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Large Language Models (LLMs) have recently transformed both the academic and industrial landscapes

due to their remarkable capacity to understand, analyze, and generate texts based on their vast knowledge

and reasoning ability. Nevertheless, one major drawback of LLMs is their substantial computational cost

for pre-training due to their unprecedented amounts of parameters. The disadvantage is exacerbated when

new knowledge frequently needs to be introduced into the pre-trained model. Therefore, it is imperative

to develop effective and efficient techniques to update pre-trained LLMs. Traditional methods encode new

knowledge in pre-trained LLMs through direct fine-tuning. However, naively re-training LLMs can be

computationally intensive and risks degenerating valuable pre-trained knowledge irrelevant to the update

in the model. Recently, Knowledge-based Model Editing (KME), also known as Knowledge Editing

or Model Editing, has attracted increasing attention, which aims at precisely modifying the LLMs to

incorporate specific knowledge, without negatively influencing other irrelevant knowledge. In this survey,

we aim at providing a comprehensive and in-depth overview of recent advances in the field of KME. We first

introduce a general formulation of KME to encompass different KME strategies. Afterward, we provide an

innovative taxonomy of KME techniques based on how the new knowledge is introduced into pre-trained

LLMs, and investigate existing KME strategies while analyzing key insights, advantages, and limitations

of methods from each category. Moreover, representative metrics, datasets, and applications of KME are

introduced accordingly. Finally, we provide an in-depth analysis regarding the practicality and remaining

challenges of KME and suggest promising research directions for further advancement in this field.
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1 Introduction

Recently, large language models (LLMs) have become a heated topic that revolutionizes both
academia and industry [10, 109, 144, 173]. With the substantial factual knowledge and reasoning
ability gained from pre-training on large corpora, LLMs have exhibited an unprecedented under-
standing of textual information, which are able to analyze and generate texts akin to human experts
[84, 87, 135, 138, 176]. Nevertheless, one main drawback of LLMs is the extremely high computa-
tional overhead of the training process due to the large amounts of parameters [59, 64, 179]. This
is exacerbated by the continuous evolvement of the world where the requirement of updating
pre-trained LLMs to rectify obsolete information or incorporate new knowledge to maintain their
relevancy is constantly emerging [85, 92, 128, 134]. For example, as in Figure 1, the outdated LLM,
GPT-3.5, cannot precisely describe the latest achievements of the famous soccer player Lionel
Messi, which requires an explicit injection of new knowledge to generate the correct answers.
One feasible while straightforward strategy for updating pre-trained LLMs is through naive

fine-tuning [20, 31, 141, 161], where parameters of pre-trained LLMs are directly optimized to
encode new knowledge from new data [6, 99, 111, 173]. For example, various instruction-tuning
methods are proposed to fine-tune pre-trained LLMs on newly collected data in a supervised
learning manner [100, 112, 157, 159]. Although such fine-tuning techniques are widely used and
capable of injecting new knowledge into LLMs, they are known for the following disadvantages:
(1) Even with parameter-efficient strategies to improve efficiency [89, 158, 170], fine-tuning LLMs
may still require intensive computational resources [97, 102, 174]. (2) Fine-tuning LLMs alters
the pre-trained parameters without constraints, which can lead to the overfitting problem, where
LLMs face the risk of losing valuable existing knowledge [172].
To address the drawbacks of updating LLMs with naive fine-tuning, more attention has been de-

voted toKnowledge-basedModel Editing1 (KME). In general, KME aims at precisely modifying
the behavior of pre-trained LLMs to update specific knowledge, without negatively influencing
other pre-trained knowledge irrelevant to the updates [116, 152, 167]. In KME, the update of a
specific piece of knowledge in LLMs is typically formulated as an edit, such as rectifying the
answer to “Who is the president of the USA?” from “Trump” to “Biden”. Regarding a specific edit,
KME strategies typically modify the model output by either introducing an auxiliary network (or
set of parameters) into the pre-trained model [52, 79, 175] or updating the (partial) parameters to
store the new knowledge [22, 49, 51, 83]. Through these strategies, KME techniques can store new
knowledge in new parameters or locate it in model parameters for updating, thereby precisely in-
jecting the knowledge into the model. In addition, certain methods further introduce optimization
constraints to ensure that the edited model maintains consistent behaviors on unmodified knowl-
edge [13, 106, 177]. With these advantages, KME techniques can provide an efficient and effective
way to constantly update LLMs with novel knowledge without explicit model re-training [172].

While sharing certain similarities with fine-tuning strategies, KME poses unique advantages
in updating LLMs, which are worthy of deeper investigations. Particularly, both KME and model
fine-tuning seek to update pre-trained LLMs with new knowledge. However, aside from this
shared objective, KME focuses more on two crucial properties that cannot be easily addressed by

1The concept is also termed as Knowledge Editing or Model Editing. For clarity, we refer to it as KME in this article.
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Fig. 1. An example of KME for efficient update of knowledge in LLMs.

fine-tuning. (1) Locality requires that KME does not unintentionally influence the output of other
irrelevant inputs with distinct semantics. For example, when the edit regarding the president of
the USA is updated, KME should not alter its knowledge about the prime minister of the UK. The
practicality of KME methods largely relies on their ability to maintain the outputs for unrelated
inputs, which serves as a major difference between KME and fine-tuning [117]. (2) Generality
represents whether the edited model can generalize to a broader range of relevant inputs regarding
the edited knowledge. Specifically, it indicates the model’s capability to present consistent behav-
ior on inputs that share semantic similarities. For example, when the model is edited regarding
the president, the answer to the query about the leader or the head of government should also
change accordingly. In practice, it is important for KME methods to ensure that the edited model
can adapt well to such related input texts. To summarize, due to these two unique objectives,
KME remains a challenging task that requires specific strategies for satisfactory effectiveness.

Differences between this survey and existing ones. Several surveys have been conducted to
examine various aspects of (large) language models [12, 34, 71, 73, 142, 173]. Nevertheless, there
is still a dearth of thorough investigations of existing literature and continuous progress in edit-
ing LLMs. For example, recent works [100, 159] have discussed the fine-tuning strategies that
inject new knowledge in pre-trained LLMs with more data samples. However, the distinctiveness
of KME, i.e., locality and generality, is not adequately discussed, which will be thoroughly ana-
lyzed in this survey. Two other surveys [35, 63] review knowledge-enhanced language models.
However, they mainly focus on leveraging external knowledge to enhance the performance of the
pre-trained LLMs, without addressing the editing task based on specific knowledge. To the best of
our knowledge, the most related work [167] to our survey provides a brief overview of KME and
concisely discusses the advantages of KME methods and their challenges. Nevertheless, the inves-
tigation lacks a thorough examination of more details of KME, e.g., categorizations, datasets, and
applications. The following work [172] additionally includes experiments with classic KME meth-
ods. Another recent work [152] proposes a framework for KME that unifies several representative
methods. This work focuses on the implementation of KME techniques, with less emphasis on the
technical details of different strategies. A more recent study [116] discusses the limitations of KME
methods regarding the faithfulness of edited models, while it is relatively short and lacks a more
comprehensive introduction to all existing methods. Considering the rapid advancement of KME
techniques, we believe it is imperative to review the details of all representative KME methods,
summarize the commonalities while discussing the uniqueness of each method, and discuss open
challenges and prospective directions in the domain of KME to facilitate further advancement.

Contributions of this survey. This survey provides a comprehensive and in-depth analysis of
techniques, challenges, and opportunities associated with the editing of pre-trained LLMs. We
first provide an overview of KME tasks along with an innovative formulation. Particularly, we
formulate the general KME task as a constrained optimization problem, which simultaneously in-
corporates the goals of accuracy, locality, and generality. We then classify the existing KME

ACM Comput. Surv., Vol. 57, No. 3, Article 59. Publication date: November 2024.



59:4 S. Wang et al.

strategies into three main categories, i.e., external memorization, global optimization, and
local modification. More importantly, we demonstrate that methods in each category can be
formulated as a specialized constrained optimization problem, where the characteristics are theo-
retically summarized based on the general formulation. In addition, we provide valuable insights
into the effectiveness and feasibility of methods in each category, which can assist practitioners
in selecting the most suitable KME method tailored to a specific task. Our analysis regarding the
strengths and weaknesses of KME methods also serves as a catalyst for ongoing progress within
the KME research community. In concrete, our key contributions can be summarized into three
folds as follows:

—Novel Categorization. We introduce a comprehensive and structured categorization
framework to systematically summarize the existing works for LLM editing. Specifically,
based on how the new knowledge is introduced into pre-trained LLMs, our categorization
encompasses three distinct categories: external memorization, global optimization, and local
modification, where their commonality and differences are thoroughly discussed in this
survey.

— In-Depth Analysis.We formulate the task of KME as a constrained optimization problem,
where methods from each category can be viewed as a special case with refined constraints.
Furthermore, we emphasize the primary insights, advantages, and limitations of each
category. Within this context, we delve deep into representative methods from each
category and systematically analyze their interconnections.

— Future Directions. We analyze the practicality of existing KME techniques regarding a
variety of datasets and applications. We also comprehensively discuss the challenges of the
existing KME techniques and suggest promising research directions for future exploration.

The remainder of this article is organized as follows. Section 2 introduces the background
knowledge for KME. Section 3 provides a general formulation of the KME task, which can fit into
various application scenarios. Section 4 provides a comprehensive summary of evaluation metrics
for KME strategies, which is crucial for a fair comparison across various methods. Before delving
into the specific methods, we provide a comprehensive categorization of existing methods into
three classes in Section 5.1, where their relationship and differences are thoroughly discussed.
Then we introduce the methods from the three categories in detail, where the advantages and
limitations of each category are summarized. Section 6 introduces the prevalently used public
datasets. Section 7 provides a thorough introduction to various realistic tasks that can benefit
from KME techniques. Section 8 discusses the potential challenges of KME that have not been
addressed by existing techniques. This section also provides several potential directions that can
inspire future research. Lastly, we conclude this survey in Section 9.

2 Background

In this section, we provide an overview of the editing strategies for machine learning models and
the basics of LLMs as background knowledge to facilitate the understanding of technical details
in KME. In this survey, we use bold uppercase letters (e.g., K and V) to represent matrices, use
lowercase bold letters (e.g., k and v) to represent vectors, and use calligraphic uppercase letters
(e.g.,X andY) to represent sets.We summarize the primary notations used in this survey in Table 1
for the convenience of understanding.

2.1 Editing of Machine Learning Models

Machine learning models [41, 54, 74] pre-trained on large datasets frequently serve as foundation
models for various tasks in the real-world [26, 126]. In practical scenarios, there is often a need to
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Table 1. Important Notations used in This Survey

Notations Detailed Descriptions

x Input (prompt) to LLMs

y Output of LLMs

(x ,y) Input-output pair

t = (s, r ,o) Original knowledge triple (before editing)

s/r /o Subject/Relation/Object in a knowledge triple

t∗ = (s, r ,o∗) Target knowledge triple (after editing)

e = (s, r ,o → o∗) Edit descriptor

Xe In-scope input space

Ye Original output space (before editing)

Y∗
e Target output space (after editing)

E = {ei } Set of edits

Oe Out-scope input space

q
(l )
i /k

(l )
i /v

(l )
i Query/Key/Value vector for the i-th head of the l-th attention module in Transformer

W
(l )
1 , W

(l )
2 Weights of the fully connected layers of the l-th attention module in Transformer

h(l ) Output from the l-th self-attention module in Transformer

‖ Vector concatenation

modify these pre-trained models to enhance the performance for specific downstream tasks [18,
20, 103, 164, 178], reduce biases or undesirable behaviors [39, 104, 113, 123], tailor models to align
more closely with human preferences [44, 72, 88], or incorporate novel information [101, 167, 177].

