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SUMMARY
Our recent research on type-I quadrature parity-time (PT) symmetry, utilizing an open twin-beam system, not
only enables observing genuine quantum photonic PT symmetry amid phase-sensitive amplification (PSA)
and loss in the presence of Langevin noise but also reveals an additional classical-to-quantum (C2Q) transi-
tion in noise fluctuations. In contrast to the previous setup, our exploration of an alternative system assuming
no loss involves a type-II PSA-only scheme. This scheme facilitates dual opposing quadrature-PT symmetry,
offering a comprehensive and complementary comprehension of C2Q transitions and PT-enhanced quantum
sensing with optimal performance in the symmetry unbroken region. Furthermore, our investigation into the
quantum correlation with the Einstein-Podolsky-Rosen criteria uncovers previously unexplored connections
between PT symmetry and nonclassicality, as well as quantum entanglement within the continuous-variable
framework.
INTRODUCTION

Over the past decade, classical linear and nonlinear photonic

systems, characterized by gain and loss, have served as a robust

and versatile platform for exploring non-Hermitian (NH) physics.

Notably, these systems have played a key role in probing parity-

time (PT) symmetry,1–17 unveiling a variety of peculiar effects ab-

sent in Hermitian counterparts. These effects include the typical

PT phase transition, where eigenvalues transition from real to

imaginary, and the coalescence of eigenvalues and eigenvectors

at the phase transition point, known as the exceptional point

(EP). The significant achievements in classical PT systems

have prompted a recent shift in focus toward open quantum op-

tical systems18–25 with an aim to disclose distinctive quantum

features.

However, challenges26,27 like Langevin noise, the quantum

noncloning theorem, and the causality principle have led to the

prevailing belief that quantum optical PT symmetry with both

gain and loss is unlikely. This limitation confines research mainly

to dissipative single-partite systems, such as single pho-

tons,18,22 ultracold atoms,21 trapped ions,19,23 nitrogen-vacancy

centers20 in diamond, and superconducting qubits24–utilizing

postselection measurement. Consequently, observed PT phase

transitions closely resemble classical NH scenarios, rooted in

a (semi)classical interpretation. Unfortunately, these studies

fail to offer insights on the viability of gain-loss-coupled

quantum optical PT symmetry or unique effects exclusive to

quantum NH settings absent in classical NH or Hermitian quan-

tum counterparts.
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Unlike prior research, our recent work28 demonstrates the

attainability of genuine quantum optical PT symmetry in an

open twin-beam system through four-wave mixing (FWM), over-

coming these challenges by employing phase-sensitive amplifi-

cation (PSA) instead of phase-insensitive amplification (PIA) and

studying field quadrature observables. Remarkably, under fair

sampling measurement, our PSA-loss bipartite system estab-

lishes unique type-I quadrature-PT symmetry without a classical

analog, introducing an additional dynamical or stationary clas-

sical-to-quantum (C2Q) transition in quadrature noise fluctua-

tions alongside the standard PT phase transition in eigenvalues.

The emergence of these dual transitions in the continuous-vari-

able (CV) framework is a minimum signature for claiming quan-

tum behavior, as further supported by our recent studies29,30

on a dissipative spin-boson-coupled superconducting circuit

platform, showcasing the co-emergence of eigenspectral phase

transition and exceptional entanglement transition in the Fock

space through post-projection measure.

In our previous vacuum-input type-I quadrature-PT configura-

tion,28 the system displays unconventional features challenging

conventional expectations of quantum squeezing. Notably, there

is no need for a cavity or high parametric gain, and the system

exhibits anomalous loss-induced quadrature squeezing. More-

over, although the quadrature-PT behaviors manifest various

sharp C2Q transitions related to quadrature noise fluctuations,

the EP generally does not coincide with these C2Q transition

boundaries. Furthermore, the nontrivial interference between

PSA or loss and parametric conversion expedites the emer-

gence of nonclassical correlations beyond traditional quantum
ary 17, 2025 ª 2024 The Author(s). Published by Elsevier Inc. 1
NC license (http://creativecommons.org/licenses/by-nc/4.0/).
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Figure 1. Schematic diagram of the theo-

retical model

(A) Dual opposing type-II quadrature-PT symme-

try emerges in twin-beam generation, with the

backward-propagating idler mode undergoing

PSA at a rate of g, whereas the forward-propa-

gating signal experiences lossless transmission.

