication, brain-computer interaction, flying vehicles,

extended reality (XR), and industrial Internet of Things (IoT).

The rapid evolution of these network systems demands rigor-

ous testing and optimization to ensure reliability, utility, and

security. Simulators are essential tools in this process, offering

cost-effective and risk-free environments for experimentation

and development. They enable detailed analysis and bench-

marking of new technologies, facilitate safe validation of net-

work configurations without the need for physical deployment,

and provide the scalability to model interconnected networks

of various sizes and complexities.

To date, several advanced network simulators have been

developed to facilitate the rapid evolution of next-generation

wireless network technologies. For instance, [1] developed ns-

3, an open-source discrete event network simulator renowned

for its high-fidelity, script-based simulations. It supports var-

ious network protocols, making it particularly suitable for

research and development that necessitates realistic packet-

level behavior. [2] introduced OMNeT++, a simulator cele-

brated for its modular architecture and user-friendly graphical

interface, which excels in visualizing and debugging simula-

tions. Another significant research thrust is the ray-tracing-

based simulation, such as Wireless Insite [3], a commercial

three-dimensional ray-tracer designed for radio propagation

modeling on a city scale. More recently, NVIDIA devel-

oped Sionna [4], a TensorFlow-based open-source library

tailored for simulating the physical layer of wireless and

optical communication systems. Sionna enables link-level,

differentiable simulations through the seamless integration of

neural networks, representing a significant advancement in

the field. By leveraging its ray-tracing module and just-in-

time computation, researchers and developers can push the

boundaries of network technology, enabling more efficient and

reliable communication system design.

However, despite the availability of extensive simulators,

mastering them always requires significant domain-specific

knowledge, even with the help of dedicated user manuals. For

instance, most of these tools, with limited GUI support, are

known for their complexity and steep learning curve, making

it challenging for new learners to set up and run customized

simulations. Fortunately, the emergence of Large Language

Models (LLMs) such as ChatGPT [5] and Llama [6] have rev-

olutionized the field of natural language processing. With bil-

lions of parameters pre-trained on vast corpora, LLMs exhibit

extraordinary abilities in understanding and generating human-

like text and code snippets while simultaneously possessing

domain-specific knowledge. This enables them to facilitate

a wide range of applications such as content creation [7],

medical diagnosis [8], and financial analysis [9]. Through in-

context learning and parameter-efficient fine-tuning, LLMs can

be adapted to master various domain-specific toolkits. Serv-

ing as an intermediate layer between humans and machines,

LLMs are reshaping tool design and daily workflows through

automation [10]. Inspired by this trend, several parallel works

have emerged, leveraging LLMs in the realm of computer

networks. Particularly, [11] proposes NetLLM for efficient

adaptation of LLMs to network tasks, showing effectiveness

in bitrate streaming and cluster job scheduling [12], while [13]

leverages a Mixture of Experts (MoE) framework augmented

with LLMs to efficiently analyze user objectives for diverse

network optimization tasks. Additionally, [14] proposes an

LLM-assisted end-to-end intelligent management framework

that integrates semantic rule trees with LLMs for multi-scale

diagnosis in dynamic heterogeneous networks. Meanwhile, a

series of surveys and tutorials have been proposed [15]–[17],

mainly describing the fundamentals, applications, challenges,

and future directions in wireless networks.

Despite this promising potential, to the best of our knowl-

edge, the integration of LLMs with network simulators for
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wireless modeling remains unexplored. Motivated by this,