Model Editing is a special type of model modification strategy where the modification should
be as precise as possible. Nevertheless, it should accurately modify the pre-trained model to
encode specific knowledge while maximally preserving the existing knowledge, without affecting
their behavior on unrelated inputs [68]. First explored in the computer vision field, Bau et al. [8]
investigate the potential of editing generative adversarial networks (GANs) [45] by viewing
an intermediate layer as a linear memory, which can be manipulated to incorporate novel content.
Afterward, Editable Training [133] is proposed to encourage fast editing of the trained model
in a model-agnostic manner. The goal is to change the model predictions on a subset of inputs
corresponding to misclassified objects, without altering the results for other inputs. In [125], the
authors propose a method that allows for the modification of a classifier’s behavior by editing
its decision rules, which can be used to correct errors or reduce biases in model predictions.
In the field of natural language processing, several works [22, 102] have been proposed to
perform editing regarding textual information. Specifically, Zhu et al. [177] propose a constrained
fine-tuning loss to explicitly modify specific factual knowledge in transformer-based models
[146]. More recent works [42, 43] discover that the MLP layers in transformers actually act as
key-value memories, thereby enabling the editing of specific knowledge within the corresponding
layers.

2.2 Language Models

2.2.1 Transformers. Transformers lie in the core of LLMs [27, 121, 146]. The fully-fledged trans-
former possesses an encoder-decoder architecture initially designed for the neural machine

translation (NMT) task [137]. Nowadays, transformers have found wide applications in most
fields of the NLP community, beyond their original purpose. Generally, a transformer network is
constructed from multiple stacks of the self-attention module with residual connections, which is
pivotal for capturing contextual information from textual sequences. The self-attention module is
composed of a self-attention layer (SelfAtt) and a point-wise feed-forward neural network
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layer (FFN) formulated as follows:

h
A,(l−1)
i = SelfAtti

(
h
(l−1)
i

)
= Softmax

(
q
(l )
i

(
k
(l )
i

)�)
v
(l )
i ,

hF ,(l−1) = FFN
(
h(l−1)

)
= GELU

(
h(l−1)W

(l )
1

)
W

(l )
2 , h

(0) = x,

h(l ) = hA,(l−1) + hF ,(l−1) =
��
i
SelfAtti

(
h
(l−1)
i

)
+ FFN

(
h(l−1)

)
,

(1)

where q
(l )
i , k

(l )
i , and v

(l )
i represent the sequences of query, key, and value vectors for the ith attention

head of the lth attention module, respectively. GELU is an activation function. They are calculated

from h
(l−1)
i , the ith slice of the outputs from the (l − 1)-th self-attention module (i.e., h(l−1)), and x

denotes the input sequence of token embeddings. ‖ represents vector concatenation. Normalizing
factors in the self-attention layer are omitted for simplicity.
Generally, multi-head self-attention directs themodel to attend to different parts of the sequence

to predict the next token. Specifically, the prediction is based on different types of relationships

and dependencies within the textual data, where the output h
A,(l−1)
i is a weighted sum of the value

vector of other tokens. In contrast, FFN adds new information h
F ,(l−1)
i to the weighted sum of the

embeddings of the attended tokens based on the information stored in the weights of the fully

connected layers, i.e., W
(l )
1 and W

(l )
2 . The final layer outputs of the transformer, i.e., h(L), can be

used in various downstreamNLP tasks. For token-level tasks (e.g., part-of-speech tagging [19]), the
entire hidden representation sequence h(L) can be utilized to predict the target sequence. For the
sequence-level tasks (e.g., sentiment analysis [160]), the hidden representation of the last token,

i.e., h
(L)
−1 , can be considered as a summary of the sequence and thus used for the predictions.

2.2.2 Large LanguageModels (LLMs). Transformers with billions of parameters trained on large
corpora have demonstrated emergent ability, showcasing an unprecedented understanding of
factual and commonsense knowledge [173]. Consequently, these models are referred to as LLMs to
indicate their drastic distinction from traditional small-scale language models [34, 142]. Generally,
based on the specific parts of the transformer utilized for language modeling, existing LLMs can
be categorized into three classes: encoder-only LLMs, such as BERT [74], encoder-decoder-based
LLMs such as T5 [119], and decoder-only models (also the most common structure in LLMs) such
as different versions of GPT [118] and LLaMA [144].

2.3 Relevant Topics

KME intersects with several extensively researched topics, yet these techniques cannot effectively
address KME-specific challenges [141, 161]. The most relevant approach is model fine-tuning
[6, 20, 99], including parameter-efficient fine-tuning [89, 158, 170], which requires fewer param-
eter updates. However, fine-tuning remains computationally intensive and is often impractical
for black-box LLMs [172, 173]. Another related area is machine unlearning [105], which aims
at removing the influence of individual samples from models. Unlike KME, which focuses on
abstract and generalized knowledge updates, machine unlearning targets the elimination of
specific training data, making it unsuitable for KME. On the other hand, external memorization
KME methods share similarities with retrieval-augmented generation (RAG) [40], where a
large repository of documents is stored and retrieved as needed to provide contextually relevant
information for generating responses. While RAG can introduce new knowledge into LLMs
by retrieving recently added documents, it does not effectively update the inherent knowledge
within LLMs. Thus, RAG is not suitable for the fundamental knowledge updates that KME seeks
to achieve.
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3 Problem Formulation

In this section, we provide a formal definition for the knowledge-based model editing (KME)
task for pre-trained LLMs, where a general formulation of the KME objective is formulated to
encompass specific KME strategies. The task of KME for LLMs can be broadly defined as the
process of precisely modifying the behavior of pre-trained LLMs, such that new knowledge can
be incorporated to maintain the currentness and relevancy of LLMs can be maintained, without
negatively influencing other pre-trained knowledge irrelevant to the edits. To provide a clear
formulation, we present the definitions of different terms used in KME, where the overall process
is illustrated in Figure 2.

Editing Target. In this survey, we represent the knowledge required to be injected into LLMs as
a knowledge triple t = (s, r ,o), where s is the subject (e.g., president of the USA), r is the relation
(e.g., is), and o is the object (e.g., Biden). From the perspective of knowledge triple, the objective of
KME for LLMs is to modify the original knowledge triple t = (s, r ,o) encoded in the pre-trained
weights of the model into the target knowledge triple t∗ = (s, r ,o∗), where o∗ is the target object
different from o. In this manner, we can define an edit as a tuple e = (t , t∗) = (s, r ,o → o∗), which
denotes the update of the obsolete old knowledge t into the new knowledge t∗.

Fig. 2. The formulation of the KME objective.

Input and Output Space. Given
a pair of subject s and relation r , in
order to query LLMs to obtain the ob-
ject o, (s, r ) needs to be transformed
into natural language, which we
denoted as x . x is also referred to as
the prompt in this survey. The LLM
output y is also textual and can be
converted back to an object o as the
query result. In this way, (x ,y) can
be considered as the natural language input-output pair associated with the knowledge triple
t = (s, r ,o). For example, the prompt x transformed from s and r can be “The president of the USA
is”, and y is the model output “Joe Biden”. Note that due to the diversity of natural language, mul-
tiple (x ,y) pairs can be associated with the same knowledge triple t . We denote the set of textual
inputs associated with subject s and relation r in an edit e as Xe = I (s, r ), referred to as in-scope
input space. Similarly, we define the set of textual outputs that can be associated with the object
o in the same edit e asY∗

e = O
∗(s, r ,o∗) (i.e., target output space), and the original textual output

space asYe = O(s, r ,o) (i.e., original output space). Given an edit e , the aim of KME is to modify
the behavior of language models from Ye to Y∗

e , regarding the input in Xe . To accommodate the
scenarios where multiple edits are performed, we can define the union of Xe over a set of edits
E = {e1, e2, . . . } as XE =

⋃
e ∈E Xe . Similarly, we can define YE =

⋃
e ∈E Ye and Y∗

E
=
⋃

e ∈E Y
∗
e .

Formulation. We denote the pre-trained LLM with parameter ϕ as f : X → Y and the edited
model with updated parameter ϕ∗ as f ∗ : X → Y∗. The objective of knowledge-based model
editing is to precisely update the pre-trained LLM f into f ∗ according to edits in the edit set E
such that for each edit e and for each y ∈ Ye , the changes to the input-output pairs irrelevant to
the edits is minimized. The problem of KME can be formulated as follows:

Definition 1. The objective for KME on a series of edits E is represented as follows:

minEe ∈EEx,y∗ ∈Xe ,Y
∗
e
L(f ∗(x),y∗),where f ∗ = M(f ;E),

s.t. f ∗(x) = f (x), ∀x ∈ X \ XE ,
(2)
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where L is a specific loss function that measures the discrepancy between the model output f ∗(x)
and y∗ from the desirable response set Y∗

e . M(f ;E) denotes the modification applied to f based
on the desirable edits E.

From the above definition, we can summarize two crucial perspectives regarding the objective of
KME: (1)Generality, which requires that the correct answers in the target output spaceY∗

e can be
achieved, provided prompts in the in-scope input space, i.e.,Xe , where the target knowledge triple
t∗ ∈ e can be updated into the pre-trained model; (2) Locality, which requires the consistency of
model output regarding unrelated input, i.e., X \ XE , where valuable pre-trained knowledge can
be maximally preserved after the editing. Here, we note that locality is especially important for
editing LLMs, as the knowledge that needs to be updated often occupies only a small fraction of all
knowledge encompassed by the pre-trained model. In other words, the output of an edited model
regarding most input prompts should remain consistent with the output before editing.

4 Evaluation Metrics

Before introducing the taxonomy of KME and the exemplar methods in detail, in this section,
we first discuss various metrics commonly used to evaluate the effectiveness of different KME
strategies from varied perspectives. We summarize the metrics to facilitate the understanding in
terms of the properties and advantages of different methods.

4.1 Accuracy

Accuracy is a straightforward metric for evaluating the effectiveness of KME techniques [17, 29,
79, 101, 106, 174, 175], defined as the success rate of editing in terms of a specific set of pre-defined
input-output pairs (xe ,y

∗
e ) associatedwith all the edited knowledge. Accuracy can be easily defined

to evaluate the performance of KME on classification tasks, e.g., fact checking [102, 114], where
the answers y are categorical. Defining the prompt and ground truth related to an edit e as xe and
y∗e , respectively, the metric of the accuracy of an edited model f ∗ is formulated as follows:

Acc(f ∗;E) = Ee ∈E1{ f ∗(xe ) = y
∗
e }. (3)

Since accuracy is defined on a deterministic set of prompt-answer pairs, it provides a fair compar-
ison between KME methods [22, 97, 98]. Nevertheless, it is non-trivial to evaluate the practicality
of KME methods with accuracy, as there is no consensus on how to design the E, especially when
the task needs to output a long sequence such as question answering or text generation [29, 97, 98].

