Ising Model Processors on a Spatial Computing
Architecture

Yanze Wu
Cyber Security Engineering Department
George Mason University
Fairfax, VA, USA
yzwu42 @gmu.edu

Abstract—Data-flow-driven spatial computing architectures
are emerging to enable efficient acceleration of complex ma-
chine learning models at the edge devices. Interestingly, their
potential in other domains of computing is yet to be thor-
oughly explored. Hence, this paper investigates the application
of spatial architectures for designing reconfigurable Ising model
processors on edge devices. We target AMD’s Versal Adaptive
SoCs platform and implement Ising model processors using
the parallelization opportunities in the VLIW-supported vector
processors arranged in a spatial configuration. Our experiments
on a VCK-190 evaluation platform demonstrate that spatial
computing implementation for the standard Metropolis algorithm
achieves 3 x to 9x speedup compared with a generic ARM Cortex
A-72 processor for varying matrix sizes and precision. We also
present implementation issues for design accelerators on Versal
ASoCs. The code and artifacts for the work are available at
https://github.com/SPIRE-GMU/Ising-AIE for reproducing the
experiments and results presented in this work.

Index Terms—Ising model, spatial computing architecture,
hardware accelerator design, Versal Adaptive SoCs.

I. INTRODUCTION

NP-hard combinatorial optimizations constitute some of the
most critical problems in computer science, with implications
in a broad spectrum of applications ranging from optimal
routing for modern semiconductor design to explaining the
physical properties of materials. Thus, accelerating the so-
lutions to such problems is of great interest. Unfortunately,
such problems are complex by definition, and therefore, con-
ventional von Neumann architecture suffers from fundamental
processing and memory bottlenecks even in running optimized
heuristics for solving NP-hard problems [1]—[3].

One such problem is the Ising spin glass model, or, in short,
the Ising model. The Ising model is primarily used to describe
the ferromagnetic properties of materials. Interestingly, an
Ising model is NP-complete [4] and provides a standard
benchmark for understanding computing issues for complex
combinatorial problems. Although there exists heuristics, such
as the nearest neighbor interaction and Metropolis algorithm,
to find the approximate solution for the 2-D Ising model,
the overall structure of the problem provides a standard
benchmark for understanding acceleration for complex com-
binatorial problems. As a result, there has been significant
research on the accelerator designs for the Ising model using
different hardware platforms, such as parallel processors [5],

Md Tanvir Arafin
Cyber Security Engineering Department
George Mason University
Fairfax, VA, USA
marafin@gmu.edu

graphic processor units (GPU) [3], field-programmable gate
arrays (FPGA) [2], [6], [7] and even quantum computers [1].

Some Ising model accelerators, such as quantum proces-
sors or massively parallel compute clusters, are designed
for specific applications, i.e., large-scale physics modeling
and network simulation, and are not applicable in low-power
compute nodes. Thus, finding solutions for combinatorial
problems in real-time on a low-power budget-restricted edge-
computing node remains a challenging problem [2], [6], [8].
There have been proposals for building ASICs and using them
as a co-processor for such tasks [9]; however, such ASIC co-
processors or accelerators are fixed in terms of the problem
size and not reconfigurable with the changing problem size.

Interestingly, there has been a paradigm shift in accelerator
design primarily driven by the increasing size and complexity
of the machine learning (ML) workload. Although GPUs
remain the de-facto driver for most of the ML tasks, more
advanced architectures such as Groq’s Tensor Streaming chips
[10], Tenstorrent’s GraySkull processors [11], and AMD’s
Versal Al Engines [12] have demonstrated better potential
in ML compute acceleration for non-trivial complex models.
These devices are built on a fundamental design concept:
spatial computing architecture (SCA). The SCA-based designs
utilize a 2-D grid of a large number of small processing
elements to support temporal and spatial parallelization of the
workload. In addition, SCA-based designs often provide low-
power processing capabilities compared to their GPU counter-
parts. As a result, this data-flow-oriented design paradigm of-
fers new opportunities for accelerating computation-intensive
tasks, such as solving complex combinatorial optimization on
edge devices.

