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Abstract—The complexity of modern network infrastructure
continues to grow, supporting a wide range of interconnected
applications. Simulators are indispensable tools in this context,
providing cost-effective and risk-free environments for experi-
mentation and development. However, mastering these network
simulators demands substantial domain-specific knowledge, even
with comprehensive user manuals. Motivated by the capabilities
of Large Language Models (LLMs), this paper introduces the
network-oriented LLM as an intermediary between users and
network simulators, aiming to offer an interactive, automated,
and script-free simulation paradigm. Using the emerging Sionna
simulator as a case study, we adapt the general-purpose LLM into
a network-oriented LLM through joint parameter-efficient fine-
tuning and retrieval-augmented generation, which then stream-
lines the complex simulation process through simple natural
language queries. Comprehensive experiments with state-of-the-
art LLMs demonstrate that the proposed method can effectively
adapt LLMs for use with network simulators, significantly
enhancing user-level operational efficiency and accessibility. The
proposed pipeline can facilitate the broader development of
various network-oriented LLMs, potentially automating a range
of complex network tasks.

I. INTRODUCTION

Existing cyber-infrastructures are increasingly complex to
support a vast array of applications, ranging from mobile
communication, brain-computer interaction, flying vehicles,
extended reality (XR), and industrial Internet of Things (IoT).
The rapid evolution of these network systems demands rigor-
ous testing and optimization to ensure reliability, utility, and
security. Simulators are essential tools in this process, offering
cost-effective and risk-free environments for experimentation
and development. They enable detailed analysis and bench-
marking of new technologies, facilitate safe validation of net-
work configurations without the need for physical deployment,
and provide the scalability to model interconnected networks
of various sizes and complexities.

To date, several advanced network simulators have been
developed to facilitate the rapid evolution of next-generation
wireless network technologies. For instance, [1] developed ns-
3, an open-source discrete event network simulator renowned
for its high-fidelity, script-based simulations. It supports var-
ious network protocols, making it particularly suitable for
research and development that necessitates realistic packet-
level behavior. [2] introduced OMNeT++, a simulator cele-
brated for its modular architecture and user-friendly graphical
interface, which excels in visualizing and debugging simula-
tions. Another significant research thrust is the ray-tracing-
based simulation, such as Wireless Insite [3], a commercial
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three-dimensional ray-tracer designed for radio propagation
modeling on a city scale. More recently, NVIDIA devel-
oped Sionna [4], a TensorFlow-based open-source library
tailored for simulating the physical layer of wireless and
optical communication systems. Sionna enables link-level,
differentiable simulations through the seamless integration of
neural networks, representing a significant advancement in
the field. By leveraging its ray-tracing module and just-in-
time computation, researchers and developers can push the
boundaries of network technology, enabling more efficient and
reliable communication system design.

However, despite the availability of extensive simulators,
mastering them always requires significant domain-specific
knowledge, even with the help of dedicated user manuals. For
instance, most of these tools, with limited GUI support, are
known for their complexity and steep learning curve, making
it challenging for new learners to set up and run customized
simulations. Fortunately, the emergence of Large Language
Models (LLMs) such as ChatGPT [5] and Llama [6] have rev-
olutionized the field of natural language processing. With bil-
lions of parameters pre-trained on vast corpora, LLMs exhibit
extraordinary abilities in understanding and generating human-
like text and code snippets while simultaneously possessing
domain-specific knowledge. This enables them to facilitate
a wide range of applications such as content creation [7],
medical diagnosis [8], and financial analysis [9]. Through in-
context learning and parameter-efficient fine-tuning, LLMs can
be adapted to master various domain-specific toolkits. Serv-
ing as an intermediate layer between humans and machines,
LLMs are reshaping tool design and daily workflows through
automation [10]. Inspired by this trend, several parallel works
have emerged, leveraging LLMs in the realm of computer
networks. Particularly, [11] proposes NetLLM for efficient
adaptation of LLMs to network tasks, showing effectiveness
in bitrate streaming and cluster job scheduling [12], while [13]
leverages a Mixture of Experts (MoE) framework augmented
with LLMs to efficiently analyze user objectives for diverse
network optimization tasks. Additionally, [14] proposes an
LLM-assisted end-to-end intelligent management framework
that integrates semantic rule trees with LLMs for multi-scale
diagnosis in dynamic heterogeneous networks. Meanwhile, a
series of surveys and tutorials have been proposed [15]-[17],
mainly describing the fundamentals, applications, challenges,
and future directions in wireless networks.

