2503.18617v1 [astro-ph.IM] 24 Mar 2025

arxiv

VERSION MARCH 25, 2025
Preprint typeset using B TEX style openjournal v. 09/06/15

SCALING LAWS FOR EMULATION OF STELLAR SPECTRA

Tomasz ROzaKskI!

Research School of Astronomy & Astrophysics, The Australian National University, Cotter Rd., Weston, ACT 2611, Australia and

Astronomical Institute, University of Wroctaw, Kopernika 11, 51-622 Wroctaw, Poland

Yuan-SEN TiNG (T JE#R)
Department of Astronomy, The Ohio State University, Columbus, OH 43210, USA and
Center for Cosmology and AstroParticle Physics (CCAPP), The Ohio State University, Columbus, OH 43210, USA
Version March 25, 2025

ABSTRACT

Neural network-based emulators for the inference of stellar parameters and elemental abundances
represent an increasingly popular methodology in modern spectroscopic surveys. However, these ap-
proaches are often constrained by their emulation precision and domain transfer capabilities. Greater
generalizability has previously been achieved only with significantly larger model architectures, as
demonstrated by Transformer-based models in natural language processing. This observation aligns
with neural scaling laws, where model performance predictably improves with increased model size,
computational resources allocated to model training, and training data volume. In this study, we
demonstrate that these scaling laws also apply to Transformer-based spectral emulators in astron-
omy. Building upon our previous work with TransformerPayne and incorporating Maximum Update
Parametrization techniques from natural language models, we provide training guidelines for scaling
models to achieve optimal performance. Our results show that within the explored parameter space,
clear scaling relationships emerge. These findings suggest that optimal computational resource alloca-
tion requires balanced scaling. Specifically, given a tenfold increase in training compute, achieving an
optimal seven-fold reduction in mean squared error necessitates an approximately 2.5-fold increase in
dataset size and a 3.8-fold increase in model size. This study establishes a foundation for developing
spectral foundational models with enhanced domain transfer capabilities.

Keywords: Stellar atmospheres (1584), Galactic archaeology (2178), Astroinformatics (78), Astro-

statistics (1882)

1. INTRODUCTION

The study of stellar spectra and the extraction of stel-
lar properties is a critical component of astronomy, re-
cently advanced by numerous spectroscopic surveys in-
cluding APOGEE, LAMOST, Gaia-ESO, and GALAH
(Gilmore et al. 2012; Luo et al. 2015; Majewski et al.
2017; Buder et al. 2020), with further progress an-
ticipated from upcoming surveys such as 4MOST and
WEAVE. The 4MOST survey (de Jong et al. 2019), for
instance, plans to collect approximately 20 million spec-
tra at low resolution (R ~ 6500) and 3 million at medium
resolution (R ~ 20,000) within a five-year timeframe.
However, the unprecedented scale of these data neces-
sitates more sophisticated automated pipelines for pa-
rameter inference to fully realize the potential of these
surveys.

Machine learning models for spectral emulation have

Electronic address: Tomasz.Rozanskil@anu.edu.au

gained widespread adoption in this context. Since ab-
initio spectrum synthesis, even under one-dimensional lo-
cal thermodynamic equilibrium (1D-LTE) assumptions,
remains computationally intensive, performing full spec-
tral fitting with real-time generation can be impracti-
cal for large surveys. Emulators help amortize compu-
tational costs by learning the mapping between stellar
parameters and their corresponding spectra, allowing for
rapid inference once trained. As stellar spectra depend
on dozens of parameters (stellar atmospheric parameters
and chemical abundances across much of the periodic ta-
ble), emulators must effectively handle high-dimensional
interpolation, circumventing the “curse of dimension-
ality” that plagues traditional grid-based interpolation
methods.

Several approaches have been developed to address
these needs, including quadratic models such as The
Cannon (Ness et al. 2015), a polynomial-based ridge
regression; neural network-based models such as The

2

Payne (Ting et al. 2019);
(Rézaniski et al. 2024).

The success of emulators often stems from two key con-
siderations: (a) how accurately the models can emulate
synthetic spectra, that is, for a given set of fixed stellar
properties, how closely the emulator-generated spectrum
matches the ab-initio calculation; and (b) how effectively
models trained on one domain of synthetic spectra can
be transferred to other domains (whether between dif-
ferent theoretical frameworks, e.g., 1D LTE versus 3D
non-LTE, or from synthetic spectra to empirical obser-
vations).

These considerations have driven exploration of vari-
ous architectures. Simpler models such as ridge regres-
sion and fully connected networks often suffer from lower
emulation accuracy at a given training size, largely due
to inadequate inductive bias, which is the set of assump-
tions that a learning algorithm uses to help to generalize
its prediction for unseen data. In our previous study, we
proposed harnessing Transformer-based models Rozanski
et al. (2024) because of their appropriate inductive bias
for capturing long-range information in spectra. This ca-

and TransformerPayne

pability is particularly valuable when spectral lines from
the same atomic species can be widely separated in wave-
length or pixel space.

We demonstrated that such Transformer models have
the advantage of continued performance improvement
with larger training sets and number of training steps,
without encountering the performance plateaus common
to simpler architectures. The observation of an appar-
ent continuous improvement law, where a loss metric im-
proves as a neural network’s model size (measured by
the number of free parameters or the compute required
for a single evaluation), training duration, and training
dataset size all increase, led to what is now widely known
in machine learning as scaling laws (see Hestness et al.
2017, and references therein).

The idea of scaling laws in large language models has
been thoroughly studied in Kaplan et al. (2020); Hoff-
mann et al. (2022), demonstrating that when model size,
training length, and dataset size are scaled together in a
linear fashion on a log scale, the validation loss contin-
ues to improve predictably over many orders of magni-
tude. This finding inspired the development of increas-
ingly large language models. The success of scaling laws
has been a critical cornerstone in demonstrating that
with larger models (and computational resources) one
could continue to improve machine learning models, not
only solving the emulation accuracy problem but also
simultaneously allowing greater generalizability for do-
main transfer (Brown et al. 2020; Zhang et al. 2024) that
have been the motivation of larger models.

The concept of scaling laws has also begun to be ex-

plored in astronomical research, including applications to
stellar light curves (Pan et al. 2024) and galaxy images
(Walmsley et al. 2024; Smith et al. 2024). Demonstrat-
ing the validity of scaling laws represents a critical step
toward developing deep learning foundational models for
astronomy. These foundational models are characterized
by their broad generalization and adaptability at a given
model size, similar to how large language models, while
primarily trained on English text, can generalize to re-
spond in other languages with relatively limited exam-
ples, demonstrating effective domain transfer capabili-
ties.

While the aforementioned studies have established the
existence of scaling laws in astronomical applications,
the approach to training these models has often lacked
systematic methodology. Training deep learning foun-
dational models requires careful understanding of how
to scale up architectures while maintaining optimal hy-
perparameters. Hyperparameter choices, such as learn-
ing rate, can dramatically influence model performance.
Therefore, knowing how to appropriately adjust these
parameters according to model size, without resorting to
expensive hyperparameter searches, represents a key step
toward developing any foundational model, a challenge
we aim to address specifically for stellar spectra in this
work.

In this paper, we investigate scaling laws for the em-
ulation of stellar spectra. We examine scaling with re-
spect to training dataset size, neural network size, and
training duration, thereby establishing a foundation for
spectroscopic foundational models. This paper proceeds
as follows: Section 2 presents the TransformerPayne ar-
chitecture, the training dataset, the Maximum Update
Parameterization (uP), and neural scaling laws. Section
3 describes the conducted experiments, including hyper-
parameter optimization, validation of uP, optimization of
TransformerPayne architectural parameters, and experi-
ments establishing scaling laws. Results are discussed in
Section 4, and conclusions are provided in Section 5.

2. METHODS

The goal of this study is to understand how emulator
quality evolves as we scale to larger training datasets,
larger neural networks, and longer training durations.
We formulate the emulation problem following our pre-
vious work on the TransformerPayne model (Rézariski
et al. 2024).

In these models, we construct a function fy(\, p) which
approximates exact normalized flux, where A represents
the wavelength and p denotes a collection of stellar prop-
erties, including stellar atmosphere parameters, such as
the effective temperature (Tug) or the logarithm of sur-
face gravity (logg), and elemental abundances. In this

work, the parameter vector p consists of one hundred pa-
rameters, including effective temperature, surface grav-
ity, and elemental abundances spanning from helium to
einsteinium. This function is implemented as a neural
network parameterized by free parameters 6, which are
optimized to make fy(A\,p) an accurate approximation
of spectra across the domain of interest.

TransformerPayne is a neural network constructed us-
ing several computational blocks. Two types of embed-
ding modules, Sinusoidal Embedding and Multilayer Per-
ceptron (MLP) Embedding, process the inputs to em-
bed them into higher-dimensional spaces. These em-
beddings are then consecutively processed by N Trans-
formerBlocks. The first TransformerBlock takes the nor-
malized embedding of the spectrum parameters, pemp,
together with the sinusoidal embedding, Wemp, of the
input wavelength. All remaining TransformerBlocks re-
place the input wey,, with the output from the previous
TransformerBlock, denoted as r;. The output of the last
TransformerBlock is processed by an MLP head, which
predicts a normalized flux (a scalar value) based on the
final ry.

In contrast to the original paper, we incorporate a sim-
plified residual connection scheme that adheres to the
Pre-LN placement (Xiong et al. 2020). This modifica-
tion does not significantly impact the model’s quality
while aligning it more closely with Transformer archi-
tecture variants explored in the study introducing Max-
imum Update Parametrization (for details, see Sec.2.5),
a set of hyperparameter optimization approaches that
have shown promise in scaling up large language models.

For a comprehensive overview, we refer readers to the
original TransformerPayne paper. Nonetheless, we pro-
vide a concise outline of the architecture below.

2.1. MLP and Sinusoidal Embedding

The inputs to TransformerPayne are A, a scalar repre-
senting the wavelength, and p, a vector of parameters.
Since Transformer architectures were originally designed
for language models that process discrete tokens (vector
representations of words or subwords), adapting them to
continuous astronomical data requires appropriate em-
bedding strategies. For spectral modeling, there is no
obvious natural tokenization, so we must transform both
wavelength and stellar parameters into vector represen-
tations that Transformer models can effectively process
and learn to correlate.

The wavelength is encoded using sinusoidal embedding

given by the equation:
Wemb,i = sin(w;A), i=1,...,d. (1)

where w; follow a geometric progression covering a man-

Normalized Flux

MLP Head

RMSNorm
bry

(f—

Feed Forward ‘

RMSNorm

N 20|g law.ojsuel| /

Oy

Multi-Head Attention

QN KN VN
RMSNorm
—] 4
- — N
) | =
y 1l o
Feed Forward ‘ 2
: o
g 3
RMSNorm 2
o
o
&
0, -
Multi-Head Attention
T g, K, Vi
RMSNorm
e
pemb
wemb RMSNorm
Sinusoidal
Embedding Embedding
Wavelength Spectrum Parameters

Figure 1. Architecture diagram of the TransformerPayne variant
implemented for our scaling experiments. The model processes two
inputs: wavelength (lower left) and spectrum parameters (lower
right). These inputs are transformed through Sinusoidal Embed-
ding and MLP Embedding respectively, then normalized via RM-
SNorm. The embedded representations flow through N sequen-
tial Transformer blocks (two are explicitly shown here for clarity),
each containing Feed Forward networks and Multi-Head Attention
mechanisms with residual connections. Each block processes out-
puts from the previous block and maintains the information flow
through normalization layers. The final representation is processed
by an MLP Head to predict the normalized flux. This architecture
incorporates the Pre-LN placement scheme for residual connec-
tions, which facilitates stable training dynamics when scaling to
larger model configurations.

4

ually adjusted range of circular frequencies, from wpin
t0 Wmax, and index 7 from 1 to d. We choose frequencies
that span from those corresponding to broad spectral
features down to fractions of the narrowest line profiles,
ensuring comprehensive coverage of spectral characteris-
tics at multiple scales.

While the wavelength is embedded into a sequence con-
sisting of a single vector, the spectral parameters vector
is embedded into a sequence of t tokens. This embedding
is performed using an MLLP Embedding, which is a simple
two-layer perceptron. The output vector is then reshaped
into a matrix with dimensions ¢ x d and followed by RM-
SNorm layer for normalization. The function computed
by the MLP Embedding is:

f(Pemn) = ag W5 gelu(W{p), (2)

where p represents a vector of spectral parameters, W
and W are weight matrices with shapes d, x d and
d x (t - d) respectively, gelu(x) is an element-wise non-
linearity function, and ap is a non-trainable, scalar hy-
perparameter.

