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Consider a discrete one-dimensional random surface whose height at a
point grows as a function of the heights at neighboring points, plus an inde-
pendent random noise. Assuming that this function is equivariant under con-
stant shifts, symmetric in its arguments, and at least six times continuously
differentiable in a neighborhood of the origin, we show that, as the variance
of the noise goes to zero, any such process converges to the Cole—Hopf so-
lution of the 1D KPZ equation under a suitable scaling of space and time.
This proves an invariance principle for the 1D KPZ equation in the spirit of
Donsker’s invariance principle for Brownian motion.

1. Introduction.

1.1. Main result. Let Z be the set of integers and Z be the set of nonnegative integers.
Let (y(x,))xez,1ez, be a collection of i.i.d. random variables with mean zero and finite
moment generating function in a neighborhood of zero. We will collectively refer to these
variables as the “noise variables.” Let v/ : R> — R be any function. Consider a growing
random surface fy : Z4+ x Z — R defined through the recursion

1.1 N D=y (fnx—1Lt—=1), fnx+1,0—1D)+ N Yy, 1)

with fy(x,0) =0 for all x, where N is an integer that we will eventually send to infinity.
Here fy(x,t) denotes the height of the surface at location x at time 7. The above equation
means that this height is a function of the heights at location x — 1 and x + 1 at time t — 1,
plus a random noise. We assume that ¢ has the following properties:

e Equivariance under constant shifts. For any u,v,c e R, y(u +c,v+c¢) =y (u,v) +c.

e Symmetry. Forall u,v e R, ¥ (u, v) =¥ (v, u).

e Regularity. v is at least six times continuously differentiable in a neighborhood of the
origin.

The above assumptions are natural from a physical point of view. An example of a Y satisfy-

ing the above assumptions is

(1.2) w(u,v):$+(u—v)2,

which represents a “discrete version” of KPZ growth. Another example, considered in the
original paper of Kardar, Parisi and Zhang [35], is

(1.3) w(u,v):#—l-\/l%-(u—v)z.

Our main result is that under the above assumptions, if we subtract off a certain deterministic
multiple of ¢ from fx(x, t), the resulting process converges in law to the Cole—Hopf solution
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of the 1D KPZ equation as N — oo under parabolic scaling of space and time (see Section 1.2
for background on KPZ). We now give a careful statement of this result.

Let R be the set of real numbers and R be the set of nonnegative real numbers. We will
now define a process fN :R x Ry — R by rescaling space and time in the definition of fy
and subtracting off a deterministic linear drift term. First, we need to define two constants.
The first constant is

B = (0,0),

where 812 denotes the second partial derivative in the first coordinate. For x € Z and f € Z,
let p(x, ) denote the probability that a simple symmetric random walk on Z, started at O at
time 0, is at x at time ¢. Let

Ax,t):=px+1,t)— px—1,1).
Next, define

(1.4) cm Lotyo.04+ &
T T 12°

Finally, we define the second constant

o o.¢] 2
(1.5) V::c[ZZA(x,t)4(u4—u%)+ (ZZA(x,t)Z,u2> }
xeZt=0 x€Zt=0
where 11 denotes the kth moment of the noise variables.
Having defined 8 and V, we now define the rescaled and renormalized surface growth
process fN :R x Ry — R. For any (x,7) € R x R4 such that x is an integer multiple of
N~1/2 and ¢ is an integer multiple of N ™!, let

fn(x, 1) = fx(vNx, Nt)
(1.6) 1 12 1, 1/4 1, )
- (V+§,3N M2+8,3 N M3+ﬂ,3 (M4—3M2)+N1,0(0,0)>t.

Note that the renormalization term depends only on the first four moments of the noise vari-
ables. For all other (x, ), define fx(x, t) by linear interpolation. (The exact method of linear
interpolation will be described in Section 10.) The following is the main result of this paper.

THEOREM 1.1. Let fN be defined as above, and suppose that B # 0. Then the C(R x
R.)-valued random function exp(B fn) converges in law as N — 00 to a solution Z of the
stochastic heat equation with multiplicative noise

1
(1.7) O Z = 5aﬁz +V2u2B2E, Z0,) =1,

where £ is standard space-time white noise. Since B~ " log Z is the Cole—Hopf solution of the
KPZ equation displayed in equation (1.9) below, this means that fNN converges in law to the
Cole—Hopf solution of the KPZ equation. The topology on C (R x R) that we use here is the
topology of uniform convergence on compact sets. If B = 0, then fN converges in law to a
solution h of the stochastic heat equation with additive noise

1
(1.8) dh = 5a)fh + V208, h(0, ) =0.

REMARK 1.2. The white noise that appears in equation (1.7) has the same properties as
the white noise appearing in [2], Theorem 2.1; see [2], Section 3.2, for the precise definition.
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REMARK 1.3. The result and method could potentially be generalized to other initial
types of initial data. Our result is perturbative, so if it is known that some explicitly solvable
model will converge to the KPZ equation with some nonzero intitial data, we could generalize
the type of interaction to find another interaction that will still converge to the KPZ equation.

REMARK 1.4. The solution of the stochastic heat equation with multiplicative noise (1.7)
can be explicitly written down using a chaos expansion, as in [2], Theorem 2.7. The solution
of the stochastic heat equation with additive noise (1.8) is easy to write down explicitly as a
convolution of the heat kernel and white noise.

REMARK 1.5. Just for fun, let us compute the constants appearing in the renormalization
term when ¢ is given by (1.2) and (1.3). First, suppose that v is the function displayed in
(1.2). Then afw =2, and so 8 = 2. Also, afw =0, and hence, ¢ = 83/12 =2/3. Thus,

2
V= g(C1u4 +C2M%),

where C1 and C, are absolute constants given by the formulas

00 00 2
Ci=Y. > Ax,n*  C= (ZZA@,;V) —Cy.

xeZt=0 x€Zt=0

(It is not clear if C; and C; can be evaluated in closed form. The numerical values, calculated
by summing up to t = 10,000, are roughly C| &~ 2.16 and C, ~ 13.70.) Next, consider the ¥
displayed in equation (1.3). For this ¥, note that

1 (u —v)?
JItw—v? (4 @—v))2
which gives g = 8121//(0, 0) = 1. Differentiating further, we get

3
(1 + (u —v)?)3/2
which gives 8?1&(0, 0) = —3, and hence, c = —1/24. Thus, V = —(C1 4 + CzM%)/24.

0T (u, v) =

a;‘w(u, V) =— + some multiple of u — v,

1.2. Background. Let f(x,t) denote the height of an evolving one-dimensional random
interface at time ¢ € R and location x € R, where R is the set of real numbers and R is the
set of nonnegative real numbers. The evolution of the interface is said to follow 1D Kardar—
Parisi-Zhang (KPZ) equation [35] if it formally satisfies the stochastic partial differential
equation

O f=adlf + BB f) +VE,

where £ is space-time white noise, and «, 8, and y are real-valued parameters. If « and y are
nonzero, then by suitably scaling space and time, we can convert the above equation to the
equation

B
2
which has only a single parameter, 8. One can give a rigorous meaning to (1.9) by declaring
that a solution f can be obtained as f = 8~ !log Z, where Z is a solution to the stochas-
tic heat equation with multiplicative noise (1.7) with wy = 1, which is a rigorously defined
SPDE [40, 44]. Indeed, a formal calculation using It6 calculus shows that if Z solves (1.7)
with pp = 1, then f must solve (1.9). This is known as the “Cole—Hopf solution” of the 1D

(1.9) 8,f=%8ff+ (0 )? + V28,
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KPZ equation, first proposed in [6]. It is known to be equivalent to the pathwise solutions
constructed later using the theory of regularity structures [28, 29].

The “weak universality conjecture” for the 1D KPZ equation says that any 1D interface
growth process that is driven by microscopic fluctuations, where the heights at neighboring
points have a nontrivial effect on the growth of the height at a point, should converge to the
KPZ equation in some suitable scaling limit [7]. This is admittedly rather ill-posed, but it is
one of the things that make the KPZ equation an object of central interest.

There is now considerable evidence in favor of the weak universality conjecture, mainly
in the form of rigorously proved convergences of various discrete growth models to the KPZ
equation in a suitable space-time scaling limit. Some examples are:

Asymmetric exclusion processes in the weakly asymmetric limit [4, 6, 19, 45-47].

Models belonging to the class of stochastic vertex models [8, 16, 18, 37].

Directed random polymers in the intermediate disorder regime [1-3, 39].

A large class of stationary, weakly asymmetric, conservative particle systems [26]. The

limit here is the energy solution of the KPZ equation, which was later shown to be unique

in [27]. A more general result along the same line was proved later in [20].

e KPZ equation with smoothed nonlinearity, taken to the limit where smoothing is removed
[24].

e The KPZ equation with (9, f)? replaced by F(d, f) for some general nonlinear function

F, under appropriate limits of scaling space and time [31, 33], confirming conjectures from

[34, 36].