4.2 Locality

One crucial metric for the KME strategies is locality [17, 25, 83, 101], which reflects the capability
of the edited model f ∗ to preserve the pre-trained knowledge in f irrelevant to the edits in E. Note
that in most KME applications, the number of required edits makes for an extremely small fraction
of the entire knowledge learned and preserved in the pre-trained LLMs [167, 172]. Consequently,
the locality measurement is of great importance in assessing the capability of edited models to
preserve unrelated knowledge [49, 95, 104]. Given an edit e , the edited model f ∗, and the original
pre-trained model f , the locality of f ∗ can be defined as the expectation of matched agreement be-
tween the edited model and unedited model for out-scope inputs, which can be defined as follows:

Loc(f ∗, f ; e) = Ex�Xe 1{ f ∗(x) = f (x)}. (4)

We can also consider the locality regarding the entire edit set E, which can be defined as follows:

Loc(f ∗, f ;E) = Ex�XE
1{ f ∗(x) = f (x)}, where XE =

⋃
e ∈E

Xe . (5)
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Although the above metric measures the overall locality of f ∗ based on all inputs that are not in
XE , it is difficult to compute in realistic scenarios, as the entire input space can be excessively large
or even infinite [167]. Therefore, existing methods generally resort to alternative solutions that
pre-define the specific range of out-scope inputs to calculate the locality metric [15, 22, 25, 82, 97].
For example, in SERAC [102], the authors generate hard out-scope examples from the dataset
zsRE [78] by selectively sampling from training inputs with high semantic similarity with the edit
input, based on embeddings obtained from a pre-trained semantic embedding model. Denoting
the out-scope input space related to the input Xe as Oe , we can similarly define the feasible
out-scope input space for multiple edits as OE =

⋃
e ∈E Oe . In this manner, we define a specific

metric of locality of f ∗ regarding E as follows:

Loc(f ∗, f ;Oe ) = Ex ∈Oe 1{ f ∗(x) = f (x)}, (6)

Loc(f ∗, f ;OE) = Ex ∈OE
1{ f ∗(x) = f (x)}, where OE =

⋃
e ∈E

Oe . (7)

4.3 Generality

Aside from locality, another crucial metric is generality, which indicates the capability of the
edited model f ∗ to correctly respond to semantically similar prompts [13, 101, 106, 130, 177]. This
requires the generalization of the updated knowledge to other in-scope inputs that do not appear
in the training set while conveying similar or related meanings [50, 163]. As such, ensuring
the generality of edited models prevents the edited model from overfitting to a particular input
[172]. Specifically, in the scenarios of knowledge-based model editing, the inherent diversity
of natural language determines that various in-scope inputs x can correspond to a specific
knowledge triple t [152]. These semantically equivalent inputs can involve differences in aspects
such as syntax, morphology, genre, or even language. Existing works mostly pre-define a specific
in-scope input space of each edit via different strategies [61, 86, 136, 166, 168]. For example, in the
CounterFact dataset proposed in ROME [97], the authors utilize prompts that involve distinct
yet semantically related subjects as the in-scope input. In general, the generality of an edited
model f ∗ is defined as the expectation of exact-match agreement between the output of the edited
model and true labels for in-scope inputs, which can be defined on either an edit e or the edit
set E as

Gen(f ∗; e) = Ex ∈Xe 1{ f ∗(x) ∈ Y∗
e }, (8)

Gen(f ∗;E) = Ex ∈XE
1{ f ∗(x) ∈ Y∗

e }, where XE =
⋃
e ∈E

Xe . (9)

4.4 Portability

In addition to generality, another vital metric is portability, which measures the effectiveness of
the edited model f ∗ in transferring a conducted edit to other logically related edits that can be in-
terpreted via reasoning [172]. For example, if an edit is conducted toward the President of the USA,
the edit regarding the query “Which political party does the current President of the USA belong
to?” should also be achieved. This ensures that the edited model is not limited to responding to
specific input formats. In concrete, the transfer of knowledge is crucial for robust generalization
of the edited model. In practice, portability can be assessed with logically related edits obtained in
different ways [21, 167]. Denoting an edit as e = (s, r ,o → o∗), hereby we introduce two common
types of logically related edits ẽ . (1) Reversed Relation: ẽ = (o → o∗, r̃ , s), where r̃ is the reversed re-
lation of r , and (2) Neighboring Relation: ẽ = (s, r ⊕ rϵ , ϵ → ϵ∗), where both (o, rϵ , ϵ) and (o

∗, rϵ , ϵ
∗)

exist in the pre-trained knowledge, and r ⊕ rϵ is a combined relation from r and rϵ . In this manner,
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we define portability as the edited model performance on one or multiple logically related edits
as follows:

Por(f ∗; ẽ) = Ex ∈Xẽ 1{ f ∗(x) ∈ Y∗
ẽ }, (10)

Por(f ∗; Ẽ) = Ex ∈X
Ẽ
1{ f ∗(x) ∈ Y∗

ẽ }, where X
Ẽ
=
⋃
ẽ ∈Ẽ

Xẽ . (11)

4.5 Retainability

Retainability characterizes the ability of KME techniques to preserve the desired properties of
edited models after multiple consecutive edits [47, 69, 169]. In the presence of ever-evolving
information, practitioners may need to frequently update a conversational model (i.e., sequential
editing). Such a KME setting requires that the model does not forget previous edits after each new
modification [81]. It is essential to distinguish retainability from scalability, which evaluates the
model’s ability to handle a vast number of edits [15]. In contrast, retainability assesses the consis-
tent performance of the model after each individual edit, presenting a more challenging objective
to achieve. Recently, T-Patcher [66] first explores the sequential setting of KME and observes
that many existing approaches significantly fall short in terms of retainability. In SLAG [53], the
authors also discover a significant drop in editing performance when multiple beliefs are updated
continuously. To assess the retainability of an edited language model f ∗, we define it as follows:

Ret(M ;E) =
1

|E | − 1

|E |−1∑
i=1

Acc(M(f ; {e1, e2, . . . , ei+1})) − Acc(M(f ; {e1, e2, . . . , ei })) (12)

where Acc is the accuracy measurement, |E | is the number of edits in the edit set, andM denotes
the editing strategy that modifies the pre-trained model f into f ∗ with i/i + 1 consecutive edits
{e1, e2, . . . , ei , (ei+1)}. The retainability metric aims at quantifying the effect of applying consecu-
tive edits to a model and measures how the performance will change the editing strategyM , where
a higher retainability means that after each edit, the less the change in the overall performance of
the edited model f ∗ is required.

4.6 Scalability

The scalability of an editing strategy refers to its capability to incorporate a large number of edits
simultaneously [15]. Recently, several works have emerged that can injectmultiple new knowledge
into specific parameters of pre-trained LLMs [168, 172]. For instance, SERAC [102] can perform a
maximum of 75 edits. In addition, MEMIT [98] is proposed to enable thousands of edits without
significant influence on editing accuracy. When there is a need to edit a model with a vast number
of edits concurrently, simply employing the current knowledge-based model editing techniques in
a sequential manner is proven ineffective in achieving such scalability [167]. To effectively evaluate
the scalability of edited language models, we define the scalability of an edited model as follows:

Sca(M ;E) = Ee ∈EAcc(M(f ; e)) − Acc(M(f ;E)), (13)

where Acc(M(f ;E)) denotes the accuracy of the edited model after conducting all edits in E,
whereas Acc(M(f ; e)) is the accuracy of only performing the edit e . Sca demonstrates the model
performance and practicality in the presence of multiple edits. Nevertheless, we note that baseline
value Acc(M(f ; {e})) is also important in evaluating the scalability of various models. This is be-
cause, with higher accuracy for each e , the retainment of such performance after multiple edits is
more difficult. Therefore, we further define the relative version of Equation (13) as follows:

Scar el (M ;E) = (Ee ∈EAcc(M(f ; {e})) − Acc(M(f ;E))) /Ee ∈EAcc(M(f ; {e})). (14)
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The introduced scalability measurement further considers the magnitude of the original accuracy
to provide a fairer evaluation.

5 Methodologies

In this section, we introduce existing KME strategies in detail. We first provide an innovative
taxonomy of existing KME strategies based on how and where the new knowledge is injected
into the pre-trained LLMs, where the advantages and drawbacks are thoroughly discussed. We
then introduce various methods from each category, with an emphasis on analyzing the technical
details, insights, shortcomings, and their relationships.

5.1 Categorization of KME Methods

Faced with the rapid deprecation of old information and the emergence of new knowledge, var-
ious KME methodologies have been proposed to update the pre-trained LLMs to maintain their
updatedness and relevancy. KME ensures that new knowledge can be efficiently incorporated into
the pre-trained LLMs without negatively influencing the pre-trained knowledge irrelevant to the
edit. In this survey, we categorize existing KME methods into three main classes as follows:

— External Memorization-based methods leverage an external memory to store the new
knowledge for editing without modifying the pre-trained weights, where the pre-trained
knowledge can be fully preserved in the LLM weights. By storing new knowledge with ex-
ternal parameters, the memory-based strategies enable precise representation of new knowl-
edge with good scalability, as the memory is easily extensible to incorporate new knowledge.

—Global Optimization-basedmethods seek to achieve generalizable incorporation of the
new knowledge into pre-trained LLMs via optimization with the guidance of new knowl-
edge, where tailored strategies are introduced to limit the influence of other pre-trained
knowledge, distinguishing it from naive fine-tuning. Nevertheless, these methods may fall
short in editing efficiency when applied to LLMs due to the large number of parameters to
be optimized.

— Local Modification-based methods aim at locating the related parameters of specific
knowledge in LLMs and update it accordingly to incorporate the new knowledge relevant
to the edit. The main advantage of local modification is the possibility of only updating
a small fraction of model parameters, thereby providing considerable memory efficiency
compared to memorization-based methods and computational efficiency compared to global
optimization.

The above categorization is achieved based on where (e.g., external parameters or internal
weights) and how (e.g., via optimization or direct incorporation) new knowledge is introduced
into the LLM during editing. Methods in each category exhibit different strengths and weaknesses
regarding the four crucial evaluation metrics introduced in Section 4. For example, external mem-
orization prevails in scenarios that require massive editing while the computational resources are
limited, as the size of the memory is controllable to fit into different requirements. On the other
hand, global optimization is advantageous when practitioners focus more on the generality of
edited knowledge, as the optimization can promote the learning of relevant knowledge [2]. The
taxonomy is visually illustrated in Figure 3, and a more detailed demonstration of each category
is presented in Figure 4.

5.2 External Memorization

5.2.1 Overview. The editing approaches via external memorization aim at modifying the
current model fϕ (with parameter ϕ) via introducing external memory represented by additional
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KME

External Memorization

Memory-based
MeLLo [175] , MemPrompt [95], IKE [174],

Language Patch [104], SERAC [102], KAFT [79]

Extension-based
CALINET [29], T-Patcher [66], GRACE [52],

COMEBA-HK [81], SWEA [82]

Global Optimization

Constrained Fine-tuning

RecAdam[13], Editable Training [133],

PPA [77], Modifying-Memory[177],

F-Learning [106], MELO [169], RECT [48]

Intermediate Fine-tuning KGEditor [17], KE [25], SLAG [53], MEND[101]

Local Modification

Groundtruth-based
KD[22], ROME [97], DEPN [165], PMET [83],

MEMIT [98], EMMET [50], DINM [149]

Prompt-based MEMITCSK [49], BIRD [93]

Fig. 3. The categorization of KME techniques for LLMs and the corresponding works.

Fig. 4. The illustration of three categories of KME methods: External Memorization, Global Optimiza-

tion, and Local Modification.

trainable parameters ω that encodes the new knowledge, resulting in an edited LLM model
f ∗
ϕ,ω

. The rationale behind the external memorization strategy is that storing new knowledge in

additional parameters is intuitive and straightforward to edit the pre-trained LLMs with good
scalability, as the parameter size can be expanded to store more knowledge. In addition, the
influence on the pre-trained knowledge can be minimized as this strategy does not alter the
original parameters ϕ. Based on the general formulation of KME in Equation (2), the objective of
external memorization approaches can be formulated as follows:

minEe ∈EEx,y∗ ∈Xe ,Y
∗
e
L(f ∗ϕ,ω (x),y

∗),where f ∗ϕ,ω = M(fϕ ,ω;E),

s.t. f ∗ϕ,ω (x) = fϕ (x), ∀x ∈ X \ XE ,
(15)

where fϕ denotes the LLM before editing with the pre-trained parameter ϕ, and f ∗
ϕ,ω

denotes the

edited LLM with ϕ and additional parameter ω as the external memorization. Moreover, based on
whether the introduced parameters are directly incorporated into the model process or not, ex-
ternal memorization strategies can be divided into two categories, i.e.,memory-based methods

and extension-based methods.