Despite this promising potential, to the best of our knowl-
edge, the integration of LLMs with network simulators for
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wireless modeling remains unexplored. Motivated by this,
we develop the first network-oriented LLM to master the
simulator for end-to-end wireless optimization. To pioneer the
pipeline for such an LLM-empowered simulation mechanism,
we first create an instruction-following dataset containing
question-answer pairs generated from the intricate tutorial
documents. This dataset then serves as a basis for training and
evaluating our network-oriented LLMs. Specifically, we adapt
pre-trained LLMs from general-purpose to network-oriented
using parameter-efficient fine-tuning (PEFT) and retrieval-
augmented generation (RAG). For PEFT, we adopt low-
rank adaptation [18] to fine-tune a pre-trained LLM through
instruction-following training method [19]. The LLM is tuned
to generate ground-truth answers given corresponding domain-
specific questions, e.g., aiming to compress external knowl-
edge from Sionna into the model. However, this approach
often struggles with generalizing to unseen tasks and suffers
from hallucination problems [20]. To address these issues,
we employ RAG, which leverages LLMs’ remarkable in-
context learning capability [20]. RAG enhances user queries
by retrieving the top-K relevant contextual chunks from the
original tutorial documents. These augmented queries, along
with the contextual chunks, are then fed into the LLM to
produce more accurate and factual responses with fewer
hallucination errors. With this overall design, users can now
perform simulations through straightforward natural language
prompting, reshaping the operation of current network sim-
ulators and automating complex workflows that previously
demanded extensive manual intervention. This approach not
only enhances operational efficiency but also democratizes the
simulation process, making it accessible to a broader range of
users, including those without specialized technical expertise.
The contributions of this work are summarized as follows:

1) We present the first study that integrates LLMs with
a network simulator. Using Sionna as a case study,
we employ novel joint parameter-efficient fine-tuning
and retrieval-augmented generation techniques to adapt
general-purpose LLMs into network-oriented LLMs.

2) We develop a methodology for creating question-answer
datasets regarding the simulator utility to facilitate the
development of network-oriented LLMs. The generated
data acquisition scripts can be readily modified to create
datasets for other well-documented simulators.

3) Comprehensive experiments conducted on state-of-the-
art LLMs indicate that model fine-tuning and advanced
RAG techniques can effectively adapt LLMs for use with
network simulators, significantly enhancing user-level
operational efficiency. Example responses showcase that
our network-oriented LLM can automate Sionna for ray-
tracing analysis, radio map generation, channel impulse
response calculation, etc.

II. RELATED WORK

A. Network Simulation for Wireless Communication

Network simulation frameworks have been instrumental in
advancing research and development in wireless communica-

tions. For instance, packet-level simulations focus on detailed
protocol behavior and traffic patterns such as in ns-3 [21],
[22] and GNS3 [23], while link-level simulations emphasize
physical layer interactions and signal propagation characteris-
tics as in Wireless Insite [3] and Sionna [4]. Notably, Sionna
is a GPU-accelerated, open-source library built on the deep
learning framework TensorFlow, designed for the fine-grained
simulation of physical layers in wireless communication sys-
tems, and openly available to the community to drive 5G and
6G research [4]. However, mastering these network simulators
always requires significant domain-specific knowledge and
extensive scripting effort, making them less efficient and
accessible to a broader range of users. Our work aims to bridge
this gap with an automated LLM-enabled simulation paradigm.

B. Large Language Models

Language models, such as ChatGPT, have garnered global
attention due to their user-friendly nature and ability to provide
accurate information through plain text, revolutionizing the
field of natural language processing (NLP). Pre-trained on
extensive public datasets such as wikis, these models accumu-
late a broad knowledge base, demonstrating exceptional profi-
ciency in a variety of applications, including logical reasoning
[24] and code generation [25]. Their strong generalization
capabilities enable them to apply learned knowledge to new,
unseen tasks, effectively understanding and generating human-
like text across diverse contexts. Inspired by these merits,
an emerging trend involves deploying LLMs as foundational
models for communication networks. However, to date, there
is a domain mismatch between general-purpose language
models and those specifically adapted for networking tasks.
Recognizing this, researchers are working on adapting LLMs
for various network applications [11], aiming to harness their
full potential of these models in solving complex wireless
network tasks, which is also the focus of this work.

