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Abstract: Diffractive Neural Networks (DNNs) leverage the
power of light to enhance computational performance in
machine learning, offering a pathway to high-speed, low-
energy, and large-scale neural information processing. How-
ever, most existing DNN architectures are optimized for
single tasks and thus lack the flexibility required for the
simultaneous execution of multiple tasks within a unified
artificial intelligence platform. In this work, we utilize the
polarization and wavelength degrees of freedom of light to
achieve optical multi-task identification using the MNIST,
FMNIST, and KMNIST datasets. Employing bilayer cascaded
metasurfaces, we construct dual-channel DNNs capable of
simultaneously classifying two tasks, using polarization and
wavelength multiplexing schemes through a meta-atom
library. Numerical evaluations demonstrate performance
accuracies comparable to those of individually trained
single-channel, single-task DNNs. Extending this approach
to three-task parallel recognition reveals an expected per-
formance decline yet maintains satisfactory classification
accuracies of greater than 80 % for all tasks. We further
introduce a novel end-to-end joint optimization framework
to redesign the three-task classifier, demonstrating substan-
tial improvements over the meta-atom library design and
offering the potential for future multi-channel DNN designs.
Our study could pave the way for the development of ultra-
thin, high-speed, and high-throughput optical neural com-
puting systems.
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1 Introduction

Optical computing, especially through Optical Neural Net-
works (ONNs), has long been recognized for its potential
to enhance computational speed and energy efficiency. The
first optical implementation of neural networks in 1987
used optical components to emulate neuron configurations,
sparking decades of research into optical neuromorphic
technologies [1]. Recently, advancements in deep learning
and photonic technology have revitalized interest in this
field, enabling the development of scalable, ultra-fast, and
energy-efficient ONNs [2]-[9]. Diffractive Neural Networks
(DNNs) [10]-[22] are a type of ONN consisting of multi-
ple spatially engineered transmissive diffractive layers. Uti-
lizing light-matter interactions, these diffractive surfaces
perform element-wise multiplication, with each ‘pixel’ act-
ing as a ‘neuron’, interconnected through the physics of
optical diffraction. The complex-valued transmission coef-
ficient of each neuron serves as a trainable network param-
eter, systematically adjusted via an error back-propagation
algorithm executed on a digital computer to perform a spe-
cific machine learning task.

On the other hand, metasurfaces — engineered two-
dimensional arrays of subwavelength nanostructures -
allow one to precisely manipulate optical properties such as
phase, amplitude, and polarization, all through the adjust-
ment of the size and shape of meta-atoms [23]-[27]. Over
the past decade, this capability has revolutionized appli-
cations in several fields, including imaging and holog-
raphy [28]-[31], sensing [32], [33], information process-
ing [34]-[36], and quantum photonics [37], [38]. Their
integration into DNNs has facilitated the development of
advanced ultra-thin diffractive processors, which show
promise for large-scale on-chip integration in future com-
puting systems. Additionally, the capability of metasurfaces
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for multi-dimensional light modulation makes them ideal
for constructing multi-channel, multi-functional computing
devices. Several studies have demonstrated how multiplex-
ing of various optical properties — such as wavelength,
polarization, and angle of incidence [39]-[42] can be har-
nessed to develop compact, parallel optical computing sys-
tems capable of performing mathematical operations such
as differentiation and integration within a single element.

Although most DNNs focus on performing a single
machine learning task, the ability to handle multiple tasks
within a single DNN is crucial for advancing toward more
generalized artificial intelligence devices that are both
high-speed and energy-efficient, for applications such as
autonomous driving and machine vision. Recently, signifi-
cant steps have been taken toward implementing versatile,
multi-functional DNNs. For instance, one study introduced
a reconfigurable metasurface-based pluggable DNN capa-
ble of switching between two tasks by altering its plug-
gable components [43]. Another approach experimentally
demonstrated an on-chip two-task optical classifier using
birefringent nanostructures and a polarization multiplex-
ing scheme, despite limited performance with a single-
layer architecture [44]. Additionally, a numerical investi-
gation explored multi-wavelength parallel image recogni-
tion of more than two tasks, utilizing a joint optimization
approach to adjust the height map of diffractive optical
elements [45]. However, achieving high parallel classifica-
tion accuracy in this case requires at least five diffractive
layers and a large number of modulation elements per
layer, which makes the device bulky. In short, while these
developments mark important progress toward versatile,
multifunctional diffractive processors, the full potential of
multiplexed metasurfaces has yet to be fully explored in
terms of utilizing physical parametric degrees of freedom
to implement compact, highly parallel multi-task DNN.