(B) Regular PT phase transition associated with

eigenvalues ± b.
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squeezing, necessitating additional conditions. Here, we deepen

our understanding of quadrature-PT symmetry and its effects on

the twin-beam system by considering no loss and only involving

PSA (Figure 1A). Differing from the previous PSA-loss (type-I)

case, both quadrature pairs in this type-II PSA-only scheme

evolve with contrasting PT symmetry, resulting in dual opposing

quadrature-PT symmetry. Additionally, this type-II system

emerges as a quintessential platform to unveil various intriguing

physics including its profound connection with the renowned

Einstein-Podolsky-Rosen (EPR) correlations, a territory largely

uncharted in NH settings thus far.

RESULTS

Theoretical model
Assuming undepleted and classical input pump lasers, the evo-

lution of correlated signal-idler field operators as and ai along the

± z-direction is governed by the Hamiltonian H = i-gða2i �
ay2i Þ=2+ -kðayi ays + aiasÞ. The corresponding Heisenberg equa-

tions are dai=dz = gayi + ikays and das=dz = � ikayi , where

y;g; k denote the Hermitian conjugate, PSA, and FWM para-

metric conversion coefficient, respectively. Akin to our latest

work,28 hidden PT symmetry emerges upon transforming them

into coupled-quadrature forms,

d

dz

�
qi

ps

�
=

�
g k

� k 0

��
qi

ps

�
; (Equation 1)

d

dz

�
pi

qs

�
=

��g k

� k 0

��
pi

qs

�
; (Equation 2)

by introducing qj = ðayj + ajÞ=2 and pj = iðayj � ajÞ=2 ðj = i; sÞ
with the commutation relation ½qj; pj� = i=2. As detailed in the

Supplementary Information (SI), the quadrature pair fqi;psg fol-

lows active PT symmetry, whereas the other pair fpi;qsg obeys

passive PT symmetry after opposite gauge transformations.

Both pairs share the same EP at b = g=2k = 1, with an identical

pair of eigen-propagation values ± b = ± k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � b2

p
phase tran-

sitioning from real to imaginary for b< 1 and b> 1. This striking

phenomenon, termed dual opposing quadrature-PT symmetry,

represents a pure quantum effect that is inaccessible in PIA-

based structures. For a medium of length l, the solutions of

Equations 1 and 2 are

�
qið0Þ
psðlÞ

�
=

� sin e

sinðbl+eÞ

2
664
� e� gl

2
sinðblÞ
sin e

sinðblÞ
sin e

� e
gl
2

3
775
�
qiðlÞ
psð0Þ

�
;

(Equation 3)
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�
qsðlÞ
pið0Þ

�
=

sin e

sinðbl � eÞ

2
664
� e� gl

2
sinðblÞ
sin e

sinðblÞ
sin e

� e
gl
2

3
775
�
qsð0Þ
piðlÞ

�
;

(Equation 4)

where e = tan� 1ð2b =gÞ is a PT-induced phase shift. Their phys-

ics significance will become clear shortly.
Homodyne detection
The concise and symmetrical structures of Equations 3 and 4

render them well-suited and mutually complementary for prob-

ing the fundamental nature of dual opposing quadrature-PT

symmetry. They offer valuable insights into physical phenomena,

including versatile C2Q transitions, and effectively address cau-

sality concerns, particularly in single-mode quadrature sce-

narios.We thus focus on four single-mode quadrature variances,

CDq2
j D = Cq2

j D � CqjD
2
and CDp2

j D = Cp2
j D � CpjD

2
, leaving the two-

mode quadrature and relative-intensity squeezing cases for the

SI. Applying Equations 3 and 4, we arrive at exact expressions

for these four variances,

CDq2
i ð0ÞD =

e�gl sin2
e+sin2ðblÞ

4 sin2ðbl+eÞ ; (Equation 5)

CDp2
sðlÞD =

egl sin2
e+sin2ðblÞ

4 sin2ðbl+eÞ ; (Equation 6)

CDq2
sðlÞD =

e�gl sin2
e+sin2ðblÞ

4 sin2ðbl � eÞ ; (Equation 7)

CDp2
i ð0ÞD =

egl sin2
e+sin2ðblÞ

4 sin2ðbl � eÞ ; (Equation 8)

where Equations 5 and 6 are mathematically symmetric to Equa-

tions 7 and 8. For active PT-symmetric fqið0Þ;psðlÞg, superlumi-

nal (fast) light effects are expected, indicated by an advanced

phase shift + e in the variances. Conversely, passive PT-sym-

metric fqsðlÞ;pið0Þg are anticipated to manifest subluminal

(slow) light effects, evident in a phase delay� e in their variances.