2.2. Transformer Block

The core processing units of our architecture are the
Transformer Blocks, which integrate information be-
tween wavelength representation and stellar parameter
embeddings. Each Transformer Block consists of two
main modules: Multi-Head Attention (MHA) and Feed-
Forward (FF). Unlike the original TransformerPayne, our
implementation employs a Pre-LN residual connection
scheme (Xiong et al. 2020), which places the normaliza-
tion before each sub-module rather than after, facilitat-
ing more stable training dynamics especially in deeper
networks.

The Transformer Block is repeated N times in se-
quence, with each block building upon the representa-
tions learned by the previous one. Each block receives
three inputs: a query, a key, and a value. The key and
value inputs are always the same collection of tokens en-
coding the parameters, pemp- The query input for the
first block is the wavelength embedding, wemp, and for
subsequent blocks, the query is the output of the previ-
ous block, r;. This recursive structure allows the model
to progressively refine its understanding of the relation-
ship between stellar parameters and spectral features.
See Fig. 1 for a visual representation of this architecture.

Each input to the Attention block is treated as
a sequence of tokens represented as a matrix in
R(sequence length)xd. In our case:

e The wavelength embedding is a single-token se-
quence: Wemp, € R4,

o The parameter tokens are pemp, € R**?.

Hence, the key/value each have length ¢, while the query
has length 1. This asymmetry reflects the core operation
of our model: using the wavelength (query) to interro-
gate the stellar parameters (key/value) to determine the
appropriate flux at that wavelength.

RMSNorm.— Before each sub-module (MHA or FF), we
apply RMSNorm to normalize its input. Normalization is
crucial for maintaining stable activations throughout the
network and preventing internal covariate shift during
training.

We are not using any trainable scale or bias param-
eters, so the function computed by the RMSNorm of a
vector x € R? is simply:

X

RMSNorm(x) = y , (3)
i DieT; te
where € is a small constant (e.g., 107%) for numerical

stability. When applied to a sequence of tokens, like
Pemb € R¥*? this normalization is applied to every token

individually, preserving the relative information within
each token while standardizing the overall scale.

Multi-Head Attention.— The Multi-Head Attention
(MHA) mechanism is fundamental to the Transformer
architecture, allowing the model to attend to different
aspects of the stellar parameters simultaneously when
generating spectral predictions. It serves as the primary
mechanism for capturing relationships between wave-
length positions and the various stellar parameters that
influence the flux at those positions.

We first linearly project the RMS-normalized inputs
into query, key, and value spaces.

Q = RMSNorm(x) W9, (4)
K = RMSNorm(pems) W¥, (5)
V = RMSNorm(pemp) WY, (6)

where x € R'*? is either Wy, (for the first block) or rj_4

(for subsequent blocks). The matrices W< WX WV ¢

R4¥4. We split Q, K,V into h heads, each of last dimen-

sion equal dheaq = d/h. This multi-head approach allows

different attention heads to specialize in detecting differ-

ent types of spectral features or parameter interactions.
The dot-product attention for head i is:

aattQiK;r
d/h

where shape of Q; is (1 X dheaa) and K; shape is (¢ x
dhead), and gt is a scalar non-trainable hyperparameter.
Since there is only one query token, the attention map
has a single row.

This attention mechanism effectively allows the wave-

Z;, = softmax<) V., i=1,....;h (7)

length representation to selectively focus on relevant as-
pects of the stellar parameters that determine the flux at

that wavelength. Then the head outputs Z; € R!*®heaa
are concatenated and linearly transformed:

MHA (X, Pemb) = | Z1,...,Zp| WO, (8)
with WO e Rx4,

Feed-Forward Network.— After MHA, we again apply
RMSNorm and then feed the result into a two-layer
network. This Feed-Forward component provides addi-
tional non-linear processing capacity to each Transformer
block, allowing it to model complex transformations be-
yond what attention alone can capture:

FF(u) = WJ* GELUW{ " u), (9)

where WI'F € R4t and W'F € Réxd In all our ex-
periments, we set dg = 4 d, which provides a sufficiently
expanded intermediate representation for complex func-
tion approximation.

After the last Transformer block, the vector is pro-
cessed with a two-layer network to predict the normal-
ized flux. This final projection transforms the learned
representation into the target output space:

normalized lux = W37 GELU(W{’ RMSNorm(ry)),
(10)
where Wi € R4 and WH ¢ R4,
Each Transformer Block composes these sub-layers via
Pre-LN residual connections, which help maintain gradi-
ent flow during training, especially in deeper networks:

r, = X + MHA(RMSNorm(x), RMSNorm(pcmb)>,

r, =1; + FF(RMSNorm(ri)),
(11)
where x = { "o = 1.
ri_1, 1>1
We repeat this block N times, creating a deep ar-
chitecture capable of modeling the complex relation-
ships between stellar parameters and spectral features
across different wavelengths. The final single-token out-
put ry € R4 is the transformed wavelength embed-
ding, conditioned on the parameter tokens pemn, which
contains all the information needed to predict the flux at
the given wavelength.

2.3. Dimensions of Scaling Laws

To systematically investigate how emulator perfor-
mance improves with increased resources, we consider
three dimensions of scaling: the size of the training data,
the size of the neural network, and the computational
resources used for training. In this section, we elaborate
on how each of these dimensions is quantified and their
relationships in our experimental framework.

First, we define the size of the training data as the num-
ber of distinct spectra, that is, spectra computed using

5

different sets of atmospheric parameters. These training
samples are drawn from a uniform distribution spanning
the entire parameter space of interest, see Sec.2.4 for
exact ranges. This approach ensures comprehensive cov-
erage of the stellar parameter domain being modeled.

The other two dimensions of scaling laws are the num-
ber of free parameters (neural network parameters opti-
mized during training) and the total compute used for
training. The number of free parameters directly re-
flects the model’s capacity to represent complex relation-
ships between stellar parameters and spectral features. It
scales primarily with the model’s width (embedding di-
mension d), depth (number of Transformer blocks N),
and the number of tokens used to encode the parameters
(t).

The computational cost, measured in floating-point op-
erations (FLOPs), depends on these same architectural
parameters, but also incorporates training-specific fac-
tors: the number of predicted wavelengths (Naux), the
batch size (Npaten), and the number of training steps
(S). Together, these determine the total computational
resources required to train a model to convergence. For
additional details on parameter counts and FLOPs cal-
culations for chosen modules, see Appendix A.

A summary of the number of free parameters and
FLOPs for each component of our architecture is pro-
vided in Table1, from which it follows that the exact
number of free parameters, P, equals:

P = (t+ 12N +1)d® + (d, + 1)d. (12)

The leading terms of this equation are (¢ + 12N)d?, so
the hyperparameter primarily driving the number of free
parameters is the dimensionality d. Here, t represents
the number of parameter tokens, N is the number of
Transformer blocks, and d,, is the dimension of the input
parameter vector. This quadratic relationship between
model dimension and parameter count is characteristic
of Transformer architectures and plays a crucial role in
scaling behavior.

The approximate formula for the computational cost
of the TransformerPayne forward pass (i.e., evaluation
of neural network), as derived from Table 1, is:

Evaluation FLOPs =
(2t + 20N Ny + 4Nt + 2Ngux) d?

+[(1+ FLOP(sin)) + 5 + 6] Ny (13)

+[3+ AN N td + 2d,d.

Here, Npux represents the number of wavelength points
for which the flux is predicted simultaneously, which af-
fects vectorization efficiency. We note that this is only
an approximate expression, as it does not include the
cost of evaluating activation functions or other minor

Table 1
Summary of free parameters and floating-point operations in Transformer Payne
Operation Parameters FLOPs
Embedding Block
Sinusoidal Embedding, Eq. 1 0 (14 FLOP(sin)) Ngux d
MLP Embedding, Eq. 2 dpd + td? 2dpd + 2td?
RMSNorm, Eq. 3 0 3td
Transformer Block XN
Q/O Linear Layer, Eq. 4, 8 N x 2d? 4 N Ngyy d?
K/V Linear Layer, Eq. 5, 6 N x 2d? ANtd?
Multiplicative Attention, Eq.7 0 4 N Npux td
RMSNorm, Eq.4, 5, 6 0 6 N Ngux d
FeedForward, Eq. 9 N x 8d? 16 N Ngyux d2
Prediction Block
RMSNorm, Eq. 10 0 3 Nux d

MLP Head, Eq. 10

d? + d

2 Nauy (42 + d)

The FLOPs shown in the table are calculated for the vectorized version of TransformerPayne, which predicts a vector of

normalized flux given a vector of wavelengths, A € R¥fux_ For the non-vectorized version of TransformerPayne, it is sufficient
to substitute Naux = 1. Usually, Naux > d > t, and d, ranges from 5 to about 100. The leading terms in the FLOPs count are
therefore those of order d? - Naux. The parameter count is dominated by the term quadratic in d. FLOP(sin) represents the
cost of a sine function evaluation, which is typically on the negligible order of tens of FLOPs.

costs due to multiplicative factors and residual connec-
tions. However, these costs are largely negligible com-
pared to the leading terms. FLOP(sin) represents the
cost of a single sin function evaluation, which is on the
order of tens of FLOPs (for our calculations, we assumed
FLOP(sin) = 10).

To estimate the total computational cost of training,
which is the key metric considered in scaling laws, the
cost of a forward pass per single spectrum needs to be
multiplied by a factor of 3. This factor accounts for the
fact that each training step includes one forward pass and
one backward pass for gradient evaluation, with gradient
evaluation typically costing twice as much as the forward
pass, a standard approximation in the literature (e.g. Ka-
plan et al. 2020). Additionally, this must be multiplied
by the batch size and the number of training steps. The
total training FLOPs, up to the leading terms, can be
estimated using the expression:

Total training FLOPs &~ 35Npaten X 20N Ny d?. (14)

This formulation allows us to systematically explore
how emulator performance scales with increasing model
size, training data, and computational resources in our
experimental investigations.

2.4. Spectral Grid, Training and Metrics

The experiments in this work utilize one of the syn-
thetic datasets of 100,000 normalized stellar spectra
introduced in Rézanski et al. (2024). These spectra
were generated using plane-parallel Local Thermody-
namic Equilibrium (LTE) atmospheric models (Lester
and Neilson 2008; Kurucz 1979, 2005). The wavelength
range spans from 4000 to 5000A at a resolution of
R = 100,000, sampled at 22,315 wavelengths spaced

equidistantly. The grid varies the effective temperature,
Tegr, from 4000 K to 6000 K and the surface gravity from
4 to 5. The microturbulence velocity remains fixed at
& = 0km/s. Helium abundances vary between none and
twice the solar value (assuming 0.0782 in the Sun), while
the abundances of other elements (atomic numbers Z = 3
to Z =99) are sampled uniformly between —2 and 1dex
relative to the solar abundance. It is important to note
that these spectra are normalized using the theoretical
continuum, resulting in flux values predominantly near 1
(with absorption features appearing as downward devia-
tions below 1). Consequently, all MSE values reported in
this study are with respect to this normalized scale, mak-
ing them dimensionless quantities that directly represent
fractional deviations in the normalized flux.

We adopt this dataset for convenience, but emphasize
that our primary focus is on investigating the scaling
properties of the TransformerPayne model. By scaling
properties, we mean how model performance systemati-
cally improves as we increase model size, training data,
and computational resources, relationships that would
hold qualitatively even with different synthetic or empir-
ical models, although the exact numerical values might
differ.

We note that these spectra are normalized using the
theoretical continuum, resulting in flux values predom-
inantly near 1 (with absorption features appearing as
downward deviations below 1). Consequently, all MSE
values reported in this study are with respect to this nor-
malized scale, making them dimensionless quantities that
directly represent fractional deviations in the normalized
flux.

We perform stochastic gradient-based optimization

using the AdamW optimizer (Kingma and Ba 2014;
Loshchilov and Hutter 2017), which incorporates adap-
tive learning rates, momentum-based updates, and de-
coupled weight decay regularization. All experiments
were conducted with a batch size of Npaicn = 32 spectra,
each containing Ngux = 1024 flux values linearly inter-
polated at randomly sampled wavelengths.

To control the global learning rate, denoted 7, through-
out training, we use the Warmup-Stable-Decay (WSD)
scheduler (see, e.g., Hagele et al. (2024), and references
therein), which consists of three phases: (1) a linear
warm-up from 0 to the maximum learning rate over the
first Nyarm-up Steps, (2) a stable phase where training
continues at the maximum learning rate, and (3) a linear
cool-down phase that decreases the learning rate to zero
over Neool-down Steps.

The WSD schedule is particularly useful for scaling
law experiments, as it allows the warm-up phase to be
fixed while deferring the cool-down phase until later in
training. This flexibility significantly reduces the time
required to test different training durations without in-
curring substantial computational overhead. In our ini-
tial tests, we verified that WSD performs at least as well
as the linear warm-up followed by cosine decay sched-
ule used in the TransformerPayne paper (Rézanski et al.
2024), making it a suitable choice for our study. Ad-
ditionally to global learning rate n, we also tuned an
embedding’s learning rate scaling factor ng.

