2024 58th Asilomar Conference on Signals, Systems, and Computers | 979-8-3503-5405-8/24/$31.00 ©2024 |IEEE | DOI: 10.1109/IEEECONF60004.2024.10942648

Average Reward Reinforcement Learning for
Wireless Radio Resource Management

Kun Yang*, Jing Yang', and Cong Shen*
* Department of Electrical and Computer Engineering, University of Virginia, USA
T Department of Electrical Engineering, The Pennsylvania State University, USA

Abstract—In this paper, we address a crucial but often over-
looked issue in applying reinforcement learning (RL) to radio
resource management (RRM) in wireless communications: the
mismatch between the discounted reward RL formulation and the
undiscounted goal of wireless network optimization. To the best
of our knowledge, we are the first to systematically investigate
this discrepancy, starting with a discussion of the problem
formulation followed by simulations that quantify the extent of
the gap. To bridge this gap, we introduce the use of average
reward RL, a method that aligns more closely with the long-
term objectives of RRM. We propose a new method called the
Average Reward Off-policy Soft Actor-Critic (ARO-SAC), which
is an adaptation of the well-known Soft Actor-Critic algorithm
in the average reward framework. This new method achieves
significant performance improvement — our simulation results
demonstrate a 15% gain in the system performance over the
traditional discounted reward RL approach, underscoring the
potential of average reward RL in enhancing the efficiency and
effectiveness of wireless network optimization.

Index Terms—Radio resource management, averaged reward
reinforcement learning, deep reinforcement learning

I. INTRODUCTION

In recent years, there has been a growing interest in applying
reinforcement learning (RL) methods to solving radio resource
management (RRM) problems in wireless networks. It largely
stems from several important RL properties that match the
characteristics of wireless networking. First, wireless network
optimization is a closed-loop and sequential operation: set
parameters, observe performance, and fine-tune. Second, many
tasks in wireless networks have long-term performance impact,
and their parameters are adjusted at a very low pace. As
a result, the optimization cannot only target the immediate
performance gain, but must take a long-term view. Third, there
exist well-established feedback protocols in wireless standards,
which provide a built-in mechanism for observing the state and
receiving rewards. Lastly, RL research is a highly active and
theoretically well-grounded area of machine learning, which
lays a good foundation to its success in wireless networking.

Despite the promising initial results and the philosophical
match, the majority of the existing solutions rely on the
standard RL formulation, which maximizes discounted cu-
mulative rewards in the long term. This objective, however,

The work of K. Yang and C. Shen was partially supported by the
U.S. National Science Foundation (NSF) under awards CNS-2002902, CNS-
2003131, ECCS-2029978, ECCS-2030026, ECCS-2143559, and SII-2132700.
The work of J. Yang was supported in part by the U.S. NSF under awards
CNS-1956276, CNS-2003131 and CNS-2030026.

979-8-3503-5405-8/24/$31.00 ©2024 IEEE 1188

is misaligned with the typical objectives of wireless network
optimization, where we do not treat future utility less im-
portantly than the current one. A typical example is that we
generally try to maximize the long-term average throughput
of the entire network, treating both current and future user
throughput equally in this formulation.

Naturally, one would ask whether we can design RL so-
lutions for wireless network optimization that directly use
undiscounted total reward as the objective. In the RL literature,
this falls into the category of average reward RL [1]. To the
best of the authors’ knowledge, such average reward-based
RL solutions have not been developed in wireless network
optimization. In fact, the field of average reward RL itself is
relatively under-explored. Only until recently have we seen
the advancements to extend Policy Proximal Optimization
(PPO) [2] and Deep Deterministic Policy Gradient (DDPG)
[3] into the average reward framework. Nevertheless, these
developments signal a growing potential for applying average
reward RL in real-world engineering applications.

