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Abstract

The classical beltway problem entails recovering a set of points from their unordered pairwise
distances on the circle. This problem can be viewed as a special case of the crystallographic phase
retrieval problem of recovering a sparse signal from its periodic autocorrelation. Based on this
interpretation, and motivated by cryo-electron microscopy, we suggest a natural generalization
to orthogonal groups: recovering a sparse signal, up to an orthogonal transformation, from its
autocorrelation over the orthogonal group. If the support of the signal is collision-free, we bound
the number of solutions to the beltway problem over orthogonal groups, and prove that this bound
is exactly one when the support of the signal is radially collision-free (i.e., the support points have
distinct magnitudes). We also prove that if the pairwise products of the signal’s weights are distinct,
then the autocorrelation determines the signal uniquely, up to an orthogonal transformation. We
conclude the paper by considering binary signals and show that in this case, the collision-free
condition need not be sufficient to determine signals up to orthogonal transformation.

1. Introduction

The beltway problem consists of recovering k points t1, . . . , tk on the circle from knowing only the
unordered set of their pairwise distances, measured along the circle [1, 2]. Clearly, the translation
of any solution to the beltway problem by a global rotation or reflection is also a solution. Two
solutions are called equivalent if they are related by a rotation and reflection. Two sets of points
with identical difference sets are termed homometric. Generally, a given set of distances can give
rise to non-equivalent solutions. Namely, there may exist homometric sets which are not equivalent.
In [1], the maximum possible number S(k) of non-equivalent and homometric sets, over all sets of

k points on the unit circle, was bounded by exp
(
2

ln k
ln ln k

)
≤ S(k) ≤ 1

2k
k−2.

Crystallographic phase retrieval. The beltway problem originally arose in X-ray crystallography
because of its connection to the phase retrieval problem. The (discrete) phase retrieval problem
entails recovering a signal x ∈ Rn, up to a sign, cyclic shift and reflection, from the magnitudes of
its Fourier transform. It can be readily seen that this problem is equivalent to recovering x from
its periodic autocorrelation [3],

Aℓ(x) =
n−1∑
i=0

xix(i+ℓ) mod n, ℓ = 0, . . . , n− 1. (1.1)

Note that the autocorrelation (1.1) is the second moment of (g·x), where g is a uniformly distributed
element of the group of circular shifts Zn; this observation plays a pivotal role in this paper.

If x ∈ Rn is a binary signal, then the periodic autocorrelation A(x) is determined by the cyclic
difference set of the support of x, and two binary signals have the same autocorrelation if and
only if their supports have the same cyclic difference sets. Thus, recovering a binary signal from
its periodic autocorrelation (1.1) reduces to the beltway problem on the vertices of the regular
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n-gon inscribed in the circle. This problem is important since it serves as an approximation of the
physical model of X-ray crystallography technology, and thus can be thought of as a special case
of the crystallographic phase retrieval problem [4, 5]. The general crystallographic phase retrieval
problem is the problem of recovering a signal x ∈ Rn, up to a cyclic shift and reflection, from its
second moment, with the classical beltway problem corresponding to binary signals. If the entries
of the signal lie in a small alphabet (which in X-ray crystallography corresponds to different types
of atoms [5]), then recovering the signal from its autocorrelation is equivalent to checking if several
partitions of its support have the same difference sets [6].

Existing uniqueness results for phase retrieval. The phase retrieval problem is typically ill-posed
even for binary signals, and only very recently have uniqueness results been obtained. A subset
of the authors of this paper established a conjecture that a sparse signal with generic entries is
uniquely determined by its periodic autocorrelation as long as k ≤ n/2 [7]. In particular, [7]
provides a computational test to check the uniqueness for any pair (k, n). However, because of its
heavy computational burden, the conjecture was affirmed only up to n = 9. In [8], it was shown
that if the signal is sparse with respect to a generic basis in Rn, then k ≤ n/2 guarantees unique
recovery for generic signals, and k ≤ n/4 suffices to determine all signals. In [9], it was shown that
symmetric signals can be recovered from their periodic autocorrelation for k = O(n/ log5 n). The
computational aspects of the beltway problem were studied in [1, 2, 10, 11, 12].

Autocorrelations over orthogonal groups. The autocorrelation function (1.1) is the second moment
of circular shifts of the signal, where the circular shifts are drawn from a uniform distribution.
Analogously, one can define an autocorrelation over a compact group G as the expectation of all
the products of two entries of g · x, where g is drawn from a uniform distribution over G. The
beltway problem over orthogonal groups is that of recovering a discretely supported signal from
its autocorrelation over an orthogonal group. We formalize the problem rigorously in Section 2
and motivate it by single-particle cryo-electron microscopy: a prominent technology in structural
biology to elucidate the spatial structure of biological molecules [13].

