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Abstract: Diffractive Neural Networks (DNNs) leverage the

power of light to enhance computational performance in

machine learning, offering a pathway to high-speed, low-

energy, and large-scale neural informationprocessing.How-

ever, most existing DNN architectures are optimized for

single tasks and thus lack the flexibility required for the

simultaneous execution of multiple tasks within a unified

artificial intelligence platform. In this work, we utilize the

polarization and wavelength degrees of freedom of light to

achieve optical multi-task identification using the MNIST,

FMNIST, and KMNIST datasets. Employing bilayer cascaded

metasurfaces, we construct dual-channel DNNs capable of

simultaneously classifying two tasks, using polarization and

wavelength multiplexing schemes through a meta-atom

library. Numerical evaluations demonstrate performance

accuracies comparable to those of individually trained

single-channel, single-task DNNs. Extending this approach

to three-task parallel recognition reveals an expected per-

formance decline yet maintains satisfactory classification

accuracies of greater than 80 % for all tasks. We further

introduce a novel end-to-end joint optimization framework

to redesign the three-task classifier, demonstrating substan-

tial improvements over the meta-atom library design and

offering the potential for futuremulti-channel DNN designs.

Our study could pave the way for the development of ultra-

thin, high-speed, and high-throughput optical neural com-

puting systems.
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1 Introduction

Optical computing, especially through Optical Neural Net-

works (ONNs), has long been recognized for its potential

to enhance computational speed and energy efficiency. The

first optical implementation of neural networks in 1987

used optical components to emulate neuron configurations,

sparking decades of research into optical neuromorphic

technologies [1]. Recently, advancements in deep learning

and photonic technology have revitalized interest in this

field, enabling the development of scalable, ultra-fast, and

energy-efficient ONNs [2]–[9]. Diffractive Neural Networks

(DNNs) [10]–[22] are a type of ONN consisting of multi-

ple spatially engineered transmissive diffractive layers. Uti-

lizing light–matter interactions, these diffractive surfaces

perform element-wise multiplication, with each ‘pixel’ act-

ing as a ‘neuron’, interconnected through the physics of

optical diffraction. The complex-valued transmission coef-

ficient of each neuron serves as a trainable network param-

eter, systematically adjusted via an error back-propagation

algorithm executed on a digital computer to perform a spe-

cific machine learning task.

On the other hand, metasurfaces – engineered two-

dimensional arrays of subwavelength nanostructures –

allow one to preciselymanipulate optical properties such as

phase, amplitude, and polarization, all through the adjust-

ment of the size and shape of meta-atoms [23]–[27]. Over

the past decade, this capability has revolutionized appli-

cations in several fields, including imaging and holog-

raphy [28]–[31], sensing [32], [33], information process-

ing [34]–[36], and quantum photonics [37], [38]. Their

integration into DNNs has facilitated the development of

advanced ultra-thin diffractive processors, which show

promise for large-scale on-chip integration in future com-

puting systems. Additionally, the capability of metasurfaces
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for multi-dimensional light modulation makes them ideal

for constructing multi-channel, multi-functional computing

devices. Several studies have demonstrated how multiplex-

ing of various optical properties – such as wavelength,

polarization, and angle of incidence [39]–[42] can be har-

nessed to develop compact, parallel optical computing sys-

tems capable of performing mathematical operations such

as differentiation and integration within a single element.

Although most DNNs focus on performing a single

machine learning task, the ability to handle multiple tasks

within a single DNN is crucial for advancing toward more

generalized artificial intelligence devices that are both

high-speed and energy-efficient, for applications such as

autonomous driving and machine vision. Recently, signifi-

cant steps have been taken toward implementing versatile,

multi-functional DNNs. For instance, one study introduced

a reconfigurable metasurface-based pluggable DNN capa-

ble of switching between two tasks by altering its plug-

gable components [43]. Another approach experimentally

demonstrated an on-chip two-task optical classifier using

birefringent nanostructures and a polarization multiplex-

ing scheme, despite limited performance with a single-

layer architecture [44]. Additionally, a numerical investi-

gation explored multi-wavelength parallel image recogni-

tion of more than two tasks, utilizing a joint optimization

approach to adjust the height map of diffractive optical

elements [45]. However, achieving high parallel classifica-

tion accuracy in this case requires at least five diffractive

layers and a large number of modulation elements per

layer, which makes the device bulky. In short, while these

developments mark important progress toward versatile,

multifunctional diffractive processors, the full potential of

multiplexed metasurfaces has yet to be fully explored in

terms of utilizing physical parametric degrees of freedom

to implement compact, highly parallel multi-task DNNs.