An important factor in training dynamics, alongside
the learning rate, is the scale of weight initialization in
the network. For all matrix initializations, we used a
truncated Gaussian distribution (truncated at 20) with
a mean of 0 and a standard deviation o. Each matrix was
initialized independently and proportionally to 1/v/diy,
with a globally tuned initialization scale o.

As is standard practice for regression problems, we
used the Mean Squared Error (MSE) as our loss func-
tion. It quantifies the average squared difference between
the predicted and true normalized fluxes across all wave-
lengths and spectra:

N 1 Nitux

1
MSE = ﬁ; Nux > (i = fohigypi)®, (1)

j=1

where N represents the number of spectra (during train-
ing, N = Npatcn, the batch size; during validation,
N = 1024, the size of our validation set), Npuy is the
number of flux points per spectrum (Naux = 1024), X;; is
the wavelength, p; represents the stellar parameters, and
Y45 is the normalized flux for the j-th wavelength of the i-
th spectrum. The function fs(Ai;, p;) represents the neu-
ral network’s prediction, parameterized by 6. Note that
MSE directly quantifies the squared flux error; therefore,
if an estimate of the typical flux uncertainty (standard

7

deviation) is desired, one should take the square root of
MSE.

To evaluate model generalization and avoid overfitting,
we maintained a validation dataset of 1024 spectra drawn
from the same parameter domain as the training grid but
not used during training. We computed the MSE on this
validation dataset at predefined checkpoints throughout
the training process. For consistent and fair compar-
isons across different experimental configurations, we re-
port the lowest validation MSE recorded during the en-
tire training process for each model. This approach en-
sures that we capture each model’s optimal performance,
regardless of when it occurs during training, while still
measuring generalization to unseen data. Unless stated
otherwise, all the MSE losses of the scaling law refer to
the validation set, not the training set.

2.5. Mazimum Update Parametrization

As we move toward developing spectral foundational
models with billions of parameters, the ability to train
efficiently at scale becomes crucial. Conventional ap-
proaches like grid search for optimal training configu-
rations become prohibitively expensive and wasteful at
these scales. What is needed instead is a systematic, re-
liable training protocol that consistently produces high-
quality models without extensive tuning, precisely the
goal of our exploration in this study.

Scaling the size of a neural network inherently involves
two interconnected aspects. The first concerns the choice
of architectural hyperparameter configurations for a fixed
model size. This means determining how to allocate pa-
rameters when increasing model capacity, whether to add
more Transformer blocks (increasing depth), expand the
embedding dimension (increasing width), add more at-
tention heads, or some combination of these approaches.
In the case of TransformerPayne, these key hyperparame-
ters, as mentioned in Sec. 2.3, include the dimensionality,
d; the number of Transformer blocks, N; the number of
tokens used to encode the parameters, t; and the number
of heads, h.

The specific choice of these hyperparameters directly
impacts the final performance of the model. In princi-
ple, one could scale by increasing only a single hyperpa-
rameter (e.g., only making the model deeper by adding
more Transformer blocks while keeping width constant).
However, this approach is suboptimal and does not yield
realistic scaling laws. Therefore, a challenge is to under-
stand how different hyperparameter choices affect model
performance given a specific model size. A concrete ex-
ample of this is determining how to balance depth (N)
versus width (d) when scaling the model.

The second aspect involves tuning the hyperparame-
ters related to the training process to ensure stable and

8

efficient learning. Key parameters include the maximum
learning rate, the scale of random weight initialization,
and learning rates for specific network components. Im-
proper tuning can lead to instability or ineffective weight
updates, potentially masking improvements from scal-
ing. This issue becomes particularly critical at larger
model sizes, where exhaustive hyperparameter searches
are computationally prohibitive due to the high cost of
training multiple large-scale networks.

This challenge of optimizing hyperparameters effi-
ciently at extreme scales underscores the need for sys-
tematic strategies that reduce the cost of hyperparameter
tuning. A key development in this direction, originating
in the context of large language models, has emerged
from studies on the Maximum Update Parametrization
(uP or p-Parametrization), which provides a principled
framework (Yang et al. 2022, 2023a). This theoretical
framework demonstrates that when networks are scaled
appropriately, certain hyperparameters remain stable
across orders of magnitude of model sizes, enabling ef-
ficient transfer of tuning insights from smaller models to
much larger ones.

The insight is that for meaningful evolution of hidden
representations in neural networks, the spectral norm of
the network weights (||W]|) and their updates (]| AW]|.)
should remain on the order of y/m/n, where W € R™*"
(Yang et al. 2023b). This ensures that hidden features
maintain their {?>-norms while their updates evolve pro-
portionally to their magnitudes, preventing both the van-
ishing and exploding of signals through the network dur-
ing training. When A € R"™*™ the spectral norm is
defined by:

A
(Al = max 1A (16)
veRM\{0} [|v]|2

While this theoretical perspective can be implemented
through direct normalization of matrix norms during
training, a more practical approach, as demonstrated in
Yang et al. (2023b), involves appropriate initialization of
weight scales for individual matrices in the neural net-
work and corresponding adjustment of learning rates as
the network’s dimensionality changes. This is the ap-
proach developed in Yang et al. (2022) and the method-
ology we have implemented for the TransformerPayne
scaling experiments presented in this work (see also Lin-
gle 2024; Blake et al. 2024, for practical guidance).

To implement pP in our models, we systematically
rescale the initialization scale and learning rate for in-
dividual matrices as the width of TransformerPayne, d,
increases. When training neural networks with the Adam
optimizer, the initialization scale o and learning rate n
for any matrix W € R™*" should follow these rescaling

relationships:

o ox % min {1, \/ﬂ (17)

1

where n corresponds to the dimension of the input to the
linear layer W, while m represents the output dimension.
In our implementation of TransformerPayne, we applied
these appropriate scaling factors to all matrices through-
out the architecture, ensuring consistent behavior across
different model sizes.

2.6. Neural Scaling Laws

Neural scaling laws provide a framework for under-
standing how model performance systematically im-
proves with increased resources. In the context of stellar
spectra emulation, these laws characterize the relation-
ship between validation loss and three critical scaling di-
mensions: model size (P), training dataset size (D), and
computational resources used for training (C'). By train-
ing TransformerPayne networks of various sizes on spec-
tral grids of different sizes, we can empirically determine
whether these relationships follow simple scaling laws,
enabling us to forecast performance at scales beyond our
current experiments.

Following the convention established by Kaplan et al.
(2020), we consider three primary scaling regimes, each
corresponding to a different limiting factor:

1. Parameter-limited regime: When the number
of free parameters is the limiting factor (assuming
abundant data and compute):

cr - () (19)

2. Data-limited regime: When the size of the train-
ing dataset is the bottleneck (assuming sufficiently
large models regularized using early stopping):

£(D) = <%>QD, (20)

3. Compute-limited regime: When computational
resources are the limiting factor (assuming a large
dataset, an optimally-sized model, and a small
fixed batch size):

L(C) = (%)ac : (21)

For the compute-limited regime, we note that our in-
vestigation is slightly constrained due to computational
limitations. Since training with large batch sizes was not
feasible in our experimental setup, we could not precisely

investigate the critical batch size limit, the batch size at
which training achieves an optimal balance between com-
putational efficiency and optimization steps. For an in-
depth discussion of critical batch size, we refer readers to
McCandlish et al. (2018). This limitation, however, does
not undermine the broader relevance of our findings.

In addition to analyzing the three primary scaling
regimes, we extensively quantified the last one, the
compute-limited regime, due to its practical significance.
Specifically, we quantified how model size and the num-
ber of processed spectra scale along the frontier of
compute-efficient models. We define a frontier model
as one that achieves the best MSE for a given train-
ing budget, effectively tracing a Pareto-optimal curve in
the space of model size and training set size. A Pareto-
optimal curve represents configurations where no im-
provement can be made in one dimension (e.g., model
accuracy) without sacrificing performance in another di-
mension (e.g., computational cost). This approach en-
abled us to derive two additional power-law scaling re-
lations describing how model size and the number of
training spectra should grow when following the compute
frontier, shedding further light on the interplay among
data, model parameters, and total training cost.

3. RESULTS

Establishing robust scaling laws for stellar spectra em-
ulation with TransformerPayne required careful opti-
mization of hyperparameters and refinement of training
strategies to prevent instabilities that could obscure the
underlying empirical trends. Our investigation followed
a systematic approach: first, we fine-tuned key training-
related hyperparameters using smaller proxy models to
determine optimal configurations efficiently. We then
validated our p-Parametrization implementation to en-
sure stability across different scaling regimes. With these
optimal training parameters in place, as we will demon-
strate consistently across all settings, we proceeded to
train a range of models varying in size, training dura-
tion, and training set size. This exploration allowed us
to characterize the full scaling behavior of Transformer-
Payne across multiple dimensions of interest.

3.1. Hyperparameter Optimization

We began by optimizing training-related hyperparam-
eters for TransformerPayne, specifically the maximum
learning rate (1), the global initialization scale (o), the
embedding learning rate scale factor (7g), and the em-
bedding and attention scaling factors (agp and aagt).
These parameters control different aspects of training:
1 determines the step size during gradient descent, o
affects the initial distribution of network weights, ng ad-
justs the relative learning rate for embedding parameters,

9

while ag and ., scale the outputs of the embedding and
attention layers, respectively.

To determine optimal values, we trained 100 small-
scale TransformerPayne models (with d = 128, N = 8,
t = 16, and h = 4) on a full training dataset consisting
of 100,000 spectra. Each model was trained for 20,000
steps, including 2,000 warm-up steps followed by a co-
sine decay to zero. Hyperparameter values were sampled
uniformly in log-space: the learning rate n was drawn
from 10~% to 10~!, and all other hyperparameters were
drawn from 0.1 to 10.

Figure 2 shows a parallel coordinates plot summariz-
ing the results of this hyperparameter search for the small
proxy model. In this visualization, each colored line rep-
resents one training run, with its path across the six
axes showing the specific combination of hyperparam-
eter values and the resulting validation MSE. The five
best-performing runs (those with lowest MSE) are high-
lighted in black. The colors of the lines appear to cor-
respond to the MSE values, with cooler colors (purples
and blues) representing lower MSE values and warmer
colors (yellows) representing higher MSE values. This
representation allows us to identify patterns and correla-
tions between different hyperparameters and model per-
formance.

The plot shows that the learning rate () and global
initialization scale (o) appear well-constrained among
the best-performing models, with successful configura-
tions clustering in relatively narrow ranges. The re-
maining three hyperparameters (ng, ag, and a,) show
greater variability among high-performing models, sug-
gesting they are less critical for optimization. Interest-
ingly, Fig.2 suggests an anti-correlation between em-
bedding and attention scaling factors, indicating that
as one increases, the other typically decreases in high-
performing models. This suggests a compensatory rela-
tionship where the relative balance between these factors
matters more than their absolute values.

This optimization process is a crucial first step in our
scaling law investigation. By identifying optimal train-
ing hyperparameters on a small proxy model, we es-
tablish a baseline configuration that, according to pu-
Parametrization theory, should remain effective as we
scale up model size in a principled manner. This ap-
proach avoids the prohibitive computational cost of re-
peating hyperparameter searches for each model scale,
allowing us to focus on investigating how performance
scales with model size, training data, and compute while
maintaining optimal training dynamics.

After evaluating all runs, we identified the three best-
performing sets of hyperparameters and computed their

10

1.0} X J

Normalized Values

nNe e Qatt

Figure 2. Parallel coordinates plot summarizing hyperparameter optimization results for the small proxy model. Each line represents one
of the 100 training runs, illustrating how different hyperparameter combinations affect model performance. The five best-performing runs
are highlighted in black. The displayed hyperparameters are the learning rate (n; sampled from 10~ to 10~1), the global initialization
scale (o), the embedding learning rate scale factor (ng), and the embedding and attention scaling factors (ag and aatt), each sampled from
the range [0.1, 10]. All axes are shown on a logarithmic scale and normalized between 0 and 1. The lines are colored according to their
MSE values, with cooler colors (purples and blues) representing lower MSE values and warmer colors (yellows) representing higher MSE
values.

