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ABSTRACT
Job marketplace is a heterogeneous graph composed of interactions
among members (job-seekers), companies, and jobs. Understanding
and modeling job marketplace can benefit both job seekers and
employers, ultimately contributing to the greater good of the soci-
ety. However, existing graph neural network (GNN)-based methods
have shallow understandings of the associated textual features and
heterogeneous relations. To address the above challenges, we pro-
pose PLM4Job, a job marketplace foundation model that tightly
couples pretrained language models (PLM) with job market graph,
aiming to fully utilize the pretrained knowledge and reasoning
ability to model member/job textual features as well as various
member-job relations simultaneously. In the pretraining phase, we
propose a heterogeneous ego-graph-based prompting strategy to
model and aggregate member/job textual features based on the topo-
logical structure around the target member/job node, where entity
type embeddings and graph positional embeddings are introduced
accordingly to model different entities and their heterogeneous
relations. Meanwhile, a proximity-aware attention alignment strat-
egy is designed to dynamically adjust the attention of the PLM
on ego-graph node tokens in the prompt, such that the attention
can be better aligned with job marketplace semantics. Extensive
experiments at LinkedIn demonstrate the effectiveness of PLM4Job.
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1 INTRODUCTION
Job marketplace is a pivotal component of our society [1, 4]. A
job marketplace can be viewed as a heterogeneous graph of mem-
bers (job seekers), jobs, and companies, where companies release
job postings that members can apply for, and members establish
social connections by following one another. In general, job post-
ings contain job descriptions and requirements to recruit suitable
talents, whereas members are typically associated with abundant
self-provided textual features such as biographies, skills, experi-
ences, etc., to increase the likelihood of securing good employment.

Various interesting tasks can be conducted on job marketplace
to contribute to the welfare of its stakeholders. From the entity’s
perspective, since some members do not provide certain important
attributes (e.g., skills) in their profile, member attribute prediction
is essential to more precisely match them to potential job oppor-
tunities [11, 40]. Additionally, with the recent COVID epidemic,
there is growing interest in predicting members’ work mode pref-
erence (e.g., onsite, online, or hybrid), such that job postings can be
pre-filtered to save limited recommendation budgets [37]. For the
relational level task, it is beneficial to suggest members with other
members to follow [6] or suitable jobs to apply for [38, 39, 41].

Graph neural networks (GNN) [31] can be used to model the
job marketplace to tackle the aforementioned tasks [3, 7, 19]. For
example, Zhu et al. [37] propose to model member-job interactions
as a bipartite graph to predict members’ work mode preference
given their interacted jobs. In addition, Wang et al. [25] propose a
heterogeneous GNN for job recommendations. Nevertheless, GNN-
based approaches lack prior knowledge of the diverse member-
member relations (e.g., follow, co-work) or member-job relations
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(e.g., follow, apply, view) in the job marketplace, resulting in a
limited understanding of the relationships among different entities.
In addition, since most GNN-based methods adopt bag-of-word
relations of the rich textual data associated with members and jobs,
their understanding of textual information is unavoidably shallow.

Recently, more efforts have been devoted to using pretrained
language models (PLMs) to tackle text-attributed graphs (TAG)
[12, 18, 26, 29], where their encoded knowledge and reasoning abil-
ity can be fully utilized to understand the node textual features
and their relations [15, 30]. The key challenge is to introduce graph
structures to PLMs. Generally, there are two strategies to address
the issue. One main strategy is to integrate auxiliary GNNs with
PLMs, which either views the PLMs as node feature extractors [36],
or uses GNN embeddings (projected into the PLM token embedding
space) to represent the nodes in the PLM [21, 22]. However, these
strategies unavoidably inherit the drawbacks of the auxiliary GNN
and introduce extra computational overhead. Another strategy is to
use natural language to describe the proximity relationship between
nodes in the graph, e.g., using textual descriptions such as "node_1
and node_2 are within one-hop" to denote the connected rela-
tion between "node_1" and "node_2" [32]. However, since there is
no evidence that such textual descriptions can properly guide the
PLM to attend to the nodes based on the proximity relation in the
graph, the graph structure is still loosely coupled with the PLM.

To address the above challenges, we propose a graph-oriented
PLM, i.e., PLM4Job, to tightly couple the pretrained knowledge with
the heterogeneous structure of the job market graph, which could
serve as the foundation model for various downstream tasks on
the job marketplace. Specifically, we first introduce member/job
tokens to faithfully represent nodes in the job marketplace graph.
Then, in the pretraining phase, we propose a novel heterogeneous
ego-graph-based prompting strategy to model and aggregate mem-
ber/job textual features based on the topological structure around
the target member/job, where entity embeddings and graph posi-
tional embeddings are introduced accordingly to facilitate the PLM
to understand various entities and their respective relationships in
the job marketplace. In addition, a proximity-aware attention align-
ment strategy is introduced to dynamically adjust the attention of
the backbone PLM on the ego-graph node tokens in the prompt,
such that the attention of the PLM can be better aligned with job
marketplace semantics. Finally, for node-level tasks, we introduce
label tokens for efficient, hallucination-free predictions.

2 METHODOLOGY
In this section, we introduce the problem setting of treating the
job marketplace as a heterogeneous text-attributed graph (TAG)
and the proposed PLM4Job as a foundation model to tackle various
entity-level and link-level downstream tasks.