In this work, we rigorously investigate the potential

of both polarization-multiplexed and wavelength-multi-

plexed metasurfaces in realizing DNNs capable of simul-

taneously classifying multiple inputs. Using our meta-atom

library, we initially design a dual-channel Polarization-

Multiplexed DNN (PM-DNN) and a dual-channel Wave-

length-Multiplexed-DNN (WM-DNN), to simultaneously clas-

sify theMNIST and Fashion-MNIST (FMNIST) databaseswith

high classification accuracies. Extending this approach, we

introduce a tri-channel WM-DNN to perform three tasks,

MNIST, FMNIST, and Kuzushiji-MNIST (KMNIST), in paral-

lel. Numerical results demonstrate satisfactory outcomes,

despite a moderate decline in accuracy for the two more

challenging tasks of FMNIST and KMNIST, primarily due

to increased task competition. To further enhance the

system performance, we develop a novel end-to-end design

methodology to redesign the tri-channel WM-DNN. This

framework utilizes surrogate models to map the complex

transmission responses of themeta-atoms to their structural

parameters, which are then used in a joint training frame-

work to optimize the network parameters for all three tasks

simultaneously. This approach not only improves classifi-

cation accuracy but also has the potential to train multi-

channel DNNs capable of handling a large number of tasks

in parallel, thereby enabling massively parallel, multifunc-

tional neural architectures.

2 Design

Figure 1(a) schematically shows the concept ofmetasurface-

assisted Multiplexed DNNs (M-DNNs) for parallel optical

classification. The system includes a multi-channel optical

field with different targets encoded in specific light chan-

nels as the input layer, multiplexed metasurfaces as hid-

den layers, and a segmented detection plane for multi-

channel detection functioning as the output layer. The

two orthogonal polarization states x and y in the upper

panel of Figure 1(a) and the three wavelengths 𝜆1, 𝜆2,

and 𝜆3 in the lower panel serve as independent chan-

nels (i.e., without any cross talk) for information process-

ing. Adjusting the structural parameters of each meta-atom

allows for spatially varying, channel-dependent transmis-

sion responses, enabling independent processing of the

multi-input light. Each meta-atom in a designated polariza-

tion or wavelength state acts as an ‘optical neuron’, which

is interconnected with the neurons in the subsequent layers

through the physics of optical diffraction. According to the

Rayleigh–Sommerfeld integral [46], the complex field of the

(l + 1)th layer of the M-DNN can be expressed as:
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lth layer, for the specific channel with polarization p and
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projected light of the target image. The term z = zl+1 − zl
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the spatially varying complex transmittance of the meta-

surface of the lth layer corresponding to the channel with

polarization p and wavelength 𝜆, which is a function
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Figure 1: Metasurface-based M-DNN for simultaneously performing multiple machine learning tasks utilizing polarization and wavelength

multiplexing. (a) Top: dual-channel PM-DNN. Bottom: tri-channel WM-DNN. After the multi-input light, comprising various datasets and encoded in

specific polarization (top panel) or wavelength (bottom panel) channels, passes through the doublet metasurface, it is focused onto the corresponding

detection areas for each task’s class, enabling parallel recognition. (b) Schematic of the M-DNN featuring a doublet metasurface. The axial distance

between the layers is set to 500 μm. The metasurface consists of TiO2 rectangular nanopillars on a glass substrate. The height of each meta-atom h is

fixed at 600 nm, while the widths, wx and wy , vary from 60 nm to 350 nm; the periodicity of the unit cells, denoted as a, is 400 nm. Each meta-atom

exhibits a polarization- and wavelength-dependent transmission response. A supercell, consisting of a 3 × 3 array of identical meta-atoms, serves as

our optical neuron. Their channel-dependent transmission responses are optimized through the training process to perform multiple classification

tasks. (c) Designated detection areas corresponding to each task category for the dual-channel PM-DNN (top), dual-channel WM-DNN (middle), and

tri-channel WM-DNN (bottom). (d–f) Simulated values of the transmission amplitude
(||Tx||, |||Ty|||

)
and phase

(
∠Tx,∠Ty

)
for different geometries,

under x- and y-polarized light. The incident wavelengths for (d), (e), and (f) are 450 nm, 550 nm, and 650 nm, respectively.