In this work, we rigorously investigate the potential
of both polarization-multiplexed and wavelength-multi-
plexed metasurfaces in realizing DNNs capable of simul-
taneously classifying multiple inputs. Using our meta-atom
library, we initially design a dual-channel Polarization-
Multiplexed DNN (PM-DNN) and a dual-channel Wave-
length-Multiplexed-DNN (WM-DNN), to simultaneously clas-
sify the MNIST and Fashion-MNIST (FMNIST) databases with
high classification accuracies. Extending this approach, we
introduce a tri-channel WM-DNN to perform three tasks,
MNIST, FMNIST, and Kuzushiji-MNIST (KMNIST), in paral-
lel. Numerical results demonstrate satisfactory outcomes,
despite a moderate decline in accuracy for the two more
challenging tasks of FMNIST and KMNIST, primarily due
to increased task competition. To further enhance the

DE GRUYTER

system performance, we develop a novel end-to-end design
methodology to redesign the tri-channel WM-DNN. This
framework utilizes surrogate models to map the complex
transmission responses of the meta-atoms to their structural
parameters, which are then used in a joint training frame-
work to optimize the network parameters for all three tasks
simultaneously. This approach not only improves classifi-
cation accuracy but also has the potential to train multi-
channel DNNs capable of handling a large number of tasks
in parallel, thereby enabling massively parallel, multifunc-
tional neural architectures.

2 Design

Figure 1(a) schematically shows the concept of metasurface-
assisted Multiplexed DNNs (M-DNNs) for parallel optical
classification. The system includes a multi-channel optical
field with different targets encoded in specific light chan-
nels as the input layer, multiplexed metasurfaces as hid-
den layers, and a segmented detection plane for multi-
channel detection functioning as the output layer. The
two orthogonal polarization states x and y in the upper
panel of Figure 1(a) and the three wavelengths A,, 4,,
and A, in the lower panel serve as independent chan-
nels (i.e., without any cross talk) for information process-
ing. Adjusting the structural parameters of each meta-atom
allows for spatially varying, channel-dependent transmis-
sion responses, enabling independent processing of the
multi-input light. Each meta-atom in a designated polariza-
tion or wavelength state acts as an ‘optical neuron’, which
is interconnected with the neurons in the subsequent layers
through the physics of optical diffraction. According to the
Rayleigh—Sommerfeld integral [46], the complex field of the
(I + Dth layer of the M-DNN can be expressed as:
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where Elp L(X',y') is the optical field irradiated to the
lth layer, for the specific channel with polarization p and
wavelength A. For the [ =1, Elp ,(X'.y") represents the
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projected light of the target image. The term z = z*! — 7!
denotes the axial distance between successive layers, ' =
V=x)+(y=y) +2 and j= V=1 T (x.y) is
the spatially varying complex transmittance of the meta-
surface of the Ith layer corresponding to the channel with
polarization p and wavelength A, which is a function
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Figure 1: Metasurface-based M-DNN for simultaneously performing multiple machine learning tasks utilizing polarization and wavelength
multiplexing. (a) Top: dual-channel PM-DNN. Bottom: tri-channel WM-DNN. After the multi-input light, comprising various datasets and encoded in
specific polarization (top panel) or wavelength (bottom panel) channels, passes through the doublet metasurface, it is focused onto the corresponding
detection areas for each task’s class, enabling parallel recognition. (b) Schematic of the M-DNN featuring a doublet metasurface. The axial distance
between the layers is set to 500 pm. The metasurface consists of TiO, rectangular nanopillars on a glass substrate. The height of each meta-atom h is
fixed at 600 nm, while the widths, w, and wy, vary from 60 nm to 350 nm; the periodicity of the unit cells, denoted as a, is 400 nm. Each meta-atom
exhibits a polarization- and wavelength-dependent transmission response. A supercell, consisting of a 3 X 3 array of identical meta-atoms, serves as
our optical neuron. Their channel-dependent transmission responses are optimized through the training process to perform multiple classification
tasks. (c) Designated detection areas corresponding to each task category for the dual-channel PM-DNN (top), dual-channel WM-DNN (middle), and
tri-channel WM-DNN (bottom). (d-f) Simulated values of the transmission amplitude (|TX|, ‘Ty| and phase (ATX, ATy) for different geometries,
under x- and y-polarized light. The incident wavelengths for (d), (e), and (f) are 450 nm, 550 nm, and 650 nm, respectively.