Standard Parameterization
10~2¢ 11

U-Parameterization

1073} 1t

—e— 64
10-4} 128 | |
—o— 256

512

102 103 102 107 103 102
Learning Rate n Learning Rate n

Best Validation Loss
E\\
o
=

Figure 3. pP and Standard Parametrization exhibit different behaviors when scaling model width. Each plot shows validation loss (MSE)
on the y-axis versus learning rate on the x-axis for models of varying widths (64, 128, 256, and 512 dimensions). Standard Parametrization
(left panel) refers to conventional weight initialization without dimension-dependent scaling, while yP (right panel) applies specific scaling
factors to weight initialization and learning rates based on matrix dimensions. The left panel shows that, under Standard Parametrization,
the optimal learning rate (indicated by the minimum point of each curve) decreases as width increases, with the optimal learning rate
shifting from approximately 3 x 103 for width 64 to 4 x 10~% for width 512, a factor of approximately 3.2 decrease. The right panel
highlights the stabilizing effect of uP on the optimal learning rate, with all model widths achieving their best performance at approximately
2 x 1073, demonstrating that our 4P implementation successfully maintains consistent training dynamics across models of different scales.
Additionally, note that wider models (higher dimensions) generally achieve lower validation loss values, reflecting increased model capacity.

geometric mean to derive our final optimized values.
The resulting hyperparameters were approximately as
follows: learning rate n = 0.0018, global initialization
scale ¢ = 0.3890, embedding learning rate scaling fac-
tor Nemp = 0.2630, embedding scaling factor ag = 1.230,
and attention scaling factor a,¢ = 0.3236. In the follow-
ing experiments, these hyperparameters are fixed to the
optimized values specified above, unless stated otherwise.

3.2. uP Scaling Validation Tests

As the next step, we evaluated our implementa-
tion of uP by comparing it with the default Standard

Parametrization and examining how the minimum val-
idation loss varies across different learning rates. We
trained a variety of models, each varying along a single
dimension (i.e., width, depth, number of embedding to-
kens, or head dimensionality), while keeping all other hy-
perparameters fixed to match the reference proxy model
described in the previous section (d = 128, N = 8,
t =16, and h = 4).

This approach allows us to assess how effectively the
optimal learning rate remains stable across these archi-
tectural parameters, which is particularly relevant when
scaling model size. For all experiments, we used a cosine

11

Best Validation Loss

No. Tokens \
—e— 4 Dim Head ‘
8 —o— 8 .
—— 16 16 \
32 —o— 32 \
] —o— 64 64]
107 103 102 10°° 103 102 10°° 103 102

Learning Rate n

Learning Rate n

Learning Rate n

Figure 4. Stability of the optimal learning rate across different architectural dimensions: depth (number of Transformer blocks, left),
number of parameter tokens (middle), and head dimensionality (number of attention heads, right). Each plot shows validation loss (MSE)
versus learning rate for models with varying values of a single architectural parameter while keeping other parameters fixed. The optimal
learning rate is indicated by the minimum point of each curve. Our uP implementation successfully maintains consistent optimal learning
rates when varying the number of tokens and head dimensionality, with all curves reaching their minima at similar learning rate values
(approximately 2 x 10~ 3). For depth scaling (left panel), stability is maintained within approximately 0.5 to 2 times the proxy model’s
depth (8 layers), beyond which some retuning becomes beneficial as curves for very shallow (1-2 layers) and very deep models (16-32 layers)
show shifted optima. This confirms that hyperparameters optimized on our proxy model transfer well across most architectural variations,

with depth requiring more careful consideration.

learning-rate schedule consisting of a 5,000-step warm-up
followed by a cosine decay over 45,000 steps.

Figure 3 shows the results obtained from scaling the
model width (embedding dimension d). The comparison
reveals a crucial difference between the two parameteri-
zation approaches: under Standard Parametrization (left
panel), which uses the conventional approach of initializ-
ing weights with a fixed variance regardless of layer size,
the optimal learning rate shifts leftward (decreases) as
model width increases, requiring recalibration for each
model size. In contrast, with yP (right panel), which
scales initialization and learning rates according to layer
dimensions, the optimal learning rate remains relatively
stable across different widths, with the loss curves for
various model sizes reaching their minima at approxi-
mately 2 x 1073, regardless of whether the model width
is 64 or 512.

In Fig.4, we present results for several other archi-
tectural hyperparameters (depth, number of tokens, and
head dimensionality) and examine their impact on the
optimal learning rate under uP. The results demonstrate
that uP successfully stabilizes the optimal learning rate
across multiple architectural dimensions. Varying the
number of tokens (middle panel) and head dimensional-
ity (right panel) had negligible influence on the optimal
learning rate, indicating that hyperparameters optimized
on our proxy model transfer excellently across models
with different token counts and attention head configu-
rations.

For depth scaling (left panel), pP maintains stability

within a range of approximately 0.5 to 2 times that of
the proxy model used for hyperparameter optimization.
While this demonstrates good transferability within a
moderate depth range, it suggests that for more extreme
depth variations, some retuning of hyperparameters may
be beneficial. This observation aligns with previous re-
search indicating that depth scaling presents unique chal-
lenges compared to width scaling in Transformer archi-
tectures.

3.3. Architectural Parameter Optimization for
Transformer Scaling

Having established the effectiveness of our pyP im-
plementation for stabilizing learning rates across model
widths, we next sought to determine the optimal alloca-
tion of parameters across different architectural dimen-
sions. This investigation is crucial for developing efficient
scaling strategies, as it reveals which components con-
tribute most effectively to model performance as total
parameter count increases.

We conducted an extensive grid search to determine
how best to scale width (d), the number of layers (),
and the number of tokens (¢) for a given number of pa-
rameters in a TransformerPayne model. When increasing
the width, we kept the head dimension fixed at 32, re-
sulting in the number of heads h = d/32. As shown in
the left panel of Fig. 4, head dimensionality did not sig-
nificantly impact the minimum training loss within the
explored range. Since preliminary experiments indicated
that models with larger depths frequently exhibit signs
of instability, we introduced an additional instability cri-
terion: a model was flagged as unstable if its validation

12

°
@OO o o
® (@)
- (6]¢) 0
1072 —_—
&bo%o
® O
L
210—3_
104}

Model Stability & Depth: -250
Stable and Sufficiently Deep (N = 4)
Unstable or Too Shallow (N < 4)
Parameter Varied Along Line: 225
Reference Model (d=64, N=8,t=2) |
Model Width, d
- 200
Model Depth, N
175
150 5
_)
125
100
J 75
50

10°

106 107

Parameters Count

Figure 5. Validation loss (MSE) of trained models across varying depths (N), widths (dimension d), and embedding token counts (t).
Filled markers (167 models) indicate stable models with sufficient depth (N > 4) that converged during training, whereas open markers
(195 models) indicate models either too shallow (N < 4), unstable, or both (96 shallow and 54 unstable). Stable models (filled markers)
align along a narrow region, indicating that total parameter count is a strong predictor of model performance, while the specific depth-
to-width ratio has less impact. Lines illustrate the effect of independently varying a single parameter from a reference model with shape
(d =64, N = 8,t = 2). Increasing model width consistently improves performance until signs of possible instability at the largest widths;
shallow models perform significantly worse compared to deeper models with similar parameter counts; increasing depth beyond N > 4
initially mirrors the benefit of increasing width but leads to instability sooner than scaling width; varying token count is notably less
parameter-efficient than adjustments to depth or width. For a more detailed illustration of how each individual dimension influences

emulation quality, see Fig. B1 in Appendix B.

loss, measured by mean absolute error (MAE) and eval-
uated every 2,500 training steps, increased by more than
a factor of two between any two consecutive evaluations.

The architectural parameters were varied systemati-
cally on a regular grid: width (d) was set to [32, 64,
96, 128, 160, 192, 224, 256], the number of layers (N)
to [1, 2, 4, 8, 12, 16, 20, 24], and the number of tokens
(t) to [1, 2, 8, 16, 32, 48]. This resulted in 384 train-
ing runs, of which 362 were completed successfully. Each
training run used a training dataset consisting of 100,000
spectra and lasted 50,000 steps, following a WSD sched-
ule consisting of 5,000 warm-up steps and a 10,000-step
cool-down phase. Since WSD schedules typically require
a lower optimal learning rate compared to a linear warm-
up cosine decay schedule, we reduced the learning rate
from 0.0018 to 0.0012 (see Schaipp et al. 2025).

To further stabilize training, we applied gradient clip-
ping with a global norm threshold of 1.0. Specifically, if
the global gradient norm exceeded 1, it was rescaled to
exactly 1 without altering its direction.

The results of these scaling experiments are summa-
rized in Fig. 5 (see also Fig. B1 in Appendix B). Models
indicated by filled markers (167 models) exhibited con-
vergence during training and are sufficiently deep (N >
4). Models with depth N < 4 systematically showed
poorer performance and distinct training dynamics com-
pared to deeper models (N > 4). We thus adopted this
threshold to separate shallow from deeper models. This
distinction held consistently across the explored widths,
indicating a general change in model behavior as depth
increases. In contrast, open markers (150 models) repre-
sent configurations that were either too shallow (N < 4)
or exhibited clear signs of instability, as defined above.
Among these open markers, 96 correspond to shallow
models and 54 to unstable models.

The stable models align along a narrow region, indi-
cating that the total parameter count strongly predicts
model performance, whereas the specific depth-to-width
ratio is less critical within the wide range of explored pro-
portions. The lines illustrate the effect of independently

13

varying individual parameters from a reference configu-

Table 2
ration (d =64, N =8, t = 2). Increasing the model Summary of TransformerPayne models trained
width consistently enhances performance, although the Width (d) Depth (V) Parameters (P)
gains diminish at larger widths. Shallow models exhibit 32 1 6.98 x 104
worse performance compared to deeper models with sim- 32 8 1.19 x 10°
ilar parameter counts. 64 4 2.73 x 10°
Increasing depth beyond N > 4 initially yields perfor- 64 8 4.69 x 102
mance improvements comparable to scaling width, but 19268 2 122 i 186
leads to instability at smaller total parameter counts 160 12 4.14 x 108
than width scaling does. This behavior is expected, as 224 12 8.10 x 10°
illustrated in the leftmost panel of Fig.4, which shows 256 16 L.37 % 107
384 16 3.09 x 107

that uP does not fully stabilize the optimal learning rate
as model depth increases. Finally, increasing the token
count is substantially less parameter-efficient than ad-
justing either depth or width. Based on these findings, in

Token count (¢ = 16) and head dimensionality (h = 32) were
fixed for all models, while width (d) and depth (NN) were sys-
tematically varied. Each successive model approximately dou-

our subsequent scaling experiments, we will prioritize in-
creasing model width while ensuring sufficient depth for
effective representation learning, as this approach offers
the most stable and parameter-efficient path to improved
performance.

3.4. Scaling TransformerPayne

Having optimized our training hyperparameters and
established guidelines for scaling model architecture, we
are now positioned to systematically investigate how
model performance scales with increasing resources. We
trained ten TransformerPayne models to comprehen-
sively explore scaling behavior across multiple dimen-
sions. We fixed the token count (¢ = 16) and head dimen-
sionality (h = 32) across all models as our previous ex-
periments showed these parameters had minimal impact
on performance compared to model width and depth. In-
stead, we systematically varied width (d) and depth (N)
as these dimensions offered the most efficient paths to im-
proved performance. The models were designed so that
each successive model approximately doubled in param-
eter count relative to the previous one. The resulting
architectures and parameter counts are summarized in
Table 2.

To investigate scaling behavior, we explored not only
model size but also training dataset size and training du-
ration. For the training set dimension, we created seven
subsets of the full dataset, varying in size from 100 to
100,000 examples, thus exploring scaling across three or-
ders of magnitude. To scale training compute, we varied
the number of training steps according to:

5 n

S, =10°- (4) , forne€{-9,-8,...,14}, (22)
rounded to the nearest ten. Consequently, the shortest
runs lasted 13,420 steps, while the longest extended to

2,273,740 steps.

bles the parameter count of the previous one.

For all training runs, we used a learning rate of 0.0012
and a WSD schedule comprising 10,000 warm-up steps,
followed by a stable phase of constant learning rate, and
concluding with decay during the final 20% of training
steps. We fixed batch sizes across all experiments to facil-
itate consistent comparisons. To optimize computational
efficiency, we adopted a checkpoint reuse strategy: a sin-
gle, very long training run was executed with frequent
intermediate checkpoints, from which we subsequently
launched multiple shorter decay runs in parallel. This
strategy significantly reduced the computational cost as-
sociated with exploring scaling laws by reusing common
initial portions of the training runs. This approach en-
abled us to efficiently trace the entire compute frontier
for a fixed dataset size and model, while varying only
the training length. An ensemble of such training runs,
corresponding to a selected fixed dataset size and model,
is illustrated in Fig. B2 in Appendix B.

3.4.1. Scaling Dimensions and Optimization Strategy

Experiments were focused on investigating three
TransformerPayne scaling regimes as described in
Sec. 2.6. These are about quantifying how emulation ac-
curacy improves: when dataset size is fixed (with opti-
mized choices for model size and compute allocation for
that dataset size), when model size is fixed (with op-
timized choices for dataset size and compute allocation
for that model) and when training compute is fixed (with
optimized choices for dataset and model sizes). These re-
lationships are captured by power-law relations as given
in Equations 20, 19, and 21. By optimized choices, we
mean that, for each fixed resource (e.g., dataset size), we
report the best performance achieved across all variations
of the other explored resources, effectively showing the
performance envelope achievable under our experimental
constraints.