A more complete list of references with a more extensive discussion can be found in [17],
Section 6. Of the papers cited above, our result is perhaps most closely related to the results
of [31, 33], which, therefore, deserve some elaboration. In [31] the following two classes of
SPDEs were considered:

(1.10) O fe =02 fe + F(0x fo) + et,
and
(1.11) O fe =02 fe + JEF 0y fo) + £,

where £ is white noise, € is a parameter, and F is an even function which was taken to be a
polynomial in [31] and extended to a larger class of functions in [33]. If f, is a solution to
(1.10), then it was shown in [31], Theorem 1.1, that the rescaled map (x, t) — fe(e™ Ix,e721)
converges in law to a solution of the KPZ equation as ¢ — 0, after subtracting off suitable
renormalization terms. On the other hand, if f; is a solution to (1.11), then [31], Theorem 1.2,
shows that the rescaled map (x, £) > /€ f (e x, e 2p) converges in law to a solution of the
KPZ equation as € — 0, after subtracting off suitable renormalization terms. These results
hold when F”(0) # 0. If F”(0) = 0, then a different scaling is needed, depending on the
smallest k such that the kth derivative of F at 0 is nonzero.

The limit corresponding to (1.10) is known as the “intermediate disorder scaling limit,”
while the one corresponding to (1.11) is known as the “weakly asymmetric scaling limit.” In
a sense our Theorem 1.1 can be viewed as a version of weak universality for the 1D KPZ
equation in the intermediate disorder regime. The reason is that, under the equivariance and
symmetry assumptions, i can be expressed as

WWJ0=Z§£+¢W—U)

for some even function ¢ (see details in Section 2), which implies that the recursion (1.1)
can be seen as a discretized version of (1.10). The major difference between the framework
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of [31, 33] and ours is that we start from discrete growth processes rather than solutions of
SPDEs. Two other differences are that we consider general i.i.d. noise instead of Gaussian
noise, and our argument does not make use of heavy machinery like regularity structures.
From a slightly different perspective, Theorem 1.1 is an invariance principle for the 1D
KPZ equation, analogous to Donsker’s invariance principle for Brownian motion [21]. In-
deed, consider a (0 + 1)-dimensional process fu(¢) growing according to the recursion

In@ =y (v — D)+ N2y,

where now (y(t));cz, are i.i.d. mean zero random variables and v is a function from R into
R. Suppose that ¥ is equivariant under constant shifts. Since v is now a function of only one
variable, equivariance under constant shifts implies that ¢ must be the form ¥ () =u + ¢
for some ¢ € R. Thus, if fy(0) =0, then

t

@ =ct+ N2 y(s).

s=1

So if we rescale and renormalize fy as
N Nt
In(@) = fn(ND) = eNt = N~12 37 y(s),
s=1

then by Donsker’s theorem, fn converges in law to Brownian motion. This way of writing
Donsker’s theorem makes it clear why Theorem 1.1 is a “KPZ version” of it. While Donsker’s
theorem shows invariance of the scaling limit under various choices of the law of the noise
variables, our result proves invariance both under changing the law of the noise variables and
the choice of i (subject to the constraints of equivariance under constant shifts, symmetry,
and regularity).

A natural problem, then, is to investigate whether the assumptions of Theorem 1.1 can
be relaxed. Donsker’s theorem requires the noise variables to have only finite second mo-
ments, whereas Theorem 1.1 needs finite moment generating function in a neighborhood of
zero. Can this be relaxed? Also, in (1.1), can fy(x, t) be a function of fy(x £i,t — 1) for
i=0,1,...,k for some fixed k plus noise, instead of just f(x £ 1,7 — 1), as we currently
have? Depending on the type of interaction, such as a higher order interaction, it may be suf-
ficient to perturb from the directed polymer itself. Generalization beyond i.i.d. noise is also
an interesting question. Does it suffice to have the noise “homogenize” in a certain sense, as
it happens for exclusion processes?

A different kind of invariance principle, similar to Donsker’s theorem in that the invariance
is only in the law of the noise, was obtained in [32]. Roughly speaking, the main result of [32]
is that a solution of the KPZ equation with non-Gaussian noise and coefficients depending in
a certain way on a parameter € converges to a solution of the usual KPZ equation (with white
noise) as € — 0.

The idea of looking at discrete growth processes growing, according to (1.1), with ¢ sat-
isfying the equivariance, symmetry, and other conditions was introduced in series of papers
[11, 12, 14]. In [11] it was shown that, in the absence of noise, any such process converges
to a solution of the deterministic KPZ equation under parabolic scaling. This result was ex-
tended to a larger class of deterministically growing processes, with novel scaling limits, in
[14]. A kind of “local KPZ universality” result for such processes was established in [12].

In the context of the above discussion, it should be noted that weak KPZ universality
is fundamentally different than “strong KPZ universality,” which says that the “long time”
scaling limit of a large class of growth processes, which are typically driven by nonvanishing
noise, is a Markov process known as the “KPZ fixed point” [38, 41]. The strong universality
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conjecture is at present well out of the reach of available techniques. Its predictions have been
verified only in integrable models where exact calculations are possible (see [25, 42, 43] for
Surveys).

Incidentally, Theorem 1.1 has implications about convergence of discretized versions of
the KPZ equation to the continuum limit. For example, a natural discretization would be to
take something like (1.2). Theorem 1.1 shows that such discretizations converge to the Cole—
Hopf solution of the KPZ equation after subtracting off the correct renormalization term,
which is explicitly given by the formulas from Section 1.1. A number of papers have been
written recently about convergence of discretized stochastic PDEs to their continuum lim-
its. For example, in [10] it is shown that a discretization of the stochastic Burgers equation
(which is formally the equation for the derivative of a solution of the KPZ equation) con-
verges to the correct continuum limit. General theories of convergence of discretized SPDEs
using regularity structures have been developed in [22, 30] (see [23] for background). The
key difference between these works and ours is that we have a general growth mechanism
encoded by the function ¥ and general i.i.d. noise, with a focus toward KPZ universality,
whereas a typical paper on convergence of discretized SPDEs (e.g., the ones cited above)
would consider a specific discretization rule and Gaussian noise.

1.3. Outline of the paper. After we introduce our conventions and models in Sections 2
and 3, we begin the proof of Theorem 1.1. Our method is an inductive approach detailed
in Section 8. In that section, we propose the following ansatz on the form of the partition
function fy,

IN= }\)IOIY + Yy +dn,

f}\),Oly is the log-partition function for the directed polymer model at inverse temperature
BN~1/4 Yy is a nonlinear function of the polymer process that acts as a renormalization
term, and & is an error term, which we try to show is o(1) as N — oo. The main result of
Section 8 shows that the error propagation term 6y indeed tends to zero; this is Theorem 8.2.

There are many preliminary estimates that are necessary in order to prove Theorem 8.2;

these estimates involve understanding the differences f IE),OIY x+1,0)—f }\),()Iy (x —1,1) of the
polymer log-partition function as well as properties of the renormalization term Y. Most of
these estimates are obtained in Sections 4 through 7. Section 9 shows that the renormalization
term Yy is actually close to a linear function of ¢ with high probability, and Section 10 derives
Theorem 1.1 from Theorem 8.2 using the known result about convergence of the polymer
model to KPZ at intermediate disorder [2]. Finally, Section 11 briefly treats the 8 = 0 case;
the analysis is very similar to the 8 % 0 case but much simpler.

2. Conventions. Throughout the rest of the manuscript, we will adopt the convention
that A < B means that A < CB for some deterministic positive real number C that does not
depend on N, x, or ¢, as long (x, ¢) is in some given rectangle of the form [—aN,aN] x
[0, bN]. Here N is the parameter from Section 1 that we will eventually send to infinity, and
x and ¢ are specific choices of space and time points where we want to prove something.
We will write A = O(B) if |A| < |B|, and A = o(B) if A/B — 0 uniformly over (x, ) in
[waN,aN] x [0,bN] as N — oo. We will use the notation A < B to mean that A < CB
for some sufficiently small positive constant C, where “sufficiently small” means “as small
as we need, but not depending on N, x or ¢.”

We will often write sentences like “there is an event Q with P(2) = 1 — o(1) such that
on 2, we have that for all (x,7) € [—aN,aN] x [0,bN], |G(x,t)| < N~*” where G is a
random function and « is a constant. What this will mean is that there is an event 2 that may
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potentially vary with N, with P(2) — 1 as N — oo, and there is some deterministic constant
C, independent of N, such that on 2 we have

max |G(x,1)| <CN*.
(x,t)e[—aN,aN]x[0,bN]

Next, we make some reductions and simplifications to our growth process. First, if g # 0,
then instead of (1.6), we will define fy as

2.1) fy(x, 1) := fn(vNx, Nt) — (V + %logm(N_lM,B) + Ny (0, 0)>z,

where m denotes the moment generating function of the noise variables. We claim that it suf-
fices to prove Theorem 1.1 with this new definition of fy. Indeed, note that by the cumulant
expansion,

N _ 1 1 1 _
7 logm(N ViB) = S BN s+ BN s B (1 = 3u3) + O(N ™),

This shows that the difference between the old f~N and the new fN converges to zero uni-
formly on compact sets as N — oo.

