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ABSTRACT

Neural network-based emulators for the inference of stellar parameters and elemental abundances

represent an increasingly popular methodology in modern spectroscopic surveys. However, these ap-

proaches are often constrained by their emulation precision and domain transfer capabilities. Greater

generalizability has previously been achieved only with significantly larger model architectures, as

demonstrated by Transformer-based models in natural language processing. This observation aligns

with neural scaling laws, where model performance predictably improves with increased model size,

computational resources allocated to model training, and training data volume. In this study, we

demonstrate that these scaling laws also apply to Transformer-based spectral emulators in astron-

omy. Building upon our previous work with TransformerPayne and incorporating Maximum Update

Parametrization techniques from natural language models, we provide training guidelines for scaling

models to achieve optimal performance. Our results show that within the explored parameter space,

clear scaling relationships emerge. These findings suggest that optimal computational resource alloca-

tion requires balanced scaling. Specifically, given a tenfold increase in training compute, achieving an

optimal seven-fold reduction in mean squared error necessitates an approximately 2.5-fold increase in

dataset size and a 3.8-fold increase in model size. This study establishes a foundation for developing

spectral foundational models with enhanced domain transfer capabilities.

Keywords: Stellar atmospheres (1584), Galactic archaeology (2178), Astroinformatics (78), Astro-

statistics (1882)

1. INTRODUCTION

The study of stellar spectra and the extraction of stel-

lar properties is a critical component of astronomy, re-

cently advanced by numerous spectroscopic surveys in-

cluding APOGEE, LAMOST, Gaia-ESO, and GALAH

(Gilmore et al. 2012; Luo et al. 2015; Majewski et al.

2017; Buder et al. 2020), with further progress an-

ticipated from upcoming surveys such as 4MOST and

WEAVE. The 4MOST survey (de Jong et al. 2019), for

instance, plans to collect approximately 20 million spec-

tra at low resolution (R ≈ 6500) and 3 million at medium

resolution (R ≈ 20,000) within a five-year timeframe.

However, the unprecedented scale of these data neces-

sitates more sophisticated automated pipelines for pa-

rameter inference to fully realize the potential of these

surveys.

Machine learning models for spectral emulation have

Electronic address: Tomasz.Rozanski1@anu.edu.au

gained widespread adoption in this context. Since ab-

initio spectrum synthesis, even under one-dimensional lo-

cal thermodynamic equilibrium (1D-LTE) assumptions,

remains computationally intensive, performing full spec-

tral fitting with real-time generation can be impracti-

cal for large surveys. Emulators help amortize compu-

tational costs by learning the mapping between stellar

parameters and their corresponding spectra, allowing for

rapid inference once trained. As stellar spectra depend

on dozens of parameters (stellar atmospheric parameters

and chemical abundances across much of the periodic ta-

ble), emulators must effectively handle high-dimensional

interpolation, circumventing the “curse of dimension-

ality” that plagues traditional grid-based interpolation

methods.

Several approaches have been developed to address

these needs, including quadratic models such as The

Cannon (Ness et al. 2015), a polynomial-based ridge

regression; neural network-based models such as The
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Payne (Ting et al. 2019); and TransformerPayne

(Różański et al. 2024).

The success of emulators often stems from two key con-

siderations: (a) how accurately the models can emulate

synthetic spectra, that is, for a given set of fixed stellar

properties, how closely the emulator-generated spectrum

matches the ab-initio calculation; and (b) how effectively

models trained on one domain of synthetic spectra can

be transferred to other domains (whether between dif-

ferent theoretical frameworks, e.g., 1D LTE versus 3D

non-LTE, or from synthetic spectra to empirical obser-

vations).

These considerations have driven exploration of vari-

ous architectures. Simpler models such as ridge regres-

sion and fully connected networks often suffer from lower

emulation accuracy at a given training size, largely due

to inadequate inductive bias, which is the set of assump-

tions that a learning algorithm uses to help to generalize

its prediction for unseen data. In our previous study, we

proposed harnessing Transformer-based models Różański

et al. (2024) because of their appropriate inductive bias

for capturing long-range information in spectra. This ca-

pability is particularly valuable when spectral lines from

the same atomic species can be widely separated in wave-

length or pixel space.

We demonstrated that such Transformer models have

the advantage of continued performance improvement

with larger training sets and number of training steps,

without encountering the performance plateaus common

to simpler architectures. The observation of an appar-

ent continuous improvement law, where a loss metric im-

proves as a neural network’s model size (measured by

the number of free parameters or the compute required

for a single evaluation), training duration, and training

dataset size all increase, led to what is now widely known

in machine learning as scaling laws (see Hestness et al.

2017, and references therein).

The idea of scaling laws in large language models has

been thoroughly studied in Kaplan et al. (2020); Hoff-

mann et al. (2022), demonstrating that when model size,

training length, and dataset size are scaled together in a

linear fashion on a log scale, the validation loss contin-

ues to improve predictably over many orders of magni-

tude. This finding inspired the development of increas-

ingly large language models. The success of scaling laws

has been a critical cornerstone in demonstrating that

with larger models (and computational resources) one

could continue to improve machine learning models, not

only solving the emulation accuracy problem but also

simultaneously allowing greater generalizability for do-

main transfer (Brown et al. 2020; Zhang et al. 2024) that

have been the motivation of larger models.

The concept of scaling laws has also begun to be ex-

plored in astronomical research, including applications to

stellar light curves (Pan et al. 2024) and galaxy images

(Walmsley et al. 2024; Smith et al. 2024). Demonstrat-

ing the validity of scaling laws represents a critical step

toward developing deep learning foundational models for

astronomy. These foundational models are characterized

by their broad generalization and adaptability at a given

model size, similar to how large language models, while

primarily trained on English text, can generalize to re-

spond in other languages with relatively limited exam-

ples, demonstrating effective domain transfer capabili-

ties.

While the aforementioned studies have established the

existence of scaling laws in astronomical applications,

the approach to training these models has often lacked

systematic methodology. Training deep learning foun-

dational models requires careful understanding of how

to scale up architectures while maintaining optimal hy-

perparameters. Hyperparameter choices, such as learn-

ing rate, can dramatically influence model performance.

Therefore, knowing how to appropriately adjust these

parameters according to model size, without resorting to

expensive hyperparameter searches, represents a key step

toward developing any foundational model, a challenge

we aim to address specifically for stellar spectra in this

work.

In this paper, we investigate scaling laws for the em-

ulation of stellar spectra. We examine scaling with re-

spect to training dataset size, neural network size, and

training duration, thereby establishing a foundation for

spectroscopic foundational models. This paper proceeds

as follows: Section 2 presents the TransformerPayne ar-

chitecture, the training dataset, the Maximum Update

Parameterization (µP), and neural scaling laws. Section

3 describes the conducted experiments, including hyper-

parameter optimization, validation of µP, optimization of

TransformerPayne architectural parameters, and experi-

ments establishing scaling laws. Results are discussed in

Section 4, and conclusions are provided in Section 5.

2. METHODS

The goal of this study is to understand how emulator

quality evolves as we scale to larger training datasets,

larger neural networks, and longer training durations.

We formulate the emulation problem following our pre-

vious work on the TransformerPayne model (Różański

et al. 2024).

In these models, we construct a function fθ(¼,p) which

approximates exact normalized flux, where ¼ represents

the wavelength and p denotes a collection of stellar prop-

erties, including stellar atmosphere parameters, such as

the effective temperature (Teff) or the logarithm of sur-

face gravity (log g), and elemental abundances. In this
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work, the parameter vector p consists of one hundred pa-

rameters, including effective temperature, surface grav-

ity, and elemental abundances spanning from helium to

einsteinium. This function is implemented as a neural

network parameterized by free parameters ¹, which are

optimized to make fθ(¼,p) an accurate approximation

of spectra across the domain of interest.

TransformerPayne is a neural network constructed us-

ing several computational blocks. Two types of embed-

ding modules, Sinusoidal Embedding and Multilayer Per-

ceptron (MLP) Embedding, process the inputs to em-

bed them into higher-dimensional spaces. These em-

beddings are then consecutively processed by N Trans-

formerBlocks. The first TransformerBlock takes the nor-

malized embedding of the spectrum parameters, pemb,

together with the sinusoidal embedding, wemb, of the

input wavelength. All remaining TransformerBlocks re-

place the input wemb with the output from the previous

TransformerBlock, denoted as ri. The output of the last

TransformerBlock is processed by an MLP head, which

predicts a normalized flux (a scalar value) based on the

final rN.

In contrast to the original paper, we incorporate a sim-

plified residual connection scheme that adheres to the

Pre-LN placement (Xiong et al. 2020). This modifica-

tion does not significantly impact the model’s quality

while aligning it more closely with Transformer archi-

tecture variants explored in the study introducing Max-

imum Update Parametrization (for details, see Sec. 2.5),

a set of hyperparameter optimization approaches that

have shown promise in scaling up large language models.

For a comprehensive overview, we refer readers to the

original TransformerPayne paper. Nonetheless, we pro-

vide a concise outline of the architecture below.

2.1. MLP and Sinusoidal Embedding

The inputs to TransformerPayne are ¼, a scalar repre-

senting the wavelength, and p, a vector of parameters.

Since Transformer architectures were originally designed

for language models that process discrete tokens (vector

representations of words or subwords), adapting them to

continuous astronomical data requires appropriate em-

bedding strategies. For spectral modeling, there is no

obvious natural tokenization, so we must transform both

wavelength and stellar parameters into vector represen-

tations that Transformer models can effectively process

and learn to correlate.

The wavelength is encoded using sinusoidal embedding

given by the equation:

wemb,i = sin(Éi¼), i = 1, . . . , d. (1)

where Éi follow a geometric progression covering a man-

Figure 1. Architecture diagram of the TransformerPayne variant

implemented for our scaling experiments. The model processes two

inputs: wavelength (lower left) and spectrum parameters (lower

right). These inputs are transformed through Sinusoidal Embed-

ding and MLP Embedding respectively, then normalized via RM-

SNorm. The embedded representations flow through N sequen-

tial Transformer blocks (two are explicitly shown here for clarity),

each containing Feed Forward networks and Multi-Head Attention

mechanisms with residual connections. Each block processes out-

puts from the previous block and maintains the information flow

through normalization layers. The final representation is processed

by an MLP Head to predict the normalized flux. This architecture

incorporates the Pre-LN placement scheme for residual connec-

tions, which facilitates stable training dynamics when scaling to

larger model configurations.
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ually adjusted range of circular frequencies, from Émin

to Émax, and index i from 1 to d. We choose frequencies

that span from those corresponding to broad spectral

features down to fractions of the narrowest line profiles,

ensuring comprehensive coverage of spectral characteris-

tics at multiple scales.