5.2.2 Memory-based Strategies. In memory-based strategies, the external memory, outside the
intrinsic architecture of the pre-trained LLM, functions as a repository to store edited knowledge.
Here the edits are generally converted to text via pre-defined templates [154, 174, 175]. The LLM
can access and update this memory as required during inference.
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One exemplar work is SERAC [102], which stores the edited samples x ,y∗ ∈ Xe ,Y
∗
e in a cache

without performing modifications on the original model. When presented with a new prompt
x ′, SERAC uses a scope classifier to determine whether the prompt falls within the scope of any
cached instances. If yes, the desirable output y ′ associated with the new prompt x ′ is predicted via
a counterfactual model fc which utilizes the most relevant edit example as follows:

f ∗ϕ,ω (x) =

{
fϕ (x), if x is not in scope of any edit,
fc (x ,E), otherwise.

(16)

SERAC is a gradient-free approach to KME without relying on gradients of the target label y∗

w.r.t. the pre-trained model parameters. In addition to using memory as an external repository, the
desirable edits can also be stored in the form of human feedback. For example, Language Patch

[104] performs editing by integrating patches in natural language, andMemPrompt [95] involves
human feedback prompts to address the issue of lacking commonsense knowledge regarding a par-
ticular task. An integral feature of the Language Patch [104] framework is its ability to empower
practitioners with the capability to create, edit, or remove patches without necessitating frequent
model re-training. This trait not only streamlines the development process but also enhances the
adaptability and versatility of the edited model. To enable the automatic correction in memory,
MemPrompt [95] equips the language model with a memory bank containing corrective feedback
to rectify misunderstandings. Specifically, MemPrompt leverages question-specific historical feed-
back to refine responses on novel and unencountered instances through prompt adjustments.
InKAFT [79], controllability is achieved through the utilization of counterfactual data augmen-

tations. In this approach, the entity representing the answer within the context is substituted with
an alternative but still plausible entity. This substitution is intentionally designed to introduce a
conflict with the genuine ground truth, thereby enhancing the controllability and robustness of
LLMs with respect to their working memory. The aim is at ensuring that LLMs remain responsive
to pertinent contextual information while filtering out noisy or irrelevant data.
In addition to relying on parameter-based memory, recent works also leverage prompting tech-

niques of LLMs, e.g., in-context learning [30] and chain-of-thought prompting [162], to promote
editing performance of external memorization. Specifically, IKE [174] introduces novel factual in-
formation into a pre-trained LLM via in-context learning, where a set of k demonstrations, i.e.,
ω = {xi ,y

∗
i }

k
i=1, is selected as the reference points. These demonstrations will alter the prediction

of a target factual detail when the input is influenced by an edit. Particularly, IKE guarantees a
balance between generality and locality via storing factual knowledge as prompts. The process
can be formulated as follows:

f ∗ϕ,ω (x) = fϕ (ω‖x), where ω = {xi ,y
∗
i }

k
i=1. (17)

Here ‖ denotes the concatenation of the reference points in ω and the input x , which follows an
in-context learning manner. Note that in this process, the framework first transforms all new facts
into natural language to input them into LLMs. Similar methods of knowledge editing based on
prompts [15, 131, 136, 154] can also update and modify knowledge within LLMs. These approaches
allow users to guide the model to generate desired outputs by providing specific prompts, and ef-
fectively and dynamically adjusting the model’s knowledge base. By leveraging the flexibility of
prompts and the contextual understanding of LLMs, users can correct or update information in
real-time. These methods offer immediacy, flexibility, and cost-efficiency, making them powerful
tools for maintaining the accuracy and relevance of language models in rapidly evolving knowl-
edge domains. Although the prompt approaches effectively edit factual knowledge via in-context
learning, they cannot solve more complex questions that involve multiple relations. To deal with
this, MeLLo [175] first explores the evaluation of the editing effectiveness in language models
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regarding multi-hop knowledge. For example, when editing knowledge about the president of the
USA, the query regarding the president’s children should change accordingly. MeLLo proposes to
enable multi-hop editing by breaking down each query into subquestions, such that the model gen-
erates a provisional answer. Subsequently, each subquestion is used to retrieve the most pertinent
fact from the memory to assist the model in answering the query.

5.2.3 Extension-based Strategies. Extension-based strategies utilize supplementary parameters
to assimilate modified or additional information into the original language model. These supple-
mentary parameters are designed to represent the newly introduced knowledge or necessary ad-
justments tailored for specific tasks or domains. Different from memory-based methods, by in-
corporating new parameters into the language model, extension-based approaches can effectively
leverage and expand the model’s functionality.
Extension-based methods can be implemented through various means, and one representative

way is to modify the Feed-forward Neural Network (FFN) output. For example, CALINET
[29] uses the output from sub-models fine-tuned specifically on factual texts to refine the original
FFN output produced by the base model. Another technique T-Patcher [66] introduces a limited
number of trainable neurons, referred to as “patches”, in the final FFN layer to alter the model’s
behavior while retaining all original parameters to avoid reducing themodel’s overall performance.
Generally, these methods that refine the structure of FFN can be formulated as follows:

FFN(h) = GELU (hW1)W2 + GELU
(
h · kp + bp

)
· vp , (18)

where kp is the patch key, vp is the patch value, and bp is the patch bias scalar. The introduced
patches are flexible in size and can be accurately activated to edit specific knowledge without
affecting other model parameters.
Alternatively, a different technique involves integrating an adapter into a specific layer of a pre-

trained model. This adapter consists of a discrete dictionary comprising keys and values, where
each key represents a cached activation generated by the preceding layer and each corresponding
value decodes into the desired model output. This dictionary is systematically updated over time.
In line with this concept, GRACE [52] introduces an adapter that enables judicious decisions re-
garding the utilization of the dictionary for a given input, accomplished via the implementation of
a deferral mechanism. It is crucial to achieve a balance between the advantages of preserving the
original model’s integrity and the practical considerations associated with storage space when im-
plementing this approach.COMEBA-HK [81] incorporates hook layers within the neural network
architecture. These layers allow for the sequential editing of the model by enabling updates to be
applied in batches. This approach facilitates the integration of new knowledge without requiring
extensive retraining of the entire model, making it a scalable solution for continuous learning and
adaptation. SWEA [82] focuses on altering the embeddings of specific subject words within the
model. By directly updating these embeddings, the method can inject new factual knowledge into
the LLMs. This approach ensures that the updates are precise and relevant, thereby enhancing the
model’s ability to reflect current information accurately.

5.2.4 Summary. The eternal memorization methodology operates by preserving the parame-
ters within the original model while modifying specific output results through external interven-
tions via memory or additional model parameters. One notable advantage of this approach is its
minimal perturbation of the original model, thereby ensuring the consistency of unedited knowl-
edge. It allows for precise adjustments without necessitating a complete overhaul of the model’s
architecture. However, it is imperative to acknowledge a tradeoff inherent in this methodology.
Its efficacy is contingent upon the storage and invocation of the edited knowledge, a factor that
leads to concerns regarding storage capacity. Depending on the scale of knowledge to be edited,
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this approach may entail substantial storage requisites. Therefore, cautiously seeking a balance be-
tween the advantages of preserving the original model’s integrity and the practical considerations
of storage capacity becomes a pivotal concern when employing this particular approach.

5.3 Global Optimization

5.3.1 Overview. Different from external memorization methods that introduce new parameters
to assist the editing of pre-trained LLMs, there also exist branches of works that do not rely on
external parameters or memory. Concretely, global optimization strategies aim at injecting new
knowledge into LLMs by updating all parameters, i.e., ϕ in Equation (15). Through fine-tuning
model parameters with specific designs to ensure the preservation of knowledge irrelevant to the
target knowledge t∗, the LLMs are endowed with the ability to absorb new information without
altering unedited knowledge. Generally, the goal of global optimizationmethods can be formulated
as follows:

minEe ∈EEx,y∗ ∈Xe ,Y
∗
e
L(fϕ∗ (x),y∗), where fϕ∗ = M(fϕ ;E),

s.t. fϕ∗ (x) = fϕ (x), ∀x ∈ X \ XE ,
(19)

where fϕ denotes the LLM before editing with the pre-trained parameter ϕ, and fϕ∗ denotes the
edited LLM with updated parameter ϕ∗. Generally, these methods focus more on the precision and
generality of desirable knowledge, as the fine-tuning process ensures that the LLMs achieve satis-
factory results regarding the edits and relevant knowledge. Nevertheless, as fine-tuning affects all
parameters, they cannot easily preserve the locality of edited models, i.e., maintaining consistent
output for unedited knowledge [167]. In practice, directly applying fine-tuning strategies typi-
cally exhibits suboptimal performance on KME due to overfitting concerns [98, 152]. Furthermore,
fine-tuning large language models is also time-consuming and lacks scalability for multiple edits.
Therefore, recently, motivated by these two challenges in fine-tuning, several global optimization
works have been proposed and can be categorized as constrained fine-tuning methods and in-
termediate fine-tuning methods. Note that this section primarily focuses on methods from the
model training perspective. Additionally, certain studies [38, 69] address the overfitting challenge
by constructing more a comprehensive X′

E
with the following fine-tuning goal:

minEe ∈EEx,y∗ ∈X′
e ,Y

∗
e
′L(fϕ∗ (x),y∗), where fϕ∗ = M(fϕ ;E),

s.t. XE ⊂ XE
′,XE

′ ⊆ X.
(20)

5.3.2 Constrained Fine-tuning. Constrained fine-tuning strategies generally apply specific con-
straints to prevent updating on non-target knowledge in {X \ XE ,Y \ YE}. In this manner, the
objective in Equation (20) is transformed into a constrained optimization problem:

minEe ∈EEx,y∗ ∈Xe ,Y
∗
e
L(fϕ∗ (x),y∗), where fϕ∗ = M(fϕ ;E),

s.t. ‖L(fϕ∗ (x),y) − L(fϕ (x),y)‖ ≤ δ ,∀x ,y ∈ X \ XE ,Y \ YE ,
(21)

where ϕ, ϕ∗ are the parameters before and after updating, respectively. δ is a scalar hyper-
parameter to restrict the difference between losses of fϕ∗ and fϕ . The constraint in Equation (21)
restricts the change of the edited model on unmodified knowledge. Zhu et al. [177] first propose
an approximate optimization constraint that is easier for implementation and computation:

minEe ∈EEx,y∗ ∈Xe ,Y
∗
e
L(fϕ∗ (x),y∗), where fϕ∗ = M(fϕ ;E),

s.t. ‖ϕ∗ − ϕ‖ ≤ δ .
(22)

The updates are regularized by restricting the norm of parameters before and after updating.
RECT [48] adopts a similar yet simpler approach, specifically modifying only the top-k% of pa-
rameters with the largest numerical updates during fine-tuning. Although restricting the norm is
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helpful in preventing the forgetting of original knowledge, the fine-tuning process can be less ef-
fective. To deal with this, RecAdam [13], in addition to the norm constraint, applies an annealing
technique to control the ratio between the parameter norm and the fine-tuning loss as follows:

Ltotal = λ(t)LFT + (1 − λ(t))‖ϕ∗ − ϕ‖, where λ(t) =
1

1 + exp(−k · (t − t0))
. (23)