We will assume throughout that v (0, 0) = 0. There is no loss of generality in this, because
of the following. Suppose we let Yo (u, v) := ¥ (u, v) — ¥ (0, 0) and define gy using Yy just
as we defined fn using v. Then it is easy to prove by induction, using the equivariance
property of 1, that, for all x and ¢,

gN(xa t) = fN(x7 t) - W(O» O)t
From this it is easy to see that if Theorem 1.1 holds for gy, then it also holds for fy.
Fixing N, we will denote by f the function

2.2) f, 0= fux, 0 - %1Ogm(N—1/4ﬂ)

defined on Z x Z., where fy is the function defined in equation (1.1). Under the assumption
that v (0, 0) = 0, the equivariance property of ¥ ensures that f satisfies the recursion

(2.3) f(X,l‘)=1ﬂ(f(x—1,t—1),f(x+1,t—1))+N_1/4y(x,z)_%10gm(N—1/4ﬂ).
Define the function ¢ : R — R as

4 LAY 0 u

.4 s =v(5.-5)=vawo -5,

where the second equality holds by the equivariance property of 1. Also, by the equivariance
property, note that, for any u, v € R,

W(u,v)=1p(u—%(u+v),v—%(u—l—v))—i—
U—v v—u u-+v
:‘/’( 2 2 )+ 2

u—+v
>

u-+v

=¢u—v)+

Thus, the recursion (2.3) can be rewritten as
1
(2.5) +o(fx+1t—=1)— f(x—1,1—1))

1
+ N4y, 1) — 3 logm(N~14g).
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For future reference, we note that the function ¢, defined above, is even and is C® in a neigh-
borhood of zero by the symmetry and regularity properties of . Moreover, we can do the
following calculations. Let ¢®) denote the k'™ derivative of ¢, and let 9; denote differentiation
in the ith coordinate. Then by equation (2.4) and the evenness of ¢, we have

¢(0) =(0,0) =0,
o1 0) = ¢ 0) =9 (0) =0,
B
7

3
¢ (0) = 91y (0,0) = —% 4 24e.

(2.6) $?(0) = 829(0,0) =

In the rest of the manuscript, we will work under the assumption that 8 # 0, except in Sec-
tion 11, where the 8 = 0 case will be handled.

3. The directed polymer model. In this section we consider a special kind of growing
random surface, defined by the model of directed polymers in a random environment (see [5,
15] for background on directed polymers). Let (y(x, f))xez ez, be our noise variables, as
before. Recall that m denotes the moment generating function of the noise variables, which is
finite in a neighborhood of zero. We define the growing random surface [P :7Z x Z, — R
as follows. Let RW (x, t) denote the set of all simple symmetric random walk paths on Z that
terminate at x at time 7, regardless of the initial point at time 0. Let f Ply(x, 1) =0if t =0,
and for ¢ > 0, let

1 1 Loexp(BN~V4y(S(s), 5))
fpo}y(x, )= —log(— - .
p 2 SeR%:(x,t)SI:[l m(BN=1%)

It is easy to see that fP°Y satisfies the recursion
PP L= 4 BfPN (x+ 11 =1)

2

FPY(x 1) = %log( ) + N4y (x, 1)

1
— —logm(BN~4).
p
This model will be of fundamental importance in the sequel. Of particular importance is the

polymer partition function X (x, ) := exp(8/P°Y (x, 1)). Note that X (x, 0) = 1 for all x.
Note that the above recursion for fP°Y can be rephrased as

PV (x, 1) = %(fp"ly(x —Lit—=D+ Y+ 1,1 - 1)
(3.1) + Gpoty (FPV (x 4+ 1,1 — 1) — fFPN(x — 1,1 — 1))
+ N Vyx, 1) — élogm(ﬂN_l/“),

where
1 eg” + e‘g"
d’poly(u) = E 10g<72 )

Note that this is exactly like the recursion (2.5), with ¢ replaced by ¢po1y. Our specific choice
of B is motivated by the fact that ¢po1y matches ¢ up to the second derivative at zero: Simple
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calculations show that, in analogy with (2.6), we have
1 3 5
Bpoty (0) = B4, (0) = ot (0) = p o), (0) =0,

3
so=L0 g o=-"1

poly poly 8

(3.2)

Note that the fourth derivatives of ¢ and ¢p01y do not match. This leads to some substantial
complexities later.

4. Bounds on the polymer partition function. Recall the random fields fP°Y and X
defined in the previous section. In this section we derive some preliminary estimates for
these fields. We start with the following lemma which relates differences of fP°Y to those of
X.

LEMMA 4.1. Take anya > 0,b > 0, and é > 0. Suppose that, for some realization of the
noise variables,

Xx+1,0)—X(x—1,1)
XG+LO+Xx—1Lol
forall (x,t) e [—aN,aN] x [0, bN]. Then we have that
Xx+1,t)—X(x—1,1)
Xx+1L,)+Xx+1,00

where, as mentioned in Section 2, the implicit constant above has no dependence on N, x, or
t (but may depend on a, b, § and B). Furthermore, if  varies with N (with a and b remaining
fixed), then we have

.1 8

4.2) |fp°1y(x+1,t)—fp°1y(x— 1,t)|§‘

E‘X(x—l—l,t)—X(x—l,t)
BIX(x+1,)+X(x+1,1)

@43) Y410 - PV —1,0)|= (1+0(3)).

(We remark here that the fraction on the left in (4.1) is always less than or equal to 1. The
improvement lies in trying to show that it is strictly less than 1 by a constant.)

PROOF. First, note that
PN+ 1,0) — fPN(x —1,1)
1 1
= ElogX(x—i— 1,1) — BlogX(x —1,1)

1 1 X+1L,0+Xx—1,1
L og X1y = Lppg XX FLO T X = 1.0)
B B 2

+%logX(x+l,t)-;X(x—l,t)_%logx(x_l’t)
_1 (1 X(x—i—l,t)—X(x—l,t)) Ly (1 X(x+1,t)—X(x—1,t)).

B Xax+1L,+Xx+1,0)) B X+ L)+ X(x—1,1)

Using the assumption in equation (4.1), we can now expand the logarithm to first order and
get (4.2). Expanding to second order gives (4.3). [

The purpose of the above lemma is to understand the difference PV (x +1,7) — fPOY (x —
1, ¢) by understanding the quantities X (x +1,1) — X(x —1,t) and X (x + 1,¢) + X (x — 1, 7).
Toward this end, we will prove the following two theorems.
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THEOREM 4.2. Fix some € >0, a >0, and b > 0. Then there is an event Qp with
P(Q2r) =1 —o0(1) such that, on Qr, we have the following estimate:

inf X(x,t) 2 N
|x|<aN,0<t<bN

THEOREM 4.3. Fix some € > 0, a > 0, and b > 0. Then there is an event Qy with
P(Qy) =1—o0(1), such that, on Qy, we have the following estimate:

sup [X(x 41,0 — X(x — 1,0)| S NI/
[x|<aN,0<t<bN

As a corollary of these two theorems and Lemma 4.1, we have the following statement.

COROLLARY 4.4. Fix some € >0, a > 0, and b > 0. Let Q be the intersection of the
events Qp and Qu from Theorem 4.2 and Theorem 4.3. Then P(Q2) =1 —o(1), and on 2, we
have

4 sup | PN 1) = PN — 1| SNV
|x|<aN,0<t<bN

5. Proof of Theorem 4.2. It is not hard to see that the function fP°Y is convex in the
noise variables y(x,r), which gives us tools for deriving lower tail bounds for f p°1y(x, 1).
A consequence of this convexity is the following exponential moment estimate.

THEOREM 5.1. Fix some a > 0 and b > 0. For any 6 > 0, there exists some constant
C(0) that does not depend on N (but may depend on a and b) such that, for all |x| <aN and
0<t<bN,

(5.1) Efexp(—0/P° (x,1))] < C(®).
Before we prove the theorem, let us give the main corollary of this estimate.
COROLLARY 5.2. Forany (x,t) andany € > 0,P(X(x,t) < N~€) = O(N73).

PROOF. Recall that X(x,7) = exp[BfP°Y(x,r)]. Thus, (5.1) implies that
E[(X(x,1)"? < C®) for arbitrary 6 > 0. By Markov’s inequality this shows that
P(X(x,t) < N~€) < C(0)/N%. Choosing # = 3/e completes the proof. []

Using the above corollary and taking union bound over all x, ¢t with |x| <aN and 0 <r <
bN proves Theorem 4.2. So it remains to prove Theorem 5.1.

