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ABSTRACT
We study the problems of detection and recovery of hidden
submatrices with elevated means inside a large Gaussian ran-
dom matrix. We consider two different structures for the
planted submatrices. In the first model, the planted matrices
are disjoint, and their row and column indices can be arbitrary.
Inspired by scientific applications, the second model restricts
the row and column indices to be consecutive. In the detec-
tion problem, under the null hypothesis, the observed matrix
is a realization of independent and identically distributed stan-
dard normal entries. Under the alternative, there exists a set
of hidden submatrices with elevated means inside the same
standard normal matrix. Recovery refers to the task of lo-
cating the hidden submatrices. For both problems, and for
both models, we characterize the statistical and computational
barriers by deriving information-theoretic lower bounds, de-
signing and analyzing algorithms matching those bounds, and
proving computational lower bounds based on the low-degree
polynomials conjecture.

Index Terms— Signal detection and recovery over net-
works, computational limits, hidden structures.

1. INTRODUCTION

This paper studies the detection and recovery problems of hid-
den submatrices inside a large Gaussian random matrix. We
consider two statistical models for the planted submatrices. In
the first model, the planted matrices are disjoint, and their row
and column indices can be arbitrary. The detection and recov-
ery variants of this model are well-known as the submatrix
detection and submatrix recovery (or localization) problems,
respectively, and received significant attention in the last few
years, e.g., [1–13], and references therein. Specifically, for
the case of a single planted submatrix, the task is to detect the
presence of a small k×k submatrix with entries sampled from
a distribution P in an n × n matrix of samples from a distri-
bution Q. In the special case where P and Q are Gaussians,
the statistical and computational barriers, i.e., information-
theoretic lower bounds, algorithms, and computational lower
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bounds, were studied in great detail and were characterized
in [1–4, 7, 13]. When P and Q are Bernoulli random vari-
ables, the detection task is well-known as the planted dense
subgraph problem, which has also been studied extensively in
the literature, e.g., [4–6,12]. Most notably, for both the Gaus-
sian and Bernoulli problems, it is well understood by now that
there appears to be a statistical-computational gap between
the minimum value of k at which detection can be solved,
and the minimum value of k at which detection can be solved
in polynomial time (i.e., with an efficient algorithm). The
statistical and computational barriers of the recovery prob-
lem have also received significant attention in the literature,
e.g., [9,10,12,14,15], covering several types of distributions,
as well as single and (non-overlapping) multiple planted sub-
matrices.

The general submatrix model, where the planted column
and row indices are arbitrary, might be less realistic in cer-
tain scientific and engineering applications. Accordingly,
we also analyze a second model that restricts the row and
column indices to be consecutive. One important motiva-
tion for this model stems from single-particle cryo-electron
microscopy (cryo-EM): a leading technology to elucidate
the three-dimensional atomic structure of macromolecules,
such as proteins [16, 17]. At the beginning of the algorithmic
pipeline of cryo-EM, it is required to locate multiple parti-
cle images (tomographic projections of randomly oriented
copies of the sought molecular structure) in a highly noisy,
large image [18, 19]. This task is dubbed particle picking.
While many particle picking algorithms were designed, e.g.,
[20, 21], this work can be seen as a first attempt to unveil
the statistical and computational properties of this task that
were not analyzed heretofore. Due to page length limitation
we relegate our proofs and some of our discussions to an
auxiliary file [22].

2. PROBLEM FORMULATION

2.1. The detection problem

Let (m, k, n) be three natural numbers, satisfying m · k ≤ n.
We emphasize that the values of m, k, and λ, are allowed
to be functions of n—the dimension of the observation. Let
Kk,m,n denote all possible sets that can be represented as a



union of m disjoint subsets of [n], each of size k; Formally,

Kk,m,n ≜

{
Kk,m =

m⋃
i=1

Si × Ti : Si,Ti ⊂ Ck, ∀i ∈ [m],

(Si × Ti) ∩ (Sj × Tj) = ∅, ∀i ̸= j ∈ [m]

}
, (1)

where Ck ≜ {S ⊂ [n] : |S| = k}, i.e., it is the set of all sub-
sets of [n] of size k. Let N (µ, σ2) denote the Gaussian prob-
ability measure with mean µ and variance σ2. We let Q =
N (0, 1) and P = N (λ, 1), where λ > 0 is interpreted as the
signal-to-noise ratio (SNR) of the underlying model. We shall
refer to an element of Kk,m,n as a set of planted submatrices.