2.1 Problem Formulation
Suppose we have a job marketplace with a set of members U =

{1, 2, . . . , 𝑁𝑈 } and jobsI = {𝑁𝑈 +1, 𝑁𝑈 +2, . . . , 𝑁𝑈 +𝑁𝐼 }. Generally,
each member or job is associated with rich textual features, such as
biography, skills, résumé from themember side, and job descriptions
(JD) from the job side. In addition, various relationships can be
formed among members and jobs. For example, members can apply,

(a) Job Marketplace Ego-Graph

<member_1><member_2>

<member_3>

<job_1> <job_2>

token emb.
entity emb.
position emb.

[ego-graph]

[instruct]

[question]

(b) Ego-Graph-based Prompt

Figure 1: The job marketplace heterogeneous ego-graph and
the corresponding ego-graph-based prompt.

click, and view job postings, where the observed relations can be
recorded as R𝑈 𝐼 ⊆ {𝑢 → 𝑖 |𝑢 ∈ U, 𝑖 ∈ I}. In addition, members
can follow each other to form a professional social network, i.e.,
R𝑈𝑈 ⊆ {𝑢 → 𝑢′ |𝑢,𝑢′ ∈ U}. Finally, member 𝑖 is also associated
with certain attributes of interests, which we denoted as 𝑦𝑖 . Here, if
we useN = U∪I and E = R𝑈 𝐼 ∪R𝑈𝑈 to denote the node and edge
sets, and use A = {𝑈 , 𝐼 } and R = {𝑅𝑈 𝐼 , 𝑅𝑈𝑈 } to denote the entity
and relation sets, we can find that the jobmarketplace can be viewed
as a text-attributed heterogeneous graphs 𝐺 = (N , E,A,R).

Given that both node attributes and links can be missing from
job market heterogeneous graph𝐺 , the objective of this paper is to
understand and model 𝐺 with graph-oriented pretrained language
models (PLM), fully utilizing both graph structure and textual infor-
mation to make strategic decisions that benefit all the stakeholders.

2.2 Ego-Graph-based Prompting
In this sub-section, we introduce an ego-graph-based prompting
strategy to tightly couple the PLM with the heterogeneous ego-
graph 𝐺𝑘 of target node 𝑘 . An overview is illustrated in Fig. 1.

2.2.1 Node Token for Heterogeneous Ego-Graph. For PLMs
to understand𝐺𝑘 , we need first tokenize it into a sequence. Since the
vocabulary of PLMs may not be able to faithfully represent graph
nodes [32], we extend its vocabulary with node tokens and intro-
duce learnable feature embeddings Z ∈ R𝑁×𝐾 to encode node fea-
tures. Here, we use special tokens with bracket, e.g., "<member_𝑢>",
"<job_𝑖>" to denote the newly introduced node tokens for mem-
ber 𝑢 and job 𝑖 , respectively. In addition, to faithfully represent
the entity and structural information in 𝐺𝑘 , we introduce entity
embeddings E ∈ R |A |×𝐾 and ego-graph positional embeddings
P ∈ R(𝐷+1)×𝐾 , where 𝐷 is the maximum depth of 𝐺𝑘 . The final
token embedding for node 𝑖 ∈ 𝐺𝑘 can be formulated as follows:

h(0)
𝑖

= z𝑖 + e𝐴𝑖
+ p𝑑𝑖𝑠𝑡 (𝑖,𝑘 ) , (1)

where 𝑑𝑖𝑠𝑡 (𝑖, 𝑘) denote the shortest distance between node 𝑖 and
center node 𝑘 . By converting each node in the heterogeneous ego-
graph 𝐺𝑘 into a token sequence with Eq. (1), node features and
heterogeneous topological relationships can be well captured.

2.2.2 Feature Modeling. With the ego-graph node tokens and
embeddings, we introduce the ego-graph-based prompting strategy
to effectively learn the member/job token embeddings via language
modeling (LM). We first discuss the feature learning step, which
aims to encode the member/job textual features (e.g., member bi-
ographies and job descriptions) into the token embeddings.
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W.L.O.G., if member𝑘 is the center node and biography is the textual
feature, we first establish the prompt-completion pair

(
x𝑓
𝑘
, y𝑓
𝑘

)
as:

Feature Modeling
(a) Ego-graph-based prompt x𝑓

𝑘
:

Given an ego-network in a job marketplace: (x𝑖𝑛𝑠 ) <member_𝑘>
center

<member_𝑖> <member_𝑗>

one-hop

<job_𝑙>

one-hop

<job_𝑚>

two−hop
<member_𝑜>

two−hop
(x𝑔

𝑘
),

the biography of the center member <member_𝑖>
center

is : (x𝑓 ,𝑞
𝑘

)

(b) Completion y𝑓
𝑘
:

A hard-working applied research scientist at LinkedIn.

Here, we use color blue to denote member tokens, yellow to denote
job tokens, green to denote textual tokens, respectively. Ego-graph
positional embeddings are denoted with sub-annotation. Specif-
ically, the ego-graph-based prompt for member feature, i.e., x𝑓

𝑘
,

is composed of three parts: (i) instruction part x𝑖𝑛𝑠 , which pro-
vides context regarding the job marketplace; (ii) ego-graph part
x𝑔
𝑘
, which includes the center node 𝑘 and a randomly sub-sampled

𝐷-hop neighborhood as the job marketplace context; (iii) question
part x𝑓 ,𝑞

𝑘
, which naturally leads to the completion y𝑓

𝑘
.