While the wavelength is embedded into a sequence con-

sisting of a single vector, the spectral parameters vector

is embedded into a sequence of t tokens. This embedding

is performed using an MLP Embedding, which is a simple

two-layer perceptron. The output vector is then reshaped

into a matrix with dimensions t×d and followed by RM-

SNorm layer for normalization. The function computed

by the MLP Embedding is:

f(pemb) = ³EW
E
2 gelu

(

WE
1 p

)

, (2)

where p represents a vector of spectral parameters, WE
1

and WE
2 are weight matrices with shapes dp × d and

d × (t · d) respectively, gelu(x) is an element-wise non-

linearity function, and ³E is a non-trainable, scalar hy-

perparameter.

2.2. Transformer Block

The core processing units of our architecture are the

Transformer Blocks, which integrate information be-

tween wavelength representation and stellar parameter

embeddings. Each Transformer Block consists of two

main modules: Multi-Head Attention (MHA) and Feed-

Forward (FF). Unlike the original TransformerPayne, our

implementation employs a Pre-LN residual connection

scheme (Xiong et al. 2020), which places the normaliza-

tion before each sub-module rather than after, facilitat-

ing more stable training dynamics especially in deeper

networks.

The Transformer Block is repeated N times in se-

quence, with each block building upon the representa-

tions learned by the previous one. Each block receives

three inputs: a query, a key, and a value. The key and

value inputs are always the same collection of tokens en-

coding the parameters, pemb. The query input for the

first block is the wavelength embedding, wemb, and for

subsequent blocks, the query is the output of the previ-

ous block, ri. This recursive structure allows the model

to progressively refine its understanding of the relation-

ship between stellar parameters and spectral features.

See Fig. 1 for a visual representation of this architecture.

Each input to the Attention block is treated as

a sequence of tokens represented as a matrix in

R
(sequence length)×d. In our case:

• The wavelength embedding is a single-token se-

quence: wemb ∈ R
1×d.

• The parameter tokens are pemb ∈ R
t×d.

Hence, the key/value each have length t, while the query

has length 1. This asymmetry reflects the core operation

of our model: using the wavelength (query) to interro-

gate the stellar parameters (key/value) to determine the

appropriate flux at that wavelength.

RMSNorm.— Before each sub-module (MHA or FF), we

apply RMSNorm to normalize its input. Normalization is

crucial for maintaining stable activations throughout the

network and preventing internal covariate shift during

training.

We are not using any trainable scale or bias param-

eters, so the function computed by the RMSNorm of a

vector x ∈ R
d is simply:

RMSNorm(x) =
x

√

1
d

∑d
i=1 x

2
i + ϵ

, (3)

where ϵ is a small constant (e.g., 10−6) for numerical

stability. When applied to a sequence of tokens, like

pemb ∈ R
t×d, this normalization is applied to every token

individually, preserving the relative information within

each token while standardizing the overall scale.

Multi-Head Attention.— The Multi-Head Attention

(MHA) mechanism is fundamental to the Transformer

architecture, allowing the model to attend to different

aspects of the stellar parameters simultaneously when

generating spectral predictions. It serves as the primary

mechanism for capturing relationships between wave-

length positions and the various stellar parameters that

influence the flux at those positions.

We first linearly project the RMS-normalized inputs

into query, key, and value spaces.

Q = RMSNorm(x)WQ, (4)

K = RMSNorm(pemb)W
K , (5)

V = RMSNorm(pemb)W
V , (6)

where x ∈ R
1×d is eitherwemb (for the first block) or ri−1

(for subsequent blocks). The matrices WQ,WK ,WV ∈
R

d×d. We split Q,K,V into h heads, each of last dimen-

sion equal dhead = d/h. This multi-head approach allows

different attention heads to specialize in detecting differ-

ent types of spectral features or parameter interactions.

The dot-product attention for head i is:

Zi = softmax
(³attQiK

T

i

d/h

)

Vi, i = 1, . . . , h, (7)

where shape of Qi is (1 × dhead) and Ki shape is (t ×
dhead), and ³att is a scalar non-trainable hyperparameter.

Since there is only one query token, the attention map

has a single row.

This attention mechanism effectively allows the wave-

length representation to selectively focus on relevant as-

pects of the stellar parameters that determine the flux at
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that wavelength. Then the head outputs Zi ∈ R
1×dhead

are concatenated and linearly transformed:

MHA(x,pemb) =
[

Z1, . . . ,Zh

]

WO, (8)

with WO ∈ R
d×d.

Feed-Forward Network.— After MHA, we again apply

RMSNorm and then feed the result into a two-layer

network. This Feed-Forward component provides addi-

tional non-linear processing capacity to each Transformer

block, allowing it to model complex transformations be-

yond what attention alone can capture:

FF(u) = WFF
2 GELU

(

WFF
1 u

)

, (9)

where WFF
1 ∈ R

d×dff and WFF
2 ∈ R

dff×d. In all our ex-

periments, we set dff = 4 d, which provides a sufficiently

expanded intermediate representation for complex func-

tion approximation.

After the last Transformer block, the vector is pro-

cessed with a two-layer network to predict the normal-

ized flux. This final projection transforms the learned

representation into the target output space:

normalized flux = WH
2 GELU

(

WH
1 RMSNorm(rN)

)

,

(10)

where WH
1 ∈ R

d×d and WH
2 ∈ R

1×d.

Each Transformer Block composes these sub-layers via

Pre-LN residual connections, which help maintain gradi-

ent flow during training, especially in deeper networks:

ri = x + MHA
(

RMSNorm(x), RMSNorm(pemb)
)

,

ri = ri + FF
(

RMSNorm(ri)
)

,
(11)

where x =

{

wemb, i = 1

ri−1, i > 1
.

We repeat this block N times, creating a deep ar-

chitecture capable of modeling the complex relation-

ships between stellar parameters and spectral features

across different wavelengths. The final single-token out-

put rN ∈ R
1×d is the transformed wavelength embed-

ding, conditioned on the parameter tokens pemb, which

contains all the information needed to predict the flux at

the given wavelength.

2.3. Dimensions of Scaling Laws

To systematically investigate how emulator perfor-

mance improves with increased resources, we consider

three dimensions of scaling: the size of the training data,

the size of the neural network, and the computational

resources used for training. In this section, we elaborate

on how each of these dimensions is quantified and their

relationships in our experimental framework.

First, we define the size of the training data as the num-

ber of distinct spectra, that is, spectra computed using

different sets of atmospheric parameters. These training

samples are drawn from a uniform distribution spanning

the entire parameter space of interest, see Sec. 2.4 for

exact ranges. This approach ensures comprehensive cov-

erage of the stellar parameter domain being modeled.

The other two dimensions of scaling laws are the num-

ber of free parameters (neural network parameters opti-

mized during training) and the total compute used for

training. The number of free parameters directly re-

flects the model’s capacity to represent complex relation-

ships between stellar parameters and spectral features. It

scales primarily with the model’s width (embedding di-

mension d), depth (number of Transformer blocks N),

and the number of tokens used to encode the parameters

(t).

The computational cost, measured in floating-point op-

erations (FLOPs), depends on these same architectural

parameters, but also incorporates training-specific fac-

tors: the number of predicted wavelengths (Nflux), the

batch size (Nbatch), and the number of training steps

(S). Together, these determine the total computational

resources required to train a model to convergence. For

additional details on parameter counts and FLOPs cal-

culations for chosen modules, see AppendixA.

A summary of the number of free parameters and

FLOPs for each component of our architecture is pro-

vided in Table 1, from which it follows that the exact

number of free parameters, P , equals:

P = (t+ 12N + 1)d2 + (dp + 1)d. (12)

The leading terms of this equation are (t+12N)d2, so

the hyperparameter primarily driving the number of free

parameters is the dimensionality d. Here, t represents

the number of parameter tokens, N is the number of

Transformer blocks, and dp is the dimension of the input

parameter vector. This quadratic relationship between

model dimension and parameter count is characteristic

of Transformer architectures and plays a crucial role in

scaling behavior.

The approximate formula for the computational cost

of the TransformerPayne forward pass (i.e., evaluation

of neural network), as derived from Table 1, is:

Evaluation FLOPs =
(

2t+ 20NNflux + 4Nt+ 2Nflux

)

d2

+
[

(1 + FLOP(sin)) + 5 + 6N
]

Nfluxd

+
[

3 + 4NNflux

]

td+ 2dpd.

(13)

Here, Nflux represents the number of wavelength points

for which the flux is predicted simultaneously, which af-

fects vectorization efficiency. We note that this is only

an approximate expression, as it does not include the

cost of evaluating activation functions or other minor



6

Table 1

Summary of free parameters and floating-point operations in Transformer Payne

Operation Parameters FLOPs

Embedding Block

Sinusoidal Embedding, Eq. 1 0 (1 + FLOP(sin))Nflux d

MLP Embedding, Eq. 2 dp d + t d2 2 dp d + 2 t d2

RMSNorm, Eq. 3 0 3 t d

Transformer Block ×N

Q/O Linear Layer, Eq. 4, 8 N × 2 d2 4N Nflux d2

K/V Linear Layer, Eq. 5, 6 N × 2 d2 4N t d2

Multiplicative Attention, Eq. 7 0 4N Nflux t d

RMSNorm, Eq. 4, 5, 6 0 6N Nflux d

FeedForward, Eq. 9 N × 8 d2 16N Nflux d2

Prediction Block

RMSNorm, Eq. 10 0 3Nflux d

MLP Head, Eq. 10 d2 + d 2Nflux

(

d2 + d
)

The FLOPs shown in the table are calculated for the vectorized version of TransformerPayne, which predicts a vector of

normalized flux given a vector of wavelengths, λ ∈ R
Nflux . For the non-vectorized version of TransformerPayne, it is sufficient

to substitute Nflux = 1. Usually, Nflux > d > t, and dp ranges from 5 to about 100. The leading terms in the FLOPs count are

therefore those of order d
2
· Nflux. The parameter count is dominated by the term quadratic in d. FLOP(sin) represents the

cost of a sine function evaluation, which is typically on the negligible order of tens of FLOPs.

costs due to multiplicative factors and residual connec-

tions. However, these costs are largely negligible com-

pared to the leading terms. FLOP(sin) represents the

cost of a single sin function evaluation, which is on the

order of tens of FLOPs (for our calculations, we assumed

FLOP(sin) = 10).

To estimate the total computational cost of training,

which is the key metric considered in scaling laws, the

cost of a forward pass per single spectrum needs to be

multiplied by a factor of 3. This factor accounts for the

fact that each training step includes one forward pass and

one backward pass for gradient evaluation, with gradient

evaluation typically costing twice as much as the forward

pass, a standard approximation in the literature (e.g. Ka-

plan et al. 2020). Additionally, this must be multiplied

by the batch size and the number of training steps. The

total training FLOPs, up to the leading terms, can be

estimated using the expression:

Total training FLOPs ≈ 3SNbatch × 20NNfluxd
2. (14)

This formulation allows us to systematically explore

how emulator performance scales with increasing model

size, training data, and computational resources in our

experimental investigations.