In this paper, we begin by pinpointing the discrepancy
between the widely used discounted reward RL and the
commonly adopted goals that are specific to RRM problems
in wireless networks. Subsequently, we cast the RRM problem
in an average reward RL framework. We develop a novel
extension of the popular Soft Actor-Critic (SAC) algorithm to
the average reward RL formulation, enhancing its applicability
and effectiveness in addressing the RRM challenge. Our main
contributions are summarized as follows.

1) To the best of our knowledge, we are the first to iden-
tify the discrepancy between the discounted reward RL
formulation and the undiscounted objective of wireless
network optimization. We showcase this discrepancy by
re-formulating a RAN network slicing problem as an
averaged reward RL one, and highlighting the mismatch
of the design objectives of the prior RL approaches. We
achieve this by unequivocally demonstrating the impact
of the discount factor v and environmental horizon on
RAN slicing RRM in the prior solutions via numerical
experiments.

2) We investigate how the practical algorithms handle the
challenges of average reward rate estimation, and how
the RL update is performed. Based on the estimation
strategy for the off-policy RL algorithms introduced
in ARO-DDPG [3], we extend the popular off-policy
deep RL algorithm SAC to an average reward version

Asilomar 2024

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on July 04,2025 at 20:05:44 UTC from IEEE Xplore. Restrictions apply.

called ARO-SAC (Average Reward Off-policy SAC).
With a tweak to the conventional TD error and Bellman
equation, our new design enables SAC to perform with
the average reward objective.

3) Our experimental result using an industry-grade wireless
network simulator reveals that, with a properly selected
hyperparameter, the proposed ARO-SAC can outperform
the best SAC by a performance gain of 15%. We
further investigate how the learning rates for the average
reward rate and the environment horizon impact the
performance of ARO-SAC.

The rest of the paper is organized as follows. The related
works are surveyed in Section II. In Section III, we formulate
the RRM problem using discounted reward RL and discuss
the objective mismatch. We investigate the impact of discount
factor and horizon in Section IV, which motivates us to
develop the ARO-SAC algorithm in Section V. Section VI
concludes the paper.

II. RELATED WORKS

RL for RRM: Due to its natural fit, RL-based solutions
have been gradually adopted to solve RRM problems. Previous
efforts include the solutions based on the bandit algorithms
[4]-[8]. Subsequently, Q-learning-based algorithms were de-
veloped [9]-[11], followed by the adoption of the actor-
critic architecture [12]-[16]. Regarding decentralized methods,
multi-agent reinforcement learning (MARL) has solidified its
relevance in [17]-[20]. More recent research has explored
training RL policies using offline datasets [21], [22]. Despite
these advancements, all methods predominantly rely on dis-
counted reward RL algorithms, which overlooks a crucial
aspect: the mismatch between the traditional objectives of
wireless systems and the principles underlying discounted
reward RL.

Averaged reward RL: Average reward RL, as a different
formulation from the discounted reward RL setting, was de-
signed to handle the scenarios where the future reward is of
equal importance as the current one [1]. Most of the early
works on average reward RL mainly focus on the tabular
cases [2], [23], limiting their potential usage in complex
environments. The initial development of average reward-
based deep RL focused on Deep Q-Network (DQN) [24],
which has limited performance compared to the actor-critic-
based methods. The recent advancement in actor-critic-based
average reward DRL algorithms [3], [25] has enabled the
implementation of average reward RL for more practical
problems.

III. PROBLEM FORMULATION

In this section, we first establish the RRM problem within
the context of RAN slicing. Then, we formulate the RRM
problem into a discounted reward RL one. We then discuss the
mismatch between the objectives of these two formulations.

A. RAN Slicing

In a RAN slicing system, we assume that the system has NV
slices in total, each handling a distinct user/traffic type. For
these slices, our goal is to allocate packed radio resources
properly to maximize the Quality of Service (QoS) of the
whole system. These packed resources, named resource block
groups (RBG), are then allocated to the users by the propor-
tional fairness aware scheduler [26]. The system structure is
illustrated in Fig. 1.