We use causal language modeling [17] to learn the ego-graph
token embeddings with prompt-completion pairs

(
x𝑓
𝑘
, y𝑓
𝑘

)
. Specif-

ically, we denote the backbone PLM with extended ego-graph to-
kens as 𝑃Θ (𝑥𝑡 |x<𝑡 ), which generates the next token 𝑥𝑡 based on the
context token sequence x<𝑡 . The parameters Θ = {𝜽 ,Z, E, P} are
composed of the pretrained PLM weights 𝜽 (which is frozen) and
the newly introduced embeddings Θℎ𝑜𝑡 = {Z, E, P}. The loss of the
feature modeling step for PLM4Job can be formulated as follows:

L 𝑓

𝑘
=
∑︁
𝑡=1

log
(
𝑃Θ

(
𝑦
𝑓

𝑘,𝑡
| x𝑓
𝑘
, y𝑓
𝑘,<𝑡

))
. (2)

Since the completion y𝑓
𝑘
contains only textual tokens, when opti-

mizing the ego-graph token embeddings Θℎ𝑜𝑡 according to Eq. (2),
we only calculate the softmax over all the textual tokens, where the
stability of language modeling can be substantially enhanced [41].

2.2.3 Metapath-based Structural Modeling. After encoding
the node textual features into the corresponding member and job
token embeddings according to Eq. (2), we further aggregate the
information based on the local job marketplace topology. Here, we
define the metapath in a heterogeneous graph 𝐺 as follows:

Definition 2.1. Metapath [20].Ametapath 𝜙 is defined as a path

in the form of 𝐴1
𝑅1−−→ 𝐴2

𝑅2−−→ · · · 𝑅𝑙−−→ 𝐴𝑙+1, where 𝐴𝑖 ∈ A and
𝑅 𝑗 ∈ R denote the entity and relation, respectively. The metapath
can be abbreviated as 𝐴1𝐴2 · · ·𝐴𝑙+1 with composite relationship
𝑅1 ◦𝑅2 ◦ · · ·𝑅𝑙 , where ◦ denotes composition operation on relations.

In the metapath-based structural modeling step, given a prede-
fined set of candidate metapaths Φ = {𝜙1, 𝜙2, · · ·𝜙𝑀 }, for a center
node 𝑘 , we aim to transform each compatible metapath 𝜙 ∈ Φ

(compatible means 𝐴𝜙1 = type(𝑘)) into an ego-graph-based prompt

x𝜙
𝑘
, with completion y𝜙

𝑘
constructed from a randomly shuffled se-

quence of the end entity𝐴𝜙
𝑙+1. Then y𝜙

𝑘
is predicted based on x𝜙

𝑘
via

language modeling. Through this strategy, information in the job
market graph can be aggregated along the selected metapaths. The
simplest 𝜙 is one-hop metapath, i.e., 𝜙 ∈ Φ1 = {𝑈𝑈 ,𝑈 𝐼, 𝐼𝑈 }. Here,
we take the metapath 𝜙 = 𝑈𝑈 as an example, where the prompt,
completion pair

(
x𝑈𝑈
𝑘

, y𝑈𝑈
𝑘

)
can be formulated as follows:

First-order Structural Modeling
(a) Ego-graph-based prompt x𝑈𝑈

𝑘
:

Given an ego-network in a job marketplace: (x𝑖𝑛𝑠 ) <member_𝑘>

<member_𝑖> <member_𝑗> <job_𝑙> <job_𝑚> <member_𝑜> (x𝑔
𝑘
),

the center member <member_𝑘> follows these members: (x𝑞,𝑈𝑈

𝑘
)

(b) Completion y𝑈𝑈
𝑘

:
<member_𝑟> <member_𝑠> <member_𝑡>

Here, we note that the question part x𝑞,𝑈𝑈
𝑘

of the ego-graph-based

prompt x𝑈𝑈
𝑘

specify the last relation 𝑅𝜙1 (i.e., “follows”) in the meta-
path 𝜙 , such that the encoded knowledge of the PLM can be fully
utilized to facilitate the understanding of the relation and predict
𝑦𝑈𝑈
𝑘

. In addition, only nodes not selected in the ego-graph 𝐺𝑘 (i.e.,
not in x𝑔

𝑘
) will be sampled in the completion y𝑈𝑈

𝑘
, which avoids

the short cut of direct repeating nodes in the prompt.
Higher-order metapaths are complicated but are also necessary

as they provide shortcuts for message passing among member and
job nodes. Here, we use two-hop metapath as an example, where
Φ2 = {𝑈𝑈𝑈 ,𝑈 𝐼𝑈 , 𝐼𝑈𝑈 , 𝐼𝑈 𝐼 }. Previous work such as [32] use triples
(𝐴1, 𝐴2, 𝐴3) to represent two-hop neighbors as token sequences,
but this creates lengthy and redundant prompt due to repetition
of intermediate nodes. In this paper, we propose a faster approx-
imation strategy to represent high-order metapaths. Specifically,
for center node 𝑘 , we first establish a triple 𝑇𝜙