of the structural parameters of the meta-atoms. The multi- multitasklearning. Itis important to note that while channel
channel light is modulated by the metasurfaces, and the crosstalk does not occur as light diffracts through the air
multi-dimensional transmission responses of the meta- or substrate and is modulated by the metasurfaces, it does
atoms — ie., their modulation coefficients — can be opti- manifest at the detection plane due to the superposition
mized to maximize the detected light intensity within the of optical intensities. Employing polarization-selective and
correct detection sub-region for each task, correspond- wavelength-selective filters in each sub-area can effectively
ing to its respective channel, thereby enabling optical mitigate crosstalk during intensity measurements across
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various channels, thereby enhancing the performance of
the M-DNN. In this work, we assume the presence of such
filters on the detectors.

To illustrate the capabilities of our M-DNN, we present
several examples of multitask optical systems. As shown in
Figure 1(b), the multiplexed metasurfaces consist of rect-
angular TiO, nanofins on a glass substrate with a fixed
height h and two independently tunable widths w, and
w,. When exposed to linearly polarized light, the asymmet-
ric meta-units modulate the phase and amplitude of the
incoming light in a polarization- and wavelength-dependent
manner. By adjusting w, and w,, the desired transmission
responses for each channel are achieved, facilitating paral-
lel multitasking across various polarization and wavelength
incidences. The phase and amplitude of the complex trans-
mission responses of the meta-atoms are modeled using
COMSOL Multiphysics software, which utilizes the Finite
Element Method (FEM). The nanofins are set with a fixed
height of 600 nm and a period of 400 nm. Figure 1(d)-(f)
display the computed electromagnetic response of each unit
cell under x- and y-polarizations for specific wavelengths
of 450 nm, 550 nm, and 650 nm, with the nanofins’ widths
ranging from 60 nm to 350 nm in 5 nm increments.

All designs presented in this paper feature two hid-
den layers, i.e., multiplexed metasurfaces, each containing
210 x 210 optical neurons. Instead of utilizing a single unit
cell, we intentionally adopted a supercell configuration con-
sisting of a 3 X 3 array of identical meta-atoms, serving as
our optical neuron, as depicted in Figure 1(b). This enlarge-
ment of the neuronssize to1.2 pm X 1.2 pm facilitates the fea-
sible experimental realization of the designs using commer-
cially available spatial light modulators and CCD cameras,
whose smallest pixel sizes are in the range of a few microns.
Therefore, utilizing a supercell structure instead of a single
cell allows us to maintain the desired pixel size for efficient
light encoding and detection, while also benefiting from the
light modulation capabilities of meta-atoms at shorter peri-
odicities, specifically 400 nm. Another critical parameter in
the design of a DNN is the distance between successive lay-
ers. Since 500 pm is the most commonly available thickness
for SiO, wafers, we have fixed the axial distance between
the layers at 500 pm to support the ease of implementation
in the future.

3 Designing M-DNNs using
a meta-atom library

In this section, we verify the application of our metasurface-
based M-DNNs in parallel multi-task classification utilizing
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our library of unit cell configurations — sourced from our
simulations. We first design a dual-channel PM-DNN and a
dual-channel WM-DNN to simultaneously classify two dis-
tinct datasets: the MNIST database (Task I) and the Fashion-
MNIST (FMNIST) database (Task II), containing handwrit-
ten digits and fashion items, respectively. In the PM-DNN,
MNIST and FMNIST data are encoded in x- and y-polarized
light, respectively, both using a wavelength of 550 nm. In
contrast, for the WM-DNN, the handwritten digits from Task
I are encoded at a wavelength of 450 nm, and the fashion
products from Task II at 550 nm, both under x-polarization.
Figure 1(c) illustrates the detection planes for the dual-
channel PM-DNN and WM-DNN, where specific sub-areas
are designated for each category, with the upper and lower
regions corresponding to tasks I and II, respectively.