=
. N
O slice1: = | —
] H H N
= sice2ig B BEE R B E
EEE Emees E N &
E slice3 WM W N N .
N o .
EEEEEEEEEEEE EEN
N
() 5.
R
1o
[

Fig. 1. Illustration of a RAN slicing system

Assume the system has M RBGs in total, and the
QoS function at time ¢ is f;(M(t)), where M(t) =
[mq(t), - ,mn(t)], where M(t) is the resource allocation
vector which stands for the resource blocks allocated to
different slices and m;(t) stands for the resource allocated
to slice 7. Then, we can formulate the optimization problem
as:

1 T
lim — " fi(M(t))

maximize
M(t) T—ooT
N (D
subject to Z m,(t) < M.
i=1

Clearly, the design goal of this formulation is to achieve the
best possible long-term average QoS.

B. From RRM to Discounted Reward RL

In previous studies utilizing deep reinforcement learning
(DRL) for the RRM problem in RAN slicing, the standard
approach is to formulate the problem using discounted reward
RL [?], [14], [15], [27]. In this section, we first discuss
this discounted reward RL setting and then show where the
mismatch happens.

As a concrete case of RAN slicing, we consider that in the
optimization problem outlined in Eq. (1), two QoS metrics are
pivotal: the total downlink throughput of the system and the
average delay violation rate among users. The delay violation
rate is defined as the proportion of packets exceeding the QoS
latency threshold relative to the total number of packets a user
receives. We then define the Markov Decision Process (MDP)
for this RL problem as follows.

1189

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on July 04,2025 at 20:05:44 UTC from IEEE Xplore. Restrictions apply.

o Observations: Building on the considerations outlined
above regarding system performance metrics such as
throughput and delay violation rate, it is pivotal to
monitor how much of the allocated resources have been
utilized. Accordingly, we gather the following metrics
for each slice in the system to serve as observations
in our MDP: received traffic throughput T}, traffic load
T, resource utilization rate U, delay violation rate Do,
and average one-way delay D,,, from every slice in the
system. The observations are formally specified as

{T;'x,i; ﬂx,i; Uia Dvio,h Davg,i}izli,,, N *

o Actions: As outlined in Section III-A, we need to allo-
cate RBGs across different slices. Instead of distributing
discrete resource units, our approach involves allocating
a proportional share of RBGs to each slice, rendering
our action a continuous variable within the range [0, 1].
Specifically, our action at time ¢ is represented as A(t) =
[a1(¢), -+ ,an—_1(t)], where each a;(t) € [0,1] denotes
the proportion of RBGs allocated to slice :. We ensure the
allocation is legitimate (i.e.,), a;(t) < 1) by integrating
a softmax layer at the output of our policy network,
ensuring a valid probability distribution over the slices.

e Reward: The reward design in a RAN slicing system
should reflect its QoS objectives. Our configuration prior-
itizes two key components: the overall system throughput
and delay violation rates. Accordingly, we construct our
reward function as

=1

where each component of the reward, r;(¢), is defined as:

7i(t) = Tix,i(t) — aDyio i ().
In our experiment, we set « = 4 to impose a heavier
penalty on the delay violations.

Assuming a discounted reward setting with the discount
factor ~, the objective of this RL problem is:

oo
max E Z Y R(t)
t=0

While this objective accumulates rewards over infinite time
steps, the influence of future rewards diminishes significantly
due to the discount factor. For instance, with v = 0.95,
rewards beyond 50 time steps contribute minimally to the
objective, effectively accounting for only about 0.01 of their
original value. This aspect of discounting does not align well
with our initial goal as defined in Eq. (1), where the wireless
network seeks optimal average performance over an infinite
horizon. This mismatch motivates us to find better solutions
to close the gap between the discounted RL and the original
objective in our wireless network optimization problem.