III. PIPELINE FOR LLM-POWERED NETWORK MODELING
AND SIMULATION

In this section, we introduce the design pipeline for incor-
porating LLMs into network simulations. Using the advanced
simulator Sionna as a case study, we employ joint parameter-
efficient fine-tuning and retrieval-augmented generation tech-
niques to adapt general-purpose LLMs into network-oriented
LLMs, automating the simulation process with interactive nat-
ural language prompting. As shown in Fig. 1, this framework
consists mainly of three phases: data preparation, LLM fine-
tuning, and the creation of the RAG system. Technically, the
data generation engine creates question-answer pairs in natural
language from the crawled tutorial documents. These question-
answer pairs are then split into training and test data for fine-
tuning and evaluating LLMs. In the instruction fine-tuning
phase, a pre-trained LLM is employed, which takes a query as
input and is tuned to generate the ground truth answer token-
by-token in an autoregressive manner. In this way, the external
knowledge of the simulator Sionna is lossily compressed into
the fine-tuning LLM, which somehow can solve the problems
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Fig. 1: Overview of the proposed workflow for developing network-oriented LLMs.

seen in training but is sensitive to the input queries and
can hardly generalize to unseen cases, e.g., suffering from
the well-known hallucination problem [20]. To this end, we
then build a RAG system that first augments an input user
query with the K most relevant contextual chunks retrieved
from the original Sionna tutorial documents. Thus, both the
query and the contextual chunks are fed into the fine-tuned
LLM to facilitate a more comprehensive and factual response
with reduced hallucination errors. More technical details are
described as follows.

A. Data Acquisition

The first yet most critical step is data acquisition. The
capability of instruction-following LLMs relies heavily on the
quantity and quality of fine-tuning data. To enable instruc-
tion fine-tuning, data should be formatted as question-answer
pairs. Conventionally, the question-answer pairs are manually
curated, requiring extensive human effort and limiting dataset
scalability. More importantly, creating question-answer pairs
for specialized simulators like Sionna demands deep domain-
specific knowledge, making the process even more challenging
and time-consuming. Inspired by the remarkable progress
made by the GPT4 series, we exploit these language models
for automatic data acquisition.

Data Cleaning. As a case study, we choose the Sionna
tutorial documents' as our foundation source to synthesize the
required dataset. We first utilize a web scrapper to collect the
necessary HTML content and convert it into markdown format.
Empirically, using the markdown format yields better data
generation quality compared to using plain text. Particularly,
we remove embedded images, non-ASCII characters, HTML

Thttps://mvlabs.github.io/sionna/index.html

tags, tables of content, and hyperlinks in the documents, while
equations are all converted into latex codes. The code scripts
and their execution results embedded in tutorials are kept as
the original.

Markdown Chunking. Before generating question-answer
pairs, we split the Markdown files into several short fext
chunks. Unlike other prior RAG systems [26] that chunk plain
texts, our system is built on markdown files, which consist of
hierarchically organized texts in a rich format. To this end,
we begin by parsing the extracted content into a hierarchical
tree according to the heading levels specified in markdown
files. Each node in the tree is associated with a heading
and the corresponding texts within that section. Then, the
markdown chunking method performs a pre-order traversal of
the markdown tree following the Root-Left-Right policy. Next,
we divide the text within each visited node into chunks that
fall within a specified range of token counts. This ensures that
each chunk is in an appropriate size for the question-answer
generation. In practice, there remain a series of corner cases
for the chunking process, which can be resolved by adding a
series of hard-coded rules. Readers can refer to our chunking
scripts” for the implementation details.

