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Abstract

We present Augustus, a catalog of distance, extinction, and stellar parameter estimates for 170 million stars from
14 mag< r< 20 mag and with |b|> 10° drawing on a combination of optical to near-infrared photometry from
Pan-STARRS, 2MASS, UKIDSS, and unWISE along with parallax measurements from Gaia DR2 and 3D dust
extinction maps. After applying quality cuts, we find 125 million objects have “high-quality” posteriors with statistical
distance uncertainties of 10% for objects with well-constrained stellar types. This is a substantial improvement over
the distance estimates derived from Gaia parallaxes alone and in line with the recent results from Anders et al. We find
the fits are able to reproduce the dereddened Gaia color–magnitude diagram accurately, which serves as a useful
consistency check of our results. We show that we are able to detect large, kinematically coherent substructures in our
data clearly relative to the input priors, including the Monoceros Ring and the Sagittarius Stream, attesting to the
quality of the catalog. Our results are publicly available at doi:10.7910/DVN/WYMSXV. An accompanying
interactive visualization can be found at http://allsky.s3-website.us-east-2.amazonaws.com.

Unified Astronomy Thesaurus concepts: Stellar distance (1595); the Milky Way (1054); Sky surveys (1464);
Photometry (1234); Parallax (1197)

Materials only available in the online version of record: interactive figures

1. Introduction

A central challenge in astronomy is converting the projected

2D positions of sources on the sky into 3D maps that we can

use to infer properties about the Universe. This is especially

true when studying the Milky Way, where recent observational

advances have opened possibilities for 3D mapping across our

Galaxy. But many new discoveries depend on the fidelity of

such 3D mapping. Recent works have exploited full phase-

space data to uncover the remnants of a major merger ∼10 Gyr

ago (e.g., Belokurov et al. 2018; Helmi et al. 2018; Koppelman

et al. 2018; Naidu et al. 2021) and a phase-space “spiral” (e.g.,

Antoja et al. 2018), while in the halo accurate phase-space

maps of stellar streams have begun to constrain the potential of

the Galaxy (e.g., Johnston et al. 1999; Law & Majewski 2010;

Bonaca & Hogg 2018).

These discoveries have benefited from simultaneous advances
across multiple fronts. On the data side, large missions such as
the ground-based Sloan Digital Sky Survey (SDSS; York et al.
2000) and the space-based Gaia mission (Gaia Collaboration
et al. 2016) have published enormous public data sets. Together,
these observational efforts promise to provide new, much sharper
maps of the stellar components of the Galaxy using billions of
individual sources. Simultaneously, advances in statistical
modeling and computational power have enabled us to infer
the 3D distribution of a large number of stars more robustly (e.g.,
Green et al. 2014; Bailer-Jones et al. 2018) along with additional
properties such as ages and abundances (e.g., Ness et al. 2015;
Anders et al. 2019; Leung & Bovy 2019a; Xiang et al. 2019).
Finally, advances in numerical simulations and Galactic
dynamics have enabled us to interpret these results in much
more detail (see Rix & Bovy 2013; Sellwood 2014; Helmi 2020,
and references therein).
As most sources (∼99%) seen in large photometric surveys

do not have measured spectra, much of the work associated
with deriving 3D maps to billions of stars has relied on
modeling coarse spectral energy distributions (SEDs)
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comprised of flux densities estimated across a range of

broadband and narrowband photometric filters (e.g., Anders

et al. 2019; Green et al. 2019). More recently, Gaia DR2 (Gaia

Collaboration et al. 2018) has also provided astrometric

parallax measurements for many of these sources, giving

independent constraints on the distances.
Efforts in this area range from 3D dust mapping (e.g., Rezaei

Kh. et al. 2018; Green et al. 2019; Lallement et al. 2019; Leike &

Enßlin 2019) to stellar parameter estimation (e.g., Ness et al. 2015;

Anders et al. 2019; Cargile et al. 2020). In Speagle et al. (2024),

we described new methods implemented in the public, open-

source PYTHON package BRUTUS
16 that further contribute to

these efforts by allowing for quick and robust estimation of
stellar properties, distances, and reddenings to stars with
photometric and astrometric data. In this paper, we present
Augustus, a “proof-of-concept” application of BRUTUS to
estimate distances, reddenings, and various stellar properties to
170 million sources brighter than r< 20 mag with Galactic
latitudes |b|> 10°.

The outline of the paper is as follows. In Section 2, we

describe the data sets, quality cuts, and selections used to select

the 170 million objects in this work. In Section 3, we

summarize the approach taken to model and fit the 170 million

sources described with BRUTUS. In Section 4, we describe the

catalogs produced by this modeling. In Section 5, we discuss

results demonstrating the quality of the output data, including

“blind” recovery of the Gaia color–magnitude diagram (CMD)

and the detection of known large-scale Galactic substructure.

We conclude in Section 6. A detailed description of the data

products provided as part of this work can be found in the

Appendix. An interactive figure highlighting many of the

features of our output catalog can be found at http://allsky.s3-

website.us-east-2.amazonaws.com; a screenshot is shown in
Figure 1 and described in more detail in Section 5.5.
Throughout the paper, individual parameters (scalars) are

notated using standard italicized math fonts (θ) while vectors
and matrices are notated using boldface (θ). Collections of
parameters are notated using sets ( i i

i n
1q q= =

={ } ). Vectors should
be assumed to be in column form (i.e., of shape n× 1) unless
explicitly stated otherwise. All magnitudes reported are in the
native units provided by their corresponding data sets.

2. Data

Our analysis is based on the combination of several surveys:

1. the Panoramic Survey Telescope and Rapid Response
System (Pan-STARRS; Chambers et al. 2016),

2. the Two Micron All Sky Survey (2MASS; Skrutskie et al.
2006),

3. the United Kingdom Infrared Telescope Infrared Deep
Sky Survey (UKIDSS; Lawrence et al. 2007),

4. the “unofficial” Wide-field Infrared Survey Explorer
(unWISE) catalog (Wright et al. 2010; Schlafly et al.
2019), and

5. the Gaia survey (Gaia Collaboration et al. 2016).

In Sections 2.1–2.5, we describe each of the various data sets.
In Section 2.6, we describe how the data sets are combined into
a final catalog. The overall sky and wavelength coverage from
these combination of surveys are shown in Figures 2 and 3,
respectively.

2.1. Pan-STARRS

The Pan-STARRS survey17 is a multiepoch, deep, broad-
band optical survey of the northern sky visible from Haleakala

Figure 1. A screenshot of an interactive visualization of 3D distance and 2D velocity structure from the Augustus catalog that can be accessed online at http://
allsky.s3-website.us-east-2.amazonaws.com. The background color is based on the overall tangential speed of the sources in a given distance bin, while the white
streamlines follow the tangential velocities of the same sources in the given coordinate projection. The interface to change these properties (distance bin, background
properties, and projection) is shown in the bottom left and can be opened/minimized by clicking on the “allsky” text.

16
https://github.com/joshspeagle/brutus

17
https://panstarrs.stsci.edu/
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in Hawaii (i.e., δ>−30°). It observed in five photometric

bands (grizy) spanning 0.4–1 μm with typical single-epoch 5σ

point-source exposure depths of g= 22.0 mag, r= 21.8 mag,

i= 21.5 mag, z= 20.9 mag, and y= 19.7 mag in the AB

system (Oke & Gunn 1983).
The photometry used in this work is based on combined single-

epoch photometry obtained as part of the Pan-STARRS1 3π

Steradian Survey DR1 (Chambers et al. 2016). Photometry and

astrometry were derived from combined images as described in

Magnier et al. (2020). We remove galaxies by requiring that the

difference between the point-spread function model photometry

and aperture photometry is <0.1 mag across at least four bands.

We remove objects below the Pan-STARRS saturation limit in

each band, and also objects with magnitude errors> 0.2 mag.

Figure 2. Projected maps showing the coverage of the data used in the work at a healpix resolution of nside = 64 plotted as a function of Galactic longitude ℓ and
latitude b, centered on (ℓ, b) = (0°, 0°). The top left panel shows the mean number of bands from all surveys combined, while the bottom left panel shows the overall
(log-)number of stars in each pixel. The mean number of bands from the individual surveys are shown in the remaining panels, with Pan-STARRS (Section 2.1) in the
top middle panel, 2MASS (Section 2.2) in the top right panel, UKIDSS (Section 2.3) in the bottom middle panel, and unWISE (Section 2.4) in the bottom right panel.
While toward the Galactic center we lose a substantial amount of coverage (transition from orange/yellow to purple in the upper left panel) due to crowding and dust
extinction (transition from blue to yellow in the lower left panel), at high Galactic latitudes and in the Galactic outskirts we have 8–10 bands of optical to near-infrared
(NIR) coverage. The uniform coverage of the Pan-STARRS data is due to the sample selection, which requires �4 bands of Pan-STARRS photometry. Due to the
depth of the UKIDSS Large Area Survey (LAS) data, in regions that overlap with the survey area we have almost 10 bands of wavelength coverage from the optical
through the IR. An interactive version of this figure is available in the article and also at https://faun.rc.fas.harvard.edu/czucker/Paper_Figures/brutus_sky_
coverage.html. An interactive version of Figures 2 and 3 is available. In this interactive version, the projected sky coverage maps are shown at the top while histograms
highlighting the wavelength coverage are shown at the bottom. Buttons at the top middle allow the user the ability to see how the coverage changes when including/
excluding data from Pan-STARRS1, 2MASS, UKIDSS, and unWISE. Buttons at the top right provide pan, zoom, save, and reset functionality; hover the mouse over
each button to see what it does. An interactive version of this figure is available.