Here k and t0 are hyper-parameters. t is the number of fine-tuning steps. Such a design enables a
gradual fine-tuning process that prevents massive parameter updates at the beginning. Motivated
by the intuition of regularization to preserve original knowledge, PPA [77] employs LoRA [62]
in the feed-forward (FFN) layers of the transformer decoder. LoRA is proposed to train the
expansion/reduction matrix, instead of the model parameter ϕ, to improve training speed by
only updating parameters with a low intrinsic rank via dimensionality reduction. PPA leverages
plug-in modules trained with constraints via LoRA to keep original knowledge intact. Moreover,
the authors assess whether the content of the inputs falls within the scope of XE using the
K-adapter module [153], and redirect such inputs to the new plug-in modules. This information
is then used to determine whether to employ LoRA within the FFN layers. Furthermore, MELO

[169] clusters the edits and employs multiple non-overlapping LoRA blocks for fine-tuning each
cluster separately, thereby mitigating the issue of catastrophic forgetting. F-Learning (Forgetting
before Learning) [106] proposes another approach to preserve original knowledge, which learns
knowledge parameters Δϕ that indicates old knowledge to be forgotten, defined as follows:

ϕ∗ = ϕ − λΔϕ, where Δϕ = FT(ϕ;Kold ) − ϕ . (24)

HereKold denotes the dataset composed of old knowledge that we desire to forget, and FT(ϕ;Kold )

is the supervised fine-tuning process of parameters ϕ on datasetKold . λ is a hyper-parameter used
to control the rate of forgetting. Based on the assumption that subtracting the parameters Δϕ from
ϕ can help the model forget this part of old knowledge [68], F-Learning defines the forgetting
process as a subtraction operation to obtain the updated model parameter ϕ∗.
On the other hand, other works also resort to meta-learning [36, 145] to apply more flexible

constraints. Meta-learning addresses the issue of overfitting by training a model that can quickly
adapt to new tasks [60]. By exposing the model to a variety of tasks during training, meta-learning
improves the model’s ability to generalize from limited data and reduces the risk of overfitting
individual tasks [67]. In the scenario of KME, the optimal model parameters ϕ∗ should minimize
the expected loss over a variety of meta-tasks [120]:

ϕ∗ = argmin
ϕ

ED∼D[Lϕ (D)], (25)

whereD corresponds to the sample set for each meta-taskD. Moreover, each meta taskD contains
multiple (x∗,y∗) pairs for editing. In practice, such methods often introduce additional objective
functions or networks to regulate parameter updates. As a typical meta-learning method for KME,
Editable Training [133] focuses on effectively rectifying errors within models while preserving
their performance on other irrelevant data instances. Following a model-agnostic training man-
ner, the authors introduce additional constraints to restrict parameter updates in a different way.
Specifically, the loss function is separated intoLbase (task-specific objective function),Ledit (com-
puted on the edit set XE ), and Llocal (computed on samples in X \XE ). Moreover, the models are
updated in a meta-learning manner, where k steps of gradient descent would be applied for param-
eters before computing the objective function.

5.3.3 Intermediate Fine-tuning Strategies. While constrained fine-tuning techniques have
demonstrated remarkable efficacy in a variety of NLP tasks [7, 164, 179], they still exhibit
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instability and high computational cost when applied to KME, primarily due to the necessity of
altering all parameters [167]. A potential solution to address this challenge is to utilize an interme-
diate model to obtain the updated parameters in an efficient manner. Such an intermediate model
is required to maintain significantly fewer parameters to ensure efficiency [17]. In general, recent
works have widely adopted theHyper-Network [51] as the intermediate model. Specifically, the
Hyper-Network is a small network that generates the weights for a larger network, referred to as
the main network. Specifically, the Hyper-Network takes inputs that contain information about
the structure of the weights and generates the weights for layers in the main network. With the
generated weights, the main network is updated to map input data to desired output targets. The
updating process for the main network, denoted as ϕ, can be defined as follows:

ϕ∗ = ϕ + Δϕ, where Δϕ = H(∇ϕL(fϕ (x),y
∗)) and x ,y∗ ∈ XE ,Y

∗
E , (26)

where H(·) denotes the hyper-network. Δϕ is the weight deviation calculated by the hyper-
network. According to a recent study [147], task-specific Hyper-Networks (i.e., networks that
generate target model weights based on task attributes) are effective in mitigating catastrophic
forgetting issues. Therefore, such methods are suitable for the setting of KME, which requires the
preservation of unedited knowledge.
Recently, researchers have proposed to adopt hyper-networks in various ways for parameter up-

dates in KME. As a classic example,KE [25] first proposes to edit knowledge and rectify erroneous
or unexpected predictions without expensive fine-tuning. Specifically, it trains a hyper-network
via constrained optimization to modify facts without affecting pre-trained knowledge irrelevant to
the edit. The trained hypernetwork is then used to predict the weight update at the inference time.
Based on KE, SLAG [53] further appends metrics for two types of input texts: (1) Inputs that are
not in the desired edit set XE but logically related to E; (2) Inputs that share a formal resemblance
to edited knowledge, but do not lead to changes in the prediction outcomes.
However, hyper-networks are generally not capable of updating large language models due to

the massive parameter size. To tackle this challenge, MEND [101] adopts a mechanism referred
to as gradient decomposition. In particular, it leverages small auxiliary editing networks to trans-
form the gradients obtained by standard fine-tuning into edits of weights in a pre-trained model.
As gradients are generally high-dimensional objects, a low-rank decomposition of the gradients
is utilized to achieve the transformation. Particularly, MEND parameterizes the gradient mapping
functions as MLPs with a single hidden layer, such that a significantly small number of param-
eters are required, compared with the edited models. In this manner, MEND enables fast model
editing that can operate on considerably large pre-trained language models. Moreover, KGEditor
[17] proposes to combine the benefits of memory-based methods and hyper-networks to ensure
flexibility and further reduce computation costs. Particularly, KGEditor introduces an additional
layer with the same architecture of FFN layers for storing knowledge. Then it constructs a hyper-
network based on a bi-directional LSTM [58] that encodes embeddings of triples. In this manner,
KGEditor becomes an efficient way to edit knowledge graph embeddings.

5.3.4 Summary. Global optimization methods typically apply specific fine-tuning restrictions
to regularize parameter updates, namely constrained fine-tuning strategies. This is to prevent over-
fitting and ensure the model’s performance on the unedited knowledge. One crucial advantage of
such strategies is its generality regarding the relevant knowledge, i.e., in-scope inputs Xe of edit
e . As the global optimization affects all parameters in a language model, the relevant knowledge
in it will also be edited, thereby generalizing to such knowledge. On the other hand, the high
computation costs of fine-tuning all parameters also motivate researchers to propose intermediate
fine-tuning strategies that leverage hyper-networks. Furthermore, global optimization methods
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are mostly model-agnostic, which means they can be applied to other editing methods. Neverthe-
less, such possibilities are less explored in the context of KME. In terms of the drawbacks, global
optimization methods are suboptimal in maintaining the locality of edited models, as the optimiza-
tion can easily influence unedited knowledge. Hence, it is crucial to achieve a balance between
generality and locality when optimizing language models with specific constraints or intermedi-
ate designs.

5.4 Local Modification

5.4.1 Overview. To tackle the challenge of fine-tuning methods with respect to locality, exten-
sive research has been conducted on the local modification strategy for KME tasks [102, 167]. These
techniques originate from the concept of identifying and modifying specific relevant weights in a
pre-trained model to achieve desirable outputs. The primary objective is to first locate the weights
ϕk that store the knowledge in a pre-trained model fϕ regarding the input x . Afterward, by ad-
justing these weights, it becomes possible to generate the correct output y∗ from the same input
x without re-training or fine-tuning the whole model. Recently, researchers have generalized the
local modification strategy to LLMs, where the efficiency of information updates for pre-trained
LLMs can be substantially improved. Generally, the goal of the local modification strategy of KME
can be formulated as a constrained optimization problem with refined constraints as follows:

min
ϕ∗
k

Ee ∈EEx,y∗ ∈Xe ,Y
∗
e
L(f ∗

ϕ
k
,ϕ∗

k

(x),y∗),

s.t. f ∗
ϕ
k
,ϕ∗

k

(x) = f (x), ∀x ∈ X \ XE ,

where ϕk = L(fϕ ,E), ϕk = ϕ \ ϕk , f
∗

ϕ
k
,ϕ∗

k

= M(fϕ ,E).

(27)

Here ϕ∗ denotes the edited weights related to the new knowledge, and ϕk denotes the unedited
weights. Equation (27) breaks down the local modification strategy for KME into two steps: (1) The
locating step, denoted by function L, locates the relevant weights ϕk in pre-trained model fϕ that
store the obsolete information regarding the query x . (2) The editing step, denoted by functionM ,
edits the located weights ϕk into new weights ϕ∗

k
such that the correct answer y∗ given the query

x can be generated by the model with ϕ∗
k
. By only updating a small fraction of model weights, the

editing step avoids negatively influencing other irrelevant information, (i.e., x ∈ X \ XE ).
In the following subsections, we first introduce the concept of knowledge neuron in LLMs,

which are specific neurons that store factual knowledge and can be activated to generate the de-
sirable answer based on a certain query x . Then we discuss two local modification strategies for
KME: (1) the groundtruth-based strategies, which identify and edit knowledge neurons based on
the supervision signal provided by the groundtruth; (2) the prompt-based strategies, which locate
knowledge neurons based on the input prompts.

Knowledge Neurons. LLMs pre-trained on large corpora can be viewed as databases that store
factual and common-sense knowledge in the pre-trained model weights [49]. To update such
knowledge by locally modifying the weights in the pre-trained LLMs, it is imperative to identify
which weights store such information, i.e., locating the knowledge neurons. This can be challeng-
ing due to the complex transformer architecture of LLMs [7].
As described in Section 2.2.1, the transformer structure of LLMs consists of two primary types

of layers, i.e., (1) the self-attention layer and (2) the point-wise FFN layer, which is implemented
as a two-layer multi-layer perceptron (MLP). Particularly, given a prompt x , the self-attention
layers of the LLMs use the query vector of the last token and the key vectors of the previous
tokens to calculate a weighted sum of their value vectors. Therefore, given the input x , these
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layers provide information about which previous tokens we should consider when generating the
answer. Here we provide a simplified example for illustration. To answer the question “Who is
the current president of the USA?”, the self-attention layer indicates that the model should attend
to words “president” and “USA”, i.e., vpresident , vU SA, to determine the answer. This provides us

with a start-up embedding hstar t to generate the answer token, which is the weighted sum of the
values of the two attended words, i.e.,w1vpresident +w2vU SA. However, the information regarding
the current president of the USA is not provided. In contrast, recent works [42, 43, 97, 98] claim
that the residual added to hstar t by the outputs of FNN layers, i.e., hnext = hstar t + FFN(hstar t ),
injects the information “Biden” to hstar t and leads to the generation of correct answers. Therefore,
neurons in the FFN can be viewed as the knowledge neurons that store the factual knowledge.
The role of FFN in storing knowledge can be theoretically analyzed by revisiting their formulation
in Equation (1), which we rewrite as follows:

SelfAtti (x) = Softmax
(
qik

�
i

)
vi , FFN(h) = GELU (hW1)W2. (28)

Specifically, comparing the above two equations, we observe that the input h to the FFN acts
similarly to the query q to the SelfAtt. Moreover, the weights of the first layer W1 can be viewed
as the key v, where GELU (hW1) can be viewed as calculating an unnormalized attention score
over the row vectors ofW2. Finally, the weights of the second layerW2 can be viewed as the value
(or the memory) that stores the knowledge, which can be retrieved according to the unnormalized
weights calculated by the first layer.

