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ABSTRACT This paper studies the optimal solution of the classical problem of detecting the location of
multiple image occurrences in a two-dimensional, noisy measurement. Assuming the image occurrences
do not overlap, we formulate this task as a constrained maximum likelihood optimization problem. We
show that the maximum likelihood estimator is equivalent to an instance of the winner determination
problem from the field of combinatorial auction and that the solution can be obtained by searching over a
binary tree. We then design a pruning mechanism that significantly accelerates the runtime of the search.
We demonstrate on simulations and electron microscopy data sets that the proposed algorithm provides
accurate detection in challenging regimes of high noise levels and densely packed image occurrences.

INDEX TERMS Combinatorial auction, gap statistics, image detection, winner determination problem

I. Introduction

This paper studies the problem of accurately detecting mul-
tiple occurrences of a template image s € R"*W located
in a noisy measurement y (the observed, acquired, data).
Specifically, let y € RV*M be a measurement of the form:

K
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where c(*) = (c;’“), cgf)) is the upper-left corner coordinate
of the k-th image occurrence. We model the noise term
w[n,m| as an ii.d. Gaussian noise with mean zero and
variance o2. Our goal is to estimate the unknown image
locations ¢V, ..., ¢ from the observation y. While K—
the number of image occurrences—is an unknown parameter,
it is instructive to first assume that KX is known; we later omit
this assumption.

The problem of detecting multiple image occurrences in
noisy data appears in various image processing applications,
including fluorescence microscopy [1], [2], astronomy [3],
anomaly detection [4], neuroimaging [5]-[7], and electron
microscopy [8]-[10]. A detailed discussion on these applica-
tions is provided in [11]. However, although many algorithms
were developed over the years (see, e.g. [4]) in most cases

there is no known statistically optimal method for detecting
the images.

A particularly important motivation for this paper is
single-particle cryo-electron microscopy (cryo-EM)—a lead-
ing technology for determining the three-dimensional struc-
ture of biological molecules [12]-[14]. In a cryo-EM exper-
iment, multiple samples of biological molecules are frozen
in a thin layer of ice. The samples might be densely
packed, but they do not overlap. One of the first stages
in the computational pipeline of cryo-EM involves locating
images within a large and highly noisy measurement [8]-
[10]. Motivated by cryo-EM, we assume that the image
occurrences do not overlap, but otherwise may be arbitrarily
spread in the measurement. Namely, each image occurrence
is separated by at least W pixels from any other image
occurrence, in at least one dimension:

& ).
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We refer to (2) as the separation condition. Figure 1 illus-
trates an example of a measurement that contains six image
occurrences. The three image occurrences on the right side
are densely packed (but satisfy the separation condition (2)),
while the image occurrences on the left are separated by
more than 2W pixels (twice the separation condition (2));
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FIGURE 1. The left panel displays a noiseless measurement with six
image occurrences: the images on the right side are densely packed,
while the images on the left side are separated by more than 2W pixels.
The right panel shows a noisy version of the same measurement, with
SNR=-30[dB]. Our goal is to accurately estimate the location of the six
images from the noisy measurement.

the distinction between these two scenarios plays a key role
in this paper.

Assuming the template image s and the number of image
occurrences K are known, the maximum likelihood estima-
tor (MLE), for the sought locations, is given by
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where we denote by ¢(1), ... &%) the estimates of c(1), . ..
¢ respectively. Taking the separation condition (2) into
account, the MLE results in a constrained optimization
problem:
K N M
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Efficiently computing the optimal solution to this optimiza-
tion problem is the prime goal of this work.

A popular and natural heuristic for solving (4) is as
follows [8], [9], [15]-[17]. First, we correlate the template
image s with the measurement 3. We set ¢(1) as the location
which maximizes the correlation. The next estimator, ¢(2, is
chosen as the next maximum of the correlation that satisfies
the separation condition (2) with respect to ¢!). The same
approach is applied sequentially for estimating the rest of
the locations ¢, ... ¢(5). We refer to this algorithm as
the greedy algorithm, and it can be thought of as a variation
of the well-known template matching algorithm that takes
the separation condition (2) into account. This algorithm is
highly efficient since the correlations can be calculated using
the FFT algorithm [18].