𝑘
=

(
𝑘,A𝜙

𝑘,1,A
𝜙

𝑘,2

)
,

where A𝜙

𝑘,1 is the set of randomly sampled intermediate nodes

starts from 𝑘 , and A𝜙

𝑘,2 is a set of end nodes sampled from the
union list of the end nodes connected with the intermediate nodes
in A𝜙

𝑘,1 with repetition (such that important end nodes can be se-
lected with higher probabilities). Here, we take two-hop metapath
𝜙 = 𝑈 𝐼𝑈 as an example. Based on the triple 𝑇𝑈 𝐼𝑈

𝑘
, the prompt,

completion pair
(
x𝑈 𝐼𝑈
𝑘

, y𝑈 𝐼𝑈
𝑘

)
for 𝜙 can be formulated as follows:

Higher-order Structural Modeling
(a) Ego-graph-based prompt x𝑈 𝐼𝑈

𝑘
:

Given an ego-network in a job marketplace: (x𝑖𝑛𝑠 ) <member_𝑘>

<member_𝑖> <member_𝑗> <job_𝑙> <job_𝑚> <member_𝑜> (x𝑔
𝑘
),

the center member <member_𝑘> is interested in these jobs:

<job_𝑢> <job_𝑣> <job_𝑤> (x𝑞,𝑈 𝐼

𝑘
) the following users are also

interested in some of these jobs: (x𝑞,𝑈 𝐼𝑈

𝑘
)

(b) Completion y𝑈 𝐼𝑈
𝑘

:
<member_𝑥> <member_𝑦> <member_𝑧>
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From the above example, we can find that the ego-graph-based
prompt for the metapath 𝑈 𝐼𝑈 , i.e., x𝑈 𝐼𝑈

𝑘
, is composed of an extra

component x𝑞,𝑈 𝐼
𝑘

that describes the intermediate relationship 𝑈 𝐼

and the sampled final-step entities in A𝑈 𝐼𝑈
𝑘,1 , whereas the final

relationship 𝐼𝑈 is described in the question part x𝑞,𝑈 𝐼𝑈
𝑘

that begs for
completion with y𝑈 𝐼𝑈

𝑘
. Similar prompts can be established based on

higher-order metapaths. The language modeling loss of structural
modeling for metapath 𝜙 can be formulated as follows:

L𝜙
𝑘
=
∑︁
𝑡=1

log
(
𝑃Θ

(
𝑦
𝜙

𝑘,𝑡
| x𝜙
𝑘
, y𝜙
𝑘,<𝑡

))
. (3)

Since the completion y𝜙
𝑘
is composed of either homogeneous mem-

ber tokens or job tokens, we only calculate the softmax over the
member/job token space to stabilize the language modeling process.
For PLM with symmetric structure, i.e., the weights of the predic-
tion head are tied with token embeddings (e.g., GPT-2 [16]), we
also tie the weights of the prediction head with the corresponding
member/job embeddings, whereas for other non-symmetric PLMs
(e.g., LLaMA [23]), another set of randomly initialized embeddings
needs to be introduced as the weights for the prediction head.

2.3 Proximity-Aware Attention Alignment
Another issue that hinders good modeling of job marketplace with
PLMs is themisalignment of attention of the PLM with job mar-
ket graph topology: When optimizing Θ according to Eqs. (2), (3),
the PLM needs to attend to the prompt x{ 𝑓 ,𝜙 }

𝑘
and the already-

generated completions y{ 𝑓 ,𝜙 }
𝑘,<𝑡

. However, the attention of the back-
bone PLM may not be well aligned with the member/job ego-graph
𝐺𝑘 , as it may pay more attention to the recent tokens as for natural
language, rather than to the important member/job nodes in the
ego-graph𝐺𝑘 . To address this issue, we propose a proximity-aware
attention alignment strategy to dynamically adjust the attention
weights calculated by the PLM with proximity relations in the het-
erogeneous ego-graph𝐺𝑘 for both feature and structural modeling.

Here, the key insight is to view the tokens in the completion
for feature modeling, i.e., y𝑓

𝑘
, as associated with the center node

𝑘 (whereas each token in the completion for structural modeling,
i.e., y𝜙

𝑘
, is associated with the node itself), and adjust the weights

when attending to member/job nodes in the prompt based on their
heterogeneous proximity in 𝐺𝑘 . Specifically, the (un-normalized)
attention when generating after the 𝑡-th token (assumed to be asso-
ciated with the 𝑗-th node) on the 𝑡 ′-th token in the prompt (assumed
to be the 𝑗 ′-th node) can be adjusted as follows:

𝛼𝑡𝑡 ′ =

(
h𝑡W𝑄

)
(h𝑡 ′W𝐾 )𝑇√
𝑑

+ 𝝍𝑇𝑗 𝑗 ′b, (4)

where h{𝑡,𝑡 ′ } ∈ R𝑑 is the latent representation of the {𝑡, 𝑡 ′}-th
token,W𝑄 ,W𝐾 are the pretrained query and key matrices of the
backbone PLM, respectively, 𝝍 𝑗 𝑗 ′ ∈ R𝑀+1 encodes the heteroge-
neous proximity between the node 𝑗 and the attended node 𝑗 ′, and
b ∈ R𝑀+1 is the newly introduced learnable parameters. Specifi-
cally, given an ordered set of metapaths Φ = {𝜙0, 𝜙1, 𝜙2, · · ·𝜙𝑀 },

where𝜙0 denotes the trivial self metapath, 𝝍 𝑗 𝑗 ′ is defined as follows:

𝜓𝑖, 𝑗 𝑗 ′ =

{
1, if 𝜙𝑖 exists between node 𝑗 , 𝑗 ′,
0, else.

