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SUMMARY

Our recent research on type-Il quadrature parity-time (PT) symmetry, utilizing an open twin-beam system, not
only enables observing genuine quantum photonic PT symmetry amid phase-sensitive amplification (PSA)
and loss in the presence of Langevin noise but also reveals an additional classical-to-quantum (C2Q) transi-
tion in noise fluctuations. In contrast to the previous setup, our exploration of an alternative system assuming
no loss involves a type-ll PSA-only scheme. This scheme facilitates dual opposing quadrature-PT symmetry,
offering a comprehensive and complementary comprehension of C2Q transitions and PT-enhanced quantum
sensing with optimal performance in the symmetry unbroken region. Furthermore, our investigation into the
quantum correlation with the Einstein-Podolsky-Rosen criteria uncovers previously unexplored connections
between PT symmetry and nonclassicality, as well as quantum entanglement within the continuous-variable

framework.

INTRODUCTION

Over the past decade, classical linear and nonlinear photonic
systems, characterized by gain and loss, have served as arobust
and versatile platform for exploring non-Hermitian (NH) physics.
Notably, these systems have played a key role in probing parity-
time (PT) symmetry,'~'" unveiling a variety of peculiar effects ab-
sent in Hermitian counterparts. These effects include the typical
PT phase transition, where eigenvalues transition from real to
imaginary, and the coalescence of eigenvalues and eigenvectors
at the phase transition point, known as the exceptional point
(EP). The significant achievements in classical PT systems
have prompted a recent shift in focus toward open quantum op-
tical systems'®° with an aim to disclose distinctive quantum
features.

However, challenges®®®’ like Langevin noise, the quantum
noncloning theorem, and the causality principle have led to the
prevailing belief that quantum optical PT symmetry with both
gain and loss is unlikely. This limitation confines research mainly
to dissipative single-partite systems, such as single pho-
tons, 8?2 ultracold atoms," trapped ions, '®?° nitrogen-vacancy
centers®® in diamond, and superconducting qubits®*~utilizing
postselection measurement. Consequently, observed PT phase
transitions closely resemble classical NH scenarios, rooted in
a (semi)classical interpretation. Unfortunately, these studies
fail to offer insights on the viability of gain-loss-coupled
quantum optical PT symmetry or unique effects exclusive to
quantum NH settings absent in classical NH or Hermitian quan-
tum counterparts.

aaaaaaa

Unlike prior research, our recent work® demonstrates the
attainability of genuine quantum optical PT symmetry in an
open twin-beam system through four-wave mixing (FWM), over-
coming these challenges by employing phase-sensitive amplifi-
cation (PSA) instead of phase-insensitive amplification (PIA) and
studying field quadrature observables. Remarkably, under fair
sampling measurement, our PSA-loss bipartite system estab-
lishes unique type-l quadrature-PT symmetry without a classical
analog, introducing an additional dynamical or stationary clas-
sical-to-quantum (C2Q) transition in quadrature noise fluctua-
tions alongside the standard PT phase transition in eigenvalues.
The emergence of these dual transitions in the continuous-vari-
able (CV) framework is a minimum signature for claiming quan-
tum behavior, as further supported by our recent studies®®°
on a dissipative spin-boson-coupled superconducting circuit
platform, showcasing the co-emergence of eigenspectral phase
transition and exceptional entanglement transition in the Fock
space through post-projection measure.

In our previous vacuum-input type-I quadrature-PT configura-
tion,”® the system displays unconventional features challenging
conventional expectations of quantum squeezing. Notably, there
is no need for a cavity or high parametric gain, and the system
exhibits anomalous loss-induced quadrature squeezing. More-
over, although the quadrature-PT behaviors manifest various
sharp C2Q transitions related to quadrature noise fluctuations,
the EP generally does not coincide with these C2Q transition
boundaries. Furthermore, the nontrivial interference between
PSA or loss and parametric conversion expedites the emer-
gence of nonclassical correlations beyond traditional quantum
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Figure 1. Schematic diagram of the theo-
retical model