Hence, in this work, we present a Versal Adaptive SoCs-
based Ising model processor to study the effectiveness of
using spatial computing architecture to solve combinatorial
optimization problems. To our knowledge, this is the first
implementation of the Ising model on a spatial computing
architecture. The key contribution of the work can be sum-
marized as follows:

Cl. We demonstrate the detailed design process for effi-
ciently implementing the Ising model on the Al engine
tiles of the Xilinx VCK-190 platform. Our design uses

https://github.com/SPIRE-GMU/Ising-AIE

traditional parallelization techniques and exploits spatial
parallelization capabilities available in the Ising model.

C2. We evaluate the performance of the optimized spatial
accelerator in terms of latency and power consump-
tion. Our experiments show that, compared with the
embedded ARM cores, spatial accelerators can provide
a significant performance boost with the increasing size
of the Ising model.

C3. We also discuss the limitations of the current spatial
architectures, specifically for Al engines in the Versal
Adaptive SoCs in compute acceleration for combinato-
rial problems.

C4. We have made the code and artifacts for this work avail-
able at https://github.com/SPIRE-GMU/Ising-AIE. This
repository can be used to reproduce our experiments and
explore parallelization techniques presented in this work.

The following sections are presented in the given order.
First, Section II discusses the Ising model and the basics
of the Versal Adaptive SoCs. Then, Section III presents the
detailed Ising model solver design on the Versal Al engine.
Next, Section IV details our experimental setup along with the
results. After that, critical implementation issues for such de-
signs are presented in Section V. Finally, Section VI concludes
the paper.

II. BACKGROUND
A. The Ising Model

The Lenz-Ising model (also known as the Ising model)
[13] describes the ferromagnetic properties, such as the phase
transition mechanism of materials. A ferromagnetic material
can be considered a collection of interacting spin units, as
shown in Figure 1. In the Ising model, these spin units are
arranged in a lattice structure — for example, a 2-dimensional
configuration of the spin units constitutes the 2-D Ising model.
For a grid of N-lattice points, a spin unit (o;) resides at each
grid point, which can be either at a spin up (41) or spin down
(—1) configuration, iLe., o; € {—1,+1}, where i = 1,..., N.
Then, the energy for a spin unit configuration can be calculated
using the local Hamiltonian,

N
H(O’l) = ZJi,jO'in — hL(O'l) (1)
j=1

Here, J;; is the interaction between " and j*" spin

units and h; represents the external magnetic field or bias
the i*" spin unit. Now, by aggregating the local energy for
all the lattice points in a structure, the total energy of the
configuration is represented with the global Hamiltonian as,

N
H = Z Ji,jO'iO'j — th(Uz) (2)
<ij> i
For a given lattice structure or arrangement S, the
Ising model finds the spin configurations, i.e., values for
01,09,...,0nN, that yield the minimum total energy (also
known as the ground state) for the structure.

The Ising model is an NP-complete problem [4]. Inter-
estingly, since it is an NP-complete problem, a class of
combinatorial NP-hard problems can be reduced to the Ising
model. For example, the max-cut problem can be reduced
to the Ising model by setting h = 0 in Equation 3, and
considering that the interaction parameter J represents the
edges, and the os represent the nodes of a graph G. Then,
finding the ground state becomes the equivalent of finding the
solution of the max-cut problem for GG [3]. Similar reductions
can also be performed for other NP-hard problems [14].

. Upward spin O Downward spin

Fig. 1. The 2-D Ising model. Black blocks are the upward spin units, and
white blocks are the downward ones.