(5)

With the attention of generating completions to the member-job
ego-graph𝐺𝑘 in the prompt dynamically adjusted according to Eqs.
(4), (5), the attention of PLM4Job to member/job nodes can be better
aligned with the heterogeneous structure of the job marketplace.

2.4 Task-Specific Finetuning
The feature and structural modeling aims to encode and aggre-
gate member/job textual features and proximity information in
the job marketplace into the member/job token embeddings, such
that PLM4Job can understand the member-job heterogeneous ego-
graphs. In this part, we introduce the task-specific finetuning strate-
gies for PLM4Job to generalize it for various downstream tasks.

2.4.1 Node-Level Tasks. When conducting node-level tasks on
the job marketplace graph 𝐺 (e.g., member skill/work mode pref-
erence prediction), we first form an ego-graph-based prompt x𝑒

𝑘
with the target node 𝑘 as the center nodes, which includes the
instruction part x𝑖𝑛𝑠 , the ego-graph part x𝑔

𝑘
, the textual features of

the center node part x𝑒,𝑓
𝑘

, and the question part x𝑒,𝑞
𝑘

as follows:

Node-Level Task - Ego-Graph-based Prompt x𝑒
𝑘
:

Given an ego-network in a job marketplace: (x𝑖𝑛𝑠 ) <member_𝑘>

<member_𝑖> <member_𝑗> <job_𝑙> <job_𝑚> <member_𝑜> (x𝑔
𝑘
),

the biography of the center member <member_𝑘> is:

A hard-working applied research scientist at LinkedIn (x𝑒,𝑓
𝑘

)

The member could possess the following skills: (x𝑒,𝑞
𝑘

)

Here, since node-level prediction focuses more on the node feature
itself, we include textual feature into the prompt x𝑒

𝑘
, i.e., x𝑒,𝑓

𝑘
. We

only use member biography as an example, where other features
such as member educational experience can be easily included.

We first embed the prompt x𝑒
𝑘
with the PLM and obtain the

last-layer last-step hidden representation h𝑒,(−1)
𝑘,−1 . Since directly

generating the target class in natural language based on h𝑒,(−1)
𝑘,−1 via

autoregression may lead to hallucination [10], e.g., outputting skills
that are not in LinkedIn’s standardized skill set, we introduce class
tokens with embeddings C𝑛 ∈ R𝑁𝐶×𝑑 , where 𝑁𝐶 is the number of
classes, and predict the label of center node 𝑘 as follows:

𝑦𝑘 ∼ Categorical
(
𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥

(
C𝑛 · h𝑒,(−1)

𝑘,−1

))
. (6)

For binary classification tasks, we could change the question part
of the ego-graph-based prompt x𝑒

𝑘
, i.e., x𝑒,𝑞

𝑘
, to “does the member

possess the skill {name}”. In this case, we have two class
embeddings in C𝑛 denoting the positive and negative predictions.
We directly optimize the node class embeddings C𝑛 via Eq. (6) by
maximizing the log probability of the true class.

2.4.2 Link-Level Tasks. In this part, we focus on predicting one-
hop relationships in the job marketplace𝐺 , i.e., predicting member-
member following relations for people you may know (PYMK) rec-
ommendations, and predicting member-job interactions for job you
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Table 1: Statistics of the LinkedIn job marketplace.

Dataset #Mem #Job #Mem-Job #Mem-Mem

LinkedIn 69,716 63,368 490, 768 827,844

may be interested in (JYMBII) recommendations, which form two
most important business at LinkedIn. To predict the relationships,
we first construct a similar ego-graph-based prompt x𝑙

𝑘
as follows:

Link-Level Task - Ego-Graph-based Prompt x𝑙
𝑘
:

Given an ego-network in a job marketplace: (x𝑖𝑛𝑠 ) <member_𝑘>

<member_𝑖> <member_𝑗> <job_𝑙> <job_𝑚> <member_𝑜> (x𝑔
𝑘
),

The center <member_𝑘> currently follows:

<member_𝑝> <member_𝑞> <member_𝑟> (x𝑙,𝑠
𝑘
)

The member may be interested following in these members: (x𝑙,𝑞
𝑘

)

From the above example, we can find that the difference between x𝑙
𝑘

and x𝑒
𝑘
is that, the observed end entities from the target relationship

for the center node 𝑘 , i.e., x𝑙,𝑠
𝑘
, is included in the prompt x𝑙

𝑘
. During

training, we randomly mask some observed entities to form x𝑙,𝑠
𝑘

and stack all the hold-out neighbors as a multi-hot vector as the
target y𝑙

𝑘
∈ {0, 1}{𝑈 ,𝐼 } , which is generated as follows:

ŷ𝑙
𝑘
∼ Multinomial

(
𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥

(
C{𝑈 ,𝐼 } · h𝑙,(−1)

𝑘,−1

))
. (7)

Here, the weights C{𝑈 ,𝐼 } are the same as the weights of the LM pre-
diction head from the first-order structural modeling for metapaths
𝜙 ∈ {𝑈𝑈 ,𝑈 𝐼 } in Eq. (3) (details see sub-section 2.2.3).