Causality is maintained despite potential effects, as individual

signal or idler fields exist in mixed states. In the presence of

optical loss,28 Langevin noise obscures the observation of

slow- and fast-light effects, making it challenging to detect



Figure 2. Single-mode variance in homo-

dyne detection

Compared with standard TMSV (b = 0, black

solid line) and vacuum noise (black dashed line),

the quadrature variances
�
CDq2

i ð0ÞD; CDp2
s ðlÞD

�
(A

and B) and
�
CDq2

s ðlÞD; CDp2
i ð0ÞD

�
(C and D) feature

active and passive PT-induced quadrature

squeezing and de-squeezing, respectively. In the

PT phase-unbroken region ðb< 1Þ, CDq2
i ð0ÞD and

CDq2
s ðlÞD concurrently display flexible-length

dynamical C2Q transitions, whereas comple-

mentary stationary C2Q transitions occur for a

fixed length (shaded gray areas) with the EP-

variance curves serving as the exact boundary

between the incompatible classical and quantum

noise realms.
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them in the type-I scenario. Besides, PT symmetry disrupts sym-

metric noise characteristics and 2p-periodicity in usual two-

mode squeezed vacuum (TMSV), facilitating the rapid emer-

gence of quantum squeezing and exceptional C2Q transitions.

The implications of these results are apparent in the numerical

plots against the dimensionless propagation variable 2kl for

various b during ± b-phase transitions (Figures 2A–2D). Under

the same k, the ideal TMSV (g = 0, solid black curves) fails to

yield quantum squeezing, with each quadrature variance oscil-

lating above the vacuum noise (dashed black lines).

For active quadrature-PT symmetry in its phase-unbroken re-

gion ðb < 1Þ, logarithmic CDq2
i ð0ÞD (Figure 2A) periodically fluctu-

ates at a new period T = 2pk=b. Gradually growing squeezing

peaks at trough locations nT (with n as positive integers), even

without a cavity, signifying flexible-length dynamical C2Q tran-

sitions with other fixed parameters. In the phase-broken regime

ðb >1Þ, periodic noise distributions cease, and quantum noise

reduction remains consistently available. A larger b results in

greater quantum squeezing. Importantly, the variance curve

at the EP serves as the partition line, distinguishing these two

distinct noise behaviors. Note that the stationary C2Q transition

(shaded gray areas) can also occur at a fixed length by chang-

ing only g, where the EP-variance again acts as the exact

boundary dividing the incompatible classical and quantum

noise worlds. Contrastingly, logarithmic CDp2
sðlÞD (Figure 2B) as-

sumes similar periodic classical fluctuations peaking at

ðnT � 2ek =bÞ for the intact PT phase. As symmetry spontane-

ously breaks down, it grows monotonically with an upper

bound set by the EP-variance, and the greater the b value,

the less the de-squeezing.

For passive quadrature-PT, CDq2
sðlÞD and CDp2

i ð0ÞD (Figures 2C

and 2D) behave similarly despite with distinct patterns. Specif-

ically, when b<1, CDq2
sðlÞD shows noticeable quadrature

squeezing, akin to CDq2
i ð0ÞD, but with periodic squeezing ampli-

tudes shifting to ½ðn � 1ÞT + 2ek =b�, implying flexible-length

dynamical C2Q transitions. In contrast, CDp2
i ð0ÞD amplifies clas-

sical noise with periodic fluctuations, similar to CDp2
sðlÞD. When
iS
bs1, apart from a lone peak at l =

e=b, CDq2
sðlÞD is anti-squeezed, and

increasing b intensifies the anti-

squeezing. Compared to CDq2
i ð0ÞD, a
complementary stationary C2Q transition at a fixed length