Figure 3. Histograms illustrating the wavelength coverage of the data used in this work that serves to complement Figure 2. The left panel shows the number of stars
available in each band, color coded by survey, illustrating the uniform Pan-STARRS selection and amount of NIR and IR coverage available through 2MASS and
unWISE, respectively. Compared with Figure 2, we can see that although the UKIDSS data are quite deep, the total amount of objects with UKIDSS photometry is
quite small due to its high-latitude targeting. We also see that a substantial amount of objects are detected in the unWISE catalog. The right panel shows the number of
bands per star, highlighting that the majority of the sample has full coverage across all 10 possible bands. Regions where we roughly lose coverage across various
surveys are labeled, with the next largest peak of objects having only ∼5 bands of coverage (mostly in the optical) closer to the Galactic plane. An interactive version
of this figure is available in the article and also at https://faun.rc.fas.harvard.edu/czucker/Paper_Figures/brutus_sky_coverage.html. An interactive version of
Figures 2 and 3 is available. In this interactive version, the projected sky coverage maps are shown at the top while histograms highlighting wavelength coverage are
shown at the bottom. Buttons at the top middle allow the user the ability to see how the coverage changes when including/excluding data from Pan-STARRS1,
2MASS, UKIDSS, and unWISE. Buttons at the top right provide pan, zoom, save, and reset functionality; hover the mouse over each button to see what it does. An
interactive version of this figure is available. An interactive version of this figure is available.
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2.2. 2MASS

2MASS18 is a NIR survey of the entire sky in three
photometric bands (JHKs) spanning 1–2.3 μm with typical 10σ
point-source exposure depths of J= 15.8 mag, H= 15.1 mag,
and Ks= 14.3 mag in the Vega system.19 We utilize data from
the 2MASS “high-reliability” catalog,20 which minimizes
contamination and confusion by neighboring point and/or
extended sources. We also require errors to be <0.2 mag and
that no photometry quality (ph_qual), read quality
(rd_qual), or galaxy contamination (gal_contam) flags
are set.

2.3. UKIDSS

The UKIDSS project21 is defined in Lawrence et al. (2007).
UKIDSS uses the UKIRT Wide Field Camera (Casali et al.
2007). The photometric system is described in Hewett et al.
(2006), and the calibration is described in Hodgkin et al.
(2009). The science archive is described in Hambly et al.
(2008).
We use data from the UKIDSS LAS second data release

(DR2; Dye et al. 2006; Warren et al. 2007a, 2007b). UKIDSS
LAS imaged 4000 degree2 in three fields (an equatorial block, a
northern block, and a southern stripe) that were a subset of the
SDSS footprint (York et al. 2000) in four photometric bands
(YJHK ) spanning 1–2 μm with typical 5σ point-source
exposure depths of Y= 20.5 mag, J= 20.0 mag, H= 18.8
mag, and K= 18.4 mag in the Vega system. We require the
errors to be <0.2 mag, the probability of being a star
pstar> 0.9, and that no processing/warning errorbit flags
([J_1/h/k]ppErrBits) are set.

2.4. unWISE

The unWISE catalog22 (Schlafly et al. 2019) is a collection
of two billion sources observed over the entire sky in the IR
over two bands (W1 and W2) from 3 to 5 μm with the WISE
satellite as part of the WISE and Near Earth Object WISE
(NEOWISE) missions. Compared to the existing AllWISE
catalog (Cutri et al. 2013), the unWISE catalog is 0.7 mag
deeper due to its use of additional images from the extended
mission along with improved source modeling in crowded
regions using the CROWDSOURCE code (Schlafly et al. 2018).
This allows it to reach 50% completeness point-source depths
of W1= 17.9 mag and W2= 16.7 mag in the Vega system.

We select all objects which are flagged as primary (no
duplicate sources), contain no bitwise quality flags (flag-

s_unwise), and that have errors of <0.2 mag. We also further
constrain the fractional flux (fracflux) at an object’s given
position, which measures the fraction of contamination of light
from the source due to neighboring objects, to be >0.5 (i.e., a
majority of the light at a given position is contributed by the
source being modeled).

2.5. Gaia

We use data taken from the Gaia second data release (DR2;
Gaia Collaboration et al. 2018), which provides photometry (G,
BP, and RP) and astrometry (proper motion and parallax)
measurements for over one billion stars, along with radial
velocity measurements for a small fraction of nearby sources.
The astrometric catalog has a 99.875% completeness point-
source depth of G≈ 21 mag in the Vega system (Gaia
Collaboration et al. 2018; Lindegren et al. 2018). The typical
astrometric uncertainty is around 0.7 mas for the faintest stars
and 0.04 mas at the bright limit.
In this work, we only incorporate Gaia parallax measure-

ments and their uncertainties when modeling individual
sources. We only use the photometry and proper motions as
additional checks to validate our results, as will be discussed in
Section 5. We impose the same quality cuts as recommended in
Equation (11) of Lindegren et al. (2018), which requires
sources to have:

1. G� 21,
2. visibility_periods_used� 6, and
3. astrometric_sigma5d_max� 1.2 mas× γ(G),

where G max 1, 10 G0.2 18g = -( ) [ ]( ) . We do not impose or
record astrometric quality information from any other quan-
tities (e.g., RUWE).
As discussed in Lindegren et al. (2018), there are numerous

systematics present in the parallax measurements provided as
part of Gaia DR2. The ones we consider here are overall zero-
point offsets in the parallax measurements as well as possible
underestimates of the provided errors. Following work by
Schönrich et al. (2019), Leung & Bovy (2019b), and Khan
et al. (2019), among others, we add 0.054 mas to all parallaxes
and increase the measurement errors by adding 0.043 mas in
quadrature with the reported uncertainties.

2.6. Assembling the Augustus Catalog

We crossmatched all sources in Pan-STARRS, 2MASS,
UKIDSS, unWISE, and Gaia DR2 after applying the cuts
described above within a radius of 1″, with the closest source
being selected in the presence of multiple matches. This
operation was performed using the Large Survey Database
(Juric 2011) hosted on the Cannon computing cluster at
Harvard University and required Pan-STARRS to be the
“primary” catalog to which all others were matched. We
impose a minimum error threshold of 0.005 mag in all bands
after removing any additional survey-imposed error floors; we
also add in our own (larger) error floors as described in
Section 3. In addition, we purposely mask out 2MASS
photometry whenever UKIDSS photometry in the same band
is available. This helps to avoid adding additional noise from
the 2MASS observations, which are substantially shallower
than the UKIDSS observations in the same footprint, and also
prevents us “double-counting” systematics.23

In addition to the cuts described above, we imposed four
additional cuts:

1. �4 bands of photometry in Pan-STARRS,
2. a parallax measurement in Gaia DR2,

18
https://old.ipac.caltech.edu/2mass/

19
While references to the “Vega system” suggest a single alternate system, it

instead represents a variety of independent photometric calibrations to differing
models of Vega. This introduces additional systematics when attempting to
combine photometry across different surveys, which will be discussed later.
20

The cuts used in this selection are described at https://old.ipac.caltech.edu/
2mass/releases/allsky/doc/sec22.html.
21

http://www.ukidss.org/surveys/surveys.html
22

https://catalog.unwise.me/

23
If we estimate uncertainties to be dominated by a systematic error Δ,

observations from n ∼ identical bands with errors floors of Δ in each
effectively makes the error floor nD .
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3. r< 20 mag in Pan-STARRS, and
4. a Galactic latitude of |b|> 10°.

The first cut guarantees that we have approximately uniform
coverage in Pan-STARRS and guarantees we have enough
photometry (�4 bands) to be able to run BRUTUS, and ensures
our spatial coverage matches that of the 3D dust prior from
Green et al. (2019). The second requirement guarantees that all
sources will have parallax measurements (and Gaia photo-
metry), making it straightforward to compare to previous work
such as Anders et al. (2019). The third requirement limits the
size of the sample and helps us remain within the Gaia
G 21 mag completeness limit, making our sample roughly r-
band magnitude limited. Finally, the fourth cut helps to limit
the size of the sample further while avoiding the intense
crowding/dust extinction near the Galactic plane.

The final combined catalog, which we refer to as
Augustus, has roughly 170 million sources. The distribution
of sources on the sky is shown in Figure 2, while the
wavelength coverage for stars in our sample is shown in
Figure 3. The lack of data in the south is due to the required
coverage in Pan-STARRS, which only allows for 3π steradians
of coverage. In general, we find a plurality of sources
(∼60 million) have 10 bands of optical-through-IR photometry
across Pan-STARRS, 2MASS/UKIDSS, and unWISE, and
that only 40 million (∼25%) have �5 bands of coverage.

3. Modeling

The modeling approach for constructing this catalog,
BRUTUS, is described in Speagle et al. (2024). We provide a
brief summary below.

3.1. Statistical Framework

BRUTUS uses Bayesian inference to model the posterior
probability ,q f( ) of a set of intrinsic stellar parameters θ

(e.g., initial mass Minit) and extrinsic stellar parameters (e.g.,
distance d) as the product of three different components:

, , , . 1phot astrq f q f f q fpµ( ) ( ) ( ) ( ) ( )  

The first term is the photometric likelihood between our
model of the flux densities F F, ,i i

i b
1q f q fº =

=( ) { ( )} and the

observed flux densities F Fi i
i b

1º =
=ˆ { ˆ} and their associated errors

i i
i b

1s sº =
=ˆ {ˆ } across b bands. We assume the data follows a

normal distribution in each band such that:

⎡
⎣⎢

⎤
⎦⎥

F F
,

1

2
exp

1

2

,
. 2

i

b

i

i i

i

phot

1
2

2

2q f q f

ps s
º -

-

=

( )
ˆ

( ( ) ˆ )

ˆ
( )

The second term is the astrometric likelihood, which
compares the predicted parallax ϖ(f) to the observed value
v̂ and the associated error svˆ .24 We also assume the data
follow a normal distribution such that:

⎡
⎣⎢

⎤
⎦⎥

1

2
exp

1

2
. 3astr

2

2

2
f f

ps

v v
s

º -
-

v v
( )

ˆ

( ( ) ˆ )

ˆ
( )

The final term is the Galactic prior, which describes our prior
belief over the 3D distribution of stars, dust, and their
associated properties. We use the same default prior outlined
in Speagle et al. (2024). This includes a thin disk, thick disk,

and halo component whose size/shape are based on Bland-
Hawthorn & Gerhard (2016) and Xue et al. (2015) with simple,
spatially independent distributions of initial metallicities
[Fe/H]init and ages tage as described in Speagle et al.
(2024).25 The 3D distribution of dust attenuation AV is taken
to follow the 3D dust map from Green et al. (2019), with
variations in the dust curve (as parameterized by RV) taken to
be spatially independent following that from Schlafly et al.
(2016).