2.5 Pipeline Summary
In summary, when training PLM4Job, we first pre-heat the model by
optimizing Eqs. (2), (3) for 𝑁𝑝𝑟𝑒 epochs. We then introduce the task-
specific finetuning objective and train PLM4Job in an interleaving
manner with Eq. (2), Eq. (3), and Eq. (6)/(7). Through this strat-
egy, both member/job textual features and heterogeneous graph
structure can be fully utilized to model the job marketplace.

2.6 Prediction
In the prediction phase of PLM4Job, we first randomly sample 𝑁𝑔
ego-graphs to construct the prompt x{𝑒,𝑙 }

𝑘 ′
for the target node 𝑘′. We

then calculate the categorical/multinomial probability according to
Eq. (6)/(7) for node/link-level tasks and take the average. Finally,
for node-level tasks, we use the class token with max probability
as the prediction, whereas for link prediction tasks, we rank the
multinomial likelihood and suggest the top𝑀 as the candidates.

3 EXPERIMENTS
3.1 Dataset Establishment
The studied job marketplace heterogeneous graph is established
by sampling from one-day interactions between members and jobs
from the United States at LinkedIn, where members’ clicks, views,
and applications of the job are recorded as the member-job edge in
the graph under the relation "be interested in." In addition, members

are connected if they work at the same company, representing the
relation of "co-working." Textual attributes of the members include
the headline (i.e., a brief intro. of the member under the name and
photo of the member) and the biography. Textual features of the
jobs include the title of the job, the company that posts the job,
the job descriptions, and the skills required by the job. We collect
the members’ skills and work mode preferences to evaluate the
node-level prediction ability of PLM4Job. Furthermore, for link-level
tasks, we test the ability of PLM4Job to predict both member-job
and member-member relations. The statistics of the established job
marketplace heterogeneous graph are summarized in Table 1.

3.1.1 Implementation Details. Since the decisions on the job
marketplace need to be fast at LinkedIn, we use a comparatively
small PLM, i.e., GPT-2 [16] with 768-dimensional token embeddings
and vocabulary size of 50,257, as the PLM backbone for PLM4Job.
For the metapath-based structural modeling (see Section 2.2.3), we
select six metapaths Φ = {𝑈 𝐼,𝑈𝑈 , 𝐼𝑈 ,𝑈 𝐼𝑈 ,𝑈𝑈 𝐼, 𝐼𝑈 𝐼 }, where in
each epoch, we randomly select one of the one-hop meta-paths
and one of the two-hop meta-paths for the structural informa-
tion aggregation. During the training stage, we first optimize the
newly introduced ego-graph token embeddings (see Eq. (1)) via
self-supervised feature/structural modeling as with Eqs. (2) and (3)
for ten epochs to warm up the model. Then, we add the task-specific
finetuning objective to subsequent epochs, where we alternately
train the PLM4Job model according to Eq. (2), Eq. (3), Eq. (6)/(7)
for 100 epochs. For the node-level tasks, we randomly select 15%
nodes with labels as the validation set and another 15% for test-
ing, where accuracy and F1-score are used as the metrics. For the
link-level tasks, we evaluate the PLM4Job on nodes with more than
five target links, where for each of such nodes, 60% of the links are
included for training, 20% are held out for validation, and another
20% for testing, where ranking-based metrics such as Recall@𝑀

and NDCG@𝑀 are used to measure the performance.

3.2 Baselines
We compare PLM4Job with various baselines on different down-
stream tasks on the job marketplace. Specifically, the baselines used
in this paper can be categorized into three classes: (i) graph neu-
ral network (GNN)-based methods, such as GCN [14], GAT [24],
as well as GNNs specifically designed for heterogeneous graphs,
such as the heterogeneous GNN (HetGNN) [9] and heterogeneous
graph attention network (HAN) [27]; (ii) graph transformer-based
methods such as the graphormer (GT) [33], the ego-graph-based
transformer, Gophormer [35] and the heterogeneous graph trans-
former (HGT) [9]; (iii) the PLM-based method, i.e., InstructGCL
[32]. In addition, we introduce two more baselines, i.e., SGL-Text
[28] and JMMFR (graph-based) [37] for node-level tasks, and Light-
GCN (graph-based) [8] and P5 (PLM-based) [5] for link-level tasks.

3.3 Node-Level Tasks
In this subsection, we show the experiments of PLM4Job on node-
level tasks on the LinkedIn job marketplace. Specifically, we are
interested in two tasks, i.e.,member skill prediction, which aims
to predict whether a member has coding-related or management-
related skills, andworkmode preference prediction, which aims
to predict whether a member is willing to take an online/onsite job.
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Table 2: Comparison between PLM4Job and baselines on the
node-level tasks on LinkedIn job marketplace modeling.