(shaded gray areas) appears alongside the ± b-based PT-

phase transition by manipulating only g. For CDp2
i ð0ÞD, it exhibits

classical noise amplification regardless of PT symmetry

collapse, akin to CDp2
sðlÞD. The distinction between these vari-

ances is evident. The periodic fluctuations of CDp2
i ð0ÞD (Fig-

ure 2D) precede those of CDp2
sðlÞD by a net phase

2kð2e �pÞ=b before the PT-phase breaks. After the phase

breaks, CDp2
i ð0ÞD always peaks around l = e=b before growing

monotonically. The separation distance between any two adja-

cent peaks (or valleys) is ðp � 2eÞ=b, uniform for all four peri-

odically fluctuating variances. Previous work28 has docu-

mented that the presence of a balanced loss to the signal

mode diminishes the symmetry of the entire system, inducing

divergent courses in the two sets of conjugate quadrature

pairs.

Nonclassicality and EPR correlation
Other than showing the dual transitions, this succinct system is

an excellent toolbox for disclosing the singular relation between

PT symmetry and nonclassicality, an emerging frontier barely

touched to date. To delve into this, we first employ the EPR

criteria proposed by Reid31,32 to seek resolutions. We note that

the four single-mode quadratures (2a) and (2b) coincide

with their respective amplitudes and phases, namely,

X1ð0Þ = qið0Þ;X2ð0Þ = pið0Þ;Y1ðlÞ = qsðlÞ and Y2ðlÞ = psðlÞ (SI).

Consequently, the Cauchy-Schwarz inequality for these quadra-

ture phase amplitudes can be explored by examining the quan-

tum-mechanical correlation coefficients,

��Cjm

�� =

�������
CXjð0ÞYmðlÞDffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C½Xjð0Þ�2DC½YmðlÞ�2D
q

�������G1; (Equation 9)

with fj;mg = f1;2g. After some calculations (SI), we have

Cjj = 0; (Equation 10)
cience 28, 111655, January 17, 2025 3



Figure 3. Entanglement properties

Assessing the impact of PT symmetry on non-

classicality using the quantum correlation coeffi-

cientCjm (A) and logarithmic negativity EN (B) in the

PT-symmetry phase unbroken region (blue), at the

exceptional point (red), and in the PT-symmetry

phase broken region (orange), compared to the

standard TMSV case (black curve with b = 0).
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Cjm =
2 coshðgl=2Þsin e sinðblÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin4
e+sin4ðblÞ+2 coshðglÞsin2

e sin2ðblÞ
q ;

(Equation 11)

with jsm. Physically,
��Cjm

�� = 1 means a state of perfect quan-

tum correlation between Xjð0Þ and YmðlÞ, whereas
��Cjm

�� = 0 im-

plies a complete absence of such correlation between the two.

Therefore, Equation 10 denotes a complete lack of nonclas-

sical correlation between X1ð0Þ ðX2ð0ÞÞ and Y1ðlÞ ðY2ðlÞÞ regard-
less of the presence of PT symmetry. In contrast, the situation

described by Equation 11 becomes subtle for the pair

fX1ð0Þ;Y2ðlÞg (or fX2ð0Þ;Y1ðlÞg). To see its behavior, (Figure 3A)

numerically plots C12 (or C21) with three representative exam-

ples, revealing abrupt changes made by PT symmetry. Prior to

the phase breaking ðb <1Þ, jC12j or jC21j oscillates between 1

and 0 at the period 2pk=b (blue curve with b = 0:2) but differ-

s substantially from the conventional TMSV case (g = 0 or

b = 0, black line), demonstrating periodic shifts between the

perfect existence and complete absence of quantum correlation.

Contrarily, after the phase transition ðb >1Þ, it asymptotically ap-

proaches unity (orange curve with b = 2), implying a perfect

quantum correlation between the cross-quadrature phase am-

plitudes. Here, the EP-line (red curve with b = 1) simply acts

as the circumscription to differentiate curve patterns across

the PT phase transition. In essence, the scenario resembles

the EPR Gedankenexperiment.33 In the bs1 region, maximum

correlation between amplitude X1ð0Þ and Y2ðlÞ, as well as be-

tween X2ð0Þ and Y1ðlÞ, can be easily achieved, leading to the

application of EPR reasoning. In the b< 1 regime, the EPR sce-

nario applies broadly to these two quadrature phase amplitude

pairs, although it may depend on the propagation distance. It

is worth noting that the influence of anti-Hermiticity on EPR cor-

relations here is analogous to the impact of non-Hermiticity on

quantum entanglement in a dissipative spin-boson system,

that is, PT symmetry gives rise to extra exceptional nonclassical

phenomena.29,30

The extent of nonclassicality in the system can be further as-

sessed through the analysis of logarithmic negativity,34,35 de-

noted as EN = max½0; � ln 4 h�, derived from the system’s 4

by 4 covariance matrix VQ = ½A;C;CTr;B� (see supplemental in-

formation). Here, h =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðS �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 � 4 det VQ