It is important to note that the optimal configuration

14

MSE vs Training Compute (100k Spectra) MSE vs Dataset Size

EN

T
Processed spectra 1072F N, E

102} ® =100k spectra | \.
O > 100k spectra N
N ® [I PY \‘\.
: ©00o Model Size 1073 F N]
S O
0y - ©0000000 ® 69 \\
N @® 118k w .
o %o ® 272k g Lol k\]
S\, P00 ® 469k "
, > 000000 oo ® 1M o
107 ® ® 19M] 0\\
oo ® 41M 105} \ J
o BN
9 OOoOoOuo 8.1M L = (D)_1.34 \\
° A3 5.1 x 100 NS
03 30.9M - - - S
w \OOOO m— Frontier 10 10 10 10
g O - Fit to Frontier Models Number of Spectra
. MSE vs Model Size
1074t 1 T T -
1072} 4
°
\\
1073F J
~
~,
Y
) N
105t 12 104 s, 5
~,
LI
\\
10—5 L \\\\ 4
L= (_C)—0-76 " L= (P)—1.21 S o
1.8 x 101 s 3.8 x 102 SN @
1014 101® 101 1017 1018 101 10° 108 107
Training Compute (FLOPs) Number of Parameters

Figure 6. Scaling behavior of TransformerPayne models. Dashed lines represent power-law fits with corresponding equations indicated
in each panel. Left panel: MSE versus training compute (in FLOPs) for all model configurations using the full 100,000 spectra dataset.
Each point represents a converged training run, with colors indicating model size (ranging from 69k to 30.9M parameters). Filled circles
represent training runs that process fewer than 100,000 total examples (less than one epoch), while open circles indicate runs exceeding one
epoch where examples are revisited. The solid black line traces the compute frontier, the optimal performance achievable at each compute
level, while the dashed line shows the power-law fit to this frontier with exponent —0.76. Upper-right panel: MSE versus dataset size
showing the best performance achieved for each dataset size across all model architectures and training durations. The —1.34 exponent
indicates a 22-fold reduction in MSE for each 10-fold increase in training data. Lower-right panel: MSE versus model size showing the best
results achieved across all dataset sizes and training durations for each model size. The power-law fit with exponent —1.21 demonstrates
a 16-fold reduction in MSE per 10-fold increase in parameter count. Note the slight flattening for the largest models, suggesting they
approach the limits imposed by the dataset size. Together, these panels illustrate distinct but complementary scaling relationships across
the three primary dimensions: compute, data, and model capacity.

in each scaling dimension does not necessarily correspond 3.4.2. Scaling with Dataset Size and Model Size

to maximum values in the remaining dimensions. For

example, when fixing dataset size and studying the rela- The top-right panel of Fig. 6 demonstrates scaling with
tionship between validation loss for different model sizes dataset size, showing the best achieved MSE for each
and compute resources, the largest model size does not dataset size across all model architectures and training
always yield the best performance. This is because, at a durations. This analysis reveals a power-law relation-
fixed compute budget, larger models can only be trained ship with exponent —1.34, indicating a 22-fold reduction
for fewer steps, potentially leading to undertraining. The in MSE whenever the dataset size increases by a factor

optimized choice therefore represents the best balance of 10. This quantifies the substantial benefit provided by
between the two unfixed dimensions while keeping the additional training data. Notably, as illustrated by the

third dimension constant. The three dimensions we ex- left panel, performance with the largest dataset (100,000
plored are model size (summarized in Table 2), dataset spectra) continues to improve with increased compute,
size (ranging from 100 to 100,000 examples), and training suggesting even better results could be achieved by ex-
duration (following the step schedule defined in Sec. 3.4). tending training further. For smaller datasets, model
Thus, for all considered TransformerPayne sizes, spec- performance has already saturated, and the largest mod-
tral grid sizes, and training durations, we investigated els begin to overfit; additional examples of this behavior
how emulation quality could be maximized when vary- are presented in Fig. B3 in Appendix B.
ing one parameter at a time, while optimally selecting The bottom-right panel of Fig. 6 demonstrates scaling
values for the other two parameters. with model size, displaying the best results across all

dataset sizes and training durations. The fitted power-

law has an exponent of —1.21, indicating a 16-fold re-
duction in MSE per 10-fold increase in parameter count.
A slight flattening is observed for models larger than ap-
proximately 107 parameters, suggesting that these mod-
els are approaching the performance limit imposed by the
current dataset size (100,000 spectra). Excluding the two
largest models yields a steeper exponent of —1.41, and
excluding the three largest yields an exponent of —1.54.

3.4.3. Compute Frontier Analysis

The left panel of Fig.6 shows how MSE varies as a
function of the compute budget allocated to training.
Unlike the right panels which show optimized perfor-
mance across dimensions, this plot displays the raw per-
formance trajectory of all model configurations across
varying amounts of compute. Each point represents a
converged training run, with model size indicated by
color (purple for the smallest models, transitioning to
yellow for the largest).

The distinction between filled and open circles rep-
resents a fundamental transition in training dynamics:
filled circles indicate training runs where the total num-
ber of processed examples (batch size X training steps)
is less than 100,000, meaning the model has not com-
pleted a full pass through the dataset (less than one
epoch). Open circles represent runs exceeding one epoch,
where the model has seen some training examples mul-
tiple times. This visualization shows how performance
continues to improve even after multiple passes through
the dataset, though with diminishing returns compared
to the sub-epoch regime.

The solid black line traces the compute frontier — the
lower envelope of all points representing the best achiev-
able performance at each compute level regardless of
model size. This frontier represents the optimal trade-
off between model size and training duration for each
compute budget. Notably, for compute budgets exceed-
ing approximately 107 FLOPs, the frontier transitions
into the multi-epoch regime (open circles), indicating a
potential shift in scaling efficiency. Extending beyond
one epoch may decrease efficiency since additional com-
pute is used to revisit already-seen examples rather than
exploring new regions of the parameter space through in-
creased model capacity or novel training examples. This
reuse of training data introduces diminishing returns as
the model has already extracted much of the unique in-
formation available in these examples.

A power-law fit to all models along this frontier yields
an exponent of —0.76, indicating that a 10-fold increase
in compute reduces the MSE approximately by a fac-
tor of 5.7. In contrast, for compute budgets below 107
FLOPs (where training on the frontier remains within
one epoch), scaling is more favorable, with an exponent

15

of —0.87. This difference highlights that in the sub-
epoch regime, each additional computation contributes
to learning from new, unseen data, creating a more ef-
ficient scaling relationship. Thus, only in this lower-
compute regime does the frontier strictly trace what
would be expected in an infinite-data limit where ex-
ample repetition is unnecessary.

3.4.4. Optimal Resource Allocation

While the right panels of Fig. 6 show how MSE scales
with dataset size and model size independently, what is
often more practically valuable is understanding how to
optimally balance resources when compute is the primary
constraint. This is particularly important because the
largest models are not always optimal, at limited com-
pute budgets, smaller models trained for more steps often
outperform larger models trained insufficiently. Fig.7
addresses precisely this practical question.

Focusing more closely on the model and dataset sizes
associated with the compute frontier, we interpret the re-
sults presented in Fig. 7. The left panel revisits the rela-
tionship between MSE and training compute, but unlike
the previous figure, here we highlight only the frontier
models, those achieving the best performance at each
compute level through optimized choices of model size
and training duration. For each compute budget, this
represents the single best-performing configuration from
among all the models we trained.

The left panel restricts our power-law fit to the region
below 107 FLOPs (indicated by the vertical dotted line),
where training consistently remains within one epoch. In
this regime, each training example is seen at most once,
and our data is not constrained by the finite size of our
stellar spectra grid. This yields a defined power-law ex-
ponent of —0.87. Within this regime, a 10-fold increase
in compute reduces MSE by a factor of approximately
7.4, demonstrating that with properly optimized archi-
tectural choices, compute scaling can be substantially
more efficient than suggested by the overall trend.

Importantly, achieving this optimal scaling requires se-
lecting the right model size for each compute budget, too
large a model with insufficient training steps or too small
a model with excessive training both result in subopti-
mal performance. Similarly, the number of training ex-
amples must be carefully balanced; as we show in the
middle panel, this optimal number increases with avail-
able compute but at a rate slower than the growth in
model size.

The middle panel shows how the optimal number of
training examples scales with compute. Each blue dot
represents a model on the compute frontier, plotting the
total processed spectra against the compute used. The

16

MSE vs Training Compute (100k Spectra) Processed Spectra vs Training Compute

Model Size vs Training Compute

107 —— Frontier E) : €a00000eme
--- FLOPs < 10V7 1001 o
o o :
o O 107 F 4
103k _ o o G
o o o
£ oo o :
bl ¢ 00 o @ —
=t N N e
- 5 :
w107tk 1% oo o = et
5
= 5 10 ® 3 10°} ot .
7/
Q ® s /
S 4 4
107 {4 3]
N = e
N\
N /
\\ ,/
10-sL L =(c)—0.87\ c)0.38 Los| gue p= (c)0.61 |
7.1 x 101! AN 104 4.6 x 103 - - 1.5x 108
T o e e Y T I e T T

Training Compute (FLOPs)

Training Compute (FLOPs)

Training Compute (FLOPs)

Figure 7. TransformerPayne models scaling along compute frontier. Dashed lines represent power-law fits with corresponding equations
indicated in each panel. Left panel: Validation loss (MSE) versus compute, focusing specifically on the frontier of best-performing models
(the lowest achievable MSE at each compute level). Unlike Fig. 6, this panel isolates only the optimal models and highlights the power-law
fit for the sub-epoch regime (training compute < 1017 FLOPs), where scaling behavior is most reliable. Middle panel: Number of processed
training examples versus compute for models along the frontier. Each blue dot represents a model on the compute frontier, with diagonal
patterns formed by individual model architectures trained for increasing durations. The power-law fit with exponent 0.38 indicates that
when compute increases 10-fold, the optimal training set size should increase approximately 2.4-fold. The horizontal dotted line at 100,000
spectra marks our dataset size limit; points above this line represent training beyond one epoch. Right panel: Model size (number of
parameters) versus compute for frontier models. The horizontal bands correspond to discrete model architectures from Table 2, with
transitions between bands indicating compute thresholds where larger models become more efficient than smaller ones trained longer. In all

panels, vertical dotted lines at 1017

FLOPs indicate the boundary beyond which our dataset becomes the limiting factor, and all power-law

fits are restricted to the region left of this boundary to ensure reliable scaling estimates.

distinct diagonal patterns visible in this plot emerge be-
cause each diagonal line represents a single model ar-
chitecture trained for increasing numbers of steps. As
we move along any individual diagonal, we’re seeing the
same model trained for progressively more steps, process-
ing more total examples and using more compute. The
frontier (best-performing models) jumps between these
diagonal lines, transitioning to larger models as compute
increases, creating the stair-step pattern. If we had the
computational resources to train models with continu-
ously varying numbers of parameters (rather than our
discrete set), we would expect the optimal frontier to
follow the fitted dashed line more smoothly.

We strategically limited our power-law fit to the regime
below 107 FLOPs where the processed spectra remain
within one epoch (below the 100,000 spectra dotted line),
as this represents the most reliable scaling regime where
each new computation contributes to processing previ-
ously unseen data. Since our results indicate it is optimal
to avoid processing spectra more than once, this rela-
tionship also directly suggests the ideal training dataset
size needed for a given compute budget, approximately
the number of processed spectra indicated by the dashed
line. The resulting power-law has an exponent of 0.38,
meaning that as compute increases by a factor of 10, the
optimal number of processed examples should increase
roughly by a factor of 2.4. The horizontal dotted line
at 100,000 spectra indicates our current dataset limit;
points above this line represent models trained over mul-

tiple epochs, where the same examples are revisited.

The right panel reveals how model size should scale
with increasing compute budgets. Each blue dot rep-
resents a model on the frontier, showing which model
size performs best at each compute level. Similar to the
middle panel, we observe distinct horizontal bands corre-
sponding to our discrete set of model architectures (from
Table 2). As compute increases, there are clear transition
points where it becomes more efficient to switch from a
smaller model trained for many steps to a larger model
trained for fewer steps.

The progression of these transitions reveals a consistent
pattern that follows a power-law with an exponent of
0.61, implying that when compute increases by a factor
of 10, optimal model size should grow by approximately
a factor of 4.1. If we had tested a continuous spectrum of
model sizes, we would expect the actual frontier to follow
the dashed line more smoothly. Again, we strategically
fit only points below 107 FLOPs to remain in the single-
epoch regime where scaling behavior is most reliable.