Figure 2 illustrates the correlation between the noisy
measurement y of Figure 1 and the template image s, and
the output of the greedy algorithm. Evidently, the greedy
algorithm successfully detects the locations of the well-
separated image occurrences on the left end of the mea-
surement (when the images are separated by at least 2WW

s.t. max (

FIGURE 2. On the left, the correlation between the noisy measurement v,
as depicted in Figure 1, and the template image s. On the right, the
dashed lines display the noiseless measurement, as depicted in Figure 1.
The red images are the output of the greedy algorithm, which fails to
detect the location of the images on the right when the image
occurrences are densely packed.

pixels, twice the separation condition of (2)) but completely
fails when the image occurrences are densely packed (right
end). The reason is that correlation doubles the support of the
image. Thus, the greedy algorithm is likely to consider two
close image occurrences as one, especially in the presence
of high levels of noise. In this paper, we design an algo-
rithm that detects the image occurrences accurately for any
measurement that satisfies the separation condition (2)—even
for measurements with highly dense image occurrences—by
computing the constrained MLE (4).

While many papers designed object detection algorithms,
as far as we know, none of them is guaranteed to achieve the
MLE [4], as we propose in this paper. For example, a CNN-
based technique was designed in [19]; this method works
well but has no theoretical guarantees and requires a large
data set for training. Other papers focused on accelerating
the template matching algorithm [20]. The MLE for the one-
dimensional version of (1) was considered in [17] based on
dynamic programming. A multiple hypothesis approach was
suggested in [11], [21], [22], and the statistical properties of
the problem were analyzed in [23].

In Section II, we reformulate the constrained MLE prob-
lem (4) as a Winner Determination Problem (WDP)—an
optimization problem from the field of combinatorial auc-
tion. Section III shows how the problem can be solved
exactly by binary tree search. While scanning the entire
tree is intractable, we design an efficient pruning method
to significantly accelerate the search, while guaranteeing to
find the optimal solution. This section outlines the technical
details of the proposed algorithm. Section IV presents results
on simulated data, and Section V shows results on experi-
mental electron microscopy datasets. Section VI concludes
the paper.

Il. Image detection as a combinatorial auction problem

This section begins by introducing the classical combinato-
rial auction problem and the WDP. Then, we show how the
constrained optimization problem (4) can be reformulated
as an optimization problem, which is highly similar to
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the classical WDP. This formulation leads to an efficient
algorithm, whose details are introduced in Section III.

A. Classical combinatorial auction

Consider an auction of a variety of different goods. Unlike a
classical auction, where goods are sold individually, a bidder
can place a bid on a bundle of goods in a combinatorial
auction. The auction manager receives multiple price offers
for different bundles of goods. The goal of the auction
manager is to maximize his revenue by allocating the goods
to the highest submitted bids. Naturally, the same good may
not be allocated to multiple bidders. This means that if two
bidders place bids over bundles with overlapping goods, only
one of the bids can win.

Let G = {v1,...,74} be a set of given goods, and let
B = {B1,...,BB} be a set of bids. Each bid f; includes
a bundle of goods g(B;) € G, which the bidder seeks to
acquire. For this bundle, the bidder of 3; proposes a price,
p(B;)- Let x; be an indicator variable that corresponds to the
winning bids. That is, we set x; = 1 if 3; is a winning bid
and z; = 0 otherwise. An allocation, 7, is a set of winning
bids that do not overlap. Specifically, w C B is a subset of the
bids, where V(3 # 1 € m,g(51) N g(B2) = @. Therefore,
an allocation cannot include two bids that include the same
good.

Using this notation, the combinatorial auction problem is
given by:

B
,nax ; zip(B;)
s.t. Z x; <1, Vv eq, )
i|veg(Bi)
z; € {0,1}, Vi

The first constraint ensures that each good can be allocated
once at most, while the second constraint guarantees that
each bid can be either included or excluded from the chosen
allocation. We define the optimal allocation as the allocation
that maximizes the revenue of the auction manager. The
problem of determining the optimal allocation is known as
the WDP [24]. It is known that the WDP is an NP-hard
problem and cannot be approximated, within any constant,
by a polynomial-time algorithm [25], [26].