Automatic Generation of Question-Answer Pairs. For
each chunk obtained in the previous step, we first prompt the
LLM (e.g. gpt4-32k) to generate a list of questions that are
relevant, comprehensive, and unique. The generated questions
per chunk are post-processed again by prompting to reduce
duplicated and off-topic ones. Then, we prompt the LLM
to answer each generated question given the corresponding
chunk. Fig. 2 provides the three prompt templates used for

Zhttps://github.com/ak-maker/sionna- LLMs/blob/main/RAG/code/
preprocess/chunk.py
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question generation, question deduplication, and answer gen-
eration. Since the LLM tends to be lazy about answering
questions, e.g., generating incomplete codes or even simply
responding with a reference to the original tutorial, we care-
fully curate the prompt as shown in Fig. 2 to force the LLM to
generate complete answers, ensuring the quality of synthetic
data.

B. Fine-tuning Network-Oriented LLMs

This stage aims to fine-tune a pre-trained decoder-based
LLM Py(y|x) parameterized by & for instruction, where x
is the input question and y is the generated answer. Given a
corpus of question-answer pairs D = {(x;,y;}Y, extracted
from the network simulation tutorials, the objective is to
maximize the conditional probability distribution Pg(y;|x;)
over D, i.e.

Lp = max + Z log P (y:|x)
S (1)

i

N T
= max < Z Z log Po (Yi,¢|%i, ¥i,<t)s

where Py (y;|x;) is decomposed into ]_[tTil Py (yi t|xi, yi, <
t) because of the iterative next-token prediction of LLMs.
During the fine-tuning process, the parameters & are initialized
from pre-trained weights ®; and updated through stochas-
tic gradient descent variants, e.g., AdamW [27]. The large-
scale model parameters of LLMs make it challenging and
even impractical to fully fine-tune all the parameters of &
due to resource constraints and extensive computational cost.
Therefore, we employ low-rank adaptation (LoRA) [18] for
parameter-efficient fine-tuning [28].

In essence, pre-trained language models typically have full-
rank weight matrices. LORA assumes that the weight updates
during adaptation possess a fairly low “intrinsic rank”. Specif-
ically, for a pre-trained weight matrix W, € R?*¥, the update
is constrained to a low-rank decomposition:

Wo + AW = Wo + BA, (2)

where B € R¥™" and A € R"™*, with » « min(d, k).
In the training stage, we can freeze the pre-trained weight
Wy without gradient updates. The trainable parameters are
contained only by the matrices B and A. Both W, and
AW = BA take the same input for multiplication, and
their respective output vectors are summed element-wise. The
modified forward pass is:

h = Wox + AWz = Wz + BAz, 3)

where B is sampled from a normal distribution and A is
initialized to 0. In this way, the AW is set to zero and has no
effect at the beginning of fine-tuning. LoRA can be applied
to any subset of weight matrices in a neural network. In
Transformer-based LLMs, this typically includes self-attention
modules and the two feed-forward blocks.

C. Integration with Retrieval-Augmented Generation

The fine-tuning process compresses knowledge into LLMs,
allowing them to answer questions encountered during fine-
tuning. However, many unseen questions still require network
knowledge the LLM has not yet acquired. In this regard, RAG
can address this gap effectively by retrieving relevant con-
textual information from external sources, thereby enriching
the model responses with precise and up-to-date knowledge.
Specifically, we employ an efficient embedding model, text-
embedding-3-small [29], to convert each markdown chunk
into a compact fixed-dimensional embedding vector, which
captures the semantic information of the markdown chunk.
This creates a vector database linking each chunk with a
vector, enabling efficient similarity searches among texts.
For instance, when presented with a new network-domain
question, we can convert it into an embedding and retrieve the
K most relevant markdown chunks from the vector database.
These retrieved markdown chunks are then added as the
context to the original query and fed into our fine-tuned
network-oriented LLM for answer generation.

To enhance the retrieval accuracy, we employ a re-ranker to
calibrate the relevance score. The re-ranker adopts a two-tower
architecture, wherein one tower encodes the query and the
other encodes a more extensive set of candidate contents than
initially required. It then subsequently reorders these contents
based on their semantic relevance to the question, utilizing
semantic relevance as opposed to the retriever’s squared Lo
norm distance method [30], [31]. The utilization of such
semantic relevance proves to be more effective in delivering
high-quality responses from our network-oriented LLM, as
validated in Sec. IV.