TABLE I
EXPERIMENT PARAMETERS
Parameter Value
Number of slices 3
Number of UEs per slice 6 —20
Delay violation threshold 100 ms
Area 120 x 10 m?
Downlink traffic 2 Mbp/s
Traffic pattern Poisson arrival
UE mobility 1—2m/s

C. Detailed Environment Setting

As described in Sec. III-A, we consider an RRM problem
in a RAN slicing system with N slices and M RBGs. In our
experiment, we have utilized netgymenv [28] as our simulator.
We set N = 3 and M = 25. Our traffic model follows the
LTE module in NS-3 [26]. To introduce different traffic flows
for different slices, we assign a different user number to each
of the slices ranging from 6 to 20. The detailed environment
setting is given in Table L.

For the resource type we allocate to each of the slices, we
utilize a setting similar to [?] where the soft slicing strategy is
used. In a soft slicing system, when the resource is allocated
to a slice, the users in this slice have priority in using these
resources. The leftover resources can then be re-used by other
users from different slices if the allocated resource is not fully
used.

As for the RL algorithm, we use Soft Actor-Critic (SAC)
[29] as our primary choice. We choose this algorithm mainly
because we would like to see whether extending an existing
deep RL algorithm to its average reward version is applicable.

IV. THE IMPACT OF DISCOUNT FACTOR AND HORIZON

We are not the first to identify the mismatch between
the discounted reward RL and the real-world average return
scenarios, where in [30], the authors have noticed that there
exists a v mismatch between the actors and critics. In [31],
[32], the authors report supreme performance with large v on
long horizon tasks. In this section, we empirically establish
that the same mismatch exists in the RRM problem for RAN
slicing.

We conduct two key experiments to validate the mismatch
between the discounted reward RL objective and the real
wireless system goal. To verify the impact of horizon length,
we incorporate a period reset signal, which resets the simulator
after a predefined time step 7". We regard this reset length as
the period length of our environment. In the first experiment,
we fix T" and vary the discount factor -, demonstrating that
a larger v improves performance by valuing the longer future
more equally. In the second experiment, we fix a large v and
vary T, confirming that a larger v can help the agents look
into the longer future.

Fix T, vary ~: Table II illustrates that when 7' is constant,
increasing ~ consistently enhances the RL agent’s perfor-
mance. The result suggests that it is helpful in a system
trying to maximize long-term average rewards to have a larger

1190

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on July 04,2025 at 20:05:44 UTC from IEEE Xplore. Restrictions apply.

discount factor, i.e. making the agent able to take longer steps
into their consideration.

TABLE 11
EXPERIMENTAL RESULTS WITH 7" = 200 AND DIFFERENT 7y

¥ cumulative reward
0.9 10.53 £ 1.25
0.93 13.24 +£0.52
0.95 14.20 £ 0.50
0.99 15.67 + 0.37

Fix v, vary T': When + is fixed at a high value (e.g., 0.99),
extending the horizon also results to an improved average
reward per step, as evidenced by the results in Table III. This
longer horizon also plays a pivotal role as it ensures the RL
agent can learn the transition from a longer future.

TABLE III
EXPERIMENTAL RESULTS WITH v = 0.99 AND DIFFERENT 1"
T average reward
200 0.078 £ 0.002
500 0.079 £ 0.002
1000 | 0.082 4 0.003
2000 | 0.085 + 0.005

Summarizing these results, a heuristic solution emerges: set
v = 1 which would ensure that rewards do not decrease
over time. However, in our experiment shown in Figure 2,
naively setting « to 1 appears beneficial for policy training
initially but leads to significant instability later. This instability
suggests that simply increasing -y is not optimal. Based on this
observation, a new tool is needed to close the gap between
discounted reward RL and the network optimization goal.