B. Image detection as a winner determination problem

We now cast the constrained optimization problem (4) as
a variation of the WDP. We associate every pixel in the
measurement with a single good and let B be a set of bids.
Accepting ;; € B implies that our estimator includes an
image occurrence whose upper left corner is located at the
(4,7)-th pixel. The goods requested by the bid, g(3;;), are
a W x W set of pixels, corresponding to a possible image
occurrence in the measurement. The offered price of the bid,
p(Bij). is the correlation between the measurement and the
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template image, namely,

p(Bij) ZZ n,m|s[n —i,m — j. 6)

n=1m=1

The revenue of the auctioneer is the sum of offered prices
by all accepted bids. Since we are estimating the upper left
corner coordinates of images in the measurement, we require
that the estlmated coordinates will satisfy c£, ) < N-W+1
and ¢ g M — W + 1, so we do not exceed the mea-
surement’s dimension. We denote N = N — W + 1 and
M=M-W+1. o

Let us define X € {0,1}¥*M as a matrix of indicators,
in which z;; € X is equal to 1 if the bid j3;; is included
in the allocation, and 0 otherwise. To enforce the separation
constraint (2), we require that

]]-,Zv;xijlw € {07 1}7 Vivj7 (7)

where 1y, is an all-ones W x 1 column vector and Xij isa
W x W sub-matrix of X, whose upper left entry is the (¢, j)
entry in the matrix X. Using this notation, and assuming
K is known, the constrained likelihood problem (4) can be
written as:

N a7
11{?%17)1((”% ZZZ zi;p(Bij)
s.t. 1TX1 =K, (3)
1Txﬂnwfg1 Vi, 7,
z;; € {0,1}, Vi, j,

where the last two conditions are, together, equivalent to (7).
Therefore, solving (8) is equivalent to (4), where the non-
zero entries of the optimal X correspond to the MLE of the
locations in (4).

We underscore that the optimization problem (8) is slightly
different from the classical combinatorial auction (5). In the
classical setup, the auctioneer aims to include as many bids
as possible in the optimal allocation to maximize the revenue,
whereas in our model the optimal allocation must include
exactly K bids. Furthermore, in our model, p(3;;) can be
negative. Thus, we cannot use existing algorithms that solve
the classical WDP (5), such as the one proposed in [24],
and we design a new algorithm tailored for our constrained
setup. Importantly, the designed algorithm must be computa-
tionally efficient: solving (8) in a brute-force manner requires
searching over an exponential number of bids, rendering this
approach intractable. For example, if N, M = 30 and K = 5,
then the number of possible allocations is ~ 10'2. The next
section introduces a pruning technique to solve (8), which
dramatically reduces the number of explored allocations.

lll. WDP for image detection

To delineate the proposed algorithm, we introduce further
notation. Two bids, 3;,8; € B, are considered to be
conflicting if g(5;) N g(B;) # @. We extend the functions

g(-) and p(-) to apply to allocations: g(m) = g, 9(5)
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and p(m) = > 5..p(B) A partial allocation, 7, is an
allocation in which the number of bids is k¥ < K. A bid
B; is considered to be conflicting with a partial allocation
7y, if g(B:) N g(mr) # @. We denote the set of bids that
conflict with a partial allocation 7, as C, . Hence, given a
partial allocation 7y, the set of allowed bids, from which a
bid can be added to 7y, is 6,% = B\ Cxr,. In addition, we
define 7y as the current optimal allocation that was found
by our algorithm so far.

A. Binary tree construction

The algorithm begins with forming a binary tree data struc-
ture. Binary trees, widely used in search algorithms in com-
puter science [27], are suitable for examining every possible
allocation through a systematic navigation to determine the
optimal allocation.

Given a set of bids, each node in the tree corresponds
to a simple binary question: whether to include or exclude
the bid in the allocation. This results in a full binary
tree where, except for the leaf nodes, each node has two
children corresponding to the same bid. We introduce a
simple example to illustrate the construction of the binary
tree. Let us consider y € R*, a template image of a unit
size, s € R, and K = 2. As explained in Section II, we
cast the image detection problem as a variation of the WDP.
In this example, every bid includes a bundle of a single
good (since the template image is of a unit size). We first
set 1 as the tree’s root, and 4 forms the tree’s leaves.
To explore an allocation that includes the current node, we
navigate to the node’s left child and add the current node
to our partial allocation, 7. Conversely, navigating to the
right child represents the alternative choice of excluding the
current node from 7. Figure 3 demonstrates the binary tree
we obtain in this simple example.

include B; in 7y I‘ '\ exclude 3; from 7y

FIGURE 3. An example of a binary tree, corresponding to a measurement
with four elements.