Collision-free support. In the classical beltway problem, the points t1, . . . , tk are termed collision
free if each non-zero distance in the difference set of the points appears with multiplicity one. If we
interpret the beltway problem as recovering a sparse signal from its periodic autocorrelation, then
a signal is collision-free if there are no repeated differences in the signal’s support. We generalize
this definition to the beltway problem over orthogonal groups, see Definition 3.1. The collision-free
hypothesis is essential to our analysis because, otherwise, it is not necessarily possible to determine
the size of the support set from the autocorrelation, except in the binary case when all non-zero
entries of the signal are one.

Main contributions. The contribution of this paper is three-fold. First, Section 2 formalizes the
beltway problem over orthogonal groups. Second, we prove that the O(n)-orbit of a sparse signal
can be uniquely recovered from its autocorrelation if the signal satisfies the radially collision-free
condition (i.e., the support points are on distinct spheres). If the signal satisfies an extension of
the classical collision-free condition, we bound the number of orbits that correspond to a given
autocorrelation. Section 3 presents the main results, which are proved in Section 4. The third
contribution, in Section 5, is a detailed discussion on binary signals whose support is collision free
but not radially collision-free. This case is more subtle. We derive conditions where the binary
signal cannot be determined from its second moment, and conjecture when it can be determined.
We also discuss the relationship with the turnpike problem.
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2. The beltway problem over orthogonal groups

2.1. Problem formulation

The formulation of the classical beltway problem as that of recovering a binary signal from its
periodic autocorrelation leads to a natural generalization over orthogonal groups. Let x be a signal
on Rn; that is, a function Rn → R. The second moment of the translated signal g · x with respect
to the uniform (Haar) measure over O(n) is the function on (Rn)2

m2(x)(τ1, τ2) =

∫
O(n)

(g · x)(τ1)(g · x)(τ2)dg. (2.1)

Note that m2 is O(n)-invariant, namely, m2(g ·x) = m2(x) for any g ∈ O(n), so we can view m2(x)
as a function (Rn)2/O(n) → R. This, in turn, implies that we can only expect to determine the
O(n)-orbit of x from its second moment. In this case, the second moment is typically referred to
as the autocorrelation.

More generally, it is possible to define the auto-correlation of a (compactly supported) dis-
tribution, such as a Dirac delta function, which will produce a distribution supported on G-
invariant (compact) subsets of (Rn)2 (cf. [14, Section 2.1]). In detail, given a collection of points
t1, . . . , tk ∈ Rn and positive weights1 w1, . . . , wk ∈ R, we define a k-sparse signal on Rn as

x =
k∑

i=1

wiδti , (2.2)

where δt is a point mass located at t ∈ Rn, represented by the Dirac delta function. With a slight
abuse of notation, we occasionally refer to signals of the form (2.2) as δ-functions. There is an
action of O(n) on δ-functions of the form (2.2), given by g · x =

∑k
i=1wiδg·ti .

In this case, we define the autocorrelation m2(x) as a distribution on (Rn)2, supported on the
O(n)-orbits (ti, tj) := {(g · ti, g · tj) | g ∈ G}, where i, j ∈ {1, . . . , k} as follows. By [15, Example
V.5.12] the (tensor) product (g · δti)(τ1)(g · δtj )(τ2) is the point mass δ(g·ti,g·tj)(τ1, τ2) supported at

(g · ti, g · tj) ∈ (Rn)2; We then define the integral of these point masses over O(n)

µti,tj (τ1, τ2) =

∫
O(n)

(g · δti)(τ1)(g · δtj )(τ2) dg

to be the distribution with support the orbit (ti, tj) characterized by property that if f is a com-
pactly supported smooth test function on (Rn)2 then∫

(Rn)2
f(τ1, τ2)µti,tj (τ1, τ2) dτ1dτ2 =

∫
O(n)

f(g · ti, g · tj) dg,

where the left hand side is the evaluation of the distribution µti,tj on the test function f(τ1, τ2),
following the notation of [16, Section V.3]. The autocorrelation is then the distribution

m2(x)(τ1, τ2) =

k∑
i,j=1

wiwjµti,tj (τ1, τ2). (2.3)

We are now ready to define the beltway problem over orthogonal groups.