1.0
0.9 —a ﬂ&
~J ’
o8 7 //'\\
g \\ { \/*“
2 0.7 A
4
9 06
N
™
£05 {
=
<}
2.4 SAC (gamma = 0.9)
* = SAC (gamma = 0.93)
= SAC (gamma = 0.95)
0.3 SAC (gamma = 0.99)
= SAC (gamma = 1)
0.2
0 20 40 60 80 100
Step

Fig. 2. Experimental results with v = 1. Shadowed areas indicate the

confidence intervals.

V. AVERAGE REWARD SOFT ACTOR-CRITIC

The concept of average reward RL, as the name suggests,
is to maximize the long-term average reward for sequential
decision-making problems [1]. In this section, we discuss the
difference between the average reward RL and the discounted
reward RL, and show how to change a discounted reward

formulation into an average reward formulation. Then, follow-
ing the design flow of ARO-DDPG [3], we extend the SAC
principle to satisfy the average reward objective and conduct
experiments to evaluate the performance of this new algorithm.

A. Re-formulation

The difference between the average reward RL and dis-
counted reward RL primarily lies in their objective functions,
where the average reward RL’s objective is defined as:

max lim %Zr(t).)

T T<oo
t=1

In Eq. (2), if we treat the reward function r(¢) as the QoS
function in Eq. (1), the goal of the average reward RL exactly
matches the wireless network objective.

To solve this new RL problem, the major workflow remains
the same. From the principle in [1], similar to the discounted
reward setting, we can solve the average reward RL through
the Bellman equation. More specifically, we can still utilize
the TD error-based method to solve the problem. The only
difference is that, instead of having a discount factor -, we now
maintain an estimation of the true average reward p to help
with the solution. The process of getting the average reward
TD error is listed below.

In the average reward setting, we define the differential
return, which measures the difference between the rewards
and the true average reward, as

Gy =Rir1 —r(m)+ Riyo —r(m)+ Reag —r(m)+---, 3)

where 7 stands for the current policy. Based on this differential
return, we then define the value function and compute the
corresponding Bellman equation as

Va(s) = Ex[Gi|S; = s] S
=]Eﬂ- [Rt+1 — ’I"(TF) + Gt—&-l‘st = S]

= m(al9)Y > (s rls,a)fr —r(x)
+ Ex[Gii1[Seq1 = §]]
= Zﬂ'(a|s)2p(s’,r|s, a)lr —r(m) + Ve(s)H]. (5)

From this Bellman equation and the definition of the TD
difference, we can now compute the one-step TD as

0 = Rip1—p+ V(Si41) = V(Se). (6)

For comparison, we note that the standard discounted reward
TD error equals

0t = Rep1 + 9V (St41) — V(Sp). @)

Comparing these two, we see that the new TD error in Eq. (6)
substitutes the discount factor with the estimated average
reward rate p.

1191

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on July 04,2025 at 20:05:44 UTC from IEEE Xplore. Restrictions apply.

B. Average Reward SAC

With the average reward TD error, if we have an accurate
estimate of p, we can solve the RL problem by minimizing
this error. However, this is a challenging task and two main
methods have been adopted in average reward DRL. One is to
collect the full trajectory of the policy and directly estimate p
by setting

p=(1-a)+ P($nsan)-

2\9
an

As described in [25], this type of estimation is more desirable
for on-policy algorithms like PPO. The second choice is to
make the average reward a trainable parameter and then to use
gradient descent to update this parameter [3]. Mathematically
we have

Pry1 = Pt + Ve,

where

Q(Snat)-

Since we use SAC as our primary discounted reward RL
algorithm, which is an off-policy one, the latter choice is more
applicable for designing the average reward SAC.

To develop SAC under an average reward setting, we take
one step further from [3] and design ¢; for SAC as:

— pr — min(Q1(s¢, ar), Q2(s¢,ar)). (8)

Following this step, we extend the SAC algorithm into an
average reward version and describe the complete procedure in
Algorithm 1, where we mark the different steps incorporating
p in the bold font.