5.4.2 Groundtruth-based Strategies. Based on the knowledge neuron view of the FFN layer
weights in pre-trained LLMs, various groundtruth-based methods are proposed to locate and edit
the pre-trained LLMs. Generally, they perform editing in a top-down manner, utilizing the super-
vision signal provided by the correct groundtruth y∗. As an exemplar work, KD [22] proposes

to change each weight w (l )
i (i.e., the ith weight in the lth layer of FFN) from 0 to the pre-trained

value ŵ (l )
i and calculates the cumulative change in the probability of predicting the output y∗ with

input x , where the weights with a high cumulative probability are considered relevant for knowl-
edge regarding y∗. DEPN [165] proposes a similar cumulative probability-based strategy to detect
knowledge neurons that store privacy knowledge. In contrast to locating and editing an individ-

ual weightw (l )
i , ROME [97] proposes to update an entire FFN layer to encode the new knowledge

of y∗. Specifically, they view the second layer weights W2 in the FFN layer in Equation (28) as
a linear associative memory [3, 75] in the form of KW2 = V, where the keys K and values V
associated with W2 can be directly calculated via pseudoinverse. With such a view of W2 in the
FFN layer, the optimization objective of updating it into Ŵ2 to encode new knowledge in the edit
e = (s, r ,o → o∗) can be formulated as follows:

min ‖KŴ2 − V‖ s.t. Ŵk∗ = h∗. (29)

Herek∗, which should encode the information of the subject s , is calculated by samplingmultiple
x ∼ Xe and taking the average of the outputs from the first dense layer of the FFN. The target
activation h∗ is calculated via optimizing the probability of outputting the correct answersy∗ ∈ Ye

of the pre-trained LLM via the subsequent layers. Then, an efficient rank-one update is conducted
on the weightsW2 according to Equation (29), such that after the update, the edited FFN layer can
output the correct hidden representation h∗ conducive to the generation of the right answer y∗

from k∗. The ROME framework has been shown to generalize to the large Mamba model [130].
Recently,MEMIT [98] proposes to further generalize the above editing strategy of the FFN layers
of pre-trained LLMs to the mass editing of different knowledge. Particularly, with u new edits
{e1, e2, . . . , eu } that are required to be updated in the weights W2, the mass knowledge editing
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problem can be formulated as the following optimization problem:

min

(
n∑
i=1

��kiŴ2 − vi
��2 + n+u∑

i=n+1

��k∗
i Ŵ2 − v∗i

��2) , (30)

where ki , vi are the original key, value pairs associated with the weights W2 (i.e., row vectors in
matricesK,V in Equation (29)), whereas k∗

i , v
∗
i are the updated key, value pairs calculated from the

i-th edit ei as with Equation (29). In addition, since multiple edits are required, the update is shared
among different MLP layers, which is conducted in a top-down manner to prevent the potential is-
sue of editing layers that could affect the ones that have already been edited. The residual for each
edit is spread evenly over the range of the critical FFN layer. The strategy of residual attribution
has recently been improved by PMET [83], which adopts a square root strategy to spread resid-
uals to bottom FFN layers such that more precise information can be conveyed to critical layers.
Furthermore, EMMET [50] generalized ROME and MEMIT by formulating the mass knowledge
editing problem as a preservation (of irrelevant knowledge)-memorization (of new knowledge)
constrained optimization problem, where they derive closed form weight update formulae when
the edit is exact, i.e., k∗

i Ŵ2 = v∗i instead of minimizing the MSE in Equation (30).
From the application’s perspective, to remove toxic knowledge of LLM, DINM [149] identifies

layers that store toxic knowledge with the discrepancy of toxic/non-toxic sequence embeddings,
and uses the non-toxic samples to locally modify the weights of identified layers.

5.4.3 Prompt-based Strategies. Tailored to characteristics of LLMs that provide answery∗ based
on the prompt x , the operation of locating and editing knowledge neurons can also be conducted
in a bottom-up manner, which aims at changing the prompt to detect neurons to be edited. Specif-
ically, by masking out the key information and observing the difference of activations in the in-
termediate layers of the LLM, the weights that store the information regarding the query x can
be located and updated to store the new information y∗. For example, ROME [97] proposes a
corruption-and-restore based strategy to identify relevant layers (or their hidden output variables
h) that store the information based on the prompt x . It first randomly masks the hidden repre-
sentations of the key vectors k (as described in Equation (1)) of the tokens in the prompts from
a certain intermediate layer of the pre-trained LLM. Then it calculates the reduced probability of
predicting y (i.e., the obsolete outputs) as the causal mediation effects of x on y mediated by h.
Consequently, the weights in layers with large mediated effects are viewed as knowledge neurons
that store the information of y. MEMITCSK [49] extends the above corruption-based strategy to
editing common sense knowledge. The authors argue that, different from the factual knowledge
that can be directly retrieved by the subject s , the object o and relation r also matter for common-
sense knowledge. Therefore, three types of corruption and edit locations, i.e., subject, verb, and
object, are thoroughly analyzed, where the performance of editing commonsense knowledge can
be improved. Moreover,BIRD [93] studies the novel problem of bidirectional KME, which requires
the edited model to possess reversibility. For example, if the phrase “The capital of France is” is
edited to a counterfactual “London” within a model, it should logically be able to retrieve the in-
verse fact. That is, when presented with “London is the capital of”, the model should respond with
“France” rather than “England”. Based on the strategy of ROME, BIRD introduces a novel objective
that involves the bidirectional relationships between subject and object in an edit. In this manner,
the updated model weights can preserve reversibility by learning such information.

5.4.4 Summary. In this part, we introduce the local modification strategy for pre-trained LLMs
for efficient updates of new information without adding new weights or optimizing the whole net-
work. We start by analyzing the pivotal role of the point-wise feedforward layers, i.e., the FFNs, to
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Table 2. Statistics of Prevalent KME Datasets, Including Generation and Classification Datasets

Dataset Type # Train # Test Input Output Used in

zsRE Relational 244,173 244,173 Factual Statement Object [25, 38, 48, 50, 52, 66, 69, 77, 81, 97, 98,
101, 102, 106, 136, 151, 156, 169]

CounterFact Relational N/A 21,919 Factual Question Object [15, 38, 50, 61, 81, 97, 98, 106, 130, 136,
156, 168, 174]

WikiGen Generation N/A 68k Wiki Passage Continuation [101]

T-REx-100/-1000 Relational N/A 100/1,000 Factual Statement Object [29, 79]

ParaRel Relational N/A 253,448 Factual Question Object [22]

NQ-SituatedQA QA N/A 67.3k User Query Answer [23, 77]

MQuAKE-CF/-T Relational N/A 9,218/1,825 Multi-hop Question Object [47, 69, 82, 131, 155, 175]

Hallucination Hallucination N/A 1,392 (Fake) Biography Biography [52, 151, 169]

MMEdit-E-VQA Multimodal 6,346 2,093 Image & Question Answer [16]

MMEdit-E-IC Multimodal 2,849 1,000 Image Description [16]

ECBD Relational N/A 1000 Reference to Entity Completion [108]

Conflict Edit Relational N/A 7,500 Factual Statement Object [86]

Round Edit Relational N/A 5,000 Factual Statement Object [86]

UKE Relational N/A 2,478 Factual Question Object [166]

RippleEdits Relational N/A 5,000 Factual Question Object [21, 69]

VLKEB Multimodal 5,000 3,174 Image Description [65]

MLaKE Multilingual N/A 9,432 Question Answer [163]

FEVER Fact Checking 104,966 10,444 Fact Description Binary Label [15, 25, 66, 101]

ConvSent Sentimental 287,802 15,989 Topic Opinion Sentiment [102]

Bias in Bio Biographical 5,000 5,000 Biographical Sentence Occupation [57]

VitaminC-FC Fact Checking 370,653 55,197 Fact Description Binary Label [102]

SCOTUS Categorization 7,400 931 Court Documents Dispute Topic [52, 169]

store the factual information in pre-trained LLMs, with the knowledge neurons associated with the
FFN layer thoroughly analyzed. We then discuss the groundtruth-based strategies, which achieve
the modification in a top-down manner, generally based on least squares objectives computed
from the output y. We further discuss the prompt-based strategies, which conduct modifications
in a bottom-up manner based on the input prompt x . Nevertheless, the scalability and retainability
of local modification methods lack further improvements, as the performance might deteriorate
with more edits performed [98].

6 Datasets

Recently, multiple datasets have been established to facilitate the evaluation of KME methods, and
we summarize the commonly-used datasets in Table 2 to benefit future KME research. Specifically,
these datasets can be divided into two groups: generation datasets (i.e., textual output) and clas-
sification datasets (i.e., categorical output). The datasets are obtained from a variety of sources,
including knowledge graphs, Wikipedia pages, crowd-sourced responses, and so on., which are
adapted by researchers to fit into the KME setting.

6.1 Generation Datasets

For generation datasets, the target is in the form of textual content that is required to be generated
by LLMs. Serving as pivotal resources to evaluate KME methods, most generation datasets are
based on relational knowledge and used for assessing the ability of editing techniques to inject
new factual knowledge. This is because relational datasets preserve more definitive answers for
each input and thus are more convenient and precise for evaluation [167, 172]. Specifically, these
datasets are generally curated from the corresponding relational datasets to encompass diverse
relational contexts, ranging from question-answer pairs to intricate multi-hop queries. Therefore,
the most prevalent output format is an object to be predicted.
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In this subsection, we present the most representative generation datasets, shedding light on
their unique attributes, the nature of their content, and the specific challenges they present for
evaluating KME methods on factual knowledge as follows:

— zsRE [78]: zsRE is one of the most prevalent Question Answering (QA) datasets extended
and adopted by [25, 101] for KME evaluation. zsRE is suitable for evaluating KME due to its
annotations of human-generated question paraphrases, which allow researchers to assess
the model resilience to semantically equivalent inputs. In zsRE, each relation is associated
with a set of crowd-sourced template questions, such as “What is Albert Einstein’s alma
mater?”. Each entry cites a Wikipedia sentence, serving as the factual basis or provenance.
The dataset also contains negative examples that are generated by pairing a valid question
with a random sentence.

—CounterFact [97]: CounterFact is established to distinguish superficial alterations in the
word selections and significant, generalized modifications in its foundational factual knowl-
edge. Proposed in ROME [97], each entry in CounterFact originates from a related record in
ParaRel [32], containing a knowledge triple and meticulously crafted prompt templates. It is
important to note that all subjects, relations, and objects in this tuple are recognized entities
in Wikidata [148].

—WikiGen [101]: Firstly proposed in MEND [101], WikiGen consists of approximately 68
k question-answer pairs, with a similar size to zsRE. Here, each question corresponds to
a sentence randomly sampled from Wikitext-103, and each answer is a 10-token sample
obtained from a pre-trained distilGPT-2 model [94]. It is noteworthy that greedy 10-token
prediction of the base model only aligns with edit targets for less than 1% of samples.

— T-REx-100 & T-REx-1000 [33]: First used in CALINET [29], the authors adopt the classic
relational dataset T-REx [33] for evaluating model editors by extracting factual triplets of
varying sizes (100 and 1,000). Particularly, for each triplet, the authors insert the head and
tail entities into the template in LAMA [115] based on the relation they share, which results
in two datasets with 100 and 1,000 facts, respectively, for the purpose of false knowledge
detection. It should be noted that each fact in these datasets is represented by several para-
phrased sentences.

— ParaRel [32]: ParaRel is an expert-curated dataset that comprises diverse prompt templates
for 38 relations, sourced from the T-REx dataset [33]. Firstly used in KN [22], the authors
insert the head entity into each relational fact and set the tail entity as a blank for prediction.
To ensure a rich variety in templates, relations with less than four prompt templates are
excluded, resulting in 34 relations in total. Each of these relations, on average, preserves
8.63 distinct prompt templates, leading to a total of 253,448 knowledge-revealing prompts
for 27,738 relational facts.