q
Þ=2

r
and S =

det A+det B � 2 det C with A = ½CDq2
i ð0ÞD;0; 0;CDp2

i ð0ÞD�, B =

½CDq2
sðlÞD; 0;0; CDp2

sðlÞD�, C = ½0; Cqið0ÞpsðlÞD �
4 iScience 28, 111655, January 17, 2025
Cqið0ÞDCpsðlÞD; CqsðlÞpið0ÞD � CqsðlÞDCpið0ÞD;0�, and Tr representing

transpose. The farther the quantum correlation that EN reflects,

the farther it is from 0. In (Figure 3B), we present representative

examples both before and after the b-phase transition,

comparing them with the TMSV case (black). For b< 1, EN ex-

hibits gradually increasing bimodal cyclical oscillations

above zero, reaching zero only at valleys. This signifies a

substantially enlarged range with quantum emergence. In

contrast, for bs1, EN develops a single peak that is always

larger than 0, indicating a full spectrum of quantum availability.

As evident, the analysis of EN aligns with the previously dis-

cussed analysis of Cjm ðjskÞ except from the entire system

perspective.
Quantum sensing
As a pivotal nonclassical resource, quantum squeezing36 plays a

key role in traditional quantum sensing andmetrological applica-

tions.37 Recent studies38,39 leveraging anti-PT symmetry have

demonstrated enhanced squeezing-based quantum sensitivity

near EP. This prompts an exploration of whether improved sensi-

tivity is attainable in our type-II quadrature-PT system. In

contrast to the type-I quadrature-PT case,28 the type-II system

arises as a versatile PT-enhanced quantum sensor with unparal-

leled performance, surpassing designs based on squeezing fac-

tors or EP alone. Besides, passive PT quadrature outperforms

active PT quadrature, and two-mode quadrature outshines sin-

gle-mode quadrature (SI) under the same system parameters.

The achievable precision approaches the quantum Cramér-

Rao bound, dictated by the quantum Fisher information (QFI)

of the quantum state, although it experiences a loss of sensitivity

near and above the EP.

To commence, we assume the initial preparation of the two

bosonic modes in a two-photon coherent state, jFD0 = jai;

asD. Subsequently, we set ai = ia�
sh

ffiffiffi
2

p
aeip=4 for simplification

in the upcoming calculations. In the case of single-mode quad-

rature, homodyning detection is applied at an interaction dis-

tance l to an observable, say, qið0Þ. Utilizing Equation 3, we

find the mean value and variance of qið0Þ to be

Cqið0ÞD =
e
�
gl

2 sin eCqiðlÞD � sinðblÞCpsð0ÞD
sinðbl+eÞ : (Equation 12)

The ultimate accuracy of sensing relies on the precision with

which a small change in Cqið0ÞD can be measured in response



Figure 4. Quantum sensing performance

Quadrature-PT-symmetric quantum sensing. The

ratios of the inverse variances log10



Dk� 2

qi ð0Þ + 1
�

(A), log10



Dk� 2

psðlÞ + 1
�

(B), log10



Dk� 2

qsðlÞ + 1
�

(C),

and log10



Dk� 2

pi ð0Þ + 1
�
(D) of the four observables

to the quantum Fisher information log10ðFk + 1Þ as
functions of dimensionless lengths for parameters

fa = 10; k = 0:5g, illustrating the sensitivity

enhancement in the quadrature-PT phase unbro-

ken region ðb = 0:2Þ.

iScience
Article

ll
OPEN ACCESS
to a tiny perturbation dk from a predefined k-value. This system

response is characterized by a susceptibility (SI), denoted as

c
qið0Þ
k , defined as vCqið0ÞD=vk, and derived from Equation 12.