These findings deliver distinct but complementary in-
sights compared to Fig. 6. While the earlier figure charac-
terized the theoretical scaling potential of each dimension
in isolation (showing how performance improves when
scaling just dataset size or just model size with exponents
—1.34 and —1.21 respectively), Fig. 7 provides practical
guidance for real-world resource allocation under com-
pute constraints.

4. DISCUSSION

In this study, we investigated how the emulation accu-
racy of TransformerPayne scales with increases in stel-
lar spectra grid size, training compute budget, and neu-
ral network size. Our experiments demonstrate that,
given stable training and careful scaling of hyperparam-
eters, emulation accuracy predictably improves across
several orders of magnitude following consistent power-
law relationships. Specifically, we find that optimal scal-
ing involves simultaneously increasing training compute,
dataset size, and model size according to well-defined
proportions. These scaling laws, which closely parallel
those established in language modeling provide practi-
cal guidance for optimal resource allocation in spectral
emulation. They offer a quantitative framework for de-
signing stellar grids and planning computational require-
ments when targeting specific precision goals for current
and future stellar surveys.

4.1. Toward Spectral Foundational Models

Developing spectral foundational models for stellar
spectrum emulation presents two main challenges. First,
stable and efficient training must be maintained across
varying model sizes and training durations. Second, de-
termining the optimal way to scale network capacity is
crucial, as multiple hyperparameters (e.g., width, depth,
and number of tokens in TransformerPayne) simultane-
ously influence the total parameter count.

As demonstrated in this study, p-Parametrization
proved to be a highly valuable tool for simplifying the
scaling process, ensuring robust training dynamics when
adjusting model width. While P has been primarily
demonstrated for language models using cross-entropy
loss, our experiments confirm its effectiveness in the re-
gression context of stellar spectra emulation with MSE
loss. pP reliably stabilized scaling with respect to width;
however, we found that optimal hyperparameters re-
quired adjustments when varying depth by more than
a factor of two compared to the reference model.

Embedding token count and head dimensionality had
only minor effects on optimization stability. These find-
ings align closely with broader empirical results (e.g.,
Lingle 2024), suggesting that hyperparameters remain
stable primarily with width but require more careful re-
tuning for significant changes in depth. Therefore, fu-
ture hyperparameter searches would benefit from explic-
itly tuning at multiple reference depths (e.g., N = 2,
N = 8, and N = 32) to improve stability when scaling
depth substantially. Despite this limitation, our results
indicate that with sufficient depth, our current hyper-
parameter settings remain nearly optimal across a wide
range of architectures.

Finally, we found that, for many width-depth com-
binations, models of similar total parameter counts

17

achieve comparable performance, provided they are not
too shallow. Specifically, models with fewer than four
Transformer blocks reliably underperformed compared to
deeper architectures of similar size. In practice, once a
model is sufficiently deep and training is stable, perfor-
mance primarily depends on the total parameter count
rather than the exact depth-to-width ratio.

Thus, maintaining training stability ultimately proved
more critical than fine-tuning exact depth-to-width ra-
tios, especially since instabilities became more frequent
at greater depths without careful re-optimization of
training-related hyperparameters. This finding simpli-
fies the architectural design process, as it suggests that,
beyond ensuring sufficient depth, practitioners can focus
more on total parameter count through increasing width
than on precise architectural proportions when scaling
TransformerPayne models.

4.2. Practical Implications for Spectral Emulation

Neural-network emulators are typically trained under
various computational and data constraints, with the
overarching goal of minimizing the impact of emulation
errors on subsequent inference of stellar parameters and
abundances. In this study, we adopted plane-parallel
LTE atmospheric models, but we expect the scaling re-
lationships we have described to remain qualitatively ro-
bust across different modeling approaches, even as the
specific quantitative constants may vary. Our methodol-
ogy should serve as a template for future spectroscopic
emulation efforts.

When developing spectral emulators, the central chal-
lenge is optimizing performance within finite computa-
tional resources. Our analysis reveals that focusing ex-
clusively on any single dimension, larger models, more
training data, or extended training, yields suboptimal re-
sults. Instead, a balanced approach is necessary, where
these resources scale together according to specific pro-
portions.

The key practical scenario of interest is when a specific
emulation precision (associated with target MSE) is re-
quired. In such cases, one should determine the necessary
compute budget and then appropriately scale the model
size and training dataset size according to the relation-
ships illustrated in Fig.7. Specifically, given a desired
validation loss, the required compute C' can be estimated
by inverting the fitted scaling relation:

C=C.Lmtee, (23)

with parameters C, = 7.1 x 10'" and ac = 0.87. Sub-
sequently, the dataset size D and model size P should
follow from the computed budget as:

C 0.38 C 0.61
D=(—F— P=(—"——) . (4
(4.6 X 103> ’ (1.5 x 106) (24)

18

These relationships reveal the key insight of our work:
as computational resources increase, both model size and
dataset size should increase together, but at different
rates. Specifically, when compute increases by a factor
of 10, model size should increase by approximately 4x
while dataset size should increase by about 2.4x. This
balanced scaling ensures optimal performance for a given
computational budget.

To illustrate the practical value of these scaling laws,
consider planning for a large-scale emulator with 1 billion
parameters (a 1B TransformerPayne model). Using our
scaling equations, we can determine that the required
training compute would equal 8.52 x 10?° FLOPs, and
the spectral grid should contain approximately 3.64 x 10°
stellar spectra. Following these guidelines, the resulting
MSE for this model would be approximately 1.26 x 1078,

To contextualize the computational requirements, we
can convert abstract FLOP counts into hardware-specific
metrics. For instance, using a modern Nvidia H100 ac-
celerator, which delivers approximately 67 teraFLOPS in
Float32 precision, the training time would be:

8.52 x 1020
67 x 1012 x 24 x 3600

These concrete calculations demonstrate how our scal-

~ 147.10 H100-days. (25)

ing laws can be applied to practical planning decisions,
allowing researchers to estimate resource requirements
for specific emulation precision targets. Similar estima-
tions can be conducted for various model sizes, spectral
grid sizes, or target MSE values, providing a quantita-
tive framework for resource allocation in spectroscopic
studies.

4.3. Limits of Neural Scaling Laws

While empirical scaling laws suggest that model per-
formance continues to improve with larger models, more
training data, and increased training compute, extend-
ing these laws too far reveals apparent contradictions,
indicating that the outlined scaling relationships must
eventually break down. This point becomes particularly
evident when comparing the two distinct scaling regimes
illustrated in Fig. 8.

The first regime, represented by the blue line and
circles, illustrates the theoretical best-case performance
achievable with increasing amounts of training data.
This data-limited regime corresponds exactly to the sce-
nario previously presented in the lower-right panel of
Fig.6, where models are trained to saturation to fully
extract all available information from the training data.

Unlike the compute frontier models, which aim to find
the optimal balance between model size and training
duration under compute constraints, these data-limited

10—1 L
1073 L
w
w0
= 10—5 L
Loss - Dataset Size Relation
10-74 @ Data limited regime (DL)
A Compute frontier regime (CL)
—— Fitted - DL regime \
Fitted - CL regime, FLOPs < 10%7
-9l . . i .)
o 107 103 104 10° 106 107

Number of Spectra

Figure 8. Comparison of two different scaling regimes. The blue
circles and line represent the data-limited regime, showing how
MSE decreases with more training data when using optimally-sized
models trained to full convergence, regardless of computational ef-
ficiency. These points are derived from selecting the best results
for each dataset size across all model architectures and training
durations in our experiments. In contrast, the orange triangles
represent the compute frontier regime, showing how MSE scales
with the number of processed spectra when using models that are
optimal under constrained computational resources. Each trian-
gle indicates a distinct converged model characterized by specific
combinations of model size and training duration, with associated
compute budget measured in FLOPs. The vertical dotted line
indicates the size of our current spectral grid (100,000 spectra).
The intersection of these trends at approximately 3 x 108 spectra
indicates a transition point where our compute-optimal scaling ap-
proach reaches the data-limited ceiling.

points represent exhaustive training to convergence, re-
gardless of computational efficiency. The points along
this line are directly reproduced from our earlier exper-
iments, where we selected the best results achieved for
each dataset size across all model architectures and train-
ing durations.

The second regime, represented by the orange trian-
gles and dashed line, illustrates how performance scales
along the compute frontier. In this compute frontier
regime, each orange triangle represents a distinct model
that achieved optimal performance given its particular
compute budget. These data points are identical to those
presented previously in Fig. 7, but here they are shown as
MSE versus the number of training spectra rather than
versus training compute.

These two trends intersect at approximately three mil-
lion spectra, marking a potential transition in scaling be-
havior. The blue line represents the theoretical limit if
one could fully exploit a given grid of stellar spectra with-
out restrictions imposed by model size or computational
resources. Validation loss cannot be improved beyond
this theoretical limit (blue line) for a given dataset size.
At the intersection point, our compute-optimal scaling

approach (orange triangles) reaches the data-limited ceil-
ing (blue line), indicating that the scaling laws we have
established in this study would no longer apply beyond
this point.

This does not mean that performance improvement
stops entirely, rather, it would continue to improve but at
the slower rate dictated by the data-limited regime (blue
line) instead of following our compute-optimal scaling
trajectory. Based on our scaling equations, this transi-
tion occurs at approximately 3 million spectra, an MSE
of roughly 1078, and corresponds to a model size of
around 10° parameters (1B parameters) as determined
by our compute-optimal scaling equation.

Similar observations have been reported in large-scale
language modeling studies by Kaplan et al. (2020), who
interpreted this phenomenon as a transition between two
distinct regimes: one where increasing data reliably en-
hances performance, and another where the available
data is effectively exhausted. The authors suggest that
scaling laws must inevitably break around these transi-
tion points, hypothesizing a deeper fundamental impli-
cation: that at these points, neural networks have fully
extracted the information available in a training corpus,
and the corresponding loss could serve as an estimate of
the entropy-per-token in natural language.

Although a dataset with stellar spectra is not inher-
ently probabilistic, some randomness might still be in-
troduced by two factors: first, by the numerical mod-
eling code used to simulate stellar atmospheres (in this
case, Kurucz’s Atlas and Synthe) and its limited numer-
ical precision; second, by the linear interpolation process
in wavelength that we use to sample flux at arbitrary
wavelengths. The numerical precision of Kurucz models
typically introduces inherent noise on the order of 10~°
in flux space due to solver limitations, and an MSE of
10~® corresponds to differences of v/10~8 ~ 10™* in the
flux unit, already approaching this fundamental preci-
sion limitation. For context, even this level of precision
(0.01% in flux) far exceeds what is typically achievable
in observational spectroscopy, where signal-to-noise ra-
tios rarely exceed 100 (corresponding to 1% precision).

4.4. Caveats and Future Work

A limitation of our study is considering only the train-
ing budget of the spectral emulator when evaluating
trade-offs for real surveys. A broader assessment should
incorporate both the computational cost of spectral grid
calculations and the resources required by the inference
stack, the computational process of using trained em-
ulators to make predictions, fit observed spectra, and
derive stellar parameters. Expanding the scaling laws
derived here to explicitly include grid computation and
inference costs could affect optimality and presents inter-

19

esting technical opportunities for improving the efficiency
of future spectral surveys.

Our evaluation focused primarily on how well models
can emulate synthetic spectra by calculating the error in
normalized flux space. However, this approach is lim-
ited to measuring the MSE across entire spectra, while
real-world spectroscopic applications are primarily con-
cerned with the precision of inferred stellar parameters
and elemental abundances derived from individual spec-
tral lines. For large-scale spectroscopic surveys, where
precision requirements are often specified in terms of
parameter accuracy rather than spectral MSE, our ap-
proach provides a pathway to translate those require-
ments into concrete computational and data needs.

We focus on MSE as our primary metric because emu-
lation errors manifest as systematic noise in the spectral
fitting process, which, to a first approximation, can be
translated into statistical errors on stellar parameters us-
ing Fisher matrix calculations. This direct connection
between spectral emulation quality and parameter in-
ference precision makes MSE a robust and theoretically
justified optimization target (Ting et al. 2017; Sandford
et al. 2020; Rézanski et al. 2024).

Perhaps the most important limitation is that in this
study we use MSE as a proxy for model performance in
the training domain only, that is, how well the model
performs on synthetic spectra generated using the same
methodology as the training data. While optimizing em-
ulation to achieve MSE of 1076 (equivalent to approx-
imately 0.1% in flux) is commendable, such that when
dealing with spectra with signal-to-noise ratios of order
100, ensuring the error budget from emulation does not
dominate, scaling beyond that point may yield dimin-
ishing returns. The critical question for spectral foun-
dational models is domain transfer capability: how well
models trained on one domain can generalize to another
with minimal additional training.