we develop the first network-oriented LLM to master the

simulator for end-to-end wireless optimization. To pioneer the

pipeline for such an LLM-empowered simulation mechanism,

we first create an instruction-following dataset containing

question-answer pairs generated from the intricate tutorial

documents. This dataset then serves as a basis for training and

evaluating our network-oriented LLMs. Specifically, we adapt

pre-trained LLMs from general-purpose to network-oriented

using parameter-efficient fine-tuning (PEFT) and retrieval-

augmented generation (RAG). For PEFT, we adopt low-

rank adaptation [18] to fine-tune a pre-trained LLM through

instruction-following training method [19]. The LLM is tuned

to generate ground-truth answers given corresponding domain-

specific questions, e.g., aiming to compress external knowl-

edge from Sionna into the model. However, this approach

often struggles with generalizing to unseen tasks and suffers

from hallucination problems [20]. To address these issues,

we employ RAG, which leverages LLMs’ remarkable in-

context learning capability [20]. RAG enhances user queries

by retrieving the top-K relevant contextual chunks from the

original tutorial documents. These augmented queries, along

with the contextual chunks, are then fed into the LLM to

produce more accurate and factual responses with fewer

hallucination errors. With this overall design, users can now

perform simulations through straightforward natural language

prompting, reshaping the operation of current network sim-

ulators and automating complex workflows that previously

demanded extensive manual intervention. This approach not

only enhances operational efficiency but also democratizes the

simulation process, making it accessible to a broader range of

users, including those without specialized technical expertise.

The contributions of this work are summarized as follows:

1) We present the first study that integrates LLMs with

a network simulator. Using Sionna as a case study,

we employ novel joint parameter-efficient fine-tuning

and retrieval-augmented generation techniques to adapt

general-purpose LLMs into network-oriented LLMs.

2) We develop a methodology for creating question-answer

datasets regarding the simulator utility to facilitate the

development of network-oriented LLMs. The generated

data acquisition scripts can be readily modified to create

datasets for other well-documented simulators.

3) Comprehensive experiments conducted on state-of-the-

art LLMs indicate that model fine-tuning and advanced

RAG techniques can effectively adapt LLMs for use with

network simulators, significantly enhancing user-level

operational efficiency. Example responses showcase that

our network-oriented LLM can automate Sionna for ray-

tracing analysis, radio map generation, channel impulse

response calculation, etc.

II. RELATED WORK

A. Network Simulation for Wireless Communication

Network simulation frameworks have been instrumental in

advancing research and development in wireless communica-

tions. For instance, packet-level simulations focus on detailed

protocol behavior and traffic patterns such as in ns-3 [21],

[22] and GNS3 [23], while link-level simulations emphasize

physical layer interactions and signal propagation characteris-

tics as in Wireless Insite [3] and Sionna [4]. Notably, Sionna

is a GPU-accelerated, open-source library built on the deep

learning framework TensorFlow, designed for the fine-grained

simulation of physical layers in wireless communication sys-

tems, and openly available to the community to drive 5G and

6G research [4]. However, mastering these network simulators

always requires significant domain-specific knowledge and

extensive scripting effort, making them less efficient and

accessible to a broader range of users. Our work aims to bridge

this gap with an automated LLM-enabled simulation paradigm.

B. Large Language Models

Language models, such as ChatGPT, have garnered global

attention due to their user-friendly nature and ability to provide

accurate information through plain text, revolutionizing the

field of natural language processing (NLP). Pre-trained on

extensive public datasets such as wikis, these models accumu-

late a broad knowledge base, demonstrating exceptional profi-

ciency in a variety of applications, including logical reasoning

[24] and code generation [25]. Their strong generalization

capabilities enable them to apply learned knowledge to new,

unseen tasks, effectively understanding and generating human-

like text across diverse contexts. Inspired by these merits,

an emerging trend involves deploying LLMs as foundational

models for communication networks. However, to date, there

is a domain mismatch between general-purpose language

models and those specifically adapted for networking tasks.

Recognizing this, researchers are working on adapting LLMs

for various network applications [11], aiming to harness their

full potential of these models in solving complex wireless

network tasks, which is also the focus of this work.