Definition 1 Let SD(n, k,m,P,Q) denote the hypothesis
testing problem with observation X ∈ Rn×n and hypotheses

H0 : X ∼ Q⊗n×n vs. H1 : X ∼ D(n, k,m,P,Q), (2)

where D(n, k,m,P,Q) is the distribution of matrices X with
entries Xij ∼ P if i, j ∈ Kk,m and Xij ∼ Q otherwise that
are conditionally independent given Kk,m, which is chosen
uniformly at random over all subsets of Kk,m,n.

In some applications, however, the planted subma-
trices are defined by a set of consecutive rows and a
set of consecutive columns (e.g., when those submatrices
model images like in cryo-EM). Accordingly, let Kcon

k,m,n

be defined as Kk,m,n but with Ck replaced by Ccon
k ≜

{S ⊂ [n] : |S| = k, S is consecutive}, i.e., the set of all sub-
sets of [n] of size k with consecutive elements.

Definition 2 Let CSD(n, k,m,P,Q) denote the hypothesis
testing problem with observation X ∈ Rn×n and hypotheses

H0 : X ∼ Q⊗n×n vs. H1 : X ∼ D̃(n, k,m,P,Q), (3)

where D̃(n, k,m,P,Q) is the distribution of matrices X with
entries Xij ∼ P if i, j ∈ Kk,m and Xij ∼ Q otherwise that
are conditionally independent given Kk,m, which is chosen
uniformly at random over all subsets of Kcon

k,m,n.

The difference between Kk,m,n and Kcon
k,m,n is depicted in Fig-

ure 1; it is evident that the submatrices in Kk,m,n can appear
everywhere, while those in Kcon

k,m,n are consecutive.
Observing X, a detection algorithm An for the problems

above is tasked with outputting a decision in {0, 1}. We define
the risk of a detection algorithm An as the sum of its Type-I
and Type-II errors probabilities, namely,

R(An) ≜ PH0
(An(X) = 1) + PH1

(An(X) = 0), (4)

where PH0 and PH1 denote the probability distributions un-
der the null hypothesis and the alternative hypothesis, respec-
tively. If R(An) → 0 as n → ∞, then we say that An solves
the detection problem.

Fig. 1: Illustration of the models considered in this paper:
Kk,m,n of Definition 1 (left) and Kcon

k,m,n of Definition 2
(right), for k = 4, m = 2, and n = 16.

2.2. The recovery problem

We consider also the recovery variant of the problem in Def-
inition 2. Note that the submatrix recovery problem that cor-
responds to the model in Definition 1, was investigated in [9].
In the recovery problem, we assume that the data follow the
distribution under H1 in Definition 2, and the inference task is
to recover the location of the planted submatrices. This is the
analog of the particle picking problem in cryo-EM that was
introduced in Section 1.

Definition 3 Assume that X ∈ Rn×n ∼ D̃(n, k,m,P,Q),
where D̃(n, k,m,P,Q) is the distribution of matrices X with
entries Xij ∼ P if i, j ∈ K⋆ and Xij ∼ Q otherwise that
are conditionally independent given K⋆ ∈ Kcon

k,m,n. The goal
is to recover the hidden submatrices K⋆, up to a permuta-
tion of the submatrices indices, given the matrix X. We let
CSR(n, k,m,P,Q) denote this recovery problem. We say
that K̂ achieves exact recovery of K⋆, if, asymptotically as
n → ∞, supK⋆∈Kcon

k,m,n
P(K̂ ̸= K⋆) → 0.