2.4. Spectral Grid, Training and Metrics

The experiments in this work utilize one of the syn-

thetic datasets of 100,000 normalized stellar spectra

introduced in Różański et al. (2024). These spectra

were generated using plane-parallel Local Thermody-

namic Equilibrium (LTE) atmospheric models (Lester

and Neilson 2008; Kurucz 1979, 2005). The wavelength

range spans from 4000 to 5000 Å at a resolution of

R = 100, 000, sampled at 22,315 wavelengths spaced

equidistantly. The grid varies the effective temperature,

Teff, from 4000K to 6000K and the surface gravity from

4 to 5. The microturbulence velocity remains fixed at

À = 0km/s. Helium abundances vary between none and

twice the solar value (assuming 0.0782 in the Sun), while

the abundances of other elements (atomic numbers Z = 3

to Z = 99) are sampled uniformly between −2 and 1 dex

relative to the solar abundance. It is important to note

that these spectra are normalized using the theoretical

continuum, resulting in flux values predominantly near 1

(with absorption features appearing as downward devia-

tions below 1). Consequently, all MSE values reported in

this study are with respect to this normalized scale, mak-

ing them dimensionless quantities that directly represent

fractional deviations in the normalized flux.

We adopt this dataset for convenience, but emphasize

that our primary focus is on investigating the scaling

properties of the TransformerPayne model. By scaling

properties, we mean how model performance systemati-

cally improves as we increase model size, training data,

and computational resources, relationships that would

hold qualitatively even with different synthetic or empir-

ical models, although the exact numerical values might

differ.

We note that these spectra are normalized using the

theoretical continuum, resulting in flux values predom-

inantly near 1 (with absorption features appearing as

downward deviations below 1). Consequently, all MSE

values reported in this study are with respect to this nor-

malized scale, making them dimensionless quantities that

directly represent fractional deviations in the normalized

flux.

We perform stochastic gradient-based optimization
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using the AdamW optimizer (Kingma and Ba 2014;

Loshchilov and Hutter 2017), which incorporates adap-

tive learning rates, momentum-based updates, and de-

coupled weight decay regularization. All experiments

were conducted with a batch size of Nbatch = 32 spectra,

each containing Nflux = 1024 flux values linearly inter-

polated at randomly sampled wavelengths.

To control the global learning rate, denoted ¸, through-

out training, we use the Warmup-Stable-Decay (WSD)

scheduler (see, e.g., Hägele et al. (2024), and references

therein), which consists of three phases: (1) a linear

warm-up from 0 to the maximum learning rate over the

first Nwarm-up steps, (2) a stable phase where training

continues at the maximum learning rate, and (3) a linear

cool-down phase that decreases the learning rate to zero

over Ncool-down steps.

The WSD schedule is particularly useful for scaling

law experiments, as it allows the warm-up phase to be

fixed while deferring the cool-down phase until later in

training. This flexibility significantly reduces the time

required to test different training durations without in-

curring substantial computational overhead. In our ini-

tial tests, we verified that WSD performs at least as well

as the linear warm-up followed by cosine decay sched-

ule used in the TransformerPayne paper (Różański et al.

2024), making it a suitable choice for our study. Ad-

ditionally to global learning rate ¸, we also tuned an

embedding’s learning rate scaling factor ¸E.

An important factor in training dynamics, alongside

the learning rate, is the scale of weight initialization in

the network. For all matrix initializations, we used a

truncated Gaussian distribution (truncated at 2Ã) with

a mean of 0 and a standard deviation Ã. Each matrix was

initialized independently and proportionally to 1/
√
din,

with a globally tuned initialization scale Ã.

As is standard practice for regression problems, we

used the Mean Squared Error (MSE) as our loss func-

tion. It quantifies the average squared difference between

the predicted and true normalized fluxes across all wave-

lengths and spectra:

MSE =
1

N

N
∑

i=1

1

Nflux

Nflux
∑

j=1

(yij − fθ(¼ij ,pi))
2
, (15)

where N represents the number of spectra (during train-

ing, N = Nbatch, the batch size; during validation,

N = 1024, the size of our validation set), Nflux is the

number of flux points per spectrum (Nflux = 1024), ¼ij is

the wavelength, pi represents the stellar parameters, and

yij is the normalized flux for the j-th wavelength of the i-

th spectrum. The function fθ(¼ij ,pi) represents the neu-

ral network’s prediction, parameterized by ¹. Note that

MSE directly quantifies the squared flux error; therefore,

if an estimate of the typical flux uncertainty (standard

deviation) is desired, one should take the square root of

MSE.

To evaluate model generalization and avoid overfitting,

we maintained a validation dataset of 1024 spectra drawn

from the same parameter domain as the training grid but

not used during training. We computed the MSE on this

validation dataset at predefined checkpoints throughout

the training process. For consistent and fair compar-

isons across different experimental configurations, we re-

port the lowest validation MSE recorded during the en-

tire training process for each model. This approach en-

sures that we capture each model’s optimal performance,

regardless of when it occurs during training, while still

measuring generalization to unseen data. Unless stated

otherwise, all the MSE losses of the scaling law refer to

the validation set, not the training set.

2.5. Maximum Update Parametrization

As we move toward developing spectral foundational

models with billions of parameters, the ability to train

efficiently at scale becomes crucial. Conventional ap-

proaches like grid search for optimal training configu-

rations become prohibitively expensive and wasteful at

these scales. What is needed instead is a systematic, re-

liable training protocol that consistently produces high-

quality models without extensive tuning, precisely the

goal of our exploration in this study.

Scaling the size of a neural network inherently involves

two interconnected aspects. The first concerns the choice

of architectural hyperparameter configurations for a fixed

model size. This means determining how to allocate pa-

rameters when increasing model capacity, whether to add

more Transformer blocks (increasing depth), expand the

embedding dimension (increasing width), add more at-

tention heads, or some combination of these approaches.

In the case of TransformerPayne, these key hyperparame-

ters, as mentioned in Sec. 2.3, include the dimensionality,

d; the number of Transformer blocks, N ; the number of

tokens used to encode the parameters, t; and the number

of heads, h.

The specific choice of these hyperparameters directly

impacts the final performance of the model. In princi-

ple, one could scale by increasing only a single hyperpa-

rameter (e.g., only making the model deeper by adding

more Transformer blocks while keeping width constant).

However, this approach is suboptimal and does not yield

realistic scaling laws. Therefore, a challenge is to under-

stand how different hyperparameter choices affect model

performance given a specific model size. A concrete ex-

ample of this is determining how to balance depth (N)

versus width (d) when scaling the model.

The second aspect involves tuning the hyperparame-

ters related to the training process to ensure stable and
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efficient learning. Key parameters include the maximum

learning rate, the scale of random weight initialization,

and learning rates for specific network components. Im-

proper tuning can lead to instability or ineffective weight

updates, potentially masking improvements from scal-

ing. This issue becomes particularly critical at larger

model sizes, where exhaustive hyperparameter searches

are computationally prohibitive due to the high cost of

training multiple large-scale networks.

This challenge of optimizing hyperparameters effi-

ciently at extreme scales underscores the need for sys-

tematic strategies that reduce the cost of hyperparameter

tuning. A key development in this direction, originating

in the context of large language models, has emerged

from studies on the Maximum Update Parametrization

(µP or µ-Parametrization), which provides a principled

framework (Yang et al. 2022, 2023a). This theoretical

framework demonstrates that when networks are scaled

appropriately, certain hyperparameters remain stable

across orders of magnitude of model sizes, enabling ef-

ficient transfer of tuning insights from smaller models to

much larger ones.

The insight is that for meaningful evolution of hidden

representations in neural networks, the spectral norm of

the network weights (∥W∥∗) and their updates (∥∆W∥∗)
should remain on the order of

√

m/n, where W ∈ R
m×n

(Yang et al. 2023b). This ensures that hidden features

maintain their l2-norms while their updates evolve pro-

portionally to their magnitudes, preventing both the van-

ishing and exploding of signals through the network dur-

ing training. When A ∈ R
m×n, the spectral norm is

defined by:

∥A∥∗ := max
v∈Rn\{0}

∥Av∥2
∥v∥2

. (16)

While this theoretical perspective can be implemented

through direct normalization of matrix norms during

training, a more practical approach, as demonstrated in

Yang et al. (2023b), involves appropriate initialization of

weight scales for individual matrices in the neural net-

work and corresponding adjustment of learning rates as

the network’s dimensionality changes. This is the ap-

proach developed in Yang et al. (2022) and the method-

ology we have implemented for the TransformerPayne

scaling experiments presented in this work (see also Lin-

gle 2024; Blake et al. 2024, for practical guidance).

To implement µP in our models, we systematically

rescale the initialization scale and learning rate for in-

dividual matrices as the width of TransformerPayne, d,

increases. When training neural networks with the Adam

optimizer, the initialization scale Ã and learning rate ¸

for any matrix W ∈ R
m×n should follow these rescaling

relationships:

Ã ∝ 1√
n
min

[

1,

√

m

n

]

(17)

¸ ∝ 1

n
, (18)

where n corresponds to the dimension of the input to the

linear layerW, whilem represents the output dimension.

In our implementation of TransformerPayne, we applied

these appropriate scaling factors to all matrices through-

out the architecture, ensuring consistent behavior across

different model sizes.

2.6. Neural Scaling Laws

Neural scaling laws provide a framework for under-

standing how model performance systematically im-

proves with increased resources. In the context of stellar

spectra emulation, these laws characterize the relation-

ship between validation loss and three critical scaling di-

mensions: model size (P ), training dataset size (D), and

computational resources used for training (C). By train-

ing TransformerPayne networks of various sizes on spec-

tral grids of different sizes, we can empirically determine

whether these relationships follow simple scaling laws,

enabling us to forecast performance at scales beyond our

current experiments.

Following the convention established by Kaplan et al.

(2020), we consider three primary scaling regimes, each

corresponding to a different limiting factor:

1. Parameter-limited regime: When the number

of free parameters is the limiting factor (assuming

abundant data and compute):

L(P ) =

(

Pc

P

)αP

, (19)

2. Data-limited regime: When the size of the train-

ing dataset is the bottleneck (assuming sufficiently

large models regularized using early stopping):

L(D) =

(

Dc

D

)αD

, (20)

3. Compute-limited regime: When computational

resources are the limiting factor (assuming a large

dataset, an optimally-sized model, and a small

fixed batch size):

L(C) =

(

Cc

C

)αC

, (21)

For the compute-limited regime, we note that our in-

vestigation is slightly constrained due to computational

limitations. Since training with large batch sizes was not

feasible in our experimental setup, we could not precisely
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investigate the critical batch size limit, the batch size at

which training achieves an optimal balance between com-

putational efficiency and optimization steps. For an in-

depth discussion of critical batch size, we refer readers to

McCandlish et al. (2018). This limitation, however, does

not undermine the broader relevance of our findings.