IV. EXPERIMENTS AND DISCUSSION

In this section, we evaluate the effectiveness of our proposed
network-oriented LLM for wireless modeling and simulation.
We begin by evaluating the efficacy of our LLM fine-tuning.
Following this, we assess the performance benefits provided by
retrieval augmentation generation. Additionally, we compare
the consistency of evaluations conducted by the LLM with
those performed by human evaluators. Lastly, we demonstrate
concrete use cases to illustrate the practical applications in
network simulation.

A. Evaluation Setup

Dataset. We collect 48 markdown files from the Sionna
tutorial documents and divide them into 727 chunks, primarily
comprising texts and Python codes. These chunks are used
for both question-answer generation and the build-up of the
retrieval augmentation generation system. A soft constraint is
applied to ensure most chunks fall within the length range of
25 to 800 tokens, as illustrated in Fig 3. Using the gpt4-32k
model, 1,347 question-answer pairs are generated, which are
then inspected and corrected by a human annotator. Among
them, 150 pairs are randomly selected as the test set. To fine-
tune the LLM, the remaining pairs are split into training and
validation sets in a 9:1 ratio, resulting in 1,078 training pairs
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)

(

------------------ -{ Question Prompt |

I'm building a dataset for model training focused on the “sionna”
Python package, based on the given following markdown context.
Cover the markdown context as much as you can.

Your role is to generate clear, concise instructions (as user
questions) that will guide the model in mastering Sionna coding.

Start each instruction with “INSTRUCTION:” and tailor it
to fit the provided context, ensuring to cover as much of the
context’s information as possible for comprehensive learning.

The context is related to the usage of Sionna’s API, so it
should include specific imports for the Sionna APIls, parameters
(including types and meanings), inputs (types and explanations),
outputs (types and explanations), attributes (including types and
meanings), and methods (parameters, types, and their meanings).

<CONTEXT>

Cover all the information of the context, including codes,
illustrations, parameters, inputs and outputs of the instance,
properties, raises, and notes.

These instructions are crucial for teaching the model to effectively
understand and apply Sionna’s code and APIs, tailored to real-
world programming scenarios.

U

Several questions are generated as follows:

<QUESTIONS>

These questions may be duplicated or off-the-topic of Sionna.
Please reduce the candidates.

Return me the instructions with each line starting with
“INSTRUCTION:".

| Answer Prompt

Answer this instruction:

<QUESTION>

given solely on the following context

<CONTEXT>

While there may be opportunities to reference the code from the
context, do so only if it's essential to the answer. Do not assume
that code is unnecessary for the response; carefully consider if
including it will substantively support your explanation.

When it is required, the code must be transcribed with utmost
accuracy—verbatim, with no errors or omissions, and without
adding redundant or meaningless code. If the code involves
Sionna APIs, you need to be very careful not to import the wrong
packages, such as confusing an encoder with a decoder. This is
just an example; you should judge based on the actual situation.
We rely on your discretion to judiciously include code snippets
that are pertinent and to ensure their exactness.

In both code and illustrations, do not ‘assume’! If you know
something, state it explicitly; if you are unsure, indicate that it
needs to be verified. Do not say ‘assume’ because there may be
instances where your assumption is incorrect.

This content includes the following python Sionna APls:
<RELEVANT API>
; when you need to reference Sionna APls, choose the

appropriate ones and do not write them differently from what is
provided.

Fig. 2: Prompts used in generating question-answer pairs. Placeholders such as <CONTEXT> and <QUESTION> can be
replaced with specific chunk content and questions. <RELEVANT API> encompasses a collection of programming language

import statements.

and 119 validation pairs. Of these, 579 pairs contain purely
textual answers, while 768 pairs include code segments.

Models. We use a series of LLMs from OpenAl for ex-
periments, including GPT-3.5-turbo, GPT-3.5-turbo-16k, GPT-
4-32k, GPT-4-1106-preview, and GPT-4-0125-preview. For
simplicity, we denote them as gpt35, gpt35-16k, gpt4-32, gpt4-
1106, gpt4-0125, respectively. We employ the gpt35 model for
fine-tuning, using the Azure fine-tuning APIs [32]. The batch
size is set to 32 across all experiments. However, we also
experimented with varying batch sizes of 4, 8, 16, 24, and
32 to assess their impact. The text embeddings of the chunks
are generated using fext-embedding-3-small model [29], with
a dimension of 1,536. For the re-ranking process, we utilize
rerank-english-v3.0 from Cohere [33], a two-tower model,
with one tower encoding a question and the other encoding
a broader set of candidate contents than required. Such a re-
ranker reorders these contents based on their relevance to the
network-domain question. Following this methodology, the K
most relevant content chunks are selected and appended to the
original query.