As previously mentioned, the binary tree enables us to
conduct an exhaustive search across all possible allocations.
Therefore, by using this search mechanism, the optimal
allocation will inevitably be encountered during our search.

B. Tree pruning

Exhaustively searching through the tree leads necessarily to
the optimal allocation, but is computationally infeasible even
for problems of small dimensions. To overcome this issue,

we use the algorithmic technique of branch-and-bound and
present a pruning method to avoid exploring a large portion
of the allocations in advance by eliminating sub-trees that
cannot yield the optimal allocation.

We illustrate this method using the example of Figure 3.
We refer to a smaller binary tree, spanned by a node other
than the root, as a sub-tree. Let us assume that our optimal
allocation is 7oy = {f1,03} and that we have already
encountered our optimal allocation 7oy in our search. At
this point, we are unaware that this is the optimal allocation,
so we continue exploring the remaining possible allocations.
Assume we have chosen to exclude 5, from the empty partial
allocation, 7. Following that, two bids are left to be found
in the sub-tree spanned by [2. Figure 4 demonstrates this
sub-tree. The maximal revenue achievable by exploring this
sub-tree is bounded by the sum of the prices of the two
bids with the highest revenue within it. Since this revenue
is less than what is achieved by the optimal allocation (by
the assumption that we already encountered the optimal
allocation), we can avoid exploring the allocations in this
sub-tree. Thus, in this example, we reduce the computational
burden by half, as we prune half of the binary tree.

include B; in 7, A exclude B; from
(81
(&) (62)
(8] (8 (8] (8)
@ € @ @ @) @ @ @

FIGURE 4. A sub-tree that corresponds to excluding 3; from the partial
allocation ;.. If the maximal revenue that can be achieved by exploring
this sub-tree is less than the revenue of our current optimal allocation,
Topt, WE prune it.

We now formulate this example as a general pruning
mechanism. Say we have reached a partial allocation 7. We
sort the bids in 5.,,k (the set of allowed bids) in descending
order according to their revenues. We denote the K — k
maximal revenue bids in Co, as 6.(,‘.I:_k). Summing the
revenues of the bids in 65::_@ bounds on the remaining
revenue to be allocated in this sub-tree

him) == Y p(B). )
peT T,
This function will enable us to determine if the optimal
allocation cannot be achieved within the current sub-tree,
and thus we can prune it. Specifically, we prune the sub-tree
if the sum of p(ry) and h(my) is less than the revenue of
our current optimal allocation, p(7oy), i.e.,

p(ﬂ-k) + h(ﬂ'k) < p(ﬁ'opt)' (10)
Since we only prune sub-trees that do not lead to the optimal
allocation, our proposed algorithm remains optimal. We note,
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however, that h(7ry) is not necessarily a tight upper bound
as it ignores the constraint that the remaining K — k bids
must not conflict with each other.

C. Sorting the bids

Our algorithm examines each potential optimal allocation,
and thus the optimality of the algorithm is unaffected by
rearranging the order of the bids. We aim to reorder the bids
in such a way that maximizes the efficiency of the pruning
mechanism. Note that the earlier we secure a high revenue
allocation p(7t,p), the more the stopping criterion (10) is
met, resulting in fewer allocations to be examined. Hence,
we begin the algorithm by sorting the bids by their revenue
in descending order. The bid with the highest revenue is
fixed as the tree’s root, while the bid with the lowest revenue
forms the tree’s leaves. This strategy enhances the frequency
in which the pruning condition is met, thereby boosting
its efficiency and accelerating the algorithm’s runtime. For
example, in the experiments in Section IV, we observed
that sorting the bids can lead to acceleration by a factor
of around 10.