III. PIPELINE FOR LLM-POWERED NETWORK MODELING

AND SIMULATION

In this section, we introduce the design pipeline for incor-

porating LLMs into network simulations. Using the advanced

simulator Sionna as a case study, we employ joint parameter-

efficient fine-tuning and retrieval-augmented generation tech-

niques to adapt general-purpose LLMs into network-oriented

LLMs, automating the simulation process with interactive nat-

ural language prompting. As shown in Fig. 1, this framework

consists mainly of three phases: data preparation, LLM fine-

tuning, and the creation of the RAG system. Technically, the

data generation engine creates question-answer pairs in natural

language from the crawled tutorial documents. These question-

answer pairs are then split into training and test data for fine-

tuning and evaluating LLMs. In the instruction fine-tuning

phase, a pre-trained LLM is employed, which takes a query as

input and is tuned to generate the ground truth answer token-

by-token in an autoregressive manner. In this way, the external

knowledge of the simulator Sionna is lossily compressed into

the fine-tuning LLM, which somehow can solve the problems
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Fig. 1: Overview of the proposed workflow for developing network-oriented LLMs.

seen in training but is sensitive to the input queries and

can hardly generalize to unseen cases, e.g., suffering from

the well-known hallucination problem [20]. To this end, we

then build a RAG system that first augments an input user

query with the K most relevant contextual chunks retrieved

from the original Sionna tutorial documents. Thus, both the

query and the contextual chunks are fed into the fine-tuned

LLM to facilitate a more comprehensive and factual response

with reduced hallucination errors. More technical details are

described as follows.

A. Data Acquisition

The first yet most critical step is data acquisition. The

capability of instruction-following LLMs relies heavily on the

quantity and quality of fine-tuning data. To enable instruc-

tion fine-tuning, data should be formatted as question-answer

pairs. Conventionally, the question-answer pairs are manually

curated, requiring extensive human effort and limiting dataset

scalability. More importantly, creating question-answer pairs

for specialized simulators like Sionna demands deep domain-

specific knowledge, making the process even more challenging

and time-consuming. Inspired by the remarkable progress

made by the GPT4 series, we exploit these language models

for automatic data acquisition.

Data Cleaning. As a case study, we choose the Sionna

tutorial documents1 as our foundation source to synthesize the

required dataset. We first utilize a web scrapper to collect the

necessary HTML content and convert it into markdown format.

Empirically, using the markdown format yields better data

generation quality compared to using plain text. Particularly,

we remove embedded images, non-ASCII characters, HTML

1https://nvlabs.github.io/sionna/index.html

tags, tables of content, and hyperlinks in the documents, while

equations are all converted into latex codes. The code scripts

and their execution results embedded in tutorials are kept as

the original.

Markdown Chunking. Before generating question-answer

pairs, we split the Markdown files into several short text

chunks. Unlike other prior RAG systems [26] that chunk plain

texts, our system is built on markdown files, which consist of

hierarchically organized texts in a rich format. To this end,

we begin by parsing the extracted content into a hierarchical

tree according to the heading levels specified in markdown

files. Each node in the tree is associated with a heading

and the corresponding texts within that section. Then, the

markdown chunking method performs a pre-order traversal of

the markdown tree following the Root-Left-Right policy. Next,

we divide the text within each visited node into chunks that

fall within a specified range of token counts. This ensures that

each chunk is in an appropriate size for the question-answer

generation. In practice, there remain a series of corner cases

for the chunking process, which can be resolved by adding a

series of hard-coded rules. Readers can refer to our chunking

scripts2 for the implementation details.

Automatic Generation of Question-Answer Pairs. For

each chunk obtained in the previous step, we first prompt the

LLM (e.g. gpt4-32k) to generate a list of questions that are

relevant, comprehensive, and unique. The generated questions

per chunk are post-processed again by prompting to reduce

duplicated and off-topic ones. Then, we prompt the LLM

to answer each generated question given the corresponding

chunk. Fig. 2 provides the three prompt templates used for

2https://github.com/ak-maker/sionna-LLMs/blob/main/RAG/code/
preprocess/chunk.py
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question generation, question deduplication, and answer gen-

eration. Since the LLM tends to be lazy about answering

questions, e.g., generating incomplete codes or even simply

responding with a reference to the original tutorial, we care-

fully curate the prompt as shown in Fig. 2 to force the LLM to

generate complete answers, ensuring the quality of synthetic

data.