In addition to analyzing the three primary scaling

regimes, we extensively quantified the last one, the

compute-limited regime, due to its practical significance.

Specifically, we quantified how model size and the num-

ber of processed spectra scale along the frontier of

compute-efficient models. We define a frontier model

as one that achieves the best MSE for a given train-

ing budget, effectively tracing a Pareto-optimal curve in

the space of model size and training set size. A Pareto-

optimal curve represents configurations where no im-

provement can be made in one dimension (e.g., model

accuracy) without sacrificing performance in another di-

mension (e.g., computational cost). This approach en-

abled us to derive two additional power-law scaling re-

lations describing how model size and the number of

training spectra should grow when following the compute

frontier, shedding further light on the interplay among

data, model parameters, and total training cost.

3. RESULTS

Establishing robust scaling laws for stellar spectra em-

ulation with TransformerPayne required careful opti-

mization of hyperparameters and refinement of training

strategies to prevent instabilities that could obscure the

underlying empirical trends. Our investigation followed

a systematic approach: first, we fine-tuned key training-

related hyperparameters using smaller proxy models to

determine optimal configurations efficiently. We then

validated our µ-Parametrization implementation to en-

sure stability across different scaling regimes. With these

optimal training parameters in place, as we will demon-

strate consistently across all settings, we proceeded to

train a range of models varying in size, training dura-

tion, and training set size. This exploration allowed us

to characterize the full scaling behavior of Transformer-

Payne across multiple dimensions of interest.

3.1. Hyperparameter Optimization

We began by optimizing training-related hyperparam-

eters for TransformerPayne, specifically the maximum

learning rate (¸), the global initialization scale (Ã), the

embedding learning rate scale factor (¸E), and the em-

bedding and attention scaling factors (³E and ³att).

These parameters control different aspects of training:

¸ determines the step size during gradient descent, Ã

affects the initial distribution of network weights, ¸E ad-

justs the relative learning rate for embedding parameters,

while ³E and ³att scale the outputs of the embedding and

attention layers, respectively.

To determine optimal values, we trained 100 small-

scale TransformerPayne models (with d = 128, N = 8,

t = 16, and h = 4) on a full training dataset consisting

of 100,000 spectra. Each model was trained for 20,000

steps, including 2,000 warm-up steps followed by a co-

sine decay to zero. Hyperparameter values were sampled

uniformly in log-space: the learning rate ¸ was drawn

from 10−4 to 10−1, and all other hyperparameters were

drawn from 0.1 to 10.

Figure 2 shows a parallel coordinates plot summariz-

ing the results of this hyperparameter search for the small

proxy model. In this visualization, each colored line rep-

resents one training run, with its path across the six

axes showing the specific combination of hyperparam-

eter values and the resulting validation MSE. The five

best-performing runs (those with lowest MSE) are high-

lighted in black. The colors of the lines appear to cor-

respond to the MSE values, with cooler colors (purples

and blues) representing lower MSE values and warmer

colors (yellows) representing higher MSE values. This

representation allows us to identify patterns and correla-

tions between different hyperparameters and model per-

formance.

The plot shows that the learning rate (¸) and global

initialization scale (Ã) appear well-constrained among

the best-performing models, with successful configura-

tions clustering in relatively narrow ranges. The re-

maining three hyperparameters (¸E, ³E, and ³att) show

greater variability among high-performing models, sug-

gesting they are less critical for optimization. Interest-

ingly, Fig. 2 suggests an anti-correlation between em-

bedding and attention scaling factors, indicating that

as one increases, the other typically decreases in high-

performing models. This suggests a compensatory rela-

tionship where the relative balance between these factors

matters more than their absolute values.

This optimization process is a crucial first step in our

scaling law investigation. By identifying optimal train-

ing hyperparameters on a small proxy model, we es-

tablish a baseline configuration that, according to µ-

Parametrization theory, should remain effective as we

scale up model size in a principled manner. This ap-

proach avoids the prohibitive computational cost of re-

peating hyperparameter searches for each model scale,

allowing us to focus on investigating how performance

scales with model size, training data, and compute while

maintaining optimal training dynamics.

After evaluating all runs, we identified the three best-

performing sets of hyperparameters and computed their
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Figure 2. Parallel coordinates plot summarizing hyperparameter optimization results for the small proxy model. Each line represents one

of the 100 training runs, illustrating how different hyperparameter combinations affect model performance. The five best-performing runs

are highlighted in black. The displayed hyperparameters are the learning rate (η; sampled from 10−4 to 10−1), the global initialization

scale (σ), the embedding learning rate scale factor (ηE), and the embedding and attention scaling factors (αE and αatt), each sampled from

the range [0.1, 10]. All axes are shown on a logarithmic scale and normalized between 0 and 1. The lines are colored according to their

MSE values, with cooler colors (purples and blues) representing lower MSE values and warmer colors (yellows) representing higher MSE

values.

Figure 3. µP and Standard Parametrization exhibit different behaviors when scaling model width. Each plot shows validation loss (MSE)

on the y-axis versus learning rate on the x-axis for models of varying widths (64, 128, 256, and 512 dimensions). Standard Parametrization

(left panel) refers to conventional weight initialization without dimension-dependent scaling, while µP (right panel) applies specific scaling

factors to weight initialization and learning rates based on matrix dimensions. The left panel shows that, under Standard Parametrization,

the optimal learning rate (indicated by the minimum point of each curve) decreases as width increases, with the optimal learning rate

shifting from approximately 3 × 10−3 for width 64 to 4 × 10−4 for width 512, a factor of approximately 3.2 decrease. The right panel

highlights the stabilizing effect of µP on the optimal learning rate, with all model widths achieving their best performance at approximately

2× 10−3, demonstrating that our µP implementation successfully maintains consistent training dynamics across models of different scales.

Additionally, note that wider models (higher dimensions) generally achieve lower validation loss values, reflecting increased model capacity.

geometric mean to derive our final optimized values.

The resulting hyperparameters were approximately as

follows: learning rate ¸ = 0.0018, global initialization

scale Ã = 0.3890, embedding learning rate scaling fac-

tor ¸emb = 0.2630, embedding scaling factor ³E = 1.230,

and attention scaling factor ³att = 0.3236. In the follow-

ing experiments, these hyperparameters are fixed to the

optimized values specified above, unless stated otherwise.

3.2. µP Scaling Validation Tests

As the next step, we evaluated our implementa-

tion of µP by comparing it with the default Standard

Parametrization and examining how the minimum val-

idation loss varies across different learning rates. We

trained a variety of models, each varying along a single

dimension (i.e., width, depth, number of embedding to-

kens, or head dimensionality), while keeping all other hy-

perparameters fixed to match the reference proxy model

described in the previous section (d = 128, N = 8,

t = 16, and h = 4).

This approach allows us to assess how effectively the

optimal learning rate remains stable across these archi-

tectural parameters, which is particularly relevant when

scaling model size. For all experiments, we used a cosine
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Figure 4. Stability of the optimal learning rate across different architectural dimensions: depth (number of Transformer blocks, left),

number of parameter tokens (middle), and head dimensionality (number of attention heads, right). Each plot shows validation loss (MSE)

versus learning rate for models with varying values of a single architectural parameter while keeping other parameters fixed. The optimal

learning rate is indicated by the minimum point of each curve. Our µP implementation successfully maintains consistent optimal learning

rates when varying the number of tokens and head dimensionality, with all curves reaching their minima at similar learning rate values

(approximately 2 × 10−3). For depth scaling (left panel), stability is maintained within approximately 0.5 to 2 times the proxy model’s

depth (8 layers), beyond which some retuning becomes beneficial as curves for very shallow (1-2 layers) and very deep models (16-32 layers)

show shifted optima. This confirms that hyperparameters optimized on our proxy model transfer well across most architectural variations,

with depth requiring more careful consideration.

learning-rate schedule consisting of a 5,000-step warm-up

followed by a cosine decay over 45,000 steps.

Figure 3 shows the results obtained from scaling the

model width (embedding dimension d). The comparison

reveals a crucial difference between the two parameteri-

zation approaches: under Standard Parametrization (left

panel), which uses the conventional approach of initializ-

ing weights with a fixed variance regardless of layer size,

the optimal learning rate shifts leftward (decreases) as

model width increases, requiring recalibration for each

model size. In contrast, with µP (right panel), which

scales initialization and learning rates according to layer

dimensions, the optimal learning rate remains relatively

stable across different widths, with the loss curves for

various model sizes reaching their minima at approxi-

mately 2× 10−3, regardless of whether the model width

is 64 or 512.

In Fig. 4, we present results for several other archi-

tectural hyperparameters (depth, number of tokens, and

head dimensionality) and examine their impact on the

optimal learning rate under µP. The results demonstrate

that µP successfully stabilizes the optimal learning rate

across multiple architectural dimensions. Varying the

number of tokens (middle panel) and head dimensional-

ity (right panel) had negligible influence on the optimal

learning rate, indicating that hyperparameters optimized

on our proxy model transfer excellently across models

with different token counts and attention head configu-

rations.

For depth scaling (left panel), µP maintains stability

within a range of approximately 0.5 to 2 times that of

the proxy model used for hyperparameter optimization.

While this demonstrates good transferability within a

moderate depth range, it suggests that for more extreme

depth variations, some retuning of hyperparameters may

be beneficial. This observation aligns with previous re-

search indicating that depth scaling presents unique chal-

lenges compared to width scaling in Transformer archi-

tectures.

3.3. Architectural Parameter Optimization for

Transformer Scaling

Having established the effectiveness of our µP im-

plementation for stabilizing learning rates across model

widths, we next sought to determine the optimal alloca-

tion of parameters across different architectural dimen-

sions. This investigation is crucial for developing efficient

scaling strategies, as it reveals which components con-

tribute most effectively to model performance as total

parameter count increases.

We conducted an extensive grid search to determine

how best to scale width (d), the number of layers (N),

and the number of tokens (t) for a given number of pa-

rameters in a TransformerPayne model. When increasing

the width, we kept the head dimension fixed at 32, re-

sulting in the number of heads h = d/32. As shown in

the left panel of Fig. 4, head dimensionality did not sig-

nificantly impact the minimum training loss within the

explored range. Since preliminary experiments indicated

that models with larger depths frequently exhibit signs

of instability, we introduced an additional instability cri-

terion: a model was flagged as unstable if its validation
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Figure 5. Validation loss (MSE) of trained models across varying depths (N), widths (dimension d), and embedding token counts (t).