Training is performed by individually training four
single-task DNNs, each specifically designed for a distinct
polarization and wavelength corresponding to the chan-
nels of our PM-DNN and WM-DNN. Each DNN is tasked
with performing a specific classification task. The transmis-
sion amplitudes of the neurons are set to unity, and the
transmission phases @ are the trainable parameters (phase-
only DNNs). These phases are optimized via an error back-
propagation algorithm to focus the output light intensity
on the designated sub-area corresponding to each task’s
category. The top panels of Figures 2(a) and 3(a) display the
phase distributions of the hidden layers obtained from the
training sessions for the dual-channel PM-DNN and WM-
DNN, respectively, designed to classify MNIST and FMNIST
datasets. Subsequently, for each location on the metasur-
faces, we search within our existing unit cell library to
select the optimal meta-atom structure that most accurately
replicates the desired local phase shifts for both tasks (More
details on the selection process can be found in the Materi-
als and Methods section). The lower panels of Figures 2(a)
and 3(a) show the mismatch between the optimized phase
shifts and those realized by the PM-DNN and WM-DNN,
respectively, highlighting that the metasurfaces successfully
reproduce the learned phase profiles with high fidelity.
Numerical evaluations of the metasurface-based PM-DNN
and WM-DNN using unseen data confirm the capabilities
of both dual-channel classifiers, as they achieve classifi-
cation results comparable to those of their individually
trained single-task counterparts. The classification accu-
racies obtained are 97.72% for MNIST and 88.01% for
FMNIST by the PM-DNN, and 97.19 % for MNIST and 86.35 %
for FMNIST by the WM-DNN, respectively, as presented in
Table 1.

Figures 2(b) and 3(b) demonstrate the performance of
these M-DNNs in parallel recognition of a handwritten digit
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Figure 2: Dual-channel PM-DNN for parallel classification of two tasks. (a) (Top) Final phase distributions of the two hidden layers of the dual-channel
PM-DNN under x- and y-polarized incident light with the incident wavelength set to 550 nm. (Bottom) The absolute phase difference between

the desired phase and the phase realized by the meta-atoms at each pixel

. (b) Exemplary results of simultaneously classifying a handwritten digit

and a fashion item encoded in the x- and y-polarized light, respectively. Output intensity patterns and normalized energy distributions across
the category sub-areas show the success of the PM-DNN in parallel two-task categorization. (c) Confusion matrices for MNIST and FMNIST processed
by the PM-DNN, demonstrating its performance across individual classes, with average classification accuracies of 97.72 % and 88.01 % for Task I

and Task II, respectively.

and a fashion item, where the digit ‘8’ and the item ‘dress’
are processed by the PM-DNN, while ‘0’ and ‘trouser’ are
processed by the WM-DNN. For both two-task classifiers, the
detector intensity patterns, and normalized output energy
distributions clearly indicate that the correct sub-regions
corresponding to Task I and Task II receive the maximum
signal. The confusion matrices, which statistically summa-
rize the correct and incorrect identification results for all
samples, are displayed in Figures 2(c) and 3(c) for Task I and
Task II performed by the PM-DNN and WM-DNN, respec-
tively. Numerical evaluations on the test datasets confirm

that the dual-channel PM-DNN and WM-DNN successfully
achieve parallel categorization of MNIST and FMNIST tar-
gets with high accuracy, reaching rates above 97 % and 86 %,
respectively.

While polarization multiplexing is limited to two
orthogonal channels, wavelength multiplexing can support
a large number of channels, thus allowing for higher-
capacity computation. To assess the ability of metasurface-
based M-DNNs to handle a greater number of tasks simul-
taneously, we construct a tri-channel WM-DNN to perform
three-task classification: MNIST (Task I), FMNIST (Task II),



4510 = S.Behroozinia and Q. Gu: Multi-task learning with all-optical diffractive processors

MNIST

(a)

Layer 1

Trained Phase
—T

b

Phase Difference
0

Input

(b)

Detector

Energy Distribution

DE GRUYTER

FMNIST

S
[}
2]
@
=4
o
o
15}
= 7 S 3
S * |
=
o i
3} S
=
o
2
o
o
=
[a)
5}
@
=2 o
o

(c)
MNIST Confusion Matrix
2 72 2

—~0.25
3
£0.20
T
&0.1s
w
§0.10
5

@
£0.05
o

0.00

0210

0\

True labels

Detector

012 3 456 7 89

9 87 65 4 3 210

0
2
0
3
6
1
Class i
1

Energy Distribution

~0.25
=
£0.20
T
&0.1s
"
50.10
S

£0.05
o

14 26 7 3 49

021 5 0 2
1 808 15 273 1 77
1 W 25 0 16

7 52 1 34

0 0 1

31 140 0 573

002701

True labels

0.00

|
0 (au) 1

0123 456 7 829

7 5 5 6 3 E@ 0
L0 7

3 4 5 6 7 8
Predicted labels

Class

9 87 65 4 3 210

Figure 3: Dual-channel WM-DNN for parallel classification of two tasks. (a) (Top) Final phase profiles of the two hidden layers of the dual-channel
WM-DNN under x-polarized incident light at 450 nm (left) and 550 nm (right). (Bottom) The absolute phase difference between the desired phase

and the phase realized by the metasurfaces at each pixel. (b) Exemplary results of simultaneously classifying a handwritten digit and a fashion item,
encoded at wavelengths of 450 nm and 550 nm, respectively. Output intensity patterns and normalized energy distributions across the category
sub-regions illustrate the capability of the WM-DNN in parallel two-task classification. (c) Confusion matrices for MNIST and FMNIST processed by

the WM-DNN, presenting the classifier’s performance across individual classes, with average classification accuracies of 97.19 % and 86.35 % for Task I

and Task II, respectively.