Since the 2-D Ising model is NP-complete, finding a
tractable solution for the Ising model requires approximations
and heuristics. One such heuristic is the nearest-neighbor-
based Metropolis algorithm, which can be described as fol-
lows. To solve for the ground state of a structure S, we can
start with an initial random spin configuration of the structure
and assume the nearest-neighbor interactions only. Then, we
update each lattice point so that the total energy of S is reduced
at each step. This can be done sequentially — by considering
the interaction of each lattice point p; with the others and
then setting the spin o; so that the local Hamiltonian for p; is
reduced. To do so, we can take the negative of the first order
derivative for the local Hamiltonian, i.e.,

OH;
o = > Jijoi—hi 3)
J

If f%gf > 0, then the spin of the unit (i.e., 0;) is flipped;

otherwise it remain as before. This spin update is computed
over the entire S to find the next configuration demonstrating
lower energy than the previous configuration. A solution is
found when this process converges to the lowest energy.

B. Versal Adaptive SoCs

AMD’s Versal Adaptive SoCs present the newest generation
of reconfigurable spatial computing products. This product line
features a 2-D grid of up to 400 adaptive intelligent engines
(AIEs). These AIEs are fundamentally different from the GPU
SIMD cores since each of the AIEs operates individually and
can be networked together for a complex task. Each AIE
contains a 7-way VLIW vector processor, a scalar processor,
and a local memory unit. In addition, the Versal devices also
contain FPGA cores, reconfigurable network-on-chips (NoCs),

https://github.com/SPIRE-GMU/Ising-AIE

and two full-fledged ARM processors to support real-time
operation and data movement, as shown in Figure 2. The
overall design of the device targets edge applications and is
optimized for power efficiency.

.I-I 50 COIumns -I.I.I //
/
4

Al engine

50 columns X 8 rows
Al engines

Network on Chip

ARM Cortex a-72 Programmable Logic

Fig. 2. The architecture of AMD-Xilinx Versal Adaptive System on Chip
(ASoC). Each chip contains a grid of 8 x 50 adaptive intelligent engine (AIE)
tiles, programmable FPGA logic, and two ARM processors.

III. DESIGN OF ISING MODEL ACCELERATORS ON A
SPATIAL ARCHITECTURE

To find a solution for the Ising model, we start with a
random distribution of spins. Considering the nearest neighbor
approximation, we notice that non-neighboring lattice points
are independent, and their spin updates can be computed in
parallel. This leads to a checkerboard formation [15] where
the complete grid can be divided into black and white points,
and computation of the spin updates for the same colored
grid points can be done in parallel. We have exploited this
parallelism using single and multiple Al engines.

First, consider the simplest case with a serial processor [16].
Let’s consider a n x n checkerboard. We can update the non-
neighboring n? /2 lattice points serially for the first half of the
iteration and then the rest in the second half. Assuming each
spin update computation takes ¢ time on a serial processor, it
will take tn? for one iteration pass.

Algorithm 1 represents the serial implementation. It first
initializes an MxM lattice with random value selected from
{1, —1}, representing a random initial spin distribution in a
system. Next, the system begins to update the state of atoms
in n iterations. Every time updating the state, it traverses each
grid point and accumulates energy and magnetization.

Now, considering the case of an [-way VLIW vector pro-
cessor, we can vectorize the checkerboard algorithm. Since
the same colored grid points are independent, one can issue
spin updates for [-grid points in parallel. Assuming each spin
update computation takes ¢’ time on a vector processor, for
this scenario, it will take #'n?/l time for one iteration pass.
Assuming ¢’ = t, this will provide linear speedup with the
increasing number of [. Therefore, we also implemented the
parallel checkerboard algorithm using the vector processors in
a single Al engine. Details on the AIE-specific intrinsic-based
codes for the implementation are presented in Figure 4.