B. Fine-tuning Network-Oriented LLMs

This stage aims to fine-tune a pre-trained decoder-based

LLM PΦpy|xq parameterized by Φ for instruction, where x

is the input question and y is the generated answer. Given a

corpus of question-answer pairs D < tpxi,yiu
N
i<1

extracted

from the network simulation tutorials, the objective is to

maximize the conditional probability distribution PΦpyi|xiq
over D, i.e.

LD < max
Φ

1

N

N
ÿ

i<1

logPΦpyi|xiq

< max
Φ

1

N

N
ÿ

i<1

Ti
ÿ

t<1

logPΦpyi,t|xi,yi,�tq,

(1)

where PΦpyi|xiq is decomposed into
[Ti

t<1
PΦpyi,t|xi, yi,�

tq because of the iterative next-token prediction of LLMs.

During the fine-tuning process, the parameters Φ are initialized

from pre-trained weights Φ0 and updated through stochas-

tic gradient descent variants, e.g., AdamW [27]. The large-

scale model parameters of LLMs make it challenging and

even impractical to fully fine-tune all the parameters of Φ

due to resource constraints and extensive computational cost.

Therefore, we employ low-rank adaptation (LoRA) [18] for

parameter-efficient fine-tuning [28].

In essence, pre-trained language models typically have full-

rank weight matrices. LoRA assumes that the weight updates

during adaptation possess a fairly low “intrinsic rank”. Specif-

ically, for a pre-trained weight matrix W0 P R
dÆk, the update

is constrained to a low-rank decomposition:

W0 ` ∆W < W0 ` BA, (2)

where B P R
dÆr and A P R

rÆk, with r ! minpd, kq.

In the training stage, we can freeze the pre-trained weight

W0 without gradient updates. The trainable parameters are

contained only by the matrices B and A. Both W0 and

∆W < BA take the same input for multiplication, and

their respective output vectors are summed element-wise. The

modified forward pass is:

h < W0x ` ∆Wx < W0x ` BAx, (3)

where B is sampled from a normal distribution and A is

initialized to 0. In this way, the ∆W is set to zero and has no

effect at the beginning of fine-tuning. LoRA can be applied

to any subset of weight matrices in a neural network. In

Transformer-based LLMs, this typically includes self-attention

modules and the two feed-forward blocks.

C. Integration with Retrieval-Augmented Generation

The fine-tuning process compresses knowledge into LLMs,

allowing them to answer questions encountered during fine-

tuning. However, many unseen questions still require network

knowledge the LLM has not yet acquired. In this regard, RAG

can address this gap effectively by retrieving relevant con-

textual information from external sources, thereby enriching

the model responses with precise and up-to-date knowledge.

Specifically, we employ an efficient embedding model, text-

embedding-3-small [29], to convert each markdown chunk

into a compact fixed-dimensional embedding vector, which

captures the semantic information of the markdown chunk.

This creates a vector database linking each chunk with a

vector, enabling efficient similarity searches among texts.

For instance, when presented with a new network-domain

question, we can convert it into an embedding and retrieve the

K most relevant markdown chunks from the vector database.

These retrieved markdown chunks are then added as the

context to the original query and fed into our fine-tuned

network-oriented LLM for answer generation.

To enhance the retrieval accuracy, we employ a re-ranker to

calibrate the relevance score. The re-ranker adopts a two-tower

architecture, wherein one tower encodes the query and the

other encodes a more extensive set of candidate contents than

initially required. It then subsequently reorders these contents

based on their semantic relevance to the question, utilizing

semantic relevance as opposed to the retriever’s squared L2

norm distance method [30], [31]. The utilization of such

semantic relevance proves to be more effective in delivering

high-quality responses from our network-oriented LLM, as

validated in Sec. IV.

IV. EXPERIMENTS AND DISCUSSION

In this section, we evaluate the effectiveness of our proposed

network-oriented LLM for wireless modeling and simulation.

We begin by evaluating the efficacy of our LLM fine-tuning.