Similarly to the detection problem, we will consider both
unconstrained and polynomial time algorithms, and we aim to
derive necessary and sufficient conditions for when it is im-
possible and possible to recover the underlying submatrices.

3. MAIN RESULTS

3.1. The detection problem

Upper bounds. Let us propose three algorithms and ana-
lyze their performance. Define the statistics, Tsum(X) ≜∑

i,j∈[n] Xij , TSD
scan(X) ≜ maxK∈Kk,1,n

∑
i,j∈K Xij , and

TCSD
scan (X) ≜ maxK∈Kcon

k,1,n

∑
i,j∈K Xij . The sum statistics

amounts to adding up all the elements of X, while the
scan statistics enumerate all k × k submatrices of X in
Kk,1,n and Kcon

k,1,n, and take the submatrix with the max-
imal sum of entries, respectively. Fix δ > 0. Then,
our tests are defined as, Asum(X) ≜ 1 {Tsum(X) ≥ τsum},
ASD

scan(X) ≜ 1
{
TSD
scan(X) ≥ τSDscan

}
, and ACSD

scan (X) ≜
1
{
TCSD
scan (X) ≥ τCSDscan

}
, where the thresholds are given by

τsum ≜ mk2λ
2 , τSDscan ≜

√
(4 + δ)k2 log

(
n
k

)
, and τCSDscan ≜



√
(4 + δ)k2 log n, and correspond roughly to the average be-

tween the expected values of each of the statistics above under
the null and alternative hypotheses. The following result pro-
vides sufficient conditions under which the risk of each of the
above tests is asymptotically small.

Theorem 1 Consider the detection problems in Definitions 1
and 2. Then, we have the following bounds:

1. (Efficient SD) There exists an efficient algorithm Asum,
such that if λ = ω

(
n

mk2

)
, then R (Asum) → 0, as n → ∞,

for the problems in Definitions 1 and 2.

2. (Exhaustive SD) There exists an algorithm ASD
scan, such that

if λ = ω(
√

k−1 log n
k ), then R

(
ASD

scan

)
→ 0, as n → ∞,

for the problem in Def. 1.

3. (Efficient CSD) There exists an efficient algorithm ACSD
scan ,

such that if λ = ω(k−1
√

log n
k ), then R(ACSD

scan ) → 0, as
n → ∞, for the problem in Def. 2.

Lower bounds. Recall that the optimal testing error probabil-
ity is determined by the total variation distance between the
distributions under the null and the alternative hypotheses as
follows (see, e.g., [23, Lemma 2.1]),

min
An:Rn×n→{0,1}

R(An) = 1− dTV(PH0 ,PH1). (5)

Theorem 2 We have the following results:

1. Consider the detection problem in Def. 1. If λ = o( n
mk2 ∧

1√
k
), then dTV(PH0

,PH1
) = o(1).

2. Consider the detection problem in Def. 2. If λ = o
(
k−1

)
,

then dTV(PH0
,PH1

) = o(1).

Theorem 2 above shows that our upper bounds in The-
orem 1 are tight up to poly-log factors. Indeed, item 1 in
Theorem 2 complements items 1-2 in Theorem 1, for the SD
problem, while item 2 in Theorem 2 complements item 3 in
Theorem 1, for the CSD problem. We next give evidence
that, based on the low-degree polynomial conjecture, efficient
algorithms that run in poly-time do not exist in the regime
where the scan test succeeds while the sum test fails.
Computational lower bounds. The premise of the low-
degree polynomials method is to take low-degree multivariate
polynomials in the entries of the observations as a proxy for
efficiently-computable functions. Roughly speaking, it takes
the projection of likelihood ratio defined by Ln ≜ PH1

/PH0

onto D-degree polynomial space as a proxy to all efficient
(poly-logarithmic time) algorithms. Accordingly, detection is
possible when L≤D

n is unbounded.