Et = ’I“(St, CLt) — Pt —

et = 1(st, ar)

C. Experiments

10
0.9
o
o
g
208
o
e
[}
N
=07
£
£
Q
Z 0.61
- SAC (gamma = 0.99)
: —— ARO_SAC
0 20 40 60 80 100

Step

Fig. 3. Experimental result using ARO-SAC, where the experiment is
averaged over 5 independent runs over 5 different combinations of user
numbers.

In this section, we implement the proposed ARO-SAC in
our simulation and compare its performance with the vanilla
SAC with v = 0.99. To verify the effectiveness of ARO-SAC,
we compared the performance of the algorithm with pure SAC
under horizon 7" = 200 and discount factor v = 0.99.

Algorithm 1 Average Reward Off-Policy Soft Actor-Critic
(ARO-SAC)
1: Initialize policy parameters 6, Q-function parameters
¢1, @2, average reward estimator p
2: Initialize target Q-function parameters

¢17 ¢targ,2 = (b?

¢targ,1 =

3: Initialize environment and observe initial state s

4: Initialize replay buffer D

5: for each time step do

6: Sample action a ~ my(-|s) based on current policy

7: Execute action a in the environment

8: Observe reward 7, new state s’, and done signal d

9: Store transition tuple (s, a,r, s, d) in replay buffer D

10: Sample random minibatch of transitions (s, a,r, s’, d)
from D

11: Compute target Q-value:

12: y=r—p+min_y2Qy,,,,.(s,a)

13: where @’ ~ my(-|s)

14: Update Q-functions by one step of gradient descent
using:

15: Vi 2 18] S (Qe,(s,a) —y)? fori=1,2

16: Update pohcy by one step of gradient ascent using:

17 Vot TB] > logme(als)Qe(s,a)

18: Update average reward estimator p:

19: Vorm 2(e)?

20: Update target networks:

21: Grarg,i < T + (1 — T)brarg,s for i =1,2

22: Observe new state s < s’

23: end for

The result in Fig. 3 shows that the performance of our
proposed ARO-SAC, while eliminating the drawback of an un-
stable convergence caused by setting v = 1, also outperforms
vanilla SAC with v = 0.99 by 15%. This demonstrates a solid
gain of utilizing average reward RL on this RRM problem
in RAN slicing over the discounted counterpart. However,
we also want to point out that while the average reward
RL does help with the policy’s performance, it introduces
an extra trainable parameter that needs extra hyperparameter
tuning (learning rate selection) steps. The learning rate for the
parameter p needs careful selection. In our experiment, we set
this learning rate to le — 5, which is slightly smaller than the
learning rate of our actor-network.

VI. CONCLUSION

This paper addressed a critical mismatch between the
conventional discounted reward reinforcement learning (RL)
framework and the long-term objectives inherent to radio
resource management (RRM) in wireless networks. We first
validated this mismatch between discounted reward objec-
tives and the actual goals of wireless systems. Our results
underscored that even slight modifications toward considering
longer-term outcomes, such as extending the horizon and
adjusting the discount factor, could enhance performance
under the discounted reward framework. We then developed

1192

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on July 04,2025 at 20:05:44 UTC from IEEE Xplore. Restrictions apply.

the Average Reward Off-policy Soft Actor-Critic (ARO-SAC),
adapting the Soft Actor-Critic algorithm to the average reward
framework, which significantly aligns with the long-term goals
of RRM. Our experiments demonstrated a 15% improvement
in the overall system performance over the conventional dis-
counted reward RL approach, confirming the effectiveness
and advantages of average reward RL in enhancing wireless
network management. Interesting future works include pro-
viding theoretical guarantees of ARO-SAC and improving the
algorithm design by reducing the hyperparameter fine-tuning.