1The assumption that the weights are positive is physically motivated and allows us to streamline the exposition.
From a mathematical perspective, if we assume that the weights are arbitrary, then we must also account for the fact
that x and −x have the same autocorrelation.
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Definition 2.1. The beltway problem over an orthogonal group O(n) is the task of determining
the O(n)-orbit of a δ-function of the form (2.2) in Rn from its autocorrelation (2.3).

In the next section, we state our main results. We bound the number of orbits with the same
second moment, and then derive conditions for there to be a one-to-one correspondence between
the second moment and an orbit. The results are proved in Section 4. Before that, we motivate the
beltway problem over orthogonal groups by relating it to the single-particle cryo-electron microscopy
technology.

2.2. Motivation: Single-particle cryo-electron microscopy

The goal of single-particle cryo-electron microscopy is to estimate a 3-D function that represents
the electrostatic potential of a biological molecule. The measurements are tomographic projections
of the molecule, each rotated by a random element of the group of 3-D rotations SO(3) [13].
While tomographic projection is not a group action, it was shown that the second moment of
cryo-EM is equivalent to (2.1) with G = SO(3) [17, 18]. Remarkably, it was proven that, in the
high noise regime, the minimal number of samples required for accurate estimation (i.e., the sample
complexity) is proportional to the lowest order moment that determines the molecular structure [19].
Moreover, it was shown that generic molecular structures are determined only by the third moment,
implying that the sample complexity scales rapidly [20, 21, 22]. Thus, it is essential to identify
classes of molecular structures that can be recovered from lower-order moments. In this context,
[18, 14] have shown that if a molecular structure can be represented with only a few coefficients
under some basis, then it can be recovered from the second moment, and hence fewer samples are
necessary for recovery (i.e., an improved sample complexity). These findings were recently extended
to any semi-algebraic prior, including sparsity and deep generative models [23, 24]. Using only the
second moment also reduces the computational burden, and thus it also inspired designing a new
class of algorithms, based on the method of moments [17, 25, 26, 14].

3. Main result

Before stating our main result, we introduce two definitions: an extension of the classical
collision-free condition from the circle to Rn, and the radially collision-free condition. The condition
that a set S = {t1, . . . , tk} of points in Rn is radially collision-free is the assertion that all points
of S have distinct magnitudes, a hypothesis which was used to prove a similar result for cryo-EM
in [14]. To motivate the extension of the collision-free definition, note that a periodic signal in Rn

can be viewed as a discrete function on S1, supported at a subset S of the n-th roots of unity.
On the circle, this means that if (ti, tj) and (tℓ, tm) are two pairs of points in S, then there is no
g ∈ O(2) such that g · {ti, tj} = {tℓ, tm}, unless {i, j} = {ℓ,m}. The definition below extends this
idea from O(2) to O(n).

Definition 3.1. Let S = {t1, . . . , tk} ⊂ Rn be a set of points.

1. We say that S is collision-free if for every pair of two-element subsets {ti, tj} and {tℓ, tm},
g · {ti, tj} = {tℓ, tm} for some g ∈ O(n) if and only if {ti, tj} = {tℓ, tm}.

2. We say that S is radially collision-free if for every ti, tj ∈ S, ti = g · tj for some g ∈ O(n) if
and only if ti = tj .

Clearly, any radially collision-free set is collision-free, but the converse need not be true. Note
also that the radially collision-free condition has no analog in the classical beltway problem, where
all points lie on a circle.
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Our main result states that for any collision-free δ-function of the form (2.2), there are a finite
number of O(n)-orbits of δ-functions with the same second moment as x. Moreover, we provide
an explicit upper bound for the number of possible O(n)-orbits with the same second moment.
Notably, this bound implies that if the support of x is radially collision-free, then the second
moment uniquely determines the O(n)-orbit of x.

To state our main result, we introduce some notation. Suppose that x is a δ-function of the
form (2.2). Let {z1, . . . zq} be the set of distinct magnitudes of the vectors ti, and suppose that
rp of the vectors have magnitude zp with

∑
p rp = k. In particular, the support of x is radially

collision-free if and only if q = k, so all rp = 1.

Theorem 3.2. If k ≥ 3, the number of O(n)-orbits of δ-functions of the form (2.2) with the same
second moment as x =

∑k
i=1wiδti, whose support is collision-free, is at most

∏
rp≥2

(
rp
2

)
!

rp!

∏
a<b≤q

(rarb)! (3.1)

In particular, if the support of x is radially collision-free (i.e., all rp = 1), then the second moment
determines x up to a translation by an element of O(n).

Importantly, Theorem 3.2 is independent of the non-zero weights wi. Thus, it holds for the
binary case when the weights are all ones—as in the classical beltway problem—as well as when the
weights are either generic [7] or drawn from a finite alphabet [6]. When the weights are sufficiently
generic, we can derive a stronger result: the orbit of any signal with collision-free support (not
necessarily radially collision-free) is determined by the second moment.