of the structural parameters of the meta-atoms. The multi-

channel light is modulated by the metasurfaces, and the

multi-dimensional transmission responses of the meta-

atoms – i.e., their modulation coefficients – can be opti-

mized to maximize the detected light intensity within the

correct detection sub-region for each task, correspond-

ing to its respective channel, thereby enabling optical

multitask learning. It is important to note thatwhile channel

crosstalk does not occur as light diffracts through the air

or substrate and is modulated by the metasurfaces, it does

manifest at the detection plane due to the superposition

of optical intensities. Employing polarization-selective and

wavelength-selective filters in each sub-area can effectively

mitigate crosstalk during intensity measurements across
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various channels, thereby enhancing the performance of

the M-DNN. In this work, we assume the presence of such

filters on the detectors.

To illustrate the capabilities of our M-DNN, we present

several examples of multitask optical systems. As shown in

Figure 1(b), the multiplexed metasurfaces consist of rect-

angular TiO2 nanofins on a glass substrate with a fixed

height h and two independently tunable widths 𝑤x and

𝑤y. When exposed to linearly polarized light, the asymmet-

ric meta-units modulate the phase and amplitude of the

incoming light in a polarization- andwavelength-dependent

manner. By adjusting 𝑤x and 𝑤y, the desired transmission

responses for each channel are achieved, facilitating paral-

lel multitasking across various polarization andwavelength

incidences. The phase and amplitude of the complex trans-

mission responses of the meta-atoms are modeled using

COMSOL Multiphysics software, which utilizes the Finite

Element Method (FEM). The nanofins are set with a fixed

height of 600 nm and a period of 400 nm. Figure 1(d)–(f)

display the computed electromagnetic response of each unit

cell under x- and y-polarizations for specific wavelengths

of 450 nm, 550 nm, and 650 nm, with the nanofins’ widths

ranging from 60 nm to 350 nm in 5 nm increments.

All designs presented in this paper feature two hid-

den layers, i.e., multiplexed metasurfaces, each containing

210 × 210 optical neurons. Instead of utilizing a single unit

cell, we intentionally adopted a supercell configuration con-

sisting of a 3 × 3 array of identical meta-atoms, serving as

our optical neuron, as depicted in Figure 1(b). This enlarge-

ment of theneuron size to 1.2 μm × 1.2 μmfacilitates the fea-

sible experimental realization of the designs using commer-

cially available spatial light modulators and CCD cameras,

whose smallest pixel sizes are in the range of a fewmicrons.

Therefore, utilizing a supercell structure instead of a single

cell allows us to maintain the desired pixel size for efficient

light encoding and detection, while also benefiting from the

light modulation capabilities of meta-atoms at shorter peri-

odicities, specifically 400 nm. Another critical parameter in

the design of a DNN is the distance between successive lay-

ers. Since 500 μm is the most commonly available thickness

for SiO2 wafers, we have fixed the axial distance between

the layers at 500 μm to support the ease of implementation

in the future.

3 Designing M-DNNs using

a meta-atom library

In this section, we verify the application of ourmetasurface-

based M-DNNs in parallel multi-task classification utilizing

our library of unit cell configurations – sourced from our

simulations. We first design a dual-channel PM-DNN and a

dual-channel WM-DNN to simultaneously classify two dis-

tinct datasets: the MNIST database (Task I) and the Fashion-

MNIST (FMNIST) database (Task II), containing handwrit-

ten digits and fashion items, respectively. In the PM-DNN,

MNIST and FMNIST data are encoded in x- and y-polarized

light, respectively, both using a wavelength of 550 nm. In

contrast, for theWM-DNN, the handwritten digits from Task

I are encoded at a wavelength of 450 nm, and the fashion

products from Task II at 550 nm, both under x-polarization.

Figure 1(c) illustrates the detection planes for the dual-

channel PM-DNN and WM-DNN, where specific sub-areas

are designated for each category, with the upper and lower

regions corresponding to tasks I and II, respectively.