Theorem 3 (Computational lower bound) Consider the
detection problem in Definition 1. Then, if λ is such
that 1√

k
≪ λ ≪ n

mk2 , then
∥∥L≤D

n

∥∥
H0

≤ O(1), for any
D = Ω(log n). On the other hand, if λ is such that λ ≫ n

mk2 ,
then

∥∥L≤D
n

∥∥
H0

≥ ω(1).
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Fig. 2: Phase diagram for SD (left) and CSD (right), as a
function of k = Θ(nβ), and λ = Θ(n−α), for m = Θ(n1/4)
(left) and any m ≥ 1 (right).

Together with low-degree polynomials conjecture, Theorem 3
implies that if we take degree-log n polynomials as a proxy
for all efficient algorithms, our calculations predict that an
nO(log n) algorithm does not exist when 1√

k
≪ λ ≪ n

mk2 .
This is summarized in the following corollary.

Corollary 4 Consider the detection problem in Definition 1,
and assume that the low-degree polynomials conjecture holds.
An nO(log n) algorithm that achieves strong detection does not
exist if λ is such that 1√

k
≪ λ ≪ n

mk2 .

These predictions agree precisely with the previously estab-
lished statistical-computational tradeoffs in the previous sub-
sections. We note that numerical and theoretical evidence for
the existence of computational-statistical gaps were observed
in other statistical models that are also inspired by cryo-EM,
including heterogeneous multi-reference alignment [24, 25]
and sparse multi-reference alignment [26].

One way to present the results in Theorems 1–3 is by
drawing “easy-hard-impossible” phase transition diagram.
Specifically, treating k and λ as polynomials in n, i.e., k =
Θ(nβ) and λ = Θ(n−α), for some α ∈ (0, 1) and β ∈ (0, 1),
the statistical and computational feasibility of the SD and
CSD problems are demonstrated in Fig. 2, for m = Θ(n1/4)
and any m ≥ 1, respectively. It can be seen that for SD the
(α, β)-plane is divided into three regions: statistically impos-
sible, hard, and easy, while for CSD there are only two regions
where the problem is either statistically impossible or easy to
solve. Interestingly, while it is well-known that the number
of planted submatrices m does not play any significant role
in the statistical and computational barriers in the submatrix
recovery problem, it can be seen that this is not the case for
the submatrix detection problem. Finally, to get a sense of
how practical results behave alongside with the theory we also
present a simulated phase diagram that corresponds to the SD
setting in Fig. 2. Specifically, in our simulations we chose
n = 109, m = n1/4, and for each one of the 102 Monte-Carlo
simulations, we generated the n×n normally distributed ran-
dom matrices with and without the planted submatrices, over
a grid of parameters (k, λ). We then examined the risk of the



Fig. 3: Simulated phase diagram for SD as a function of k =
Θ(nβ), and λ = Θ(n−α), for m = Θ(n1/4).

efficient sum test averaged over the 102 Monte-Carlo simula-
tions. It can be seen that the blue region (right triangular) in
Fig. 2, where the sum test achieves small risk, coincides with
the “easy” region in Fig. 2. A similar figure can be obtained
for the CSD setting in Fig. 2.

3.2. The recovery problem

Upper bound. It can be shown that the maximum-likelihood
estimator (MLE) , minimizing the error probability, is given
by K̂ML(X) = argmaxK∈Kcon

k,m,n

∑
(i,j)∈K Xij . The com-

putational complexity of MLE is of order n2m. Thus, for
m = O(1), the MLE runs in polynomial time, and thus, is
efficient. However, if m = ω(1) then the exhaustive search
is not efficient anymore. Nonetheless, the following straight-
forward modification provably achieves the same asymptotic
performance of the MLE above, and at the same time com-
putationally efficient. Before we present this algorithm, we
make a simplifying technical assumption on the possible set
of planted submatrices. We explain in [22] how this assump-
tion can be removed. We assume that each pair of submatri-
ces in the underlying planted submatrices K⋆ are at least k
columns and rows far way. In other words, there are at least
k columns and k rows separating any pair of submatrices in
K⋆. Similar assumptions are frequently taken when analyzing
statistical models inspired by cryo-EM, see, for example [27].
We will refer to the above as the separation assumption.