PROOF OF THEOREM 5.1. Observe that we are dealing with the same function as in the
proof of [13], Lemma 6.1. Following all the computations in that proof, we see that there are
only two new estimates that we need to check in our one dimensional case. Throughout, we
take (x,t) € [—aN,aN] x [0,bNT]:

Step 1: We need to check that E[ X (x, 1)?] = E(u™) < 1, where

__ mQBN~Y
N N
with m denoting the moment generating function of the noise variables and N; is the number

of times that two simple symmetric random walks S, and S, started from 0, intersect before
time ¢, excluding time 0 but including time #. With this convention Ny = 0. Note that (S,, —
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S;)/2 has the distribution of a lazy random walk with the probability of not moving equal to
1/2. Note also that since m is finite in a neighborhood of zero,  has the expansion

Ki(B)  Ka(B)  K3(B)
N2 T Naa Ty e
for some constants K1(8), K2(8), K3(8) depending on 8. Let E(z) be the generating func-
tion for E[u™1], defined as

(5.2) w=1+ (N7h

E(Z) = Z]E[/’LNJ]ZS-

s=0

Note that Ny < s and, by the Cauchy—Schwarz inequality, « > 1. Thus, E[™5] < *, and so,
E(z) converges in the open disk of radius ;! centered at the origin.

Let p(k) be the probability that the first return to O after time O of the lazy random walk
happens at time k (so that p(0) = 0). Define the generating function

P(x) =Y p(k)z*,

k=0

which converges in the open unit disk. Note that E satisfies the recursion

E[u™]=u)  plE[RM*]+ Y pk),
k=0 k=s+1

obtained by by conditioning on the time of first return to 0. From this we deduce the following
generating function relation:

(5.3) E(z) = nE()P(2) + R(z) + 1,

where R(z) is the remainder generating function

o o0
R(z) = Zz‘( > p(k)).

s=1 k=s+1
We now define two new objects. For n > 1, let SO, be the probability that the lazy random
walk stays strictly above zero from times 1 to n — 1, only returning to O at time n. For ex-
ample, SO; =1/2 and SO, = 1/16 (an up step followed by a down step). We adopt the
convention that SOy = 0. Let SO(z) be its generating function. Next, let O,, be the proba-
bility that the lazy random walk is O at time »n and is greater than or equal to O at times 1
to n — 1. For example, O; =1/2 and O, = (1/2)(1/2) + (1/4)(1/4) = 5/16. We adopt the
conventions that Og = 1 and O,, =0 for n < 0. Let O(z) be its generating function. Note that
the generating functions SO (z) and O (z) converge in the open unit disk.

We have the following relations between SO and O. For the first relation, observe that if a
lazy random walk path stays strictly above O up to time n — 1 before returning to O at time 7,
then the first step is up and the last step is down. Furthermore, in between the first and the last
step, the path stays greater than or equal to 1. The second relation is obtained by considering
the various possible times of the first return to 0,

1

1
SOn - Eon—Z + Eal,m

n
On=)_80;0u_; + 80,
i=1
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where §y , = 1 if x =y and O otherwise. This gives us the equations

1
SO — 720 —
(5.4) () = 6? (2) +

O(z)= SO(z)O(z) + 1.

By substituting the first equation into the second, we derive the equation

O(x) = —z0@)+ 0&H4

16
We solve this quadratic to get the equation
1-%3—-4/1-¢
0() = —— :
Zz
B

since the above is the only solution of the two solutions to the quadratic that is analytic in a
neighborhood of zero and satisfies O (0) = 1. Substituting this into the first equation in (5.4),
we get

1
SO@=§+§P—£—JLﬂ}
Now, note that

P =2[500) - 5] +5=1-VI==

because we can consider walks that strictly lie above zero and those that strictly lie below
zero (aside from the lazy step that stays at 0). Furthermore, we can express R(z) as

R =32 (1 -y p(k))

_ k,s—k
s=1k=0
== —J;P@ p
l—z 1-z V1i—z
Using the above expressions for P(z) and R(z) in equation (5.3), we get
I+R(z) 1 1

E@ = 1—pP@) JT—zl—pu[l—V1—2]

By clearing out the square root in the denominator, we can write E(z) as

\/11—[(1 — ) —pv1—z]

—u k
Nk
_2M kZO(l_ )(Z)-

In the last equality, we expanded the denominator as

1 1°°<b)k
=3 (-22).
at+bz a— a

E(z) =

1—2,u+u z
(5.5)
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This power series is convergent in a small radius around 0, specifically when
|1 —2p]

lz] <

Recall that 1/4/1 — z has the series expansion

LS ()

Furthermore, we have the estimate

05( 1/2)< Dk < _f

for some constant D. Noting that

1=p= =T oV ),

—1>1-2u>—2,and u? > 2u — 1, and applying the asymptotic expansion of 1/4/1 — z in

(5.5), we see that the coefficient of z' in the series expansion of E(z), which is just E(u™"),
satisfies
1 t 1 MZ t—k MZ t
< ) )
N/kZI\/E 2u — 1 2u—1
2 t t
" 1 1
< 1+ — S
<(m-1) [ +N1/2,;\/E}

N 1/2 2\t
(=) )= (=)
~\2u—1 N2~ \2u—1

where in the last line we used the fact that r = O,,. Now, by (5.2) we have

2 2Ki((B) | 2Kx(B) | 2K3(B)+ K7 (B) 1
W= e S - +0<—>
and
2K1(B)  2K2(B)  2K4(B) 1
S R R N +0(ﬁ>'

This means that 2 and 2u — 1 agree with each other to terms up to order larger than 1/N.

Thus, we get that
2 t 1 t
( o ) _ <1+0<—)> —o(D),
2u —1 N

which completes the proof of the claim that E(u™) < 1.
Step 2: We need to show that

’32
N1/2

Here V fP°(x, 1) is the gradient of fP°YY when considered as a function of the noise vari-
ables &£. The argument for Step 1 can readily show that

E[<l+ﬁ>l\q <1,

E|X (x, )V 2% (x, )| = ——=E[N,uV] < 1.
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Since

we get that
Ni
By sVN.  E[(%)]sw

which can be combined to get
(5.6) E(N?) < N.

By the Cauchy—Schwarz inequality, this shows that

E(N ™) < JE(N)EG2Y) £ VN,

where the last inequality holds because of the preceding estimate on E[N,Z] and the bound
E(u*Nt) < 1 using the argument of Step 1, because we can apply Step 1 with u? =1 +
2K, (,B)N_l/2 + o(N~1/2) instead of .

Having proved Steps 1 and 2, the rest of the proof now proceeds exactly as the proof of
[13], Lemma 6.1. [

6. Proof of Theorem 4.3. The polymer partition X, defined in Section 3, can be ex-
pressed as

1 [
(6.1) X (x,1) = o TTI+&(Ses).9)],
SERW (x,t) s=1
where RW (x, t) is the set of all simple symmetric random walk paths on 7Z that terminate at
x at time ¢. These random walks do not have a fixed starting point at time ¢ = 0. Also,

_exp(BN"y(z,9)
~ m(BN-4

Note that (6.1) is valid for r = 0O too, if we adopt the usual convention that an empty product
equals 1.

Notice that £(z,s) are i.i.d. and have mean 0. We have the following result about the
growth of the moments of £(z, ).

1.

£(z,8):

LEMMA 6.1. Define & as above. Then for all N large enough (depending only on the B
and the law of the noise variables) and any p > 1,

C )
Ble(e, )" = ok,

where C(p, B) is a constant that depends on p, B and the law of the noise variables (and not
on N).

PROOF. For simplicity, we will write y and £ instead of y(z, s) and £(z, s). Also through-
out, C will denote any constant that depends only on p, 8 and the law of the noise variables.
Since m is finite (and hence, continuous) in a neighborhood of zero and m(0) = 1, it
follows that m(BN~'/%) is uniformly bounded below by a positive constant for all large
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enough N. Thus, if y’ denotes an independent copy of y, then by a simple application of
Jensen’s inequality for conditional expectation, we get

E|¢|*” < CElexp(BN~"/*y) —m(BN "4

= CElexp(BN /) — E(exp(BN~"/*y')1y)[*”

< CE|exp(BN~'/*y) — exp(BN~1/4y/)|*" .
Using the inequality

1
e —e¥| < Elu —v|(e" +¢€")
that holds for all u, v € R, we get from the previous display that
El§ "7 < CNTPHE(ly — /[ (exp(BN™/*y) + exp(BNT1/4y)) ).
It is easy to see that the expectation on the right can be bounded above by a constant that does
notdepend on N. [J
Forany x € Z and t € Z4 \ {0}, let
1
I'(x,t):= E(X(x—l— Lt—1D+Xx—1,1r-1)).

Recall that we defined in Section 1 that, foreach x € Z and ¢t € Z., p(x, t) is the probability
that a simple symmetric random walk on Z started at O at time O ends up at x at time 7. Recall
also that

Ax,)=pkx+1,t)— px—1,1).

With the above notations, we now describe a “pseudo-chaos expansion” for X. This is sim-
ilar to the Duhamel formula of [2], Appendix B, but we will use it to derive more detailed
estimates on differences of fP°Y on immediately adjacent points.

LEMMA 6.2. Foranyx € Zandt € Z,

t
(6.2) X(x,0)=14+)_> plx—z,1 =) )Tz, 9).

z€Zs=1

PROOF. The claim will be proved by induction on ¢. The case t = 0 is trivial, because
X (x,0) =1 for all x, and the right side in (6.2) is 1 when ¢ = 0, because the sum on the right
is empty. Now, fix a time ¢ > 0, and assume that the formula holds for all times s < ¢. From
the expression (6.1) for X (x, t), we see that

(6.3) X, t)=(1+&0x,0))C(x,t)=T(x,1)+ Zp(x —z,t =1z, )I'(z, 1).