—NQ-SituatedQA [76]: Natural Questions (NQ) is a comprehensive question-answering
dataset originating from user searches. In PPA [77], the authors utilize NQ as the source
knowledge while excluding any outdated information as identified by SituatedQA [171] to
create a novel dataset NQ-SituatedQA. SituatedQA is a dataset containing questions within a
subset of NQ that are dependent on specific time and location. The authors then incorporate
the time-dependent QA pairs from this subset, annotated using the 2021 Wikipedia [148]
dump.

—MQuAKE [175]: MQuAKE is constructed from Wikidata [148] for evaluating the effective-
ness of KME methods on multi-hop questions. In particular, it is designed to assess whether
the edited models can correctly answer questions generated by chains of facts in plain
text. MQuAKE consists of two datasets. (1) MQuAKE-CF is a diagnostic dataset, specifically
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crafted to evaluate KME methods in the context of counterfactual edits. (2) MQuAKE-T fo-
cuses on temporal-based knowledge updates and is aimed at assessing the effectiveness of
KME techniques in updating outdated information with contemporary factual data.

—Hallucination [52]: Firstly processed in GRACE [52], Hallucination is created from the
dataset released in SelfCheckGPT [96], where the authors prompt GPT-3 to generate biogra-
phies based on concepts extracted from WikiBio. The sentences are annotated regarding
the factual accuracy, and hallucinations in them are identified. Then in GRACE, the authors
process this dataset by further extracting Wikipedia summaries from WikiBio and thereby
acquire the correct entry of each sentence. In this manner, every edit consists of a potentially
false biography generated by GPT-3 as the prompt, and a ground truth output, which is the
correct next sentence extracted from Wikipedia. There exist 1,392 potential edits for test.

—MMEdit [16]: This dataset is the first to explore the possibility of editing multimodal LLMs.
Specifically, MMEdit consists of two prevalent multimodal tasks:Visual Question Answer-

ing (VQA) [4] and Image Captioning [56]. VQA involves developing algorithms that can an-
alyze an image’s visual content, comprehend questions asked in natural language about the
image, and accurately respond to those questions. Image Captioning aims at understanding
an image and then generate a detailed and coherent natural language description of that
image. To create dataset MMEdit, the authors utilize BLIP-2 OPT [80] and extract edit data
from the evaluation datasets VQAv2 [46] and COCO Caption [14], specifically focusing on
their suboptimal entries.

— ECBD [108]: Based on the original dataset Entity Cloze ByDate (ECBD) [107], the authors
process this dataset for a novel task, namely Entity Knowledge Propagation (EKP). The
task aimed at updating model parameters to incorporate knowledge about newly emerged
entities that are not present in the pre-training data of the language models. For instance,
BERT [27], trained in 2018, does not recognize “COVID-19” as it is a more recent entity. The
processed dataset aims at providing evaluation for such a task with the help of definition
sentences as input to update knowledge about new entities. The entities are taken from
the date between 2020/01 and 2021/09 to ensure that they are not in training data. Each
edit consists of a new entity, a description sentence, a probe sentence, and a ground truth
completion.

—VLKEB [65]: Large Vision-LanguageModel Knowledge Editing Benchmark (VLKEB)
aims at addressing the unique challenges of editing large vision-languagemodels, which face
additional difficulties due to different data modalities and complex model components with
limited data for LVLM editing. VLKEB collects data from the multi-modal knowledge graph
MMKG [90] and extends the Portability metric for evaluation. With MMKG, VLKEB binds
image data with knowledge entities, which can be used to extract entity-related knowledge
for editing data.

—MLaKE [163]:Multilingual Language Knowledge Editing (MLaKE) is proposed to eval-
uate the capability of KMEmethods in multilingual contexts and multi-hop reasoning across
five languages: English, Chinese, Japanese, French, and German. MLaKE aggregates fact
chains fromWikipedia in multiple languages and utilizes LLMs to generate questions in both
free-form and multiple-choice formats. Notably, existing methods show relatively high gen-
eralization for languages within the same language family compared to those from different
families. These findings underscore the need for advancements in multilingual knowledge
editing.

—UKE [166]: Unstructured Knowledge Editing (UKE) is proposed to evaluate the capa-
bility of KME methods in updating knowledge based on unstructured texts. Updating LLMs
with texts appears to be a more realistic application, which is also more complex and difficult.
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The authors leverage subjects and objects in Wikidata [148] and retrieve the corresponding
Wikipedia article summaries as unstructured texts. The authors also utilize LLMs to gener-
ate summaries for edits in two existing datasets, CounferFact [97] and MQuAKE-CF [175],
to obtain unstructured texts.

—RippleEdits [21]: This dataset proposes a novel evaluation criterion, which assesses the
performance of KME methods on additional edits brought by an existing edit. In particular,
injecting new knowledge (e.g., “Jack Depp is the son of Johnny Depp”) introduces a “ripple
effect”, which necessitates the model to update related knowledge as well (e.g., “Jack Depp is
the sibling of Lily-Rose Depp”). Based on this, the authors construct RippleEdits, consisting
of 5,000 edits with various types of ripple effects.

—Conflict/Round Edit [86]: This dataset pioneers in investigating the potential side effects
of KME methods for LLMs. The proposed dataset and evaluation metrics underline two pri-
mary concerns: (1) Knowledge Conflict: Modifying sets of logically conflicting facts can am-
plify the existing inconsistencies within LLMs. (2) Knowledge Distortion: Altering model
parameters to update factual knowledge can permanently disrupt the inherent knowledge
framework of LLMs. The dataset is constructed from WikiData [148] with specific logical
rules.

6.2 Classification Datasets

Classification datasets are also widely adopted to evaluate the effectiveness of KME. These datasets
consist of prompt-target pairs, where the target is a discrete label instead of a textual sentence. In
the context of KME, these labels help ascertain the alignment of model performance with desired
edits. The advantages of classification datasets also involve their preciseness in evaluation without
the need to define the specific output space. In this section, we summarize notable classification
datasets that have been tailored and leveraged for assessing KME techniques as follows:

— FEVER [143]: FEVER is a fact-checking dataset originally processed in KILT [114] for ver-
ifying factual knowledge in the form of binary classification. It necessitates the retrieval of
sentence-level evidence to determine whether a claim is supported or refuted, and is widely
used for evaluating the performance of KME. Specifically, FEVER excludes claims labeled as
lacking sufficient information, as they typically do not provide any evidence to evaluate the
claim.

—ConvSent [102]: Firstly processed in SERAC [102], ConvSent is used to evaluate the capa-
bility of an editor to modify a dialog agent’s sentiment about a particular topic without influ-
encing its responses to other topics. ConvSent is obtained from a list of 15,000 non-numeric
entities from zsRE [25, 78], combined with 989 noun phrases from GPT-3 [10] for 15,989 top-
ics. Particularly, for each entity, there are ten positive and ten negative sentiment comple-
tions, which can be noisy, from the BlenderBot model with 3B parameters [124]. The refined
sentiment labels are achieved by a sentiment classifier [55] pre-trained on RoBERTa [91].

— Bias in Bios [24]: Bias in Bios is a dataset originally proposed for fairness-related ma-
chine learning, containing approximately 397 k short professional biographies of online
individuals, which are not relatively famous. Each biographical sentence is assigned an
associated occupation label for the described person. To adopt this dataset for evaluating the
performance of KMEmethods, the authors of REMEDI [57] extract a single sentence, modify
it to display only the person’s first name, and then query the language model with the
prompt that follows the structure: “Person has the occupation of...”. Then they evaluate the
relative probabilities of the language model assigned to 28 potential occupations, where the
language model is considered to be correct if the ground-truth occupation is ranked top-1.
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Table 3. Examples of Different Downstream Applications of KME: QA, FC, and NLG

Task Edit Descriptor e In-scope Input x ∼ Xe Original Output y ∼ Ye Target Output y ∼ Y∗
e

QA (Kazakhstan, Captital, What is the capital of Astana Nur-Sultan

Astana→Nur-Sultan) Kazakhstan?

FC (Marathon, Record, Kipchoge holds the men’s True False

Kipchoge→Kiptum) marathon world record.

NLG

(Jordan Poole, Play In, Provide a short introduction Jordan Poole entered In 2023, Jordan Poole transitioned

Warriors→Wizards) to Jordan Poole, describing the Warriors’ rotation from the Warriors to the Wizards,

his current position. recently. remarking a significant change.

—VitaminC-FC [127]: Firstly processed in SERAC [102], VitaminC-FC is constructed based
on a fact-checking dataset, VitaminC [127]. Particularly, VitaminC consists of more than
400,000 evidence-claim pairs, each of which is assigned a binary label to indicate whether
the evidence entails the claim. The dataset was gathered from over 100,000 Wikipedia
revisions that modify an underlying fact, along with additional synthetic ones. In SERAC,
the authors convert VitaminC into a KME dataset by using the evidence as the edit
descriptor and using claims from the same Wiki pages accordingly as in-scope samples.

— SCOTUS [52]: Firstly proposed in GRACE [52], SCOTUS is processed with label shift based
on the dataset with the same name from Fairlex [11]. This classification task is to categorize
U.S. Supreme Court documents from various decades into one of 11 topics. The topics are
clustered based on the specific matter of dispute, such as Criminal Procedure, Civil Rights,
and First Amendment. Due to the evolution of categorization rules over time, the label
distributions in this dataset also shift. Specifically, 7.4 k cases from 1946–1982 are used for
training, and 931 cases from the 1991–2009 period are for test.

7 Applications

KME can benefit multiple downstream applications with the ability to precisely and efficiently
inject knowledge into pre-trained LLMs. In the following, we introduce several key applications
of KME techniques in realistic scenarios, where intuitive examples are provided in Table 3.

7.1 Question Answering

Background. Question Answering (QA) is a core NLP task that aims at comprehending queries
posed by users in natural language and provide answers based on the encoded knowledge in
the pre-trained language model [132]. Traditional models for QA are generally fixed in their
knowledge, capturing only the information available at the training time of [70, 115]. However,
in our dynamic world, new information is generated incessantly, which necessitates the constant
update of QA models [139]. Fortunately, KME methods enable the modification of QA models
to cater to specific questions without disrupting responses to other unrelated inputs. Therefore,
with KME strategies, the QA model can be efficiently updated on the run, where the currentness
of the model can be guaranteed. Consequently, language model editing techniques have found
broad applications across a myriad of QA contexts with potentially distinct requirements [77].

ExistingWorks.TheQA task encompasses various aspects, such as conversational QA, definition-
based QA, and notably, relation-based QA [110]. Relation-based QA is primarily adopted as an
evaluation benchmark as it necessitates the retrieval of precise real-world facts in response to
queries. This particular emphasis on specific information retrieval renders relation-based QA
especially conducive to the benefits of KME techniques. For example, PPA [77] introduces an
innovative task of Continuously-updated QA (CuQA), which intentionally emphasizes recur-
rent, substantial edits for language models to constantly update them with new information. An
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important aspect of the CuQA task is to ensure that the existing pre-trained knowledge remains
unaltered with the integration of new knowledge. Therefore, this property is one important evalu-
ation to assess model editing in CuQA tasks. InMQuAKE [175], the authors innovatively propose
a multi-hop QA task that involves answering questions generated by chains of facts in plain text.
Specifically, the task requires editedmodels to infer implicit relations that can be several hops away
from the objects in the edit. For example, when a language model is modified regarding the pres-
ident of the USA, an ideal model should also authentically alter answers to “Who is the son of the
president of the USA”, which is a two-hop relation. Such a task is significantly more challenging as
it necessitates the model to alter its reasoning results in addition to the original edit. Nevertheless,
the proposed method MeLLo in MQuAKE still exhibits outstanding performance on this difficult
task, demonstrating the potential of KME in generalizing edited knowledge to multi-hop relations.