Our recovery algorithm works as follows: in the ℓ ∈ [m]
step, we find the ML estimate of a single submatrix using,

K̂ℓ(X
(ℓ)) = argmax

K∈Kcon
k,1,n

∑
(i,j)∈K

X
(ℓ)
ij , (6)

where X(ℓ) is defined recursively as follows: X(1) ≜ X, and
for ℓ ≥ 2, X(ℓ) = X(ℓ−1) ⊙ E(K̂ℓ−1), where E(K̂ℓ−1) is an
n×n matrix such that [E(K̂ℓ−1)]ij = −∞, for (i, j) ∈ K̂ℓ−1,
and [E(K̂ℓ−1)]ij = 1, otherwise. To wit, in each step of the
algorithm we “peel” the set of estimated indices (or, estimated
submatrices) in previous steps from the search space. This is
done by setting the corresponding entries of X to −∞ so that
the sum in (6) will not be maximized by previously chosen
sets of indices. We denote by K̂peel(X) = {K̂ℓ}mℓ=1 the output
of the above peeling algorithm.

Type Impossible Hard Easy
SD λ ≪ n

mk2 ∧ 1√
k

n
mk2 ∧ 1√

k
≪ λ ≪ 1 ∧ n

mk2 λ ≫ 1 ∧ n
mk2

SR λ ≪ 1√
k

1√
k
≪ λ ≪ 1 ∧

√
n
k λ ≫ 1 ∧

√
n
k

CSD λ ≪ 1
k NO λ ≫ 1

k

CSR λ ≪ 1√
k

NO λ ≫ 1√
k

Table 1: Statistical and computational thresholds for sub-
matrix detection (SD), submatrix recovery (SR), consecutive
submatrix detection (CSD), and consecutive submatrix recov-
ery (CSR), up to poly-log factors. The bounds in the first row
for the special case of m = 1 and the second row, are known
in the literature (e.g., [4, 7, 9, 10]).

Theorem 5 Consider the recovery problem in Defini-
tion 3, and let C be a universal constant. If
lim infn→∞

λ√
Ck−1 logn

> 1, then exact recovery is possible

via the MLE/peeling algorithm.

Lower bound. The following result shows that under certain
conditions, exact recovery is impossible.

Theorem 6 Consider the recovery problem in Definition 3.

If λ < C
√

logm
k , then exact recovery is impossible, i.e.,

inf K̂ supK⋆∈Kcon
k,m,n

P[K̂(X) ̸= K⋆] > 1
2 , where the infimum

ranges over all measurable functions of the matrix X.

Note that there is a gap between detection and exact re-
covery; the barrier for λ for the former is at k−1, while for the
latter at k−1/2. In the context of cryo-EM, this indicates a gap
between the ability to detect the existence of particle images
in the data set, and the ability to perform successful particle
picking (exact recovery). Recently, new computational meth-
ods were devised to elucidate molecular structures without
particle picking, thus bypassing the limit of exact recovery,
allowing constructing structures in very low SNR environ-
ments, e.g., [27–29]. This in turn opens the door to recov-
ering small molecular structures that induce low SNR [30].
Finally, we summarize our main results in Table 1.

4. CONCLUSIONS AND OUTLOOK

In this paper, we studied the computational and statistical
boundaries of the submatrix and consecutive submatrix de-
tection and recovery problems. For both models, we derived
asymptotically tight lower and upper bounds on the thresholds
for detection and recovery. There are several exciting direc-
tions for future work. First, it would be interesting to gener-
alize our results to any pair of distributions P and Q. In our
paper, we assume that the elements inside the planted subma-
trices are i.i.d., however, it is of practical interest to generalize
this assumption and consider the case of dependent entries,
e.g., Gaussians with a general covariance matrix. For exam-
ple, this is the typical statistical model of cryo-EM data [19].
Finally, it will be interesting to prove a computational lower
bound for the submatrix recovery problem, e.g., using the re-
cent framework of low-degree polynomials for recovery.
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