3.2. Stellar Modeling

The stellar models used in this work are the Modules for
Experiments in Stellar Astrophysics (Paxton et al.
2011, 2013, 2015, 2018, 2019) Isochrone & Stellar Tracks
(MIST; Choi et al. 2016). In particular, we utilize the
nonrotating models from MIST v1.2. These are defined in
terms of initial mass Minit, initial metallicity [Fe/H]init, and
equivalent evolutionary point (EEP; Dotter 2016), which
correspond to a unique age tage(EEP|Minit, [Fe/H]init) for a
given Minit and [Fe/H]init.
We use three separate pieces to predict the underlying stellar

spectrum Fν(λ|θ, f). The first is the C3K stellar atmosphere
models described in Cargile et al. (2020) and Speagle et al.
(2024), which are computed as a function of effective
temperature Teff, log surface gravity glog , surface metallicity
[Fe/H]surf, and surface alpha abundance variation [³/Fe]surf.
While v1.2 of the MIST models provide predictions for Teff,

glog , and [Fe/H]surf, they do not model any variations in [³/
Fe]; as a result, we set [³/Fe]surf= 0 by default. The second is
a set of “empirical corrections” to the MIST models based on
isochrone modeling of nearby open clusters described in
Speagle et al. (2024). These are implemented as adjustments to
the effective temperature Teff and stellar radius Rlog  (and by
extension the surface gravity glog and bolometric luminosity

Llog bol) as a function of Minit, with small modifications as a
function of EEP and [Fe/H]init. The third is a set of dust
extinction curves (i.e., reddening laws) from Fitzpatrick (2004)
to account for the effect of dust extinction. These are defined as
a function of extinction in the V-band AV and the “differential
extinction” RV≡ AV/(AB− AV) based on the ratio of AV to the
difference in extinction AB− AV between the B and V bands.
Altogether, these give a framework for generating spectra as a
function of θ= {Minit, [Fe/H]init, EEP} and f= {d, AV, RV}

with t T g R L, , log , log , logage eff bolq = { } generated as inter-
mediate values, where d is again the distance to the source.
Finally, to generate the model flux density in a given filter i,

we integrate the underlying stellar spectrum Fν(λ|θ, f) through
a filter curve with transmission Ti(λ):

F
F T d

S T d
,

,

,
, 4i

i

i

1

1

ò
ò

q f
q f

q f

l l l l

l l l l
=

n

n

-

-
( )

( | ) ( )

( | ) ( )
( )

where Sν(λ) is the source spectrum used to calibrate the

observations. This is the chosen spectrum of Vega in the Vega

system and a constant in the AB system. To avoid having to

compute integrals “on the fly,” we precompute photometry

over a large grid of Teff, [Fe/H]surf, glog , [³/Fe], AV, and RV

values in each band, and interpolate over the resulting

photometric predictions in each band using a neural network

24
Note that while other astrometric measurements such as proper motions are

measured by Gaia, we do not model them here.

25
No bulge or bar component is currently included but will be added in

future work.
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as described in Speagle et al. (2024). Cross-validation and

hold-out testing suggest that the difference between photo-

metry predicted using the neural network versus direct

integration is 0.01 mag over a large majority of the

parameter space.

3.3. Application to Data

BRUTUS exploits the nature of the statistical problem to
derive continuous estimates of the extrinsic stellar parameters
f= {d, AV, RV} over a grid of intrinsic stellar parameters
θ= {Minit, [Fe/H]init, EEP}. While interpolating over an input
grid of stellar models allows for smoother probabilistic
estimation of the underlying parameters (Cargile et al. 2020),
this process in general is substantially slower than using
precomputed grids when the number of parameters being
inferred is small (4). BRUTUS uses grids to exploit this
speedup. This leads to “gridding effects” that will be visible in
subsequent plots shown in this work.

In brief, BRUTUS fits each object in three steps.

1. Magnitude step. Compute a “quick approximation” of the
solution in magnitudes.

2. Flux density step. Improve the magnitude solution after
converting the data back to a flux density.

3. Prior step. Incorporate information from the prior (and
the parallax) using Monte Carlo sampling.

These steps are then parallelized across all models in the grid,
with the final posterior estimated using Monte Carlo integration
and resampling. The entire process takes only a few seconds for
a typical source with a mildly informative parallax measure-
ment. The grid of stellar models we use in this work
(grid_mist_v8) are defined in Table 2, shown in Figure 4,
and available online through the BRUTUS GitHub page.

As discussed in Speagle et al. (2024) and elsewhere (e.g.,
Choi et al. 2016), there are known systematics offsets between

the MIST models used in this work and the photometric data to
which it is being fit. To account for some of this additional
uncertainty not captured by the empirical corrections described
earlier, we apply zeroth-order photometric offsets to the
observed flux densities and increase the effective errors by
adding in error floors in quadrature. A summary of the offsets
and error floors applied in this work can be found in Table 1.
We run BRUTUS using this setup over the 170 million

sources in the Augustus catalog using the default hyperpara-
meters enabled in v0.7.5 (Speagle & Zucker 2020). All
computations were performed on the Cannon research
computing cluster at Harvard University. Including overheads,
the final runtime was ∼700,000 CPU hours.

4. Catalogs

Using the posterior samples for each object, we postprocess
the data into two output catalogs:

1. a “point” catalog26 containing various information about
each object and summary statistics describing the stellar
parameters, and

2. a “samples” catalog27 containing a subset of 25 posterior
samples for each object.

We will use results from the former catalog when highlighting
results in this paper; the latter is meant to be used as a
supplement for users interested in additional error modeling.
Detailed descriptions of both catalogs and examples of their
usage can be found in the Appendix.
Note that after performing most of the computation, we

discovered that BRUTUS v0.7.5 contained a bug (fixed in more
recent versions of the code) that used the wrong sign when
sampling from correlations between AV and RV with distance.
We have confirmed this has a negligible impact on the overall

Figure 4. CMDs for the MIST models used in this work as a function of Pan-STARRS i-band magnitude at d = 1 kpc and Pan-STARRS r − z color. The left panel
shows the models used with [Fe/H]init= +0.02, with the rough locations of the main-sequence and post-main-sequence evolutionary phases indicated. The underlying
mass tracks are shown as light gray lines, with the actual models used shown as points and colored by Mlog init. The right panel shows the entire collection ∼750,000
models defined over [Fe/H]init= −4.0 to +0.5 that are used in this work.

26
doi:10.7910/DVN/WYMSXV.

27
doi:10.7910/DVN/530UYQ.
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posterior distributions and marginal distributions for all
parameters and therefore should not impact the quality of the
catalog; however, it does affect quantities computed directly
from the samples which depend on these quantities (e.g.,
reddened photometry).

In addition, we found that survey artifacts from the UKIDSS
footprint (deeper NIR photometry changed the distribution of
stellar parameter estimated) were prominent when projecting
results onto the plane of the sky or Galaxy. As a result, we
reran all objects in the UKIDSS LAS footprint without
UKIDSS photometry (i.e., using 2MASS instead when
available) and with the same version of the code (v0.7.5) for
consistency; the catalogs for this subset of objects are also
provided online and described in the Appendix. While this does
degrade the quality of the stellar parameter estimates, it makes
the resulting maps more homogeneous. As a result, we opt to
use the “no UKIDSS” versions of our results when highlighting
results in this work unless otherwise explicitly stated.

The distribution of a random posterior sample of the
distances for each star in Augustus is shown in Figure 5.
We see that the distribution peaks around a few kiloparsecs,
with a sharp decline toward larger distances and a shallower
decline toward smaller ones. The former behavior can be
understood by our r= 20 mag faint magnitude limit in Pan-
STARRS, which makes us primarily sensitive to giants at
larger distances. The latter behavior is due to a combination of
two effects. The first is the increasing differential volume
which goes as d2, which increases the raw number of sources
available between d and d+Δd at larger distances. This
counteracts the decreasing number density of stars as we move
away from the Galactic center and out of the Galactic plane.
The second is the r∼ 14 mag saturation limit in Pan-STARRS,
which makes us increasingly incomplete at nearby distances.

As part of the catalog we generate two quality flags:

1. FLAG_FIT, which diagnoses problems in the best-fit

model SED, including the predicted parallax, and
2. FLAG_GRID, which diagnoses when the output posterior

appears to be artificially truncated by the input model

parameter grid.

The details of these flags are discussed in the Appendix.
There are roughly 14 million sources (∼8%) which
have FLAG_FIT = TRUE set, 38 million (∼22%) with
FLAG_GRID = TRUE set, and 47 million (∼27%) with either
flag set. We consider the set of roughly 125 million sources
with neither flag set to have “reliable,” high-quality poster-
iors that are sufficient for analysis. We utilize this subset of
stars in Augustus in all subsequent analyses and will
henceforth refer to them as the Augustus-Gold subset.
Objects with FLAG_FIT = FALSE are deemed “acceptable”
fits, which will henceforth be referred to as the Augustus-
Silver subset.
In Figure 5, we show the impact each of these flags has on

the distribution of stellar distances. Overall, we find that most

poor fits tend to happen preferentially at either small distances

(5 kpc) or extremely large ones (15 kpc). Internal

investigation reveals this can be due to a variety of failure

modes, some of which are outlined below.