Corollary 3.3. Suppose that a δ-function of the form (2.2) has a collision-free support. If the
pairwise products of the weights {wiwj}i<j are all distinct, then the second moment determines the
O(n)-orbit of x.

Note that if the weights wi take negative values, then the second moment is invariant to sign,
namely, x and −x result in the same second moment. Thus, in this case, x is at best determined
up to an element of O(n)× Z2.

4. Proofs of Theorem 3.2 and Corollary 3.3

4.1. Characterization of the second moment in terms of Gram matrices

The set Vn,k of δ-functions supported at k-points can be identified with the quotient algebraic
variety U(n, k)/Σk, where U(n, k) is the set of k-tuples ((w1, t1), . . . , (wk, tk)), the tk are distinct
points in Rn, none of the weights wi are zero, and Σk is the symmetric group of permutations of
{1, . . . , k}.

The quotient map π : U(n, k) → Vn,k is given explicitly by the formula

((w1, t1), . . . , (wk, tk)) 7→
k∑

i=1

wiδti .

The set U(n, k) is an O(n)-invariant Zariski open set in the representation Vn,k = (R × Rn)k of
O(n), where g ∈ O(n) acts by the rule g · ((w1, t1), . . . , (wk, tk)) = ((w1, g · t1), . . . , (wk, g · tk)) .
With this action, the quotient map π : Un,k → Vn,k is O(n) equivariant, meaning that π(g ·
((w1, t1), . . . , (wk, tk)) = g · π ((w1, t1), . . . , (wk, tk)) .

5



Our strategy for proving Theorem 3.2 is to use the O(n)-equivariance of the map π to relate
the second moment of δ = π ((w1, t1), . . . , (wk, tk)), as defined in (2.3), to the representation-
theoretic second moment of the vector ((w1, t1), . . . , (wk, tk)) ∈ Vn,k, as defined in [18, Section 2.3].
To simplify notation, we denote elements of Vn,k by pairs (W,X), where W is the 1 × k matrix
of weights (w1, . . . , wk) and X = (t1 . . . tk) is the n × k matrix whose columns are the vectors
t1, . . . , tk. The vector space Vn,k decomposes as a representation of O(n), Vn,k = V k

0 + V k
1 , where

V0 is the trivial representation (i.e., O(n) acts trivially) and V1 is the defining representation of
O(n), corresponding to O(n) acting as rigid motions of Rn. Under this decomposition, the matrix
W corresponds to the projection to V k

0 , and the matrix X corresponds to the projection to V k
1 .

By [18, Theorem 2.3], the second moment of a pair (W,X) ∈ Vn,k is equivalent to the pair
of symmetric k × k matrices (W TW,XTX). Thus, we can identify the second moment on Vn,k

as the function m2 : Vn,k → Symk R × Symk R, (W,X) 7→ (W TW,XTX). By [18, Theorem 2.3],
the ambiguity group of the second moment on the representation Vn,k = V k

0 ⊕ V k
1 is the group

O(1)×O(n), since V0 and V1 have dimensions 1 and n, respectively. (Note that in our formulation
the ambiguity groups are orthogonal groups rather than unitary groups because we work with real
representations.) In other words, m2(W

′, X ′) = m2(W,X) if and only if W ′ = ±W and X ′ = gX
for some g ∈ O(n). However, because we assume that the weight vector W is positive we can ignore
the sign ambiguity.

Definition 4.1. For a symmetric matrix A in Rk×k, and a weight vector W ∈ Rk define

T (A,W ) := {(Aii, Ajj , Aij , wiwj) : 1 ≤ i < j ≤ k}.

Proposition 4.2. If x =
∑k

i=1wiδti ∈ Vn,k is collision free, then the second moment m2(x)(τ1, τ2)
is equivalent to the data T (XTX,W ) where W = (w1, . . . , wk).