Training is performed by individually training four

single-task DNNs, each specifically designed for a distinct

polarization and wavelength corresponding to the chan-

nels of our PM-DNN and WM-DNN. Each DNN is tasked

with performing a specific classification task. The transmis-

sion amplitudes of the neurons are set to unity, and the

transmission phases𝜑 are the trainable parameters (phase-

only DNNs). These phases are optimized via an error back-

propagation algorithm to focus the output light intensity

on the designated sub-area corresponding to each task’s

category. The top panels of Figures 2(a) and 3(a) display the

phase distributions of the hidden layers obtained from the

training sessions for the dual-channel PM-DNN and WM-

DNN, respectively, designed to classify MNIST and FMNIST

datasets. Subsequently, for each location on the metasur-

faces, we search within our existing unit cell library to

select the optimal meta-atom structure that most accurately

replicates the desired local phase shifts for both tasks (More

details on the selection process can be found in the Materi-

als and Methods section). The lower panels of Figures 2(a)

and 3(a) show the mismatch between the optimized phase

shifts and those realized by the PM-DNN and WM-DNN,

respectively, highlighting that themetasurfaces successfully

reproduce the learned phase profiles with high fidelity.

Numerical evaluations of the metasurface-based PM-DNN

and WM-DNN using unseen data confirm the capabilities

of both dual-channel classifiers, as they achieve classifi-

cation results comparable to those of their individually

trained single-task counterparts. The classification accu-

racies obtained are 97.72 % for MNIST and 88.01 % for

FMNIST by the PM-DNN, and 97.19 % for MNIST and 86.35 %

for FMNIST by the WM-DNN, respectively, as presented in

Table 1.

Figures 2(b) and 3(b) demonstrate the performance of

these M-DNNs in parallel recognition of a handwritten digit
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Figure 2: Dual-channel PM-DNN for parallel classification of two tasks. (a) (Top) Final phase distributions of the two hidden layers of the dual-channel

PM-DNN under x- and y-polarized incident light with the incident wavelength set to 550 nm. (Bottom) The absolute phase difference between

the desired phase and the phase realized by the meta-atoms at each pixel. (b) Exemplary results of simultaneously classifying a handwritten digit

and a fashion item encoded in the x- and y-polarized light, respectively. Output intensity patterns and normalized energy distributions across

the category sub-areas show the success of the PM-DNN in parallel two-task categorization. (c) Confusion matrices for MNIST and FMNIST processed

by the PM-DNN, demonstrating its performance across individual classes, with average classification accuracies of 97.72 % and 88.01 % for Task I

and Task II, respectively.

and a fashion item, where the digit ‘8’ and the item ‘dress’

are processed by the PM-DNN, while ‘0’ and ‘trouser’ are

processed by theWM-DNN. For both two-task classifiers, the

detector intensity patterns, and normalized output energy

distributions clearly indicate that the correct sub-regions

corresponding to Task I and Task II receive the maximum

signal. The confusion matrices, which statistically summa-

rize the correct and incorrect identification results for all

samples, are displayed in Figures 2(c) and 3(c) for Task I and

Task II performed by the PM-DNN and WM-DNN, respec-

tively. Numerical evaluations on the test datasets confirm

that the dual-channel PM-DNN and WM-DNN successfully

achieve parallel categorization of MNIST and FMNIST tar-

getswith high accuracy, reaching rates above 97 %and 86 %,

respectively.

While polarization multiplexing is limited to two

orthogonal channels, wavelength multiplexing can support

a large number of channels, thus allowing for higher-

capacity computation. To assess the ability of metasurface-

based M-DNNs to handle a greater number of tasks simul-

taneously, we construct a tri-channel WM-DNN to perform

three-task classification: MNIST (Task I), FMNIST (Task II),
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Figure 3: Dual-channel WM-DNN for parallel classification of two tasks. (a) (Top) Final phase profiles of the two hidden layers of the dual-channel

WM-DNN under x-polarized incident light at 450 nm (left) and 550 nm (right). (Bottom) The absolute phase difference between the desired phase

and the phase realized by the metasurfaces at each pixel. (b) Exemplary results of simultaneously classifying a handwritten digit and a fashion item,

encoded at wavelengths of 450 nm and 550 nm, respectively. Output intensity patterns and normalized energy distributions across the category

sub-regions illustrate the capability of the WM-DNN in parallel two-task classification. (c) Confusion matrices for MNIST and FMNIST processed by

the WM-DNN, presenting the classifier’s performance across individual classes, with average classification accuracies of 97.19 % and 86.35 % for Task I

and Task II, respectively.