1. Bad photometry. One outlying band will lead to

extremely poor fits. This is more common near the Pan-

STARRS r∼ 14 mag saturation limit.
2. Failed crossmatching. Multiple objects within the same

1″ radius can be inappropriately matched, leading to

“mixed” SEDs that are difficult to model.
3. Blending effects. In crowded regions, significant portions

of the flux at a given position may be contributed by

nearby objects, which can impact the measured flux

densities for any particular source. This becomes stronger

at lower |b| values.
4. Quasar/galaxy contamination. As discussed in Green

et al. (2019), quasars and other point sources can often

contaminate these samples, especially at fainter magni-

tudes. Since these have very different SEDs compared to

our stellar models, they often are poorly fit.
5. Unresolved binaries. A nonnegligible fraction of sources

in Augustus are expected to be in unresolved binaries

Table 1

A Summary of the Photometric Offsets

Filter Offset Error Floor

Pan-STARRS

g 1.01 0.02

r 0.97 0.02

i 0.97 0.02

z 0.96 0.02

y 0.97 0.02

2MASS

J 0.99 0.03

H 1.04 0.03

Ks 1.04 0.03

UKIDSS

J 0.99 0.03

H 1.04 0.03

K 1.04 0.03

unWISE

W1 1.02 0.04

W2 1.03 0.04

Note. Photometric offsets that are multiplied to the observed flux densities and

the error floors (as a fraction of the flux density) that are added in quadrature to

the observational uncertainties.

Table 2

Grid of Parameters for the MIST Models Used in This Work

Minimum Maximum Spacing

Initial Mass (Minit)

0.5 Me 2.8 Me 0.02 Me
2.8 Me 3.0 Me 0.1 Me
3.0 Me 8.0 Me 0.25 Me
8.0 Me 10.0 Me 0.5 Me

Initial Metallicity ([Fe/H]init)

−4.0 +0.5 0.06

Equivalent Evolutionary Point

202 454 12

454 808 6

Note. See Section 3.2 for additional details.
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(see, e.g., Belokurov et al. 2020). These are not modeled
in this work.

6. Missing models. Since our grid only goes down to
Minit= 0.5 Me and only includes stellar models after they
reach the main sequence (EEP= 202), nearby sources
that have Minit 0.5 Me or EEP< 202 are not part of our
grid and therefore will be mismodeled. This can also
occur if sources fall between our grid points, which has
coarser spacing on the high-mass end.

7. Strong prior disbelief. As shown in Speagle et al. (2024),
BRUTUS can fail to locate the correct solution if it is
sufficiently disfavored by the prior. This leads to
mismodeling of the SED.

8. Imprecise photometric parallaxes. For nearby sources
with extremely high signal-to-noise ratio (S/N) astro-
metric parallax measurements from Gaia DR2, the model
grid in BRUTUS may be too coarse to estimate distances
with the accuracy needed to match the observed parallax
measurements within their measurement uncertainties.

9. Heavily extinguished. The default modeling used in this
work assumes that 0� AV� 6. In nearby regions with
large AV (and possible large variations in RV), the models
will fail to reproduce the heavily extinguished SEDs.

By contrast, we find that the vast majority of cases where
FLAG_GRID = TRUE occur when the initial mass Minit hits the
lower edge of the grid. Imposing this flag therefore imposes a
de facto cut on initial mass, limiting the catalog to mostly
sources above Minit 0.55 Me. This also explains why
imposing this cut almost exclusively removes sources at
smaller distances, where we are more sensitive to lower-mass
objects.

In the right panel of Figure 5, we highlight subsets of
Augustus-Gold as a function of the probability that a
source is classified as a “giant,” which we define as the
probability that it has a glog 3.5< . The vast majority of stars
in our sample (∼150 million) are classified as dwarfs with P
(giant)∼ 0, such that even allowing stars that have only P
(giant)> 5% only includes roughly nine million objects.
Imposing even stricter criteria such as P(giant)> 50% or P

(giant)> 95% leaves around five million and 3.5 million

sources, respectively. Given that BRUTUS is inherently biased

against classifying sources as giants (Speagle et al. 2024), we

find these to be likely underestimates of the true number of

giants in our catalog. Regardless, a sample of >3 million giants

at high latitude is already several orders of magnitude larger

than targeted spectroscopic surveys such as the Hectochelle in

the Halo at High Resolution (H3) survey (Conroy et al. 2019).
In Figure 6, we show the statistical uncertainties in the

estimated distances within Augustus-Gold as a function of

Pan-STARRS r-band magnitude, parallax S/N ϖS/N, and

median estimated distance. We find typical statistical

uncertainties∼ 3%–5% near r∼ 14 mag that degrade smoothly

to 8%–10% at r∼ 20 mag and ϖS/N 1. Note that these

uncertainties do not include systematic uncertainties related to

issues with the underlying stellar models, the assumed Galactic

priors, etc. While in general estimating overall uncertainties

from 1σ and 2σ scatter in the distance realizations give

consistent answers, these diverge strongly for median distances

dmed 10 kpc, at which point confusion between dwarf and

giant solutions lead to multimodal distance estimates and

largely inflated uncertainties in the tails. These estimates,

especially on the brighter end, are similar to recent work from

Anders et al. (2019) and Bailer-Jones et al. (2021) and an

improvement over the the purely geometric uncertainties from

Bailer-Jones et al. (2018, 2021; see Section 5.3).
The distribution of random posterior samples from all the

stars in Augustus-Gold is shown in Figure 7. As expected

for objects with |b|> 10°, the vast majority have AV 2 mag

with >50% of the sample having AV< 0.4 mag. The metallicity

distribution of the sample peaks around [Fe/H]init∼−0.5,

similar to that of the thin disk in our prior, although there is a

substantial tail out to metallicities as low as [Fe/H]init∼−2.5.

As expected, most sources have subsolar initial masses, with

95% having 0.55 MeMinit 1.05 Me, and are located on the

main sequence with EEP< 454. We do, however, observe a

substantial tail of stars up to and beyond the main-sequence

turnoff (EEP> 454).

Figure 5. A distribution of the distances (taken from a random posterior sample) for the 170 million objects in our catalog. The left panel shows the number of objects
for the entire sample (black), all the sources with “acceptable” fits (the Augustus-Silver subset; orange), and all sources with “reliable” posteriors (the
Augustus-Gold subset; red). There are around 125 million sources with reliable posteriors that have distances up to tens of kiloparsecs. The right panel shows the
subset of sources for which the probability of being a giant (defined as glog 3.5< ) is >5% (green), >50% (blue), and >95% (purple). These panels illustrate there are
potentially millions of photometrically classified giants in the sample, although only a few million at very high confidence. See Section 4 for more information on the
cuts applied here.
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5. Results and Discussion

We now wish to highlight some preliminary results
illustrating the quality of the data from the 125 million stars
in Augustus-Gold.

5.1. Reproducing the Gaia Color–Magnitude Diagram

Given known systematics in the theoretical stellar models
used in this and other works (Choi et al. 2016; Anders et al.
2019; Speagle et al. 2024), one way to examine the reliability
of the results is to examine the ability of the stellar models to
reproduce the empirical CMD. In order to accomplish this, we
purposefully did not use any of the observed Gaia DR2
photometry when computing the predictions. Since these bands
are so much broader than the underlying Pan-STARRS bands
that they overlap with, they can serve as a (limited) posterior
predictive check on the overall quality of the fits derived using
the Pan-STARRS, 2MASS, UKIDSS, and unWISE data. In
other words, we can test what the photometry in the Gaia bands
should be (the “predictive”) based on the model constraints
imposed from the other fitted bands (the “posterior”).

Using the BRUTUS package, we take a random posterior
sample of the distance d, extinction AV, and differential
reddening RV from each object and use it to compute the
corresponding distance modulus μ and extinctions AG, ABP, and
ARP in the Gaia bands using the filter curves from Maíz
Apellániz & Weiler (2018) as described in Speagle et al.
(2024). We then use these to “dedistance” and deredden the
observed photometry. We then compare this “empirical” CMD
to the “intrinsic” CMD predicted directly from the corresp-
onding model. The results of this exercise for all sources in
Augustus-Gold along with a subset of 12.5 million sources
with full photometric coverage and reasonably constrained
distances (<30% 2σ errors) are shown in Figure 8. We find
excellent overall agreement between the intrinsic CMD
predicted by the models and the “empirical” CMD derived
from the data, with uncertainties mostly scattered in the
direction of the reddening vector. Note that this scatter is
expected given the incorrect sign of the covariances between
AV and RV with distance discussed at the beginning of

Section 4. Some exceptions to the excellent overall agreement
include noticeable gridding effects in post-main-sequence
stellar evolutionary phases and higher masses as well as clear
discrepancies properly modeling the horizontal giant branch.

5.2. Comparison to STARHORSE

We also compare our results to previous work. In particular,
Anders et al. (2019; henceforth A19) use a similar approach to
derive distances to 270 million sources with Gaia G< 18 mag.
As in this work, their approach also involved using a set of
theoretical isochrones applied to similar photometric and
astrometric data sets. The main differences between the two
studies are as follows.

1. A19 utilize the PARSEC v1.2 models (Bressan et al.
2012; Chen et al. 2014; Tang et al. 2014) rather than the
(color-corrected) MIST models employed here.

2. A19 use the empirical dust curve from Schlafly et al.
(2016) to model AV variations but no RV variations. Here
we use the dust curve from Fitzpatrick (2004) and models
variations in both AV and RV.

3. A19 use a different form for the underlying Galactic prior
that includes an additional bulge component and different
thin disk, thick disk, and halo properties.

4. A19 do not apply a 3D dust prior to supply additional
constraints on AV.

5. A19 use a version of the STARHORSE code (Santiago
et al. 2016; Queiroz et al. 2018; A19) to fit a grid over
stellar models, d, and AV and evaluate the prior over these
data points. BRUTUS samples d, AV, and RV values and
attempts to integrate over the Galactic prior while
doing so.