Filled markers (167 models) indicate stable models with sufficient depth (N ≥ 4) that converged during training, whereas open markers

(195 models) indicate models either too shallow (N < 4), unstable, or both (96 shallow and 54 unstable). Stable models (filled markers)

align along a narrow region, indicating that total parameter count is a strong predictor of model performance, while the specific depth-

to-width ratio has less impact. Lines illustrate the effect of independently varying a single parameter from a reference model with shape

(d = 64, N = 8, t = 2). Increasing model width consistently improves performance until signs of possible instability at the largest widths;

shallow models perform significantly worse compared to deeper models with similar parameter counts; increasing depth beyond N ≥ 4

initially mirrors the benefit of increasing width but leads to instability sooner than scaling width; varying token count is notably less

parameter-efficient than adjustments to depth or width. For a more detailed illustration of how each individual dimension influences

emulation quality, see Fig. B1 in Appendix B.

loss, measured by mean absolute error (MAE) and eval-

uated every 2,500 training steps, increased by more than

a factor of two between any two consecutive evaluations.

The architectural parameters were varied systemati-

cally on a regular grid: width (d) was set to [32, 64,

96, 128, 160, 192, 224, 256], the number of layers (N)

to [1, 2, 4, 8, 12, 16, 20, 24], and the number of tokens

(t) to [1, 2, 8, 16, 32, 48]. This resulted in 384 train-

ing runs, of which 362 were completed successfully. Each

training run used a training dataset consisting of 100,000

spectra and lasted 50,000 steps, following a WSD sched-

ule consisting of 5,000 warm-up steps and a 10,000-step

cool-down phase. Since WSD schedules typically require

a lower optimal learning rate compared to a linear warm-

up cosine decay schedule, we reduced the learning rate

from 0.0018 to 0.0012 (see Schaipp et al. 2025).

To further stabilize training, we applied gradient clip-

ping with a global norm threshold of 1.0. Specifically, if

the global gradient norm exceeded 1, it was rescaled to

exactly 1 without altering its direction.

The results of these scaling experiments are summa-

rized in Fig. 5 (see also Fig. B1 in Appendix B). Models

indicated by filled markers (167 models) exhibited con-

vergence during training and are sufficiently deep (N g
4). Models with depth N < 4 systematically showed

poorer performance and distinct training dynamics com-

pared to deeper models (N g 4). We thus adopted this

threshold to separate shallow from deeper models. This

distinction held consistently across the explored widths,

indicating a general change in model behavior as depth

increases. In contrast, open markers (150 models) repre-

sent configurations that were either too shallow (N < 4)

or exhibited clear signs of instability, as defined above.

Among these open markers, 96 correspond to shallow

models and 54 to unstable models.

The stable models align along a narrow region, indi-

cating that the total parameter count strongly predicts

model performance, whereas the specific depth-to-width

ratio is less critical within the wide range of explored pro-

portions. The lines illustrate the effect of independently
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varying individual parameters from a reference configu-

ration (d = 64, N = 8, t = 2). Increasing the model

width consistently enhances performance, although the

gains diminish at larger widths. Shallow models exhibit

worse performance compared to deeper models with sim-

ilar parameter counts.

Increasing depth beyond N g 4 initially yields perfor-

mance improvements comparable to scaling width, but

leads to instability at smaller total parameter counts

than width scaling does. This behavior is expected, as

illustrated in the leftmost panel of Fig. 4, which shows

that µP does not fully stabilize the optimal learning rate

as model depth increases. Finally, increasing the token

count is substantially less parameter-efficient than ad-

justing either depth or width. Based on these findings, in

our subsequent scaling experiments, we will prioritize in-

creasing model width while ensuring sufficient depth for

effective representation learning, as this approach offers

the most stable and parameter-efficient path to improved

performance.

3.4. Scaling TransformerPayne

Having optimized our training hyperparameters and

established guidelines for scaling model architecture, we

are now positioned to systematically investigate how

model performance scales with increasing resources. We

trained ten TransformerPayne models to comprehen-

sively explore scaling behavior across multiple dimen-

sions. We fixed the token count (t = 16) and head dimen-

sionality (h = 32) across all models as our previous ex-

periments showed these parameters had minimal impact

on performance compared to model width and depth. In-

stead, we systematically varied width (d) and depth (N)

as these dimensions offered the most efficient paths to im-

proved performance. The models were designed so that

each successive model approximately doubled in param-

eter count relative to the previous one. The resulting

architectures and parameter counts are summarized in

Table 2.

To investigate scaling behavior, we explored not only

model size but also training dataset size and training du-

ration. For the training set dimension, we created seven

subsets of the full dataset, varying in size from 100 to

100,000 examples, thus exploring scaling across three or-

ders of magnitude. To scale training compute, we varied

the number of training steps according to:

Sn = 105 ·
(

5

4

)n

, for n ∈ {−9,−8, . . . , 14}, (22)

rounded to the nearest ten. Consequently, the shortest

runs lasted 13,420 steps, while the longest extended to

2,273,740 steps.

Table 2

Summary of TransformerPayne models trained

Width (d) Depth (N) Parameters (P )

32 4 6.98 × 104

32 8 1.19 × 105

64 4 2.73 × 105

64 8 4.69 × 105

96 8 1.05 × 106

128 8 1.86 × 106

160 12 4.14 × 106

224 12 8.10 × 106

256 16 1.37 × 107

384 16 3.09 × 107

Token count (t = 16) and head dimensionality (h = 32) were

fixed for all models, while width (d) and depth (N) were sys-

tematically varied. Each successive model approximately dou-

bles the parameter count of the previous one.

For all training runs, we used a learning rate of 0.0012

and a WSD schedule comprising 10,000 warm-up steps,

followed by a stable phase of constant learning rate, and

concluding with decay during the final 20% of training

steps. We fixed batch sizes across all experiments to facil-

itate consistent comparisons. To optimize computational

efficiency, we adopted a checkpoint reuse strategy: a sin-

gle, very long training run was executed with frequent

intermediate checkpoints, from which we subsequently

launched multiple shorter decay runs in parallel. This

strategy significantly reduced the computational cost as-

sociated with exploring scaling laws by reusing common

initial portions of the training runs. This approach en-

abled us to efficiently trace the entire compute frontier

for a fixed dataset size and model, while varying only

the training length. An ensemble of such training runs,

corresponding to a selected fixed dataset size and model,

is illustrated in Fig. B2 in AppendixB.

3.4.1. Scaling Dimensions and Optimization Strategy

Experiments were focused on investigating three

TransformerPayne scaling regimes as described in

Sec. 2.6. These are about quantifying how emulation ac-

curacy improves: when dataset size is fixed (with opti-

mized choices for model size and compute allocation for

that dataset size), when model size is fixed (with op-

timized choices for dataset size and compute allocation

for that model) and when training compute is fixed (with

optimized choices for dataset and model sizes). These re-

lationships are captured by power-law relations as given

in Equations 20, 19, and 21. By optimized choices, we

mean that, for each fixed resource (e.g., dataset size), we

report the best performance achieved across all variations

of the other explored resources, effectively showing the

performance envelope achievable under our experimental

constraints.

It is important to note that the optimal configuration
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Figure 6. Scaling behavior of TransformerPayne models. Dashed lines represent power-law fits with corresponding equations indicated

in each panel. Left panel: MSE versus training compute (in FLOPs) for all model configurations using the full 100,000 spectra dataset.

Each point represents a converged training run, with colors indicating model size (ranging from 69k to 30.9M parameters). Filled circles

represent training runs that process fewer than 100,000 total examples (less than one epoch), while open circles indicate runs exceeding one

epoch where examples are revisited. The solid black line traces the compute frontier, the optimal performance achievable at each compute

level, while the dashed line shows the power-law fit to this frontier with exponent −0.76. Upper-right panel: MSE versus dataset size

showing the best performance achieved for each dataset size across all model architectures and training durations. The −1.34 exponent

indicates a 22-fold reduction in MSE for each 10-fold increase in training data. Lower-right panel: MSE versus model size showing the best

results achieved across all dataset sizes and training durations for each model size. The power-law fit with exponent −1.21 demonstrates

a 16-fold reduction in MSE per 10-fold increase in parameter count. Note the slight flattening for the largest models, suggesting they

approach the limits imposed by the dataset size. Together, these panels illustrate distinct but complementary scaling relationships across

the three primary dimensions: compute, data, and model capacity.

in each scaling dimension does not necessarily correspond

to maximum values in the remaining dimensions. For

example, when fixing dataset size and studying the rela-

tionship between validation loss for different model sizes

and compute resources, the largest model size does not

always yield the best performance. This is because, at a

fixed compute budget, larger models can only be trained

for fewer steps, potentially leading to undertraining. The

optimized choice therefore represents the best balance

between the two unfixed dimensions while keeping the

third dimension constant. The three dimensions we ex-

plored are model size (summarized in Table 2), dataset

size (ranging from 100 to 100,000 examples), and training

duration (following the step schedule defined in Sec. 3.4).

Thus, for all considered TransformerPayne sizes, spec-

tral grid sizes, and training durations, we investigated

how emulation quality could be maximized when vary-

ing one parameter at a time, while optimally selecting

values for the other two parameters.

3.4.2. Scaling with Dataset Size and Model Size

The top-right panel of Fig. 6 demonstrates scaling with

dataset size, showing the best achieved MSE for each

dataset size across all model architectures and training

durations. This analysis reveals a power-law relation-

ship with exponent −1.34, indicating a 22-fold reduction

in MSE whenever the dataset size increases by a factor

of 10. This quantifies the substantial benefit provided by

additional training data. Notably, as illustrated by the

left panel, performance with the largest dataset (100,000

spectra) continues to improve with increased compute,

suggesting even better results could be achieved by ex-

tending training further. For smaller datasets, model

performance has already saturated, and the largest mod-

els begin to overfit; additional examples of this behavior

are presented in Fig. B3 in Appendix B.

The bottom-right panel of Fig. 6 demonstrates scaling

with model size, displaying the best results across all

dataset sizes and training durations. The fitted power-
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law has an exponent of −1.21, indicating a 16-fold re-

duction in MSE per 10-fold increase in parameter count.

A slight flattening is observed for models larger than ap-

proximately 107 parameters, suggesting that these mod-

els are approaching the performance limit imposed by the

current dataset size (100,000 spectra). Excluding the two

largest models yields a steeper exponent of −1.41, and

excluding the three largest yields an exponent of −1.54.

3.4.3. Compute Frontier Analysis

The left panel of Fig. 6 shows how MSE varies as a

function of the compute budget allocated to training.

Unlike the right panels which show optimized perfor-

mance across dimensions, this plot displays the raw per-

formance trajectory of all model configurations across

varying amounts of compute. Each point represents a

converged training run, with model size indicated by

color (purple for the smallest models, transitioning to

yellow for the largest).