Spatial acceleration using the 2-D arrangement of the AIE
tiles is one of the critical features of the Al engine. To leverage
this, we divide the complete grid into smaller sub-grids and

Algorithm 1 Ising Model
Input: Grid length (M)
Output: Energy, Magnetization
Vol =M x M
S[Vol] « {-1,1} > Initialize grid
Xup[Vol], Xdn[Vol], Yup[Vol], Ydn[Vol] < S[Vol]
> Initialize neighboring cell of each grid
double Magnetization, Energy = 0.0
while n < iteration do
double mags, esum = 0.0
for i = 0,...,Vol-1 do
energy_current, energy_updated, delta = 0.0
neighbor = Xupli] + Xdn[i] + Yup[i] + Ydn[i]
energy_current = - s[i] X neighbor
energy_updated = s[i] x neighbor
delta = energy_updated - energy_current
if e(—betaxdelta) - erand48() then
s[i] = -s[i]
energy_current = energy_updated
energy
end if
esum += energy_current
mags += s[i]
end for
Energy += esum / Vol
Magnetization += fabs(mags / Vol)
end while
Magnetization /= iteration
Energy /= iteration

> Update the

> Accumulate

then process each in separate tiles using the VLIW vector
processors. We implement the computation for each sub-grid
into individual tiles for our design. For example, we divide a
32 x 32 grid into four 16 x 16 sub-grids and use a 2 x 2 tile
formation to compute the spin updates for the entire grid as
shown in Figure 3.

Break down a grid into 2x2
and allocate to 4 Al engines

1

8
33 0 35

AIE_00 <— AIE_01

! !

AIE_10 =— AIE_11

48 50

240 pZ3Y 242

<—> AXI stream Shared data between neighboring cells

Fig. 3. Breaking down a grid into 2x2 formation and allocating the tasks
to four AI engine tiles. For AIE_10, cells in the North and East sides are
neighboring cells that are processed in AIE_00 and AIE_11 tiles. The data at
the edge of each sub-grid is shared between the tiles to satisfy the boundary

conditions at each sub-grid. All of the four AI engine tiles communicate via
the AXI stream.

For this spatial distribution of the computation, let us
assume the lattice is divided into black-and-white points.

* declare the neighboring cells *

xup[VOLUME], yup[VOLUME], xdn[VOLUME], ydn[VOLUME];

Vectorize

v16int16 xupy[VOLUME/16], yupv[VOLUME/16],
v16int16 xdnv[VOLUME/16], ydnv[VOLUME/16];

* initialize neig
for(int i = 0; i< NI; i++) {
for(intj = 0; j < N2; j++) {
xup[i+j*N1d2] = ((i+1)2)%N1d2 + }*N1d2 + VOLUMEd2;

hboring cells *

yup[i+j*NId2] =12 + ((+1)%N2)*N1d2 + VOLUMEd2, Initialize Elements in Vector

xdn[i+j*N1d2] = ((i-1+N1)/2)%N1d2 + j*N1d2 + VOLUMEd2; e

ydn[i+j*N1d2] = i2 + ((-1+N2)%N2)*N1d2 + VOLUMEd2;

) }
xupv[(+*N1d2)/16] = upd_elem(xupv[(i+j*N1d2)/16],(i+*N1d2)%16,ext_elem(s[xup/16]xup%16));
yupv[(+*N1d2)/16] = upd_elem(yupv[(i+i*N1d2)/16],(i+i*N1d2)%16,ext_clem(s[yup/16],yup%16));
- xdnv[(+j*N1d2)/16] = upd_elem(xdnv[(+i*N1d2)/16],(i+*N1d2)%]16,ext_clem(s[xdn/16],xdn%16));

ydnv[(i+*N1d2)/16] = upd_elem(ydnv[(i+*N1d2)/16],(i+*N1d2)%1 6,ext_clem(s[ydn/16],ydn%16));

* compute center cells and update the neighboring cells *

for(iut k = Ok < VOLUMESk+) { Operate with Intrinsics

float neighbours = s[xup[k]] + s[yup[k]] + s[xdn[k]] + s[ydn[k]]; — 3
V16int16 neighbours
} neighbours = operator+(xupv[K],yupv[k]) ;
ighbours = operator+(neighbours,xdnv{k]) ;
neighbours = operator+(neighbours,ydnv[k]) ;

Fig. 4. Vectorizing the Metropolis algorithm for implementing Ising model
solvers in the vector processor of a single Al engine tile. For this code
segment, 16 variables are packed into a v16int16 vector. One can increase
and decrease the bit-width of each variable based on the computational
preferences. The computation of each vector is done in one single step,
updating 16 grid points in parallel.