(A) Dual opposing type-Il quadrature-PT symme-
try emerges in twin-beam generation, with the
backward-propagating idler mode undergoing
PSA at a rate of g, whereas the forward-propa-
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squeezing, necessitating additional conditions. Here, we deepen
our understanding of quadrature-PT symmetry and its effects on
the twin-beam system by considering no loss and only involving
PSA (Figure 1A). Differing from the previous PSA-loss (type-I)
case, both quadrature pairs in this type-ll PSA-only scheme
evolve with contrasting PT symmetry, resulting in dual opposing
quadrature-PT symmetry. Additionally, this type-ll system
emerges as a quintessential platform to unveil various intriguing
physics including its profound connection with the renowned
Einstein-Podolsky-Rosen (EPR) correlations, a territory largely
uncharted in NH settings thus far.

RESULTS

Theoretical model

Assuming undepleted and classical input pump lasers, the evo-
lution of correlated signal-idler field operators as and a; along the
+z-direction is governed by the Hamiltonian H = ihg(a? —
a,.Tz)/2+h;<(a,Tal +aas). The corresponding Heisenberg equa-
tions are da,-/dz:gaf+i:<a§ and dag/dz = - iKa,T, where
1,9,k denote the Hermitian conjugate, PSA, and FWM para-
metric conversion coefficient, respectively. Akin to our latest
work,?® hidden PT symmetry emerges upon transforming them
into coupled-quadrature forms,

alo) = [5ol5]

za) - 122 o][a
dz | Gs -« 0]]gs|

by introducing q; = (a] +a)/2 and p; = i(a] —a)/2 (j =1i.s)
with the commutation relation [qg;, p;] = i/2. As detailed in the
Supplementary Information (Sl), the quadrature pair {q;, ps} fol-
lows active PT symmetry, whereas the other pair {p;,qs} obeys
passive PT symmetry after opposite gauge transformations.
Both pairs share the same EPatb = g/2x = 1, with anidentical
pair of eigen-propagation values +8 = +«kv1 — b2 phase tran-
sitioning from real to imaginary for b<1 and b > 1. This striking
phenomenon, termed dual opposing quadrature-PT symmetry,
represents a pure quantum effect that is inaccessible in PIA-
based structures. For a medium of length /, the solutions of
Equations 1 and 2 are

(Equation 1)

(Equation 2)

g sin(g/)
[q;(O)} _ —sine B sin e {q,-(l) ]
ps(l) sin(Bl+e) sin@) o |LPs(O)]

sine
(Equation 3)
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gating signal experiences lossless transmission.
(B) Regular PT phase transition associated with
eigenvalues +g.

S

g sin(g/)
{qs(l) } _ sine -€ sin e [qs(O)}
pi(0) | ~ sin(8l — e) | sin(al) g [LPi() ]
sin e -

(Equation 4)

where € = tan™ (28 /g) is a PT-induced phase shift. Their phys-
ics significance will become clear shortly.

Homodyne detection

The concise and symmetrical structures of Equations 3 and 4
render them well-suited and mutually complementary for prob-
ing the fundamental nature of dual opposing quadrature-PT
symmetry. They offer valuable insights into physical phenomena,
including versatile C2Q transitions, and effectively address cau-
sality concerns, particularly in single-mode quadrature sce-
narios. We thus focus on four single-mode quadrature variances,
(Ag?) = (q?) — (q,-)2 and (Ap?) = (p?) — (p,-)z, leaving the two-
mode quadrature and relative-intensity squeezing cases for the
Sl. Applying Equations 3 and 4, we arrive at exact expressions
for these four variances,

_ e 9 sin® e+sin®(g])

2 .
(Ag?(0)) = 2 s (Glv0) (Equation 5)
(Ap2(1)) = e? sin® e+sin?(g/) (Equation 6)
° 4 sin®(Bl+¢)
(AG2()) = e 9 sin? e+sin®(B/) (Equation 7)
* 4sin®(Bl —e)
. 2 . 2
(Ap7(0)) = w, (Equation 8)