In the context of spectral emulation, a key challenge is
how well models trained on computationally inexpensive
1D-LTE models can transfer to more accurate 3D non-
LTE models or to empirical spectra with ground truth la-
bels established through other means (e.g., Gaia Bench-
mark stars, Soubiran et al. 2024). The original Trans-
formerPayne paper has shown improved domain transfer
ability compared to other methods, but this capability
remains suboptimal. As we scale up model size follow-
ing the laws established in this work, understanding how
domain transfer ability improves is a critical direction
for future research. Similar to how scaling laws in lan-
guage models have demonstrated emergent abilities like
few-shot learning (Brown et al. 2020; Zhang et al. 2024)
and “grokking” (sudden performance improvements after
extended training, e.g., Power et al. 2022), we aim to in-

20

vestigate whether similar phenomena emerge in spectral
models as they scale, potentially enabling more efficient
domain adaptation.

5. CONCLUSIONS

On-going and upcoming spectroscopic surveys produce
stellar spectra at unprecedented volumes, demanding
computationally efficient techniques for precise analysis.
Emulation has become essential in inference pipelines due
to its computational speed. It effectively handles the
complexity of high-dimensional parameter spaces, over-
coming the limitations of traditional interpolation meth-
ods. However, earlier emulator models exhibited limita-
tions, with accuracy saturating around a 1% precision
level. Recently, the Transformer-based emulator (Trans-
formerPayne) was introduced to address this limitation
by leveraging the inherent scalability and strong induc-
tive bias of Transformer architectures, with the ultimate
goal of developing spectral foundational models capable
of few-shot learning and domain transfer.

In this work, we empirically investigated how Trans-
formerPayne’s emulation accuracy scales with model size,
training compute, and the size of the stellar spectra grid.
We optimized hyperparameters and employed techniques
to stabilize training across all scales, systematically ex-
amining improvements in precision.

We established a training methodology based on Maxi-
mum Update Parametrization that enables stable and ef-
ficient training of large TransformerPayne models. This
approach effectively stabilizes training dynamics, allow-
ing consistent scaling of model widths without repeated
hyperparameter tuning. Our results demonstrate that
once models reach sufficient depth (IV > 4), the primary
predictor of model performance is the total parameter
count, with considerable flexibility in the exact depth-
to-width ratio.

The core result of our empirical investigation is that
improvements in emulation quality follow predictable
power-law relationships. We have established clear scal-
ing laws for spectral emulation, finding that validation
loss scales with dataset size as £(D) x D134 with
model size as L(P) « P~12! and with compute as
L(C) o< C7%76 Along the optimal compute frontier,
we found that dataset size should scale as D oc C?38
and model size as P o« C°%%!. These quantitative rela-
tionships provide practical guidance for efficiently allo-
cating computational resources to achieve specific emu-
lation precision targets.

The exhibition of these scaling laws demonstrates that
Transformer-based models are robust architectures for
spectral emulation, with predictable performance im-
provements as computational resources increase. Our
work establishes a foundation for training spectral foun-

dational models without wasteful hyperparameter explo-
ration, offering a clear pathway toward reducing emu-
lation errors to any desired threshold. This capacity
supports rapid, reliable spectral interpolation, thereby
facilitating more advanced analyses within various spec-
troscopic surveys.

ACKNOWLEDGMENTS

This research was undertaken with the assistance of
resources and services from the National Computational
Infrastructure (NCI), which is supported by the Aus-
tralian Government. This research used resources of the
Oak Ridge Leadership Computing Facility at the Oak
Ridge National Laboratory, which is supported by the
Office of Science of the U.S. Department of Energy under
Contract No. DE-AC05-000R22725. Y.S.T is supported
by the National Science Foundation under Grant No.
AST-2406729. This research was supported by grants
from NVIDIA Academic Grant Program. Additionally,
we extend our heartfelt thanks to Alex Ji, David Wein-
berg, Hans-Walter Rix, Jennifer Johnson, Anil Prad-
han, Adam Wheeler, Anish Amarsi, Jiri Kubat, Ewa
Niemczura, Mark Krumholz, Maria Bergemann, Nicholas
Storm, Richard Hoppe and Philip Eitner for invaluable
discussions.

SOFTWARE:

This project extensively used various open-source
Python libraries: numpy (Harris et al. 2020), scipy (Vir-
tanen et al. 2020), jax (Bradbury et al. 2018), flax (Heek
et al. 2024), optax (DeepMind et al. 2020), and mat-
plotlib (Hunter 2007). For color maps we mostly used
Petroff (2024).

REFERENCES

G. Gilmore, S. Randich, M. Asplund, J. Binney, P. Bonifacio,

J. Drew, S. Feltzing, A. Ferguson, R. Jeffries, G. Micela, et al.,
The Messenger 147, 25 (2012).

A. L. Luo, Y.-H. Zhao, G. Zhao, L.-C. Deng, X.-W. Liu, Y.-P.
Jing, G. Wang, H.-T. Zhang, J.-R. Shi, X.-Q. Cui, et al.,
Research in Astronomy and Astrophysics 15, 1095 (2015),
1505.01570.

S. R. Majewski, R. P. Schiavon, P. M. Frinchaboy, C. Allende
Prieto, R. Barkhouser, D. Bizyaev, B. Blank, S. Brunner,

A. Burton, R. Carrera, et al., AJ 154, 94 (2017), 1509.05420.

S. Buder, S. Sharma, J. Kos, A. M. Amarsi, T. Nordlander,

K. Lind, S. L. Martell, M. Asplund, J. Bland-Hawthorn, A. R.
Casey, et al., arXiv e-prints arXiv:2011.02505 (2020),
2011.02505.

R. S. de Jong, O. Agertz, A. A. Berbel, J. Aird, D. A. Alexander,
A. Amarsi, F. Anders, R. Andrae, B. Ansarinejad, W. Ansorge,
et al., The Messenger 175, 3 (2019), 1903.02464.

M. Ness, D. W. Hogg, H. W. Rix, A. Y. Q. Ho, and G. Zasowski,
ApJ 808, 16 (2015), 1501.07604.

Y .-S. Ting, C. Conroy, H.-W. Rix, and P. Cargile, ApJ 879, 69
(2019), 1804.01530.

T. Rézanski, Y.-S. Ting, and M. Jablonska, arXiv e-prints
arXiv:2407.05751 (2024), 2407.05751.

J. Hestness, S. Narang, N. Ardalani, G. Diamos, H. Jun,

H. Kianinejad, M. M. A. Patwary, Y. Yang, and Y. Zhou,
arXiv e-prints arXiv:1712.00409 (2017), 1712.00409.

J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess,
R. Child, S. Gray, A. Radford, J. Wu, and D. Amodei, arXiv
e-prints arXiv:2001.08361 (2020), 2001.08361.

J. Hoffmann, S. Borgeaud, A. Mensch, E. Buchatskaya, T. Cai,
E. Rutherford, D. de Las Casas, L. A. Hendricks, J. Welbl,
A. Clark, et al., arXiv e-prints arXiv:2203.15556 (2022),
2203.15556.

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan,

P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell,
et al., arXiv e-prints arXiv:2005.14165 (2020), 2005.14165.

B. Zhang, Z. Liu, C. Cherry, and O. Firat, arXiv e-prints
arXiv:2402.17193 (2024), 2402.17193.

J.-S. Pan, Y.-S. Ting, Y. Huang, J. Yu, and J.-F. Liu, arXiv
e-prints arXiv:2405.17156 (2024), 2405.17156.

M. Walmsley, M. Bowles, A. M. M. Scaife, J. Shingirai
Makechemu, A. J. Gordon, A. M. N. Ferguson, R. G. Mann,
J. Pearson, J. J. Popp, J. Bovy, et al., arXiv e-prints
arXiv:2404.02973 (2024), 2404.02973.

M. J. Smith, R. J. Roberts, E. Angeloudi, and
M. Huertas-Company, arXiv e-prints arXiv:2405.14930 (2024),
2405.14930.

R. Xiong, Y. Yang, D. He, K. Zheng, S. Zheng, C. Xing,

H. Zhang, Y. Lan, L. Wang, and T.-Y. Liu, arXiv e-prints
arXiv:2002.04745 (2020), 2002.04745.

J. B. Lester and H. R. Neilson, Astronomy and Astrophysics 491,
633 (2008), 0809.1870.

R. L. Kurucz, The Astrophysical Journal Supplement Series 40, 1
(1979).

R. L. Kurucz, Memorie della Societa Astronomica Italiana
Supplementi 8, 14 (2005).

D. P. Kingma and J. Ba, arXiv e-prints arXiv:1412.6980 (2014),
1412.6980.

I. Loshchilov and F. Hutter, arXiv e-prints arXiv:1711.05101
(2017), 1711.05101.

A. Hagele, E. Bakouch, A. Kosson, L. Ben Allal, L. Von Werra,
and M. Jaggi, arXiv e-prints arXiv:2405.18392 (2024),
2405.18392.

G. Yang, E. J. Hu, I. Babuschkin, S. Sidor, X. Liu, D. Farhi,

N. Ryder, J. Pachocki, W. Chen, and J. Gao, arXiv e-prints
arXiv:2203.03466 (2022), 2203.03466.

G. Yang, D. Yu, C. Zhu, and S. Hayou, arXiv e-prints
arXiv:2310.02244 (2023a), 2310.02244.

G. Yang, J. B. Simon, and J. Bernstein, arXiv e-prints
arXiv:2310.17813 (2023b), 2310.17813.

APPENDIX
A. PARAMETER AND FLOP CALCULATIONS

In this section, we provide a detailed breakdown of
how parameters and FLOPs are computed for the basic
building blocks of TransformerPayne. These calculations
form the foundation for our scaling law analysis, as they
allow us to quantify the computational resources required
by models of different sizes. The notation follows that
used in the main text.

A linear layer, the fundamental computation unit in
neural networks, transforms input vectors from R%» to
R%ut via matrix multiplication. The number of trainable
parameters in such a layer is di, X dous. When applied to
a single vector x € R%n», the computational cost can be
measured in FLOPs. Counting a multiply plus an add
as two FLOPs, the total number of operations is thus
2 din dout-

For efficiency, neural networks often process multiple
inputs simultaneously. When the same linear layer is
applied to a matrix X € RE*%n (representing a batch of

21

L. Lingle, arXiv e-prints arXiv:2404.05728 (2024), 2404.05728.

C. Blake, C. Eichenberg, J. Dean, L. Balles, L. Y. Prince,

B. Deiseroth, A. F. Cruz-Salinas, C. Luschi, S. Weinbach, and
D. Orr, arXiv e-prints arXiv:2407.17465 (2024), 2407.17465.

S. McCandlish, J. Kaplan, D. Amodei, and OpenAl Dota Team,
arXiv e-prints arXiv:1812.06162 (2018), 1812.06162.

F. Schaipp, A. Hagele, A. Taylor, U. Simsekli, and F. Bach, arXiv
e-prints arXiv:2501.18965 (2025), 2501.18965.

Y.-S. Ting, C. Conroy, H.-W. Rix, and P. Cargile, ApJ 843, 32
(2017), 1706.00111.

N. R. Sandford, D. R. Weisz, and Y.-S. Ting, The Astrophysical
Journal Supplement Series 249, 24 (2020), URL
https://dx.doi.org/10.3847/1538-4365/ab9cb0.

C. Soubiran, O. L. Creevey, N. Lagarde, N. Brouillet, P. Jofré,
L. Casamiquela, U. Heiter, C. Aguilera-Gémez, S. Vitali,

C. Worley, et al., A&A 682, A145 (2024), 2310.11302.

A. Power, Y. Burda, H. Edwards, I. Babuschkin, and V. Misra,
arXiv e-prints arXiv:2201.02177 (2022), 2201.02177.

C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers,

P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg,
N. J. Smith, et al., Nature 585, 357 (2020), URL
https://doi.org/10.1038/s41586-020-2649-2.

P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland,

T. Reddy, D. Cournapeau, E. Burovski, P. Peterson,
W. Weckesser, J. Bright, et al., Nature Methods 17, 261 (2020).

J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary,

D. Maclaurin, G. Necula, A. Paszke, J. VanderPlas,

S. Wanderman-Milne, et al., JAX: composable transformations
of Python+NumPy programs (2018), URL
http://github.com/jax-ml/jax.

J. Heek, A. Levskaya, A. Oliver, M. Ritter, B. Rondepierre,

A. Steiner, and M. van Zee, Flaz: A neural network library and
ecosystem for JAX (2024), URL
http://github.com/google/flax.

DeepMind, I. Babuschkin, K. Baumli, A. Bell, S. Bhupatiraju,
J. Bruce, P. Buchlovsky, D. Budden, T. Cai, A. Clark, et al.,
The DeepMind JAX Ecosystem (2020), URL
http://github.com/google-deepmind.

J. D. Hunter, Computing in Science & Engineering 9, 90 (2007).

M. A. Petroff, Accessible color sequences for data visualization
(2024), 2107.02270, URL https://arxiv.org/abs/2107.02270.