6. A19 fit photometric data from Gaia, Pan-STARRS,
2MASS, and AllWISE. This work excludes fitting
photometric Gaia data and uses unWISE instead of
AllWISE.

7. A19 apply different Gaia DR2 parallax zero-point
corrections and photometric offsets/errors compared to
this work.

Figure 6. Estimates of the statistical distance uncertainties (i.e., excluding systematic uncertainties) as a function of Pan-STARRS r-band magnitude (rPS; left),
parallax S/N (middle), and median estimated distance (right). These are estimated using the distribution of random distance realizations around the median distance
estimates, with results from half the width of the 68% credible interval (“1σ average;” solid red) and a quarter the width of the 95% credible (“2σ average;” dashed
blue). We find typical uncertainties of 8%–10% at the faintest magnitudes and lowest parallax S/Ns, with uncertainties derived from the 95% confidence intervals
(CIs) larger than those derived from the 68% CIs. These differences can become particularly pronounced at larger distances (right panel) due to possible degeneracies
between nearby dwarf (main-sequence) and faraway giant (post-main-sequence) stellar evolutionary solutions.
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As A19 perform significant vetting of their associated catalog

across a wide range of surveys, we want to confirm that we are
able to recover similar results for sources that overlap between
the two catalogs. After crossmatching sources based on their
Gaia object ID and only selecting “high-quality” sources with

SH_GAIAFLAG_ = 000 and SH_OUTFLAG = 00000, we find
roughly 26 million sources that overlap between the two
catalogs. Part of the reason for this small overlap is that A19

only go down to G= 18 mag rather than the r= 20 mag used in

this work; the other main reason is that this work excludes all

sources with |b|< 10° (where the vast majority of stars actually

lie) as well as sources in the Southern Hemisphere.
Figure 9 shows a comparison between the two data sets for a

few parameters of interest including d, glog , Teff, and AV.

Overall, we find the estimated distances between the two data

sets are extremely consistent with each other, although

Figure 7. A corner plot showing the collective 1D and 2D posterior distributions for the parameters constrained for each of the 125 million Augustus-Gold stars.
These parameters are (from left to right): the initial mass (Minit), initial metallicity ([Fe/H]init), EEP, age ( tlog age), effective temperature ( Tlog eff), bolometric

luminosity ( Llog bol), surface gravity ( glog ), distance dlog , extinction (AV), and “differential” extinction (RV). The titles of each column show the median and the
interval encompassing 95% of the sample. As expected, the majority the sample comprises sources with low extinction (AV  1 mag) and initial masses ranging from
0.55 Me < Minit < 1.2 Me, with the lower limit imposed by the lower Minit bound on our underlying grid of stellar models. Gridding effects can be seen in a few
panels.
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Augustus-Gold generally prefers sources nearer than a few
kiloparsecs to be slightly closer. This is likely due to small
differences in the underlying Galactic prior. We also find
strong agreement between the predicted glog values (outside of
the gridding effects due to coarse sampling of post-main-
sequence evolutionary phases in this work), although there is a
clear excess of sources that are classified as low-mass dwarfs in
Augustus-Gold relative to A19. The reason for this
discrepancy can be seen when examining Teff, which shows
that while values are consistent across both data sets below
Teff 6000 K, sources in Augustus-Gold with estimates of
Teff∼ 6000 K are much more likely to have associated
estimates of Teff 8000 K in A19. To reproduce the observed
SED, these intrinsically bluer sources need to have more
reddening from foreground dust, leading to an expected
increase in higher associated values of AV for some sources
in A19 relative to Augustus-Gold. Note that while
Augustus-Gold strictly enforces AV� 0 mag and A19 do
not, we find the impact of this choice does not appear to
hamper comparisons other than around AV∼ 0 significantly.
We expect that this will slightly bias the distances and intrinsic
colors for stars behind very little dust, but helps to avoid
scenarios that can arise when the reddening vector is allowed to
compensate for systematic color offsets in the model by
exploring nonphysical solutions.

5.3. Comparison to Bailer-Jones et al. (2018, 2021)

In addition to A19, we also compare our distances to those
derived purely from Gaia data based on both DR2 (Bailer-

Jones et al. 2018, hereafter BJ18) and EDR3 (Bailer-Jones et al.
2021, hereafter BJ21), which was released between construct-
ing the initial catalog and writing up this manuscript.
While BJ18 utilize only parallax information when deriving
their distances, BJ21 include both parallax-only estimates and
ones that also include contributions from an empirical model
that incorporates Gaia photometry. After crossmatching with
both catalogs, we find roughly 126 million sources in common
between those samples and the Augustus-Gold sample.
In Figure 10, we compare the distance estimates from BJ18

and BJ21 to those from Augustus-Gold. Overall, we find
excellent agreement between Augustus-Gold, BJ18,
and BJ21 within a few kiloparsecs, which further improves
when considering the BJ21 estimates derived including Gaia
photometry. Given that the BJ18 and BJ21 estimates were
derived using substantially different prior assumptions from
our model and, in the case of BJ21, mutually exclusive
photometric data sets (as no Gaia photometry was used to
derive any stellar properties reported in this work), this
agreement lends further confidence to the overall accuracy of
our distance estimates.

5.4. Galactic Substructure seen in Augustus

As discussed in Speagle et al. (2024), inference from
photometry alone is strongly influenced by the underlying
Galactic priors and even including strong constraints from
parallaxes can still lead to biases in the inferred stellar
properties without tight constraints on AV (i.e., some knowl-
edge of the intrinsic SED). As such, it is important to

Figure 8. The Gaia G vs. BP − RP color–absolute magnitude diagram (CAMD) for all sources in Augustus-Gold (125 million objects; top) and “best-
constrained” sources (12.5 million objects; bottom) which have 10 bands of Pan-STARRS, 2MASS, UKIDSS, and/or unWISE photometry and 95% distance credible
intervals that are <30% of the median distance (i.e., |(d97.5 − d2.5)/d50| < 0.3). The left panels show the CAMD after shifting sources to d = 10 pc using a random
sample drawn from the stellar posterior. The middle panels shows the “dereddened” CAMD using the AV and RV values from the same random posterior sample and
the predicted linear reddening vector from the stellar parameters associated with them. The right panels show the predicted CAMD computed directly from the models;
this is also overplotted as the light gray shaded region in the middle panel for ease of comparison. As the Gaia photometry was not used when deriving the stellar
posteriors but whose wavelength coverage overlaps with the Pan-STARRS data, this serves as a useful but limited check on the internal self-consistency and overall
quality of the results. We find excellent overall agreement between the intrinsic CAMD predicted by the models and the “empirical” CAMD derived from the data,
with uncertainties mostly scattered in the direction of the reddening vector. Some exceptions to this include noticeable gridding effects in evolved stellar evolutionary
phases (thin overdense regions), issues modeling the horizontal giant branch (upper left regions), and dwarf/giant misclassification (middle right regions).
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investigate just how much information we are able to recover
relative to the prior.

It has been demonstrated in Green et al. (2015), Chen et al.
(2019), A19, and other works that there is enough information
in stellar photometry to recover distance and extinction
estimates to stars with enough precision to construct detailed,
accurate 3D dust maps. A19 show that these estimates may also
be detailed enough to begin resolving large-scale features such
as the Galactic bar. Given that our map targets high-latitude
regions and goes substantially deeper than that work, we want
to investigate whether we too can (in principle) recover large-
scale substructure purely from astro-photometry (i.e. using
astrometry and photometry) alone.

In Figure 11, we plot the mean proper motion directions for
all the sources in Augustus-Gold with nside= 64
healpix resolution, split into (overlapping) median distance
bins ranging from d50= 0 kpc to d50= 50 kpc and colored by

counts in each pixel. Overall, we see clear evidence of large-
scale features in our maps, including evidence of the Sagittarius
Stream (bottom right) and the Monoceros Ring (middle right;
Newberg et al. 2002; Jurić et al. 2008; Purcell et al. 2011;
Gómez et al. 2013; Laporte et al. 2018a, 2018b). We also
observe issues where systematics clearly play a role in the
inferred stellar properties, especially near the Galactic center
and the Galactic plane as well as in regions of substantial
foreground extinction (where we either miss stars entirely or
likely somewhat mismodel them).
To get a sense for how significant these features are, we need

to compare them against what we expect given our Galactic
prior. In Figure 12, we show the exact same plot except this
time colored by the expected number of counts in each pixel,
normalized so that each distance bin contains the same total
number of stars. In this version, we see no evidence for any
substructure in density alone (since our prior includes no

Figure 9. Comparisons between the median distance (top left), glog (top right), Teff (bottom left), and AV (bottom right) in this work (Augustus-Gold; “S20”)
and A19 for 26 million sources present in both catalogs. In each panel, the most common (i.e., likely) associated value in Augustus-Gold given a value from A19
(i.e., y given x) is shown as a solid red line, and the most common associated value from A19 given Augustus-Gold (i.e., x given y) is shown as a solid orange line.
The 1:1 relationship is also overplotted as a dashed black curve. We see that the estimated distances from both catalogs are extremely consistent with each other across
most distances, although this work generally prefers source below a few kiloparsecs to be slightly closer. The glog values are also consistent with each other (outside
of gridding effects), although there is a clear excess of sources that are classified as low-mass dwarfs in Augustus-Gold relative to A19. The reason for this
discrepancy can be seen when examining the estimated Teff, which shows that while the values are consistent across both data sets below Teff  6000 K, A19 prefer to
make sources substantially hotter than Augustus-Gold for Teff  6000 K. This leads to a corresponding increase in the number of sources with AV  1 mag, where
the higher reddening combined with the intrinsically bluer (hotter) colors end up giving similar SEDs as intrinsically redder (cooler) sources with less reddening. Note
that the naming convention “S20” is based on the fact that the original analysis was included in the lead author’s PhD Thesis, which was accepted in 2020 and can be
found online at https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37365889.
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kinematic information). This makes sense, since our prior was,

by construction, a smooth model of the Galaxy that did not

account for any small-scale structure.