and KMNIST, which contains 10 classes of kanji Japanese

characters (Task III). The datasets for these tasks are

encoded at wavelengths of 450 nm, 550 nm, and 650 nm,

respectively, under x-polarized light. The bottom panel of

Figure 1(c) shows the detection plane used for the tri-

channel WM-DNN, with specific sub-areas dedicated to spe-

cific tasks. Three individual single-task DNNs are trained

at 450 nm, 550 nm, and 650 nm, tasked with recognizing

MNIST, FMNIST, and KMNIST, respectively. The upper panel

of Figure 4(a) displays the phase maps corresponding to the

hidden layers of the three single-task DNNs for Tasks I to III,

obtained from training. The tri-channel metasurface-based

WM-DNN is realized by locally assigning meta-atoms from

our library, each meticulously selected to meet the three-

dimensional phase requirement at each pixel. The errors

are more substantial than the dual-channel cases, particu-

larly for the FMNIST and KMNIST tasks. This is expected as

increasing the number of tasks exacerbates task competi-

tion, making it challenging for the meta-atoms to meet all

the phasemodulation requirements. The classification accu-

racies yielded from assessing the tri-channel WM-DNN on

the MNIST, FMNIST, and KMNIST test datasets are 96.73 %,
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Table 1: Accuracy of the M-DNNs.

DNNmodel Design method Task I (MNIST) Task II (FMNIST) Task III (KMNIST)

Single-task Multi-task Single-task Multi-task Single-task Multi-task

Dual-channel PM-DNN Meta-atom library 97.75 % 97.72 % 88.04 % 88.01 % – –

Dual-channel WM-DNN Meta-atom library 97.66 % 97.19 % 87.80 % 86.35 % – –

Tri-channel WM-DNN Meta-atom library 97.49 % 96.73 % 88.03 % 80.9 % 88.88 % 81.13 %

Tri-channel WM-DNN End-to-end method 97.49 % 96.48 % 88.03 % 85.68 % 88.88 % 85.35 %

Figure 4: Tri-channel WM-DNN for parallel classification of three tasks. (a) (Top) Final phase profiles of the two hidden layers of the tri-channel

WM-DNN with x-polarized incident light at 450 nm (left), 550 nm (middle), and 650 nm (right). (b) Exemplary results of simultaneously classifying

a handwritten digit, a fashion item, and a Kanji character, encoded at wavelengths of 450 nm, 550 nm, and 650 nm, respectively.

(Bottom) The absolute phase error between the optimized phase and the phase realized by the metasurfaces at each pixel. Output intensity patterns

and normalized energy distributions across the category sub-areas demonstrate the effectiveness of the WM-DNN in performing parallel recognition

of three tasks. (c) Confusion matrices for MNIST, FMNIST, and KMNIST processed by the WM-DNN, summarizing the classifier’s performance

across individual classes, with average classification accuracies of 96.73 %, 80.9 %, and 81.13 %, for Task I, Task II, and Task III, respectively.
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80.9 %, and 81.13 %, respectively. As shown in Table 1,

the identification accuracies for FMNIST and KMNIST are

notably lower than those in their corresponding single-task

DNNs, which aligns with the phase map results discussed

earlier.Moreover, these two tasks aremore challenging than

MNIST and, therefore, more sensitive to errors.

Figure 4(b) depicts the performance of the tri-channel

WM-DNN in parallel recognition, processing ‘2’ fromMNIST,

‘ankle boot’ from FMNIST, and ‘お’ from KMNIST. The detec-

tor intensity patterns and the normalized energy distri-

butions of the sub-areas for different tasks indicate that

the multi-wavelength incident light is successfully directed

onto the correct sub-regions corresponding to each task.

Figure 4(c) presents the overall identification results across

all samples from the three test datasets through confusion

matrices, revealing that the average performance across all

classes is commendable.

It is worth discussing the extent of neuronal connec-

tivity in our trained DNNs. Connectivity between layers is

a crucial factor influencing the computational implementa-

tion complexity and the inference performance of the DNN.

At a given wavelength, the interconnectivity between the

neurons is dictated by the neuron size within each layer,

which determines the diffraction angle, along with the axial

distance between the layers. As it is analyzed in ref. [22],

for a DNN to be considered fully connected, the radius of

the diffraction spot of each neuron R should be larger than

the side length of the diffractive layer. This radius is defined

as: R = z × tan𝜑max, where 𝜑max = sin−1
(
𝜆∕2d

)
, with

𝜑max representing the half-maximum-diffraction angle, d

the neuron size and z the axial distance between successive

layers.