Proof. As explained in Section 2.1, the second moment is the distribution on Rn × Rn

m2(x)(τ1, τ2) =
k∑

i,j=1

wiwjµti,tj (τ1, τ2),

where µti,tj (τ1, τ2) is supported on the orbit (ti, tj). If we assume that the points t1, . . . , tk are
collision free, then the set of O(n)-orbits {(ti, tj)}i≤j are all distinct, so we can determine this
set of O(n)-orbits from the support of the distribution m2(x)(τ1, τ2) on (Rn)2, and we can likewise
determine the products of the weights wiwj by evaluating m2(x)(τ1, τ2) on a smooth approximation

to thecharacteristic function 1
(ti,tj)

that equals 1 on (ti, tj). On the other hand, the O(n)-orbit of

the pair (ti, tj) is uniquely determined by the triple of real numbers (ti · ti, tj · tj , ti · tj). Thus,

if A = XTX is the Gram matrix of X, then the orbit (ti, tj) determines the triple of entries

(Aii, Ajj , Aij). Conversely, given the set T (XXT ,W ) there is a unique O(n)-orbit (ti, tj) such

that (si · si, sj · sj , si · sj) = (Aii, Ajj , Aij) for all (s1, s2) ∈ (ti, tj). Thus, we can reconstruct the

distribution
∑k

i,j=1wiwjµti,tj (τ1, τ2) from the data T (XXT ,W ).

4.2. Proof of Theorem 3.2

Proof. Proposition 4.2 implies that if the support of x is collision-free, then there are a finite number
of O(n)-orbits of δ-functions y with the same second moment. This follows since if y =

∑k
i=1w

′
iδsi ∈

Vn,k is another δ-function with the same second moment as x =
∑

wiδti , then T (XTX,W ) =
T (Y TY,W ′) where (W,X) = ((w1, . . . , wk), (t1 . . . tk)) and (W ′, Y ) = ((w′

1, . . . , w
′
k), (s1 . . . sk)).

We complete the proof of Theorem 3.2 by bounding this number.
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Since A = XTX and B = Y TY have the same set of diagonal entries with multiplicity, we
can, after reordering the supports, assume that ∥ti∥ = ∥si∥ for all i and that ∥ti∥ ≤ ∥ti+1∥ for
i = 1, . . . , k. By assumption, ∥ti∥ takes on q different values as i ranges from 1 to k. Let P1, . . . ,Pq

be the partition of {1, . . . , k} such that ∥tj∥ is constant for all j ∈ Pℓ and |Pℓ| = rℓ.
The symmetric matrices A = XTX and B = Y TY have the same set of entries and identical

diagonals. For any i ≤ j, the triplet (Aii, Ajj , Aij) represents an orbit in the support of m2(x).
Likewise, for any k ≤ l, the triple (Bkk, Bll, Bkl) represents an orbit in the support of m2(y). Since
x and y have the same second moments, the sets of triples {(Aii, Ajj , Aij)}i,j and {(Bkk, Bll, Bkl)}k,l
must be the same. Let Bkl be an entry of B with k ≤ l, and with k ∈ Pa, l ∈ Pb. Because we have
ordered the diagonal, we know that a ≤ b and that if Bkl = Aij for some i ≤ j, then (i, j) ∈ Pa×Pb.
Hence, if a < b, the entry Bkl can take rarb possible values corresponding to pairs in the product
Pa ×Pb. On the other hand, if a = b, then Bkl can take

(
ra
2

)
possible values corresponding to pairs

i ≤ j ∈ Pa × Pa. Thus, there are at most
∏

rp≥2

(
rp
2

)
!
∏

a<b≤q(rnrm)! possible matrices B = Y TY
corresponding to Gram matrices of δ-functions y with the same second moment as x. However,
if we reorder the points ti with the same magnitude we do not change the diagonal and obtain a
matrix Y which is a permutation of X, and the Gram matrix B = Y TY corresponds to a δ-function
y with the same O(n)-orbit as x. Since there are

∏q
p=1 rp! reorderings of the support set t1, . . . , tk

which preserve the magnitudes, we see that there are at most
∏

rp≥2
(rp2 )!
rp!

∏
a<b≤q(rarb)! possible

O(n)-orbits of δ-functions with the same second moment as x.

Remark 4.3. Note that the bound given in (3.1) merely determines the number of permutations
of A = XTX, which could possibly be the Gram matrix of a matrix Y , which is not a permutation
of X. However, in any example, the number of possible matrices Y with T (Y TY ) = T (XTX) will
be further limited by the fact that the permutation of A must necessarily be a positive semidefinite
matrix of rank ℓ, where ℓ is the dimension of the subspace spanned by the vectors in the support
of the function x. However, we do not know a way to use this constraint to reduce the bound
uniformly over all collision-free x ∈ Vn,k; see Example 5.5.