Evaluation. Typically, evaluating the answer generated by

LLMs is challenging. Recent works show that LLMs can act
as evaluators who exhibit high agreement with humans [34]
[35]. There is also potential in fine-tuning LLMs to act as
evaluators in open-ended scenarios [36]. In this work, we
use gpt4-32k as the evaluator due to its extensive context
window. Given a specific question, the evaluator is prompted
to score a generated answer according to a reference answer
provided in the dataset, and the score range is limited to 1 to
9. To align the evaluation consistency with human preference,
we design a prompt that divides the score range into three
levels of correctness: 1-3 as Limited Correctness, 4—6 as
Partially Correct, and 7-9 as Substantial Correctness. Inspired
by the evaluation criteria in [37], we provide each level with
a question-answer pair scored by a human. The prompt to the
evaluator is also tuned to ensure score consistency with the
human preference.

B. Fine-tuned Network-oriented LLMs

In this section, we start by evaluating the internal knowledge
encoded in LLMSs. In other words, we discard the last retrieval
augmentation block shown in Fig. 1. The LLMs answer a user
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Fig. 3: Analysis of chunk size distribution: most chunks fall
within the range of [25, 800].

query without any context and rely solely on their internal
knowledge. The adopted evaluator is validated by gpt4-32k as
described in later Section D.

Fig. 4(a) shows the average score of different LLMs from
OpenAl, where gpt35, gpt35-16k, and gpt4-32k are the ear-
liest GPT models released with training data collected up to
September 2021. Since Sionna was first released in February
2022, these LLMs do not have any internal knowledge that
is directly relevant to Sionna-based simulation and therefore,
they exhibit poor performance scores as expected. In particular,
gpt4-32k frequently rejects to answer questions due to the
lack of network-domain knowledge, providing responses such
as “I'm sorry, I don’t have information on that...”. While
achieving the lowest score, the responses from gpt4-32k ex-
hibit fewer hallucination errors, as it tends to avoid providing
unreliable solutions. By contrast, gpt35 and gpt35-16k tend
to hallucinate, responding with incorrect answers to trick the
evaluator for higher performance scores. gpt4-1106 and gpt4-
0125, on the other hand, have the training data up to April
2023 and December 2023, respectively. As such, they achieve
noticeably better performance due to the potentially updated
internal knowledge about Sionna.
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Fig. 4: Evaluation of LLMs for Sionna-based simulation.
(a) the general-purpose OpenAl LLMs. (b) the fine-tuned
network-oriented LLM with a different number of epochs.

This observation motivates us to update the network-domain
knowledge of gpt35through the proposed parameter efficient
fine-tuning as introduced in Sec. B. As shown in Fig. 4(b), the
increase of training epochs gradually improves the mean score
of answer quality and slightly reduces the standard deviation,
showing our fine-tuning progressively updates task-relevant
knowledge into the LLM. Notably, the fine-tuning provides a
significant performance improvement over the original gpt35
and even consistently outperforms the latest gpr4-0125 by a
large margin. This observation suggests that our fine-tuning
method effectively adapts the general-purpose LLM into a
network-oriented LLM.

C. Network-oriented LLMs with Retrieval Augmentation

Next, we analyze the effect of the RAG block introduced in
Sec. C. Due to the limitations on input context size, we can
only provide the gpt35 series with the top-1 retrieved context.
As shown in Fig. 5, the retrieval augmentation provides a
consistent and significant performance improvement over all
the LLMs. Such benefit of retrieval augmentation is orthogonal
to the fine-tuning process, suggesting their compatibility in
improving the model generation capability. Among the fine-
tuned models, training with 8 epochs emerges as the best
performer, compared to the 32-epoch model. It is important
to note that the fine-tuning data does not include context
information, so training with more epochs may lead to a slight
mismatch during testing, resulting in unexpected performance
degradation. Remarkably, the latest GPT-4 models, i.e. gpt4-
1106 and gpt4-0125, achieve the best performance due to their
in-context learning capabilities. Besides, the proposed context
re-ranking process brings further significant performance im-
provements. This suggests the relevance of retrieved contexts
to the question plays a critical role in answer generation.

oot [ s
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Evaluation Scores

Fig. 5: Evaluation of network-oriented LLMs with retrieval
augmentation. Only the most relevant chunk is used.