7.2 Fact Checking

Background. Fact-checking (FC) is a pivotal task in journalism, information verification, and
combating misinformation that aims at scrutinizing and affirming the authenticity of claims, state-
ments, or information in news articles, social media, and other media content [37, 127]. In a world
overwhelmed with ever-emerging information, fact-checking facilitates the trustworthiness in the
sharing of distributed information, promotes information transparency, and aids individuals in
making well-informed decisions [143]. However, it is crucial to constantly update fact-checking
models. For instance, during the COVID-19 pandemic, initial understandings and guidelines about
the virus evolved as researchers gatheredmore data [129]. A fact-checkingmodel that cannot adapt
to these rapidly changing facts would quickly become outdated and potentially spread misinforma-
tion, thereby requiring the application of language model editing. By integrating KME techniques
into fact-checking models to consistently update them with the latest information and facts, it be-
comes possible to ensure the currentness, trustworthiness, and accuracy of the model despite the
persistent evolution of information.

Existing Works. Recently, several works have proposed to apply KME techniques in fact-
checking models. In [177], the authors first explore the potential of modifying specific factual
knowledge within the transformer backbone of the fact-checking model while ensuring that over-
all model performance remains intact on facts irrelevant to the editing purpose. Particularly, they
identify the critical components within the transformer backbones conducive to effective knowl-
edgemodifications. In SERAC [102], the authors propose to use evidence gathered fromWikipedia
as edit descriptors to update potentially outdated knowledge in the model. The proposed method
exhibits significant performance improvements over baselines and can be generalized to other
in-scope inputs collected from the same Wikipedia page.

7.3 Natural Language Generation

Background. KME techniques are also promising to ensure the relevancy of the Natural Lan-

guage Generation (NLG) task, which aims at generating coherent and contextually relevant
content based on provided instructions [122]. Considering the rapid evolution of the global in-
formation landscape, it is essential for NLG models to remain up-to-date and ensure the accuracy
of generated text while avoiding potentially false statements that may mislead the users.

Existing Works. In practice, several works have been proposed to apply KME methods to
promote model performance in natural language generation tasks. For instance, FRUIT [5]
proposes to update outdated Wikipedia articles according to the collection of new information
about the article’s subject. Based on the T5 model [119], the authors utilize a compressed output
format to eliminate the necessity of generating the entire update from scratch and promote
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thoughtful content structuring, which effectively handles the challenge of incoherence. InMEND

[101], the authors apply their proposed method in the Wikitext generation task, where the edited
model is required to produce credible 10-token extensions based on a provided Wikitext prefix
[94]. With modification on multi-layer token-wise activations and gradients, the edited model
presents higher coherence on the NLG task, which demonstrates the effectiveness of KME in
generating target texts with richer information than QA or FC.

8 Discussion

8.1 Challenges

Despite the continual progress of works on KME, several critical aspects have been inadequately
addressed by existing studies. Delving deeper into these challenges could offer researchers fresh
insights and pave the way for the further advancement of the field. Consequently, we hereby
outline the pressing challenges that await solutions in KME.

Tradeoff between Locality andGenerality. In KME, it is crucial to balance two objectives, local-
ity and generality (as defined in Section 4), such that a higher edit success rate can be achieved with
minimal negative influence on knowledge irrelevant to the edits.When editing a languagemodel, a
potential tradeoff might emerge between these two desirable properties. As demonstrated in [167],
local modification methods, such as MEMIT [98] and ROME [97] generally preserve a higher level
of locality, as they locate precise locations of target knowledge to conduct the edition, which does
not largely affect the unrelated weights. In addition, T-Patcher [66] points out that increasing
the size of memory increases locality while decreasing the generality. These observations under-
score the intricate balance between locality and generality. However, it remains challenging to
tackle the tradeoff problem and achieve a balance between these two desirable properties of KME
methods.

Theoretical Analysis. While many current KME studies focus on developing effective methods
to enhance the editing performance regarding various desirable properties, there exists a notable
gap between the practical application and the comparatively less discovered theoretical analysis.
Recently, in [140], the authors provide theoretical support for the justification of identifying harm-
ful training examples and editing the model by erasing the information from a Bayesian view.
LEACE [9] introduces an analytical framework that offers a theoretical perspective for the task
of erasing target concept information from every layer in language models. In general, the ben-
efits of incorporating theoretical analysis are multi-faceted. First, theoretical analysis provides a
deeper understanding of the mechanics underlying KME, allowing for more principled approaches
to editing. Second, a strong theoretical basis sets a solid foundation for future research, encour-
aging more rigorous and systematic exploration in the field of KME. However, to the best of our
knowledge, there still does not exist any comprehensive theoretical analysis regarding the KME
problem that involves novel knowledge. We hope that future research will enrich the theoretical
discourse that can deliver profound insights into the substantial foundations of KME methods.

Editing at Scale. Another crucial property that hinders the practical application of KME is scala-
bility – the ability of editing strategy to effectively perform a large number of edits simultaneously
[101]. For example, conversational systems [174] are expected to be constantly updated to incorpo-
rate an enormous number of global events and the information originating from them. However,
as the number of applied edits increases, the coherence of language models is severely jeopardized,
as multiple edits might contradict a broader spectrum of pre-existing knowledge in the models
[152]. This can lead to decreased editing performance in both locality and generality metrics
[102]. Although external memorization methods can alleviate such problems with a larger size
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of memories of additional parameters, they are still vulnerable if thousands of edits are required
[97]. Moreover, simply adapting single-edit techniques for a multi-edit environment by merely
applying them sequentially has been demonstrated to be proven suboptimal [98]. Therefore, the
unique and intricate challenge of coherence renders editing at scale a formidable task.

Unstructured Editing. KME faces significant challenges due to its evaluation strategies that fo-
cus on knowledge triples, e.g., t = (s, r ,o), which are not reflective of how real-world knowledge
updates occur [65, 172]. In reality, updates are often found in unstructured texts such as news ar-
ticles and scientific papers. To address this gap, a recent benchmark [166], namely Unstructured

Knowledge Editing (UKE), is proposed to evaluate editing performance using unstructured texts
as knowledge updates. The experimental results demonstrate significant performance declines of
state-of-the-art KME methods. Notably, such a decline persists even with knowledge triplets ex-
tracted from unstructured texts. As such, it is imperative to develop more robust and adaptable
methods that use unstructured texts for editing.

8.2 Future Directions

Despite the recent achievements in the development of KME strategies for effective and efficient
updating of new knowledge into LLMs, KME research is still in its emerging stage. Several promis-
ing directions could be pursued to further advance this field. Accordingly, we identify five inspiring
and important open problems worthy of exploration in the future as follows:

Optimization-Free Editing. Recently, prompt engineering has become a prevalent solution for
modifying the behaviors of pre-trained LLMs in a human-preferable manner without the require-
ment of parameter update [30]. For example, in-context learning provides task descriptions and/or
demonstrations in the form of plain text to promote the model performance [10], which makes
it a potentially more efficient and practical strategy for language models. We note that IKE [174]
proposes a novel framework that relies on demonstration contexts for KME without parameter
updating, which explicitly formats the demonstrations that can guide the language model to copy,
update, and retain the prediction of different prompts. However, such a strategy is difficult to scale
and usually has unsatisfactory retention. Therefore, it remains a crucial while challenging task to
develop optimization-free KME methods.

Auto-Discovery of Editing Targets. Current KME methods mainly rely on human expertise to
identify and incorporate desirable knowledge into pre-trained LLMs [166, 167, 172]. This approach
is inherently labor-intensive and can incur significant costs, especially considering the vast and
rapidly expanding new information needed to be integrated into language models. A promising
future direction lies in the automation of the edits, which aims at identifying, evaluating, and
prioritizing new knowledge that needs to be integrated from raw resources such as websites and
social media. Through this strategy, the application of KME can be streamlined, rendering it more
practical and adaptable in real-world scenarios. A straightforward solution would be crawling new
knowledge and transforming it into a knowledge base, querying LLMs for each knowledge triple,
and editing the wrong answer. However, such a strategy still lacks efficiency. Therefore, it remains
a crucial task to discover editing knowledge from various resources without human effort.

Continual Editing. Current KME methods primarily consider one-step offline editing [5, 25];
however, such an approach is not aligned with real-world applications where models might con-
tinually encounter novel knowledge to be injected. For example, an online QA model may con-
tinually encounter reports of incorrect answers from end users, where the editing needs to be
conducted on the run [66]. Therefore, an optimal KME technique should be capable of instanta-
neously and continuously rectifying emergent issues.We note that continual editing of pre-trained
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LLMs presents a unique challenge: preventing the edited models from forgetting or contradicting
previous edits. Despite the inherent complexities, the persistent demand for continual editing in
practice underscores the importance of solving this challenge.

Robust Editing. An important direction for the advancement of KME lies in enhancing its ro-
bustness. In an era where misinformation spreads rapidly, it is urgent that edited models not only
retain their accuracy but also resist adversarial attacks and misinformation [39]. Here, we should
note that the concept of robustness extends beyond just maintaining factual accuracy; it involves
fortifying the model against potentially adversarial external perturbations [113]. For example, if
KME is maliciously applied to inject harmful knowledge into language models, the edited models
can be easily transformed into tools for misinformation [141]. Therefore, to prevent such cases,
it is crucial for KME techniques to develop capabilities that can identify and counteract such un-
wanted inputs, thereby enhancing their resilience against adversarial actions. In practice, as the
trend leans toward open-sourcing LLMs, it becomes ever more crucial to safeguard against poten-
tial manipulations that can turn these models harmful.

Editable Fairness. With the wide application of LLMs to support decisions, the emphasis on
fairness has grown significantly [150], which requires LLMs to fairly treat people with diverse
background [1]. However, LLMs trained on large datasets inevitably incorporate certain biases
during this pre-training phase [28]. Fortunately, the precision and efficiency of KME techniques
offer a promising solution to mitigate such biases and promote fairness in pre-trained LLMs. For
instance, in a model designed to classify biographical sentences with occupation [24], KME can
be used to inject nuanced knowledge about a particular profession, guiding the model toward a
more equitable understanding of individuals associated with that profession [57]. However, this
remains a complex challenge, as fairness often entails considering disparate groups of individuals
rather than specific people. This broader focus makes knowledge injection via KME a non-trivial
task. Despite these difficulties, the enhancement of fairness in language models is paramount, and
KME techniques present a promising avenue to achieve this goal.

9 Conclusions

In this survey, we present a comprehensive and in-depth review of KME techniques for precise and
efficient updating of new knowledge in pre-trained LLMs. We first formulate the KME problem as
a constrained optimization objective that simultaneously ensures the accuracy and retention of
editing, which is general to encompass different KME strategies. We then provide an overview of
the evaluation metrics for KME, which sheds light on the desirable attributes of edited models.
Subsequently, we propose a structured taxonomy framework to systematically categorize existing
KME techniques. Within each category, we outline the central challenges, elaborate on the repre-
sentative methods, and discuss their strengths and weaknesses. Furthermore, we summarize the
datasets widely utilized to assess KME techniques, highlighting that certain techniques demand
specific dataset structures for training or evaluation. To inspire researchers to devise more practi-
cal implementations, we also spotlight the real-world applications of KME techniques. Finally, we
identify several potential challenges for future research and provide insightful directions that are
conducive to further advancement of the field.
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