Skill Coding-Related Manage-Related
Dataset Accuracy F1-score Accuracy F1-score

MLP 0.7578 0.6919 0.6271 0.5405
GCN [14] 0.7810 0.7263 0.6784 0.6026
GAT [24] 0.8053 0.7318 0.6828 0.5950
SGL-Text [28] 0.7900 0.7254 0.6933 0.6148
JMMFR [37] 0.8046 0.7469 0.7008 0.6196
HetGNN [34] 0.8129 0.7435 0.6952 0.6169
HAN [27] 0.8084 0.7280 0.6990 0.6284

GT [33] 0.7733 0.7264 0.6902 0.5997
HGT [9] 0.7859 0.7315 0.6914 0.6036
Gophormer [35] 0.7925 0.7328 0.6805 0.6273
InstructGCL [32] 0.8103 0.7490 0.7052 0.6344

PLM4Job 0.8187 0.7568 0.7187 0.6459

Pref. Onsite Jobs Online Jobs
Dataset Accuracy F1-score Accuracy F1-score

MLP 0.5559 0.4368 0.5746 0.4871
GCN [14] 0.6048 0.5104 0.6802 0.5535
GAT [24] 0.5713 0.5091 0.6679 0.5460
SGL-Text [28] 0.5825 0.5078 0.6750 0.5589
JMMFR [37] 0.6094 0.5236 0.6696 0.5791
HetGNN [34] 0.6100 0.5287 0.6737 0.5641
HAN [27] 0.6084 0.5112 0.6784 0.5826

GT [33] 0.6035 0.5120 0.6203 0.5477
HGT [9] 0.6051 0.5139 0.6417 0.5582
Gophormer [35] 0.5996 0.5010 0.6629 0.5714
InstructGCL [32] 0.6187 0.5245 0.6821 0.5859

PLM4Job 0.6312 0.5393 0.6937 0.5924

Since a member can have multiple skills and prefer multiple types
of work modes, we model them as different binary classification
problems. Both of these can significantly benefit the member-job
matching at LinkedIn for better job recommendation results.

3.3.1 Comparison with Baselines. We first compare the pro-
posed PLM4Job with the baselines introduced in Section 3.2, where
the results are summarized in Table 2. From Table 2, we can find
that heterogeneous GNNs generally show better performance than
the normal GNN models due to their explicit consideration of dif-
ferent relations in the job marketplace graph. However, since these
models use bag-of-word representations to model member/job tex-
tual features, their shallow understanding of important textual
features leads to overall unsatisfactory results. For the graph trans-
former (GT)-based methods, HGT can distinguish heterogeneous
relationships in the job market graph, but as a global model, it may
not be able to fully utilize the local information for predictions.
Gophormer is specifically designed for ego-graphs, but it does not
consider the heterogeneous structure in the job marketplace. Most
importantly, although GT-based methods have a similar underlying
transformer structure as the PLM, these models are not pre-trained
on large datasets and do not contain prior knowledge of the nat-
ural language. Therefore, their understanding of the member/job
textual features as well as their relationship in the job marketplace

Table 3: Ablation study for PLM4Job on node-level tasks.

Skill Coding-Related Manage-Related
Dataset Accuracy F1-score Accuracy F1-score

PLM4Job-NE 0.8129 0.7501 0.7090 0.6422
PLM4Job-NA 0.8094 0.7335 0.7046 0.6368
PLM4Job-N2 0.8073 0.7274 0.6813 0.6237

PLM4Job 0.8187 0.7568 0.7187 0.6459

Pref. Onsite Jobs Online Jobs
Dataset Accuracy F1-score Accuracy F1-score

PLM4Job-NE 0.6281 0.5336 0.6841 0.5809
PLM4Job-NA 0.6248 0.5312 0.6786 0.5781
PLM4Job-N2 0.6125 0.5237 0.6760 0.5754

PLM4Job 0.6312 0.5393 0.6937 0.5924

is also shallow. As a PLM-based graph mining algorithm, Instruct-
GCL performs the best among all the baselines as it utilizes the
pretrained knowledge of PLMs. However, it does not consider the
heterogeneous relationships in the job market graph. In addition,
the proximity information is described via natural language such as
"one-hop," etc., which may not faithfully direct the attention of the
PLM according to the proximity information in the heterogeneous
job marketplace ego-graph. In contrast, by tightly coupling the
heterogeneous local structure of job marketplace graph with the
pre-trained knowledge of the PLM, the proposed PLM4Job achieves
the best results on the four datasets across all the metrics.

3.3.2 Ablation Studies. In this part, we conduct ablation study
to show the effectiveness of the ego-graph-based prompt (see Sec-
tion 2.2) and the proximity-aware attention alignment strategy (see
Section 2.3). Specifically, three ablation models are introduced on
PLM4Job, where PLM4Job-NE removes the entity and graph po-
sitional embeddings, PLM4Job-NA removes the proximity-aware
attention alignmentmodule, PLM4Job-N2 removes the second-order
meta-paths in structural modeling. The results are summarized in
Table 3. For Table 3, we can find that proximity-based attention
alignment contributes significantly to the superior performance of
PLM4Job, which demonstrates the misalignment of the attention
original PLM with the proximity relations in the heterogeneous
graph structure. In addition, the combination of entity and ego-
graph positional embeddings facilitates PLM4Job to well distinguish
different nodes in the heterogeneous job marketplace ego-graph.

3.4 Link-Level Tasks
In this sub-section, we show the experimental results of link-level
prediction tasks on the LinkedIn job marketplace. Specifically, we
focus on predicting member-job interactions (i.e., JYMBII predic-
tion) and member-member interactions (i.e., PYMK prediction).