and KMNIST, which contains 10 classes of kanji Japanese
characters (Task III). The datasets for these tasks are
encoded at wavelengths of 450 nm, 550 nm, and 650 nm,
respectively, under x-polarized light. The bottom panel of
Figure 1(c) shows the detection plane used for the tri-
channel WM-DNN, with specific sub-areas dedicated to spe-
cific tasks. Three individual single-task DNNs are trained
at 450 nm, 550 nm, and 650 nm, tasked with recognizing
MNIST, FMNIST, and KMNIST, respectively. The upper panel
of Figure 4(a) displays the phase maps corresponding to the
hidden layers of the three single-task DNNs for Tasks I to III,

obtained from training. The tri-channel metasurface-based
WM-DNN is realized by locally assigning meta-atoms from
our library, each meticulously selected to meet the three-
dimensional phase requirement at each pixel. The errors
are more substantial than the dual-channel cases, particu-
larly for the FMNIST and KMNIST tasks. This is expected as
increasing the number of tasks exacerbates task competi-
tion, making it challenging for the meta-atoms to meet all
the phase modulation requirements. The classification accu-
racies yielded from assessing the tri-channel WM-DNN on
the MNIST, FMNIST, and KMNIST test datasets are 96.73 %,
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Table 1: Accuracy of the M-DNNs.

DNN model Design method Task I (MNIST) Task II (FMNIST) Task III (KMNIST)

Single-task Multi-task Single-task Multi-task Single-task Multi-task

Dual-channel PM-DNN Meta-atom library 97.75% 97.72 % 88.04 % 88.01% - -

Dual-channel WM-DNN Meta-atom library 97.66 % 97.19 % 87.80 % 86.35% - -

Tri-channel WM-DNN Meta-atom library 97.49 % 96.73 % 88.03 % 80.9 % 88.88 % 81.13%

Tri-channel WM-DNN End-to-end method 97.49 % 96.48 % 88.03 % 85.68 % 88.88 % 85.35%
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Figure 4: Tri-channel WM-DNN for parallel classification of three tasks. (a) (Top) Final phase profiles of the two hidden layers of the tri-channel
WM-DNN with x-polarized incident light at 450 nm (left), 550 nm (middle), and 650 nm (right). (b) Exemplary results of simultaneously classifying

a handwritten digit, a fashion item, and a Kanji character, encoded at wavelengths of 450 nm, 550 nm, and 650 nm, respectively.

(Bottom) The absolute phase error between the optimized phase and the phase realized by the metasurfaces at each pixel. Output intensity patterns
and normalized energy distributions across the category sub-areas demonstrate the effectiveness of the WM-DNN in performing parallel recognition
of three tasks. (c) Confusion matrices for MNIST, FMNIST, and KMNIST processed by the WM-DNN, summarizing the classifier’s performance

across individual classes, with average classification accuracies of 96.73 %, 80.9 %, and 81.13 %, for Task [, Task II, and Task III, respectively.
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80.9 %, and 81.13 %, respectively. As shown in Table 1,
the identification accuracies for FMNIST and KMNIST are
notably lower than those in their corresponding single-task
DNNs, which aligns with the phase map results discussed
earlier. Moreover, these two tasks are more challenging than
MNIST and, therefore, more sensitive to errors.

Figure 4(b) depicts the performance of the tri-channel
WM-DNN in parallel recognition, processing ‘2’ from MNIST,
‘ankle boot’ from FMNIST, and ‘%’ from KMNIST. The detec-
tor intensity patterns and the normalized energy distri-
butions of the sub-areas for different tasks indicate that
the multi-wavelength incident light is successfully directed
onto the correct sub-regions corresponding to each task.
Figure 4(c) presents the overall identification results across
all samples from the three test datasets through confusion
matrices, revealing that the average performance across all
classes is commendable.