In Figure 13 we compare the ratio of the observed number of

counts to the expected number of counts. As expected, we have

an underdensity of sources in the direction of the Galactic

Figure 10. As Figure 9, but now comparing the median distances from this work with those derived from Gaia DR2 parallaxes only from BJ18 (left) and from Gaia
EDR3 parallaxes from BJ21 without (middle) and with (right) Gaia photometry. The most common (i.e., likely) associated value in Augustus-Gold given a value
from BJ18 or BJ21 (i.e., y given x) is shown as a solid red line, and the most common associated value from BJ18 or BJ21 given Augustus-Gold (i.e., x given y) is
shown as a solid orange line. The 1:1 relationship is overplotted as a dashed black curve. Estimated distances from all three catalogs are in excellent agreement with
those derived here for stars within a few kiloparsecs using only the parallax and agree out to further distances when also considering the BJ21 estimates that also
incorporate information from photometry. Disagreements at larger distances compared to the parallax-only estimates generally arise due to stronger distance
constraints from photometry overwhelming the distance estimates for objects with low parallax S/Ns where the Galactic prior tends to dominate the inference. As
with A19, this work prefers sources to be slightly closer than in BJ18 and BJ21.

Figure 11. The mean number density of stars in (overlapping) distance bins ranging from d = 0–50 kpc at a healpix resolution of nside = 64 (see Figure 2). The
bulk motion of stars within each healpix pixel (corrected for solar reflex motion) are indicated by small arrows and estimated using the mean proper motion. We can
see clear evidence of large-scale features in our maps, including evidence of the Sagittarius Stream (bottom right) and the Monoceros Ring (middle right) along with
“missing regions” where substantial foreground dust extinction removes stars from our catalog. An interactive version of this figure is available in the article and also
at https://faun.rc.fas.harvard.edu/czucker/Paper_Figures/brutus_multipanel_toggle.html. An interactive version of Figures 11–14 is available. In this interactive
version, the projected sky coverage maps are shown at the top while histograms highlighting wavelength coverage are shown at the bottom. Buttons at the top middle
allow the user the ability to see how the coverage changes when including/excluding data from Pan-STARRS1, 2MASS, UKIDSS, and unWISE. Buttons at the top
right provide pan, zoom, save, and reset functionality; hover the mouse over each button to see what it does. An interactive version of this figure is available.

13

The Astrophysical Journal, 970:121 (22pp), 2024 August 1 Speagle et al.



center, where there is a substantial amount of dust extinction
and we are likely incomplete. We can clearly see the
overdensity corresponding to the Monoceros Ring appears as
early as d∼ 3 kpc, peaks at d∼ 9 kpc, and extends out to
d∼ 13 kpc. While there are strong asymmetries as a function of
ℓ and b, it is difficult to interpret these differences since these
regions have dust clouds along the line of sight.

Beyond d∼ 15 kpc, we see clear evidence for the Sagittarius
Stream, which has densities at high latitudes similar to those
near the plane. These densities are in fact so large that they
dominate the normalization of the expected number of counts,
leading to these structures being considered “normal” with
ratios ∼1 while the rest of the halo is considered “underdense.”

In Figure 14, we now highlight differences between the
predicted mean [Fe/H]init from the Galactic prior (which is
spatially independent within each component of our prior) and
the mean [Fe/H]init,50 derived from the data. Deviations can be
seen in all distance bins, although the size of the deviations
increases as a function of distance. Here we see clear evidence
for issues related to survey coverage at nearby distances with
visible survey stripes and at far distances near the Galactic
plane. There are also clear systematics in [Fe/H]init estimation
correlated with foreground dust extinction, with regions with
large AV having discrepant [Fe/H]init relative to background
sources. That said, we do see strong, correlated evidence for
lower-than-expected [Fe/H]init values for stars in the Mono-
ceros Ring and higher-than-expected [Fe/H]init values for stars

in the Sagittarius Stream. These findings suggest that we should
be able to use photometric metallicities to explore the
kinematic and chemical origins of these structures, such as to
follow up on kinematic and chemical separations with other
structures from the Monoceros Ring (e.g., Laporte et al. 2020).
In Figure 15 we plot the associated mean tangential

velocities in each pixel derived from the median distances in
Augustus-Gold and measured proper motions from Gaia,
corrected for solar reflex motion using ASTROPY (Astropy
Collaboration et al. 2013; Price-Whelan et al. 2018). The
overall structure in velocities observed at d 6 kpc agrees with
what we would expect from geometry, where sources orbiting
in the disk are moving directly along/opposite our line of sight.
Kinematically coherent large-scale structure associated with the
Monoceros Ring and Sagittarius Stream are clearly visible. We
also clearly see the presence of known large open/globular
clusters, which show up as “outliers” in tangential velocity in a
given distance bin relative to the underlying background. Both
of these results are encouraging.
Finally, we examine our detection of the Sagittarius Stream

in more detail. We transform the coordinates from our sources
from Galactic coordinates (ℓ, b) to coordinates aligned with the
orbital plane of the Sagittarius Stream (Λ, ´) from Law &
Majewski (2010). In Figure 16 we try to compare these results
directly with those from simulations taken from Law &
Majewski (2010) by using the density contrast for sources with
|´|< 10 compared with those with 10< |´|< 30 as a tracer of

Figure 12. As Figure 11, but now showing the expected distribution of sources from the Galactic prior. These have been normalized so that the total number of
sources in each distance bin are the same in both figures. Since the prior contains only smooth components, it does not show any evidence for additional substructure
compared to Figure 11. An interactive version of this figure is available in the article and also at https://faun.rc.fas.harvard.edu/czucker/Paper_Figures/brutus_
multipanel_toggle.html. An interactive version of Figures 11–14 is available. In this interactive version, the projected sky coverage maps are shown at the top while
histograms highlighting wavelength coverage are shown at the bottom. Buttons at the top middle allow the user the ability to see how the coverage changes when
including/excluding data from Pan-STARRS1, 2MASS, UKIDSS, and unWISE. Buttons at the top right provide pan, zoom, save, and reset functionality; hover the
mouse over each button to see what it does. An interactive version of this figure is available.
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the Sagittarius Stream as a function of d and Λ. We find our
results to be qualitatively consistent regardless of whether we
use all sources or limit ourselves to only those with P
(giant)> 95%. This broad correspondence in overall structure
between the astro-photometric (i.e. astrometry and photometry)
distances in Augustus-Gold and the results from the
simulations lends confidence that our distances and stellar
classifications are reliable even out to large distances.

5.5. Visualizing 5D Substructure with ALLSKY

As a final tool to aid exploration and characterization of the
data presented in this work, we modify the public, open-source
code EARTH

28 used to visualize wind and ocean currents on the
surface of the Earth to handle the similar types of structure
present in 2D velocities in a given set of 3D distance bins. Our
public, open-source code ALLSKY

29 is able to illustrate velocity
motion as moving “streamlines” following simple nonlinear
trajectories and allows users to explore various underlying
properties of the data (velocity, number density, metallicity,
etc.) in various projections (Atlantis, orthographic, equirectan-
gular, etc.) for each of the nine distance bins shown in this
work. A screenshot illustrating the code is shown in Figure 1.

The full interactive visualization can be accessed online at
http://allsky.s3-website.us-east-2.amazonaws.com and the
data can be downloaded from the ALLSKY GitHub repository.

5.6. Additional Remarks

While the results described in this section highlight some of
the successes of BRUTUS and the overall quality of the
Augustus-Gold subsample, we also want to take some time
to mention limitations as well as future directions for
improvement explicitly. These fall under a few broad
categories.

1. Limited spatial coverage and depth. For practical
reasons, Augustus is limited to only covering the
northern sky that overlaps with the 3D dust prior from
Green et al. (2019), does not include the large amount of
objects at |b|� 10°, and only extends down to r< 20. We
aim to break away from these limitations in future work
by removing our reliance on a previously estimated 3D
dust prior, improving the computational efficiency of the
underlying BRUTUS code, using larger all-sky data sets
such as Gaia EDR3 as a base to expand off of, and using
a broader set of surveys to provide deeper optical and
(near-)IR photometry in both the north and the south.

2. Overly simplistic priors. The current set of priors (see
Speagle et al. 2024 for additional details) includes simple

Figure 13. As Figure 11, but now showing the ratio between the data and the prior. This highlights deviations from the assumed Galactic model (i.e., “the
background”) in order to emphasize substructure present in the data. The Monoceros Ring in the Galactic anticenter can be clearly seen as a 10 times overdensity
relative to the background from d ∼ 5–15 kpc. We also observe broad flaring in the disk, which is not modeled in our prior. At d > 20 kpc, the Sagittarius Stream is
also clearly visible, with number densities also 10 times higher than the background. An interactive version of this figure is available in the article and also at
https://faun.rc.fas.harvard.edu/czucker/Paper_Figures/brutus_multipanel_toggle.html. An interactive version of Figures 11–14 is available. In this interactive
version, the projected sky coverage maps are shown at the top while histograms highlighting wavelength coverage are shown at the bottom. Buttons at the top middle
allow the user the ability to see how the coverage changes when including/excluding data from Pan-STARRS1, 2MASS, UKIDSS, and unWISE. Buttons at the top
right provide pan, zoom, save, and reset functionality; hover the mouse over each button to see what it does. An interactive version of this figure is available.

28
https://earth.nullschool.net/

29
https://github.com/joshspeagle/allsky
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models for a three-component model that includes a thin
disk, thick disk, and halo. Not only are all components
overly simplistic smooth models (with no substructure,
warps, etc.) with spatially independent metallicity and
age constraints, but there is no prior for a bulge or bar.
We aim to improve on these in future work.

3. Low AV limits. While the Augustus catalog targeted the
halo, there are still regions where extremely high-AV

values occur. Stars in these regions are inherently
mismodeled due to the default maximum value of
AV= 6 imposed in the catalog. This will be raised to
much higher values in future work.