7€

If r =1, this already proves (6.2), because I'(x, 1) = 1. So, let us assume that ¢ > 1. By the
induction hypothesis, we get

F(x,t):%(X(x— Li—1)+Xx+1,1—1))

tfll
:1+ZZE(P(X—1—ZJ—1—S)+p(x+1—z,t—l—s))é(z,s)F(z,s).

z€Zs=1
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But note that

1
E(p(x—l—z,t—1—s)—|—p(x+1—z,t—1—s))=p(x—z,t—s).
Thus,

-1

Fa,)=1+> Y px—z,1—5E&z )z, 9).

z€Zs=1

Combining this with (6.3) completes the proof. [

For us one of the main consequences of Lemma 6.2 is that X (x 4+ 1,¢) — X(x — 1,¢) can
be written as

t
(6.4) Xx+1,0)-X(x—1,0=) Y Alx—2z,1 -9z )T (2, 9).

z€Z s=1

Note that this holds also for ¢+ = 0, since then the sum on the right is empty and the left side
is zero. The following lemma allows us to bound the sizes of the above differences using a
martingale approach.

LEMMA 6.3. For0<s <t,let

M; = Z Z Ax —z,t —=r)s(z, )l (z, 1)

r=1z€%Z

sothat X(x +1,t) — X(x — 1,t) = M;. Then we have that, for any p > 1,

t
(6.5) M3, <C(P) Y. Y A —z,1 — )26z 9Tz 9|74

s=1z€Z

where C(p) is a constant that depends only on p.

PROOF. Let F be the o-algebra generated by all noise variables up to time s. Then from
the above formula for Mg, it is easy to see that

E(Ms |~Fv—l) = Ms—1~

That is, {M;}o<s<; is a mean zero martingale adapted to the filtration {F;}o<s<;, With My =0.
Thus, by the Burkholder—Davis—Gundy inequality ([9], Theorem 1.1), for any p > 1,

t p/2
E|M,|? < C(p)E[(Z(MS — Ms_1)2> }
s=1

where C(p) denotes a constant that depends only on p. The value of C(p) will change from
line to line in the following.
Suppose that p > 2. Then by the above inequality and Minkowski’s inequality,
t
> (M — M,_)?

s=1

M1, < C(p)

Lp/2

t
(6.6) <C(P) Y | (My = Ms—1)*| 012

s=1

t
=C(p) Y (EIM; — My_1|7)*".

s=1
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If Y1,...,Y, are independent random variables with mean zero, then again by the Burk-
holder-Davis—Gundy inequality, we have that, for any real numbers ay, ..., a, andany p > 1,

n p n p/2
ZaiYi §C(p)E[<Zai2Yi2) :|
i=1

i=1
Conditional on F;_1, My — M,_; is a linear combination of the independent mean zero
random variables (£(z, s)),cz. Thus, the above inequality shows that

E

p/2
E(1My — My 1P| Fs 1) < C(p)E[(Zs@, PAG -zt - 9T s)) m_l]
y

Taking expected value on both sides, plugging into (6.6), and finally applying Minkowski’s
inequality, we get

Y &z ) A —z, 1 —5)°T(z,9)

Z

t
1M, <C(p) >

s=1

Lp/2

t
<C(P) Y Y e Al — 2.t —5)°T(2,5)*| o2

s=1 2

6.7) t
=P Y Y |6G A — 2,1 =T ()3,
s=1 <
t
=YY A —z1 -9} |E@OTE 9|7,
s=1 <

This completes the proof of the lemma. [

The following lemma will be used to control the moments of I" via a control of the mo-
ments of X.

LEMMA 6.4. Fix any integer 6 > 0 and real number b > 0. There exists some constant
C (0, B, b) depending only on 0, B, b, and the law of the noise variables, such that, for any
x€Zandt <bN,

E(X (x,1)?) < C(, B, b).

PROOF. By the formula (6.1), we see that

N O L exp(BN~/4y(S;(5),5))
B ) =g S@;W(x’t)zg@l ] 2O,

Fix some Si,...,Sgp. Foreach z € Z and s € Z \ {0}, let n(z, s) be the number of j such
that §;(s) = z. Then by the independence of the noise variables, we get

O exp(BN 4y (S, (s), 5)) L rexp(BN ™ 4y(z, 5)) | "G
E(: 1_[ m(,BN_l/4) ):E[H H( m(ﬂN‘1/4) > i|

j=1s=1 z€Zs=1

d exp(BN 4y (z,5))\"@¥
:HHEK m(BN=1/4) ) ]

z€Zs=1
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If n(z,s) =0 or 1 for some (z, s), then the expectation on the right is 1. Otherwise, we can
write the expectation as

E[(£(z.5) +1)"“] < [E((E(z. 9) + 1))

2n(z,s) o 172
(1+ Z < (z, s)) (&G, ))) _ 140N,

where we used our estimates for the moments of £(z, s) from Lemma 6.1 as well as the fact
that E(¢(z, s)) = 0. Noting that n(z, s) < 6, the implicit constant in the O(N~1/2) term can
be bounded by C (6, 8); this is a constant that only depends on 6, 8, and the law of the noise
variables.

Also, the number of (z, s) such that n(z,s) > 1 is at most Zi<j [S; N S|, where S; N S;
denotes the set {1 <s <t :5;(s) = S;(s)}. Combining all of these observations, we get

1 C@®.p)
E(X(x,t))<27 > <1+ N

Styeees SeeRW (x,1)
An application of Holder’s inequality shows that the right side is bounded above by

0
! Cc©,p) (2)|Slr‘52|
> (1 + > ‘

)Zi<j [SiNS;|

t /
4 S1,8€RW (x,1) N

The analysis in the proof of Step 1 of Theorem 5.1 shows that the above quantity is bounded
above by a constant that depends only on 6, 8, b, and the law of the noise variables. [J

The following lemma gives us control on the L sum of A.

LEMMA 6.5. There is a constant C such that, for any t > 1,
Y Az )F<Ct

€7

PROOF. Throughout this proof, C, C1, C, will denote universal constants whose val-
ues may change from line to line. The value of C may change from line to line. Note that
A(z,t) =01if |z] >t + 1 or z and ¢ have the same parity. If z=1¢+ 1 or z = —¢t — 1, then
|A(z,1)| =27", which proves the claim. So, let us henceforth assume that |z| < ¢ — 1 and that
z and ¢ do not have the same parity. Then

A(z,t)=%((t+zt+1)/2) _%((tikzt— 1)/2)
1 ¢ (t—z—1)/2
=§((t+z—1>/2)(m_l)

1 t Z
- _§<(z —z+ 1)/2> (t+z+1)/2
Now, by standard facts about binomial coefficients,

1 t 1 ! -1/2
E(t/2+z) = E(Lr/2J> scr

By the previous two displays, we see that if |z| < ¢/2, then

2
e

2 1
A" =7 <(f+z— 1)/2 2
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which implies that

a ! ! 2 —3)2
> AGnT=Ci Y _< )Z <cr3,
lzl<t/2 it 2\ F2=1)/2

where the last inequality holds because the sum on the right is the expected value of the square
of a sum of ¢ i.i.d. Rademacher random variables, which is of order . Next, if |z| > 7/2, then
a simple application of Stirling’s formula shows that p(z £ 1, ) are exponentially small in ¢,
and hence,

Z Al(z, t)2 < Cle_Czt.
|z|>t/2

Combining the two estimates, we get the desired bound. [J

We now have all the tools to complete the proof of Theorem 4.3. Take any p > 1 and
(x,t) e[—aN,aN] x [0, bN]. By the Cauchy—Schwarz inequality,
(6.8) Elg(x, T (x, 0|7 < (Elex, 0)[*P) 2 (E(T (x, 1)) /2.

By Lemma 6.1 amd Lemma 6.4, the right side is bounded by N ~2P/4 times a constant that
has no dependence on N, x and ¢. Therefore, by Lemma 6.3

t
X+ 1,0 =D = Xx— Lt =D]7, SN2 S Al —z,1 —5)

zeZs=1
By Lemma 6.5 the sum on the right is bounded above by a constant. Thus, for any p > 1,
IX(x+ 1,6 =)= X(x— 1Lt =D, SON"4.
Using Markov’s inequality with sufficiently large p and taking a union bound over (x,t) €

[—aN,aN] x [0, bN] now completes the proof of Theorem 4.3.

7. Further estimates for polymer growth. In this section we will obtain some further
technical estimates for the polymer surface. Recall the event €2 from Corollary 4.4. By equa-
tion (4.3) in Lemma 4.1 and the conclusions of Theorems 4.2 and 4.3, we have that, on the
event 2,

(7.1 (FPNYx+1,1)— fPY(x —1,1)

4 16<X(x+ I,t)—X(x—1,1)
A\ X(+ 1L+ X(x —1,1)
uniformly on a rectangle [-aN,aN] x [0, bN].
We will now try understand the ratio on the right side above. Throughout, we will freely
use the notations introduced earlier. We start with the following lemma.