Following this, we assess the performance benefits provided by

retrieval augmentation generation. Additionally, we compare

the consistency of evaluations conducted by the LLM with

those performed by human evaluators. Lastly, we demonstrate

concrete use cases to illustrate the practical applications in

network simulation.

A. Evaluation Setup

Dataset. We collect 48 markdown files from the Sionna

tutorial documents and divide them into 727 chunks, primarily

comprising texts and Python codes. These chunks are used

for both question-answer generation and the build-up of the

retrieval augmentation generation system. A soft constraint is

applied to ensure most chunks fall within the length range of

25 to 800 tokens, as illustrated in Fig 3. Using the gpt4-32k

model, 1,347 question-answer pairs are generated, which are

then inspected and corrected by a human annotator. Among

them, 150 pairs are randomly selected as the test set. To fine-

tune the LLM, the remaining pairs are split into training and

validation sets in a 9:1 ratio, resulting in 1,078 training pairs
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I9m building a dataset for model training focused on the <sionna=
Python package, based on the given following markdown context.

Cover the markdown context as much as you can.

Your role is to generate clear, concise instructions (as user

questions) that will guide the model in mastering Sionna coding.

Start each instruction with <INSTRUCTION:= and tailor it

to fit the provided context, ensuring to cover as much of the

context9s information as possible for comprehensive learning.

The context is related to the usage of Sionna9s API, so it
should include specific imports for the Sionna APIs, parameters
(including types and meanings), inputs (types and explanations),
outputs (types and explanations), attributes (including types and

meanings), and methods (parameters, types, and their meanings).

Cover all the information of the context, including codes,
illustrations, parameters, inputs and outputs of the instance,

properties, raises, and notes.

These instructions are crucial for teaching the model to effectively
understand and apply Sionna9s code and APIs, tailored to real-

world programming scenarios.

Answer this instruction:

given solely on the following context

While there may be opportunities to reference the code from the 

context, do so only if it9s essential to the answer. Do not assume 
that code is unnecessary for the response; carefully consider if 
including it will substantively support your explanation.

When it is required, the code must be transcribed with utmost 
accuracy4verbatim, with no errors or omissions, and without 
adding redundant or meaningless code. If the code involves 

Sionna APIs, you need to be very careful not to import the wrong 
packages, such as confusing an encoder with a decoder. This is 
just an example; you should judge based on the actual situation. 

We rely on your discretion to judiciously include code snippets 
that are pertinent and to ensure their exactness. 

In both code and illustrations, do not 8assume9! If you know 
something, state it explicitly; if you are unsure, indicate that it 
needs to be verified. Do not say 8assume9 because there may be 
instances where your assumption is incorrect.

This content includes the following python Sionna APIs:

; when you need to reference Sionna APIs, choose the
appropriate ones and do not write them differently from what is

provided.Several questions are generated as follows:

These questions may be duplicated or off-the-topic of Sionna.

Please reduce the candidates.

Return me the instructions with each line starting with

<INSTRUCTION:=.

Question Prompt Answer Prompt

Question Deduplication Prompt

Fig. 2: Prompts used in generating question-answer pairs. Placeholders such as �CONTEXT� and �QUESTION� can be

replaced with specific chunk content and questions. �RELEVANT API� encompasses a collection of programming language

import statements.

and 119 validation pairs. Of these, 579 pairs contain purely

textual answers, while 768 pairs include code segments.

Models. We use a series of LLMs from OpenAI for ex-

periments, including GPT-3.5-turbo, GPT-3.5-turbo-16k, GPT-

4-32k, GPT-4-1106-preview, and GPT-4-0125-preview. For

simplicity, we denote them as gpt35, gpt35-16k, gpt4-32, gpt4-

1106, gpt4-0125, respectively. We employ the gpt35 model for

fine-tuning, using the Azure fine-tuning APIs [32]. The batch

size is set to 32 across all experiments. However, we also

experimented with varying batch sizes of 4, 8, 16, 24, and

32 to assess their impact. The text embeddings of the chunks

are generated using text-embedding-3-small model [29], with

a dimension of 1, 536. For the re-ranking process, we utilize

rerank-english-v3.0 from Cohere [33], a two-tower model,

with one tower encoding a question and the other encoding

a broader set of candidate contents than required. Such a re-

ranker reorders these contents based on their relevance to the

network-domain question. Following this methodology, the K

most relevant content chunks are selected and appended to the

original query.