The distinction between filled and open circles rep-

resents a fundamental transition in training dynamics:

filled circles indicate training runs where the total num-

ber of processed examples (batch size × training steps)

is less than 100,000, meaning the model has not com-

pleted a full pass through the dataset (less than one

epoch). Open circles represent runs exceeding one epoch,

where the model has seen some training examples mul-

tiple times. This visualization shows how performance

continues to improve even after multiple passes through

the dataset, though with diminishing returns compared

to the sub-epoch regime.

The solid black line traces the compute frontier — the

lower envelope of all points representing the best achiev-

able performance at each compute level regardless of

model size. This frontier represents the optimal trade-

off between model size and training duration for each

compute budget. Notably, for compute budgets exceed-

ing approximately 1017 FLOPs, the frontier transitions

into the multi-epoch regime (open circles), indicating a

potential shift in scaling efficiency. Extending beyond

one epoch may decrease efficiency since additional com-

pute is used to revisit already-seen examples rather than

exploring new regions of the parameter space through in-

creased model capacity or novel training examples. This

reuse of training data introduces diminishing returns as

the model has already extracted much of the unique in-

formation available in these examples.

A power-law fit to all models along this frontier yields

an exponent of −0.76, indicating that a 10-fold increase

in compute reduces the MSE approximately by a fac-

tor of 5.7. In contrast, for compute budgets below 1017

FLOPs (where training on the frontier remains within

one epoch), scaling is more favorable, with an exponent

of −0.87. This difference highlights that in the sub-

epoch regime, each additional computation contributes

to learning from new, unseen data, creating a more ef-

ficient scaling relationship. Thus, only in this lower-

compute regime does the frontier strictly trace what

would be expected in an infinite-data limit where ex-

ample repetition is unnecessary.

3.4.4. Optimal Resource Allocation

While the right panels of Fig. 6 show how MSE scales

with dataset size and model size independently, what is

often more practically valuable is understanding how to

optimally balance resources when compute is the primary

constraint. This is particularly important because the

largest models are not always optimal, at limited com-

pute budgets, smaller models trained for more steps often

outperform larger models trained insufficiently. Fig. 7

addresses precisely this practical question.

Focusing more closely on the model and dataset sizes

associated with the compute frontier, we interpret the re-

sults presented in Fig. 7. The left panel revisits the rela-

tionship between MSE and training compute, but unlike

the previous figure, here we highlight only the frontier

models, those achieving the best performance at each

compute level through optimized choices of model size

and training duration. For each compute budget, this

represents the single best-performing configuration from

among all the models we trained.

The left panel restricts our power-law fit to the region

below 1017 FLOPs (indicated by the vertical dotted line),

where training consistently remains within one epoch. In

this regime, each training example is seen at most once,

and our data is not constrained by the finite size of our

stellar spectra grid. This yields a defined power-law ex-

ponent of −0.87. Within this regime, a 10-fold increase

in compute reduces MSE by a factor of approximately

7.4, demonstrating that with properly optimized archi-

tectural choices, compute scaling can be substantially

more efficient than suggested by the overall trend.

Importantly, achieving this optimal scaling requires se-

lecting the right model size for each compute budget, too

large a model with insufficient training steps or too small

a model with excessive training both result in subopti-

mal performance. Similarly, the number of training ex-

amples must be carefully balanced; as we show in the

middle panel, this optimal number increases with avail-

able compute but at a rate slower than the growth in

model size.

The middle panel shows how the optimal number of

training examples scales with compute. Each blue dot

represents a model on the compute frontier, plotting the

total processed spectra against the compute used. The
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Figure 7. TransformerPayne models scaling along compute frontier. Dashed lines represent power-law fits with corresponding equations

indicated in each panel. Left panel: Validation loss (MSE) versus compute, focusing specifically on the frontier of best-performing models

(the lowest achievable MSE at each compute level). Unlike Fig. 6, this panel isolates only the optimal models and highlights the power-law

fit for the sub-epoch regime (training compute ≤ 1017 FLOPs), where scaling behavior is most reliable. Middle panel: Number of processed

training examples versus compute for models along the frontier. Each blue dot represents a model on the compute frontier, with diagonal

patterns formed by individual model architectures trained for increasing durations. The power-law fit with exponent 0.38 indicates that

when compute increases 10-fold, the optimal training set size should increase approximately 2.4-fold. The horizontal dotted line at 100,000

spectra marks our dataset size limit; points above this line represent training beyond one epoch. Right panel: Model size (number of

parameters) versus compute for frontier models. The horizontal bands correspond to discrete model architectures from Table 2, with

transitions between bands indicating compute thresholds where larger models become more efficient than smaller ones trained longer. In all

panels, vertical dotted lines at 1017 FLOPs indicate the boundary beyond which our dataset becomes the limiting factor, and all power-law

fits are restricted to the region left of this boundary to ensure reliable scaling estimates.

distinct diagonal patterns visible in this plot emerge be-

cause each diagonal line represents a single model ar-

chitecture trained for increasing numbers of steps. As

we move along any individual diagonal, we’re seeing the

same model trained for progressively more steps, process-

ing more total examples and using more compute. The

frontier (best-performing models) jumps between these

diagonal lines, transitioning to larger models as compute

increases, creating the stair-step pattern. If we had the

computational resources to train models with continu-

ously varying numbers of parameters (rather than our

discrete set), we would expect the optimal frontier to

follow the fitted dashed line more smoothly.

We strategically limited our power-law fit to the regime

below 1017 FLOPs where the processed spectra remain

within one epoch (below the 100,000 spectra dotted line),

as this represents the most reliable scaling regime where

each new computation contributes to processing previ-

ously unseen data. Since our results indicate it is optimal

to avoid processing spectra more than once, this rela-

tionship also directly suggests the ideal training dataset

size needed for a given compute budget, approximately

the number of processed spectra indicated by the dashed

line. The resulting power-law has an exponent of 0.38,

meaning that as compute increases by a factor of 10, the

optimal number of processed examples should increase

roughly by a factor of 2.4. The horizontal dotted line

at 100,000 spectra indicates our current dataset limit;

points above this line represent models trained over mul-

tiple epochs, where the same examples are revisited.

The right panel reveals how model size should scale

with increasing compute budgets. Each blue dot rep-

resents a model on the frontier, showing which model

size performs best at each compute level. Similar to the

middle panel, we observe distinct horizontal bands corre-

sponding to our discrete set of model architectures (from

Table 2). As compute increases, there are clear transition

points where it becomes more efficient to switch from a

smaller model trained for many steps to a larger model

trained for fewer steps.

The progression of these transitions reveals a consistent

pattern that follows a power-law with an exponent of

0.61, implying that when compute increases by a factor

of 10, optimal model size should grow by approximately

a factor of 4.1. If we had tested a continuous spectrum of

model sizes, we would expect the actual frontier to follow

the dashed line more smoothly. Again, we strategically

fit only points below 1017 FLOPs to remain in the single-

epoch regime where scaling behavior is most reliable.

These findings deliver distinct but complementary in-

sights compared to Fig. 6. While the earlier figure charac-

terized the theoretical scaling potential of each dimension

in isolation (showing how performance improves when

scaling just dataset size or just model size with exponents

−1.34 and −1.21 respectively), Fig. 7 provides practical

guidance for real-world resource allocation under com-

pute constraints.

4. DISCUSSION
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In this study, we investigated how the emulation accu-

racy of TransformerPayne scales with increases in stel-

lar spectra grid size, training compute budget, and neu-

ral network size. Our experiments demonstrate that,

given stable training and careful scaling of hyperparam-

eters, emulation accuracy predictably improves across

several orders of magnitude following consistent power-

law relationships. Specifically, we find that optimal scal-

ing involves simultaneously increasing training compute,

dataset size, and model size according to well-defined

proportions. These scaling laws, which closely parallel

those established in language modeling provide practi-

cal guidance for optimal resource allocation in spectral

emulation. They offer a quantitative framework for de-

signing stellar grids and planning computational require-

ments when targeting specific precision goals for current

and future stellar surveys.

4.1. Toward Spectral Foundational Models

Developing spectral foundational models for stellar

spectrum emulation presents two main challenges. First,

stable and efficient training must be maintained across

varying model sizes and training durations. Second, de-

termining the optimal way to scale network capacity is

crucial, as multiple hyperparameters (e.g., width, depth,

and number of tokens in TransformerPayne) simultane-

ously influence the total parameter count.

As demonstrated in this study, µ-Parametrization

proved to be a highly valuable tool for simplifying the

scaling process, ensuring robust training dynamics when

adjusting model width. While µP has been primarily

demonstrated for language models using cross-entropy

loss, our experiments confirm its effectiveness in the re-

gression context of stellar spectra emulation with MSE

loss. µP reliably stabilized scaling with respect to width;

however, we found that optimal hyperparameters re-

quired adjustments when varying depth by more than

a factor of two compared to the reference model.

Embedding token count and head dimensionality had

only minor effects on optimization stability. These find-

ings align closely with broader empirical results (e.g.,

Lingle 2024), suggesting that hyperparameters remain

stable primarily with width but require more careful re-

tuning for significant changes in depth. Therefore, fu-

ture hyperparameter searches would benefit from explic-

itly tuning at multiple reference depths (e.g., N = 2,

N = 8, and N = 32) to improve stability when scaling

depth substantially. Despite this limitation, our results

indicate that with sufficient depth, our current hyper-

parameter settings remain nearly optimal across a wide

range of architectures.

Finally, we found that, for many width-depth com-

binations, models of similar total parameter counts

achieve comparable performance, provided they are not

too shallow. Specifically, models with fewer than four

Transformer blocks reliably underperformed compared to

deeper architectures of similar size. In practice, once a

model is sufficiently deep and training is stable, perfor-

mance primarily depends on the total parameter count

rather than the exact depth-to-width ratio.

Thus, maintaining training stability ultimately proved

more critical than fine-tuning exact depth-to-width ra-

tios, especially since instabilities became more frequent

at greater depths without careful re-optimization of

training-related hyperparameters. This finding simpli-

fies the architectural design process, as it suggests that,

beyond ensuring sufficient depth, practitioners can focus

more on total parameter count through increasing width

than on precise architectural proportions when scaling

TransformerPayne models.

4.2. Practical Implications for Spectral Emulation

Neural-network emulators are typically trained under

various computational and data constraints, with the

overarching goal of minimizing the impact of emulation

errors on subsequent inference of stellar parameters and

abundances. In this study, we adopted plane-parallel

LTE atmospheric models, but we expect the scaling re-

lationships we have described to remain qualitatively ro-

bust across different modeling approaches, even as the

specific quantitative constants may vary. Our methodol-

ogy should serve as a template for future spectroscopic

emulation efforts.

When developing spectral emulators, the central chal-

lenge is optimizing performance within finite computa-

tional resources. Our analysis reveals that focusing ex-

clusively on any single dimension, larger models, more

training data, or extended training, yields suboptimal re-

sults. Instead, a balanced approach is necessary, where

these resources scale together according to specific pro-

portions.