It is worth discussing the extent of neuronal connec-
tivity in our trained DNNs. Connectivity between layers is
a crucial factor influencing the computational implementa-
tion complexity and the inference performance of the DNN.
At a given wavelength, the interconnectivity between the
neurons is dictated by the neuron size within each layer,
which determines the diffraction angle, along with the axial
distance between the layers. As it is analyzed in ref. [22],
for a DNN to be considered fully connected, the radius of
the diffraction spot of each neuron R should be larger than
the side length of the diffractive layer. This radius is defined
as: R=z X tangg,, where @ .. =sin~(1/2d), with
Pnax representing the half-maximum-diffraction angle, d
the neuron size and z the axial distance between successive
layers.

Accordingly, the diffraction radii for the neurons in
our designed DNNs at wavelengths of 450 nm, 550 nm, and
650 nm are 140 pm, 175 pm, and 212 pm, respectively. These
values are smaller than the side length of the layers, which is
252 pm, thus making our DNNs partially connected. Never-
theless, although our DNNs are not fully connected neural
networks, the large coverage of the diffraction spots still
provides sufficient connectivity for effective information
processing. This is evidenced by the training results of our
single-task DNNs (as presented in Table 1), which achieved
accuracies nearly comparable to those of fully connected
networks reported in the literature [10], [45]. Moreover, it
is important to note that, in the design of a multiwave-
length DNN, despite the fixed layer spacing and neuron
size across different channels, channels with higher wave-
lengths exhibit greater connectivity due to larger diffrac-
tion angles, enhancing computational capability. As such,
assigning more demanding tasks to channels with higher
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wavelengths is beneficial; for instance, we assigned MNIST,
the least complex task, to our channel with the lowest
wavelength.

4 Designing M-DNNs using
an end-to-end approach

Lastly, we investigate an end-to-end design strategy to
address issues encountered in the previous example, with
the imperfect phase map implementation using the meta-
atom library approach. Unlike the previous approach,
where the DNN for each task was optimized separately, we
now incorporate a joint optimization framework to min-
imize classification errors across all three tasks simulta-
neously. By constructing surrogate models that relate the
structural parameters of the meta-atoms to their channel-
dependent complex transmission responses and integrating
these models as proxy functions during training, we can
directly optimize the structural parameters of the meta-
atoms. Therefore, in contrast to the approach in the previ-
ous section, the trainable parameters of the diffractive net-
works here are the structural parameters of the meta-atoms,
rather than their transmission responses. This approach
eliminates the need for a further search step in the design
process, thus addressing the issues caused by the imper-
fect phase map realization. In addition, it ensures that the
training process accounts for the physical constraints of
the unit cells, producing feasible and physically realizable
complex modulation responses at each channel, thereby
enhancing the performance of M-DNNs implemented by the
metasurfaces.

As a final demonstration, we implement a tri-channel
WM-DNN to simultaneously perform MNIST, FMNIST, and
KMNIST tasks using similar wavelength channels and sub-
area designations on the detection plane, as in the previous
design. For the surrogate models that map the widths of
the meta-atoms to their optical modulation coefficients at
each wavelength, we utilize deep Artificial Neural Networks
(ANNG5) as differentiable proxy functions. The use of deep
learning in nanophotonics is a well-established practice and
has proven highly effective, particularly in inverse design,
as evidenced by references [47]-[53].

The architecture used for the ANN models, depicted
in Figure 5(a), consists of four hidden layers, each with
512 neurons and a ReLU activation function, along with
two input neurons representing w, and w,, and three
output neurons representing transmittance, and the cosine
and sine of the phase shift. We design three mod-
els, fi(w,, wy), fo(wy, wy), and f;(w,, wy), using this
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Figure 5: End-to-end joint training of the tri-channel WM-DNN utilizing surrogate models for meta-atom transmission responses. (a) The architecture
of the ANN models, which are used to map the phase and transmittance values of the meta-atoms to their structural parameters. (b) Training and test
losses for the ANN model trained at 450 nm, over 2,500 epochs, illustrating the network’s convergence to final training and test losses of 0.0056 and
0.0471, respectively. (c-e) Comparison of COMSOL and ANN outputs for different geometries under x-polarized light at 450 nm, 550 nm, and 650 nm.
Data points from COMSOL simulations used for training are evaluated at 5 nm intervals, while the ANN outputs are at a resolution of 1 nm.