[1]
[2]

[3]

[4]

[6]

[7]

[8]

[9]

(10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

REFERENCES

A. G. Barto, “Reinforcement learning: An introduction by richards’
sutton,” STAM Rev, vol. 6, no. 2, p. 423, 2021.

S. Zhang, Y. Wan, R. S. Sutton, and S. Whiteson, “Average-reward off-
policy policy evaluation with function approximation,” in international
conference on machine learning. PMLR, 2021, pp. 12578-12588.
N. Saxena, S. Khastagir, S. Kolathaya, and S. Bhatnagar, “Off-policy
average reward actor-critic with deterministic policy search,” in Inter-
national Conference on Machine Learning. PMLR, 2023, pp. 30 130-
30203.

S. Nagaraja, F. Meshkati, M. Yavuz, S. Mitra, V. Khaitan, V. P. S. Makh,
C. S. Patel, Y. Tokgoz, and C. Shen, “Power control for a network of
access points,” Nov. 2016, US Patent 9,497,714.

N. Valliappan, C. Chevallier, A. D. Radulescu, and C. Shen, “Base
station employing shared resources among antenna units,” Sept. 2016,
US Patent 9,451,466.

Y. Huang, C. S. Patel, T. A. Kadous, M. Yavuz, L. Zhang, R. Prakash,
V. Chande, C. Chevallier, S. Nagaraja, F. Meshkati et al., “Methods and
apparatus for power management in a wireless communication system,”
2016, uS Patent 9,451,480.

C. Shen, R. Zhou, C. Tekin, and M. van der Schaar, “Generalized global
bandit and its application in cellular coverage optimization,” IEEE J. Sel.
Topics Signal Process., vol. 12, no. 1, pp. 218-232, Feb. 2018.

Y. Zhou, C. Shen, and M. van der Schaar, “A non-stationary online
learning approach to mobility management,” IEEE Trans. Wireless
Commun., vol. 18, no. 2, pp. 1434-1446, Feb. 2019.

K. I. Ahmed and E. Hossain, “A deep Q-learning method for
downlink power allocation in multi-cell networks,” arXiv preprint
arXiv:1904.13032, 2019.

F. Meng, P. Chen, and L. Wu, “Power allocation in multi-user cellular
networks with deep Q learning approach,” in IEEE International Con-
ference on Communications (ICC). 1EEE, 2019, pp. 1-6.

G. Zhao, Y. Li, C. Xu, Z. Han, Y. Xing, and S. Yu, “Joint power
control and channel allocation for interference mitigation based on
reinforcement learning,” IEEE Access, vol. 7, pp. 177254-177265,
2019.

Y. S. Nasir and D. Guo, “Deep actor-critic learning for distributed power
control in wireless mobile networks,” in 2020 54th Asilomar Conference
on Signals, Systems, and Computers. 1EEE, 2020, pp. 398-402.

K. Yang, C. Shen, and T. Liu, “Deep reinforcement learning based wire-
less network optimization: A comparative study,” in /JEEE INFOCOM
Workshop on Data Driven Intelligence for Networks, Toronto, Canada,
Jul. 2020, pp. 1248-1253.

M. Polese, L. Bonati, S. D’Oro, S. Basagni, and T. Melodia, “ColO-
RAN: Developing Machine Learning-based xApps for Open RAN
Closed-loop Control on Programmable Experimental Platforms,” IEEE
Transactions on Mobile Computing, pp. 1-14, July 2022.

X. Foukas, N. Nikaein, M. M. Kassem, M. K. Marina, and K. Konto-
vasilis, “FlexRAN: A flexible and programmable platform for software-
defined radio access networks,” in Proceedings of the 12th International
on Conference on emerging Networking EXperiments and Technologies,
2016, pp. 427-441.

Y. S. Nasir and D. Guo, “Deep reinforcement learning for joint spectrum
and power allocation in cellular networks,” in 2021 IEEE Globecom
Workshops (GC Wkshps). 1EEE, 2021, pp. 1-6.