Accordingly, the diffraction radii for the neurons in

our designed DNNs at wavelengths of 450 nm, 550 nm, and

650 nm are 140 μm, 175 μm, and 212 μm, respectively. These
values are smaller than the side length of the layers,which is

252 μm, thus making our DNNs partially connected. Never-
theless, although our DNNs are not fully connected neural

networks, the large coverage of the diffraction spots still

provides sufficient connectivity for effective information

processing. This is evidenced by the training results of our

single-task DNNs (as presented in Table 1), which achieved

accuracies nearly comparable to those of fully connected

networks reported in the literature [10], [45]. Moreover, it

is important to note that, in the design of a multiwave-

length DNN, despite the fixed layer spacing and neuron

size across different channels, channels with higher wave-

lengths exhibit greater connectivity due to larger diffrac-

tion angles, enhancing computational capability. As such,

assigning more demanding tasks to channels with higher

wavelengths is beneficial; for instance, we assigned MNIST,

the least complex task, to our channel with the lowest

wavelength.

4 Designing M-DNNs using

an end-to-end approach

Lastly, we investigate an end-to-end design strategy to

address issues encountered in the previous example, with

the imperfect phase map implementation using the meta-

atom library approach. Unlike the previous approach,

where the DNN for each task was optimized separately, we

now incorporate a joint optimization framework to min-

imize classification errors across all three tasks simulta-

neously. By constructing surrogate models that relate the

structural parameters of the meta-atoms to their channel-

dependent complex transmission responses and integrating

these models as proxy functions during training, we can

directly optimize the structural parameters of the meta-

atoms. Therefore, in contrast to the approach in the previ-

ous section, the trainable parameters of the diffractive net-

works here are the structural parameters of themeta-atoms,

rather than their transmission responses. This approach

eliminates the need for a further search step in the design

process, thus addressing the issues caused by the imper-

fect phase map realization. In addition, it ensures that the

training process accounts for the physical constraints of

the unit cells, producing feasible and physically realizable

complex modulation responses at each channel, thereby

enhancing the performance of M-DNNs implemented by the

metasurfaces.

As a final demonstration, we implement a tri-channel

WM-DNN to simultaneously perform MNIST, FMNIST, and

KMNIST tasks using similar wavelength channels and sub-

area designations on the detection plane, as in the previous

design. For the surrogate models that map the widths of

the meta-atoms to their optical modulation coefficients at

eachwavelength, we utilize deep Artificial Neural Networks

(ANNs) as differentiable proxy functions. The use of deep

learning in nanophotonics is awell-established practice and

has proven highly effective, particularly in inverse design,

as evidenced by references [47]–[53].

The architecture used for the ANN models, depicted

in Figure 5(a), consists of four hidden layers, each with

512 neurons and a ReLU activation function, along with

two input neurons representing 𝑤x and 𝑤y, and three

output neurons representing transmittance, and the cosine

and sine of the phase shift. We design three mod-

els, f1
(
𝑤x,𝑤y

)
, f2

(
𝑤x,𝑤y

)
, and f3

(
𝑤x,𝑤y

)
, using this
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Figure 5: End-to-end joint training of the tri-channel WM-DNN utilizing surrogate models for meta-atom transmission responses. (a) The architecture

of the ANN models, which are used to map the phase and transmittance values of the meta-atoms to their structural parameters. (b) Training and test

losses for the ANN model trained at 450 nm, over 2,500 epochs, illustrating the network’s convergence to final training and test losses of 0.0056 and

0.0471, respectively. (c–e) Comparison of COMSOL and ANN outputs for different geometries under x-polarized light at 450 nm, 550 nm, and 650 nm.

Data points from COMSOL simulations used for training are evaluated at 5 nm intervals, while the ANN outputs are at a resolution of 1 nm.

(f–h) Final amplitude and phase modulation profiles for the two hidden layers of the tri-channel WM-DNN obtained through joint training, utilizing

the pre-trained models from parts (c–e).

architecture to approximate the transmission responses of

the nanofins under the x-polarized light at wavelengths of

450 nm, 550 nm, and 650 nm, respectively. For each wave-

length, 2,784 cell instances – sourced from our previous

COMSOL simulations – are used for training, while a sep-

arate set of 696 unseen cell instances is reserved for testing.