D. Algorithm description

We are now ready to describe our algorithm for detecting
image occurrences in a noisy measurement. We will use the
example above to explain the guiding principles. We start
by sorting the bids in descending order by their revenues,
as described in Section C. An example of a sorted tree is
presented in Figure 5.

include B; in 7y {‘ L exclude B; from 7y

FIGURE 5. A sorted binary tree, corresponding to the tree that was
presented in Figure 3.

Our algorithm is designed such that when we encounter a
node, it is added to our partial allocation only if it does
not conflict with the partial allocation and if the partial
allocation itself does not satisfy the pruning condition (10).
We begin our search at the tree’s root, 5. As this is the
first node we encounter, we add the node to our partial
allocation and move to the left child, 85. At this point, 53
is added to the partial allocation, since it does not conflict
with our partial allocation nor does the partial allocation
itself satisfy the pruning condition (10). Since this is the first
allocation we attain, this is the current optimal allocation. We
note that the first allocation we explore is the output of the
greedy algorithm. This means that the greedy algorithm is
not necessarily optimal, since the optimal allocation may be
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achieved in a later stage. In our specific simple example,
indeed the greedy algorithm attains the optimal solution
(since the first two bids do not conflict), but in order to
explain the full mechanism of the algorithm, we describe
the remaining steps.

We then remove the last bid we added, 33, and continue
examining allocations excluding that bid. To do so, we move
to the right child of 3. Upon reaching (35, we check if
our partial allocation 7r; satisfies the pruning condition (10).
Since the optimal allocation is 7o, = {31, 3}, the pruning
condition is met, and hence we prune the sub-tree spanned
by (2 and return to the parent, 53. Since we examined the
sub-tree spanned by (3, we next return to the parent, (31,
and remove [; from our partial allocation. This way, we
examined all allocations that include 3, and we move to
the node’s right child. This process continues until the algo-
rithm explores the entire tree. Upon completion, it returns
the optimal allocation. The general algorithmic pipeline is
described in Algorithm 1.

Algorithm 1 A WDP algorithm to solve (8)
Input: Set of bids B and number of image occurrences K

Output: Optimal allocation 7oy
Initialize: curr < root, 7, = {}, 7op = {}
Sort B by revenue and construct the binary tree
while curr # NULL do
if size(my) = K then
if p(m) > p(Fopr) then
ﬁopt = Tk
end if
T, < ) \ curr.parent
curr <— curr.parent
else
if have not explored left sub-tree then
if p(my) + k(i) < p(Fopt) then
prune left and right sub-trees.
else if curr € C, then
T — T U curr
curr < curr.left
end if
else if right sub-tree exists then
curr < curr.right
else
if curr € 7, then
T T\ curr
end if
curr <— curr.parent
end if
end if
end while
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E. Estimating the number of image occurrences using
the gap statistics principle

In many real-world scenarios, such as electron mi-
croscopy [12], [22], the exact number of image occurrences
K is unknown. This imposes a major challenge given that
both the greedy algorithm and Algorithm 1 require a fixed
K. A common practice is solving (4) for various K values,
choosing the one that induces the steepest change in the
objective value. This heuristic is called the “knee” method
and has been widely adopted across diverse domains, such
as clustering [28] and regularization [29].

Here, we propose employing the gap statistics principle,
which can be thought of as a statistical technique to identify
the “knee” [28]. This principle is widely applied to a variety
of domains, as discussed for example in [30], [31]. The
underlying idea of gap statistics is to adjust the objective
value curve (as a function of the possible values of K) by
comparing it with its expectation under a null reference. Let
us define the gap statistic as:

gap(K) = p(ﬂ'opt(K)) - E*p(ﬂ'opt(K))v

where p(7op(K)) represents the revenue of the optimal allo-
cation for K image occurrences (computed by Algorithm 1),
and E*p(mop(K)) is the expectation for a measurement of
dimensions N x M derived from a “null” reference distribu-
tion. To form the “null” distribution, we randomly rearrange
the pixels of the measurement, resulting in an unstruc-
tured measurement, with no template image occurrences.
Specifically, we estimate the expectation under the null by
Ep(mon(K)) ~ 4 X1 plag (K), where p(reiy (K) s
the revenue achieved by the optimal allocation, at the r-th
rearrangement; in the experiments below, we set R = 50.
The estimate of K—the number of image occurrences—is
the K that maximizes gap(K) and is denoted by K.