>4+0(N16)

LEMMA 7.1. Fix some a > 0, b > 0, and § > 0. Then there is some event Qr with
P(Qr) =1 — o(1) on which we have that, for all (x,t) € [—aN,aN] x [0,bN],

IT(x,t) =T (x£1,1—1)| S N7V,
PROOF. Due to the similarity of the proofs, let us consider only the difference I'(x, t) —

I'(x + 1, — 1). Assume that we are in the event 2y from Theorem 4.3. From (6.1) and the
definition of I', we have

Xx,t) =T, ) =60, ) (x,1).
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Using equation (6.8), Lemma 6.1, and Lemma 6.4 with a sufficiently large p and applying
Markov’s 1nequa11ty and a union bound, we can assert that |&(x,#)["(x, )] S N~ /443 on
some set Q] with ]P’(Ql) =1—0(1). On Qy, we also know that | X (x,7) — X(x —2,1)| <
N~UV/4+8 Thus, on Qy N Q, we have

1
Tx—1,t+1)—T(, 0| <|Xx, 1) —Tx, 0|+ 5|X(x —2,1) = X (x, )| S N7V4F8,
We let Qr be the intersection Q¢ N S~21. O

LEMMA 7.2. Fix some a >0, b > 0, and € € (0, 1/100). Then there is some event Qx
such that P(Q2x) =1 — o(1) and on Q2x, we have that, for all (x,t) € [—aN,aN] x [0, bN],
Xx+1,0)—-X(x—1,1) 1

__Z Z S(Z’S)A(x_th_s)+0(N_1/4_e/16)’
X(x+1,t)+X(x_1,l‘) 2ZEZI—N€§SSI

where the O term is uniform over (x,t) in the above region.

PROOF. Recall from equation (6.4) of Section 6 that

t
Xx+1L,)—-X(x—1,0=) Y Alx—z,1 — )& )z, ).

z€Zs=1
The proof technique of Lemma 6.3 allows us to bound, for any p>1,

Z Z Alx—z,t —95)&E(, ) (z, s)

7€Z 1<s<t—N¢€

<Cp) Y Y Ax-zi- s>2||s(z, T 92,

1<s<t—N¢ 2

From the proof of Theorem 4.3, recall that ||&(z, s)T'(z, 5)[|3 , < N~!/2. Lastly, by Lemma 6.5
Z ZA(x — 7,1 —5)? < N~¢/2,

1<s<t—N€¢ 2

Combining all of the above, using Markov’s inequality with large enough p, and applying a
union bound, we see that there is an event Qg with P(Q2p) =1 — 0(1) on which

Xx+1,1)—X(x—1,1)
:Z Z A(x—z,t—s)é(z,s)r(z,s)+O(N—1/4—e/8)

z€Zt—NE€<s<t

(7.2)

uniformly over all (x, ¢) in our region. On the set 27 from Theorem 4.2, we have that X (x +
L)+ X(x —1, QZ N—€/16 uniformly of (x, ¢). Combining this with the above, we have
that, on the event Qg N 2y,

Xx+1,t)—X(x—1,1)

Xx+1,)+Xx—1,1)

(7.3) (z,s)

= > A -zt —)E@E )+ 0N/,
7€Zt—NE€<s<t 20, t+ 1)
Now, recall that [['(z,s) —T'(z £ 1,5 — 1)| < N~V4€ forall (z,5) € [—aN,aN] x [0, bN]
on the event Qr from Lemma 7.1. This implies that, for any (z, s) such that A(x —z, ¢t —s) #
Oandr — N€ <s <t, we have

ID(z,8) =T (x, 1+ 1)| S N7V4H2€,
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Also, recall that on the event 7, we have I'(x,7) 2 N —€/16 uniformly over (x, ¢). Thus, on
Q1 N Qr, we have
I'(z,s)
Cx,t+1)

uniformly over all x, z, s, and ¢ such that (x,¢) € [—aN,aN] x [0,bN], A(x —z,t —s) #0,
andr — N€ <s <t.

Lemma 6.1 shows that there is an event Qp with P(Q2p) = 1 — o(1) on which every
|E(z, 5)|, for (z,5) € [—aN,aN] x [0, bN], is < N~1/4+€_ Furthermore, note that, for any
s,

=14+ O(N—1/4+3e)’

YA —zt—9)| <) (px—z+ 11—+ px—z—1,1—5) <2,

and, therefore,

> Y A —z.r—9)] 2N

7€Zt—N€<s<t

Thus, on Q7 N Qr N Qp,
I'(z, s
D DN N 1o S CL

z€Zt—Ne<s<t Cx,t+1)
=3 Y Az -9)EGs) + ONT),
z€Zt—NE¢<s<t

Thus, we can finally define Qx = 523 N Qr N Qr N Qg to finish the proof. [J
Our next lemma gives an upper bound on the size of the right side in Lemma 7.2.

LEMMA 7.3. Fixing some € > 0, define

Kon=33 3 AG 51— 98Gs)

z€Zt—NE€<s<t

Fix some a > 0, b > 0, and § > 0. Then there is an event Qg with P(Qg) =1 — o(1) on
which we have for all (x,t) € [—aN,aN] x [0, bN] that

K(x,1) SNTV4HS,
Furthermore, we also have that
(7:4) |K e, nl7, SN2

(Note that K depends on €, but we prefer to write K instead of K, to lighten notation.)

PROOF. Since K(x,t) is a sum of independent terms, we can apply the Burkholder—
Davis—Gundy inequality (as in the proof of Lemma 6.3) to get

1K@ 05, Y S A —z1—9 sG],
z€Zit—Ne€<s<t
From Lemma 6.1 we know that ||£(z, s) ||%,, < N71/2 and by Lemma 6.5,
Yoy Ax-—zt-s5IL
z€Zt—NE¢<s<t

We can now Markov’s inequality with sufficiently large p and take a union bound to complete
the proof. [

The following corollary is the main result of this section.
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COROLLARY 7.4. Fix some a >0, b > 0, and € € (0,1/100). Then there is some event
Qq with P(24) =1 — o(1) such that, on Qq, we have that, for all (x,t) € [—aN,aN] x
[0,DN],

<X(x +1,6) - X(x—1,1)

4
= 4 —1—¢/32
X(x+1,t)+x(x_1’t)> =K(x, )"+ O0(N ).

PROOF. We can bound |K (x, )| < N~1/4+¢/100 for all (x,1) € [~aN,aN] x [0, bN]
with high probability on Qg, as in Lemma 7.3. Then applying Lemma 7.2 and taking the
fourth power completes the proof. [J

8. The main argument. In this section we will carry out the most important step in
our proof of Theorem 1.1, which is to relate the polymer surface fP°Y with the function f,
defined in equation (2.2) from Section 2 (after fixing N). First, recall the constant ¢, defined
in equation (1.4), and after fixing some € € (0, 1/100), define the “renormalization term”

t
(8.1) Y(x,1) :=1ﬁ—§f22p(x—z,t—s)l((z,s)4.

zeZ s=1
The main result of this section (Theorem 8.2) is that, with high probability,
Fe ) =Y, )+ Y. 0 +o0(1)

for all (x,?) in a given region of the form [—aN,aN] x [0, bN]. To prove this result, we
need the following crucial lemma about Y.

LEMMA 8.1. Fix some a >0, b > 0, and € € (0, 1/100). Then there is some event Qy
with P(Qy) =1 —o(1) such that, on Qy, we have that, for all (x,t) € [—aN,aN] x[0,bN],

Y(x+1,0) =Y (x — 1,0)| S NIHTe < N73/472€

PROOF. First, note that

t
Y(x+1,0)—Y(x— l,t):1—64CZZA(x—z,t—s)K(z,s)4.

z€Z s=1
Given s, the mean E[K (z, s)*] = 7 (s) has no dependence on z. Since
Y A=z, t—5)=0,
2€Z

the above expression can be written as

16 !
Yo+ 1L —Yx—1,0=—2 3 Y Al — 2,1 —)(K (2 )" —m(s)).
’8 z€Zs=1
Now, define Y (1-22) a5
Y .— —— Z Alx —z,t —$)(K(z,8)" —m(s)).