3.4.1 Comparison Results. Similarly, we first compare PLM4Job
with various GNN-based, GT-based, and PLM-based baselines, where
the results are summarized in Table 4. From Table 4, we can find
that, generally, PLM4Job outperforms most of the GNN/GT/PLM-
based baselines, which demonstrates its ability to generalize to
link prediction tasks on the job marketplace. In addition, ablation
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Table 4: Comparison between PLM4Job and various baselines
on the link-level tasks for job marketplace modeling.

Link Member-Job Interaction
Dataset Recall@20 Recall@40 NDCG@100

Dual-MLP 0.0819 0.1318 0.0703
GCN [14] 0.1280 0.1905 0.0946
GAT [24] 0.1204 0.1828 0.0912
LightGCN [8] 0.1351 0.1985 0.1027
HetGNN [34] 0.1331 0.1957 0.1025
HAN [27] 0.1386 0.1971 0.1089

GT [33] 0.1013 0.1830 0.0976
HGT [9] 0.1206 0.1929 0.0970
Gophormer [35] 0.1173 0.1852 0.0947
P5 [5] 0.1412 0.2116 0.1049
InstructGCL [32] 0.1437 0.2158 0.1104

PLM4Job 0.1545 0.2210 0.1153

Link Member-Member Interaction
Dataset Recall@20 Recall@40 NDCG@100

Dual-MLP 0.1199 0.1843 0.1085
GCN [14] 0.1484 0.2326 0.1421
GAT [24] 0.1577 0.2490 0.1578
LightGCN [8] 0.1584 0.2501 0.1597
HetGNN [34] 0.1462 0.2285 0.1402
HAN [27] 0.1513 0.2371 0.1456

GT [33] 0.1437 0.2312 0.1483
HGT [9] 0.1470 0.2433 0.1537
Gophormer [35] 0.1526 0.2498 0.1584
P5 [5] 0.1801 0.2575 0.1695
InstructGCL [32] 0.1795 0.2531 0.1762

PLM4Job 0.1953 0.2684 0.1809

studies are also conducted for the link prediction task, where the
introduced ablation models are the same as the ones used in subsec-
tion 3.3.2. The results are summarized in Table 5. From the Table,
we can find that all components of the proposed PLM4Job also
contribute positively to its final superior results for link-level tasks.

3.5 Deployment of PLM4Job Embeddings
PLM4Job intends to serve as the foundation model for the LinkedIn
job retrieval system. At LinkedIn, the L1 retrieval model is evaluated
from the user feedback on the L2 ranking model. Since PLM4Job
is expensive to deploy directly, we extract the member/job token
embeddings from the trained PLM4Job model (takes O(1) complex-
ity), reduce their dimension, and deploy them on two of the most
important systems at LinkedIn: JYMBII and PYMK. We name the
two-tower model with PLM4Job embeddings as PLM4Job-Emb.

We compare the PLM4Job-Emb model with another model that
adds the embeddings of M6-Rec [2], i.e., a PLM-based matching
method for recommendations (where we denote the model as M6-
Rec-Emb), as well as the original two tower model. Specifically, we
randomly split the members into three folds and evaluate the three
models on users’ feedback on the L2 ranking model accumulated in
a week. FromTable 6, we can find that, adding PLM4Jobmember/job
embeddings can improve the performance of the existing two-tower

Table 5: Ablation Study for PLM4Job on link-level tasks.

Link Member-Job Interaction
Dataset Recall@20 Recall@40 NDCG@100

PLM4Job-NE 0.1502 0.2188 0.1131
PLM4Job-NA 0.1477 0.2095 0.1046
PLM4Job-N2 0.1410 0.2163 0.1094

PLM4Job 0.1545 0.2210 0.1153

Link Member-Member Interaction
Dataset Recall@20 Recall@40 NDCG@100

PLM4Job-NE 0.1927 0.2675 0.1798
PLM4Job-NA 0.1761 0.2503 0.1716
PLM4Job-N2 0.1809 0.2517 0.1753

PLM4Job 0.1953 0.2684 0.1809

Table 6: Deploy PLM4Job embeddings to the two-tower mod-
els on the LinkedIn JYMBII and PYMK systems.

Online Member-Job Interaction (JYMBII)
Dataset Recall@20 Recall@40 NDCG@100

Two-Tower 0.1353 0.1937 0.0980
M6-Rec-Emb 0.1409 0.2062 0.1058

PLM4Job-Emb 0.1426 0.2099 0.1093

Online Member-Member Interaction (PYMK)
Dataset Recall@20 Recall@40 NDCG@100

Two-Tower 0.1475 0.2360 0.1437
M6-Rec-Emb 0.1505 0.2374 0.1481

PLM4Job-Emb 0.1593 0.2446 0.1528

model at LinkedIn (which includes embeddings from internally
trained BERT [13] and GNNs), which further demonstrates the
ability of PLM to serve as foundation models for job marketplace
and adapt to downstream tasks with effectiveness and efficiency.

4 CONCLUSION
In this paper, we proposed PLM4Job, a graph-oriented pre-trained
language model, to serve as the foundation model for job market-
place modeling. Specifically, we first propose an ego-graph-based
prompt to facilitate the PLM to understand the features, relations,
and local structure of the job marketplace with the pretrained
knowledge. In addition, a proximity-aware attention alignment
strategy is proposed to align the attention of the PLM with the
heterogeneous proximity relations among members and jobs in
the job marketplace ego-graph. Extensive experiments on LinkedIn
real-world data demonstrate the effectiveness of PLM4Job.
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