In each iteration step, all the same colored grid (say the
black) points can be updated in parallel, although they are
distributed in multiple AIE tiles. Next, to satisfy the boundary
conditions, updated boundary values (for the black points)
at each sub-grid are communicated to the neighboring grids
via the AXI stream. Note that since the same colored grid
points do not affect each other, these updates can be safely
calculated and transmitted. Once all the neighboring updated
values for the alternating color (i.e., the black points) are
available, the remaining same colored (i.e., white) grid points
can be computed in parallel synchronously on all the tiles.
Thus, one iteration of the Metropolis algorithm is completed.
Our design uses the available AXI stream connection between
the tiles to communicate the updates between neighbors.
Algorithm 2 presents the key idea of the computation. The
most computationally expensive part of the algorithm, i.e.,
updating each atom in a system, is operated in the vector
processors with Al intrinsics operator+/-, ext_elem, and mul.

IV. EXPERIMENTAL SETUP AND RESULTS

We have used the AMD-Xilinx VCK-190 reconfigurable
computing platform that supports spatial accelerators using the
AlE tiles. The details of the experimental setup are given in
Table 1. Since the Versal ASoCs provide reconfigurable tiles,
we have explored the acceleration of the Ising model with
varying matrix sizes and precision. We have also investigated
the Metropolis algorithm in (1) serial, (2) vectorized, and (3)
multi-tile configurations. Our detailed results are presented in
Table II.

For the serial implementations, computing time increases
in a polynomial fashion along with the matrix size. This is
expected as discussed in Section III. In the vector imple-
mentation, our design adopts the checkerboard technique to
separate the non-neighboring nodes. As a result, our design
operates on multiple (up to 16) grid points simultaneously
and achieves around 16x speedup. This observation agrees

Algorithm 2 Vectorized Ising Model Implementation
Input: Grid length (M)
Output: Energy, Magnetization
Vol =M x M/ 16
> Assume a M*M grid, and divide into 16 group
v16int16 S[Vol] + {—1,1} > Vector initialization
v16int16 Xup[Vol], Xdn[Vol], Yup[Vol], Ydn[Vol] <«
S[Vol]
double Magnetization, Energy = 0.0
while n < iteration do
double mags, esum = 0.0
v16int32 magsv, esumv
for i = 0,...,Vol/16-1 do
v16int32 energy_current, energy_updated, delta
v16intl6 neighbor = operator+(Xup[i] + Xdn[i] +
Yup[i] + Ydn[i])
energy_current = mul(-s[i], neighbor)
energy_updated = mul(s[i], neighbor)
delta = operator-(energy_updated - energy_current)
if e(~betaxdelta) > erand48() then
s[i] = -sli]
energy_current = energy_updated
> Update the energy

end if
esumv = operator+(esumyv, energy_current)
magsy = operator+(magsv, s[i]) > Accumulate
end for
for i =0,...,15 do
mags = ext_elem(magsv,i)
esum = ext_elem(esumv,i)
end for
Energy += esum / Vol
Magnetization += fabs(mags / Vol)
end while
Magnetization /= iteration
Energy /= iteration

TABLE I
EXPERIMENTAL DETAILS FOR THE AMD-XILINX VCK-190
RECONFIGURABLE COMPUTING PLATFORM.