'34
z=l1(mod2[N€])
s=lp(mod[N€]),s<t

The point of the introduction of ¥ 122 is that it is a sum of independent terms. It is clear that

Ya+1,n-Yax—-1Ln= Y yhh,
(h,12)
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Thus, for any p > 1,

2
x+1,)—Yx—1,0)"" <(N“ max|Y 2
y 2p 2¢ ()P
(1.12)

< N4er Z |Y(11,lz)|217.
(1.12)

Thus, we get

E[Y(x+1,0)—Y(x —1,0)|*” < N (IPE}X)E|Y(II’IZ)|ZP-
1,62

Applying the Burkholder—Davis—Gundy inequality and Minkowski’s inequality, as in the
proof of Lemma 6.3, we have

EyGDPHr < S A =z — )P (B[R @) ) [F) 7

z=l1(mod2[N€])
s=ly(mod[N€7),s<t

Equation (7.4) in Lemma 7.3 shows that E|K (v, 5)|3? < N=27. Similarly, m(s) = O(N ™).
Thus, E|K (v, s) — m(s)|*?? < N~2P. Furthermore, by Lemma 6.5

t
>3 |Ax -zt -9 S

z€Zs=1

Combining these facts shows that

E[Y(x+1,6)—Y(x —1,0)|*? <NOPN2P,
and we can get our desired event Q2y by taking high enough moments and applying Markov’s
inequality and a union bound. [

‘We now arrive at the main result of this section.

THEOREM 8.2. Fix some a > 0, b > 0, and € € (0,1/100). Let Y (x,t) be defined as
above. Then there is an event Qp with P(22) =1 — o(1) such that, on Q2,, we have that, for
all (x,t) e [—aN,aN] x [0,bN],

fe,n =Y, 0+ Y, 0+,
where the o(1) term is uniform in (x, t).
PROOF. Let Q,:=QNQy N4, where €2 is from Corollary 4.4, Qy is from Lemma 8.1
and 4 is from Corollary 7.4. We will prove the claim for all (x, ¢) satisfying the constraint
(8.2) |x| + || <min{aN, bN}.

Note that any such (x, ¢) is automatically in [—aN,aN] x [0, bN], but the converse is not
true. The remaining points in this rectangle can be handled simply by repeating the whole ar-
gument with a and b both replaced by a 4 b (and replacing the event €2, by the corresponding
event for the rectangle [—(a +D)N, (a +b)N] x [-(a + D)N, (a + D)N)).

Define

8x,1):= f(x,0) = fPN(x, 1) = Y (x,0).
We will prove by induction on ¢ that on €2, for all (x, 7) satisfying (8.2), we have
(8.3) 8(x, 1) < N~17¢/2,
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provided that N > Ny, where Ny is a deterministic threshold depending only on a, b, €, ¥,
and the law of the noise variables. We will choose N later.

Throughout, we will work under the assumption that €2, holds. Fix some (x, #) satisfying
(8.2), and assume that (8.3) has been proved for up to time ¢ — 1. (Note that (8.3) holds
trivially when ¢ = 0, since §(x, 0) = 0 for all x.) Define

fii=f(x—1,t—1), Hhi=fx+1,t-1),

Y= N — =1, PN = Y1,
Yi=Y(x—1,t—1), Yor=Yx+1,z1—1),
Si=8(x—1Lr—1),  S=8(x+1,1-1).

Now, if (x, t) satisfies (8.2), sodoes (x — 1,# — 1) and (x + 1, — 1). Thus, by the induction
hypothesis, |§1| and |§;| are bounded above by N~1=€/2(t — 1), and so

(8.4) max{81], 182} < bN /2,
Next, note that by Corollary 4.4, Lemma 8.1, and the above display, we have
1 1
1fi—=Fl= + Y +8 = (77 + Yo+ &)
1 1 -
<[P = A7+ 1Y = Yol + 181 + 182] SN2

By (2.5) and (2.6) and the assumption that ¥ is C® in a neighborhood of the origin, this
allows us to apply Taylor expansion to deduce that

f1+f2 ,3 2 B 4
o f. LR (—@ +c)(f1 £2)
' 1 ] N-1/4
+C(X,t)(fl_f2)6 N1/4)’( ) %,

where C(x, t) is a number that depends on x, ¢, and the particular realization of the noise
variables, satisfying

(8.6) |IC(x,n| <1,

provided that N > Ny, where N is a deterministic threshold depending only on a, b, €, ¥,
and the law of the noise variables. The fact that |C (x, t)| < 1 comes from the assumption that
¢ is in C% s0 ¢© will be finite in a compact interval around 0. We are computing ¢ (i — f>)
where fi — f» < N7¢/2 by our inductive hypothesis.Thus, we can safely apply the Taylor
expansion and use the fact that ¢© is bounded in a compact neighborhood of 0.

Similarly, by Corollary 4.4, Lemma 8.1, and Taylor expansion using (3.1) and (3.2), we
have

poly poly
poly . 1 + f /8 poly poly\2 ,8 poly poly\4
7P = (T SR = ) = P - A
(8.7) 1 1ogm(ﬂN—1/4)

(fpoly f2r>01y)6 < NT3/2+6e < p-l—e
But by Corollary 4.4 and Lemma 8.1,
| ( fpoly fpoly) ( flpoly 1Y, — fpoly )2|

85) poly _ ppoly < ny—l—€
<Y1 — Yal|2(f; )+ Y1 —Y2| SN ,
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and similarly,

89 1 = ) = (= 2 v S N,
and furthermore,
(8.10) (f poly +Y — fpoly Y2)6 5 N—1—€
Finally, note that by Corollary 7.4 and equations (7.1) and (8.9),
Y1 +7Y. 16
Ye.r) — L2 = K@,
2 p*
16 /X1 —X2\*
= —46‘(#) + O(N—l—e)
B\ X1+ X2
— C(fpoly fpoly) + O(N—l—e)
=c(ffY+1 - AP —n)t o).

Using (8.6), (8.8), (8.9), and (8.10) in (8.7), we get

Y v+ Y 4y
2

FPN e, 1) + Y (x, 1) — (

3
ﬂ (fpoly Y — fzpoly . Y2)2 + (_1,39_2 + )(fpoly Y| — fzpoly . Y2)4

1 logm(BN~1/4) -
+C@ (Y + v - AV - )%Wy(x,r)—g—)‘ﬁiv e

B
Combining this with (8.5) (and recalling that f; = fl-pOly +Y; +46; fori =1,2), we get
31+ 62
S(x,1)| <
el = |75
/3

+3 S v 48— Y — v —80) = (Y + vy — Y — 1))

<_19_2+C> R (R T A RO

1 )|
— (Y + 11 = Y - 1)
+CE (Y Y +6 — Y — ¥y —8)°

— (P v = Y =)+ o(vTIE).

Notice that the term inside the absolute values on the right can be written as
81+ 62 1 1
81 —8)B=456i|-+B &l =-—B),
5 T01=5) 1<2+ )—i— 2(2 )

where B is a quantity which, by Corollary 4.4, Lemma 8.1, inequality (8.6), and inequality
(8.4), is less than 1/4, provided that N > Nj, where N7 is a deterministic threshold depending
only on a, b, €, ¥, and the law of the noise variables. So if N > max{N;, N,}, we have that

18(x, 1)] < max{|81], 82|} + O(N~17€).

Finally, note that the O (N ~'~€) error term is bounded above by N~!=¢/2 if N > N3 where
N3 is a deterministic threshold depending only on a, b, €, i, and the law of the noise vari-
ables. Thus, if our original choice of Ny is max{Ny, N2, N3}, the induction step goes through,
completing the proof. [
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9. Concentration of the renormalization term. In this section we will prove that
Y (x, t) behaves like a constant multiple of ¢ and will evaluate that constant. The first step
is the following law of large numbers.

LEMMA 9.1. Fix some a >0, b > 0, and € € (0, 1/100). Then there is an event Qypn
with P(Qyrin) = 1 —o(1) such that, on Qy 1 n, we have that, for all (x,t) € [—aN,aN] X
[0,bN],

Y (x,1) —E(Y(x,1))| = 0(1),

where the o(1) term is uniform in (x,t).

PROOF. Fix (x, 1), and write
Y(x.0)=Y_ Z 1.

I,
where

16¢
Zin,=—1 Z px —z,t —)K(z, )"

’34
z=0; (mod[2N€T)
s=ly(mod[N€7)

Let m(s) = E(K (z, s)*), which does not depend on z, as observed earlier. Define

~ 16¢ _
Zin =21, —E(Z,1,)=— Z plx —z,t— s)(K(Z, s)4 — m(s)).

134
z=l1(mod[2N€])
s=ly(mod[N€7)

Note that this is a sum of independent random variables with mean zero. Thus, as in the proof
of Lemma 6.3, we can apply the Burkholder—Davis—Gundy inequality and the Minkowski
inequality to get the bound

EZyuP)?< S po—zt = )X EK (2 9)* —m(s)[7P) 7.

z=l1(mod[2N€7)
s=l(mod[N€7)

From the proof of Lemma 8.1, recall that E|K (y, s)* — mi(s)|?? < N~2r. Also,

t
Yo pr—zi—$7 <D Y plz.s)

z=[1(mod[2N€]) z€Z s=0
s=l(mod[N€7)

which is the expected number of intersections of two simple symmetric random walks up to
time ¢, when both are started at the origin. By (5.6) this is bounded above by a constant times
+/N. Combining, we get

(]E|Zl1,lz |2p)1/17 S N—3/2.
Thus, by Minkowski’s inequality

Y t) —EY e, 0) | 120 < DM Z1 sl 20
1,1

E N2€N73/4.