4.3. Proof of Corollary 3.3

Proof. If x =
∑k

i=1wiδti , then by Proposition 4.2 the autocorrelation m2(x)(τ1, τ2) determines

the O(n)-orbits (ti, tj) and the values of wiwj . In particular, if all pairwise products wiwj are
distinct, then any δ-function y =

∑
w′
isi with the same second moment as x must have (after

possibly reordering the support point si), w
′
i = wi and ti, tj = si, sj , since ti, tj is the unique orbit

where the integral with respect to m2(x)(τ1, τ2) of a smooth approximation to its characteristic
function is wiwj and we assume that the weights are positive. In particular, if X = (t1; . . . tk) and
Y = (s1 . . . sk), then for any pair i ≤ j, (XTX)ij = (Y TY )ij ; i.e., X and Y have the same Gram
matrices so x and y are orthogonally equivalent.

5. The beltway problem over orthogonal groups for binary signals

Theorem 3.2 implies that the O(n)-orbit of any δ-function whose support is radially collision-
free is uniquely determined by its second moment. Likewise, by Corollary 3.3, if the support of x
is only collision-free but the pairwise products of the weights are distinct, then the O(n)-orbit of x
is determined from the second moment. In this section, we discuss the problem of determining a
binary δ-function in Rn from its autocorrelation over the orthogonal group O(n), when the support
is collision-free but not radially collision-free. In this case, the situation is more nuanced, and we
divide the discussion into four subsections. In Section 5.1 we prove that if the support of x consists
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of linearly independent points, then we cannot expect to recover the O(n)-orbit of x from its second
moment. In Sections 5.2 and 5.3 we discuss the case where the support set lies on a sphere. In
Section 5.2 we prove that if k ≤ n, then we cannot determine the O(n)-orbit of x from its second
moment. Conversely, in Section 5.3, we establish a conjecture that if k > n then an O(n)-orbit of
a generic binary δ-function is determined by the second moment. Finally, in Section 5.4 we discuss
the connection of this problem with the turnpike problem.

5.1. Linearly independent supports

In this section, we show that if the support of a binary δ-function x consists of linearly indepen-
dent points in Rn, then we cannot expect to recover the O(n)-orbit of x from its second moment if
at least two of the points have the same magnitude.

Proposition 5.1. Consider the set of O(n)-orbits of binary δ-functions x =
∑k

i δti, with k ≤ n,
such that S = {t1, . . . , tk} is collision-free and ∥ti∥ = ∥tj∥ for some i ̸= j. Then, there exists a
Zariski dense subset W such that for all x ∈ W, the O(n)-orbit of x is not determined by its second
moment.

Proof. Let U be the set of δ-functions satisfying the hypotheses of the proposition. The subset of
U ′ ⊂ U corresponding to δ-functions x whose supports are linearly independent is Zariski open and
hence dense. Thus, it suffices to prove that there is a Zariski dense subset of U ′ such that if x ∈ U ′,
the O(n)-orbit of x is not determined from its second moment.

Suppose x =
∑k

i=1 δti ∈ U ′. After reordering the points, we may assume that ∥t1∥ = ∥t2∥. Also,
after applying a suitable orthogonal transformation, we may assume that the matrix X = (t1 . . . tk)
is upper triangular; i.e., ti = (ti1, . . . , tii, 0, . . . , 0)

T for i = 1, . . . , k. In particular, we may assume
that the last n − k rows of X are zero. It follows that the k × k Gram matrix XTX is the same
as the Gram matrix obtained by deleting the last n− k rows of the triangular matrix X. In other
words, we can, without loss of generality, assume that k = n.

Now, consider matrices of the form Y = (t1 . . . tk−1 sk). The Gram matrices XTX and
Y TY differ only in the k-th row and column. Consider the set of sk, which satisfy the equations
t1 · sk = t2 · tk, t2 · sk = t1 · tk, ti · sk = ti · tk for i = 3, . . . , k − 1, and sk · sk = tk · tk.
Because the matrix X = (t1 . . . tk−1) is triangular, if we write sk = (sk1 . . . skk)

T , the first k − 1
equations in the system above give a unique solution for (sk1, . . . , sk,k−1). The last coordinate
skk is determined, up to a sign, by the equation sk · sk = tk · tk. However, this equation will
not have a solution if

∑k
i=1 t

2
ki <

∑k−1
l=1 s2kl. However, since sk1, . . . sk,k−1 do not depend on tkk,

we know that for fixed tk1, . . . , tk,k−1 and tkk sufficiently large the system will have a solution.
Moreover, this solution is unique up to the action of O(k). By construction, if Y = (t1 . . . tk−1 sk),
T (Y TY ) = T (XTX) but the Gram matrix Y TY cannot be obtained from a permutation of X.
Hence, if y = δt1 + . . . + δtk−1

+ δsk , then m2(y) = m2(x) but y is not orthogonally equivalent to
x.