Evaluation. Typically, evaluating the answer generated by

LLMs is challenging. Recent works show that LLMs can act

as evaluators who exhibit high agreement with humans [34]

[35]. There is also potential in fine-tuning LLMs to act as

evaluators in open-ended scenarios [36]. In this work, we

use gpt4-32k as the evaluator due to its extensive context

window. Given a specific question, the evaluator is prompted

to score a generated answer according to a reference answer

provided in the dataset, and the score range is limited to 1 to

9. To align the evaluation consistency with human preference,

we design a prompt that divides the score range into three

levels of correctness: 1–3 as Limited Correctness, 4–6 as

Partially Correct, and 7–9 as Substantial Correctness. Inspired

by the evaluation criteria in [37], we provide each level with

a question-answer pair scored by a human. The prompt to the

evaluator is also tuned to ensure score consistency with the

human preference.

B. Fine-tuned Network-oriented LLMs

In this section, we start by evaluating the internal knowledge

encoded in LLMs. In other words, we discard the last retrieval

augmentation block shown in Fig. 1. The LLMs answer a user
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Fig. 3: Analysis of chunk size distribution: most chunks fall

within the range of [25, 800].

query without any context and rely solely on their internal

knowledge. The adopted evaluator is validated by gpt4-32k as

described in later Section D.

Fig. 4(a) shows the average score of different LLMs from

OpenAI, where gpt35, gpt35-16k, and gpt4-32k are the ear-

liest GPT models released with training data collected up to

September 2021. Since Sionna was first released in February

2022, these LLMs do not have any internal knowledge that

is directly relevant to Sionna-based simulation and therefore,

they exhibit poor performance scores as expected. In particular,

gpt4-32k frequently rejects to answer questions due to the

lack of network-domain knowledge, providing responses such

as “I’m sorry, I don’t have information on that...”. While

achieving the lowest score, the responses from gpt4-32k ex-

hibit fewer hallucination errors, as it tends to avoid providing

unreliable solutions. By contrast, gpt35 and gpt35-16k tend

to hallucinate, responding with incorrect answers to trick the

evaluator for higher performance scores. gpt4-1106 and gpt4-

0125, on the other hand, have the training data up to April

2023 and December 2023, respectively. As such, they achieve

noticeably better performance due to the potentially updated

internal knowledge about Sionna.

Fig. 4: Evaluation of LLMs for Sionna-based simulation.

(a) the general-purpose OpenAI LLMs. (b) the fine-tuned

network-oriented LLM with a different number of epochs.

This observation motivates us to update the network-domain

knowledge of gpt35through the proposed parameter efficient

fine-tuning as introduced in Sec. B. As shown in Fig. 4(b), the

increase of training epochs gradually improves the mean score

of answer quality and slightly reduces the standard deviation,

showing our fine-tuning progressively updates task-relevant

knowledge into the LLM. Notably, the fine-tuning provides a

significant performance improvement over the original gpt35

and even consistently outperforms the latest gpt4-0125 by a

large margin. This observation suggests that our fine-tuning

method effectively adapts the general-purpose LLM into a

network-oriented LLM.

C. Network-oriented LLMs with Retrieval Augmentation

Next, we analyze the effect of the RAG block introduced in

Sec. C. Due to the limitations on input context size, we can

only provide the gpt35 series with the top-1 retrieved context.