The assessment of the unseen dataset shows that, while

there are variations in performance across different mod-

els, they all exhibit low prediction errors, as presented in

Table 2. As a representative example, Figure 5(b) shows the

progress of training and test losses for themodel f1
(
𝑤x,𝑤y

)
trained at 450 nm over 2,500 epochs, reaching a mean

squared error (MSE) of 0.047 on the test samples. Figure

5(c)–(e) provide a visual comparison between the transmis-

sion responses of themeta-atoms derived from the COMSOL

simulations and those predicted by the ANN models for all

three wavelengths, verifying that the ANNmodels can serve

as reliable approximation functions.
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Table 2: Training and test losses for ANN models used in the inverse design process.

ANNmodel Training loss (MSE) Test loss (MSE) Number of epochs

f1
(
𝑤x ,𝑤 y

)
0.0056 0.0471 2,500

f2
(
𝑤x ,𝑤 y

)
0.0019 0.0207 1,500

f3
(
𝑤x ,𝑤 y

)
0.0037 0.0074 1,500

Figure 6: Tri-channel WM-DNN, designed with an end-to-end approach, for parallel classification of three tasks. (a) Exemplary results of

simultaneously classifying a handwritten digit (left), a fashion item (middle), and a Kanji character (right), encoded at wavelengths of 450 nm, 550 nm,

and 650 nm, respectively, and processed by the jointly trained tri-channel WM-DNN. Output intensity patterns and normalized energy distributions

across the category sub-areas confirm the capability of the WM-DNN for simultaneous three-task classification. (b) Confusion matrices for MNIST,

FMNIST, and KMNIST processed by the WM-DNN, summarizing the classifier’s performance across individual classes, with average classification

accuracies of 96.48 %, 85.68 %, and 85.35 %, for Task I, Task II, and Task III, respectively, showing improvement compared to the previous WM-DNN

design with the meta-atom library approach.
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Once trained, the ANN models have their network

weights fixed and are then employed to design our tri-

channel WM-DNN. In each iteration of training, the struc-

tural parameters of the meta-atoms are updated based on

the back-propagation algorithm, with themodels predicting

their associated complex modulation coefficients, thereby

facilitating the simultaneous training of multiple tasks. The

complex transmittance maps of the hidden layers obtained

from the joint training session are displayed in Figure

5(f)–(h), respectively.

It’s worth noting that compared to previous cases

where the networks were trained with a single objective,

the learning process in this scenario faces a more com-

plex optimization landscape, primarily due to the multi-

objective joint training. Additionally, the modulation coef-

ficient of the unit cell has a more intricate relationship

with the trainable parameters 𝑤x and 𝑤y, represented as|| fi|| exp(i∡ fi
(
𝑤x,𝑤y

))
. This complexity is particularly pro-

nounced at 450 nm, where resonances and fluctuations are

most significant. In contrast, the previous phase-only sce-

nario involved a simpler relationship, where the learnable

parameter𝜑 (i.e., the transmission phase) had a straightfor-

ward exponential relationship with the modulation coeffi-

cient, exp(i𝜑), and the amplitudewas set to unity. As a result,

more time and computational resources are required for the

joint network to converge. To facilitate better convergence

of the joint training, we utilize aweighted sum loss function:

Total loss = 𝑤1 ∗ lossMNIST +𝑤2 ∗ lossFMNIST +𝑤3 ∗ lossKMNIST
(2)

We conduct multiple training sessions with various

weight combinations, and the best results are achieved

with coefficients 𝑤1, 𝑤2 and 𝑤3 set at 0.13, 0.2, and 0.67,

respectively. Utilizing a genetic algorithm to optimize these

weights can further enhance the model’s performance,

though it would involve higher computational costs.

Blind testing of the tri-channel WM-DNN trained with

our end-to-end method demonstrates accuracies of 96.48 %

for MNIST, 85.68 % for FMNIST, and 85.35 % for KMNIST.

Compared to the previous tri-channel WM-DNN designed

using the meta-atom library approach, these results repro-

duce the high accuracy for MNIST and show improvements

of 4.7 % and 4.2 % for FMNIST and KMNIST, respectively,

highlighting the effectiveness of this method. Figure 6(a)

illustrates the performance of the end-to-end designed tri-

channelWM-DNN in simultaneously classifying ‘1’, ‘trouser’,

and ‘お’ from the MNIST, FMNIST, and KMNIST datasets,

respectively. The system successfully predicts the correct

category for each task. The confusion matrices, shown in

Figure 6(b), display the network’s performance across all

individual classes for all test samples in the three tasks.