5.2. δ-functions supported on spheres with k ≤ n

Let us consider binary δ-functions of the form
∑k

i=1 δti , where S = {t1, . . . , tk} is a collision-

free subset of points in Sn−1. By Theorem 3.2, we know that there can be up to
(k2)!
k! possible

non-orthogonally equivalent δ-functions with the same second moment as x (including x). When
k ≤ n, then a general collection of points on Sn−1 are linearly independent and the method used in
the proof of Proposition 5.1 yields the following result that bounds the number of solutions from
below.
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Proposition 5.2. Consider the set of binary δ-functions on the sphere whose support is collision-
free and assume 3 < k ≤ n. Then, there is a Zariski dense subset W so that if x ∈ W, then there
are at least (k−1)! non-equivalent binary δ-functions with the same second moment as x (including
x).

Example 5.3. We performed the following numerical experiment with k = n = 4. We constructed
10, 000 random 4 × 4 triangular matrices X = (t1 t2 t3 t4) with each ∥ti∥ = 1 as follows. We
took t1 = (1, 0, 0, 0)T , t2 = (t21, t22, 0, 0)

T with (t21, t22) uniformly (Haar) sampled on S1, t3 =
(t31, t32, t33, 0)

T with (t31, t32, t33)
T uniformly sampled on S2, and t4 = (t41, t42, t43, t44)

T uniformly
sampled on S3. We found that in approximately 14% of the sampled matrices, any non-trivial
permutation of the first three entries of the fourth column of the Gram matrix XTX yields the
Gram matrix of another triangular matrix (t1 t2 t3 s4) with ∥s4∥ = 1; this yields δ-functions
y = δt1 + δt2 + δt3 + δs4 supported on S3 which are not orthogonally equivalent to x =

∑4
i=1 δti .

Note that Theorem 3.2 implies that there are at most 6!/4! = 30 possible δ-functions with the same
second moment as x = δt1 + δt2 + δt3 + δt4 (including x).

5.3. δ-functions supported on spheres with k > n

When k > n, the support of a δ-function consists of linearly dependent points. In this case, we
pose the following conjecture.

Conjecture 5.4. Suppose that k > n. Then, the O(n)-orbit of a generic binary δ-function x =∑k
i=1 δti with support on the sphere Sn−1 is determined by its second moment.

If x =
∑k

i=1 δti is supported on Sn and has a collision-free support, then the second moment
determines all pairwise inner products ti · tj . Since ∥ti∥ = 1 for all i, this is equivalent to knowing
the pairwise distance ∥ti − tj∥. Thus, the problem of recovering the O(n)-orbit of this δ-function
is equivalent to recovering the O(n)-orbit of S = {t1, . . . tk} from their pairwise distances. The
problem of determining a set of points in Rn from their pairwise distances (up to rigid motions)
was studied in [27], where the authors prove that if k ≥ n + 2, then there is a hypersurface in
Symk Rn such that any set of k points in the complement of this hypersurface can be recovered, up
to a rigid motion, from its set of pairwise distances. This result can be viewed as giving evidence
that Conjecture 5.4 has a positive answer, at least when k ≥ n+ 2.

5.4. δ-functions supported on S1 and the turnpike problem

The turnpike problem is the problem of recovering a set of points S = {a1, . . . , ak} ⊂ R, up to
a translation and reflection, from their pairwise distances |ai− aj |. This problem arises in multiple
applications, including angle-of-arrival estimation [28], identifiability of quantum systems [29], pro-
tein sequencing [30, 31, 32], error-correcting codes for polymer-based data storage [33] and DNA
mapping [34, 35]. In the latter, the turnpike problem is known in the literature as the partial digest
problem. The turnpike problem is equivalent to the problem of recovering a sparse signal from its
aperiodic autocorrelation, which has been studied in depth in the phase retrieval literature (but
is different from the crystallographic phase retrieval problem) [36, 37, 38]. In [1], the maximum
possible number H(k) of non-equivalent and homometric sets of k points in R was bounded by
1
2k

0.8107144 ≤ H(k) ≤ 1
2k

1.2324827. If the support is collision-free, then the difference set always
determines the points (up to a shift and reflection), with the exception of when the points ti belong
to an explicit 2-dimensional subspace of points when k = 6 [39, 40, 41, 42, 36].

If M is at least the maximum distance between the points in S, then the set S can be embedded
in the half-circle by the map ai 7→ ti = (cos(πai/M), sin(πai/M)). This follows since the ti’s lie in
a half circle 0 ≤ π(|ai − aj |/M) ≤ π and the inner product ti · tj = cos(π(ai − aj)/M) determines
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|ai − aj |. Thus, the problem of recovering S = {t1, . . . , tk} from its pairwise distances is equivalent

to the problem of recovering the O(2)-orbit of the binary δ-function x =
∑k

i=1 δti from its second
moment.