4. Mass limits. The theoretical MIST isochrones we are
using have large systematic biases in the predicted
photometric colors below M 0.5 Me, even with some
of the empirical corrections implemented in Speagle et al.
(2024). This primarily affects our ability to model M

dwarfs/giants. We hope to use improved isochrone
models in future work to extend our modeling to lower
masses.

5. Model–data mismatch. Offsets between the predicted
photometry vary systematically across the CMD for our
given set of isochrones. This imposes systematic limits
on parameter recovery above the statistical errors
present in the photometric measurements. We hope the
incorporation of new data-driven stellar models such as

those from Green et al. (2021) will help to alleviate

these issues.
6. Gridding effects. As shown most clearly in Figure 9, the

current grid does sample a range of surface gravities and

effective temperatures but still contains visible gridding

effects that could impact inference. We hope to alleviate

this in future work through approaches that can apply

iterative adaptive refinements.
7. Nonnormal errors. It is possible that the assumption of

strictly normal uncertainties is not valid for the assumed

photometric uncertainties in both magnitude and flux

density, leading to incorrect (likely underestimated)

statistical uncertainties in the derived properties. While

systematic effects from survey photometric pipelines may

lead to empirical error distributions with broader tails

(e.g., such as the complex photometric processing for

data in Gaia DR2; Gaia Collaboration et al. 2018), in

general most of the reported uncertainties in the derived

properties are dominated by the effects of model–data

mismatch. Similarly, while the distribution of statistical

parallax uncertainties in Gaia DR2 appears to follow a

normal distribution out to several standard deviations, the

applied zero-point corrections can lead to systematic

offsets that are distinctly nonnormal in nature (Lindegren

et al. 2018).

Figure 14. As Figure 13, but now showing the difference between the mean [Fe/H]init from the data and the prior. Deviations can be seen in all distance bins, although
the size of the deviations increases as a function of distance. Clear systematics in the [Fe/H]init estimation aligned with foreground dust extinction features and objects
near the Galactic plane are visible. We see evidence for lower-than-expected [Fe/H]init values (compared to the prior) for stars in the Monoceros Ring and higher-than-
expected [Fe/H]init values for stars in the Sagittarius Stream. An interactive version of this figure is available in the article and also at https://faun.rc.fas.harvard.edu/
czucker/Paper_Figures/brutus_multipanel_toggle.html. An interactive version of Figures 11–14 is available. In this interactive version, the projected sky coverage
maps are shown at the top while histograms highlighting wavelength coverage are shown at the bottom. Buttons at the top middle allow the user the ability to see how
the coverage changes when including/excluding data from Pan-STARRS1, 2MASS, UKIDSS, and unWISE. Buttons at the top right provide pan, zoom, save, and
reset functionality; hover the mouse over each button to see what it does. An interactive version of this figure is available.
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8. No kinematic constraints. As can be seen in some panels

in Figure 15, the predicted tangential velocities for some

sources indicate clear mismodeling of the distances.

Especially given the recent improved parallaxes and

proper motions from Gaia EDR3, in future work we hope

to incorporate additional kinematic constraints to resolve

some of these degeneracies better.

Although the primary purpose of this catalog is to provide

distance and reddening estimates, we also want to highlight

possible deficiencies in secondary derived quantities explicitly,

namely photometric metallicities. In Figure 17, we show the
metallicities recovery for a subset of n∼ 5100 stars from the
H3 survey (Conroy et al. 2019). In brief, the H3 survey is a
high-latitude (|b|> 30°), high-resolution (R= 32,000) spectro-
scopic survey of the distant (d 2 kpc) Galaxy. Targets are
selected purely on their Gaia parallax (ϖ< 0.4–0.5 mas),
brightness (15< rPS1< 18), and accessibility to the 6.5 m
MMT in Arizona, USA (decl.>−20°). The survey measures
radial velocities to 0.1 km s−1 precision, surface abundances
([Fe/H]surf and [³/Fe]surf) to 0.1 dex precision, and spectro-
photometric distances to 10% precision using MINESWEEPER

Figure 15. As Figure 11, but now showing the mean tangential velocity (in units of km s−1
) corrected for solar reflex motion. The overall structure in the observed

velocities at d  6 kpc is due to pointing directly along/opposite the expected motion of stars orbiting in the disk. Kinematically coherent structures associated with
known clusters (which show up as “outliers” relative to the background motion of nearby sources) as well as more extended structures are easily visible.

Figure 16. The ratio of the observed number density for objects with |´| < 10 (“Sagittarius”) and with 10 < |´| < 40 (“Background”) as a function of distance and
ΛSgr, where (Λ, ´) are coordinates in the Sagittarius orbital plane. The results for all stars with median distances 10 kpc < d50 < 70 kpc and the subset with P

(giant) > 95% are shown in the left and middle panels, respectively. The stellar density from stars taken from the Law & Majewski (2010) simulations with |´| < 10
are shown in the right panel. The broad correspondence in overall structure between the astro-photometric (i.e. astrometry and photometry) distances derived in this
work and the results from the simulations lend confidence that our distances and stellar classifications are reliable even out to large distances.
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(Cargile et al. 2020). In addition to being a representative, low-
reddening subsample of sources, all derived quantities were
estimated using the same underlying MIST isochrones
(excluding the empirical corrections and photometric offsets
derived in this work). This makes the estimated metallicity
comparisons both independent (derived using different code
bases and with/without spectra) while still remaining internally
consistent (using similar photometry and underlying stellar
models).

As seen in Figure 17, the parameter recovery is substantially
biased and prior dominated, even with reasonable S/N
photometry and parallax measurements. As discussed at length
in Speagle et al. (2024), this is because there is an intrinsic
degeneracy in reddened stellar colors that only can be broken if
the dust attenuation is known to high precision. Without this, it
is possible to shift the brightness and colors of stars by
adjusting dust attenuation (which affects the observed star
colors) along with metallicity and other stellar properties
(which affect the intrinsic star colors). As a result, estimates are
generally dragged toward our prior means for both the thin/
thick disk and halo populations, which show up as a bias for
both high- and low-metallicity objects. Since distance estimates
do not break these color degeneracies, this effect is present
when modeling objects with or without parallax constraints,
emphasizing the prior is actually dominating much of the
inference. While the internal tests and comparisons presented
here imply this bias does not substantially impact our distance
estimates, it does mean that our metallicity estimates, and other
prior-dominated derived quantities, should be used with
caution in any downstream analyses.

6. Conclusion

As large-area surveys such as SDSS (York et al. 2000), Pan-
STARRS (Chambers et al. 2016), Gaia (Gaia Collaboration

et al. 2016), and the Legacy Survey of Space and Time (Ivezic
et al. 2019) continue to or soon promise to provide
measurements of billions of stars, the challenge of transforming
observations of the projected 2D positions of sources on the
sky into full 3D maps becomes ever more pressing when trying
to study the Milky Way. In this work, we presented results
applying BRUTUS (Speagle et al. 2024)—a public, open-source
PYTHON package that uses a combination of statistical
approaches to infer stellar properties, distances, and extinctions
for sources using photometry and astrometry—to a catalog of
170 million sources (Augustus) at high Galactic latitudes (|
b|> 10 mag) down to r< 20 mag with data from Pan-
STARRS, Gaia, 2MASS, UKIDSS, and unWISE.
We find 125 million objects (Augustus-Gold) have good

fits and reliable posteriors with estimated statistical distance
uncertainties∼ 3%–5% at r= 14 mag to ∼8%–10% at r= 20
mag. We show that our results are able to predict the
“empirical,” dereddened Gaia CMD based on astro-photo-
metric (i.e. astrometry and photometry) modeling in other
bands, and that the derived stellar parameters are in excellent
agreement with similar results derived in A19. We then
illustrate the quality of the data by highlighting its ability to
recover large- and small-scale Galactic substructure such as the
Monoceros Ring at d∼ 10 kpc and the Sagittarius Stream at
d∼ 25 kpc in density, metallicity, and kinematics relative to
expectations from the underlying Galactic prior. Finally, we
present an interactive visualization (ALLSKY) that is able to
highlight limited 5D distance and tangential velocity structure
present in our data.
Catalogs summarizing our results are publicly available at

the Harvard Dataverse30 and summarized in the Appendix.
Overall, we hope that our results serve as a useful value-added

Figure 17. A comparison of the metallicities derived from BRUTUS (used in this work with photometry only) and MINESWEEPER (including both photometry and
spectroscopy) for a sample of n ∼ 5100 objects shown from the H3 survey using similar isochrones and photometry without (left, blue) and with (right, purple) Gaia
parallax constraints. 1σ errors from both sources are plotted for each point and the one-to-one relation is shown with a dashed gray line along with a sliding median
(orange dashed line). In both cases, the metallicities derived from photometry only are found to be substantially biased, although they broadly follow the same trend as
those derived using both spectra and photometry. As discussed in Section 5.6, this is due to a fundamental degeneracy where changes in the estimated reddening can
be accounted for with corresponding changes to the underlying stellar properties, which lead to increased reliance on the metallicity prior from our Galactic model.
These results suggest our metallicities, along with other derived quantities without good external constraints, should be used with caution.

30
https://dataverse.harvard.edu/dataverse/brutus_augustus
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catalog that highlight the power of combined astro-photometric
(i.e. astrometry and photometry) constraints to estimate stellar
properties.
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Appendix
Data Products

The output Augustus stellar parameter catalogs can be
found online through the Harvard Dataverse (see footnote 32).
Two types of data products are made available:

1. a “point” catalog that contains information about each
object along with a statistics summary describing the
results (doi:10.7910/DVN/WYMSXV) and

2. a “samples” catalog that contains 25 random posterior
samples for each object (doi:10.7910/DVN/530UYQ).