This allows us to choose a sufficiently high p, apply Markov’s inequality and a union bound,
and get the desired result. [J
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LEMMA 9.2. Fix some a > 0, b > 0, and € € (0,1/100). Then for any (x,t) €
[-aN,aN] x [0,bN], we have E(Y (x,t)) = Vt/N + o(1), where V is the deterministic
constant defined in equation (1.5) and the o(1) term is uniformly bounded in (x,t) in the
above region.

PROOF. First, note that since the £(z, s) variables are independent and have mean zero,

1
ER@0Y) =152 3 Ac-zr=9'EEGC") - (EEG))

z€Zt—NE€<s<t

1 2 n\
+E<Z > A(x—z,t—s)lE(é(z,S)))~

7€Zt—NE€<s<t
Since m is finite in a neighborhood of zero and E(y(z, s)) = 0, it follows that m(6) =1 +
0 (6?) for 6 close to zero. Thus, for any positive integer k,
E(&(z,9)")
1

= Bl —m(N )]

2 k
— (1 + O(N_l/z))E[(ﬂN_l/4y(Z,S) 4 %N—l/Zy(Z,S)Z T O(N—l/2)> i|

— (14 O(N ")) E(B N M43z 5)) + o(NH4))
= BENRA +0(N—k/4)’

where the exchange of expectation and series sum can be easily justified using the finite-
ness of m in a neighborhood of zero and the dominated convergence theorem. In particular,
E(z,9)%) = B2uaN~12 +o(N~1?) and E(5(z, 5)*) = B*uaN ' +o(N 7).

Now, by Lemma 6.5

ZZA(z,r)ZSN_é/Z, ZZA(z,r)z,Sl.
r>N¢ 2 r>0 2

Furthermore, using the fact that every |A(y, r)| <2, we have

Z ZA(z,r)4§4 Z ZA(z,r)ng_e/z,

r>N¢ 2 r>N¢ 2
Y3 AG T <4Y D> AT SL
r>0 2 r>0 2

Combining the above observations, we see that

> Y Az -9 EER ) - (BEG )

Z t—Ne<s<t

=2 > AG N B g — u3)

Z r=>0

=Y Y Ac-zt -9 EEGE DY) - (EEG@ D)) - N7 B s — 13)]

7 (—Né<s<t
=33 AGONT B (s — 1)
Z s>N¢

=o(N"H+O(N"17/2)=o(N D).
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Similarly,
Z Z A(X <y t—S)Z]E(f(Z S) ZZA(Z r) N— 1/2/3 Uy = (N_I/Z),
Z t—Ne¢<s<t Z =0

Combining all of the above, we finally have

134 4 2 2 1
E(K (x,0)%) = T [ZA(Z r*(ua — p3) + (Z A(z, 1) /,Lz) ]+O(N_ )

_ B
~ 16Nc
To complete the proof, note that, by (8.1) and the above display,

+o(N7h.

E(Y(x,1) = ﬂ ZZp(x—z t —E(K (z,9)%

z€Zs=1

:VZXZ:p(X—z,t—S)(l-FO(N_I))

z€Zs=1
=Vt+o(l),

where the last line holds because the sum of p(z, s) over all z equals 1 for any given s and
t=0,. O

10. Completing the proof of Theorem 1.1. In this section we will complete the proof of
Theorem 1.1 under the assumption that 8 ## 0. The 8 = 0 case will be handled in Section 11.
Recall the function fN, defined in equation (2.1), at points (x,?) such that x is an integer
multiple of N~!/? and ¢ is an integer multiple of N~!. As promised in the sentence below
equation (1.6), we now describe the method of extending the domain of fN to the whole of
R x R by linear interpolation.

Let g be any function defined on Z x Z.. We will now describe a way of extending the
domain of g to R x R by linear interpolation. It will be clear how the same prescription will
apply to functions, defined on N~1/2Z x N7, such as fy.

First, we construct a graph G with vertex set V consisting of the set of points (x, ) €
Z x Z4+ such that x + ¢ is even. (One might also consider those such that x + ¢ is odd; the
important thing to notice is that the value of fN at the even points are completely independent
of those at the odd points.) There are two types of edges in the set E of edges of this graph.
The first type connects (x,t) to (x —1,# — 1) or (x + 1,¢# — 1). The second type connects
(x,t)to (x +2,1).

The graph G gives a triangulation of the plane R x R. Let p be a point in R x R, . It
is contained in some triangle 7 in the triangulation given by the graph G. Let a, b, and ¢ be
the boundary vertices of 7. Then p can be written uniquely in barycentric coordinates as a
convex combination of a, b, and c; namely, p = sja + s2b 4+ s3¢ with s1 >0, s >0, s3 >0,
and s + 52 + 53 = 1. We define g(p) :=s1g(a) + s2g(b) + s3g(c). It is easy to see that this
linear interpolation is well-defined, even if p belongs to multiple triangles (i.e., even if p is
on the boundary of some triangle).

Using the above technique, we extend the domain of fN to R x Ry. Next, recall the
function fP°Y defined in Section 3. Define fﬁ(’ly ‘N"12Zx N~1Z > Ras

TP (x, 1) := PN (/Nx, N1).
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Extend the domain of f}f,Oly to R x R, using the above interpolation method. Now, fix any
compact region K C R x R;. We claim that

(10.1) sup | v,y — P2, 1) = 0

(x,t)eK
in probability as N — oo. By the nature of the interpolation, it suffices to replace the supre-
mum above by the supremum over all (x,7) € Ky := K N (N~127, x N_12+). Take any
(x,1) € Ky.Let x':=+/Nx and t' := Nt. Then

/ /

fy(x, 1) — f]{’,"‘y(x, = fy(x', 1) - VW — %logm(N_1/4,B) — ' (0,0) — fPV(x’, 1').

By (2.1), (2.2), and the assumption that ¥ (0, 0) = 0, this gives
vt
~ — L),

where f is the function defined in equation (2.2). By Theorem 8.2, Lemma 9.1, Lemma 9.2,

and the above identity, we get (10.1). From (10.1) it follows that fN — ﬁ'fﬂy — 0 in proba-
bility as a sequence of C(R x R, )-valued random variables, under the topology of uniform

v, = PPV = f(x 1) —

convergence on compact sets. Combining this with the fact that exp(p f?i,Oly) converges in
law to the solution of the stochastic heat equation (1.7) with multiplicative noise (by [2],
Theorem 2.7, and the fact that having noise variables with variance p at inverse temper-
ature SN ~1/* in the polymer model is equivalent to having noise variables with variance
1 at inverse temperature B,/u2) completes the proof of Theorem 1.1. We remark here that
though the statement of [2], Theorem 2.7, only discusses the point-to-point partition function,
their proof also holds verbatim for the point-to-line partition function, as mentioned in [2],
Section 6.2.

11. The 8 =0 case. The g = 0 case is much simpler than the 8 # 0 case, so we will
just briefly outline the modifications needed for the proof to go through. First, we need to
make some changes to the definitions from Section 3. First, we take ¢poly = 0 and treat
B~ logm(BN~1/%) as zero so that fP°Y now satisfies the simple recursion

1
FPY (x, 1) = 5(fPOlY(x —1Lt=1)+ PN 41,1 = 1))+ N 4y, 0),
and f satisfies

faD=v(fx—11t—1, fx+1,1—1)+ N4y, 0.

The explicit expression for PV (x, 1) is now

t
Y=Y pla—x.t—s)N"y(x,n),

z€Zs=1

which is just a linear combination of i.i.d. random variables and, therefore, much easier to
analyze. If we now define K (x, t) as

K@x.n=> > AG-xt—)N "y,

7EZLt—NE<s<t

and Y (x,t) as

t
Y(,0)i=cY Y plz—x,t—5)K(z )%

z€Zs=1
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then using similar (but simpler) arguments, as before, we can show that
FO )= P + Y (0, 1) +8(x, 1),

where §(x, t) = o(1) uniformly in (x, ) € [—aN, aN] x [0, bN] with high probability. (Note
that the new K is not quite the limit of the K from earlier as 8§ — 0. It is the limit of the old
K divided by g as 8 — 0.)

As before, we can follow the steps of Theorem 8.2 to get an inductive relationship on §.
There are two major error propagation terms that do not get incorporated into a multiplicative
factor of §. The first comes from the difference fllD oly _ fzp °lY From direct computation we
have

t
flpoly _ 2poly _ Z Z Az —x. 1 — S)N—l/4y(x, t).

z€Zs=1

This is a linear combination of i.i.d. random variables, and so one can use standard moment
bounds (much like in the proofs of Theorem 4.3 and Lemma 6.3) to assert that the above
quantity should be O (N —1/44e) uniformly in a large rectangle [—aN,aN] x [0, bN].

The second error term that one has to deal with is the term

(fi— =K@, nh

This is O (N ~'7€) via the methods in the proof of Corollary 7.4. With these two estimates in
hand, one can follow the proof of 8.2 verbatim to establish the required inductive estimate.

Finally, one has to show that Y (x,t) = V¢/N + o(1). This is done by the arguments of
Section 9, which go through without any trouble.
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