(f-h) Final amplitude and phase modulation profiles for the two hidden layers of the tri-channel WM-DNN obtained through joint training, utilizing

the pre-trained models from parts (c-e).

architecture to approximate the transmission responses of
the nanofins under the x-polarized light at wavelengths of
450 nm, 550 nm, and 650 nm, respectively. For each wave-
length, 2,784 cell instances — sourced from our previous
COMSOL simulations — are used for training, while a sep-
arate set of 696 unseen cell instances is reserved for testing.
The assessment of the unseen dataset shows that, while
there are variations in performance across different mod-
els, they all exhibit low prediction errors, as presented in

Table 2. As a representative example, Figure 5(b) shows the
progress of training and test losses for the model f; (wx, wy)
trained at 450 nm over 2,500 epochs, reaching a mean
squared error (MSE) of 0.047 on the test samples. Figure
5(c)—(e) provide a visual comparison between the transmis-
sion responses of the meta-atoms derived from the COMSOL
simulations and those predicted by the ANN models for all
three wavelengths, verifying that the ANN models can serve
as reliable approximation functions.
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Table 2: Training and test losses for ANN models used in the inverse design process.

ANN model Training loss (MSE) Test loss (MSE) Number of epochs
filw,w,) 0.0056 0.0471 2,500
h(we,w,) 0.0019 0.0207 1,500
fg(wx, wy) 0.0037 0.0074 1,500
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Figure 6: Tri-channel WM-DNN, designed with an end-to-end approach, for parallel classification of three tasks. (a) Exemplary results of
simultaneously classifying a handwritten digit (left), a fashion item (middle), and a Kaniji character (right), encoded at wavelengths of 450 nm, 550 nm,
and 650 nm, respectively, and processed by the jointly trained tri-channel WM-DNN. Output intensity patterns and normalized energy distributions
across the category sub-areas confirm the capability of the WM-DNN for simultaneous three-task classification. (b) Confusion matrices for MNIST,
FMNIST, and KMNIST processed by the WM-DNN, summarizing the classifier’s performance across individual classes, with average classification
accuracies of 96.48 %, 85.68 %, and 85.35 %, for Task [, Task II, and Task III, respectively, showing improvement compared to the previous WM-DNN
design with the meta-atom library approach.
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Once trained, the ANN models have their network
weights fixed and are then employed to design our tri-
channel WM-DNN. In each iteration of training, the struc-
tural parameters of the meta-atoms are updated based on
the back-propagation algorithm, with the models predicting
their associated complex modulation coefficients, thereby
facilitating the simultaneous training of multiple tasks. The
complex transmittance maps of the hidden layers obtained
from the joint training session are displayed in Figure
5(f)—(h), respectively.

It’s worth noting that compared to previous cases
where the networks were trained with a single objective,
the learning process in this scenario faces a more com-
plex optimization landscape, primarily due to the multi-
objective joint training. Additionally, the modulation coef-
ficient of the unit cell has a more intricate relationship
with the trainable parameters w, and w,, represented as
| fi| exp(i4 f;(wy, w,)). This complexity is particularly pro-
nounced at 450 nm, where resonances and fluctuations are
most significant. In contrast, the previous phase-only sce-
nario involved a simpler relationship, where the learnable
parameter ¢ (i.e., the transmission phase) had a straightfor-
ward exponential relationship with the modulation coeffi-
cient, exp(ig), and the amplitude was set to unity. As a result,
more time and computational resources are required for the
joint network to converge. To facilitate better convergence
of the joint training, we utilize a weighted sum loss function:

Total loss = w; #108Sysr + Wy # 108Seyist + W3 * 10SSkyisT

We conduct multiple training sessions with various
weight combinations, and the best results are achieved
with coefficients w,, w, and wjy set at 0.13, 0.2, and 0.67,
respectively. Utilizing a genetic algorithm to optimize these
weights can further enhance the model’s performance,
though it would involve higher computational costs.

Blind testing of the tri-channel WM-DNN trained with
our end-to-end method demonstrates accuracies of 96.48 %
for MNIST, 85.68 % for FMNIST, and 85.35 % for KMNIST.
Compared to the previous tri-channel WM-DNN designed
using the meta-atom library approach, these results repro-
duce the high accuracy for MNIST and show improvements
of 4.7% and 4.2 % for FMNIST and KMNIST, respectively,
highlighting the effectiveness of this method. Figure 6(a)
illustrates the performance of the end-to-end designed tri-
channel WM-DNN in simultaneously classifying ‘', ‘trouser’,
and ‘%’ from the MNIST, FMNIST, and KMNIST datasets,
respectively. The system successfully predicts the correct
category for each task. The confusion matrices, shown in
Figure 6(b), display the network’s performance across all
individual classes for all test samples in the three tasks.