A comparison with the confusion matrices in Figure 4(c)

reveals an increase in the total number of correct identi-

fications, confirming the improvement in average accura-

cies. For instance, in the KMNIST dataset, the number of

correct identifications for class 4 – the worst-performing

class – increased from 561 to 842, demonstrating a clear

improvement in the recognition of KMNIST images.

5 Conclusions

In this work, we have demonstrated the potential of wave-

length and polarization multiplexing schemes to facilitate

all-optical multi-task learning using DNNs with bilayer cas-

caded metasurfaces. We design dual-channel PM-DNN and

WM-DNN, utilizing polarization and wavelength multiplex-

ing, respectively, using our meta-atom library. Numeri-

cal results for both systems in parallel processing of two

tasks show high accuracies comparable to their individu-

ally trained single-task counterparts, thereby validating the

effectiveness of our dual-channel M-DNN design methodol-

ogy. Additionally, we explore the implementation of a tri-

channel WM-DNN to perform three classification tasks in

parallel, using two different design strategies: the meta-

atom library approach and the end-to-end joint training

framework.While themeta-atom library approach achieves

high accuracy for the MNIST task, it exhibits a moder-

ate decline in performance for the FMNIST and KMNIST

tasks. This decline can be attributed to the increased num-

ber of tasks, which makes finding meta-atoms that sat-

isfy all the local modulation coefficient requirements more

challenging.

On the other hand, the end-to-end joint training frame-

work uses approximate models to map the structural

parameters of the unit cells to their complex transmission

responses for each channel, ensuring that the obtained

modulation coefficients are realizable by the meta-atoms,

thereby enhancing the multi-tasking performance of the

network. However, despite the improvements, the perfor-

mance of the M-DNN still falls short when compared to the

individually trained DNNs for the respective single tasks.

We anticipate that performance could be further improved

by incorporating more complex meta-atom geometries,

increasing the number of layers, and applying hyperpa-

rameter tuning, possibly using a genetic algorithm, to the

joint training. Finally, it is worth noting that the significance

of the end-to-end training approach becomes increasingly

apparent as the number of parallel tasks grows, offering

considerable advantages for designing highly parallel opti-

cal machine learning systems capable of handling numer-

ous tasks simultaneously. Such systems could be further
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utilized in high-throughput computational imaging, real-

time data processing, and autonomous systems.

6 Materials and Methods

6.1 Training of the neural networks

All neural networks, including DNNs and ANNs, were imple-

mented using Python version 3.10 and TensorFlow frame-

work version 2.16.1 on Google Colab Pro, equipped with a

V100 NVIDIA GPU and 32 GB of RAM. We used the MNIST,

FMNIST, and KMNIST datasets, with each image – originally

a 28 × 28 grayscale image – zero-padded to 70 × 70 and

then resized to 210 × 210. These images were encoded in

the amplitude of light for the corresponding channels. Each

dataset contains 60,000 training samples and 10,000 testing

samples across 10 classes. The Adam optimizer was used to

train all networks, with an exponential decay learning rate

schedule starting at 0.001 and a decay rate of 0.9 applied

every 10,000 steps, using a batch size of 32. A cross-entropy

loss function was employed to maximize light intensity in

the target region for the DNN designs.

6.2 Meta-atom search and selection process

As described in the paper, the proposed M-DNNs outlined

in Section 3 were implemented through a comprehensive

search within our unit cell library. Specifically, to select

the optimal meta-atom at each location, we first excluded

meta-atoms with transmission amplitudes below 0.5. We

then applied a weighted sum of the errors between the

target phases and the phases obtained from the meta-atoms

across all tasks as our search criterion, selecting the meta-

atoms that minimized this total error. Utilizing the weighted

sum error as the search metric enables us to prioritize the

more challenging and sensitive tasks, thereby enhancing the

overall multitasking performance. We conducted several

iterations of searches with varying weight combinations

to find the optimal set of weights that achieves accuracies

greater than 80 % for all tasks, rather than maximizing the

accuracy for one task at the expense ofweaker performance

in the others. The optimal error weights for themetasurface

implementation of the dual-channel PM-DNN were identi-

fied as 1 and 1.2 for Task I and Task II, respectively, while for

the dual-channel WM-DNN, weights of 1.2 and 2 for Task I

and Task II yielded the desired accuracies across both tasks.

Lastly, for the tri-channel WM-DNN, the optimal weights

were determined to be 0.8, 1.28, and 1.23 for Task I, Task II,

and Task III, respectively.
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