As shown in Fig. 5, the retrieval augmentation provides a

consistent and significant performance improvement over all

the LLMs. Such benefit of retrieval augmentation is orthogonal

to the fine-tuning process, suggesting their compatibility in

improving the model generation capability. Among the fine-

tuned models, training with 8 epochs emerges as the best

performer, compared to the 32-epoch model. It is important

to note that the fine-tuning data does not include context

information, so training with more epochs may lead to a slight

mismatch during testing, resulting in unexpected performance

degradation. Remarkably, the latest GPT-4 models, i.e. gpt4-

1106 and gpt4-0125, achieve the best performance due to their

in-context learning capabilities. Besides, the proposed context

re-ranking process brings further significant performance im-

provements. This suggests the relevance of retrieved contexts

to the question plays a critical role in answer generation.

Fig. 5: Evaluation of network-oriented LLMs with retrieval

augmentation. Only the most relevant chunk is used.

Inspired by this finding, we then explore adding more

retrieved contexts into our network-oriented LLMs, aiming to

maximize their in-context learning capabilities. As shown in

Fig. 6, it is observed that adding more contexts can enhance

the model performance, with the improvements saturated at

the number of retrieved contexts k=3. Particularly, gpt4-32k
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and gpt35-16k exhibit similar performance levels, whereas

gpt4-1106 and gpt4-0125 consistently demonstrate a notice-

able performance margin over the former two. These results

underscore the effectiveness of integrating our RAG block into

the network-oriented model with additional relevant contexts.

Fig. 6: RAG with a varying number of retrieved contexts.

D. Consistency between LLM-based and Human Evaluation

To validate the reliability of the adopted LLM-based eval-

uator, we analyze the score consistency between the LLM

evaluation and the human evaluation. Specifically, we select

100 question-answer pairs from the test set and evaluate

the results generated from gpt35ft-e32 with the reference

answers from the test set. Besides, a human expert in the

network domain manually scores the answers. The human

evaluation criteria vary by answer type, whether text or code.

For code, the assessment focuses on two main criteria: 1)

overall correctness, which examines whether the simulation

code flow correctly addresses the question, and 2) adherence to

relevant Sionna tutorials, including tool usage parameters and

simulation methods. Text answers are directly scored based on

keyword presence and relevance to the question.

1 2 3 4 5 6 7 8 9
Human Evaluation

1

2

3

4

5

6

7

8

9

LL
M

 E
va

lu
at

io
n 

(g
pt

4-
32

k)

Fig. 7: Scatter plot of LLM-based evaluation and human evaluation.
We compute the Pearson correlation coefficient with r “ 0.71,
suggesting a strong positive correlation between the two evaluators.

Fig. 7 presents a scatter plot depicting the relationship be-

tween evaluations conducted by LLMs and human experts. The

discrete nature of the scores results in overlapping points, with

the darkness of the points indicating the number of overlapping

samples. The plot reveals a strong positive correlation between

LLM and human evaluations, with some slight variance. The

Pearson correlation coefficient is 0.71, indicating a strong

positive correlation between the two evaluation methods.

E. User Cases for Wireless Modeling and Simulation

Lastly, we showcase the practical application of our

network-oriented LLM for end-to-end simulations using

straightforward natural language prompts. Our LLM provides

step-by-step explanations through textual answers, code snip-

pets, and figure plots. Fig. 8 shows the results generated

by executing codes produced by our network-oriented LLM.

This includes tasks such as network scenario creation, ray-

tracing analysis, radio map generation, and channel impulse

response calculation, which streamline the complex simulation

process through simple user queries. More demo examples and

resources can be found in our GitHub repository [38].

V. CONCLUSION

In this work, we investigated the integration of LLMs with

the network simulator to streamline operations and reduce

the learning curve associated with domain-specific simulation

knowledge. We developed a specialized dataset for the Sionna

simulator, fine-tuned the LLM to be a network simulation

expert, and implemented a retrieval-augmented generation

system tailored for executing the simulator. Comprehensive

experiments assessed the models’ proficiency in understanding

and generalizing network-related knowledge and simulation

code snippets. Our user case demonstration highlights how our

approach effectively bridges the gap between plain text inputs

and domain-specific knowledge, enabling an intuitive and

accessible simulation experience. Future work involves sup-

porting image inputs and multi-turn dialogues in the pipeline

to enhance information accessibility and enable context-aware

user interactions.
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