4sin®(8l — ¢)

where Equations 5 and 6 are mathematically symmetric to Equa-
tions 7 and 8. For active PT-symmetric {q;(0),ps(/)}, superlumi-
nal (fast) light effects are expected, indicated by an advanced
phase shift +¢ in the variances. Conversely, passive PT-sym-
metric {qgs(/),p;(0)} are anticipated to manifest subluminal
(slow) light effects, evident in a phase delay — € in their variances.
Causality is maintained despite potential effects, as individual
signal or idler fields exist in mixed states. In the presence of
optical loss,?® Langevin noise obscures the observation of
slow- and fast-light effects, making it challenging to detect
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Figure 2. Single-mode variance in homo-
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Compared with standard TMSV (b = 0, black
solid line) and vacuum noise (black dashed line),
the quadrature variances {(Ag?(0)),(Ap2(/) } (A
and B) and {(Ag2(/)),(Ap?(0)) } (C and D) feature
active and passive PT-induced quadrature
squeezing and de-squeezing, respectively. In the
PT phase-unbroken region (b<1), (Ag?(0)) and

(Ag2(I)) concurrently display flexible-length
dynamical C2Q transitions, whereas comple-

mentary stationary C2Q transitions occur for a
fixed length (shaded gray areas) with the EP-
variance curves serving as the exact boundary
between the incompatible classical and quantum
noise realms.

them in the type-| scenario. Besides, PT symmetry disrupts sym-
metric noise characteristics and 2w-periodicity in usual two-
mode squeezed vacuum (TMSV), facilitating the rapid emer-
gence of quantum squeezing and exceptional C2Q transitions.
The implications of these results are apparent in the numerical
plots against the dimensionless propagation variable 2«/ for
various b during +g-phase transitions (Figures 2A-2D). Under
the same «, the ideal TMSV (g = 0, solid black curves) fails to
yield quantum squeezing, with each quadrature variance oscil-
lating above the vacuum noise (dashed black lines).

For active quadrature-PT symmetry in its phase-unbroken re-
gion (b < 1), logarithmic (Ag?(0)) (Figure 2A) periodically fluctu-
ates at a new period T = 2w« /3. Gradually growing squeezing
peaks at trough locations nT (with n as positive integers), even
without a cavity, signifying flexible-length dynamical C2Q tran-
sitions with other fixed parameters. In the phase-broken regime
(b >1), periodic noise distributions cease, and quantum noise
reduction remains consistently available. A larger b results in
greater quantum squeezing. Importantly, the variance curve
at the EP serves as the partition line, distinguishing these two
distinct noise behaviors. Note that the stationary C2Q transition
(shaded gray areas) can also occur at a fixed length by chang-
ing only g, where the EP-variance again acts as the exact
boundary dividing the incompatible classical and quantum
noise worlds. Contrastingly, logarithmic (Ap2(/)) (Figure 2B) as-
sumes similar periodic classical fluctuations peaking at
(nT —2ex /B) for the intact PT phase. As symmetry spontane-
ously breaks down, it grows monotonically with an upper
bound set by the EP-variance, and the greater the b value,
the less the de-squeezing.

For passive quadrature-PT, (Ag2(/)) and (Ap?(0)) (Figures 2C
and 2D) behave similarly despite with distinct patterns. Specif-
ically, when b<1, (Ag2(/)) shows noticeable quadrature
squeezing, akin to (Ag?(0)), but with periodic squeezing ampli-
tudes shifting to [(n — 1)T +2e /B8], implying flexible-length
dynamical C2Q transitions. In contrast, (Ap?(0)) amplifies clas-
sical noise with periodic fluctuations, similar to (Apg(/)). When

b#1, apart from a lone peak at | =
/B, (AG2(l)) is anti-squeezed, and
increasing b intensifies the anti-
squeezing. Compared to (Ag?(0)), a
complementary stationary C2Q transition at a fixed length
(shaded gray areas) appears alongside the =+(-based PT-
phase transition by manipulating only g. For (Ap?(0)), it exhibits
classical noise amplification regardless of PT symmetry
collapse, akin to (Ap2(l)). The distinction between these vari-
ances is evident. The periodic fluctuations of (Ap?(0)) (Fig-
ure 2D) precede those of (Ap2(/)) by a net phase
2k(2¢ —m)/B before the PT-phase breaks. After the phase
breaks, (Ap?(0)) always peaks around / = ¢/ before growing
monotonically. The separation distance between any two adja-
cent peaks (or valleys) is (m — 2¢)/8, uniform for all four peri-
odically fluctuating variances. Previous work®® has docu-
mented that the presence of a balanced loss to the signal
mode diminishes the symmetry of the entire system, inducing
divergent courses in the two sets of conjugate quadrature
pairs.