——, “Multi-agent deep reinforcement learning for dynamic power
allocation in wireless networks,” IEEE Journal on Selected Areas in
Communications, vol. 37, no. 10, pp. 2239-2250, 2019.

(18]

[19]

[20]

(21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

1193

K. Yang, D. Li, C. Shen, J. Yang, S.-p. Yeh, and J. Sydir, “Multi-
agent reinforcement learning for wireless user scheduling: Performance,
scalablility, and generalization,” in 2022 56th Asilomar Conference on
Signals, Systems, and Computers. 1EEE, 2022, pp. 1169-1174.

N. Naderializadeh, J. J. Sydir, M. Simsek, and H. Nikopour, “Resource
management in wireless networks via multi-agent deep reinforcement
learning,” IEEE Transactions on Wireless Communications, vol. 20,
no. 6, pp. 3507-3523, 2021.

Y. Zhang and D. Guo, “Distributed MARL for scheduling in conflict
graphs,” in 2023 59th Annual Allerton Conference on Communication,
Control, and Computing (Allerton). 1EEE, 2023, pp. 1-8.

K. Yang, C. Shi, C. Shen, J. Yang, S. Yeh, and J. Sydir, “Offline
reinforcement learning for wireless network optimization with mixture
datasets,” IEEE Transactions on Wireless Communications, vol. 23,
no. 10, pp. 12703-12716, Oct. 2024.

K. Yang, S.-P. Yeh, M. Zhang, J. Sydir, J. Yang, and C. Shen, “Advancing
RAN slicing with offline reinforcement learning,” in 2024 IEEE Inter-
national Symposium on Dynamic Spectrum Access Networks (DySPAN).
IEEE, 2024, pp. 331-338.

S. Zhang, B. Liu, and S. Whiteson, “Mean-variance policy iteration
for risk-averse reinforcement learning,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 35, no. 12, 2021, pp. 10905-
10913.

O. Anschel, N. Baram, and N. Shimkin, “Averaged-dqn: Variance reduc-
tion and stabilization for deep reinforcement learning,” in International
conference on machine learning. PMLR, 2017, pp. 176-185.

X. Ma, X. Tang, L. Xia, J. Yang, and Q. Zhao, “Average-reward
reinforcement learning with trust region methods,” arXiv preprint
arXiv:2106.03442, 2021.

G. E Riley and T. R. Henderson, “The NS-3 network simulator,” in
Modeling and tools for network simulation. Springer, 2010, pp. 15-34.
L. Geng, J. Dong, S. Bryant, K. Makhijani, A. Galis, X. de Foy,
and S. Kuklinsk, “Network slicing architecture,” Internet Engi-
neering Task Force, Internet-Draft draft-geng-netslices-architecture-02,
2017, available online: https://datatracker.ietf.org/doc/html/draft-geng-
netslices-architecture-02.

M. Zhang and J. Zhu, “NetworkGym: Democratizing Network Al via
Sim-aaS,” https://intellabs.github.io/networkgym/, 2023.

T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Ku-
mar, H. Zhu, A. Gupta, P. Abbeel et al., “Soft actor-critic algorithms
and applications,” arXiv preprint arXiv:1812.05905, 2018.

S. Zhang, R. Laroche, H. van Seijen, S. Whiteson, and R. T. d. Combes,
“A deeper look at discounting mismatch in actor-critic algorithms,” arXiv
preprint arXiv:2010.01069, 2020.

D. Tarasov, V. Kurenkov, A. Nikulin, and S. Kolesnikov, “Revisiting
the minimalist approach to offline reinforcement learning,” Advances in
Neural Information Processing Systems, vol. 36, 2024.

J. Wu, H. Wu, Z. Qiu, J. Wang, and M. Long, “Supported policy
optimization for offline reinforcement learning,” Advances in Neural
Information Processing Systems, vol. 35, pp. 31278-31291, 2022.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on July 04,2025 at 20:05:44 UTC from IEEE Xplore. Restrictions apply.