Inspired by this finding, we then explore adding more
retrieved contexts into our network-oriented LLMs, aiming to
maximize their in-context learning capabilities. As shown in
Fig. 6, it is observed that adding more contexts can enhance
the model performance, with the improvements saturated at
the number of retrieved contexts k=3. Particularly, gpt4-32k
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and gpt35-16k exhibit similar performance levels, whereas
gpt4-1106 and gpt4-0125 consistently demonstrate a notice-
able performance margin over the former two. These results
underscore the effectiveness of integrating our RAG block into
the network-oriented model with additional relevant contexts.

9

7

mEm gpt35-16k
e gpt4-32k

gpt4-1106

gpt4-0125
IZZ] Increment from Rerank

3
1 4

Number of Retrieved Contexts (k)

Score
w o ~

IS

Fig. 6: RAG with a varying number of retrieved contexts.

D. Consistency between LLM-based and Human Evaluation

To validate the reliability of the adopted LLM-based eval-
vator, we analyze the score consistency between the LLM
evaluation and the human evaluation. Specifically, we select
100 question-answer pairs from the test set and evaluate
the results generated from gpt35ft-e32 with the reference
answers from the test set. Besides, a human expert in the
network domain manually scores the answers. The human
evaluation criteria vary by answer type, whether text or code.
For code, the assessment focuses on two main criteria: 1)
overall correctness, which examines whether the simulation
code flow correctly addresses the question, and 2) adherence to
relevant Sionna tutorials, including tool usage parameters and
simulation methods. Text answers are directly scored based on
keyword presence and relevance to the question.

LLM Evaluation (gpt4-32k)
N w s wm e N @ o
@ ° ° ° °
° 0 ° °
@ ° .
° ° () ° °
° .
°
°

1 2 3 4 5 6 7 8 9
Human Evaluation

Fig. 7: Scatter plot of LLM-based evaluation and human evaluation.
We compute the Pearson correlation coefficient with » = 0.71,
suggesting a strong positive correlation between the two evaluators.

Fig. 7 presents a scatter plot depicting the relationship be-
tween evaluations conducted by LLMs and human experts. The
discrete nature of the scores results in overlapping points, with
the darkness of the points indicating the number of overlapping
samples. The plot reveals a strong positive correlation between
LLM and human evaluations, with some slight variance. The

Pearson correlation coefficient is 0.71, indicating a strong
positive correlation between the two evaluation methods.

E. User Cases for Wireless Modeling and Simulation

Lastly, we showcase the practical application of our
network-oriented LLM for end-to-end simulations using
straightforward natural language prompts. Our LLM provides
step-by-step explanations through textual answers, code snip-
pets, and figure plots. Fig. 8 shows the results generated
by executing codes produced by our network-oriented LLM.
This includes tasks such as network scenario creation, ray-
tracing analysis, radio map generation, and channel impulse
response calculation, which streamline the complex simulation
process through simple user queries. More demo examples and
resources can be found in our GitHub repository [38].

V. CONCLUSION

In this work, we investigated the integration of LLMs with
the network simulator to streamline operations and reduce
the learning curve associated with domain-specific simulation
knowledge. We developed a specialized dataset for the Sionna
simulator, fine-tuned the LLM to be a network simulation
expert, and implemented a retrieval-augmented generation
system tailored for executing the simulator. Comprehensive
experiments assessed the models’ proficiency in understanding
and generalizing network-related knowledge and simulation
code snippets. Our user case demonstration highlights how our
approach effectively bridges the gap between plain text inputs
and domain-specific knowledge, enabling an intuitive and
accessible simulation experience. Future work involves sup-
porting image inputs and multi-turn dialogues in the pipeline
to enhance information accessibility and enable context-aware
user interactions.
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