Nonclassicality and EPR correlation

Other than showing the dual transitions, this succinct system is
an excellent toolbox for disclosing the singular relation between
PT symmetry and nonclassicality, an emerging frontier barely
touched to date. To delve into this, we first employ the EPR
criteria proposed by Reid®'*? to seek resolutions. We note that
the four single-mode quadratures (2a) and (2b) coincide
with their respective amplitudes and phases, namely,
X1(0) = qi(0), X2(0) = pi(0), Y1(/) = gs(I) and Yz(/) = ps(1) (S).
Consequently, the Cauchy-Schwarz inequality for these quadra-
ture phase amplitudes can be explored by examining the quan-
tum-mechanical correlation coefficients,

Xi(0)Ym(h)
(PGOPXNYm(D])

Cim| = #1, (Equation 9)

with {j,m} = {1,2}. After some calculations (SI), we have
Cj =0, (Equation 10)
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B14 Figure 3. Entanglement properties
—b=0 —b=1 Assessing the impact of PT symmetry on non-
12 —b=02 —b=2 Al ! - :
classicality using the quantum correlation coeffi-
10 cient Cj, (A) and logarithmic negativity Ey (B) in the
- 8 PT-symmetry phase unbroken region (blue), at the
R 6 exceptional point (red), and in the PT-symmetry
4 phase broken region (orange), compared to the
5 standard TMSV case (black curve with b = 0).
0
10 15 20 O 5 10 15 20
2kl 2kl

2 cosh(gl/2)sin e sin(g8/)
\/sin4 e+sin(6/)+2 cosh(gl)sin? e sin?(6/)
(Equation 11)

G

N

withj#=m. Physically, |Cj| = 1 means a state of perfect quan-
tum correlation between X;(0) and Y (/), whereas |Cjm| = 0im-
plies a complete absence of such correlation between the two.

Therefore, Equation 10 denotes a complete lack of nonclas-
sical correlation between X1(0) (X2(0)) and Y1 (/) (Ya(/)) regard-
less of the presence of PT symmetry. In contrast, the situation
described by Equation 11 becomes subtle for the pair
{X1(0), Y2()} (or {X2(0),Y1(I)}). To see its behavior, (Figure 3A)
numerically plots Cq» (or C»q) with three representative exam-
ples, revealing abrupt changes made by PT symmetry. Prior to
the phase breaking (b <1), |C12| or |C»1| oscillates between 1
and 0 at the period 27« /g (blue curve with b = 0.2) but differ-
s substantially from the conventional TMSV case (g = 0 or
b = 0, black line), demonstrating periodic shifts between the
perfect existence and complete absence of quantum correlation.
Contrarily, after the phase transition (b > 1), it asymptotically ap-
proaches unity (orange curve with b = 2), implying a perfect
quantum correlation between the cross-quadrature phase am-
plitudes. Here, the EP-line (red curve with b = 1) simply acts
as the circumscription to differentiate curve patterns across
the PT phase transition. In essence, the scenario resembles
the EPR Gedankenexperiment.*® In the b#1 region, maximum
correlation between amplitude X1(0) and Yz(/), as well as be-
tween X>(0) and Y;(/), can be easily achieved, leading to the
application of EPR reasoning. In the b <1 regime, the EPR sce-
nario applies broadly to these two quadrature phase amplitude
pairs, although it may depend on the propagation distance. It
is worth noting that the influence of anti-Hermiticity on EPR cor-
relations here is analogous to the impact of non-Hermiticity on
quantum entanglement in a dissipative spin-boson system,
that is, PT symmetry gives rise to extra exceptional nonclassical
phenomena.?%:%°