QY

IV. Numerical experiments

In this section, we conduct numerical experiments to com-
pare Algorithm 1 with the alternative greedy algorithm.
We use the Fp-score to evaluate the performance of both
methods [32]-[35]. The F} score is defined as:

Precision x TPR

Fl =2X T e
Precision + TPR

(12)
where Precision is the ratio of correct detections divided by
the total number of detections, and TPR, which stands for
True Positive Rate, is the ratio of correct detections divided
by the total number of image occurrences. We note that in the
case where the number of image occurrences K is known,
Precision equals TPR.
We define a detection as correct if:

max (‘églk) - cgf)’7 etk cffi)D < % (13)

That is, a detection is classified as correct if the estimated
image location is within % pixels from the true location.

This convention is common in the image detection litera-

ture [11], [21]. We define the SNR of the measurement as
2

KW
SNR = 10log ———
% 2NM’

where o° is the variance of the noise. To compare our
algorithm with the greedy algorithm, which works well when
the supports of the correlated image occurrences do not
overlap, we define another separation condition.

max (’cgf) - cgf)’ e®) — o ) >2W, Vk#L. (15)

m

We refer to this condition as the well-separated condition.

For a given set of parameters M, N, W, K, we generate
a measurement y as follows. We begin by placing the
first image occurrence at a random location (drawn from
a uniform distribution) within the measurement. Then, we
draw another location and place the image occurrence if
it meets either (2) or (15). This process is repeated until
all K images have been placed in the measurement. Fi-
nally, we add i.i.d. white Gaussian noise with zero mean
and o2 variance to the measurement. The code to re-
produce the numerical experiments is publicly available
at https://github.com/saimonanuk/Optimal-detection-of-non-
overlapping-images-via-combinatorial-auction.

(14)

2

A. A known number of image occurrences
In the first experiment, we assume that the number of image
occurrences K is known, and both algorithms receive the
true number of image occurrences K as input. We set N =
M =40 and K = 4, and choose a template image with all-
ones entries of size W = 3. We generate the measurement
such that the separation condition (2) is met, and at least
one pair of image occurrences is separated precisely by W
pixels. For each SNR level, we conduct 1000 trials, each
with a fresh measurement. Figure 6 shows the average Fj
score of Algorithm 1 and the greedy algorithm as a function
of the SNR. Evidently, Algorithm 1 outperforms the greedy
algorithm in all SNR regimes. As expected, in high SNR
regimes, Algorithm 1 achieves F; = 1. On the contrary,
the greedy algorithm fails even in the high SNR regime,
achieving F; = 0.88, due to the proximity of the image
occurrences in the measurement. The average runtime per
trial of Algorithm 1 was approximately 80 seconds, whereas
the average runtime of the greedy algorithm was 0.1 seconds.
We repeated the same experiment, but now the image
occurrences are well-separated according to (15). The results
of this experiment are illustrated in Figure 7. As expected,
in this case, both algorithms achieve the same results, and
the running time remains the same.

B. An unknown number of image occurrences

We repeated the first experiment from the previous section
(when the image occurrences satisfy (2) but not (15)), but
now the number of image occurrences K is unknown.
To estimate K, we used the gap statistics principle. This
estimate is then used as an input for both algorithms to
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FIGURE 6. The average F; score, as a function of the SNR, of Algorithm 1
and the greedy algorithm, assuming the number of image occurrences is
known.
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FIGURE 7. The average F; score, as a function of the SNR, of Algorithm 1
and the greedy algorithm, where the image occurrences satisfy the
well-separated condition (15), assuming the number of image occurrences
is known.

determine the image locations. The results are presented in
Figure 8.

— Algorithm 1

—Greedy Algorithm
09— e

08 ]
Fy

0.7
0.6 - 3

0.5
-17 -16 -15 -14 -13 -12 -11 -10 -9 -8
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FIGURE 8. The average F; score, as a function of the SNR, of Algorithm 1
and the greedy algorithm assuming the number of image occurrences is
unknown.

Similar to the previous case, in the unknown K scenario,
Algorithm 1 outperforms the greedy algorithm in all SNR
regimes. In addition, Algorithm 1 provides better estimates
of the number of signal occurrences K. For example, for
SNR= —12.5, Algorithm 1 gets 87.2% accuracy in estimat-
ing K precisely, while the greedy algorithm gets only 80%.
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This gap drops with the SNR until they eventually converge
to the same estimations when the SNR is low enough.