The key practical scenario of interest is when a specific

emulation precision (associated with target MSE) is re-

quired. In such cases, one should determine the necessary

compute budget and then appropriately scale the model

size and training dataset size according to the relation-

ships illustrated in Fig. 7. Specifically, given a desired

validation loss, the required compute C can be estimated

by inverting the fitted scaling relation:

C = Cc L−1/αC , (23)

with parameters Cc = 7.1 × 1011 and ³C = 0.87. Sub-

sequently, the dataset size D and model size P should

follow from the computed budget as:

D =

(

C

4.6× 103

)0.38

, P =

(

C

1.5× 106

)0.61

. (24)
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These relationships reveal the key insight of our work:

as computational resources increase, both model size and

dataset size should increase together, but at different

rates. Specifically, when compute increases by a factor

of 10, model size should increase by approximately 4×
while dataset size should increase by about 2.4×. This

balanced scaling ensures optimal performance for a given

computational budget.

To illustrate the practical value of these scaling laws,

consider planning for a large-scale emulator with 1 billion

parameters (a 1B TransformerPayne model). Using our

scaling equations, we can determine that the required

training compute would equal 8.52 × 1020 FLOPs, and

the spectral grid should contain approximately 3.64×106

stellar spectra. Following these guidelines, the resulting

MSE for this model would be approximately 1.26×10−8.

To contextualize the computational requirements, we

can convert abstract FLOP counts into hardware-specific

metrics. For instance, using a modern Nvidia H100 ac-

celerator, which delivers approximately 67 teraFLOPS in

Float32 precision, the training time would be:

8.52× 1020

67× 1012 × 24× 3600
≈ 147.10 H100-days. (25)

These concrete calculations demonstrate how our scal-

ing laws can be applied to practical planning decisions,

allowing researchers to estimate resource requirements

for specific emulation precision targets. Similar estima-

tions can be conducted for various model sizes, spectral

grid sizes, or target MSE values, providing a quantita-

tive framework for resource allocation in spectroscopic

studies.

4.3. Limits of Neural Scaling Laws

While empirical scaling laws suggest that model per-

formance continues to improve with larger models, more

training data, and increased training compute, extend-

ing these laws too far reveals apparent contradictions,

indicating that the outlined scaling relationships must

eventually break down. This point becomes particularly

evident when comparing the two distinct scaling regimes

illustrated in Fig. 8.

The first regime, represented by the blue line and

circles, illustrates the theoretical best-case performance

achievable with increasing amounts of training data.

This data-limited regime corresponds exactly to the sce-

nario previously presented in the lower-right panel of

Fig. 6, where models are trained to saturation to fully

extract all available information from the training data.

Unlike the compute frontier models, which aim to find

the optimal balance between model size and training

duration under compute constraints, these data-limited

Figure 8. Comparison of two different scaling regimes. The blue

circles and line represent the data-limited regime, showing how

MSE decreases with more training data when using optimally-sized

models trained to full convergence, regardless of computational ef-

ficiency. These points are derived from selecting the best results

for each dataset size across all model architectures and training

durations in our experiments. In contrast, the orange triangles

represent the compute frontier regime, showing how MSE scales

with the number of processed spectra when using models that are

optimal under constrained computational resources. Each trian-

gle indicates a distinct converged model characterized by specific

combinations of model size and training duration, with associated

compute budget measured in FLOPs. The vertical dotted line

indicates the size of our current spectral grid (100,000 spectra).

The intersection of these trends at approximately 3 × 106 spectra

indicates a transition point where our compute-optimal scaling ap-

proach reaches the data-limited ceiling.

points represent exhaustive training to convergence, re-

gardless of computational efficiency. The points along

this line are directly reproduced from our earlier exper-

iments, where we selected the best results achieved for

each dataset size across all model architectures and train-

ing durations.

The second regime, represented by the orange trian-

gles and dashed line, illustrates how performance scales

along the compute frontier. In this compute frontier

regime, each orange triangle represents a distinct model

that achieved optimal performance given its particular

compute budget. These data points are identical to those

presented previously in Fig. 7, but here they are shown as

MSE versus the number of training spectra rather than

versus training compute.

These two trends intersect at approximately three mil-

lion spectra, marking a potential transition in scaling be-

havior. The blue line represents the theoretical limit if

one could fully exploit a given grid of stellar spectra with-

out restrictions imposed by model size or computational

resources. Validation loss cannot be improved beyond

this theoretical limit (blue line) for a given dataset size.

At the intersection point, our compute-optimal scaling
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approach (orange triangles) reaches the data-limited ceil-

ing (blue line), indicating that the scaling laws we have

established in this study would no longer apply beyond

this point.

This does not mean that performance improvement

stops entirely, rather, it would continue to improve but at

the slower rate dictated by the data-limited regime (blue

line) instead of following our compute-optimal scaling

trajectory. Based on our scaling equations, this transi-

tion occurs at approximately 3 million spectra, an MSE

of roughly 10−8, and corresponds to a model size of

around 109 parameters (1B parameters) as determined

by our compute-optimal scaling equation.

Similar observations have been reported in large-scale

language modeling studies by Kaplan et al. (2020), who

interpreted this phenomenon as a transition between two

distinct regimes: one where increasing data reliably en-

hances performance, and another where the available

data is effectively exhausted. The authors suggest that

scaling laws must inevitably break around these transi-

tion points, hypothesizing a deeper fundamental impli-

cation: that at these points, neural networks have fully

extracted the information available in a training corpus,

and the corresponding loss could serve as an estimate of

the entropy-per-token in natural language.

Although a dataset with stellar spectra is not inher-

ently probabilistic, some randomness might still be in-

troduced by two factors: first, by the numerical mod-

eling code used to simulate stellar atmospheres (in this

case, Kurucz’s Atlas and Synthe) and its limited numer-

ical precision; second, by the linear interpolation process

in wavelength that we use to sample flux at arbitrary

wavelengths. The numerical precision of Kurucz models

typically introduces inherent noise on the order of 10−5

in flux space due to solver limitations, and an MSE of

10−8 corresponds to differences of
√
10−8 ≈ 10−4 in the

flux unit, already approaching this fundamental preci-

sion limitation. For context, even this level of precision

(0.01% in flux) far exceeds what is typically achievable

in observational spectroscopy, where signal-to-noise ra-

tios rarely exceed 100 (corresponding to 1% precision).

4.4. Caveats and Future Work

A limitation of our study is considering only the train-

ing budget of the spectral emulator when evaluating

trade-offs for real surveys. A broader assessment should

incorporate both the computational cost of spectral grid

calculations and the resources required by the inference

stack, the computational process of using trained em-

ulators to make predictions, fit observed spectra, and

derive stellar parameters. Expanding the scaling laws

derived here to explicitly include grid computation and

inference costs could affect optimality and presents inter-

esting technical opportunities for improving the efficiency

of future spectral surveys.

Our evaluation focused primarily on how well models

can emulate synthetic spectra by calculating the error in

normalized flux space. However, this approach is lim-

ited to measuring the MSE across entire spectra, while

real-world spectroscopic applications are primarily con-

cerned with the precision of inferred stellar parameters

and elemental abundances derived from individual spec-

tral lines. For large-scale spectroscopic surveys, where

precision requirements are often specified in terms of

parameter accuracy rather than spectral MSE, our ap-

proach provides a pathway to translate those require-

ments into concrete computational and data needs.

We focus on MSE as our primary metric because emu-

lation errors manifest as systematic noise in the spectral

fitting process, which, to a first approximation, can be

translated into statistical errors on stellar parameters us-

ing Fisher matrix calculations. This direct connection

between spectral emulation quality and parameter in-

ference precision makes MSE a robust and theoretically

justified optimization target (Ting et al. 2017; Sandford

et al. 2020; Różański et al. 2024).

Perhaps the most important limitation is that in this

study we use MSE as a proxy for model performance in

the training domain only, that is, how well the model

performs on synthetic spectra generated using the same

methodology as the training data. While optimizing em-

ulation to achieve MSE of 10−6 (equivalent to approx-

imately 0.1% in flux) is commendable, such that when

dealing with spectra with signal-to-noise ratios of order

100, ensuring the error budget from emulation does not

dominate, scaling beyond that point may yield dimin-

ishing returns. The critical question for spectral foun-

dational models is domain transfer capability: how well

models trained on one domain can generalize to another

with minimal additional training.

In the context of spectral emulation, a key challenge is

how well models trained on computationally inexpensive

1D-LTE models can transfer to more accurate 3D non-

LTE models or to empirical spectra with ground truth la-

bels established through other means (e.g., Gaia Bench-

mark stars, Soubiran et al. 2024). The original Trans-

formerPayne paper has shown improved domain transfer

ability compared to other methods, but this capability

remains suboptimal. As we scale up model size follow-

ing the laws established in this work, understanding how

domain transfer ability improves is a critical direction

for future research. Similar to how scaling laws in lan-

guage models have demonstrated emergent abilities like

few-shot learning (Brown et al. 2020; Zhang et al. 2024)

and “grokking” (sudden performance improvements after

extended training, e.g., Power et al. 2022), we aim to in-
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vestigate whether similar phenomena emerge in spectral

models as they scale, potentially enabling more efficient

domain adaptation.

5. CONCLUSIONS

On-going and upcoming spectroscopic surveys produce

stellar spectra at unprecedented volumes, demanding

computationally efficient techniques for precise analysis.

Emulation has become essential in inference pipelines due

to its computational speed. It effectively handles the

complexity of high-dimensional parameter spaces, over-

coming the limitations of traditional interpolation meth-

ods. However, earlier emulator models exhibited limita-

tions, with accuracy saturating around a 1% precision

level. Recently, the Transformer-based emulator (Trans-

formerPayne) was introduced to address this limitation

by leveraging the inherent scalability and strong induc-

tive bias of Transformer architectures, with the ultimate

goal of developing spectral foundational models capable

of few-shot learning and domain transfer.

In this work, we empirically investigated how Trans-

formerPayne’s emulation accuracy scales with model size,

training compute, and the size of the stellar spectra grid.

We optimized hyperparameters and employed techniques

to stabilize training across all scales, systematically ex-

amining improvements in precision.

We established a training methodology based on Maxi-

mum Update Parametrization that enables stable and ef-

ficient training of large TransformerPayne models. This

approach effectively stabilizes training dynamics, allow-

ing consistent scaling of model widths without repeated

hyperparameter tuning. Our results demonstrate that

once models reach sufficient depth (N g 4), the primary

predictor of model performance is the total parameter

count, with considerable flexibility in the exact depth-

to-width ratio.