The extent of nonclassicality in the system can be further as-
sessed through the analysis of logarithmic negativity,***° de-
noted as Ey = max[0, — In4 x|, derived from the system’s 4
by 4 covariance matrix Vg = [A,C;C™", B] (see supplemental in-

formation). Here, 7 = \/(2 — /3% — 4detVy)/2 and = =

detA+detB — 2detCwithA = [(Ag?(0)),0;0,(Ap?(0))], B
(AQ2(l), 0,0, (ap2()), C = 0, (qi(0)ps(l) —

4 iScience 28, 111655, January 17, 2025

(@i(0))ps (1) (s(NPi(0)) — (gs(1))(pi(0)),0], and Trrepresenting
transpose. The farther the quantum correlation that Ey reflects,
the farther it is from 0. In (Figure 3B), we present representative
examples both before and after the (-phase transition,
comparing them with the TMSV case (black). For b< 1, Ey ex-
hibits gradually increasing bimodal cyclical oscillations
above zero, reaching zero only at valleys. This signifies a
substantially enlarged range with quantum emergence. In
contrast, for b#£1, Ey develops a single peak that is always
larger than 0, indicating a full spectrum of quantum availability.
As evident, the analysis of Ey aligns with the previously dis-
cussed analysis of Cj, (j #k) except from the entire system
perspective.

Quantum sensing

As a pivotal nonclassical resource, quantum squeezing®® plays a
key role in traditional quantum sensing and metrological applica-
tions.®” Recent studies®**° leveraging anti-PT symmetry have
demonstrated enhanced squeezing-based quantum sensitivity
near EP. This prompts an exploration of whether improved sensi-
tivity is attainable in our type-ll quadrature-PT system. In
contrast to the type-l quadrature-PT case,?® the type-Il system
arises as a versatile PT-enhanced quantum sensor with unparal-
leled performance, surpassing designs based on squeezing fac-
tors or EP alone. Besides, passive PT quadrature outperforms
active PT quadrature, and two-mode quadrature outshines sin-
gle-mode quadrature (SI) under the same system parameters.
The achievable precision approaches the quantum Cramér-
Rao bound, dictated by the quantum Fisher information (QFI)
of the quantum state, although it experiences a loss of sensitivity
near and above the EP.

To commence, we assume the initial preparation of the two
bosonic modes in a two-photon coherent state, |®); = |,
as). Subsequently, we set o; = iaZ =/2ae™* for simplification
in the upcoming calculations. In the case of single-mode quad-
rature, homodyning detection is applied at an interaction dis-
tance / to an observable, say, g;(0). Utilizing Equation 3, we
find the mean value and variance of g;(0) to be

gl
e 2 sine(g(l)) — sin(8/){ps(0))
sin(Bl+e) '

(@i(0))

(Equation 12)

The ultimate accuracy of sensing relies on the precision with
which a small change in (q;(0)) can be measured in response
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Figure 4. Quantum sensing performance
Quadrature-PT-symmetric quantum sensing. The

ratios of the inverse variances logy, (AK;"(ZO) +1 )

®), Iog10(AK;j,)+1) ®), |og10(AK;j,)+1) ©),

and logyq (AKF;(ZO) +1 ) (D) of the four observables

\ to the quantum Fisher information logyo(F, + 1) as
functions of dimensionless lengths for parameters
{a = 10, x = 0.5}, illustrating the sensitivity
enhancement in the quadrature-PT phase unbro-

system state. We illustrate four inverse

variances before the quadrature-PT
phase transitions in (Figures 4A-4D), por-
traying the ratios (insets) of Ak, &, Ak, &,
AK;S%I), and AK;S%,) to F,, providing an
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to a tiny perturbation é« from a predefined x-value. This system
response is characterized by a susceptibility (SI), denoted as
X‘Z’(O), defined as 9(g;(0))/0k, and derived from Equation 12.
Next, the achievable accuracy of estimating the parameter «’s
precision can be evaluated by considering the variance (3a)
and susceptibility. This evaluation involves the relation
A o = (ag?(0))/x? T