A summary of the column names, the data format, and a brief
description of each catalog can be found in Tables 3 and 4.
Note that the “samples” catalogs is strictly meant to be
supplementary to the “point” catalog and is matched to the
latter row-wise.31 Catalogs are made available for sources
modeled using all bands as well as excluding UKIDSS data for
sources that have them (which have the _noukidss suffix).
The _noukidss data products are available for download at
the same Harvard Dataverse (see footnote 32) repository as
their UKIDSS-included counterpart files. Additional informa-
tion on the columns provided in these catalogs are described
below.
Information on sources is provided through their corresp-

onding Pan-STARRS ID (PS_ID) and Gaia DR2 ID
(GAIA_ID) as well as by their 2D coordinates, in R.A. and
decl. (SKY_COORDS) as well as Galactic longitude and latitude
(GAL_COORDS). In addition, we also include astrometric
measurements from Gaia including parallaxes (PARALLAX,

31
As described in Section 4, BRUTUS v0.7.5 contained a bug (fixed in more

recent versions of the code) that used the wrong sign when sampling from
correlations between AV and RV with distance d. While this has a negligible
impact on the quality of the point catalog outside of the provided random draw,
it does affect quantities computed directly from the “samples” catalog, which
jointly depend on d and AV or RV (e.g., reddened photometry).
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PARALLAX_ERROR) and proper motions (PROPER_MOTION,

PROPER_MOTION_ERROR) as well as multiband photometry

from Gaia, Pan-STARRS, 2MASS, UKIDSS, and unWISE

(MAGNITUDES, MAGNITUDES_ERROR). Note that the paral-

laxes and magnitudes contain none of the offsets or additional

systematic corrections/errors described in Section 2 outside of

the 0.005 mag photometric error floor.
Information on the overall quality of the fit can be assessed

in a few ways. One metric is the log evidence (LOG_EVID),

defined as:

d dln ln , , . A1phot astrò q f f q f q fpº ( )( ) ( ) ( ) ( )  

We estimate this for each object by summing over the final

(weighted) subset of models before applying the posterior

resampling scheme described in Speagle et al. (2024). This

provides information on the overall quality of the fit across all

the models including the influence of the prior.
Another metric is simply the best-fit

best
2c (BEST_CHI2)

from all the models before applying the posterior resampling

scheme. This provides information on the quality of the best

possible fit ignoring the impact of the prior, thereby serving as

a useful supplement to the log evidence.
Combined with the number of bands b used in the fit

(NBANDS_IN_FIT), we use this information to derive a flag

for rejecting sources that fail to achieve even a single

Table 3

Summary of the Augustus “Point” Catalog That Includes Object Information, a Statistics Summary, and a Description of the Results from the BRUTUS Fits

Name Data Format Description

Object Information

PS_ID 64 bit uint Pan-STARRS object ID

GAIA_ID 64 bit uint Gaia DR2 object ID

SKY_COORDS 64 bit float (x2) Sky coordinates (³, δ) in degrees

GAL_COORDS 64 bit float (x2) Galactic coordinates (ℓ, b) in degrees

PARALLAX 32 bit float Parallax from Gaia DR2 in milliarcseconds

PARALLAX_ERROR 32 bit float Parallax error from Gaia DR2 in milliarcseconds

PROPER_MOTION 32 bit float (x2) Proper motion in sky coordinates from Gaia DR2 in units of mas yr−1

PROPER_MOTION_ERROR 32 bit float (x2) Proper motion error in sky coordinates from Gaia DR2 in units of mas yr−1

MAGNITUDES 32 bit float (x16) Magnitudes from Gaia DR2, Pan-STARRS, 2MASS, UKIDSS, and unWISE

MAGNITUDES_ERROR 32 bit float (x16) Magnitude errors from Gaia DR2, Pan-STARRS, 2MASS, UKIDSS, and unWISE

Fit Information

LOG_EVID 32 bit float Log evidence (base e) from the models used in the fit

BEST_CHI2 32 bit float Best-fit χ2 value (photometry and parallax) from the models used in the fit

NBANDS_IN_FIT 8 bit uint Number of bands (photometry and parallax) included in the fit

FLAG_FIT 1 bit bool Whether there was an issue with the fit (TRUE = yes)

FLAG_GRID 1 bit bool Whether the posterior hits the edge of the grid (TRUE = yes)

Stellar Properties

PROB_GIANT 16 bit float Probability that glog 3.5< from the models used in the fit

INIT_MASS 16 bit float (x4) 2.5th, 50th, and 97.5th percentiles and a random sample of Minit in units of Me
INIT_FEH 16 bit float (x4) 2.5th, 50th, and 97.5th percentiles and a random sample of [Fe/H]init
EEP 16 bit int (x4) 2.5th, 50th, and 97.5th percentiles and a random sample of EEP

LOG10_AGE 16 bit float (x4) 2.5th, 50th, and 97.5th percentiles and a random sample of tlog age in years

LOG10_TEMP_EFF 16 bit float (x4) 2.5th, 50th, and 97.5th percentiles and a random sample of Tlog eff in Kelvin

LOG10_LBOL 16 bit float (x4) 2.5th, 50th, and 97.5th percentiles and a random sample of Llog bol in units of Le

LOG10_SURF_GRAV 16 bit float (x4) 2.5th, 50th, and 97.5th percentiles and a random sample of glog in cgs units

DISTANCE 32 bit float (x4) 2.5th, 50th, and 97.5th percentiles and a random sample of d in kiloparsecs

A_V 16 bit float (x4) 2.5th, 50th, and 97.5th percentiles and a random sample of AV in mag

R_V 16 bit float (x4) 2.5th, 50th, and 97.5th percentiles and a random sample of RV

Note. See the Appendix for additional details. The table is available for download at doi:10.7910/DVN/WYMSXV.

Table 4

Summary of the Augustus “Samples” Catalog That Includes Random Posterior Samples from the BRUTUS Fits

Name Data Format Description

SAMPLES_MODEL_IDX 32 bit int (x25) 25 posterior samples of the model index in the input grid

SAMPLES_DISTANCE 32 bit float (x25) 25 posterior samples of d in kiloparsecs

SAMPLES_A_V 16 bit float (x25) 25 posterior samples of AV in mag

SAMPLES_R_V 16 bit float (x25) 25 posterior samples of RV in mag

Note. See the Appendix for additional details. The table is available for download at doi:10.7910/DVN/530UYQ.
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reasonable fit:

§
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otherwise,
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where P b 32
best
2c c> -( ∣ ) is the probability of observing a χ2

value larger than
best
2c assuming b− 3 degrees of freedom.

Note that we use b− 3 rather than b due to the fact that
BRUTUS “optimizes” over three parameters (d, AV, and RV)

before the posterior weighting and resampling step.
For every parameter we compute the 2.5th, 50th, and 97.5th

percentiles (i.e., the median and the 2σ errors) for each
parameter by rank ordering the final set of n= 250 posterior
samples. We choose to report 2σ rather than 1σ errors here
since they better reflect intuitive understanding of the
uncertainty (i.e., objects are “unlikely” to be outside the errors
bars) and better highlight possible degeneracies in the fits (e.g.,
between dwarf and giant solutions) when they occur. We
provide these percentiles along with a random sample taken
from the posterior for each parameter of the object in our model
(see Table 3 for a full list). Since all the parameters from this
random sample are correlated, it can be useful in certain
contexts.

We use these percentiles to define a second flag FLAG_-
GRID that we set to TRUE if any of the 2.5th or 97.5th
percentiles for each parameter that defines the grid of models
(Minit, [Fe/H]init, and EEP) are equal to the minimum or
maximum possible value of that parameter, respectively, and
FALSE otherwise. This flags posteriors that may be biased due
to the hard edges present in our input model grid. This mainly
flags sources with lower initial masses since our model grid
only goes down to Minit= 0.5 Me.

Finally, as part of the “point” catalog we also provide the
probability PROB_GIANT that a source is a giant, which we
define as:

P g_ log 3.5 , A3º <( ) ( )

following the definition used in the H3 survey (Conroy et al.

2019). We estimate this using the final set of posterior samples,

which gives us a resolution of 1/nsamp= 1/250= 0.4% in

probability.
In the “samples” catalog, we provide 25 samples from the

posterior for the distance d (SAMPLES_DISTANCE), extinc-
tion AV (SAMPLES_A_V), differential reddening RV (SAM-

PLES_R_V), and “model index” (SAMPLES_MODEL_IDX).
The model index can be used to grab the corresponding models
from the input parameter grid, which can then be used to
construct output predictions for associated quantities.

An example showing how to use these samples within
BRUTUS is shown below:

import numpy as np

import h5py

from brutus import utils as butils

from brutus.filters import gaia, ps, tmass, ukidss, wise

# grab quality flags

cat = h5py.File(‘point_cat.h5’, mode = ‘r’) # load h5 file

flag_fit, flag_grid = cat[‘FLAG_FIT’][:100], cat[‘FLAG_GRID’][:100] # first

100 elements

good = np.where(∼flag_fit. & ∼

flag_grid)[0] # no flags (good fits, good

posteriors)

(Continued)

# load samples catalog

samples = h5py.File(‘samples_cat.h5’, mode = ‘r’) # load h5 file

samples_idx = samples[‘SAMPLES_MODEL_IDX’][:100][good] # first 100

elements + no flags

# load MIST grid

flts = gaia + ps[:-2] + tmass + ukidss + wise[:-2] # define filterset

mags, labels, _ = butils.load_models(‘grid_mist_v8.h5’, filters = flts) #

read file

# get effective temperatures of corresponding models

logt = labels[‘logt’][samples_idx] # log(Teff)

teff = 10∗ ∗ logt # convert from log to linear

# compute percentiles (median, +/− 1 sigma, +/− 2 sigma)

teff_vals = np.percentile(teff, [2.5, 16, 50, 84, 97.5], axis=1)

# compute mean and standard deviation of predicted intrinsic Gaia G mag-

nitude at 1 kpc

G = mags[:, 0, 0][samples_idx]

G_mean, G_std = np.mean(G, axis=1), np.std(G, axis=1)
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