Note that the set S = {a1, . . . , ak} ⊂ R is collision-free if and only if the corresponding set
T = {t1, . . . , tk} ⊂ S1 is collision-free. The result of [39] implies that the only collision-free subsets of
the real line that cannot be determined, up to a rigid motion, from their pairwise differences are six
element sets of the form P = {0, a, b−2a, 2b−2a, 2b, 3b−a} or Q = {0, a, 2a+b, a+2b, 2b−a, 3b−a},
where a, b are real numbers. In this case, the sets P,Q have the same difference sets but are not
equivalent under rigid transformations. Translated to S1, this implies that the only O(2)-orbits
of binary δ-functions with collision-free supports lying in a half-circle which cannot be determined
from their second moments are the pairs of δ functions x =

∑
ti∈T δti and y =

∑
si∈S δsi , where

S = {(cos(t/2M), sin(t/2M))}t∈P and T = {(cos(t/2M), sin(t/2M))}t∈Q.

Example 5.5. The sets of integer points P = {0, 1, 8, 11, 13, 17} and Q = {0, 1, 4, 10, 12, 17} are
collision-free and have the same difference sets, but are not equivalent. If we embed these points
in the half-circle by the map Z → S1, n 7→ (cos(πn/17), sin(πn/17)), then we obtain two sets of

points S = {s1, . . . , s6} and T = {t1, . . . , t6} such that x =
∑6

i=1 δti and y =
∑6

i=1 δsi are not
orthogonally equivalent but have the same second moments. With this ordering of the points, the
corresponding Gram matrices are

A =


1.0 0.98 0.74 −0.27 −0.60 −1.0
0.98 1. 0.85 −0.092 −0.45 −0.98
0.74 0.85 1. 0.45 0.092 −0.74
−0.27 −0.092 0.45 1. 0.93 0.27
−0.60 −0.45 0.092 0.93 1. 0.60
−1.0 −0.98 −0.74 0.27 0.60 1.0

 , B =


1.0 0.98 0.092 −0.45 −0.74 −1.0
0.98 1. 0.27 −0.27 −0.60 −0.98
0.092 0.27 1. 0.85 0.60 −0.092
−0.45 −0.27 0.85 1. 0.93 0.45
−0.74 −0.60 0.60 0.93 1. 0.74
−1.0 −0.98 −0.092 0.45 0.74 1.0


which have the same set of entries, but one cannot be obtained from the other by the action of
the permutation group S6 which simultaneously permutes rows and columns.

By Theorem 3.2, there are at most 14!/6! ≈ 1.21×108 possible δ-functions with the same second
moment. However, in the example with six points on S1 we actually only obtain two such functions.
The reason is that in this case, there is only one non-trivial permutation of the Gram matrix XTX
that can be factored as Y TY , where Y is a 2 × 6 matrix. Indeed, a general permutation of XTX
need not be semi-definite nor have rank 2. For example, the matrix

C =


1.0 0.74 0.98 −0.27 −0.60 −1.0
0.74 1. 0.85 −0.092 −0.45 −0.98
0.98 0.85 1. 0.45 0.092 −0.74
−0.27 −0.092 0.45 1. 0.93 0.27
−0.60 −0.45 0.092 0.93 1. 0.60
−1.0 −0.98 −0.74 0.27 0.60 1.0


has eigenvalues {3.9, 2.1, 0.30,−0.28, 0, 0}, so it is not positive semi-definite and has rank 4.

Remark 5.6. The result of [39] is only relevant for binary δ-functions with collision free support
lying in a half circle. We expect that there are other examples of binary δ-functions with collision-
free support on S1 which cannot be recovered from their second moments.
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[12] S. Huang, I. Dokmanić, Reconstructing point sets from distance distributions, IEEE Transac-
tions on Signal Processing 69 (2021) 1811–1827.

[13] T. Bendory, A. Bartesaghi, A. Singer, Single-particle cryo-electron microscopy: Mathematical
theory, computational challenges, and opportunities, IEEE signal processing magazine 37 (2)
(2020) 58–76.

[14] T. Bendory, Y. Khoo, J. Kileel, O. Mickelin, A. Singer, Autocorrelation analysis for cryo-
EM with sparsity constraints: Improved sample complexity and projection-based algorithms,
Proceedings of the National Academy of Sciences 120 (18) (2023) e2216507120.
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