The inverse variance Ak, (20) determines the sensing power of
the system, with its upper bound constrained by the QFI, F,.
The QFI establishes the lower quantum Cramér-Rao bound, ex-
pressed as F, £ Ak, (20), representing the utmost precision attain-
able through optimal measurement. For the seeding coherent
input state |®@)y, the QFI of the system can be deduced from
(see supplemental information for more detail),

du\ "
Fo=(—) V
(@)
with T for a vector or matrix transpose. In Equation 13, the
amplitude vector x and V~' are computed in the quadrature ba-

e

o (Equation 13)

sis via 1 = (Vj) and Vi = 3(V;V +Vi¥j) — (V)W) for 1< J,

k <2, with the column vector ¥ = (g;(0),qs(/),pi(0),ps()) "
As F, ascribes the entire system, it aligns with all other quantum
observables. Notably, F, manifests differently in response to the
contrasting PT domains. In supplemental information, we
present logarithmic F, with distinctive characteristics in three cir-
cumstances: b = 0.2 (unbroken PT phase), b = 1 (EP),andb = 2
(breaking PT phase). Similarly, we can test k-parameter estima-
tion using the rest three single-mode quadratures (SI): p;(0),qs(/),
and ps (/). Our calculations indicate that our current scheme opti-
mally supports quantum sensor performance in the quadrature-
PT phase unbroken regime but away from the EP, distinguishing
it from EP-based sensors. Numerical simulations in (Figure 4)
demonstrate that the best sensing is achieved with a suitable
medium length /, owing to the enlarged Hilbert space of the final

S 10 1520 25 30 35 40 45 50
2kl

instructive view of the data. Upon careful
scrutiny of (Figure 4), we deduce that
both g;(0) and gs(/) supply the maximum
parameter estimation precision at the first
oscillating peaks of log;o(Ax, %, +1) and logyo(Ak, %) +1) with
respect to logqq(Fx +1). However, overall, gs(/) outperforms
gi(0) in sensing performance in terms of sensitivity and accu-
racy, entailing that the variance AK?;S(/) of passive quadrature-

PT symmetry is smaller than the variance AK?MO

rature-PT. As/ increases, the sensing ability of both observables
worsens because F, gets larger, and the ratios become smaller.
By contrast, p;(0) and ps(/) allow classical sensing exclusively
with non-equivalent performance.

) of active quad-

DISCUSSION

In contrast to previous studies, the type-ll PSA-only twin-
beam system serves as an optimal quantum platform for
investigating dual opposing quadrature-PT symmetry. Our so-
phisticated theoretical framework allows for the exploration of
profound C2Q transitions and establishes a unique link be-
tween PT symmetry, nonclassicality, and the EPR paradox.
Our findings unveil nontrivial quantum aspects of PT symmetry
beyond the capabilities of non-PSA-based systems, demon-
strating promise for designing PT-enhanced quantum sensors
that leverage anti-Hermiticity and squeezing. We anticipate
that our proposed quadrature-PT scheme will unlock novel
physical phenomena, enabling nonreciprocal transmission of
continuous-variable (CV) qubits with minimal noise—crucial
for CV-based quantum information processing and
computing.*® This capability poses a challenge for PIA-based
apparatus.®”'"**>7 By incorporating PSA, our system pro-
tects CVs from decoherence, compensating for loss through
noiseless amplification and advancing CV-based quantum
technologies. The nontrivial modulation and acceleration of
quantum squeezing generation by PT symmetry further
contribute to the development of diverse CV-based quantum
technologies.
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Limitations of the study

The results in this paper are based on purely theoretical deriva-
tions under ideal conditions and have not been experimentally
conducted.
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STARXMETHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

Mathematica 12 Mathematica Software https://www.wolfram.com/mathematica/
QUANTUM OPTICS Scully, M. O. and Zubairy, M. S, 1997 https://books.google.com

METHOD DETAILS

Our article is a purely theoretical study. All equation derivation methods and details have been provided in the main text and supple-
mentary materials.

QUANTIFICATION AND STATISTICAL ANALYSIS

There are no quantification or statistical analyses to include in this study.
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