L inputs), the output becomes Y € RE*deut . Though the
parameter count remains unchanged, the computational
cost scales with the number of inputs of 2 L di, dout.

In TransformerPayne, we use RMSNorm for layer nor-
malization but without trainable scale or bias param-
eters. This simplifies the function computed by RM-
SNorm on a vector x € R? to:

RMSNorm(x) = x , (A1)

Z?:1 3%2 + ¢

where € is a small constant (e.g., 107%) for numerical

Q=

stability. When applied to a sequence of tokens, like
Pemb € R4, the normalization is applied to each row
(token) independently.

Since our implementation of RMSNorm has no learn-
able parameters, its parameter count is zero. The FLOP
count for applying RMSNorm to a (Nyows, d)-matrix in-
volves three main steps: summing the squares of each
element (approximately 2d operations per row), taking
a reciprocal square root once per row, and multiplying
each element by the resulting scale factor (d multiplica-
tions per row). Combining these operations, the total
FLOP count approximates to 3(Nyows - d)-

22

The attention mechanism is the core innovation of
Transformer architectures. For TransformerPayne, we
calculate the computational cost when @ € RVnuxxd and
K,V € R?*4. The attention operation computes:

e

This breaks down into three main steps:

T

softmax(

1. Compute QK T: The multiply-add cost for this
matrix multiplication is approximately 2 X Ngux X
t x d FLOPs.

2. Scale and softmax: Each of the Ny, -t elements
is scaled by 1/d and then passed through the soft-
max function along each row. This typically counts
as some small constant multiple of N,y -t (for ex-
ponentiation, summation, division, etc.).

3. Multiply by V: The attention matrix is multi-
plied by V', with a cost of approximately 2 X Ng,x X
t x d FLOPs.

In multi-head attention, @, K,V often come from dis-
tinct linear projections, and the output may also be pro-
jected (the O matrix). We account for these as separate
rows in our parameter/FLOP table (e.g., “Cross-Attn: Q
+ O” vs. “Cross-Attn: K 4+ V”), along with the “Scores
+ Context” step for softmax and multiplication by V.

All remaining entries in the main table are derived by
combining these base calculations with the appropriate
dimensions, multipliers (e.g., the feed-forward layer has
dg = 4d) and the correct token counts (¢ or Nauy). We
then sum over N layers to arrive at the total parameter
and FLOPs counts in the final rows of the table.

These detailed calculations allow us to precisely mea-
sure the computational requirements of different model
architectures, enabling the systematic investigation of
scaling laws presented in the main text.

B. SCALING TRANSFORMERPAYNE: ADDITIONAL
MATERIALS

This appendix provides supplementary figures that
comprehensively illustrate key aspects of Transformer-
Payne scaling behaviors, expanding upon details briefly
discussed in the main text. These visualizations offer
deeper insights into the relationships between architec-
tural choices, training dynamics, and model performance
that underpin our scaling law analysis.

Figure B1 provides a more detailed examination of how
scaling various architectural parameters affects emula-
tion MSE. While Fig.5 in the main text gives an over-
all view of parameter scaling, this figure breaks down

the analysis into three distinct panels, each focusing on
one architectural dimension: width (left), depth (center),
and token count (right). This decomposition allows us to
clearly see the individual contribution of each parameter
to model performance.

As discussed in Sec. 3.3, width scaling provides con-
sistent improvements with the least risk of instability,
depth scaling offers comparable benefits but becomes un-
stable more quickly, and dedication extra parameters to
token count scaling provides the least improvement rel-
ative to parameter count. For practical purposes, prior-
itizing width scaling while maintaining sufficient depth
(at least 4 Transformer blocks) offers the most reliable
path to improved performance.

Figure B2 illustrates the Warmup-Stable-Decay
(WSD) learning rate schedule employed in our experi-
ments and its impact on training dynamics. This sched-
ule consists of three phases: an initial warm-up phase
where the learning rate increases linearly from zero to
its maximum value, a stable phase where the learning
rate remains constant, and a final decay phase where it
decreases linearly to zero. The upper panel shows how
we implemented this schedule, with all runs sharing the
same warm-up and stable phases (black line) but hav-
ing individually customized decay phases (colored lines).
The lower panel demonstrates the corresponding train-
ing loss (dashed lines) and validation loss (solid lines with
markers) for each schedule variant.

This visualization is particularly important for under-
standing our checkpoint reuse strategy: we ran a single
long training process with frequent intermediate check-
points, then launched multiple shorter decay runs from
these checkpoints in parallel. This approach significantly
reduced computational costs by reusing the common ini-
tial portions of training. The figure clearly shows that
the final decay to zero learning rate is crucial for achiev-
ing optimal performance, which is why we adopted this
schedule for all scaling experiments in Sec. 3.4.

Figure B3 illustrates how emulation accuracy changes
as the training dataset size decreases. Results are pre-
sented for datasets containing 100,000 (top-left panel),
30,000 (top-right), 10,000 (bottom-left), and 3,000
(bottom-right) unique stellar spectra. It is important
to clarify that term processed spectra refers to the total
number of training examples seen during training (cal-
culated as batch size X number of training steps), while
the dataset size refers to the number of unique spectra
available for training. When the number of processed

23

Width Varying Along Lines Depth Varying Along Lines Number of Tokens Varying Along Lines
Width Depth Number of Tokens
50 100 150 200 250 5 10 15 20 10 20 30 40
= \Vidth Varying Depth Varying === Number of Tokens Varying
Reference Models: QDO Reference Models: Reference Models:
O dJd=32,N=1,t=8 ¢ %0 O dJd=32,N=1,t=8 50\ O d=32n=1t=1
1072} é d=32,N=4,t=8 { L OOQDO A d=128nN=1t=8 { | 00@0 é d=128,N=4,t=1 .
o6 d=32,N=16,t=8 \\.&Oo O d=256,nN=1,t=8 \.SQ d=256,N=16,t=1
°CR o5
v B0
» O T580 o %758
w o (¢} 8
v q9-3L J \ & le) 1 L 08 éD J
= A X O [e5)
80 X8, 80
digiP oo e® o
Nast®
D
o
Rx; 0038
1074} 4 F \ 0 4t]
o}
) 7
. . v
10° 10° 107 10° 10° 107 10° 10° 107
Parameters Count Parameters Count Parameters Count

Figure B1. Validation loss (MSE) as a function of model parameter count, shown across three panels. Each panel highlights how
performance varies predominantly with one architectural dimension: model width d (left), depth N (center), and number of tokens t
(right). Changes are highlighted using color, and three additional lines are emphasized, each corresponding to variations in only the
parameter of interest. Filled markers indicate stable models with sufficient depth (N > 4) that converged during training, while open
markers represent models that were either too shallow (IV < 4), unstable, or both. The colorbar above each panel shows the corresponding
value of the highlighted parameter (width, depth, or tokens). Increasing model width consistently improves performance until instability
appears at large widths (at least for largest model). Depth scaling beyond N > 4 initially offers similar benefits to scaling width but
encounters instability earlier compared to width scaling. Varying number of tokens usually yields performance improvements, but with
comparatively less benefit than scaling width or depth.

—— Learning rate schedule 7]

0.0012

0.0010

o o
o o
o o
o o
o [e3)

Learning Rate

----- Training curves
—@— Validation loss

1074¢

MSE

105}

0.0 0.5 1.0 1.5 2.0
Training Step Number 1e6

Figure B2. Visualization of the WSD learning rate schedule (upper panel) and corresponding training and validation loss curves (lower
panel) for a TransformerPayne with 4.1M parameters trained on a full dataset of 100,000 spectra. The black line in the upper panel
represents the initial warm-up and stable phases, which are shared by all runs. The colored lines show individual cool-down phases, during
which each run independently decays the learning rate to zero at distinct restoring and ending steps. In the lower panel, dashed lines
represent training loss curves, while solid lines with markers indicate validation loss curves. Colors in the lower panel correspond to the
individual cool-down schedules depicted above. This WSD schedule structure was consistently applied to all experiments presented in
Sec. 3.4. Models at the end of each cool-down phase trace an envelope representing the lowest MSE achievable for each training duration.

spectra exceeds the dataset size, the model begins revis- iting examples it has already seen.

24

MSE vs Compute (100k)

MSE vs Compute (30k)

Processed spectra Processed spectra
102} ® = 100k spectra - 1072} ® = 30k spectra -
O > 100k spectra O > 30k spectra
C Model Size Model Size
® 69k ® 69k
@ 118k @ 118k
@® 272k @® 272k
= Q@ J sl J
10 ® 469k 10 ® 469k
® 11M ® 1M
® 19M ® 19M
® 41M ® 41M
w 8.1M w 8.1M
g 13.7M 2 13.7M
10-4L 30.9M 10-4L 30.9M
= Frontier = Frontier
== 100k Frontier
1075 ¢ E 1075} E
~
\\
~
S
T (AN . B T T T L T e T
Training Compute (FLOPs) Training Compute (FLOPSs)
MSE vs Compute (10k) MSE vs Compute (3k)
Processed spectra Processed spectra
1072} ® =< 10k spectra - 1072} @® = 3kspectra A
O > 10k spectra O > 3kspectra
Model Size Model Size
@® 69k @® 69k
@® 118k @® 118k
5 ® 272k s ® 272k
1077 ® 469k g 1077 ® 469k]
® 11M ® 11M
® 19M ® 19M
4.1M 4.1M
w 8.1M w 8.1M
0 0
2 o I13.7|\./| 2 13.7M
10-4k = Frontier 104} m— Frontier
= = 100k Frontier = = 100k Frontier
~
~
SN
1075} S 9 1075F S 1
N
S ~
N ~
\\ \\
o <
~ ~.
T [T A T Es T T T L AN . T T
Training Compute (FLOPs) Training Compute (FLOPs)
Figure B3. Scaling experiments illustrating how emulation accuracy changes as the training dataset size decreases. Results are presented

for datasets containing 100,000 (top-left panel), 30,000 (top-right), 10,000 (bottom-left), and 3,000 (bottom-right) unique stellar spectra.
Each point represents a completed training run, with colors indicating model size (from purple for smallest to yellow for largest models, as
shown in the legend). The frontier models, representing the best-performing configurations identified from the dataset of 100,000 spectra,
are highlighted with a dashed line across all panels for comparison, allowing direct visualization of how performance degrades with smaller
datasets even when maintaining optimal training strategies. Open markers indicate experiments for which training surpassed one epoch
(processed more examples than exist in the dataset), while filled markers indicate training within one epoch; notably, all points in the
bottom panels correspond to training exceeding one epoch, as smaller datasets are quickly exhausted during training.

For the larger datasets (100,000 and 30,000), we ob-
serve a mix of filled circles (representing training within
one epoch, where each spectrum is seen at most once)
and open circles (representing training beyond one epoch,
where some spectra are revisited). However, for smaller
datasets (3,000 and 10,000), training surpasses one epoch

very early, even during the warm-up phase, resulting in
only open markers in the corresponding panels.

These plots highlight several critical impacts of lim-
ited dataset sizes on scaling behavior. First, while per-
formance frontiers follow similar patterns when sufficient
data are available, models trained on smaller datasets in-

creasingly deviate from the initial scaling trends as train-
ing progresses, eventually saturating in performance.
Second, for smaller datasets, the largest models (shown
in yellow/green) exhibit clear signs of overfitting, with
MSE values that plateau or even increase with addi-
tional training. Third, the best-performing models for
smaller datasets typically have intermediate sizes rather
than being the largest models available, demonstrating
that model capacity should be matched to dataset size.
The early saturation observed in the largest models
could likely be mitigated by employing stronger regu-
larization techniques during training, such as increased
weight decay, dropout, or early stopping based on val-
idation performance, which is beyond the scope of this
study. These results underscore the importance of bal-
ancing model size, dataset size, and training duration,
particularly when working with limited training data.

This paper was built using the Open Journal of As-
trophysics IATEX template. The OJA is a journal which
provides fast and easy peer review for new papers in the
astro-ph section of the arXiv, making the reviewing pro-
cess simpler for authors and referees alike. Learn more
at http://astro.theoj.org.

25

	Introduction
	Methods
	MLP and Sinusoidal Embedding
	Transformer Block
	Dimensions of Scaling Laws
	Spectral Grid, Training and Metrics
	Maximum Update Parametrization
	Neural Scaling Laws

	Results
	Hyperparameter Optimization
	muP Scaling Validation Tests
	Architectural Parameter Optimization for Transformer Scaling
	Scaling TransformerPayne
	Scaling Dimensions and Optimization Strategy
	Scaling with Dataset Size and Model Size
	Compute Frontier Analysis
	Optimal Resource Allocation

	Discussion
	Toward Spectral Foundational Models
	Practical Implications for Spectral Emulation
	Limits of Neural Scaling Laws
	Caveats and Future Work

	Conclusions
	Parameter and FLOP Calculations
	Scaling TransformerPayne: Additional Materials