V. Cryo-electron microscopy examples

We applied Algorithm 1 and the greedy algorithm to two
cryo-EM datasets, available at the EMPIAR repository [36].
We assume a disk-like shape for the images. Following
standard procedures in this field, we performed a sequence of
preprocessing steps before applying both algorithms. First,
we whitened the measurement by manually selecting “noise-
only” areas (i.e., without images), which were used to
estimate the empirical covariance matrix of the noise. The
data is then normalized by the inverse of this covariance
matrix. Then, the data is downsampled by a factor of 12,
concurrently reducing computational load and amplifying
the SNR. Ultimately, we took the whitened, downsampled
measurement and determined patches in which the image oc-
currences are not well-separated, namely, do not satisfy (15).
We focused on small dense patches since this is the scenario
in which Algorithm 1 shines. In well-separated (15) areas, it
is recommended to use the computationally efficient greedy
algorithm. Figure 9 displays two different measurements,
after the preprocessing steps.

FIGURE 9. Two cryo-EM measurements after preprocessing steps. The
left panel presents a measurement from the EMPIAR-10081 data set and
the right panel shows a measurement from the EMPIAR-10217 data set.
The orange squares are the dense areas used as the input for both
algorithms.

A. EMPIAR 10081

Our first experiment is conducted on the EMPIAR-10081
data set of the Human HCN1 Hyperpolarization-Activated
Channel [37]. The measurement is presented in Figure 9. We
set the radius of the disc used as a template image to 3 pixels.
The number of image occurrences is estimated based on gap
statistics. Figure 10 shows the output of both algorithms.
Algorithm 1 identifies two separated images. In contrast,
the greedy algorithm identifies a single occurrence. For
comparison, we also show the output of a popular detection
algorithm for cryo-EM data sets (particle picker), called
TOPAZ [10]. This algorithm is based on a deep learning
technique (see also [38]).

B. EMPIAR 10217
Our second experiment is conducted on the EMPIAR-10217
data set of the bovine liver glutamate dehydrogenase [36].
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FIGURE 10. From left to right: the output of the greedy algorithm, the
original patch taken from the data set EMPIAR 10081 as illustrated in
Figure 9, the output of Algorithm 1, and the output of the cryo-EM particle
picker TOPAZ [10].

We set the radius of the disc used as a template image to
6 pixels. The measurement is presented in Figure 9 and the
results of both algorithms are displayed in Figure 11. Similar
to the previous example, Algorithm 1 identifies two different
particle images, while the greedy algorithm finds only one
particle image in the measurement.

FIGURE 11. From left to right: the output of the greedy algorithm, the
original patch taken from the data set EMPIAR 10217 as illustrated in
Figure 9, the output of Algorithm 1, and the output of the cryo-EM particle
picker TOPAZ [10].

VI. CONCLUSION

This paper studies the problem of detecting multiple im-
age occurrences in a two-dimensional, noisy measurement.
We approach this task by formulating it as a constrained
maximum likelihood optimization problem. By showing the
equivalence between this problem and a version of the
winner determination problem, we design an efficient search
algorithm over a binary tree. Our algorithm can find the
optimal solution, even in scenarios characterized by high
noise levels and densely packed image occurrences.

Our methodology can be extended in a couple of directions
that we leave for future work. First, we assume white
Gaussian noise, whereas in many applications, such as cryo-
EM, that noise is not white [12]. Using the formulation of the
detection problem as a combinatorial auction (8), changing
the noise statistics will only change the revenue function p,
while the rest of the optimization problem remains the same.
Similarly, one may want to introduce a prior on the sought
locations (in the Bayesian sense). In this case, the goal will
be to maximize the posterior distribution under the separation
condition. This again will not change the structure of the
algorithm, just the definition of the revenue. Second, our
pruning mechanism is quite conservative since it ignores
the separation condition. An important future work includes
designing a more effective pruning mechanism that will
accelerate the search over the tree (and thus the algorithm’s
runtime), perhaps at the cost of a small bounded deviation
from the optimal solution.
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