Next, the achievable accuracy of estimating the parameter k’s

precision can be evaluated by considering the variance (3a)

and susceptibility. This evaluation involves the relation

Dk2qið0Þ = CDq2
i ð0ÞD=½cqið0Þ

k �2.
The inverse variance Dk� 2

qið0Þ determines the sensing power of

the system, with its upper bound constrained by the QFI, Fk.

The QFI establishes the lower quantum Cramér-Rao bound, ex-

pressed as FksDk� 2
qið0Þ, representing the utmost precision attain-

able through optimal measurement. For the seeding coherent

input state jFD0, the QFI of the system can be deduced from

(see supplemental information for more detail),

Fk =

�
dm

dk

	u

V� 1dm

dk
: (Equation 13)

with u for a vector or matrix transpose. In Equation 13, the

amplitude vector m and V� 1 are computed in the quadrature ba-

sis via mj = CbvjD and Vj;k = 1
2 Cbvjbvk + bvk bvjD � CbvjDCbvkD, for 1% j;

k% 2, with the column vector bv = ðqið0Þ;qsðlÞ;pið0Þ;psðlÞÞu.

As Fk ascribes the entire system, it aligns with all other quantum

observables. Notably, Fk manifests differently in response to the

contrasting PT domains. In supplemental information, we

present logarithmic Fk with distinctive characteristics in three cir-

cumstances: b = 0:2 (unbroken PT phase), b = 1 (EP), and b = 2

(breaking PT phase). Similarly, we can test k-parameter estima-

tion using the rest three single-mode quadratures (SI): pið0Þ;qsðlÞ,
and psðlÞ. Our calculations indicate that our current scheme opti-

mally supports quantum sensor performance in the quadrature-

PT phase unbroken regime but away from the EP, distinguishing

it from EP-based sensors. Numerical simulations in (Figure 4)

demonstrate that the best sensing is achieved with a suitable

medium length l, owing to the enlarged Hilbert space of the final
iS
system state. We illustrate four inverse

variances before the quadrature-PT

phase transitions in (Figures 4A–4D), por-

traying the ratios (insets) ofDk� 2
qið0Þ,Dk

� 2
pið0Þ,

Dk� 2
qsðlÞ, and Dk� 2

psðlÞ to Fk, providing an

instructive view of the data. Upon careful

scrutiny of (Figure 4), we deduce that

both qið0Þ and qsðlÞ supply the maximum

parameter estimation precision at the first
oscillating peaks of log10ðDk� 2
qið0Þ + 1Þ and log10ðDk� 2

psðlÞ + 1Þ with

respect to log10ðFk + 1Þ. However, overall, qsðlÞ outperforms

qið0Þ in sensing performance in terms of sensitivity and accu-

racy, entailing that the variance Dk2qsðlÞ of passive quadrature-

PT symmetry is smaller than the variance Dk2qið0Þ of active quad-

rature-PT. As l increases, the sensing ability of both observables

worsens because Fk gets larger, and the ratios become smaller.

By contrast, pið0Þ and psðlÞ allow classical sensing exclusively

with non-equivalent performance.

DISCUSSION

In contrast to previous studies, the type-II PSA-only twin-

beam system serves as an optimal quantum platform for

investigating dual opposing quadrature-PT symmetry. Our so-

phisticated theoretical framework allows for the exploration of

profound C2Q transitions and establishes a unique link be-

tween PT symmetry, nonclassicality, and the EPR paradox.

Our findings unveil nontrivial quantum aspects of PT symmetry

beyond the capabilities of non-PSA-based systems, demon-

strating promise for designing PT-enhanced quantum sensors

that leverage anti-Hermiticity and squeezing. We anticipate

that our proposed quadrature-PT scheme will unlock novel

physical phenomena, enabling nonreciprocal transmission of

continuous-variable (CV) qubits with minimal noise—crucial

for CV-based quantum information processing and

computing.40 This capability poses a challenge for PIA-based

apparatus.4–17,25–27 By incorporating PSA, our system pro-

tects CVs from decoherence, compensating for loss through

noiseless amplification and advancing CV-based quantum

technologies. The nontrivial modulation and acceleration of

quantum squeezing generation by PT symmetry further

contribute to the development of diverse CV-based quantum

technologies.
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