The core result of our empirical investigation is that

improvements in emulation quality follow predictable

power-law relationships. We have established clear scal-

ing laws for spectral emulation, finding that validation

loss scales with dataset size as L(D) ∝ D−1.34, with

model size as L(P ) ∝ P−1.21, and with compute as

L(C) ∝ C−0.76. Along the optimal compute frontier,

we found that dataset size should scale as D ∝ C0.38

and model size as P ∝ C0.61. These quantitative rela-

tionships provide practical guidance for efficiently allo-

cating computational resources to achieve specific emu-

lation precision targets.

The exhibition of these scaling laws demonstrates that

Transformer-based models are robust architectures for

spectral emulation, with predictable performance im-

provements as computational resources increase. Our

work establishes a foundation for training spectral foun-

dational models without wasteful hyperparameter explo-

ration, offering a clear pathway toward reducing emu-

lation errors to any desired threshold. This capacity

supports rapid, reliable spectral interpolation, thereby

facilitating more advanced analyses within various spec-

troscopic surveys.
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APPENDIX

A. PARAMETER AND FLOP CALCULATIONS

In this section, we provide a detailed breakdown of

how parameters and FLOPs are computed for the basic

building blocks of TransformerPayne. These calculations

form the foundation for our scaling law analysis, as they

allow us to quantify the computational resources required

by models of different sizes. The notation follows that

used in the main text.

A linear layer, the fundamental computation unit in

neural networks, transforms input vectors from R
din to

R
dout via matrix multiplication. The number of trainable

parameters in such a layer is din×dout. When applied to

a single vector x ∈ R
din , the computational cost can be

measured in FLOPs. Counting a multiply plus an add

as two FLOPs, the total number of operations is thus

2 din dout.

For efficiency, neural networks often process multiple

inputs simultaneously. When the same linear layer is

applied to a matrix X ∈ R
L×din (representing a batch of

L inputs), the output becomesY ∈ R
L×dout . Though the

parameter count remains unchanged, the computational

cost scales with the number of inputs of 2Ldin dout.

In TransformerPayne, we use RMSNorm for layer nor-

malization but without trainable scale or bias param-

eters. This simplifies the function computed by RM-

SNorm on a vector x ∈ R
d to:

RMSNorm(x) =
x

√

1
d

∑d
i=1 x

2
i + ϵ

, (A1)

where ϵ is a small constant (e.g., 10−6) for numerical

stability. When applied to a sequence of tokens, like

pemb ∈ R
t×d, the normalization is applied to each row

(token) independently.

Since our implementation of RMSNorm has no learn-

able parameters, its parameter count is zero. The FLOP

count for applying RMSNorm to a (Nrows, d)-matrix in-

volves three main steps: summing the squares of each

element (approximately 2d operations per row), taking

a reciprocal square root once per row, and multiplying

each element by the resulting scale factor (d multiplica-

tions per row). Combining these operations, the total

FLOP count approximates to 3(Nrows · d).
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The attention mechanism is the core innovation of

Transformer architectures. For TransformerPayne, we

calculate the computational cost when Q ∈ R
Nflux×d and

K, V ∈ R
t×d. The attention operation computes:

softmax
( QK¦

d

)

V :

This breaks down into three main steps:

1. Compute QK¦: The multiply-add cost for this

matrix multiplication is approximately 2×Nflux ×
t× d FLOPs.

2. Scale and softmax: Each of the Nflux · t elements

is scaled by 1/d and then passed through the soft-

max function along each row. This typically counts

as some small constant multiple of Nflux · t (for ex-
ponentiation, summation, division, etc.).

3. Multiply by V : The attention matrix is multi-

plied by V , with a cost of approximately 2×Nflux×
t× d FLOPs.

In multi-head attention, Q,K, V often come from dis-

tinct linear projections, and the output may also be pro-

jected (the O matrix). We account for these as separate

rows in our parameter/FLOP table (e.g., “Cross-Attn: Q

+ O” vs. “Cross-Attn: K + V”), along with the “Scores

+ Context” step for softmax and multiplication by V .

All remaining entries in the main table are derived by

combining these base calculations with the appropriate

dimensions, multipliers (e.g., the feed-forward layer has

dff = 4 d) and the correct token counts (t or Nflux). We

then sum over N layers to arrive at the total parameter

and FLOPs counts in the final rows of the table.

These detailed calculations allow us to precisely mea-

sure the computational requirements of different model

architectures, enabling the systematic investigation of

scaling laws presented in the main text.

B. SCALING TRANSFORMERPAYNE: ADDITIONAL

MATERIALS

This appendix provides supplementary figures that

comprehensively illustrate key aspects of Transformer-

Payne scaling behaviors, expanding upon details briefly

discussed in the main text. These visualizations offer

deeper insights into the relationships between architec-

tural choices, training dynamics, and model performance

that underpin our scaling law analysis.

Figure B1 provides a more detailed examination of how

scaling various architectural parameters affects emula-

tion MSE. While Fig. 5 in the main text gives an over-

all view of parameter scaling, this figure breaks down

the analysis into three distinct panels, each focusing on

one architectural dimension: width (left), depth (center),

and token count (right). This decomposition allows us to

clearly see the individual contribution of each parameter

to model performance.

As discussed in Sec. 3.3, width scaling provides con-

sistent improvements with the least risk of instability,

depth scaling offers comparable benefits but becomes un-

stable more quickly, and dedication extra parameters to

token count scaling provides the least improvement rel-

ative to parameter count. For practical purposes, prior-

itizing width scaling while maintaining sufficient depth

(at least 4 Transformer blocks) offers the most reliable

path to improved performance.

Figure B2 illustrates the Warmup-Stable-Decay

(WSD) learning rate schedule employed in our experi-

ments and its impact on training dynamics. This sched-

ule consists of three phases: an initial warm-up phase

where the learning rate increases linearly from zero to

its maximum value, a stable phase where the learning

rate remains constant, and a final decay phase where it

decreases linearly to zero. The upper panel shows how

we implemented this schedule, with all runs sharing the

same warm-up and stable phases (black line) but hav-

ing individually customized decay phases (colored lines).

The lower panel demonstrates the corresponding train-

ing loss (dashed lines) and validation loss (solid lines with

markers) for each schedule variant.

This visualization is particularly important for under-

standing our checkpoint reuse strategy: we ran a single

long training process with frequent intermediate check-

points, then launched multiple shorter decay runs from

these checkpoints in parallel. This approach significantly

reduced computational costs by reusing the common ini-

tial portions of training. The figure clearly shows that

the final decay to zero learning rate is crucial for achiev-

ing optimal performance, which is why we adopted this

schedule for all scaling experiments in Sec. 3.4.

Figure B3 illustrates how emulation accuracy changes

as the training dataset size decreases. Results are pre-

sented for datasets containing 100,000 (top-left panel),

30,000 (top-right), 10,000 (bottom-left), and 3,000

(bottom-right) unique stellar spectra. It is important

to clarify that term processed spectra refers to the total

number of training examples seen during training (cal-

culated as batch size × number of training steps), while

the dataset size refers to the number of unique spectra

available for training. When the number of processed
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Figure B1. Validation loss (MSE) as a function of model parameter count, shown across three panels. Each panel highlights how

performance varies predominantly with one architectural dimension: model width d (left), depth N (center), and number of tokens t

(right). Changes are highlighted using color, and three additional lines are emphasized, each corresponding to variations in only the

parameter of interest. Filled markers indicate stable models with sufficient depth (N ≥ 4) that converged during training, while open

markers represent models that were either too shallow (N < 4), unstable, or both. The colorbar above each panel shows the corresponding

value of the highlighted parameter (width, depth, or tokens). Increasing model width consistently improves performance until instability

appears at large widths (at least for largest model). Depth scaling beyond N ≥ 4 initially offers similar benefits to scaling width but

encounters instability earlier compared to width scaling. Varying number of tokens usually yields performance improvements, but with

comparatively less benefit than scaling width or depth.

Figure B2. Visualization of the WSD learning rate schedule (upper panel) and corresponding training and validation loss curves (lower

panel) for a TransformerPayne with 4.1M parameters trained on a full dataset of 100,000 spectra. The black line in the upper panel

represents the initial warm-up and stable phases, which are shared by all runs. The colored lines show individual cool-down phases, during

which each run independently decays the learning rate to zero at distinct restoring and ending steps. In the lower panel, dashed lines

represent training loss curves, while solid lines with markers indicate validation loss curves. Colors in the lower panel correspond to the

individual cool-down schedules depicted above. This WSD schedule structure was consistently applied to all experiments presented in

Sec. 3.4. Models at the end of each cool-down phase trace an envelope representing the lowest MSE achievable for each training duration.

spectra exceeds the dataset size, the model begins revis- iting examples it has already seen.
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Figure B3. Scaling experiments illustrating how emulation accuracy changes as the training dataset size decreases. Results are presented

for datasets containing 100,000 (top-left panel), 30,000 (top-right), 10,000 (bottom-left), and 3,000 (bottom-right) unique stellar spectra.

Each point represents a completed training run, with colors indicating model size (from purple for smallest to yellow for largest models, as

shown in the legend). The frontier models, representing the best-performing configurations identified from the dataset of 100,000 spectra,

are highlighted with a dashed line across all panels for comparison, allowing direct visualization of how performance degrades with smaller

datasets even when maintaining optimal training strategies. Open markers indicate experiments for which training surpassed one epoch

(processed more examples than exist in the dataset), while filled markers indicate training within one epoch; notably, all points in the

bottom panels correspond to training exceeding one epoch, as smaller datasets are quickly exhausted during training.

For the larger datasets (100,000 and 30,000), we ob-

serve a mix of filled circles (representing training within

one epoch, where each spectrum is seen at most once)

and open circles (representing training beyond one epoch,

where some spectra are revisited). However, for smaller

datasets (3,000 and 10,000), training surpasses one epoch

very early, even during the warm-up phase, resulting in

only open markers in the corresponding panels.

These plots highlight several critical impacts of lim-

ited dataset sizes on scaling behavior. First, while per-

formance frontiers follow similar patterns when sufficient

data are available, models trained on smaller datasets in-
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creasingly deviate from the initial scaling trends as train-

ing progresses, eventually saturating in performance.

Second, for smaller datasets, the largest models (shown

in yellow/green) exhibit clear signs of overfitting, with

MSE values that plateau or even increase with addi-

tional training. Third, the best-performing models for

smaller datasets typically have intermediate sizes rather

than being the largest models available, demonstrating

that model capacity should be matched to dataset size.

The early saturation observed in the largest models

could likely be mitigated by employing stronger regu-

larization techniques during training, such as increased

weight decay, dropout, or early stopping based on val-

idation performance, which is beyond the scope of this

study. These results underscore the importance of bal-

ancing model size, dataset size, and training duration,

particularly when working with limited training data.

This paper was built using the Open Journal of As-

trophysics LATEX template. The OJA is a journal which

provides fast and easy peer review for new papers in the

astro-ph section of the arXiv, making the reviewing pro-

cess simpler for authors and referees alike. Learn more

at http://astro.theoj.org.
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