Part Number | XCVC1902-VSVA2179-2MP-ES
Processor Dual-core ARM Cortex-A72
VER190 —Ffemory 8 GB DIMM DDR4
Al Engine 400 AIE tiles @1.25GHz

with our discussions in the previous section. For a larger
problem size, such as the case of the 64x64 grid, the total
memory requirements exceed the total memory available in
each tile and, therefore, cannot be implemented on a single
tile alone. In such cases, we need to leverage the multi-tile
spatial architecture.

For our multi-tile spatial design, we process a 64 x 64 grid
by dividing it into four 32 x 32 sub-grids and follow the
Metropolis algorithm presented in Section III. We expected
a 16 (from the vectorized implementation)x4 (from spatial

TABLE II
PERFORMANCE RESULTS AND COMPARISON FOR EXECUTING THE ISING MODEL WITH DIFFERENT MATRIX SIZES. THE ITERATION LIMIT IS SET TO 2000.

Matrix Precision Cortex A-72 Serial Implementation Vector Implementation

Time(ms) Dyn. Power(W) Tota(W) Time(ms) | Dyn. Power(W) Total(W) Time(ms) Speedup Tiles
16 x 16 int32 314 0.875 2.678 179.9 0.820 2.623 114 15.78 1
32 x 32 intl6 115.8 0.817 2.620 716.0 0.877 2.680 46.0 15.56 1
64 x 64 int8 456.7 0.817 2.620 2881.0 1.198 3.001 49.3 58.44 4

separation) = 64 x acceleration. However, due to the commu-
nication overhead between the tiles to address the boundary
conditions, we observe a speedup of around 58 x compared to
a single-tile serial implementation. Compared with the ARM
Cortex A-72 processor, the spatial design demonstrates a 9x
improvement in speed.

We have also recorded the power consumption for the
serial, vectorized, and multi-tile implementations using the
Power Design Manager (PDM) tool available in Vitis. The
power consumption for different grid sizes on the serial and
vectorized implementation remains relatively the same due to
using a single tile. However, the spatial implementation with
four tiles for the 64x 64 grid consumes more dynamic power
due to the increased number of Al engines engaged. Notice the
total power consumption for even the larger grid size remains
around 3 watts. These experimental results show that spatial
computing architectures can provide promising performance
gain in acceleration and power budgets for solving complex
combinatorial problems in low-power edge nodes.

V. IMPLEMENTATION ISSUES

Although we have demonstrated that efficient implemen-
tation of Ising model processors is feasible in a spatial
architecture, some constraints and design choices for the Versal
ASoCs create significant bottlenecks in such computation.
These implementation issues are discussed below.

o Small Stack Size: The stack size of an AIE tile can be
prohibitively small (32KB) for more complex problems.
For example, storing a sub-grid of 64 x 64 in each tile is
not feasible; thus, the data must be fetched/stored from/to
the global memory for large grid sizes. This will cause
significant delays in processing:

Limited Operation Sets: The vector processor in the
AIE tile supports only a limited set of data types and
operations. Even using the intrinsics, a designer is bound
to use only certain operations, which affects the available
design choices.

Limited Connectivity: Each tile has a connection to only
four streams, two INs and two OUTs. As a result, an AIE
tile cannot support both-way stream communication with
all four neighbors.

VI. CONCLUSIONS

This work presents a novel spatial acceleration-based Ising
model processor on a Versal ASoC platform. These new
coarse-grained reconfigurable architectures can significantly
improve performance in solving complex combinatorial prob-
lems in budget-constrained edge devices. Given the novelty of

spatial architectures, our design and the open-source imple-
mentation will help and inspire further research on compute
acceleration using spatial computing architectures.

VII. ACKNOWLEDGEMENT

This material is based upon work supported by the National
Science Foundation under Grant No. 2245156. Any opinions,
findings, conclusions, or recommendations expressed in this
material are those of the authors and do not necessarily reflect

the views of the National Science Foundation.