S. Behroozinia and Q. Gu: Multi-task learning with all-optical diffractive processors == 4515

A comparison with the confusion matrices in Figure 4(c)
reveals an increase in the total number of correct identi-
fications, confirming the improvement in average accura-
cies. For instance, in the KMNIST dataset, the number of
correct identifications for class 4 — the worst-performing
class — increased from 561 to 842, demonstrating a clear
improvement in the recognition of KMNIST images.

5 Conclusions

In this work, we have demonstrated the potential of wave-
length and polarization multiplexing schemes to facilitate
all-optical multi-task learning using DNNs with bilayer cas-
caded metasurfaces. We design dual-channel PM-DNN and
WM-DNN, utilizing polarization and wavelength multiplex-
ing, respectively, using our meta-atom library. Numeri-
cal results for both systems in parallel processing of two
tasks show high accuracies comparable to their individu-
ally trained single-task counterparts, thereby validating the
effectiveness of our dual-channel M-DNN design methodol-
ogy. Additionally, we explore the implementation of a tri-
channel WM-DNN to perform three classification tasks in
parallel, using two different design strategies: the meta-
atom library approach and the end-to-end joint training
framework. While the meta-atom library approach achieves
high accuracy for the MNIST task, it exhibits a moder-
ate decline in performance for the FMNIST and KMNIST
tasks. This decline can be attributed to the increased num-
ber of tasks, which makes finding meta-atoms that sat-
isfy all the local modulation coefficient requirements more
challenging.

On the other hand, the end-to-end joint training frame-
work uses approximate models to map the structural
parameters of the unit cells to their complex transmission
responses for each channel, ensuring that the obtained
modulation coefficients are realizable by the meta-atoms,
thereby enhancing the multi-tasking performance of the
network. However, despite the improvements, the perfor-
mance of the M-DNN still falls short when compared to the
individually trained DNNs for the respective single tasks.
We anticipate that performance could be further improved
by incorporating more complex meta-atom geometries,
increasing the number of layers, and applying hyperpa-
rameter tuning, possibly using a genetic algorithm, to the
joint training. Finally, it is worth noting that the significance
of the end-to-end training approach becomes increasingly
apparent as the number of parallel tasks grows, offering
considerable advantages for designing highly parallel opti-
cal machine learning systems capable of handling numer-
ous tasks simultaneously. Such systems could be further
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utilized in high-throughput computational imaging, real-
time data processing, and autonomous systems.

6 Materials and Methods

6.1 Training of the neural networks

All neural networks, including DNNs and ANNs, were imple-
mented using Python version 3.10 and TensorFlow frame-
work version 2.16.1 on Google Colab Pro, equipped with a
V100 NVIDIA GPU and 32 GB of RAM. We used the MNIST,
FMNIST, and KMNIST datasets, with each image — originally
a 28 x 28 grayscale image — zero-padded to 70 X 70 and
then resized to 210 X 210. These images were encoded in
the amplitude of light for the corresponding channels. Each
dataset contains 60,000 training samples and 10,000 testing
samples across 10 classes. The Adam optimizer was used to
train all networks, with an exponential decay learning rate
schedule starting at 0.001 and a decay rate of 0.9 applied
every 10,000 steps, using a batch size of 32. A cross-entropy
loss function was employed to maximize light intensity in
the target region for the DNN designs.

6.2 Meta-atom search and selection process

As described in the paper, the proposed M-DNNs outlined
in Section 3 were implemented through a comprehensive
search within our unit cell library. Specifically, to select
the optimal meta-atom at each location, we first excluded
meta-atoms with transmission amplitudes below 0.5. We
then applied a weighted sum of the errors between the
target phases and the phases obtained from the meta-atoms
across all tasks as our search criterion, selecting the meta-
atoms that minimized this total error. Utilizing the weighted
sum error as the search metric enables us to prioritize the
more challenging and sensitive tasks, thereby enhancing the
overall multitasking performance. We conducted several
iterations of searches with varying weight combinations
to find the optimal set of weights that achieves accuracies
greater than 80 % for all tasks, rather than maximizing the
accuracy for one task at the expense of weaker performance
in the others. The optimal error weights for the metasurface
implementation of the dual-channel PM-DNN were identi-
fied as 1 and 1.2 for Task I and Task II, respectively, while for
the dual-channel WM-DNN, weights of 1.2 and 2 for Task I
and Task II yielded the desired accuracies across both tasks.
Lastly, for the tri-channel WM-DNN, the optimal weights
were determined to be 0.8, 1.28, and 1.23 for Task I, Task II,
and Task I, respectively.
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