[

[1]

[2]

[3]
[4]
[5]
[6]

[7]

[8]

[9]

[10]

(1]

[12]
[13]

[14]

[15]

[16]

REFERENCES

S. Patel, L. Chen, P. Canoza, and S. Salahuddin, “Ising Model Optimiza-
tion Problems on a FPGA Accelerated Restricted Boltzmann Machine,”
Oct. 2020. arXiv:2008.04436 [physics].

A: Minamisawa, R. Ilimura, and T. Kawahara, “High-speed Sparse Ising
Model on FPGA,”in 2019 IEEE 62nd International Midwest Symposium
on Circuits and Systems (MWSCAS), (Dallas, TX, USA), pp. 670-673,
IEEE, Aug. 2019.

C. Cook, H. Zhao, T. Sato, M. Hiromoto, and S. X.-D. Tan, “GPU Based
Parallel Ising Computing for Combinatorial Optimization Problems in
VLSI Physical Design,” Mar. 2019. arXiv:1807.10750 [physics].

B. A. Cipra, “The Ising Model Is NP-Complete,”

G. T. Barkema and T. MacFarland, “Parallel simulation of the Ising
model,” Physical Review E, vol. 50, pp. 1623-1628, Aug. 1994.

A. Mondal and A. Srivastava, “Ising-FPGA: A Spintronics-based Recon-
figurable Ising Model Solver,” ACM Transactions on Design Automation
of Electronic Systems, vol. 26, pp. 1-27, Jan. 2021.

C. Yoshimura, M. Hayashi, T. Okuyama, and M. Yamaoka, “FPGA-
based Annealing Processor for Ising Model,” in 2016 Fourth Inter-
national Symposium on Computing and Networking (CANDAR), (Hi-
roshima, Japan), pp. 436-442, IEEE, Nov. 2016.

A. Mondal and A. Srivastava, “Spintronics-based Reconfigurable Ising
Model Architecture,” in 2020 21st International Symposium on Quality
Electronic Design (ISQED), (Santa Clara, CA, USA), pp. 134-140,
IEEE, Mar. 2020.

R. limura, S. Kitamura, and T. Kawahara, “Annealing Processing Archi-
tecture of 28-nm CMOS Chip for Ising Model With 512 Fully Connected
Spins,” IEEE Transactions on Circuits and Systems I: Regular Papers,
vol. 68, pp. 5061-5071, Dec. 2021.

L. Gwennap, “Groq rocks neural networks,” Microprocessor Report,
Tech. Rep., jan, 2020.

J. Vasiljevic, L. Bajic, D. Capalija, S. Sokorac, D. Ignjatovic, L. Bajic,
M. Trajkovic, I. Hamer, 1. Matosevic, A. Cejkov, et al., “Compute
substrate for software 2.0,” IEEE micro, vol. 41, no. 2, pp. 50-55, 2021.
AMD, “Versal: The First Adaptive Compute Acceleration Platform,”
Sept. 2020.

E. Ising, “Contribution to the theory of ferromagnetism,” Z. Phys,
vol. 31, no. 1, pp. 253-258, 1925.

N. Mohseni, P. L. McMahon, and T. Byrnes, “Ising machines as hard-
ware solvers of combinatorial optimization problems,” Nature Reviews
Physics, vol. 4, pp. 363-379, May 2022.

L.-P. Henry, P. C. Holdsworth, F. Mila, and T. Roscilde, “Spin-wave
analysis of the transverse-field ising model on the checkerboard lattice,”
Physical Review B, vol. 85, no. 13, p. 134427, 2012.

“Introduction to parallel programming with mpi,.” https://pdc-
support.github.io/introduction-to-mpi/, Accessed May 24, 2024.

	Introduction
	Background
	The Ising Model
	Versal Adaptive SoCs

	Design of Ising Model Accelerators on a Spatial Architecture
	Experimental Setup and Results
	Implementation Issues
	Conclusions
	Acknowledgement
	References

